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ABSTRACT

Title of Thesis: Real-Time Control for a Zero Gravity Robotic End Effector
Name of Degree Canidate: Carole A. Salter
Degree and Year: Master of Science, 1989
Thesis directed by: Professor John S. Baras
Systems Research Center

Dept. of Electrical Engineering

There is no doubt that the task of gripping and handling objects in space
is an important one. The ability to easily manipulate objects in a zero gravity
environment will play a key role in future space activities. It is the aim of
this research to develop control laws for the zero gravity robotic end effector
designed by engineers at NASA Goddard. A hybrid force/position controller
will be used. Sensory data available to the controller are obtained from an
array of strain gauges and a linear potentiometer. Applying well known optimal
control theoretic principles, the control which minimizes the transition time

between positions is obtained. A robust force control scheme is developed which



allows the desired holding force to be achieved smoothly without oscillation. In

addition, an algorithm is found to determine contact force and contact location.
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CHAPTER

ONE

Introduction

There is no doubt that the task of gripping and handling objects in space ! is

an important one. Much diagnostic servicing and repair of existing space struc-
tures (e.g. satellites) require physical manipulation of the structure. Processing
materials in space is an essential step in the evolution of space technology. With
the goal of constructing large space structures in mind, earth based processing
becomes both physically and economically impractical. This fact demands that

the processing of materials be moved to the construction site ...into space.

Regrettably, direct human manipulation is also not a satisfactory solution.
Though the various missions of the space shuttle have established the plausibility
of humans working and living in space, the range of tasks achievable by direct
human manipulation is limited. Moreover, machines are infinitely more suited
to the many repetitive low-level tasks that may be required in space. Finally,
the foreign environment of space presents a substantial health risk to a human

manipulator.

IThe term space will be used synonymously with the term “zero gravity environment”.



It is evident, then, that robotic manipulation must play a vitally important
role in the future of space activities. Already, telerobotic manipulators have been
successfully employed in a full range of important space activities (e.g. satellite
retrieval). Thus, the design of lightweight, dexterous robotic manipulators has
become a significant and indispensable component of aerospace research and

development in the past few years.

Designing the end effector portion of the space manipulaior, one must ad-
dress the problems associated with gripping objects in a zero gravity environ-
ment. The problems encountered here are very different and in many respects
much more difficult than those encountered performing the same tasks on earth.
Accordingly, the design and control of such end effectors must reflect these dil-
ferences. Reaction forces and torques which are usually damped by various
mechanisms (gravity, friction, interaction with the atmosphere) on earth, can
create problems in space where these mechanisms are absent. For example, an
astronaut attempting to turn a valve on a relatively large space vehicle must
be securely attached to the vehicle, otherwise, instead of turning the valve, the
torque created will serve to turn the astronaut relative to the vehicle. T'his is
by no means the only difficulty. Consider the following scenario: A master slave
arm is being used to link beams for a large space structure. The sockets used
to link the beams are transported on trays to the locations of the beam joints.

Due to the zero gravity environment, the sockets must be fixed in place by some



type of fastener to ensure they remain on the tray. Designing the end eflector
to release the fastener while maintaining a firm grasp on the socket will solve
both the problems associated with torques and reaction forces, as well as the

problem of minor perturbations dispersing the sockets in random directions.

Along this line of thinking, NASA has developed the gripper/nut runner.
This specially designed end effector has two fingers which together have one
degree of freedom. Similar to a vice, the width of the opening is the only
variable. Centered between the fingers is a device for unscrewing nuts. Having

one degree of freedom, the nut runner will be actuated by wrist rotations.

The aim of this research is to develop control laws (in some optimal sense)
for the gripper/nut runner end effector. Control laws for the gripper and nut
runner portions of the end effector may be developed independently since these
two systems are decoupled. A hybrid force/position controller will be used for
both the gripper and nut runner. Only the gripper controller is developed here.
Sensory data available to the controller are obtained from an array of strain
gauges as well as a linear potentiometer. Applying well known optimal control
theoretic principles, the control which minimizes the transition time between
positions is obtained. A robust force control scheme is developed [or smoothly
achieving the desired holding force without oscillation. An algorithm is found to

determine contact force and contact location in order to ensure a secure grasp.



CHAPTER

TWO

End Effector Model

For analytical purposes it is necessary to establish a mathematical model of
the system. The model development will be broken down into three sections.
The first section details the actuator model. The basic model is standard and
is available from various engineering texts. Added to the model in the second
section are the effects of the gearing and the inertia of the mechanical system.
Finally, the third section gives the complete system transfer function, as well as

the position and force transfer functions.

2.1 Actuator Model

The finger actuator is a permanent-magnet DC motor. Models for these

motors can be obtained from various sources [1], [2].

The armature is modeled by a resistance R,. and inductance L,, both in
series with a voltage source €, representing the back emf generated by the rotor

rotations. Applied to the armature terminals is the control voltage e,.



Permanent

Magnet

Figure 2.1: Motor Model

Proportional to the armature current by a constant k;, the motor torque is

given by

Ton(t) = kida(t). (2.1.1)

Also, the back emf is proportional to the rotor angular velocity by constant ks,

es(t) = kywm(t). (2.1.2)

In all DC permanent magnet motors there exists a ripple torque caused
by the nonuniformity of the magnetic field. Thus the torque constant &; is a
function of the angular position of the rotor, and therefore periodic with period
2. This periodic torque can effect the performance of the system; however, due

to the high gear ratios being used, the effect is negligible.



[ constant I definition | value |

R, armature resistance 25.2 Q)

L, armature inductance 7.2 mH

k; torque constant 0.0247 Nm/A

ky back emf constant 0.0247 V/rad s=!
I rolor inertia 3.67 x 1077 kg m?
N internal gear ratio 27.94 '

€ internal gear efficiency | 0.6

Table 2.1: Motor Constants

] variable | definition |

eq(t) control voltage
2,(1) armature current
ep(t) back emf

wm(t) | angular velocity
1,.(t) | motor torque
Tr(t) | load torque

Table 2.2: Motor Variables
Applying D’Alembert’s law at the motor output, and IKirchhofl’s voltage law

to the circuit model of the motor, the equations for the motor are as follows:

Jm"bm(t) = Tm(t)":l‘l,(t) (2[3)

Lata(t) = eqt) — Rola(t) — ey(1). (2.1.4)

Selected for the actuation, the TRW 5A540-10 MM Planetary Gearmotor
is manufactured with gears inside the motor housing (figure 2.2). The gearing
has the effect of decreasing the angular velocity and increasing the torque. The
gear ratio is 27.94 and the minimum efficiency is 0.6. A summary ol the motor

constants can be found in Table 2.1. Motor variables are summarized in Table

6
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Figure 2.2: Motor with Internal Gears

2.2. Additional frictional terms have been neglected in the model development.

They will be treated as disturbances to the control system.

A problem with the motor model developed above is that it gives the equa-
tions for the motor torque, T)(+), and the motor angular velocity, wy,(+), disre-
guarding the effects of the internal gears. These equations must be modified to
account for the gear effects. The modified equations will be in terms of T, (+)
and w,(+), the torque and aﬁgular velocity, respectively, of the motor output

shaft accounting for the internal gearing.

Ideal gears are initially assumed in the derivation. A gear is termed ideal if
it has no moment of inertia, no stored energy, no friction, and a perfect meshing

of teeth.

Let f.(-) denote the contact force where the gears mesh and N = ry/r; the



| constant | definition J value |
l_vl- = eNFk; torque constant 0.4141 Nm/A

k_,, = Nk back emf constant | 0.6901 V/rad s™!
g, = N2.J,, | rotor inertia 2.9 x 10~ kg m?

Table 2.3: Equivalent Motor Constants
gear ratio (figure 2.2). From equation 2.1.3, with Tp(t) = ry f.(1), the equations
for the motor and attached gear are
Imom (1) = Tn(l) —rifc(1) (2.1.5)
Tty = rafe(t). (2.1.6)
Combining these two equations, and using the geometric equality w,,(t) =

Nw,(t), gives

N2Joo(t) = NT,(t) — Tr(t). (2.1.7)

Of course, in reality the gears are not ideal. To help account for this, an efficiency

term, €, is included in the equation as follows
N2Joo(t) = eNT (1) — T(t). (2.1.8)

By using the equivalent constants defined in Table 2.3 the adapted motor

equations become

Tmie(t) = Tu(t) —To(t) (2.1.9)
Lato(t) = eu(l) = Ruia(t) — &(1) (2.1.10)
To(t) = kita(t) (2.1.11)
El(t) = kywo(l) (2.1.12)



2.2 Mechanical Model

The transmission mechanism used is an acime screw. The acme screw serves
to transform rotary motion of the motor to linear motion needed to move the
fingers. A screw with a small lead angle, { = 1.6 mm, was used so that larger
finger tip forces could be developed while using a smaller motor. As a trade-off,
the maximum velocity attained during opening and closing is lower. Another
benefit of having a small lead angle is that the screw is self locking under rea-
sonable load conditions. This is an important feature since it will allow the end
effector to hold objects without using power. This property helps to eliminate

problems created because of poor heat dissipation in space.

Used to link the motion of the fingers, the rack and pinion gear’s effect is to
move the fingers at the same velocity in opposite directions. The model, which
is developed for the force and velocity of one of the fingers, is effected only by

the efficiency, p, of this gear.

Deformations of the finger components are assumed to be negligible. This
assumption is reasonable since operating forces are far below the magnitude
necessary to result in significant deflections of the aluminum body. Because the
motion is strictly linear the moving parts in the finger assembly are treated as
a point mass located at the nut (figure 2.3). The mass of the moving parts is

approximately 1.14 kg.

9



MOTOR

Figure 2.3: System Diagram

Since the errors due to backlash caused by the gears (the motor’s internal
gears, the acme screw, and the rack and pinion) will be within desired positioning
accuracy of £0.25cm, they can be ignored in the model development. Position
control will be employed only to achieve an approximate desired finger opening;
force control will be used upon encountering an object. Therefore, a coarse

positioning scheme will be sufficient.

Completing the derivation of the system model, again assume initially ideal
gears. For an ideal screw, the translation from angular velocity of the motor

output shaft to linear velocity of the fingers is

1) (2.2.2)

where T,(-)and F,(-) denote the coupling torque and force respectively between

10



the screw and the nut. Then developing the equations as before

Fr(t) = Fu(t)—mVy(t) (2.2.4)

Combining these equations and applying the screw equations 2.2.1 and 2.2.2
yields
2m 2r

7—Tm(t) ~ (=) T + m) Vi (1) (2.2.5)

As Dbefore efficiency terms, g and p, are incorporated into the model to ac-
count for the losses in the non-ideal screw and rack and pinion gears respectively.

For an acme screw the efficiency is approximately 0.4, and for the rack and pinion

0.7.
27 - 2r 5 7 .
FL(t) = l’PTT;n(t) - ((T) Jm -+ 771)"'L(t) (‘2 2 6)
For simplification define
Py 2r 2 F —r
M = (7—) Im +m (2.2.7)
(2.2.8)
and
A 27 - :
F(t) = NPTTm(f) (2.2.9)
yielding the final dynamic equation
Fr(t) = Fp(t) = MVL(1). (2.2.10)

11



constant | definition l value |
R, armature resistance 25.2 Q
L, armature inductance T2 mH
k; torque constant 0.4141 Nm/A
ky back emf constant 0.6901 V/rad s=1
M effective mass 4473 kg
m mass of moving parts 1.14 kg
N internal gear ratio 27.94
€ internal gear efficiency 0.6
( screw lead 1.6 mm
I screw efficiency 0.4
p rack and pinion efficiency | 0.7

Table 2.4: Summary of System Constants
By combining equations 2.1.10-2.1.12, 2.2.1 and 2.2.9 the final electrical equation

is found to be

(

- [ . __ 92
pokiea(t) = g=(LaFu(t) + RuFu() + ;l,pArl-A:berVL(t) (2.2.11)

A summary of the model constants is given in table 2.4.

2.3 System Transfer Functions

By taking the Laplace transform of equations 2.2.10 and 2.2.11 and rewriting

them in matrix form, the system transfer matrix is:

F‘N’L(S)
= (2.3.1)
Vi(s) N )
1 %’L/LPL‘-M’() IS Iy (8)
- Ts+ Z ki , )
ar(Las H RMs 5000kl \ _LiLus 4 Ry ok )\ euls)

Based on the model just derived, a hybrid force/position controller is de-

veloped in the following chapters. A hybrid controller operates under position



control unless a force is detected, in which case control is immediately given
to the force controller. The [orce and position controllers can be developed

separately and thus their individual transfer functions are given.

When calculating the position transfer function, P(s) = sV7.(s), the oulput
force, Fp(s), can be assumed to be identically zero. This is justifiable since
position control mode will only be used if there are no external load forces. The

position transfer function is

P(s) ppk; (2.3
ea(s)  s(3=ML,s?+ 3= M Ros + Eppkiky) -

[
[V
o

The force controller will only be used once a contact force has been detected
on one of the fingers. Recall that the target object must be bolted firmly in place
in a zero gravity environment. Thus once contact is made, position will become
constant forcing the velocity to zero. From equation 2.2.10, this implies that the
load force, Fp, equals the motor force, F,,,. With these additional constraints

the force transfer function is

Fm(S) _ 2T’rr':u'/)]:’i
€a(8)  Lis+ Ry

13



CHAPTER

THREE

Position Controller

Available from a linear resistive potentiometer, the position information is
accurate to .25 cm. For the purpose of controller development [urther me-

chanical detail of this sensor is not needed.

3.1 Model Verification

By measuring the gripper’s response to a series of sine waves ol varying
frequencies, the true Bode plot {or position may be obtained. The true Bode plot.
is superimposed on the model Bode plot for position (figure 3.1). The accuracy
of the true Bode plot for frequency greater than about 3 Hertz is extremely poor
due to backlash in the system; this is essentially the mechanical cutoff frequency
of the system. System performance will not bhe adversely affected by this low
cutoff frequency since the fingers are not intended to make rapid changes in

direction.

The actual Bode plot reveals that for the range of operation of the system,

only first and possibly second order dynamics are evident. This implies that

14
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Figure 3.1: Theoretical vs. Actual Position Transfer Function

the third order dynamics caused by the nonzero inductance can be ignored,

and thus it can be assumed that the inductance is zero when developing the

position controller. Additional friction inherent in the system is apparent in the

diminished response of the actual Bode plot.

15



3.2 State Space Realization

Substituting L, = 0 into equation 2.3.2 gives:

P(s) _ ppki (3.2.1)
ea(s)  s(5=MRus + Eppkiky) -

Rewritten to simplify notation as

P(S) . (§] ‘ ‘
€al(s)  s(s+ecg) (3.2.2)

This transfer function describes a stable linear time invariant system which has
one input, the control voltage e,(-), and one output, the finger position P(.).
The minimal realization has two states, finger position P(-), and finger velocity
VL(+). In state space form, the minimal system is written as

() = Ax(t) + bu(t)
(3.2.3)

y(t) = cx(t)
where
0 1
A= (3.2.4)
0 —C9
0
b = (3.2.5)
1
c=1(1 0). (3.2.6)

16



Note that since this realization is minimal, it is both controllable and observ-
able. Also, stability of the system guarantees that the eigenvalues of A have

nonpositive real part.

3.3 Optimal Position Controller

It is desirable to determine the control which moves the fingers [rom the
initial state (position, velocity), xo = (20 0)', to the desired final state, Xf =
(x5 0), in minimum time. Such problems have been extensively studied in
optimization theory. The solution to the minimum time problem follows from
the well known Pontryagin Minimum Principle (PMP). The conditions on the
timne optimal control derived {rom the PMP for linear time invariant systems

are detailed below {3].
3.3.1 Problem Statement
Given a completely controllable dynamical system
X(t) = Ax(t) + bu(t) (3.3.1)
such that the control u(t) is constrained in magnitude by the relation
lu(t)] < M (3.3.2)

and that at the initial time ¢y, = 0, the initial state of the system is xq = x(1y)
. find a control u*(-) that transfers the system from x¢ to x; in minimum time.

This control is called the time optimal control.

17



3.3.2 Optimality Conditions

Since the system is linear and controllable, a time optimal control, u*(t), that
transfers the initial state x¢ to x; would clearly exist if there were no bounds on
the control action. Even with the bounds on the control function, the reachable
set at each finite time is convex and bounded and contains the origin. Therefore
a time optimal control exists by simple translation of the origin. Existence
of a time optimal control follows from the Bang-Bang theorem as well. Let
x*(t) denote the trajectory of the system corresponding to u*(#), originating at
Xp at 19 = 0, and hitting x; in the minimum time, 7™. Then there exists a

corresponding costate vector p*(¢) such that:

1. x*(t) and p*(¢) are solutions of the canonical equations

X*(t) = ;Z@ﬁuywu%pwnpzAfu)+bwu) (3.3.3)
OH .
pr(t) = —fdx,,<x*<t>,u*(t),p*(m:~A'p (1) (3.3.4)

with boundary conditions

The Hamiltonian function, H, is given by

H(x(t),u(t), p(t)) = 14+ < Ax(t) + bu(t), p(t) > (3.3.6)

for linear time invariant systems.



2. The relation

H(x*(1), v (1), p"(1)) < H(x"(1),u(l), p™({)) (3.3.7)

holds for all admissible u(t) and for # € [0, 7%]. From equation 3.3., this
implies

(BP(8),w(1) < (B'P™(t), u(t)) (3.3.8)
holds for all admissible u(t) and for ¢ € [0,7™]. Clearly, < b'p*(#), u(t) >

1s minimized by

w*(t) = —Msgn(b'p*(t)). (3.3.9)

3. The relation

H(x*(t), u(t), p*(1)) = 0 (3.3.10)

holds for all ¢t € [0, T™].

Thus it has been shown that the optimal control may only take on values
£, unless b’p*(¢) = 0 and then it is only constrained to be bounded in mag-

nitude by M.

Since the system is linear and the constraints convex, the Poutryagin Mini-
mum Principle provides hoth necessary and sufficient conditions for optimality.
Finally the Hamiltonian has a unique global minimum (since it is a minimization
of a linear function over a compact convex set). From this and the sufficiency

it follows that the optimal control is unique.

19



3.3.3 Switching Time

The necessary conditions do not contain any explicit information regarding
either the initial costate, p*(0), or the terminal costate, p*(1™). However, {rom
equations 3.3.6 and 3.3.10 it follows that the costate, p*(¢), must be a nonzero

vector. That is

p(t)#0 Vie[0,T7]. (3.3.11)

The set of feasible controls, F, is practically limited by the maximum arma-
ture voltage, which implies A7 = 24V, And since b’p*(¢) = ¢ po(t), and ¢y > 0,

equation 3.3.9 implies that the set of feasible controls is

u = Msgn(pa(t)) if pa(t) #0
F=<u: . (3.3.12)
lu| < M if pe(t) =0

Another physical constraint is that the control be continuous. Thus if p, changes
sign the control must vary continuously from A to —Al. The times at which
p2 = 0 are termed the switching times. The switching times vary with the initial

and final states.
Solving equation 3.3.4 for the costate yields:

pi(t) 7;(0) = constant (3.3.13)

i

* K 1 * J' E3 . .
pi = (5(0) = < pi(0)) exp (e2) + = pi(0) (3.3.14)

Since pi(-) 1s monotonic in f, the control voltage changes sign at most once.
Without information of the initial or final costate, the switching time cannot he

determined from these equations.



Disregarding the question of determining the initial or final costate, it is
desirable to investigate which control among the feasible set, F, steers the given

initial state to the desired final state. Solving the state equation 3.3.4 yields

cru(t) cru(t)

21(t) = w0+ t+ —5—(1 —exp(—cyt)) (3.3.15)
ult

xa(t) = —CI:( )(1 — exp (—cyt)). (3.3.16)
2

By substituting for u(-) in equations 3.3.15 and 3.3.16, one can determine the
feasible control which achieves the desired goal. This control is the optimal

control.

Notice that the optimal control is directly a function of time, and indirectly
a function of position. In order to make the controller robust to disturbances,
it is necessary that the dependence on position be made more precise. Thadl is,

a more desirable form for the control would be

24 < <La
ur)=4¢ -24 a<aeLay (3.3.17)
0 elsewhere

where a is the optimal switching position and x¢ and a5 are the initial and final

positions respectively.

Using CONSOLE!, a parametric optimization package, along with SIMNON,

a nonlinear simulator, the optimal switching position o was determined. In every

!The implementation details of CONSOLE and SIMNON can be found in [4] and [5]

respectively.

21



case the switching position was found to lie within the position error margins of

+.25 em.



CHAPTER

FOUR

Force Controller

Strain gauges have been widely used in the field of stress analysis since 1940.
They are one of the most accurate, sensitive, versatile and easy-to-use sensors
available; but in spite of this, the proper and effective use of them requires a

thorough understanding of their characteristics and performance [6].

Strain data is obtained from an array of four strain gauges on each finger
(figure 4.1). From the strain data, both contact position and force can be
calculated. This information will be used to control the holding force as well as

to detect an improper grasp.

The ability to detect an improper grasp is important since a dropped object
may not be easily retrieved. By calculating the contact force and contact loca-
tions the security of the grasp as well as the control action needed to correct
any errors may be determined. Since the dimensions of the target objects are
known, position information may be useful as well. Examples of possible grasp

configurations are given in figure 4.2.

The following two sections present an introduction to strain gauges as force
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Figure 4.1: Strain Gauge Positions
sensors. Material is covered only in as much detail as necessary for the control
design. A summary of some of the useful parameters and their values are found

in table 4.1.

4,1 Surface Strains

Strain gauges are used to measure surface strains on a material. On any given
surface three strain components may exist: normal strain €, in the x direction,
normal strain ¢, in the y direction, and shear strain v,, (figure 4.3). The strain

gauges used here measure unit normal strain! in the direction of the sensitive

! A strain/stress is termed normal to differentiate it from a shear strain/stress; it is common
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Figure 4.3: Strains €;, €, and v,y.
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constant /variable | definition | value |

a beam width 1.25 em
b beam depth 1.5 em
dy, distance hetween gauge 1 and 2 1.8 em
di3 distance between gauge | and 3 0.9 em
dyy distance between gauge | and 4 0.3 em
E Young’s modulus for aluminum 10.4 N/m?
v Poisson’s ratio for aluminum 0.32
G shear modulus for aluminum 3.93 N/m?
d. horizontal distance: gauge 4 to force 2.5 em
d, vertical distance: gauge 1 to force
2 vertical distance: gauge 5 to force
dl horizontal distance: gauge 3 to force
d? horizontal distance: gauge 7 to force
F equivalent point contact force
F, x component of F'
F, y component of F'
F. z component of F, L {o finger face
Al F,d, moment about x axis (finger 1)
M ; F.d, + F.d, moment about y axis (finger 1)
M? —F,d, moment about x axis (finger 2)
M? F.d, + F.d, moment about y axis (finger 2)
Yoy shear strain in xy plane
€, strain in x direction
€y strain in y direction

Table 4.1: Force Sensor Parametcrs

axis*. Unit strain is defined as the total deformation of the body in a given

direction divided by the original length in that direction.

""-L}—li (4.1.1)
€=-7

for the modifier normal to be omitted and this will be done henceforth in this paper.

2Though strain gauges are manufactured with most of the strain-sensitive filament aligned
with the sensitive axis of the gauge, it is unavoidable that part of the grid is aligned trans-
versely. This small transverse portion of the grid senses the strain at 90° to the sensitive axis
and it's effects are superimposed onto the ideal data. The error is small, seldom exceeding 2
or 3% [7]. For the model derived here, this error is treated as a disturbance.



By applying Hooke’s law to the strain measurements, it is possible to cal-
culate the force. Hooke’s law expresses the linear relationship between stress,
force per unit area, and strain which is exhibited by many common materials

under certain bounded loading conditions. Represented mathematically,
o= Fe (4.1.2)

where E is a constant of proportionality known as the modulus of elasticity, or
Young’s modulus. A similar law, Hook’s law in shear, relates shear stress and

shear strain, again under bounded loading conditions.
T =Gy (4.1.3)

The constant of proportionality ¢, termed the shear modulus of elasticity, is

related to the modulus of elasticity, £, by

G = ———-E————, (4.1.4)
2(1 4+ v)

where v is Poisson’s ratio. Poisson’s ratio is the constant ratio of strain in
the lateral direction to strain in the longitudinal direction during tension or

compression within the elastic range of a material.
4.2 Mechanical Model

In this section a functional mapping, H, is derived to approximate the map-
ping

e=H :R®* x R® — IR® (41.2.1)



where

Fy .
F = F; € R®, i =1,2
F,
d;
d = . d; € R?, i=1,2 (4.2.2)
d;

This mapping represents the continuous functional relation between the vector
formed by the contact force and contact position on each finger, and the strains
at the eight gauge locations. Taking into account the mechanical constraints ol

the physical situation, the dimensionality of this mapping can be reduced.

Assuming that the object has made contact with both fingers, the magnitude
and direction of the x and z components of the contact force, with respect to
each finger, will be the same. The y components will be equal in magnitude,

but opposite in direction (figure 4.4).

(To simplily notation the subscript 1 will be deleted henceforth). The location
of the contact on the face of each finger may be different but the z component
is constrained by the mechanics of the gripper. Approximating the face of the

gripper to be flat allows the z constraint to be taken as constant, i.e.

d,=c (4.2.4)
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and

(lf;,

d; = , 1=1,2. (4.2.5)
(l;

Thus knowledge of three force components and four position components is

sufficient to approximate H. Hence the mapping H may be represented as

F
e=H ' R? x R® — R® (4.2.6)
d

with

FelR’, d=| g, |: dieR* i=1.2 (4.2.

N
-1
~

In order to determine the contact force and grip points given the strain gauge
readings, the inverse mapping must be determined.
F

= H'(e): R® — R® x R®. (4.2.8)
d

The detailed derivation follows.

By locating the strain gauges on the rectangular portion of the gripper finger,
any effect induced by the irregular shape of the upper finger is nullified, and thus
the finger can be modeled by a beam of rectangular cross section with width «a,
and depth b. Problems related to calculating the strains in rectangular heams
have already been studied in depth in the fields of mechanical and materials

engineering [8]-[9].
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Top View

Front View

Figure 4.4: Contact Force Vectors

A contact force consisting of any combination of point contacts, line contacts,
and surface contacts, may be represented by an equivalent single point contact
with a specified contact force magnitude and location; thus it is sufficient to
consider only single point contact forces. Each contact force, F', can be broken
into three components, [F, F, F,]T. The z component is of greatest concern

since this is the holding force. In a proper grasp both the x and y components

should be zero.

To clarify the computations, the component forces and their induced mo-
ments will be treated separately (figure 4.5). The forces will be thought of as
having equal magnitude and direction, but no horizontal offset from the vertical
axis of the beam. In the y direction, the force causes tension or compression,

while in the x and z directions, the forces induce bending. The corresponding
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Figure 4.5: Force and Moment Diagram

moments, M! = F,d,, about the x axis, and MJ = F.,d, + F,d,, about the
y axis, induce bending and torsion respectively (similarly for the moments M?
and M? of finger 2). By applying superposition® the resultant effect of the ten-

sion/compression, the bending, and the torsion can be calculated by summing

their separate effects.

To begin calculation of the forward mapping, H, an explanation of the dif-

ferent types of strains caused by the contact force is given. The stress due to

3In general, the principle of superposition is valid for cases of loading where the magnitude
of the stress and deflection is directly proportional to the load.
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bending in a rectangular beam is given by &

M 20
g = —5',', (+.2.9)

where M is the bending moment and S is the section modulus. For a rectangular
beam the section modulus is

Ct
[

_ b 1.2.10
- 6 (" )

(Clombining these equations with Hooke’s law, equation 4.1.2, an equation for

the strain due to bending moment A is determined to be:

61

‘T WIE

(4.2.11)

In cases of nonuniform bending a shear strain is induced in the ’sides’ of the
beam. Nonuniform bending occurs if the moment is not constant throughout
the beam. This is the case when the moment is generated by a force, F, on the
beam; the moment varies with distance from the force. For a rectangular bean

this has been determined (see [9]) to be

o 3F
ey = 2abG”

The stress due to a tensile/compressive force, P, in a rectangular bean is

P
o= —. (4.2.13)

" ba

Again applying Hooke’s law, the strain is

€ —

P
Eba’
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The torsion created by the y axis moment, M, will cause only shear strain
in the xy coordinate reference frame. An approximation for the shear strain (on

the front center of each finger) is given as in [9] by

/ M
Yoy = 0.2350a2G”

(4.2.15)
Oriented vertically on the finger, gauges 1, 2, 4, 5, 6, and 8 are not affected by
torsion (figure 4.1). Gauges 3 and 7 though, are affected by the torsion as well
as the the other strains. Oriented at 45° to the coordinate axis, these gauges

are aligned with the principle axis of pure torsion; thus the strain measured due

to torsion is maximized.

Applying equations 4.2.11 and 4.2.14, equations for the strains? at gauge
pplymg eq gaug

location i, ¢ € {1,2,5,6} are as follows:

L GFZ(I§+ Fy, | 6Fd: 1.2.16
4T TlE T baE i ba*k R

GFy((llll + (112) ,Fy ().F‘q(/~
2 ba?l t ba + ba?ly (4.2.17)
6F.d? ; g
5 = —d by —GF:"(L (4.2.18)
balE  baE  ba’FE
2
o = 6F.(d, +di2) F, 6F,d. (4.2.19)

ba’E ball  ba’E
The first term in each equation is due to the nonuniform bending induced by the
force F.. The second is due the tension/compression induced by the force [

And the third is due to the uniform bending moment about the x axis associated

with Fj.

4The sign convention adopted here assigns tensile strains a positive value. Care must be
taken when developing the strain equations since a positive force may cause compression at
the location on the finger where the measurement is taken.
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The equations for the strains at gauge location ¢, 2 € {4,8}, on the side of
the gripper finger, follow similarly from equations 4.2.11 and 4.2.14:

GFT((@ + di4) F, ‘
.\ = T (4.2.20)
—6Fu(dy + dis)  F,

‘¢ = ba?F bk

Again, the first term is due to the nonuniform bending which, in this case, is
induced by the force F,. And, just as above, the second term is due to the

tensile strain induced by the force F,.

The calculations for gauges 3 and 7 are a little more complicated. The
strains that are described thus far have been determined with respect to the xy
coordinate reference frame. In order to derive a formula for the strain measured
at strain gauges 3 and 7, the contribution of strains in the xy reference frame to
the normal strain in a frame rotated —45° must be determined. This derivation

can be found in reference [9]. With 6 the angle of relative orientation of the

coordinate frames,
€9 = €, co8(0) + €, 5in*(0) + 7,y sin(6) cos(8). (4.2.22)

Letting # = —45°, and applying the equation at gauge locations 3 and 7

_ é (GFz((l; + dy3) 4 F, 6F,d. 3F, F:(GT + F"(IT)LL 9.23)

@ = ba*E ba ha?E  2abG 0.235ba2(
| L(ORAG 4 ds) B, GFd 3R REL R
Ty ba’E ball ~ ba2E  2abG 0.235ba2 ¢ e

To help clarify this derivation, equation 4.2.23 has been broken down into
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its components.

e = 0 (4.2.25)
6F.(d, +diz) F, G6F,d,

v = ‘ = 2.26

€y ba*E t ba E + ba?F (+4.2.26)

3F,  F.dl+ F.d. o -

Yoy = Al (4.2.27)

2ab(d 0.235ba2C

The equation for ¢, is derived exactly the same way as equations 1.2.16-4.2.19.
The first shear strain term is caused by the nonuniform bending induced by the
force F,. The second term is due to the torsion caused by the moment Af,. The

derivation is identical for es.

Now given the strain measurement from gauges 1 and 2, or gauges 5 and 6,

the magnitude of the holding force, F., can be calculated,

_ ba*E(e; — €1) _ ba*E(es — €5)

6(112 N 6(112

The calculation of the inverse mapping for the other components was accom-
plished using the symbolic algebra package MACSYMA. Due to the length and
complexity of these equations, they will not be given here. Knowledge of their

existence is sufficient for the purposes of this paper.

4.3 Determination of Holding Force and Contact Location

In the previous section it was proven theoretically that knowledge of the

output of the eight strain gauges is sufficient to uniquely determine the location
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Figure 4.6: Ezperimental Setup for Accurate Force Measurements
and magnitude of the contact force on both fingers. Unfortunately, the accuracy
of the derived model may be affected by various disturbances caused by the
unmodeled effects of transverse sensitivity, gauge misalignment, zero drift, and
temperature dependence, the accuracy of the derived model may be effected. A
controller design based on experimentally measured data should be more robust

to these disturbances.

An experimental setup for accurately applying forces, F,, perpendicular to
the face of the gripper finger is depicted in figure 4.6. With this setup it is
possible to empirically measure the sensor output for various holding force mag-

nitudes and positions. Then, from the data, the functional relationship

F —
=H'e): R¥— R®> x R° (4.3.1)

d

can be determined. Note that for this setup F, and F, are both zero.
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Figure 4.7: Feed Forward Neural Net

The equations developed in section 4.2 which express this relation mathe-
matically are nonlinear (and continuous). The approximation of a continuous
nonlinear function is a natural application for neural networks ®. It has been
shown by Cybenko [11], that continuous functions of finite support may be ap-
proximated by a feed forward neural network with a single (finite) hidden layer
(figure 4.7). It is thus justified that this topology be used here. Whereas the
functional approximation problem could be solved by choosing the form of the
solution to be like the model and adjusting the parameters; the neural net so-
lution has the additional advantage that the form of the solution need not be

assumed.

5An in depth discussion of neural networks is beyond the scope of this paper. An excellent
introductory reference is the book by Rumelhart and McClelland [10]. A brief introduction
is given in Appendix A. The information is covered in only as much detail as necessary for a
clear understanding of the particular neural network used in this application.
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The sufficiency proof in Cybenko’s paper is nonconstructive and thus does
not indicate the required number of neurons in the hidden layer. Using gradient
descent (back propagation) to set the weights, the number of neurons is set by
trial and error (i.e. If the network can converge to the solution given by the

data in the training set, there are enough neurons in the hidden layer.).

For the case with I, and F, both zero, the network solution is found (see

chapter 5).

4.4 Force Controller

Only knowledge of the holding force, F,, is necessary for force control. Once
the desired holding force has been attained at both fingers the contact locations
and other force components can be calculated. There are several reasons for
this control scheme. First, knowledge of the holding force is sufficient for the
task of securing the grasp; knowledge of the contact locations and other force
components is necessary only for assuring a proper grasp. Second. the holding
force can be calculated as linear combination of the readings from gauges |
and 2, or gauges 5 and 6 (equation 4.2.28). The calculation complexity for the
other variables is much higher, and involves readings [rom more of the strain
gauges. Both the additional readings and calculations are time expensive and
their incorporation into the control loop should be avoided if possible. Third,

the contact locations and other force components cannot be determined unless



contact is made to both fingers. In the case where contact is made to only one of
the fingers, the gripper must be moved to center the object between the fingers

before the contact location and other force components can be calculated.

Because the surfaces of the gripper fingers are not compliant, attempting to
implement a minimum time controller may cause oscillation. Iustead an attempt

will be made to achieve a smooth response.

The model of the force response, as derived in Chapter 2, is that of an
asymptotically stable first order systen. Such a system is robust to parameter
variation, sinice the only effect of parameter variation would be to translate the

poles of the force transfer function in the open left half plane.

A typical controller for a first order system is a simple high gain controller.
Theoretically, any finite positive gain could be chosen without destabilizing the
system, however, chosing a gain which is foo large may cause instability due to
unmodeled dynamics. In addition, the gain is physically limited by the con-

straint on maximum armature voltage of 24V,

The force sensors are the most significant possible cause of feedback desta-
bilization of the force control loop. This is due to the slow response exhibited
by the strain gauges when a large force is applied then taken away. Once the
force has been removed, the strain gauges may still detect its presence for a very

short time. This could easily lead to oscillation. To avoid this a dead band can
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he put in the control algorithm such that if the measured force is close enough

to the desired force, no control action will be taken.
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CHAPTER

FIVE

Hardware Implementation

Developing hardware for space applications is a demanding task. In addi-
tion to those problems caused by a zero gravily environment, there are a host
of others due to the harsh ambient variations associated with earth orbit. A
satellite in geosynchronous orbit about the earth is subjected to variations in
temperature alone in excess of several hundred degrees centigrade. Specifically,
temperature specifications for the space station hardware state that all equip-
ment must be able to withstand temperatures of —150°C’ for 28 minutes and

temperatures of 200°C' for 55 minutes during each 83 minute orbit of the earth,

In such an environment, standard mechanical methods used for earth based
devices are inappropriate. For instance, the viscosity of typical mechanical lu-

bricants varies wildly with temperature rendering them useless in space.

Reliability becomes another significant concern in space engineering. I'rom
a purely monetary standpoint, an operation failure in a relatively inexpensive
component can potentially disable the entire mechanism. Apart from fault-

tolerant engineering considerations (e.g. redundant design), it is imperative
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that each component be of the highest quality.

Named above are only a few of the peculiarities associated with working in
space. Although these considerations are crucial to a practical working device,
the initial design phase may relax some of the specifications. Based more on
financial than technical reasons, components which do not quite meet specifi-
calions were chosen for the prototype. For example, a brushed DC motor was
substituted for a brushless DC motor. These substitutions should not adversely

effect the control methods and algorithms developed here.

5.1 Position Sensor

Position information is measured using a linear potentiometer. A poten-
tiometer is a sliding contact resistive transducer which converts the mechanical
displacement into an electrical output. This is accomplished by changing the
effective length of the resistive element by moving a brush which maintains

electrical contact as it moves.

The resistive element is formed by wrapping a resistive wire around a non-
conductive element; the turns must be spaced to prevent shorting. As the brush
slides across from one turn to the next, the output voltage increases in steps, as
does the resistance. This determines the available resolution. With a minimum
{heoretical resolution of .025 cm, the errors in position due to the potentiometer

will fall within the accepted position uncertainty of £.25 cm.
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The term linear vefers to the linearity of the output voltage as a function
of position. This implies that the resistance measured between one of the ends
of the element and the brush contact is a direct linear function of the contact
position in relation to that end. In practice, the relation is only approximately

linear but the deviations are within the error margins of this application.

Using an analog to digital (A/D) converter this information is made available
to the control algorithm. The equation which relates the sensor reading to

gripper opening in centimeters was calculated by direct measurements to be:

opening = 6.9 x 10~%(sensor reading) 4 0.38 (5.1.1)

The constants were chosen to emphasize accuracy in the range of the smaller

openings.

Since potentiometer resistance is sensitive to temperature variations, a re-
sistive position sensor would not be a wise choice on the final version. Alterna-
tively, a similar sensor (perhaps capacitive) can be used without effecting the

performance of the control.

5.2 Force Sensors

Force information is obtained via an array of eight strain gauges. The calcula-

tion of the contact force and contact location from the strain data was described

in chapter 4. Described here is the electrical model of the strain gauges.



The strain gauges, consisting essentially of metal foil grid on a thin epoxy
support, are physically coupled to the aluminum finger shaft so that any strain
suffered by the finger is transmitted to the gauge. This strain gives rise to a
small change in resistance which can be accurately measured. In this section a
linear approximation of the relation between strain and measured output voltage

is derived.

The dimensionless relationship between the change in gauge resistance and
change in length is called the gauge-factor, GF, and is expressed mathematically

as

AR/R
ALJL

GF =
Here, R and L are the nominal resistance and length respectively, and AR and
AL are the changes from the nominal values which occur as the gauge is strained

along the surface to which it is bonded. A large value for the gauge factor is

desired since it represents a measure of strain sensitivity.

Combining equations 4.1.1 and 5.2.1 yields

AR/R
GF

€ =
Thus by measuring the change in resistance, the strain can be calculated.

Noted for its convenient and accurate measurements of resistance, a Wheat-
stone bridge (figure 5.1) is used to measure the small change in resistance of the

strain gauge, Ry, which occurs as the material is strained.
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Figure 5.1: Wheatstone Bridge

| constant | value |
R2 = R3 = R4 350 Q
R, nominal 350 O
1% 24 V
GF 2.15

Table 5.1: Wheatstone Bridge Parameters

Using elementary circuit theory, the voltage across the terminals A, B can

be calculated as

V(R1R3 — R2R4)
Vig = ] 5.2.3
4B = (R, + Ry)(Ry + Rs) (523)

Thus it is easily seen that by proportioning the resistances as

B Ry

"R: = R3, (5.2.4)

it is possible to balance the bridge such that there is no voltage difference be-
tween these terminals. Refer to table 5.1 for circuit parameters. A small change

in the strain gauge resistance, Ry, from its nominal value will cause a voltage
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change, AVyp at terminals A, B which can be expressed as

e VAR Rs VIR Al
A"'AB = ’ ~ . (525)
(Bi + AR+ Ry)(Ro+ Rs)  (Ri+ Ra)(R, + R3) Ry

Note that this is an approximately linear relationship for the small variations
from the nominal value of the resistance Ry which would occur as a result of
strain. A conservative estimate of the maximum variation would be |R;| <
10 Q. Amplification is necessary since the voltage output only varies between
£1.71V over this resistance range. The addition of the amplifier is represented

mathematically by a multiplicative gain «.

Now, combining this equation with equation 5.2.2 gives the strain as a linear

function of the output voltage:

= (Ry + Ry)(Ry + H3) AVyp (5.
- aV R R GF M

N |
NS
o

=

Again with the aid of an A/D converter the sensor data is made available
to the control algorithm. Using equation 5.2.6 together with equation 4.2.28
the holding force can be calculated for either finger. Ior the purpose of force
control, however, the neural net approximation of the holding force will be used

as discussed in chapter 4.

5.3 Neural Network

Using the experimental setup described in chapter 4, strain gauge readings
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' The tangential

were taken for various holding forces and contact locations.
forces, F, and F,, are constrained by the experiment design to be zero. In
addition, the face plate holds the z offset exactly constant. By imposing these
three constraints, the problem is simplified considerably. In fact, the inverse

mapping, H-!, can be completely decoupled. The inverse mapping for finger 1

is as follows:

ba’E(e; — €;)

L, 5.3..
. o (5.3.1)
diz€1
l, = ——— 5.3.2
@ (2 — €1) (5.3.2)
Tha*G
d, = m(ﬂ(du - (113) + dyzey — 2(11263) (5.3.3)

The inverse mapping for finger 2 is similar.

The neural network weightings and biases for finger 1 (the long finger) were
calculated by the back propagation method.? To account for the software re-
quirement that all inputs and outputs of the training data set be normalized to
the interval (0,1) define

2 (e + 20)/300. (5.3.4)

€
The neural network mapping is then described by

F 25 ‘
T L dexp (=224 19.46 — 20.86 — .8é) (5.3

[ §
i
[y §
~—

!Data courtesy of Dr. Dipak Naik, Mechanical Engineering Department, University of
North Carolina.

2The software for this was taken from the Parallel Distributed Processing Software Package
by Rumelhart and McClelland.
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8
“ T+ exp(—2.2 — 109.84, § 5.5, 3 2355) (5.3.6)

8
e = - = — 41 5.3.7
“ T+ exp (L3 + 1176 —22.66, 73136 (5-3.7)

Plots of the actual mapping versus the the neural network mapping are given in
figure 5.2. These results are comparable to those obtained by Naik and Deholf

[18] using a truncated Taylor series approximation.

The apparent error is due not only to errors in the neural net approximation
of the nonlinear function, but also to the inaccuracies in the training data. Some
of the inaccuracies will be eliminated by the use of higher precision components
for the circuit elements such as the Wheatstone bridge and the strain gauges

themselves.

5.4 Macintosh Design Environment

To facilitate rapid design and testing of control algorithms, a design envi-

ronment was created using a Macintosh II (Macll) equipped with a MacAdios

board for D/A and A/D conversions. Amplification of the motor control signal

was necessary in order to develop enough power to drive the motor.

The time optimal position controller has been implemented. The controller
can position to within +.25 ¢m of the desired position without overshoot. The

accuracy of the positioning at various openings is reported in figure 5.4.

Several problems due to strain measurement noise have arisen while imple-
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Figure 5.3: Hardware Flow Diagram
menting the force controller. Significant among these is strain gauge drift. Strain
gauge drift is described as the tendency of the voltage output at constant strain
to change value. In part, this has been contended with by adjusting amplifica-
tion circuitry (tuning potentiometers) to report approximately zero voltage at
zero strain. In addition, a software settable bias has been included such that the
strain gauge zero may be set arbitrarily. The cause of the strain gauge drift is
partially due to instability in the amplification circuitry. A significant improve-
ment should be realized by use of higher quality components and wire wrapped

circuits.
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Until the noise problems have been solved, implementation of the contact
force and grip point calculation algorithm is virtually impossible. Variations in
the strain gauge readings will cause significant errors in the calculations since
the neural network mapping is based on a certain set of training data. In spite of
this the force controller has been implemented but it cannot report an accurate
holding force. The operator has the option of choosing one of three levels for
the holding force: high, medium, or low. Addressing the problem of hitting an
unexpected obstacle, the hybrid force/position controller stops if the prespecified

force level is achieved during positioning.

Although the successful implementation of the neural network approximation
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[ coustant /variable |

definition J

¢ € R® readings from eight strain gauges
ceR potentiometer reading
F.e R contact force estimate(x, y, and z components)
P. e R? contact location estimate ((5,5) = center)
PieR desired gripper opening
F,eR desired holding force
P e R current gripper opening estimate
F,e R current holding force estimate
e € R motor control voltage (armature voltage)
MeR maximuin armature voltage
KelR force controller gain
reR contact force threshold, ~ 0
peR contact position threshold, = 0
6 e R gripper opening threshold, =~ 0
n€R holding force threshold, ~ 0
telR strain threshold, ~ 0

Table 5.2: Controller Notation

of the mapping {rom strains to contact force and contact location has not heen
demonstrated, the approach seems to be a good one. This method offers a simple

straight forward approach to this calculation which is unchanged by additional

complexity of the mapping.

The control system block diagram along with flow diagrams of the control

algorithm can be found in figures

figures is summarize in table 5.2. The estimates are calculated as described in

the previous sections.

~
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5.5-5.9. Some of the notation used in these
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Figure 5.5: Control System Block Diagram
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Figure 5.6: Control Algorithm: main loop
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POSITION CONTRO
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Figure 5.7: Position Control Diagram
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FORCE CONTROL
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Figure 5.8: Force Control Diagram
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Figure 5.9: Improper Grasp Detection
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CHAPTER

SIX

Conclusions and Future Research

A controller has been developed and tested for the gripper portion of the zero
gravity robotic end eflector. It was determined that an optimmal control exists
which transfers the initial finger opening to the desired opening in minimum
time. This time optimal control is unique and is constant with value equal to
plus or minus maximum armature voltage, the value of the control depending

on the relative location of the desired final position.

A force controller has been developed which is based only on the holding
force, perpendicular to the finger face. The holding force on either finger can be

calculated from the output of two strain gauges on that finger by

_ ba’E(ey — €;) _ ba’E(es — €5)

F, = = 0.
N 6(1]2 6([12 (6 0 1)

for finger 1 and 2 respectively (see figures 4.1 and 4.5). By including the output
of two additional strain gauges on each finger the two tangential force compo-

nents and the contact location may be calculated as well.

For the simplified case considered in chapter 5, where the tangential force

components are constrained to be zero, the percent error between the actual
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mapping and the neural net mapping is similar to that achieved by the truncated
Taylor series used by Naik and Dehoff [18]. It would be interesting to compare

the results for a more general case.

The Macll design environment has been used for controller development
and testing. The next logical step is to transfer the algorithm to a dedicated
signal processing chip that can communicate with the central robot controller.
Exact knowledge of the communication protocol of the system is required for
the completion of this; however, transfer of the control algorithms should he

straight forward since they are already coded in the (' programming language.

6.1 Rolling Finger Design

When positioning a multilink robotic manipulator there are unavoidable errors
at each joint. Accumulation of these errors causes the largest error margins to
occur at the end effector. Designed to ensure a positive locking grasp (one which
does not rely on friction), the sculptured face of the gripper lingers makes them
relatively intolerant to position errors. A design which incorporates a positive

locking grasp with greater robustness to position etror is needed.

NASA has already constructed the prototype of an improved design. These
so called rolling fingers also boast a positive locking grasp. Allowing a position

error of approximately =1 cm in one direction and +2 c¢m in the other, these

ot
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fingers constitute a significant improvement over the current fingers. Combined
with the compliance inherent in the manipulator arm, introduction of roller
hearings on the face of the fingers improves the manipulator robustness with

respect to position error.

Although these new fingers demand analysis in their own right, the applica-

tion of the work presented in this thesis is direct.



Appendix

A

Feed Forward Neural Networks

A neural network can be completely specified by three basic components:

the neuron characteristics, the topology and the training or learning rule.

The simplest computational element, or neuron, forms a weighted sum of
inputs and passes the result through a nonlinearity. The inputs may be network
inputs, or outputs of other neurons, depending on the topology. The neuron is
characterized by an internal threshold or offset  and by the type of nonlinearity.

The nonlinearity used in this application is the sigmoid logistic nonlinearity:

1

= Tread o (1.0.1)

fa)

The topology describes the manner in which the neurons are interconnected.
A basic problem with using a neural network to perform a particular task is that
little is know about the required complexity of the network topology, or which
topology is best suited for the task. It has been shown by Cybenko [L1], that
continuous functions of finite support may be approximated by a feed forward

neural network with a single (finite) hidden layer. It is thus justified that this

60



topology be used here. A feed-forward network is arranged in layers such that
the outputs of one layer serve as the inputs to the next layer. Neurons within a

layer are not connected in any way.

An example of supervised learning, the backpropagation algorithm is a means
for using the training data set to adjust the network weights and biases in a
multilayer feed-forward neural network. The algorithin is actually an imple-
mentation of recursive gradient descent procedure to minimize the mean square
error between the networks actual output and the desired output. If the net-
work has hidden units, then the error function is no longer convex and there is
a danger of getting stuck at a local minima. However, this algorithm has been

used successfully in a wide variety of tasks.

A recursive algorithm to adjust the weights, starting at the output nodes
and working back to the first hidden layer, is given in reference [13] for the case
of the sigmoid logistic function. A generalization for arbitrary networks can be

found in reference [10].
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