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Abstract

It has been proven that no on-line scheduling algorithm can guarantee a processor utilization
greater than 25% under conditions of overload. From this result, it follows that there is no sat-
isfactory software solution (within the paradigm of deterministic computation) to the problem
of constructing overload-tolerant real-time systems, and we are forced to consider alternative
remedies. In this paper, we describe an attempt at a hardware solution. In particular, we
quantify the advantages of using faster hardware in real-time systems. An obvious advantage
is that more work can be done in a shorter amount of time and the system is therefore less
likely to enter overload. More interestingly, we prove that the performance of systems using
faster hardware improves dramatically over systems using slower hardware if overload does
occur. We present here a new scheduler, ROBUST, which efficiently uses faster hardware to

prevent performance degradation under overload conditions.
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1 Introduction.

Real-time computer systems are systems where the correctness of a computation depends upon
both the result of the computation and the time at which this result was produced. These systems
have become increasingly important over the past few years. We all come across numerous real-time
application systems in our day-to-day lives; these applications span the spectrum from air-traffic-
control systems to power-plant monitoring to laser delivery systems for eye surgery.

We consider here real-time application systems that are extremely safety critical, e.g., the mon-
itoring and control of nuclear power plants. Typically, when such systems are designed, the system
designers attempt to anticipate every eventuality and incorporate it into the design of the system.
Under ideal circumstances, such a system would never become overloaded, and the behavior of the
system would be as expected by the system designers. Unfortunately, real-time systems need to
interact with the real Woﬂd rather than an ideal one. The best-laid plans of system designers do
sometimes go awry: unanticipated situations arise, the unexpected occurs, and it may happen that
the required amount of processor time exceeds the system capacity. The system is then said to be
in overload. If this happens, it is extremely important that the performance of the system degrade
gracefully (if at all). A system that panics and suffers a drastic fall in performance in an emergency
is likely to contribute to fhe emergency, rather than help solve it.

One measure of system performance is the effective processor utilization (EPU) of the
system. Informally speaking, the EPU of a system over an interval of time measures the fraction of
time within the interval that the processor spends on executing tasks that eventually do meet their

deadlines. (We make the reasonable assumption that our scheduling algorithms use no inserted



idle times; i.e., the processor is never idle while there are tasks that can be executed on it. We
require that any interval used to compute the FPU include no idle time, and that it encompass
the deadlines of all tasks that have received non-zero service in the interval. The EPU of a system
is the lowest FPU, measured over any interval of time,. of the system.) Consider, as an example,
a situation where task T makes a request, at time 0, for 3 units of processor time by a deadline
of 4, and task T, makes a request at time 2 for 8 units of processor time by a deadline of 10. A
scheduler that schedules Ty to completion has an EPU of 0.3 over [0,10), while one that schedules
T, to completion has an EPU of 0.8 over [0,10). Clearly, no scheduler can schedule both T3 and T
to completion.

Certain uniprocessor on-line scheduling algorithms such as the Deadline algorithm [3], for ex-
ample, are known to be optimal under non-overloaded conditions. These algorithms can therefore
guarantee an EPU of 100% under conditions of non-overload. Furthermore, it has recently been
shown [1, 2] that no uniprocessor on-line scheduling algorithm can guarantee a “compefitive ratio”
larger than 1/4 under overload. With minor modifications, the proof of this result can be extended
to show that no uniprocessor on-line scheduling algorithm can guarantee an EPU greater than 1/4
under overload. This result, along with the optimality of the Deadline algorithm, implies that the
onset of an emergency may force a deterioration in system performance by a factor of four. In
this paper, we attempt to overcome this fall in performance by using faster hardware. The major
question that we address is: Is it necessary to obtain hardware that is be at least four times as fast
as the original hardware in order to compensate for the four-fold loss in performance? The answer,

fortunately, is “no”.



Our task model is as follows: each task T is completely characterized by three parameters
T.a (the request time), T.e (the execution requirement), and T.d (the relative deadline, often simply
called the deadline), where T'.a is the time at which task T' makes a request for 7'.e units of processor
time by a deadline of T.a + T.d. Nothing is known about a task until it makes its request, at which
time all three parameters become known. In addition, there is no a priori bound on the number of
tasks that will be encountered. For any task 7', we define its slack factor to be the ratio 7.d/7e.
Clearly, for a task 1" to complete by its deadline, it is necessary that 7.d be at least as large as 7'.¢;
the slack factor of any non-degenerate task (i.e., a task that has any chance at all of completing by
its deadline) must therefore be at least one.

Now, suppose that we were provided with hardware that is twice as fast as the hardware for which
the specifications of some system had been written, and that we wanted to transfer the system onto
this new hardware. Let task T' in the new system correspond to some task 7' in the original one.
It is easy to see that the new task 7" will have T".a = T.a, T".e = T.e/2, and T".d = T'.d. All tasks
T' in the new system will therefore have slack factor = T".d/T".e = T.d/(T.e/2) = 2x T.d[T.e > 2.

In this paper, we present ROBUST (Resistance to Overload By Using Slack Time), an on-line
scheduling algorithm that is guaranteed to achieve an effective processor utilization of at least one
half under conditions of overload, provided all incoming tasks have a slack factor of at least 2.
Figure 1 shows how the ROBUST scheduler can be used in conjunction with faster hardware to
develop a satisfactory solution to the overload problem. In this figure, we have plotted the “work
done” by the system against the incoming load. Both axes are labeled to percentages of the capacity

of the original system. The beaded line profiles the behavior of the original system, while the full
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Figure 1: The effect of load on system behavior

line shows the performance of the ROBUST scheduler. Focusing our attention on the original
system, it is clear that for loads no larger than its capacity, the existence of optimal algorithms
under conditions of non-overload ensures that the work done by the system increases linearly with
the load. For loads greater than the capacity of the system, however, it has been shown [2, 1] that
a performance degradation by a factor of four is unavoidable. Turning our attention to the faster
system, where the hardware is twice as fast as that of the original system, we observe that the
performance behavioral profile changes in two ways: First, loads between 100% and 200% ol the
original system’s capacity no longer correspond to overload; the work done by the system therefore

increases linearly with the load in this region. Second, if the load does increase to beyond 200% of

the original system capacity, the ROBUST scheduler ensures that the performance does not, degrade



by more than a factor of two, to the 100% line. The new system is thus more “overload-tolerant” in
that it can absorb an overload of up to twice the capacity of the original system, and, even under
more extreme overload, the performance never degrades below the original system’s capacity. While
doubling processor speeds to handle overload may not be considered cost-effective in conventional
computer systems, it is quite reasonable, however, in the real-time domain. This directly relates
to the application domain of real-time systems where functionality, rather than cost, is usually the
driving consideration.

The remainder of this paper is organized in the following fashion: In Section 2, we prove that our
new algorithm, ROBUST, guarantees a worst-case FPU of one-half under conditions of overload
when all incoming tasks have a slack factor at least 2. In Section 3, we attempt to determine if
this algorithm is also optimal. That is, are there on-line algorithms that can guarantee an FPU
greater than one-half under such conditions? Although we do not yet have a conclusive answer to
this question, we succeed in proving an upper bound of 5/8’ths on the performance of any on-line
algorithm in the above situation. Then, in Section 4, we generalize the above analysis to the case
where the processor speedup factor is an arbitrary number. Finally, Section 5 concludes with a

summary of the results presented herein, and outlines future research directions.

2 The ROBUST On-Line Algorithm.

In this section, we present ROBUST (Resistance to Overload By Using Slack Time), an on-line
scheduling algorithm that guarantees a worst-case FPU of one-half under conditions of overload

when all incoming tasks have a slack factor of at least 2. The ROBUST algorithm operates in



the following manner during an overloaded interval: It divides the interval into an even number of
phases, Phase-1, Phase-2,..., Phase-2n, with the length of Phase-(2: — 1) equal to the length of
Phase-2i for all 7, 1 <7 < n. (That is, the length of every even-numbered phase is equal to that of
the preceding odd-numbered phase.) The length of each phase is determined as discussed below.
Suppose that the overloaded interval begins at time {. Let tasks Tl(l),TZ(I) ,...,TTQ) be the
set of tasks that are active! at this time, and let task T() € {T} s T(1 , TV} be such that

max

T e > Ti(l).e for all i, 1 < i < ny; (ie., TX) is the most “valuable” task in Phase-1). Also,
let eV represent the remaining amount of processor time that is required by task TW) at time ¢.
Then, Phase-1 is defined to be the interval [t,¢ + e()), and Phase-2 the interval [t + el 1 + 2,

During Phase-1, the scheduler non-preemptively executes task T®) to completion. Suppose a
new task Thew arrives during this phase. Since its slack factor must be at least 2, it is guaranteed
that this new task’s deadline is at least twice its execution requirement, i.e., Tnew.d > 2Thew.c.
Let Thew.e be greater than Tlga)x.e. Since the length of Phase-1 is egl), the scheduler can delay the

execution of task Thew after to the end of the phase and still meet its deadline. For every new task

that arrives during Phase-1, therefore, it is the case that either
e its computation time is less than that of task T\ | (i.e., it is less “valuable” than Tl ), or

e it can be successfully scheduled to completion after task 7(}) has completed execution.

There is therefore no danger of discarding too “valuable” a task during Phase-1.

At the start of Phase-2 (and indeed, every subsequent even-numbered phase), the currently

LA task T is active at time ¢ if (i) T.a < t; i.e., the task arrives before ¢, (ii) T'.e, > 0, where T.e, is the remaining
amount of processor time that needs to be allocated to task T before its deadline, and (iii) T.e, < (T.d —1), i.c., the
task can still complete before its deadline — it has not yet become degenerate.



active task with the largest execution requirement is scheduled. For the duration of this phasc,
whenever a new task arrives, the scheduler compares the execution requiremént of the newly arrived
task and the execution requirement of the currently executing task; if the execution requirement
of the new task is greater, the scheduler preempts the current task and begins executing the new
one, otherwise the current task continues execution. If the currently executing task completes
execution, the currently most valuable active task is scheduled. At the end of each even-numberced
phase Phase-(2j — 2), therefore, the processor is executing the currently active task with the largest
execution requirement. Let t' be the time when Phase-(2j — 2) ends, and let 77) be the task

executing at this instant. Let eﬁj ) represent the remaining amount of processor time that is required

max*

by task T),. Then, Phase-(2j — 1) is defined to be the interval [/, + ¢¥)), and Phase-2j to be
the interval [t' + egj), ¥4 Qeg,j)).
At the start of Phase-(2j —1) for all j, 1 < j < n, the scheduler commits to executing task 7.4

to completion, and proceeds to do so for the entire phase. If a new task arrives during this phase,

the condition on its slack factor ensures that either
e its computation time is less than that of task T\) | or

e it can be successfully scheduled to completion after task 7.¢) has completed execution.

a

Once again, therefore, there is no danger of discarding too “valuable” a task as a result of committing

to non-preemptively execute task 7,0) during Phase-(2j — 1).

Theorem 1 The ROBUST algorithm achieves an EPU of at least one-half during conditions of

overload.



Proof. Suppose that the ROBUST algorithm divides the overloaded interval into 2n phases num-
bered 1 through 2n. Notice that the processor is guaranteed to be “useful”, (i.e., executing tasks
that do complete by their deadlines) during all the odd-numbered phases. Furthermore, the length
of each odd-numbered phase is exactly equal to the length of the succeeding even-numbered phase.

The EPU over the entire overloaded interval is therefore

~1[ length of Phase-(2: — 1)]
- 27, length of Phase-j]

BN} =

]

3 An Upper Bound on EPU

In an environment where all incoming tasks are guaranteed to have a slack-factor no less than two,
the ROBUST scheduling algorithm obtains an FPU of at least one-half even under overloaded
conditions. We now address the issue of optimality: Is the ROBUST algorithm optimal? That is, is
it the case that no on-line scheduling algorithm can obtain an EPU greater than one-half in such an
environment? We do not yet have a conclusive answer to this question. However, we prove in this
section that no on-line scheduling algorithm can guarantee an EPU greater than five-eighths under
conditions of overload in the above framework. This means that even if the bound of 5/8 were to

be tight, the ROBUST algorithm is at most 20 percent worse than the optimal, since % =0.8.

Theorem 2 No on-line scheduling algorithm can guarantee an EPU greater than five-eighths under

conditions of overload in an environment where all incoming tasks have slack-factor of at least two.

9



Proof. The proof is by means of an adversary argument that consists of pitting any on-line
algorithm against a (hypothetical) malicious adversary that generates a sequence of tasks, observes
the behavior of the on-line algorithm on these tasks, and then extends the sequence with the explicit
purpose of minimizing the FPU of the on-line algorithm. At time ¢ = 0, the adversary generates
two identical tasks T, and R, with T,.e = R,.e = z,, and T,.d = R,.d = 2z,. Just before the
deadline of these tasks (i.e., just before time 7,.d) the adversary generates identical tasks 7; and
R, with Ti.e = Ry.e = 21 and Ti.d = R;.d = 2z,. The “best” situation for the on-line algorithm
to be in is for it to have completed the execution of task 7,, and to be currently engaged in
executing ,. In general, the on-line algorithm will have executed task T;, and be executing R;;
just before the deadline of R;, the adversary generates two new identical tasks T}, and R;;; with

Titi.e = Rip1.e = zi4q, and Tiy1.d = Riyq.d = 22;41. The on-line algorithm now has a choice

e discard R; and begin executing T}y, in which case the adversary again generates two tasks
Tiy2 and R;yy just before the deadline of task R;1; (by which time the on-line algorithm would

have completed the execution of task 7}, and will be executing R;11), or

e continue the execution of task R;, in which case no further tasks are generated by the adver-

sary; the on-line algorithm will get to complete the execution of R; and exactly one of T;4 or

Ry

Now this process could go on for ever if the on-line algorithm always chooses to discard R; in favor
of T4 every time such a choice is offered. However, recall that in our model, overloaded conditions
correspond to emergencies, and emergencies are assumed to be finite. There is, therefore, a fixed

integer m such that, if the on-line algorithm is executing task R,,_; and the adversary generates

10



tasks T, and R, then irrespective of the scheduling decision made by the on-line algorithm, the
adversary will not generate any further tasks.

We leave it to the reader to verify that when the interaction between the on-line algorithm and
the adversary has ceased, the on-line algorithm has completed the execution of all of the T} tasks

that were generated, and exactly one of the R; tasks.

o If the task R; that was executed to completion is in fact R,,, then the length of the overloaded
interval is Y_7 ((7;.d), which is equal to 7", 2z;. The EPU over this interval is therefore

(@m + o 7i)/ (Zo 224)-

o If the task R; that was executed to completion is not 7),, then the length of the overloaded
interval is Zf:é (T;.d), which is equal to 2{;55 2z;. The EPU over this interval is therefore

(z; + X0 @) /(D 2a)).

To complete our proof, we need to demonstrate the existence of a series of numbers
ToyT1y -5 Tiy. -+, T such that the EPU in both cases above is at most 5/8. This is done in
Lemma 2 in Appendix A. We have thus shown that, against an adversary that behaves as described
here, and generates tasks with computation requirements and deadlines as dictated by the sequence

defined in Lemma 2, no on-line scheduling algorithm can obtain an EPU greater than five-eighths.

11



4 Processors With Arbitrary Speedups.

The ROBUST scheduling algorithm guarantees an EPU of one-half under conditions of overload
if provided With hardware that is twice as fast as the hardware for which a particular real-time
system has been designed. In the previous sections, we discussed how this algorithm can be used to
construct a new system that is more overload-tolerant than the original one in that (i) it can absorhb
an overload of up to twice the capacity of the original system, and (ii) even under more extreme
overload, its performance never degrades to below the original system’s capacity.

In the above analysis, our focus on a processor speedup of two was primarily to highlight the
performance potential of the ROBUST algorithm and also to demonstrate that this speedup was
sufficient to maintain performance equal to the original system’s capacity even under overload. We
now go on, in this section, to demonstrate that the ROBUST algorithm is applicable over a wide
range of processor speedup factors. Our analysis of the previous sections is extended to include
arbitrary processor speedups, and we show how the hardware speedup may be used to minimize

the performance degradation of overloaded real-time systems.

Lemma 1 Consider a real-time system designed for some particular hardware. If the system is
implemented on hardware that is f times as fast, f > 1, then all tasks in the implementation will

have slack factor > f.

Proof. Let task 7" in the implementation correspond to some non-degenerate task 7' in the speci-
fication. It is easy to see that the new task 7" will have T".a = T.a, T".e = T.e/f, and T".d = T.d.
All tasks 7" in the new system will therefore have slack factor = T".d/T".c = T.d/(T.e/f) =
FxT.d/T.e> .

12
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4.1 The Generalized ROBUST Algorithm

The Generalized ROBUST algorithm behaves exactly like the ROBUST algorithm described in
Section 2, except that the length of every even-numbered phase Phase-2: is set to 1/(f — 1) times
the length of the preceding odd-numbered phase Phase-(2i — 1). We leave it to the reader to verify
that, as before, the processor is “useful”, (i.e., executing tasks that do complete by their deadlines)

during all the odd-numbered phases, yielding the following theorem:

1
Theorem 3 The Generalized ROBUST algorithm achieves an EPU of at least I—jw during con-

ditions of overload.

From hereon, when we refer to the ROBUST algorithm, we will mean the generalized algorithm

described here.

4.2 Upper Bound on EPU

The following theorem establishes an upper bound on the EPU that is attainable for arbitrary

hardware speedups.

under

Theorem 4 No on-line scheduling algorithm can guarantee an FEPU greater than fil

conditions of overload in an environment where all incoming tasks have slack-factor of at least f.

Proof. Construct a set of f + 1 tasks such that f of them have a =0, ¢ = 1, and d = f, while the

remaining task is identical except that its d = f — ¢ where 0 < € < f. It is simple to see that while

13



it is straightforward to successfully schedule f tasks, no on-line scheduler can manage to schedule

cannot be obtained.

all f+ 1 tasks. This means that an EPU greater than fi 7

O
An important point to note here is that the above theorem establishes a “quick-and-dirty” upper
bound since the bound is clearly not tight (compare the bounds established by Theorem 2 and the

above Theorem for f = 2). However, the point we wish to make is that even if the bound were

tight, the Generalized ROBUST algorithm provides a performance that is at most

U=

INTVE AN

fractionally off from the optimal. Therefore, with increasing slack factor, the ROBUST algorithm is
asymptotically optimal. As a practical matter, the ROBUST algorithm is guaranteed to be within
ten percent of the optimal for speedup factors greater than 3.2. Further, depending on the looseness
of the above EPU upper bound, the ROBUST algorithm may be within ten percent of the optimal at
considerably lower slack factors. In fact, it is even possible that the algorithm may itself be optimal
— we are currently researching this issue. In summary, the ROBUST scheduler in conjunction
with faster hardware appears to provide a reasonably efficient solution to address the problem of
performance degradation under overload. While this seems true in general, we note, however, that
it 1s not the case for a small range of speedup factors, as discussed below.

For f = 4/3, the EPU achieved by the ROBUST algorithm is 1/4. However, the same EPU is
guaranteed by the algorithm described in [1] without the use of faster hardware. Therefore, with

hardware that is no more than 4/3 times as fast as the original, it is not worthwhile to use the

14



ROBUST algorithm. When hardware with a speed-up of greater than 33% is available, however,
the algorithm may be productively used to improve the performance guarantees of the system.
We now summarize the performance benefits with respect to overload of hardware that is f

times as fast as the original hardware:

e First, the system is less likely to go into overload, since its “capacity” is greater. Any load
that is less than f times the capacity of the original system will not push the system into

overload.

e Second, when the load on the system is extreme, overload will occur. However, if the ROBUST
algorithm is used to schedule tasks during the overloaded time periods, the resultant EPU is

guaranteed to be always as much as (f — 1) times the capacity of the original system.

5 Conclusions.

It has previously been shown [1] that no on-line scheduling algorithm can guarantee an FPU greater
than 25% under conditions of overload. It immediately follows from this result that there can be no
satisfactory software solution to the problem of constructing overload-tolerant real-time systems.
In this paper, we have attempted to develop a hardware solution to handle real-time overload.

We characterized the inflationary effect of faster hardware on the slack factor of tasks (Lemma 1),
and exploited this effect to design ROBUST (Resistance to Overload By Using Slack Time), an on-
line scheduling algorithm that is not limited by the 25% bound of [1] (Theorems 1 and 3). We

described how system designers could use the ROBUST scheduler to enhance the performance of

15



their systems. In particular, we demonstrated that, with ROBUST, doubling the processor speed
is sufficient to ensure that the system’s EPU never falls below the original system’s capacity.

We explored the optimality of the ROBUST algorithm and proved that it is asymptotically
optimal with respect to hardware speedup. We also showed that it is guaranteed to be within ten
percent of the optimal for hardware that is slightly more than thrice as fast as the original hardware.

Using faster hardware is not the only source of obtaining a larger slack factor. An alternative
situation where the same effect is obtained is where the designer is willing to relax the deadlines
(or scale down the execution requirements) of all the tasks. The ROBUST algorithm is equally
applicable in such scenarios. If, for example, the user is willing to double all the task deadlines.
then the ROBUST algorithm guarantees that the performance of the system will not degrade by
more than a factor of two during overload.

The scheduling algorithms presented in this paper require the slack factor of all tasks to be
greater than a certain minimum value in ofder for their performance guarantees to hold. In practice.
the semantics of particular applications may permit a trade-off between slack factors of different
tasks. We suggesﬁ that maximizing the minimum slack factor in a system of tasks be a major design
goal for the developers of overload-tolerant real-time systems.

A number of problems remain open. First, neither the specific ROBUST algorithm presented
in Section 2, nor its generalization discussed in Section 3, have been proven optimal. A more
important open question concerns our assumption that the use of hardware f times as fast as the
original results in a decrease in execution time of all tasks by a factor of f. In many practical

systems, this is clearly not the case. For example, a task whose execution time is dependent upon

16



factors external to the system would be unaffected by any speedup in system hardware. We plan
to investigate a model where there are several types of tasks, and the effect of faster hardware on
a task depends upon its type.

The systems we considered here operate with two sets of on-line schedulers — one for use under
normal circumstances, and the other for use during emergencies. We assumed that a real-time
system “knows” when an emergency occurs, and switches schedulers accordingly upon the onset of
overload. It is possible, however, that a system may be unaware that an emergency is occurring until
it is actually well into the emergency. Therefore, we need one integrated algorithm that combines
the optimal behaviors of the two separate algorithms. Such an integrated algorithm is presented in
[4] for systems that are implemented on the hardware for which they were designed. The design of
similar integrated algorithms for systems that are implemented on faster hardware appears to be a

fruitful research area.

Acknowledgements.

The proof in Section 3 is similar to a proof that first appeared in [2], and subsequently in [1].
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Appendix

A Lemma for Section 3.

Lemma 2 The series of numbers

Z,
I
T

satisfies the following two properties

J+1
Property 1. (z; + Y
1=0

Property 2. (z,+

1=0

Proof.

4(2iog — Timg), 22

J+1

wi)/(g 2x;)
2 /(3 22;)

=0

5/8 for all j >0

5/8 for some m > 0

Property (1). Using standard techniques of algebraic manipulation, we first reduce Property (1) to

a simpler form:

x;+ Z{:& T §
20t w) 8
8 8 ¢ 8 J
= coi+ Qo)+ pein =200 @) + 220
5 5 =0 5 1=0
8 8. I 8
= 5%’ —(2- g)(g ) = (2 - 5)%41
_ 8/5 !
AL Sy ’_g“



We have thus shown that Property (1) above is equivalent to

J
Tin =4:L‘j —Z.’L‘i. ((3)
1=0
The reader may verify by substitution in Equation (3) that the recurrence in the statement of the

lemma satisfies Property (1) for j = 0.

From Equation (3), it follows that

i+l
Tjpo = 4T 41 — Z Z;. (4)
1=0

Subtracting Equation (3) from Equation (4), we obtain

Tjta = Tjp1 = 4T — 4%5 — Tin

I

Tiv2 = HTjp — z5)-
Notice that this is exactly the form of the recurrence relation. We have thus proved that, for
J > 0, Property (1) is merely a re-statement of the recurrence relation. The recurrence therefore
satisfies Property (1) for j > 0 as well.
Property (2). It has been proven elsewhere (see [1]) that the recurrence in the statement of this

lemma satisfies the following property?:

n
=

———S—l—forsomem>0 (’
) T 4

We will use this property to prove that the LHS of Property (2) is at most 5/8 whenever the LHS

of (5) is no larger than 1/4, therefore proving that the recurrence satisfies Property (2).

ZStrictly speaking, this is not true. The RHS of this inequality should be 21{ + ¢ for € an arbitrarily small positive
real number. As a result, the quantity 5/8 in the RHS of Properties (1) and (2) should be replaced with £ + e.

Since the Lemma is true for ¢ arbitrarily small, we have chosen to keep things simple and gloss over this minor
mathematical detail.
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The LHS of Property (2) =

T + Y oieo Ti
2) 0
211' Yimo T+ 2t T
23 %0 @i
1/4 +1
2

(Using Property 5)

5
8
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