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Chapter 1: Introduction 

Overview 

Mathematical skills are gatekeepers that either enable students to go to college 

and make successful careers or keep students away from educational and 

occupational opportunities relevant to mathematics (Cobb, 2017). One factor 

influencing the lack of mathematical abilities is tstudents’ thoughts about 

mathematics, such as thinking that mathematics is boring and they don’t like it 

(Yılmaz et al., 2010). Some authors state that making the process of learning 

mathematics fun and enjoyable can be the solution to engaging students during math 

lessons (Gresham, 2008; Rossnan, 2006; Strauss, 2016). Additionally, embodied 

cognitive science researchers claim that students’ simple actions, like gestures 

(simple hand movements such as pointing), can influence students’ mathematical 

learning (Alibali & Nathan, 2012; Cook et al., 2008). Moreover, game-based learning 

researchers assert that games are practical instructional tools to improve mathematical 

learning (Gresalfi & Barnes, 2015; Kebritchi et al., 2010; Williams-Pierce, 2016). 

Therefore, game-based learning and embodied cognition have a similar impact on 

students’ mathematical learning through digital gestures (such as dragging and 

tapping, e.g., Dubé & McEwen, 2015; Sinclair & Heyd-Metzuyanim, 2014). Through 

this dissertation, I aim to analyze the combined impacts of game-based learning and 

embodied cognition within the context of mathematics education through digital 

gestures.  
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Statement of Problem 

Video games can be a ground-breaking instructional apparatus for students to 

connect with and improve their mathematical understanding (Gresalfi & Barnes, 

2015; Katirci et al., 2020; Kebritchi et al., 2010; Lee et al., 2012; Sinclair & Heyd-

Metzuyanim, 2014; McLaren et al., 2017; Ottmar et al., 2015; Williams-Pierce, 

2016). For this reason, some scholars use Game-Based Learning (GBL) (de Freitas, 

2006; Garris et al., 2002, Squire et al., 2005) or Digital Game-Based Learning 

(DGBL) (Kiili, 2005; Prensky, 2003; Van Eck, 2006) frameworks to explore the 

adequacy of computer games for using them in learning. Researchers claim that 

mathematical reasoning is embodied, and the body’s association with the 

environment can advance mathematical understanding (Alibali & Nathan, 2012; Cook 

et al., 2008; Goldin-Meadow et al., 2001; Nathan & Walkington, 2017; Nathan et al., 

2016; Núñez, 2004; Walkington et al., 2014; Williams-Pierce et al., 2017). The focus 

of my dissertation is to examine how these two learning techniques — game-based 

learning and embodied cognition in mathematics education — can be combined to 

advance the comprehension of their expected advantages for mathematics education, 

especially regarding algebraic understanding.  

There are some algebra-based digital learning tools that are used by teachers 

and students and analyzed by researchers. For instance, GeoGebra is an interactive 

software that has been heavily researched (e.g., Arbain & Shukor, 2015; Diković, 

2009; Edwards & Jones, 2006; Hohenwarter & Jones, 2007; Williams-Pierce, 2019).  

Hohenwarter and Fuchs (2004) claim that GeoGebra supports students in exploring 

algebra in experimental and geometrical systems. Another popular educational game 
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is DragonBox12 + (Cates, 2018; Katirci et al., 2020; Long, Y., & Aleven, 2017; Siew 

et al., 2016). Katirci (2017) states that DragonBox helped students gain more 

confidence in their algebraic problem-solving ability. In addition to GeoGebra and 

DragonBox12, there is another educational game, From Here to There! (FH2T), 

which has only been examined by the design team. According to the design team, 

FH2T helps students interact with algebraic expression elements (Ottmar et al., 2015). 

I posit that playing this educational video game through touchscreen technology also 

supports embodied mathematical cognition, and FH2T can effectively be used as a 

learning tool as has been pointed by design team.  

My overall research question is — How do digital gestures connect to 

students’ mathematical understanding when playing From Here to There! (FH2T)? 

This question explores the intersection of the two fields, game-based learning and 

embodied cognition in mathematics education, using the math game, FH2T, as a case 

study. I plan to answer this question using three studies that break down the different 

aspects of the overall research question: Study 1 (The Game Interaction Study); Study 

2 (The Quantitative Gesture Study): Quantitative Data; and Study 3 (The Student 

Observations Study): Case Study.  

Background and Studies’ Frame 

Games can be examined through different theoretical frameworks or lenses 

(e.g., MDA, Hunicke et al., 2004; Fernández-Vara, 2009). Hunicke et al. (2004) 

introduced the Mechanics, Dynamics and Aesthetics (MDA) framework as a way for 

designers, researchers, and scholars to understand games. In other words, they aim to 

bridge the two sides – design/develop and research/critique. However, in their schema 
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(Figure 1.1), they only cover the designer’s and the player’s role, and the role of the 

researchers is missing. The authors state that “games are created by designer/teams of 

developers and consumed by players” (p. 1). I extend their schema by adding the 

researcher’s role as a form of critique of the game (Figure 1.2). 

 

Figure 1.1: Designer-Game-Player schema by Hunicke et al. (2004, p.1) 

 

Figure 1.2: Researcher’s role in Designer-Game-Player schema 

As a researcher, I investigate this extended schema's elements using FH2T 

and perform three interrelated research studies to unpack the different relationships 

between the person (designer, consumer, researcher) and the game. In the literature 

review, I offer an overview of the publications of the developers in two parts: 

designers create the game (e.g., Ottmar et al., 2015) and designers collect and analyze 

quantitative data on players consumption of the game (e.g., Ottmar et al., 2015; Hulse 

et al., 2019; Chan et al., 2021). Figure 1.3 illustrates these two parts. 
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Figure 1.3: Literature Review 

After reviewing articles related to FH2T, I develop three studies (Figure 1.4) 

to investigate three separate constituents of the schema: The First Study (The Game 

Interaction Study) covers the researcher’s emergent mathematical game play 

experience — the researcher’s critique of the game; The Second Study (The 

Quantitative Gesture Study) will focus on that the ways embodied cognition can give 

us insight into mathematical understanding through quantitative representation — the 

researcher critique quantitative data on players consumption of the game; and The 

Third Study (Student Observations Study) will analyze the players’ emergent 

experiences while engaging with the game — the researcher collects and critiques 

qualitative data on players consumption of the game. To make clear how these three 

studies relate to each other, I developed a representation (Figure 1.4) that is built upon 

the Hunicke et al.’s (2004) illustration.  

 

 

 

 



 

 

6 
 

 

Figure 1.4: Studies’ Organization 

I expound on each study separately. The Game Interaction study aims to 

explore the game through the researcher’s playing and then analyzes the interaction 

between the game and the researcher. In the Quantitative Gesture Study, through the 

embodied mathematical cognition perspective, I investigate the quantitative data 

gathered and represented by the developers. In the Student Observations Study, 

through the embodied mathematical cognition perspective and lenses of failure and 

feedback, I observe students when they are playing FH2T.  

Research Questions 

Considering the purpose of the studies, I developed the following answerable 

research questions that put together answer overall research question: 

Overarching:  

• How do digital gestures connect to students’ mathematical understanding 

when playing FH2T?  

Study 1 (The Game Interaction Study):  

• How do the implication and affordances offered through playing FH2T match 

with Game-Based Learning's structures?   
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• How do failure and feedback manifest in mathematical play within playing the 

game from the researcher’s perspective? 

• Do the learning outcomes of the game endorse the Common Core State 

Standards of mathematics required by the state of Maryland? 

Study 2 (The Quantitative Gesture Study):  

● Do students’ digital gesture clusters within playing FH2T affect their keep 

playing or not?  

● What conditions affect their decision to keep playing or not? 

Study 3 (The Student Observations Study):  

• What is the learner’s mathematical gameplay experience in playing FH2T? 

• How do failure and feedback manifest in mathematical play within playing the 

game through the learner’s perspective? 

• What sort of physical gestures do they use to explain what they are doing with 

their digital gesture?  

The Game: From Here to There! (FH2T) 

In this study, I use From Here to There! (FH2T), a game designed by the 

Graspable Math Team (Founders: David Landy – Professor, Erik Weitnauer – 

Software Developer, Erin Ottmar – Professor, and Developers: David Brokaw, Thad 

Martin, Christian Achgill, Dan Manzo). The designers defined FH2T as “a self-paced 

interactive application that introduces students to mathematical content through 

discovery-based puzzles” (Ottmar et al., 2015, p.1793). FH2T is a dynamic 

mathematics game designed for students to learn algebra through perceptual 

intervention. FH2T has 14 worlds placed on a symbolic tree (see Figure 1.5) and each 

world contains 18 puzzles. The different worlds focus on specific 

mathematics/algebraic concepts ranging from addition to linear equations. Learners 

start with simple mathematical content and construct knowledge and skills throughout 
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the game (See Table 1.1 - Worlds and Contents). In the First Study’s findings section, 

I analyze the game in more detail through the Game-Based Learning framework.  

 

Figure 1.5: Worlds on Tree (© Graspable Math) 

Table 1.1: Worlds and Contents 

World Number Contents 
World 1 Addition 
World 2 Multiplication 
World 3 Order of operations + and × 
World 4 Subtraction and negative numbers 
World 5 Mixed Practice of + and - 
World 6 Division 
World 7 Order of operations 
World 8 Equation + and - 
World 9 Inverse operations + and - 
World 10 Distributions 
World 11 Factoring 
World 12 Equation +, -, ×, and ÷ 
World 13 Inverse operation 
World 14 Final Review 
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Definition of Terms 

Game: According to Salen and Zimmerman (2003), ‘A game is a system in which 

players engage in an artificial conflict, defined by rules, that results in a quantifiable 

outcome.’ (p. 80) 

 Algebra: From the Dictionary (n.d.), ‘The branch of mathematics that deals 

with general statements of relations, utilizing letters and other symbols to represent 

specific sets of numbers, values, vectors, etc., in the description of such relations.’ 

 Mathematical Play: According to Williams-Pierce (2019), ‘mathematical play 

is voluntary engagement in cycles of mathematical hypothesis with occurrences of 

failure.’ (p. 591) 

 Educational Game: Commercial or non-commercial game which is designed 

for educational purpose instead of just entertainment.  

 Failure: From the Dictionary (n.d.), ‘nonperformance of something expected’ 

and ‘an act of failing.’ 

 Failure and Feedback in the context of educational game: Failing and getting 

feedback is a cycle in the context of video game that players learn the game and the 

topic through their actions (Williams-Pierce, 2019). Simply, it is an action (Players’ 

behavior)- reaction (Game’s systematic feedback) cycle.  

 Digital-Touchscreen Gesture: The simple hand motions to control or interact 

with digital-touchscreen devices. For example, tapping: “briefly touching the surface 

with fingertip”; dragging: “moving fingertip over surface without losing contact” 

(Villamor et al., 2010, p. 1).  
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Relevance and Contributions 

My work here is incorporated from the following published materials:  

 
1. Katirci, N., Shokeen, E., & Williams-Pierce, C. (2022, April). From Here to 

There!: Game-Based Learning. Submitted to the 2022 American Educational 

Research Association Annual Meeting and Exhibition. https://aera22-

aera.ipostersessions.com/Default.aspx?s=B7-0F-51-C2-6B-39-0F-A7-52-42-

22-74-C2-9C-B7-32 

2. Katirci, N. (2021, Nov). Game-Based Learning: From Here to There! 

Submitted to the 2021 Learning Sciences Graduate Student Conference. 

Organization of the Dissertation 

This chapter (Introduction) includes general information about the 

dissertation, the statement of the problem, the research questions, and the definition 

of terms. Chapter 2 provides the background literature to the dissertation. The 

literature review is presented in three subsections; using technology in mathematics 

education, embodied mathematical cognition, and the intersection of embodied 

mathematical cognition and technology. Chapter 3, Chapter 4, and Chapter 5 cover 

the three studies: The Game Interaction Study, The Quantitative Gesture Study, and 

The Student Observation Study, respectively. Chapter 6 addresses discussion, 

opportunities for future research, and a conclusion.  
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Chapter 2: Literature Review 

Overview 

This literature review examines how two learning methods — game-based 

learning and embodied cognition in mathematics education — can be integrated to 

advance our understanding of their potential benefits for mathematics learning. 

Mathematics education is the primary area of my proposal (illustrated in Figure 2.1) 

and it infuses into the other two areas: educational technology and embodied 

cognition. The intersection of these three areas — mathematics education, educational 

technology, and embodied cognition — is a specific area of specialization in my 

research. This dissertation’s information comes from two fields: Human-Computer 

Interaction (HCI) and Learning Sciences (LS). My overall research question — How 

do digital gestures when playing FH2T connect to students’ mathematical 

understanding? — belongs to the intersection of these two fields. It belongs in HCI 

because digital/touchscreen gestures refer to the embodied interaction between 

students and touchscreen technologies such as tablets and smartphones. It belongs in 

LS because the focus is on the process of students’ mathematical learning through 

playing a video game.  
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Figure 2.1: The intersection of three interest fields 

Creswell (2014) lists three reasons for doing a literature review: “to present 

results of similar studies, to relate the present study to an ongoing dialogue in the 

literature, and to provide a framework for comparing results of a study with other 

studies” (p. 51). Through this section, I will present related studies of my research 

interest, identify a gap in the literature, and introduce the reasoning behind my 

research question. I use different analyses like thematic (Maguire & Delahunt, 2017) 

and chronological (Hart, 1998) analysis through the narrative synthesis in different 

sections and the referral (snowball) technique (Biernacki & Waldorf, 1981) to further 

explore the literature. 

My inclusive theme is mathematics learning: when I search the literature, I 

always include “mathematics learning/education” as a keyword. Then, in the short 

history of using computers in the mathematics education section of the paper, I use 

both chronological and thematic analysis. The chronological analysis helps me to 

categorize literature by its dates. Thematic analysis helps me to identify different 

instructional methods related to mathematics learning (e.g., Programming, drill-

practice; Computer Based Training (CBT); Internet-based training (IBT); e-learning; 

My Overall Research 
Question: 
How do digital 
gestures connect to 
students’ mathematical 
understanding when 
playing FH2T? 

Mathematics 

Video games 
(Educational 
Technology) 
 

 

·R
Q Embodied 
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Social software, free and open content). Additionally, in the subsequent sections, 

thematic analysis through the snowball technique is applied. For example, I use 

Garris et al.’s (2002) paper for the literature about game-based learning in 

mathematics education, then use Hulse et al.’s (2019) article for the publications 

about FH2T, Wilson’s (2002) piece for embodied cognition, Goldin-Meadow et al.’s 

(2001) study for embodied mathematical cognition, and Sinclair and Heyd-

Metzuyanim’s (2014) work for embodied mathematical cognition and touchscreen 

technology. I use them as a starting point in the snowball technique because these 

articles are directly related to my research. 

This literature review includes three main sections (Using Technology in 

Mathematics Education, Embodied Mathematical Cognition, and Embodied 

Mathematical Cognition and Technology) and their subsections. In the first section 

and subsection, I review how technology and video games have been used as 

instructional tools in mathematics education (Figure 2.1, left set in the Venn 

Diagram). In the second section, I investigate how researchers describe embodied 

mathematical cognition (Figure 2.1, right set in the Venn Diagram). The third section 

examines the literature that combines video games and embodied mathematical 

cognition (Figure 2.1, the intersection of two sets). As a subsection, I review the 

intersection of embodied cognition and touchscreen games. Lastly, I introduce my 

research question (Figure 2.1, intersection-·RQ). 
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Using Technology in Mathematics Education 

When we hear the word technology, we probably think of computers, 

smartphones, and machines. However, technology is not limited to electrical and 

computerized systems. For instance, Napier’s bones (Figure 2.2) are used as a 

calculating instrument (Aspray, 2000; Yuriana & Suwardi, 2018). According to 

Kumar et al. (1999), one element of technology is a “physical component which 

comprises items such as products, tools, equipment, blueprints, techniques, and 

process” (p. 82). Given this definition, Napier’s bones would count as a technology. 

Napier’s bones are also a good example of how tools were used in mathematics and 

mathematics education throughout history (e.g., Peeples, 2007). However, while I am 

aware that technology can refer to analog devices, in this paper, I focus on using 

computers/computing tools/software as technological tools in mathematics education. 

 

Source: Aspray (2000, p. 18). 

Figure 2.2: A Modern set of Napier’s Bones 
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Short History of Using Computers in Mathematics Education 

There are five phases in the history of using computers in education 

(Leinonen, 2005):  

1. Programming/drill and practice - late 1970s and early 1980s, which I have 

modified to be Before and during the early 1980s because there are some examples 

before 1970s. 

2. Computer-based training (CBT) with multimedia - late 1980s and early 

1990s. 

3. Internet-based training (IBT)- early 1990s. 

4. e-learning - late 1990s and early 2000s 

5. Social software + free and open content – late 2000s (Figure 2.3).  

In this section, I focus on these five phases in mathematics education. To 

build upon Leinonen’s phases, I have added a new phase: Video Games. Using video 

games for educational purposes became popular after Leinonen’s (2005) 

categorization (e.g., Quest Atlantis - Barab et al., 2005), and it has had an influential 

effect on mathematics education, so it should have a place in nowadays’ classification 

of computer use in education. In the next section, I review video games in 

mathematics education.    

 

Source: Leinonen (2005). 

Figure 2.3: A history of computers in education 
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Phase 1: Before and during the early 1980s 

Programming and drill-practice materials were the first computerized 

instructional tools used in education. Hartley (1974) described programming learning 

as individualized instruction that builds on logically sequenced small steps; students 

follow this learning actively and at their own pace. Although Leinonen’s (2005) 

phases started in the late 1970s, there are various programming learning examples 

before the 1970s. For instance, Pressey’s testing machine (Pressey, 1927, as cited in 

Skinner, 1958) (Figure 2.4) and Skinner’s (1958) programmed instruction meet 

Hartley’s (1974) description. 

In mathematics education, programming was used before the 1980s. Skinner 

(1958) mentioned that instructional materials were designed for teaching 

mathematics, such as arithmetic, the operations of addition, subtraction, 

multiplication, and division. The success of the machine depended on these materials 

and also when and how students used them. Furthermore, Stolurow (1963) reported 

that, in a study with underachieving students using programmed machines to learn 

arithmetic, they preferred to use programmed machines instead of traditional 

instruction. Programming materials were one of the alternatives for traditional 

materials in mathematics learning. 
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Source: Skinner (1986).  

Figure 2.4: Pressey’s machine 

The second part of Leinonen’s (2005) first phase is drill-and-practice. 

According to Lim et al. (2012), drill-and-practice “is a method of instruction 

characterized by the systematic repetition of concepts, examples, and practice 

problems” (p. 1040). There are both paper-based and computer-based drill-and-

practice programs (Landeen & Adams, 1988); a paper-based form of drill-and-

practice exercises is called a worksheet. Hence, in the computer-based part, drill-and-

practice programs are designed as courseware programs for learning (Streibel, 1985). 

Moreover, Hasselbring et al. (1988) claimed that drill-and-practice activities could be 

used for developing mathematical automaticity. Programmed and drill-practice 

instructions were used to help students learn and continue to be used today. Video 

games also cover the characteristics of programming and drill-practice because they 

involve logically sequenced small steps (Hartley, 1974) and systematic repetition 

(Lim et al, 2012). 
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Phase 2: Late 1980s- Early 1990s: Computer-Based Training (CBT) with 

Multimedia 

The second phase of the Leinonen’s (2005) classification was computer-

based training with multimedia. Kulik and Kulik (1991) also categorized computer-

based instruction into three types of applications: computer-assisted instructions in 

the form of microworlds (e.g., Edwards, 1991; Papert, 1980; Thompson, 1992), 

tutorials (e.g., Tilidetzke, 1992), and simulations (e.g., Van Eck & Dempsey, 2002); 

computer-managed instructions, in which computers evaluate students’ test 

performance (e.g., Winters et al., 1993); and computer-enriched instructions (e.g., 

Mitra & Steffensmeier, 2000), such as computers serving as problem-solving tools.  

The first type of computer-based training is computer-assisted instruction 

which is in the form of microworlds. The term microworld was used by Papert 

(1980), who designed the Turtle, a computer-controlled cybernetic animal in the 

LOGO (programming language) environment. Papert (1980) defined microworld as a 

place “where certain kinds of mathematical thinking could hatch and grow with 

particular ease” (p. 125). Other researchers also used LOGO programming and 

microworlds in teaching different mathematics topics such as geometry (Lehrer et al., 

1988; Olive, 1991), fractions (Harel, 1990), and problem-solving (Nastasi et al., 

1990). These studies show that microworlds and computer-assisted instruction can be 

used to teach different mathematics topics and improve learning.  

The second type of computer-based training is computer-managed instruction. 

According to Baker (1978), the three themes of computer-managed instruction (CMI) 

are individualization, behavioral objectives, and educational technology, which are 
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similar to Skinner’s (1958) programmed instructional components (behavioral 

objectives, small frames of instruction, self-pacing, active learner response to an 

inserted question, and immediate feedback). For example, individualization meets 

self-pacing and active learner components, behavioral objectives are in both, and 

educational technology covers machines and giving immediate feedback as a 

characteristic of teaching machines. Moreover, CMI programs are designed to 

evaluate and monitor learners’ improvement, locate and manage resources, and record 

and generate reports about learners’ performance (Wee et al., 2012). Nowadays, 

Learning Management Systems (LMSs) are used as computer-managed instructional 

tools to follow students’ progress.  

The third type of computer-based training is computer-enriched instruction. 

Kulik and Kulik (1991) described computer-enriched instruction (CEI) as when a 

“computer (a) serves as a problem-solving tool, (b) generates data at the student’s 

request to illustrate relationships in models of social or physical reality, or (c) 

executes programs developed by the student” (p. 79). See et al. (2010) created and 

used a CEI program to teach the central limit theorem (CLT) in a biostatistics course 

through a tutorial, story, simulated learning, summary, Q&A (question and answer), 

exercise, and exit pages. According to Kulik and Kulik's (1991) description, See et 

al.’s (2010) program would serve as both a problem-solving tool and data generator. 

See et al. (2010) also designed a 2 x 2 cross-over method (participants in two groups 

receive materials in a different sequence) to evaluate the timing of using CEI in the 

course. They found that CEI was good for previewing content before teaching the 

topic.  
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All three instructions, computer-assisted, computer-managed, and computer-

enriched, are part of computer-based training to help students learn. These methods 

are also used in video games, but game designers denominate them differently. For 

instance, each video game has its own microworld (computer-assisted environment). 

Each video game also takes advantage of the computer-managed system to show the 

leaderboard or give individual rewards to each player differently.   

Phase 3: Early 1990s: Internet-Based Training (IBT) 

After the internet became popular in the 1990s, instructional designers talked 

about using it to deliver instruction. According to Tsai and Machado (2002), e-

learning, online learning, web-based learning, and distance learning had been used 

interchangeably. Tsai and Machado (2002) differentiated these terms by how learning 

materials were delivered and stated that “web-based learning is associated with 

learning materials delivered in a Web browser, including when the materials are 

packaged on CD-ROM or other media” (p. 2). Moreover, Driscoll (1997) defined 

internet-based and/or web-based training as “any skill or knowledge transfer that 

takes place using the World Wide Web as the distribution channel” (p. 5). These two 

definitions show that there is no sharp distinction between the terminology of web-

based or internet-based training, and they are used interchangeably.  

There are some examples of web-based trainings in mathematics education. 

Wang et al. (2004) designed a Web-based Mathematics Education (WME) framework 

and they claimed that “The Mathematics Education Markup Language (MeML) was 

the centerpiece of WME. MeML aims to provide an effective and expressive means 

for authoring and to deliver mathematics education content on the Web” (p. 1). 
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Furthermore, Baki and Güveli (2008) developed web-based mathematics teaching 

(WBMT) materials on functions and evaluated these materials’ effectiveness for high 

school students. According to their results, WBMT improved students’ learning in the 

experimental group (Baki & Güveli, 2008). Consequently, researchers (Baki & 

Güveli, 2008; Tsai & Machado, 2002; Wang et al., 2004) have upheld that internet-

based instructions effectively teach mathematics. Internet-based training has been 

used to help students learning and will continue to be used. Educational video games 

also cover internet-based training characteristics because they involve learning 

materials delivered through a Web browser or CD-ROM as Tsai and Machado’s 

(2002) description. 

Phase 4: Late 1990s-Early 2000s: e-learning  

E-learning is the fourth phase of Leinonen’s (2005) classification of using 

computers in education. Tsai and Machado (2002) claimed that “E-learning is mostly 

associated with activities involving computers and interactive networks 

simultaneously” (p. 2). Hence, e-learning’s definition is not so different from that of 

internet-based training: web-based, asynchronous, distance education (Smith & 

Ferguson, 2005). E-learning students are self-motivated, enjoy interacting online with 

peers, and are knowledgeable of the e-learning format (Roblyer, 1999).   

In mathematics education, according to Smith and Ferguson (2005), dropout 

rates in mathematics e-learning courses are higher than in non-mathematics courses. 

To create an ideal, math-friendly, e-learning environment, they suggested these 

environments should have a digital whiteboard for the instructor to draw diagrams, 

formulas, and explanations. Students can easily reach the board and use it. Hence, e-
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learning environments should also include real-time chat opportunities (Smith & 

Ferguson, 2005). This study shows that students benefit from social interaction 

between themselves and their teachers when learning mathematics in an e-learning 

environment.  

Phase 5: Late 2000s: Social Software, Free and Open Content 

The final phase in Leinoen’s (2005) categorization includes both social 

software as blogs, and free and open content as OpenCourseWare. Blogs are informal 

in this category, but open content is used as an educational resource. For instance, 

UNESCO defines Open Educational Resources as “technology-enabled, open 

provision of educational resources for consultation, use, and adaptation by a 

community of users for non-commercial purposes" (UNESCO, 2002). It became 

popular when the Massachusetts Institute of Technology (MIT) announced that it 

would make all course materials available free for the community through their 

program MIT OpenCourseWare (Pirkkalainen & Pawlowski, 2010). Then in 2012, 

MIT and Harvard universities launched edX (edX.org) as a massive open online 

course (MOOC) provider, which generally covers college-level courses (Breslow et 

al., 2013). 

For the high school level in mathematics education, Canessa and Pisani (2013) 

preferred to use HOOC as an acronym for High School Open Online Courses. Their 

study aimed to reinforce Italian high school students’ knowledge of science and 

mathematics and facilitate students’ entrance to university. The high school students 

did not watch new courses; they could re-watch the same lessons they received in 

their own classroom online, at their own place and pace. Researchers called this an 
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open online course because the webpage (www.opendante.com) and videos are 

available for the public in Italian. The study results showed that students who 

watched online videos and attended the class scored higher than other students who 

only participated in the class. Moreover, students stated that HOOC lectures helped 

them with their homework (Canessa & Pisani, 2013). 

In the above sections, I summarize Leinonen’s (2005) five phases of using 

technology in education with examples in mathematics education. It is crucial to 

understand how computers in education have evolved and why educators prefer 

tablet-based video games in education. I plan to investigate using video games in 

mathematics education through this proposed study. The next section summarizes 

using video games (and the game, FH2T) in mathematics education, which I consider 

to be the sixth phase in using technology in education.  

Using Video Games in Mathematics Education 

Esposito (2005) defined a video game as “a game which we play thanks to an 

audiovisual apparatus, and that can be based on a story” (p. 2). Similarly, according 

to Salen and Zimmerman (2003), “a game is a system in which players engage in an 

artificial conflict, defined by rules, that results in a quantifiable outcome” (p. 80). The 

definition shows that players are fascinated by video games. Video games can be 

powerful instructional tools to engage students and improve their learnings in 

mathematics (Gresalfi & Barnes, 2015; Kebritchi et al., 2010; Williams-Pierce, 

2016). For this reason, some scholars use Game-Based Learning (GBL) (de Feritas, 

2006; Garris et al., 2002, Squire et al., 2005) or Digital Game-Based Learning 

(DGBL) (Kiili, 2005; Prensky, 2003; Van Eck, 2006) frameworks to investigate the 
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effectiveness of video games. I explain GBL and DGBL in more detail in the third 

chapter and investigate FH2T through the GBL framework in the third chapter 

(findings of the First Study).  

Studies show that video games affect students’ mathematical understanding 

(Kebritchi et al., 2010, McLaren et al., 2017). DimensionMTM is one example of how 

computer games can be used in high school students’ mathematics learning (Kebritchi 

et al., 2010). Kebritchi and colleagues’(2010) impact research took place in an urban 

high school in the United States with 193 students using quantitative (motivation 

surveys, school district-wide benchmark exams) and qualitative (interview) 

instruments. Their quantitative test results for mathematics achievement were 

significantly higher for the treatment group who played the game and attended the 

mathematics classes than the control group who just participated in the classes. Their 

interview results showed that the game positively affect students’ motivation and 

achievement, the game positively changed their mood; the game was exciting, 

challenging, and attractive.  

Another computer game used for mathematical achievement is Decimal Point, 

a single-player educational game designed for middle school students (McLaren et 

al., 2017). McLaren et al.’s (2017) impact research took place in two middle schools 

in the U.S. among 153 6th-grade students. It used experimental (game and non-game 

conditions) and quantitative (pre-test, post-test, and delayed post-test) instruments. 

Their results showed that the game increased student learning about decimals in 

game-playing students more than in the non-game group students (McLaren et al., 

2017). 
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Both DimensionMTM and Decimal Point can be categorized as computer 

games, and the studies about them showed that computer games are useful tools in 

mathematics learning. However, there are also many web-based games that students 

can play on their computers or other devices. For instance, coolmathgames.com and 

coolmath4kids.com are two sibling sites with mathematics games, which are grouped 

into several categories like strategy, skills, numbers, logic, and trivia. Zhang (2015) 

investigated the relationship between interest in online mathematics games based on 

these two sibling websites and fourth-grade students' academic performance and 

found a significant negative correlation between them through impact research. This 

finding shows that the design and the quality of games are important. Therefore, 

desired learning is not guaranteed in mathematics video games. 

Furthermore, there are other video game devices, consoles such as Sony 

PlayStation, Nintendo Switch, Nintendo Wii, and Microsoft Xbox, which are 

generally used for entertainment but can be leveraged for educational purposes. 

Researchers have investigated the learning in some games designed for entertainment 

and played through a computer or platforms, such as Lineage (Steinkuehler, 2006) 

and World of Warcraft (Nardi & Harris, 2006). In addition to games designed for 

entertainment but used for learning, some game designers have designed their 

educational games for specific topics by using these game platforms (e.g., Lee et al., 

2012; Williams-Pierce, 2016). For instance, Xdigit (Lee et al., 2012) is a kinetic 

arithmetic game to improve mathematical learning through the motion-sensing 

controller, Microsoft Kinect for the Xbox, and Rolly’s Adventure (Williams-Pierce, 

2016) is designed to support fractions learning through the game on PlayStation.  
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Games for tablets and other mobile devices have also been researched. These 

devices are cheaper and easier to implement in a classroom. For instance, 

TouchCounts (Sinclair & Heyd-Metzuyanim, 2014) and DragonBox 12+ (Katirci et 

al., 2020) are examples of tablet-based games selected and investigated by 

researchers. I explain these studies in the last section of this chapter in more detail 

because researchers did not just focus on games; they also examined the gestures 

while playing a game and mathematical communication between students and 

teachers. In this dissertation, I am also analyzing another computer game, From Here 

to There! (FH2T) to further contribute to the literature on gaming in mathematics 

education.  

Using FH2T in Mathematics Education 

 As mentioned in the introduction, From Here to There! (FH2T) was 

developed by the Graspable Math research team. Each problem in FH2T starts with a 

given form of an expression and asks for the goal form of the expression. The players 

must convert the expression from the starting form (here) to the goal form (there). 

The players solve these expression or algebra problems to collect clovers, unlock new 

problems, and pass levels. In Ottmar et al.’s (2015) paper, they present the initial 

findings of the research on the game. In their pilot study, 110 middle school students 

(6th, 7th, and 8th grade) participated and solved FH2T’s problem at their own pace. 

The pilot study contains both retrieval practice and fluid visualization versions of the 

game. Students need to remember and write the correct form of the algebraic and 

arithmetic expressions in the retrieval practice mode. In the fluid visualization mode, 

the players just tap to the sign to get the correct form of the expression. According to 
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the pilot study result, the mathematical understanding of the students improved by the 

end of the study (Ottmar et al., 2015). 

In another study, Ottmar and colleagues (2015) divided players into three 

conditions: a control group, a retrieval practice group, and a fluid visualization group. 

In this study, 85 middle school students (6th and 7th grade) from 5 classes participated. 

The classes were randomly assigned as control and intervention classes. Then, within 

the intervention classes, students were randomly assigned retrieval practice and fluid 

visualization conditions. According to this study's results, there is a significant 

difference between the fluid visualization group and both the retrieval practice and 

control group. Moreover, Ottmar et al. (2015) stated that “these results … suggest 

promise for tablet-based technologies for teaching abstract algebraic content” 

(p.1797). In my study, I combine the embodied cognition development feature of 

tablet-based technologies and the mathematical understanding enhancement by 

playing FH2T. I explain embodied mathematical cognition in the next section. 

Embodied Mathematical Cognition 

Before defining embodied mathematical cognition, I will first explain 

embodied cognition through the views of two scholars, Shapiro (2011) and Wilson 

(2002), and illustrate the concept with examples. Then, in the following section, I 

review studies of embodied mathematical cognition (see Figure 2.1 - the right set in 

the Venn Diagram).  

Embodied Cognition 

Embodied cognition is a theory in cognitive science claiming that “states of 

the body modify states of the mind” (Wilson & Golonka, 2013, p.1). In other words, 
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cognition is rooted in the body’s potential interaction with the physical world 

(Wilson, 2002). Cognitive scientists think that there are many co-existing views of 

embodiment (Shapiro, 2011; Wilson, 2002).  

Shapiro (2011) presents his three themes of embodiment: Conceptualization, 

Replacement, and Constitution. In brief, conceptualization refers to the concepts in 

which an organism depends on understanding the surrounding world based on the 

type of body it has. So, if organisms differ in their bodies, they also differ in how they 

understand the world. Shapiro (2011) cites Varela et al.’s (1991) example of color 

vision to explain their ideas; we experience color regarding how our color detection 

systems interact with light (Varela et al., 1991, as cited in Shapiro, 2011). This 

example shows that not just the color of the object but also the limitation of 

organisms’ vision affects how they see. This theme is important because it explains 

that the concepts a human can gain are finite and limited by the properties of a human 

organism's body.   

Through the second theme, Replacement, Shapiro (2011) suggests that the 

interaction between an organism’s body and its environment replaces the need for the 

world's computational processes. Therefore, cognition can be explained without the 

appeal to computational processes. Shapiro (2011) uses the robotic works of Brooks 

(1991) as an example because robots “have bodies and experience the world directly 

– their actions are part of a dynamic with the world, and the actions have immediate 

feedback on the robot’s own sensations” (Brooks, 1991; p. 1227, as cited in Shapiro, 

2011; p. 139).  
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In the third theme, Constitution, the elements of cognition are beyond the 

mind; the body and world play not just a causal role but also a constitutive role in 

cognitive processing. Shapiro (2011) explains this theme with the help of O’Regan 

and Noë’s (2001) sensorimotor theories of perceptual experiences like visual 

experiences. For instance, the shape of the object (e.g., circle, sphere); the color of the 

object (e.g., red, green), and the kind of the object (e.g., ball, apple) look to have 

through changes in perspective. This theme emphasizes that we experience the world 

in the manner in which we do on the grounds that we get familiar with the different 

possibilities between how we move and how we perceptual data changes thus.   

Wilson (2002) took a different approach and stated six claims of embodied 

cognition: 

1. Cognition is situated.  

2. Cognition is time pressured. 

3. We off-load cognitive work onto the environment. 

4. The environment is part of the cognitive system. 

5. Cognition is for action. 

6. Offline cognition is body-based. 

When cognition is situated, activities take place in the context of the 

environment. Wilson (2002) promoted this claim through real-life examples such as 

driving. Moreover, Lave (1988) provides a strong example of situated cognition 

through mathematics education, examining how arithmetic was used in situ in the 

Adult Math Project. For example, while shopping, cognitive activities like deciding to 

buy a product take place in the context of a real-world environment, in a shopping 

store. It might be challenging to create this kind of situation for every student in a 

real-world environment and build the connection between mathematics education. 
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However, game characteristics (e.g., fantasy) may make it easier to create different 

situations, and games might help students take advantage of situated cognition. Then, 

they can improve their mathematical cognition..  

As humans, we need to solve our problems in real-life situations, and time-

pressured environments influence our performance and decisions. Wilson (2002) 

explained this circumstance through her second claim: cognition is time pressured. 

Cognition is time pressured and can extend beyond real-world applications and be 

explored in game-based learning as well. Kirsh and Maglio (1994) studied the actions 

of players while playing the game Tetris. In Tetris, players need to select the best 

place to put a shape (called Zoid) before touching any other Zoids that have already 

landed. Speed and the right choice of actions help players to continue the game. This 

study illustrates the time pressure component of cognition. 

Wilson’s (2002) third claim is that we off-load cognitive work onto the 

environment by using equipment in the environment. According to Risko and Gilbert 

(2016), cognitive offloading means the “use of physical action to alter information 

processing requirements of a task so as to reduce cognitive demand” (p. 677). For 

instance, we use different kinds of calendars (paper-based or digital) to avoid or 

offload cognitive load work from our minds (Wilson, 2002). Offloading cognitive 

work onto the environment also applies to game-based learning. For example, in the 

game Tetris, players do not need to think about which shape of the Zoid fills the 

blank because they can change the direction of the Zoid while playing and offload 

some cognitive work onto the game. Therefore, I posit that we can learn and practice 

how we offload cognitive work onto the environment through playing games.  
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The fourth claim, the environment is part of the cognitive system, assumes 

that the environment also has a function in cognitive activity. Wilson (2002) stated 

that “The forces that drive cognitive activity do not reside solely inside the head of 

the individual, but instead are distributed across the individual and the situations as 

they interact” (p. 630). For example, Thomas and Lleras’ (2009) explain the 

environmental effects on the participant’s cognitive activity. Thomas and Lleras 

(2009) have studied how participants solve Maier’s two-string problem (to tie two 

strings hanging from opposite ends of the room) by using only their arms (swing 

group and stretch group) and the objects that are given (a wrench, a paperback book, 

two dumbbells, and a plate). The results showed that the participants who were 

directed to swing their arms were more likely to solve Maier’s problem. This study 

ties into Wilson’s (2002) fourth claim because, to solve this problem, participants 

interact with the objects as well as those who told them to swing their arms. I 

consider this claim a crucial component of the learning environment; teachers should 

consider creating a learning environment or choosing instructional tools like 

educational games for our students because the social and physical environment 

influences how the students learn.  

The fifth claim is that cognition is for action. According to Wilson (2002), 

“the function of the mind is to guide action, and cognitive mechanisms such as 

perception and memory must be understood in terms of their ultimate contribution to 

situation-appropriate behavior” (p. 626). I am particularly interested in this claim 

because researchers found that gestures are representational or simulated actions 
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(Hostetter & Alibali, 2008; Novack & Goldin-Meadow, 2017). In the next section, I 

will discuss in more detail how gestures are related to mathematical understanding.  

According to Wilson (2002), cognitive processing is tied in some way to 

bodily processes of immediate sensation and motor control, a process she refers to as 

offline cognition is body-based. Moreover, cognitive processing involves mental 

imagery and working, episodic, and implicit memories (Wilson, 2002). Thomas and 

Lleras’ (2009) study is a great example of this claim because participants use their 

bodies to solve the problem after being directed to do specific body movements 

(stretching and swinging).  Based on arguments that body movements affect thinking, 

I argue that playing video games helps to improve motor skills and mental imagery 

ability.  

In summary, Shapiro (2011) and Wilson (2002) both broke down embodied 

cognition differently. Still, both centered on the environment and pointed out that 

body-environment interaction and perceptual-sensual experiences have roles in 

cognitive decisions. In the next section, I review the influence of body-environment 

interaction and perceptual experiences on mathematical understanding. 

Embodied Mathematical Cognition 

Lakoff and Núñez (2000) argue that mathematical ideas (e.g., numbers, 

arithmetic operations, set theory, algebra, and infinity) could be understood as image 

schemas, aspectual schemas, conceptual metaphors, and conceptual blends grounded 

in normal language usage and the sensory-motor system. Researchers refer to 

embodied mathematical cognition in different ways; Lakoff and Nunez (2000) use the 

terminology the theory of embodied mathematics in their analysis, while other 
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scholars use terminology like Embodied Mathematical Imagination and Cognition 

(EMIC) (Nathan et al., 2016) or Grounded and Embodied Mathematical Cognition 

(GEMC) (Nathan & Walkington, 2017). Despite naming differences, each claim is 

similar to Wilson's (2002) and Shapiro’s (2011) because they both focus on body-

environment interaction. In essence, mathematical thinking is embodied, and the 

body’s interaction with the environment can promote mathematical understanding 

(Cook et al., 2008; Nathan & Walkington, 2017; Nathan et al., 2016; Núñez, 2004; 

Williams-Pierce et al., 2017).  

According to McNeill (1992), a gesture is one form of embodiment in 

language and thought. McNeill (1992) categorized gestures into four groups: iconic, 

metaphoric, deictic (pointing), and beat gestures. Iconic gestures represent the 

semantic content of speech; for example, a rising hand with index and middle fingers 

wiggling to depict climbing. Metaphoric gestures represent semantic content by 

metaphor, for example, cupping hands to explain holding an idea. Deictic (pointing) 

gestures show objects, places, or events, for example, pointing the place in front of 

the person to show “here.” Lastly, beat gestures do not depict semantic content and 

instead show a rhythm (McNeill, 1992).  

When Alibali and Nathan (2012) analyzed teachers’ and learners’ gestures 

through exploratory study, they identified three types of gestures: pointing (deictic), 

representational (iconic), and metaphoric. Alibali and Nathan (2012) used McNeill’s 

(1992) typology of gesture to influence their categorization. Alibali and Nathan 

(2012) argued that pointing gestures indicate the base of cognition, representational 

gestures demonstrate action and perception, and metaphoric gestures display 



 

 

34 
 

conceptual body metaphors. They noted that mathematics teachers and students use 

all these gesture types when they are teaching and learning. For example, both 

teachers and students were using pointing gestures to show the starting point of a line, 

then representational gestures to show the slope of the line, and metaphoric gestures 

to show the abstract concept of time when they are working (Alibali & Nathan, 2012). 

Through pointing gestures, students are able to reduce cognitive load, and through 

representational gestures, are able to visualize the model of the issue. Lastly, 

metaphoric gestures helped students understand the psychological reality shaped by 

subjective facts, experiences, and observations of the abstract concept's facts (Alibali 

& Nathan, 2012). 

In addition to Alibali and Nathan’s (2012) categorization, Walkington et al. 

(2014) classified gestures into two types: dynamic depictive gestures (“display a 

mathematical object being transformed using the affordance of the body,” p. 479) and 

static depictive gestures (“display an unmoving, unchanging mathematical object in 

bodily form,” p. 479). Walkington et al. (2014) conducted two empirical impact 

studies to explore how spontaneously performing these gestures and being directed to 

perform these gestures are related to justifying proofs in geometry. They found that 

spontaneously performing dynamic gestures substantiated mathematical 

understanding in the first study, and the second study consolidated that there is a 

relationship between dynamic gestures and valid proofs (Walkington et al., 2014). 

Students' gestures and speech when they produced proofs for the triangle 

inequality conjecture (the sum of the length of any two sides of the triangle must be 

higher than the measure of the third side) was also researched (Williams-Pierce et al., 
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2017). Williams-Pierce et al. (2017) made two claims in their report: 1) “gestures are 

a powerful tool for mathematics education research because researchers can 

investigate students’ mathematical thinking by attending to gestures, and 2) students’ 

gestures can elicit new forms of mathematical reasoning” (p. 249).  Consequently, 

Alibali and Nathan’s (2012), Walkington et al.’s (2014), and Williams-Pierce et al.’s 

(2017) analyses show that performing gestures have roles in developing mathematical 

reasoning. Additionally, each study (Alibali and Nathan, 2012; Walkington et al., 

2014; Williams-Pierce et al., 2017) shows that teachers' use of gestures influences 

their students’ mathematical understanding. Some scholars (Katirci et al., 2020; 

Nathan & Walkington, 2017; Sinclair & Heyd-Metzuyanim, 2014) include 

technology (video games or applications) in their interactions with students. Hence, in 

the next section, I review the intersection of embodied mathematical cognition and 

educational technology (see Figure 2.1 - the intersection of two sets).  

Embodied Mathematical Cognition and Technology 

The development of technology influenced educational practices. The 

relationship between technology and education encourages me to look at human-

computer interaction or human-technology interaction. Some researchers have 

investigated embodied interaction between humans and computers. Dourish (2004) 

defines embodied interaction as “the creation, manipulation, and sharing of meaning 

through engaged interaction with artifacts” (p. 126). In his definition, artifacts contain 

technological and computer-based products. 

Furthermore, in the educational field, Abrahamson and Trninic (2011) 

designed The Mathematical Imagery Trainer to explore embodied interactions for 
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learning the concept of proportionality. In their design, participants hold the device 

(infrared beams) with their hands to control the crosshairs on the computer screen. 

Their aim was to make the screen green, which means that the two crosshairs ratio 

must be one over two. When participants were raising one hand, they needed to keep 

the ratio constantly to stay in the green. Based on the study results, the authors stated 

that after engaging with the trainer, students “develop and rehearse multimodal image 

schema supporting and understanding mathematical content” (Abrahamson and 

Trninic, 2011, p. 7).  

Another embodied mathematical interaction tool, The Hidden Village video 

game, was designed by Nathan and Walkington (2017) using grounded theory and 

embodied mathematical cognition. The purpose of this game was to engage students 

while supporting their mathematical proof skills in geometry. The Hidden Village is a 

kinetic-based computer game where players use their arms to make depictive gestures 

(dynamic or static) to prove and disprove geometric conjectures. For example, 

students were bending their arms in and out near their ears to show different angles of 

a triangle. According to their study results, middle and high school students 

performing dynamic depictive gestures help students formulate mathematical insights 

and informal proof; however, non-dynamic (static) gestures only help in the 

mathematical insight. Consequently, these two design studies (Abrahamson & 

Trninic, 2011; Nathan & Walkington, 2017) show that the embodied interaction 

between technology and humans supports students in developing mathematical 

understanding.  
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Studies discussed above examined the types of gestures that were performed 

between teachers and students (Alibali and Nathan, 2012; Walkington et al., 2014; 

Williams-Pierce et al., 2017) and between students and computers via gesture 

recognition devices (infrared beams in Abrahamson and Trninic (2011), or camera in 

Nathan and Walkington (2017)). In addition to studies on student-teacher gestures 

and embodied cognition in gameplay, scholars also define touchscreen gestures 

(Villamor et al., 2010) and investigate touchscreen gestures in mathematical 

reasoning (Dubé & McEwen, 2015; Katirci et al., 2020; Sedaghatjou & Campbell, 

2017; Sinclair & Heyd-Metzuyanim, 2014). The next section reviews the intersection 

of embodied mathematical cognition and touchscreen technology (see Figure 2.1 - 

intersection-·RQ). 

Embodied Mathematical Cognition and Touchscreen Technology 

Tablets and mobile phones have touchscreen technology that promote 

interaction between touchscreen devices and humans through touchscreen gestures. 

These touchscreen gestures are tapping (touching the screen with a fingertip), 

dragging (moving fingertip over the surface without losing contact), and pinching 

(touching the surface with two fingers and bringing them closer together) (Villamor et 

al., 2010). Since touchscreen devices are easier to use and carry, they receive 

considerable attention from education stakeholders. Additionally, teachers are using 

touchscreen devices and apps or games in their classrooms. Many scholars have 

studied how touchscreen devices influence students’ mathematics learning (Dubé & 

McEwen, 2015; Katirci et al., 2020; Sedaghatjou & Campbell, 2017; Sinclair & 

Heyd-Metzuyanim, 2014). 
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Sinclair and Heyd-Metzuyanim (2014) claimed that the body, fingers and 

hands, and emotions play an essential role in learning mathematics. They supported 

their claim by designing and investigating an educational application, TouchCounts, 

which helps kindergarten students develop number sense through counting and 

adding. For one of the participants, the educator realized that their goal and the 

participant’s goal were different from each other. The player was just playfully 

tapping on the iPad while the educator's goal was to support learning by having the 

player complete specific exercises.  This case shows that the player’s purpose of 

playing the game might be different from the teacher’s objectives and also from the 

designer’s intention. Hence, this differentiation might cause different learning 

outcomes.  

The communication between educator, student and a touchscreen application 

was another element in Sinclair and Heyd-Metzuyanim’s (2014) research. According 

to the authors, “communication as something that involves not just spoken or written 

words, but also gesture, facial expressions, and exclamations” (Sinclair & Heyd-

Metzuyanim, 2014, p. 82). Consequently, their study shows that teacher-student 

interactions through speech, gestures, and expressed emotions can influence student-

technology interaction and mathematical thinking. One of the gaps in this field is that 

most research takes place in an elementary (K-6) context with the teacher’s 

involvement. Therefore, the processes of learning that occur solely between the 

player and technology are under-examined. 

In higher education, Dubé and McEwen (2015) compared the two gestures 

(tapping and dragging) while participants (adults; mean age of 26 years) were using 
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the EstimationLine application for mathematics tasks to determine whether 

participants' interaction on the touchscreen device has consequences for their 

mathematical understanding. According to the authors’ results from a practice trial, 

both participants (tapping groups and dragging groups) performed similarly. 

However, participants who were assigned to drag performed better than other 

participants. Consequently, Dubé and McEwen's (2015) impact study shows that 

touchscreen gestures are effective in mathematical understanding without any human 

interaction. Even though they used an app instead of a game; I think the distinction 

between app and game is nuanced because their study is still applicable to touch 

screen gestures.  

Furthermore, Katirci et al. (2020) conducted an impact study to determine the 

students' embodied interaction and touchscreen technology. According to their 

findings, participants used touchscreen gestures when playing the game (DragonBox 

12+). Participants also performed similar gestures (e.g., dragging) during the 

discussion phase after gameplay to support and build upon each other's mathematical 

reasoning. Consequently, Katirci et al.’s (2020) study indicates that the embodied 

interaction between student-peers along with the student-touchscreen device 

influenced students’ mathematical understanding.  

Most studies on mathematical video games do not include embodied cognition 

through touchscreen technology. When researchers do think about embodied 

cognition in mathematics learning via video games, there is generally a teacher 

involved in supporting students’ learning in some way when students are playing the 

game. Therefore, there is considerable research still to be done regarding embodied 



 

 

40 
 

mathematical cognition and touchscreen games. In particular, more research is needed 

to understand how students learn mathematics through gesture interactions with 

touchscreen games without teacher intervention or guidance. My contribution to the 

field will be fitting in this identified gap from both sides, embodied mathematical 

cognition and touchscreen video games, through different participants (middle school 

and college students) and in a different learning environment (without teacher 

supervision). 
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Chapter 3: The Game Interaction Study 

Overview 

With the increasing use of video games for educational purposes, it is 

important to understand what kind of affordance a particular game provides to 

learners. This study examined different design elements within an educational video 

game, From Here to There! (FH2T). To understand the implication and affordances 

of playing FH2T, data was analyzed using analysis. The study results show that 

FH2T’s failure and feedback system helps players to learn from their failure by 

providing formative, summative, and informative feedback when solving algebraic 

equations. To support researchers and teachers, I identified a list of possible learning 

outcomes of playing FH2T by making a comparison of the game content with the 

Common Core State Standards for mathematics. 

Introduction 

Recent research reports that poor mathematical academic performance is seen 

in a significant percentage of youth (Kastberg et al., 2016). One influencing factor of 

a lack of mathematical abilities is that students don’t enjoy mathematics because of 

how it is being taught to them. Most of the students complain that mathematics is 

boring, difficult, and they do not like it (Yılmaz et al., 2010).  Many educators argue 

that making the process of learning mathematics fun and enjoyable can be the 

potential solution to engaging students in mathematics (Gresham, 2008; Rossnan, 

2006; Strauss, 2016). Game-Based Learning (GBL) researchers assert that games are 

practical instructional tools to make mathematical learning enjoyable for engaging 

students (Gresalfi & Barnes, 2015; Kebritchi et al., 2010; Williams-Pierce, 2016).  
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Within mathematics, algebra is complex for students to understand. Game-

based learning can be used to help learners build algebraic understanding. However, 

in the literature, there is a lack of research on what affordances within games help 

learners to develop algebraic understanding. To fill this gap, I did an investigation of 

the mathematics learning game, From Here to There! (FH2T), by identifying its 

game-based learning structures including failure and feedback cycles. I described 

how Garris et al. 's (2002) GBL Model maps to FH2T, identified potentially 

productive moments of failure and feedback in the game, and linked the game 

elements directly to Common Core State Standards of mathematics education. This 

study is the first step in a longer trajectory of research that involves further 

investigation of how players learn in interaction with FH2T. 

Research questions:  

• How do the implications and affordances offered through playing FH2T match 

with Game-Based Learning's structures?   

• How do failure and feedback manifest in mathematical play while playing the 

game from the researcher’s perspective? 

• Do the learning outcomes of the game endorse the Common Core State 

Standards of mathematics required by the state of Maryland? 

Theoretical Framework 

In this section, I share the theoretical foundations for the study. The 

components of the learning theory — Game-Based Learning - GBL (de Feritas, 2006; 

Garris et al., 2002; Squire et al., 2005) — and the lenses of failure and feedback 

(Hattie & Timperley, 2007; Juul, 2009; Williams-Pierce, 2019) frame the research 

analysis of this study. 
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Game-Based Learning (GBL) 

Game-Based Learning (GBL) refers to students’ learning through playing 

games. In GBL, researchers typically study serious games (designed for training) or 

educational games (designed for learning) which also cover digital games (e.g., de 

Freitas, 2018; Egenfeldt-Nielsen et al., 2011; Kiili, 2005). In this study, I refer to 

FH2T as an educational game and follow the GBL model (Figure 3.1) by Garris et al. 

(2002) to analyze elements of FH2T.  

 

Figure 3.1: Game-Based Learning model by Garris et al. (2002) 

Garris et al. (2002) use the phrase “instructional games” when explaining 

GBL through an input-process-output system in their foundational study (Figure 3.1). 

In their system, instructional content (e.g., numbers, geometrical shapes, 

measurement, etc.) and game characteristics (fantasy, rules, goals, feedback, 

challenges, mystery, and control) are the two essential categories of the input stage. In 

the process stage, the game cycle is the circular part consisting of user behavior, 

system feedback, and user judgment (Garris et al., 2002). User behavior refers to their 

action and manner while playing the game, persistence for solving a level, or 

appropriate use of the game’s rules (Garris et al., 2002). System feedback is how the 
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game gives feedback to players (Garris et al., 2002), such as sound or pop-up 

messages (Yang et al., 2012). User judgment refers to players’ reactions to a game, 

enjoyment, or interest in being a gamer (Garris et al., 2002). The game cycle stage is 

the core of GBL, representing the repetition of students’ behavior and the system’s 

immediate feedback to help them reach learning outcomes (Garris et al., 2002).   

Failure and Feedback  

 When playing a game, there are generally two possible results to an action: 

success (acceptance of the action) and failure (denial of the action). Whenever a 

player makes an action in the game, the game reacts to the players’ actions with 

feedback (Game Cycle, Garris et al., 2002). Every action, notwithstanding success or 

failure, is paired with feedback (Williams-Pierce, 2019). The contradiction between 

being successful or failing might lead players to enjoy the game and keep playing or 

to quit playing (Juul, 2009). While failure might mean that there is still something to 

understand or learn, which is presented in the form of a new challenge in the game 

(Ramirez, 2015). Players seek help or feedback to overcome a challenging situation 

or repeated failure to change as a success in their next attempts (Williams-Pierce, 

2019). 

While the game developers designed in-game failure and feedback, they 

called the moments of failure as errors. There are three different types of errors in 

FH2T: shaking, keypad, and snapping errors. Shaking errors are made by attempting 

to incorrectly use existing operators (i.e., not following the order of operations). 

Keypad errors are made by attempting to enter a non-equivalent expression using the 

keypad (i.e., writing ‘31’ by mistake instead of ‘32’). Lastly, snapping errors are 
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made by attempting to incorrectly reorder terms (i.e., exceeding the minimum number 

of steps to solve an expression). I exemplify these errors and their feedback on 

selected puzzles in the Finding Section.  

In the next section, I explain my methodology for the study.  

Methods 

This section describes the method of the study. It provides details ofthe 

purpose of the study, research questions, and study design. 

Purpose of the Study and Research Questions 

This study, which is the first study in a larger research project that investigates 

how students learn in interaction with an educational game (FH2T) and analyzes 

FH2T through an analysis methodological lens (Figure 3.2- The Game Interaction). 

My overall research question for the dissertation, “How do digital gestures connect to 

students’ mathematical understanding when playing FH2T?” focuses on digital 

gestures and students’ mathematical understanding through the game, FH2T. Before 

collecting data or analyzing pre-existing data about students’ mathematical 

understanding, I needed to learn more about the game’s characteristics. For example, 

I needed to understand FH2T’s technical and mathematical constructions as well as 

the gestures, and their connections to potential mathematical learning. In my opinion, 

the best way for investigating the game is to play it instead of reading articles about it 

or watching when someone else is playing. Therefore, the first study of this 

dissertation project applies an analysis to my own gameplay. The findings from this 

study informed the design of the subsequent second (The Quantitative Gesture) and 
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third (The Student Observations) studies. This the Game Interaction study seeks to 

answer the following research questions:  

● How do the implications and affordances offered through playing FH2T 

match with Game-Based Learning's structures?   

● How do failure and feedback manifest in mathematical play while playing the 

game from the researcher's perspective? 

● Do the learning outcomes of the game endorse the Common Core State 

Standards of mathematics required by the state of Maryland? 

 

Figure 3.2: The Game Interaction Study 

Study Design  

 I played FH2T as a researcher. While playing, I recorded the screen by 

pressing the “Windows + G” option to display and record the game play (Murray, 

2018). Then, I created an Excel spreadsheet to list the worlds by columns:  

1. World Number and Topic (String variables1),  
2. Puzzle Number (Numeric variables2),  
3. New Rule (Binary variables3),  
4. The New Rule (See Appendices 3 for all rules of the game) (String 
variables),  
5. Numbers of Clovers (Numeric variables),  
6. Start (String variables),  
7. Goal (String variables),  

 
1 String Variables: “Variables involving words (i.e., letter strings).” (Field, 2013, p. 884) 
2 Numeric Variables: “Variables involving numbers.” (Field, 2013, p. 880) 
3 Binary Variable: “A categorical variable that has only two mutually exclusive categories (e.g., being 
dead or alive).” (Field, 2013, p. 871) 
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8. Steps (Numeric variables),  
9. Hint (String variables),  
10. Gesture Number (Numeric variables),  
11. Gesture Explanation (See Appendices 4 for all gestures and descriptions of 
the game) (String variables),  
12. How I solved the Puzzle (String variables),  
13. Note (String variables). 

Columns 1 to 11 represent the foundational information about FH2T. The first 

(World Number and Topic) and second (Puzzle Number) columns were recorded to 

specify each puzzle and its algebraic topics. The third (New Rule) and fourth (The 

New Rule) columns were recorded to keep track of where the new rule was 

introduced (in which puzzle) and what the new rule said. In the new rule puzzle, 

there is also an animated tutorial (e.g., Puzzle 1.1, Figure 3.3-F). Players can easily 

solve the new rule puzzle by repeating the gesture in the animated tutorial. However, 

in later puzzles, players might not be able to solve similar expressions by using the 

same rule because there is no animated explanation. These (3rd and 4th) columns are 

crucial for understanding the game and the mathematical knowledge needed to play 

FH2T. For this reason, I recorded in which puzzle the new rules were introduced 

(e.g., Puzzle 1.1) and what the new rules were (e.g., “Drag terms to commute. Blue 

lines show you where you can drop the term. Make the expression look like the 

goal.”) in two columns. 
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Figure 3.3: The Puzzle1.1 Labeled in Blue (© Graspable Math) 

The fifth column (Number of Clovers) contains a numeric variable to record 

the number of clovers that could be earned from the puzzle. The sixth column (Start) 

includes a string variable to record the starting point of the puzzle. The seventh 

column (Goal) covers a string variable to record the goal of the presented puzzle. The 

eighth column (Steps) contains a numeric variable to record the least number of steps 

for solving the puzzle. The ninth column (Hint) includes a string variable to record 

the hint given if the player clicks the Hint icon on the left bar (see Figure 3.3-D). The 

tenth (Gesture Number, Figure 3.4-Left, there is one gesture) and the eleventh 

(Gesture Explanation, see Figure 3.4-Right; “drag terms to commute”) columns 

provide information about how the player solves the puzzle. If players make the 

gestures shown, they will be successful in completing the puzzle. If they make 
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additional gestures than what is required, they will fail. From this information, 

success is clear (making the same gesture on the gesture column) while other actions 

cause failure. Feedback depends on the different gestures that the players make.  

  

Figure 3.4: Gesture- Commute Terms (Left); Commute Terms in Details (Right) 

The twelfth column covers string variables and lists the gestures I used to 

solve the puzzle. For example, for Puzzle 1.1 (See Figure 3.3), I wrote: “drag a in 

front of b.” Moreover, when I was playing the game, I was surpassing the least 

number of steps to solve some puzzles and I thought that some dynamics of some 

puzzles might be tricky for the students. For these challenging puzzles, I highlighted 

their respective rows in the excel sheet and marked (13th column) these puzzles for 

further analysis in the Quantitative Gesture and the Student Observations studies. I 

considered how students will solve these puzzles. Tracking my playing (screen 

records and excel spreadsheet) led me to decide critical factors to examine in future 

studies.  

Findings 
 

I did an analysis to investigate the game and to build upon my overarching 

research question: How do digital gestures connect to students’ mathematical 
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understanding when playing From Here to There! (FH2T)? I interacted with FH2T 

and interpreted the game under the three frameworks – Game-Based Learning (GBL), 

Failure and Feedback, and Mathematics Learning Standards – to answer the research 

questions of this study: 

1. How do the implications and affordances offered through playing FH2T 

match with Game-Based Learning's structures?   

2. How do failure and feedback manifest in mathematical play while playing 

the game from the researcher's perspective?  

3. Do the learning outcomes of the game endorse the Common Core State 

Standards of mathematics required by the state of Maryland?  

This Game Interaction Study includes three finding sections (GBL Analysis, 

Failure and Feedback, Mathematics Learning Standards) and their subsections. In the 

first section, I present FH2T according to Garris et al.’s (2002) Game-Based Learning 

approach. In the second section, I use Williams-Pierce’s (2019) lenses of failure and 

feedback to investigate FH2T’s failure and feedback system. The third section 

examines FH2T over the Maryland College and Career-Ready Standards for 

mathematics.  

GBL Analysis Findings 

Garris et al. (2002) propose three stages to approach game-based learning 

(GBL): Input, Process, and Outcome (shown in Figure 3.5). In this section, I follow 

their categorization to investigate FH2T.  
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Figure 3.5: Game-Based Learning model by Garris et al. (2002). 

The Input Stage 

The first stage is the Input stage. Instructional content and game 

characteristics are the two essential categories in the Input stage (Garris et al., 2002). 

The Instructional Content of the Game 

FH2T is a dynamic mathematics game designed for students to learn algebra 

through perceptual-based intervention (Ottmar et al., 2015). FH2T has 14 worlds 

(Figure 3.6), and each world contains 18 puzzles (Figure 3.7 Left-Started and Right-

Finished). The worlds focus on specific mathematical/algebraic concepts ranging 

from addition to linear equations (Table 3.1). Learners start with simple mathematical 

content and build up knowledge and skills throughout the game. 
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Figure 3.6: Worlds on Tree 

  

Figure 3.7: Outline of the World 1- Started and Finished 
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Table 3.1: Worlds and Contents 

World Number Contents 
World 1 Addition 
World 2 Multiplication 
World 3 Order of operations + and × 
World 4 Subtraction and negative numbers 
World 5 Mixed Practice of + and - 
World 6 Division 
World 7 Order of operations 
World 8 Equation + and - 
World 9 Inverse operations + and - 
World 10 Distributions 
World 11 Factoring 
World 12 Equation +, -, ×, and ÷ 
World 13 Inverse operation 
World 14 Final Review 

Game Characteristics 

The game characteristics are another vital element of the input stage (Garris et 

al., 2002). The features of FH2T are explained in two subsections: Beginning the 

Game and Getting to Know the Game’s Icons Better. In these subsections, I use the 

following terminology to explain each feature: “player” is the person who is playing 

the game; “puzzle” is the specific expression that players are solving; and “world” is 

the level or unit in which players are solving puzzles about it. While explaining the 

learning or teaching aspects of FH2T in the Outcome Stage, I will refer to “learner,” 

“problem,” and “topic/unit,” respectively. 

Beginning the Game 

All players need to first register for the game. For registration, FH2T only 

requires a username and password. Then players can log into FH2T (see Figure 3.8). 
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Figure 3.8: Intro of the Game 

The game welcomes players with a pop-up message (see Figure 3.9) by 

saying, “In this game, you will discover algebra by playing with numbers and 

symbols. There are several worlds arranged on a tree, with puzzles in each. Each 

world explores a particular mathematical idea. Start by tapping on the colored world 

in the lower right. Solve enough puzzles, and the next world will become colored. Tap 

any colored world to solve its puzzles. Have fun!” [emphasis added].  

 

Figure 3.9: Pop-up Message/ Welcome Note 



 

 

55 
 

 
Through this note, players can find the answer to possible questions about the 

game. For instance, they can learn the instructional content of the game: algebra and 

mathematical ideas. Then, the game outlines where the worlds are located: on a tree 

(see Figure 3.10 - Main Page). Players start the levels by tapping on the colored 

worlds (see Figure 3.11) and can move on through the next puzzle or onto the next 

levels by solving enough puzzles (14) in the world (Figure 3.12). When the players 

solve 14 puzzles in the world, the pop-up message, YOU DID IT, appears on the 

screen (Figure 3.12). By tapping the “Explore Next World” icon on the screen, the 

players go to the main page. The next world’s icon on the main page will become 

colored so the players can tap the next world icon and solve puzzles in the next world. 

The following section (Getting to Know the Game’s Icons Better) covers more 

information about the game’s icons. There is also missing information in this 

welcome note: how do players solve the puzzles? This missing piece of information is 

intentional; players learn how to solve each puzzle by playing. Learning by playing is 

the fun part of the game. The process and output stages will cover the fun and 

learning aspects of the game.  

 

Figure 3.10: Worlds on Tree- Main Page 
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Figure 3.11: Colored Worlds 

 

Figure 3.12: Next World is unlocked - Pop-up Message 

Getting to Know the Game’s Icons Better 

After the Welcome Note (see Figure 3.9), the players can start the game by 

tapping the World 1 colored icon on the tree (see Figure 3.10). Then, players can see 

the World's outline and various icons on the screen (see Figure 3.13, blue boxes and 

underlined texts are added). Players can see all puzzles (e.g., The World consists of 

18 puzzles, and to see all puzzles, the players need to scroll the bar down) and icons 

in the World’s outline (see Figure 3.13). The icons and their function are explained in 

more detail in Appendix 3.1- Icons on the World 1 Screen.  
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Figure 3.13: Outline of World 1 

After reviewing the World’s outline (Figure 3.13), the players can start the 

puzzle by tapping the first puzzle, which is unlocked. Then players can see the puzzle 

and various icons on the screen (see Figure 3.14, blue underlined texts and blue boxes 

are added). The icons and their functions are explained in more detail in Appendix 

3.2- Icons on the Puzzle Screen.  
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Figure 3.14: World 1-1 

The Process Stage 

The process stage is the second stage of GBL (Garris et al., 2002). In the 

process stage, the game cycle is a circular part consisting of user behavior, system 

feedback, and user judgment (Garris et al., 2002). User behavior refers to the player’s 

action while playing the game. System feedback refers to how the game gives players 

feedback while user judgment refers to players’ reactions to the game (Garris et al., 

2002). 

Playing the Game - Player Behavior 

To play FH2T and to solve the puzzles, players need to apply procedures to 

re-write different expressions. Ottmar et al. (2015) describe this process as “the user’s 

goal is to transform the equation from the starting form (here) to the ending form 

(there)” (p. 1794) [emphasis added]. This process of transforming equations from 
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given expression to goal form gives also the name of the game, From Here to There!. 

In Figure 3.15, starting form and ending form (goal) are emphasized by blue 

underlined texts. To re-write the expression, players need to act by following the rules 

of the game (All rules are listed in Appendix 3.3- Rules of the Game). In other words, 

players need to apply digital gestures to solve the puzzle. For example, to solve 

Puzzle 1.1, players drag the term -a- to rewrite the expression, see Figure 3.14-F (All 

gestures and descriptions are listed in Appendix 3.4- Gestures and Descriptions). This 

study, the Game Interaction, includes my (as a researcher) behaviors, see the Failure 

and Feedback Analysis section, and in future studies, The Quantitative Gesture and 

The Student Observations, I will observe the learners’ behaviors. 

 

Figure 3.15: From Starting Form (Here) to Goal Form (There) 
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System Feedback 

FH2T provides feedback in three ways: formative (Heron, 2010), summative 

(Reynolds & Kao, 2019), and informative (Kim et al., 2018) feedback. All kinds of 

feedback are given visually, text-based, and appear on the screen through pop-up 

messages. Formative feedback is given during the solving of the puzzle, and it helps 

players avoid or learn from failure. For example, blue lines show players where they 

are going to drop the term (see Figure 3.15). Players get informative feedback during 

the puzzle-solving process. To obtain informative feedback, players need to click 

icons. For instance, when players need extra information about the puzzle, they can 

click the Hint (see Figure 3.14-D) and the Gestures icons (see Figure 3.14-E) on the 

screen's left banner. Feedback from these Hint and Gestures icons are an example of 

informative feedback (for all Hints and Gestures, see Appendix 2 and 4, respectively). 

The Failure and Feedback Analysis section gives more details about informative 

feedback from my perspective. The Quantitative Gesture and The Student 

Observations studies will be done from the learners' view to analyze the learners’ 

iterative action-reflection cycles of getting this informative feedback. Summative 

feedback is given after the player solved the puzzle. For instance, symbolic rewards 

(Deci et al., 2001) like collecting clovers (see Figure 3.17) and symbolically growing 

a tree from land to sky (see Figure 3.10 and 3.11) are two summative feedback 

examples from FH2T. The next section explains how players collect symbolic 

rewards, or clovers, and lose them.  
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How are clovers collected?  

Clovers are collected by solving the puzzles. In World 1- Puzzle 5 (see Figure 

3.16), there is a warning that says, “The step counter turns red when you use more 

steps than are required. Click restart on the left to start over.” As the warning states, if 

a player solves the puzzle with more steps than are required, the pop-up message – 

YOU DID IT – appears on the screen (Figure 3.17-Left). As seen in Figure 3.17-Left, 

there are just two clovers in the pop-up message, and written motivations as “Good 

Job!” is checked, but “Best Solution” was struck through. The player loses one of 

three clovers and gets just two clovers because s/he could not get the best solution 

(Figure 3.17-Left). If the player wants to get three clovers, s/he can click the “Retry” 

icon and start the puzzle over. If the player solves the puzzle with the required 

number of steps in more trials, she gets three clovers (Figure 3.17-Right). In both 

situations, the player solved and passed the puzzle and can continue to the next puzzle 

by clicking the “Next Problem” icon in Figure 3.17-Left or directly in Figure 3.17-

Right.   

 

Figure 3.16: World 1-Puzzle 5 



 

 

62 
 

  

Figure 3.17: Rewards: 2 Clovers (Left) and 3 Clovers (Right) 

User Judgments 

User judgment is important because players decide to keep playing or quit the 

game according to their enjoyment and interest level during the play. The Game 

Interaction Study has been done to analyze the game from, as researcher, my 

perspective. I finished all worlds in FH2T to be able to analyze it. Next, The 

Quantitative Gesture and The Student Observations studies will be done to observe 

the learners’ iterative action-reflection or behavior-judgment cycles. Hence, the next 

studies will give more meaningful information on user judgments like their 

satisfaction and attraction level to the game.  

The Outcome Stage 

The outcome stage is the last stage of GBL (Garris et al., 2002). The game 

cycle and process are completed when the player solves all of the levels or quits the 

game. The learning outcomes emerge by debriefing the process. Debriefing depends 

on the learner or the teacher/researcher. For example, finishing the level might be 

enough information for the learners to decide whether the game is effective to learn 

that topic. However, the teacher/researcher might want to recheck learning using a 

post-test after playing the game. In the Mathematics Learning Standards Analysis 
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section, I compare the Maryland College and Career Ready Standards and FH2T to 

list possible learning outcomes. The Quantitative Gesture Study will be done to 

generalize learners’ mathematical understanding. In The Student Observations Study, 

I will interrogate learning outcomes through post-tests.  

Failure and Feedback Analysis Findings 

The first two features of provocative objects are “consistent and useful 

feedback; and high enough levels of difficulty and ambiguity that players experience 

frequent failure that is closely paired with the feedback” (Williams-Pierce, 2019, p. 

590). In this analysis, failure is used as a “nonperformance of something expected” 

and “an act of failing” (Dictionary, n.d.). This section analyzes the game's feedback 

system and players' possible failures under the two subtitles: Failure and Feedback 

on The Game and Failure and Feedback on Mathematics. In this section, I am the 

player. For this reason, I used she/her pronouns to indicate the player. 

Failure and Feedback on The Game 

This section analyzes the failure and feedback system of the game mechanics 

under five subtitles: 1. Tap to solve the level or the puzzle; 2. Blue lines and blue 

boxes; 3. Tap the number; 4. Tap the keypad first, then tap the number; 5. Use the 

keypad twice.  

1. Tap to solve the level or the puzzle. 

To open the level, the player needs to tap the colored World, see Figure 3.18. In 

Figure 3.18 she has already solved World 1 to 7, and she is starting to solve World 8 

(Ladybug icon). She must tap World 8’s icon to enter the level. 
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In this situation, one failure (nonperformance of something expected) might be 

tapping on other Worlds’ icons instead of World 8’s. Tapping on either Worlds 9’s 

icon, which is still black and white, is considered a failure because the player should 

follow the number queue. She could not skip any world without solving it. In 

response to pressing the black and white Worlds icons (e.g., Worlds 9 in Figure 3.18), 

she would not go anywhere. In other words, the game screen would not change. The 

game is giving feedback by not accepting the action or doing nothing. (Note: 

sometimes when playing games and interacting with an object where the object does 

not do anything might show a design flaw or indicate that the game froze. However, 

in this game, it is an indicator that the player is not interacting with interactable 

objects- black and white icons in the Worlds’ outline.)  

 

Figure 3.18: Colored Worlds 

If the player taps on Worlds 1 to 7, which are colored and solved, a potential 

failure may depend on how many clovers were collected. There are two possibilities: 

all clovers have been collected, or some clovers have not been collected in the World. 
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For the first possibility, if she has already collected all clovers, tapping on these 

worlds is redundant. The second possibility is that all clovers in the worlds have not 

been collected (e.g., in Figure 3.18, she did not take one of the clovers in World 5): 

she made a mistake (surpassed the best solution steps) and lost a clover in the specific 

puzzle (e.g., Puzzle 18 in World 5). If the aim of players is to re-tap the World to get 

all clovers, she taps the World’ icon and as feedback the game will react by allowing 

the player to re-enter the selected world where too few clovers were collected.   

Similarly, to open the puzzle, the player needs to tap the unlocked puzzle (see 

Figure 3.19; Puzzle 11 is unlocked). In Figure 3.19, the player has already solved 

Puzzles 1 to 10; she is starting to solve Puzzle 11, so she needs to tap Puzzle 11’s 

box.  

 

Figure 3.19: Locked-Unlocked Puzzles 

In this section, I describe the possible failure of tapping on the other puzzle’s 

boxes instead of Puzzle 11. When Puzzle 12 to 18’s boxes are still locked, tapping on 

them is a failure because players should not skip any puzzle without solving puzzles 
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before Puzzle 15. (Note: after solving Puzzle 14, the next world is unlocked, and 

players can continue solving puzzles in the next world- see Figure 3.8). As feedback, 

the player will not go anywhere. The game is giving feedback by not accepting the 

action or by doing nothing.  

Moreover, when the player is tapping on Puzzles 1 to 10, puzzles that she has 

already solved, the failure may depend on how many clovers were collected from 

these puzzles; if she took all clovers in the previous puzzles, tapping on these puzzles 

is a redundant action. If she did not collect all clovers in the previous puzzles, she 

made a mistake in the specific puzzle. As feedback for tapping on Puzzle 1 to 10, the 

game will allow the player to re-enter the puzzle.   

In summary, failure is tapping on other worlds/puzzles instead of the next one 

on the queue. One type of feedback response if the worlds/puzzles are still locked is 

that nothing happens. Another feedback is re-entering the solved worlds/puzzles if the 

worlds/puzzles are unlocked. 

2. Blue lines and blue boxes 

Players are learning the game rules while playing FH2T. In other words, there is 

no tutorial at the beginning of the game. The first rule of the game is: “Drag terms to 

commute. Blue lines show you where you can drop the term. Make the expression 

look like the goal.” (See Figure 3.20-Text). The rule is presented by words and 

animated graphics together. This rule contains three crucial pieces of information: the 

first one – “Drag terms to commute.” – tells players to solve this puzzle using the 

“drag” gesture; the second one – “Blue lines show you where you can drop the term.” 

–  explains to players how the game gives feedback about their actions; and the last 
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one – “Make the expression look like the goal.” – implies the game's aim and how 

players should solve the puzzle by rewriting the expression to look like the goal.  

 

Figure 3.20: Blue Line 

When the player is trying to solve the puzzle, she commutes variables as shown 

in the animated graphic in Puzzle 1 (Figure 3.20). She needs to be sure that she puts 

the variable in the correct position required by the game. Mathematically, the order of 

the variables in addition does not matter (commutative property) so these two 

expressions (starting: 𝑏 + 𝑐 + 𝑎, and goal 𝑎 + 𝑏 + 𝑐) are equal. In other words, there 

is no mathematical difference among 𝑏 + 𝑐 + 𝑎, 𝑎 + 𝑏 + 𝑐, 𝑏 + 𝑎 + 𝑐, 𝑐 + 𝑏 + 𝑎,  

𝑐 + 𝑎 + 𝑏, and 𝑎 + 𝑐 + 𝑏. However, in the game, the goal is to rewrite the expression 

𝑏 + 𝑐 + 𝑎 as 𝑎 + 𝑏 + 𝑐 using the least number of steps. If the player could not pay 

attention to follow the blue line (Figure 3.21-1) and put 𝑎 to the right side of 𝑏 like 

Figure 3.21-2, she did not reach the goal. To solve the puzzle, she needs an extra step: 

drag 𝑎 to the left side of 𝑏. (Figure 3.21-3). She solved the puzzle with two steps and 
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got feedback with red color as two steps were not the best solution for the puzzle 

(Figure 3.21-4).  

    

   

Figure 3.21: Solve Problem 1.1 – 1-4 

In this situation, putting the variables in an incorrect position is an in-game 

failure instead of a misconception of mathematics because the choice is still 

mathematically correct. However, the goal is different from the player’s action. 

Feedback is provided in the next step (Figure 3.21-4) when the “Steps” number turns 

red; this means the puzzle can be solved in fewer steps – this puzzle is solvable in one 

step. Moreover, she got summative feedback when she made the goal expression – 

“YOU DID IT” pop-up message (Figure 3.22) – with two clovers and a “Good Job!” 

checkpoint. However, “Best Solution” was struck through because she solved the 

puzzle with extra steps.  

1 2 

3 4 
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Figure 3.22: YOU DID IT 

In addition to the “blue line,” another feedback related to the player's action is 

the “blue box.” In later puzzles, the player needs to perform operations by tapping on 

an operation sign or dragging one number on top of the other number; this is also 

notified as a rule in the game (Figure 3.23). When dragging the number on top of 

different numbers, the dragged number and operation sign is colored from black to 

blue. There is a ghost number colored white in its old position, and the other addend 

is indicated with a blue box (Figure 3.23). In this puzzle, making mistakes may seem 

strange because addends are small numbers and close to each other, but making 

mistakes is still possible. One possible failure is dragging 3 onto 15 to make 18 

(Figure 3.24-1 and Figure 3.24-2) and dragging 2 onto 6 to make 8 (Figure 3.24-3 

and Figure 3.24-4). There is immediate visual feedback; the player should realize that 

the goal expression is different from her final expression. When she realizes it, she 

should click the “Restart” icon (a curved arrow) to start over the puzzle. 
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Figure 3.23: Addend- Blue Box 

 

Figure 3.24: Addend – Blue Box – 1-4 

In summary, an example of failure is putting the integer in the incorrect position 

and dragging a number onto the incorrect number. The feedback is given through the 

red “Steps” number, and the reaction of the player should be to click the “Restart” 

icon and solve the puzzle again. 

1 2 

3 4 
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3. Tap the number. 

The previous example (See Figure 3.23) of the rule says, “You can add by 

tapping on a ‘+’ sign…” As a rule, players can tap on the operation sign or addends to 

sum two numbers. For instance, in Figure 3.23, the starting form of the puzzle is 2 +

15 + 6 + 3, and the goal form is 9 + 17. There are many ways that the player can 

solve the puzzle. One way is tapping the + sign between 2 and 15 to make 17, then 

tapping 3, which interacts with 6	to become 9, and lastly dragging 9 to the left side of 

17. However, if the player taps on 6, it interacts with 17 and makes 23 (Figure 3.25). 

In other words, tapping on the number 6 also leads to the sum of 17 and 6 which 

equals 23. However, this action was not announced as a rule like “You can perform 

operations by tapping on a number.” before this puzzle, so the player needs to be 

careful when tapping on numbers. When she taps on a number, the number interacts 

with another number on its left.  

 

Figure 3.25: 17+6 = 23 
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In this situation, the failure is tapping on 6 instead of 3 to make 9. Since the 

feedback has not been given to indicate this additional error, the player should realize 

that she made a mistake and “Restart” the puzzle.   

4. Tap the keypad first, then tap the number. 

In later puzzles, the player needs to substitute numbers by using the keypad. 

This is also notified as a rule in the game with text and animated graphics (Figure 

3.26). When the rule or keypad is introduced to the players, it is explained through a 

simple example (see Figure 3.26). In Puzzle 1.8 (Figure 3.26), there is just one 

integer, 9, and the player needs to substitute 9. It is not clarified in the rule/text, but 

the animated graphic shows that the player needs to tap the keypad icon first on the 

right banner and then tap the number to substitute. When the player taps on the 

keypad icon, the figure in the icon turns yellow and the name of the icon turns to 

“Keypad On” (Figure 3.27-a). Once this happens, she then taps on the number, 9, 

which activates a keypad option (Figure 3.27-b). The blue box helps the player to 

figure out which number is going to be substituted (Figure 3.27-b). 

 

Figure 3.26: Keypad 
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Figure 3.27: Keypad On 

In another puzzle (Puzzle 1.9), the player needs to select the number she will 

substitute (Figure 3.28). In this puzzle, she can substitute any numbers to make the 

expression look like the goal. For instance, she can substitute 7	into 1	and 6; or 6 into 

1 and 5; or 10 into 5 and 5. In this situation, a possible failure is tapping on 6	first to 

substitute instead of tapping on the keypad first (Note: tapping on 7 or 10 does not 

cause failure because there are no numbers on their left). This action leads to the sum 

of 7	and 6, which equals 13 (Figure 3.29-a); after this point, the player can still solve 

the puzzle by substituting 13 into 12 and 1 (Figure 3.29-b-c-d).  

 

Figure 3.28: Select Number to Substitute 

 

a b 
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Figure 3.29: 7+6=13 

5. Use the keypad twice. 

In later puzzles, the player needs to substitute a number into more than two 

variables (see Figure 3.30). She needs to factor 64 into 2.4.8. Mathematically, we can 

write it in just one step by using the keypad. However, in the game, she needs to 

follow the order; when she tries to split the number into the factor in one step, she 

gets feedback on the box of the keypad: “You have split too much. Slow down.” Due 

to the feedback, she needs to factor 64 in two steps. As shown in the animated 

graphics, she should first tap on the keypad to activate it and then tap on 64 to re-

write it as 2. 32 (Figure 3.31-a). Then, she should tap on the keypad again and tap 32 

to factor it as 4.8	(Figure 3.31-b). 

a b 

c d 
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Figure 3.30: Use Keypad Twice 

 

Figure 3.31- a: 64=2.32 

   

Figure 3.31-b: 32=4.8 

In summary, the failure of this puzzle is trying to substitute the number just in 

one step, and the feedback is given on the top of the keypad as “You have split too 

much. Slow down.” 

1 2 3 

2 1 3 
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Failure and Feedback on Mathematics 

This section analyzes the failure and feedback system of the game on 

mathematical issues under the two subtitles: 1. Learn and then apply the rule, 2. 

Mathematically correct expression.  

1. Learn and then apply the rule. 

In general, before the rule is published, the rule did not work on previous 

puzzles. For example, before Puzzle 1.8, players do not need to substitute the item, so 

they do not have the keypad icon on the screen. Figure 3.32-a shows Puzzle 1.7, and 

Figure 3.32-b shows the screenshot of Puzzle 1.8 to highlight the difference in their 

rules.  

  

Figure 3.32: Introduce Keypad 

2. Mathematically correct expression 

The new expression must be mathematically correct especially when players 

substitute or factor the number. For example, when the player substitutes 64, she 

made a mistake by writing 31 instead of 32 (see Figure 3.33). However, because the 

new expression is not correct, when she taps the done button to submit her work, the 

done button did not transfer the new expression on the screen to substitute 64 like 

2. 31. The player then gets feedback: “The total of the new expression should be the 

a b 



 

 

77 
 

same as the original.” Another feedback related to the keypad is that when the player 

deleted 32 mistakenly and tapped on the done button (see Figure 3.34); the done 

button did not work again and did not permit her to substitute 64 as 2	. (𝑒𝑚𝑝𝑡𝑦) 

resulting in the feedback, “Could not parse expression.”  

 

Figure 3.33: New Expression 

 

Figure 3.34: Not Parse 
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Mathematics Learning Standards Analysis Findings 

In this study, I analyze the game From Here to There!. Before playing 

educational games in public schools, teachers/managers are asking to confirm that the 

game covers the mathematics learning standards of their respective states. In the 

future study, I am planning to observe students in a public school environment. For 

this reason, I check the Maryland College and Career-Ready Standards framework for 

6th and 7th grades’ (Maryland State Department of Education, 2017a, 2017b) and 

prepare Table 3.2 to show which problems in FH2T met the 6th and 7th grades’ 

standards.  

Table 3.2: Maryland State P-12 Common Core Math Learning Standards and 
FH2T 

CCLS State Standard FH2T ex.  
6.EE.A Apply and extend previous understandings 

of arithmetic to algebraic expressions 
1.1 – 14.18 

6.EE.2.b.1 / 6-Y.8 Identify terms and coefficients 2.4 
6.EE.2.b.1 / 6-Y.9 Sort factors of variable expressions 3.11 
6.EE.2.c / 6-O.3 Evaluate numerical expressions involving 

whole numbers  
1.8 

6.EE.3.a / 6-Y.11 Properties of addition 1.1 – 1.18 
6.EE.3.a / 6-Y.12 Properties of multiplication 2.1 – 2.18 
6.EE.3.a / 6-Y.13 Multiply using the distributive property 10.2 
6.EE.4 / 6-Y.17 Add and subtract like terms 3.10 
6.EE.4 / 6-Y.19 Identify equivalent expressions II 1.1 – 14.18 
6.EE.5 / 6-Z.9 Solve one-step equations with whole 

numbers 
8.4 

7.EE.1.a / 7-R.8 Identify terms and coefficients 2.4 
7.EE.1.c / 7-R.10 Properties of addition and multiplication 1.1 – 2.18 
7.EE.1.c / 7-R.13 Multiply using the distributive property 10.2 
7.EE.1.c / 7-R.14 Add and subtract linear expressions 1.1 – 1.18 & 4.1 – 4.18 
7.EE.1.c / 7-R.19 Identify equivalent linear expressions II 1.1 – 14.18 
7.EE. 2.a Ability to utilize Properties of Operations in 

order to rewrite expressions in different 
forms 

1.1 – 14.18 

7.EE. 2.b Ability to develop understanding of 
equivalent forms of numbers, their various 
uses and relationships, and how they apply 
to a problem 

1.1 – 14.18 
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Discussion 

This study explored whether FH2T covers all elements of the Game-Based 

Learning model: instructional contents, feedback system, and learning outcomes - 

Common Core Standards for our state. The goal of this study was also to determine 

interesting and challenging puzzles for analyzing students’ reactions in the 

forthcoming Quantitative Gestures and Student Observations studies. Through the 

analysis exploring FH2T under the GBL model and failure and feedback lens, I have 

determined that FH2T’s failure and feedback system is well designed and helps 

players avoid or learn from failure to solve algebraic equations. 

Limitations  

I designed this study as a first part of the dissertation research. The 

overarching aim of the research is to explore how digital gestures connect to students’ 

mathematical understanding when playing FH2T. However, there are some 

limitations of the research and this study. First, the participants for each study will be 

different – in the analysis the participant is myself, in the Quantitative Gesture study 

there are 358 sixth and seventh grade students, and in the Student Observations study 

there are only seven undergraduate students. The variability in research participants 

throughout the research project might affect the research findings because each 

participant will bring his/her own previous gameplay experiences and mathematical 

understanding to the study. Moreover, the playing time will be limited in the 

subsequent studies; I was able to finish all level for this study but in the Quantitative 

Gesture and Student Observations studies, students may not complete all worlds in 

FH2T.  
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Future Studies 

The second aim of investigating FH2T is to determine puzzles to look at in the 

second (Quantitative Gesture) and third (Student Observations) studies. For the 

second study, examining all puzzles (FH2T contains 252 puzzles) in detail will take 

too much time. When I was playing the game, I was surpassing the best solution steps 

of some puzzles, and I thought that some dynamics of some puzzles might be tricky 

for the students. Therefore, I highlighted these puzzles in the excel sheet (see Table 

3.3). Students can skip to play Puzzles 15, 16, 17, and 18 in each world and go to the 

next world in the game. I will not focus on these puzzles in detail because, after 

solving Puzzle 14, students could go to the next world. For the third (Student 

Observations) study, participants will have a time restriction on the data collection 

process, students could not play World 11 and the following worlds, because, in my 

playing experience, it took more than 2 hours to finish all worlds. Therefore, I will 

not focus on Worlds 11, 12,13, and 14. I will only analyze the bolded puzzles in 

Table 3.3. 
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Table 3.3: Worlds and Highlighted Puzzles 

World Number Puzzle Number 
1 1.9, 1.12, 1.14 
2 2.7, 2.10, 2.13, 2.14 
3 3.11, 3.13, 3.14, 3.16 
4 4.6, 4.7, 4.10, 4.15 
5 5.6, 5.7, 5.9, 5.10, 5.11, 5.12, 5.17 
6 6.6, 6.8, 6.9, 6.10, 6.15, 6.16, 6.18 
7 7.7, 7.8, 7.10, 7.13, 7.14, 7.17 
8 8.1, 8.8, 8.11, 8.15 
9 9.3, 9.4, 9.5, 9.6, 9.9, 9.13 
10 10.3, 10.5, 10.12, 10.18 
11 11.5, 11.6, 11.12 
12 12.3, 12.5, 12.8, 12.9, 
13 13.6, 13.13, 13.15 
14 

 
 
 
 

 

14.4, 14.10, 14.16, 14.17, 14.18 

My two goals for the second study – Quantitative Gesture – will be to explore 

whether students’ digital gesture clusters in playing FH2T determine if they keep 

playing or not. I also look at the conditions that affect their game play. With 

information about students’ gestures, I can highlight potential interview questions for 

the Student Observations study. My two goals for the third – Student Observations – 

study will be to investigate learners’ mathematical emergent experience in playing 

FH2T and build upon my overall question of how digital gestures connect to students’ 

mathematical understanding when playing FH2T. 

Conclusion 

I explored FH2T through Game-Based Learning, failure and feedback, and 

Mathematics Learning Standards frameworks as a first study in a larger research 

project to answer 1. How do the implications and affordances offered through playing 

FH2T match with Game-Based Learning's structures?  2. How do failure and 

feedback manifest in mathematical play while playing the game from the researcher’s 



 

 

82 
 

perspective? 3. Do the learning outcomes of the game endorse the Common Core 

State Standards mathematics required by the state of Maryland?  I used an analysis 

method to analyze the data.  

Results indicate that FH2T serves as an inclusive educational game that 

effectively engages the student in algebraic content. The structures and affordances 

implicit in the game are promising for developing an algebraic understanding of 

learners who play this game. Its failure and feedback system works clearly for the 

game and mathematical understanding, and FH2T covers Maryland College and 

Career Ready Standards for mathematics. 

In future studies, I will investigate students' gameplay and learning 

experiences within FH2T through embodied mathematical cognition perspective. In 

the Quantitative Gesture Study, I will use the quantitative data to investigate if there 

is any connection among digital gesture clusters’ patterns, the length of gameplay, 

and mathematical understanding. Lastly, in the Student Observations study, I will use 

the qualitative analysis method to explore students’ mathematical gameplay 

experiences under the embodied mathematical cognition framework. 
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Chapter 4: The Quantitative Gesture Study 

Overview 

This study explores how players’ digital gestures affect their decision to keep 

playing From Here to There! (FH2T). To understand the implication and affordance 

of digital gestures within playing FH2T, quantitative data from FH2T development 

team is analyzed under the embodied mathematical cognition perspective. The study 

results show that the increase in the number of digital gestures, or the number of 

steps, causes a greater number of students to quit playing FH2T.  

Introduction 

Games are increasingly used in education, especially on touchscreen devices 

such as tablets or other mobile devices. Many researchers argue that touchscreen 

devices influence students’ mathematics learning (Dubé & McEwen, 2015; Katirci et 

al., 2020; Sedaghatjou & Campbell, 2017; Sinclair & Heyd-Metzuyanim, 2014). In 

particular, games and applications that are designed for learning mathematics through 

touchscreen devices are increasingly being used for mathematics education in formal 

and informal environments. For instance, TouchCounts (Sinclair & Heyd-

Metzuyanim, 2014), EstimationLine (Dube & McEwen, 2015), and DragonBox 12+ 

(Katirci et al., 2020) are examples of touchscreen-based mathematics learning games 

investigated by researchers. Touchscreen technology promotes the interaction 

between touchscreen devices and humans through digital gestures. These digital 

gestures include tapping (touching the screen with a fingertip), dragging (moving 
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fingertip over the surface without losing contact), and pinching (touching the surface 

with two fingers and bringing them closer together) (Villamor et al., 2010). 

In this study, I analyze a research-based technology game, From Here to 

There! (FH2T) to further contribute to the literature on mathematics education games 

and embodied cognition in mathematics education. I investigate the quantitative data 

gathered by the team of developers in their 2019 study (Chan et al., 2021). This study 

is one part of a longer trajectory of research (covers three studies to overarching 

research question: How do digital gestures connect to students’ mathematical 

understanding when playing FH2T?) that involves further investigation of how 

players use their gestures to learn while playing From Here to There! (FH2T).  

Research questions:  

● Do students’ digital gestures within playing FH2T affect their decision to keep 

playing or not?  

● What conditions affect their decision to keep playing or not?  

Theoretical Frameworks 

This section describes the theoretical frameworks of the study. In this study, I 

will focus on the ways action, or embodied cognition, provides insight into students’ 

mathematical understanding and present my findings through quantitative visual 

representations. The learning theory of embodied mathematical cognition (Alibali & 

Nathan, 2012; Cook et al., 2008; Goldin-Meadow et al., 2001; Lakoff & Núñez, 

2000; Nathan & Walkington, 2017; Nathan et al., 2016; Núñez, 2004; Walkington et 

al., 2014; Williams-Pierce et al., 2017) and the lens of visual learning analytics (Lee 

et al., 2021; Vieira et al., 2018) frame the study. 
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Embodied Mathematical Cognition (EMC) 

Embodied cognition is defined as the ways in which “states of the body 

modify states of the mind” (Wilson & Golonka, 2013, p.1). Kirsh (2013) claims that 

cognition is connected between the body and the brain. Additionally, the interaction 

between mind and environment plays a critical role in the cognitive system (Hollan et 

al., 2000; Wilson, 2002). Hence, gestures (hand movements) and bodily action should 

be viewed as cognitive components because they form some of the thinking of the 

person (Kirsh, 2013). 

Gestures play an essential role in mathematics education (Nathan et al., 2013; 

Reynolds & Reeve, 2001). Researchers agree that mathematical thinking is embodied 

by the body’s interaction with educational tools or the environment (Cook et al., 

2008; Nathan & Walkington, 2017; Nathan et al., 2016; Núñez, 2004; Williams-

Pierce et al., 2017). Mathematics teachers also use gestures in their instruction and 

students express their knowledge through gestures in their mathematics classrooms 

(Alibali & Nathan, 2012).  

Digital gestures (e.g., dragging, tapping; Villamor et al., 2010) are required to 

use touchscreen tools. Scholars have studied how touchscreen devices influence 

students’ mathematics learning (Dubé & McEwen, 2015; Katirci et al., 2020; Sinclair 

& Heyd-Metzuyanim, 2014). Sinclair and Heyd-Metzuyanim (2014) claimed that 

bodies, fingers, hands, and emotions play an important role in learning mathematics. 

Dubé and McEwen's (2015) impact study shows that touchscreen gestures are 

effective in mathematical understanding without any human interaction. Katirci et 

al.’s (2020) study indicates that the embodied interactions between student-peers and 
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between the student-touchscreen device influenced students’ mathematical 

understanding. Hence, touchscreen gestures play an essential role in learning 

mathematics through touchscreen equipment (e.g., mobile phones and tablets). 

In the game – From Here to There (FH2T) – developers called the game 

actions gestures. Participants use their hands (e.g., fingers on an iPad) to play FH2T 

and to learn or practice different algebraic concepts. As portrayed on the left bar of 

Figure 4.1, there are icons that help the players solve puzzles. The fifth icon (Figure 

4.1-E) is the ‘Gestures’ icon figured with a question mark symbol. The Gesture icon 

gives the players clues as to which gesture (action or rule) is needed to solve the 

puzzle. Each gesture appears in a listed format with a pop-up message. For example, 

Figure 4.2-Left shows the name of the rule/gesture (Commute Terms) in Puzzle 1.1 

(World 1 Puzzle 1) (See Appendix #4 for more information about all the gestures in 

FH2T). Figure 4.2-Right shows the detail of the gesture. The gesture explanation is 

given by text and animated graphics together, just like when the rule was introduced. 

According to the text-based explanation, the players need to “drag terms to 

commute” to solve the puzzle.  
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Figure 4.1: E - Gestures 

 

Figure 4.2: Gesture - Commute Terms (Left); Commute Terms in Details (Right) 

Visual Learning Analytics  

According to The Society for Learning Analytics Research, learning analytics 

is defined as “the measurement, collection, analysis and reporting of data about 

learners and their contexts, for purposes of understanding and optimizing learning and 

the environments in which it occurs” (Siemens & Gasevic, 2012, p.1). Moreover, 
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Thomas and Cook (2005) defined visual analytics as “the science of analytical 

reasoning facilitated by interactive visual interfaces” (p.4). The combination of these 

two areas, visual learning analytics, is defined as “the use of computational tools and 

methods for understanding educational phenomena through interactive visualization 

techniques” (Vieira et al., 2018, p. 120). In this study, I used visual learning analytics 

to understand students’ behavior.   

Students who played the game generated large datasets comprised of 

clickstream data. These data give information about students' behavior during 

gameplay. Processing and interpreting data on students’ behavior also provides 

information about their learning in both the game and mathematics. The game 

developers provided visual learning analytics from the large dataset and shared them 

with me.  

In this study, there are four different types of visual representations of the 

data: Measure Charts, Treemaps, Sankey Diagrams, and Indivisualizer (I explain each 

of them in detail in the next section). Through these visual representations, I 

investigate the impact of gestures on participants’ puzzle solving strategies. The 

visual representations provide clues into participants’ gestures, and this means that 

they were engaging in these gestures. However, I could not understand participants’ 

gestures in a detailed way because I did not have enough information about 

participants’ specific gestures. For example, there are two ways to add terms in the 

game. One is dragging the item over to the other item and one is tapping to the 

operation sign (+ symbol) between two items. In the data I have, I can see that the 

player added, but not which of those two approaches they took. In this study, I only 
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consider gestures that I know occurred. In future studies, I will observe participants’ 

actions or strategies to be able to consider any gestures that they made.  

Methods 
 

In this study, I am using secondary data collected by the designer team of the 

game (Graspable Math Team). This section describes the methods of the Quantitative 

Gesture study and provides a detailed explanation of the purpose of the study as well 

as the research questions, participants, data (corpus in use, the visual representation of 

the quantitative analysis available with the corpus), and study design. 

Purpose of the Study and Research Questions 

I propose that students’ gestures are correlated to the length of FH2T 

gameplay. While playing FH2T in the previous (the Game Interaction) study, I 

realized that making gestures in incorrect orders caused errors such as keypad4, 

shaking5, and snapping6 errors and that these errors might lead players to quit the 

game. Conversely, making gestures in correct order may lead students to keep playing 

the game and to understand the mathematical concepts better. To test this hypothesis, 

I (as a researcher) use an embodied cognition perspective to analyze the quantitative 

data (gathered by the team of developers in their fall 2019 study) (Figure 4.3) to 

answer the following research questions: 

● Do students’ digital gestures within playing FH2T affect their decision to keep 

playing or not?  

 
4 Keypad Errors: Errors that the student made by attempting to enter a non-equivalent expression 
using the keypad. 
5 Shaking Errors: Errors that the student made by attempting to incorrectly use existing operators. 
6 Snapping Errors: Errors that the student made by attempting to incorrectly reorder terms. 
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● Under what conditions affect their decision to keep playing or not?  

 

Figure 4.3: The Quantitative Gesture Study 

Participants 

 In fall 2019, quantitative data (e.g., students ID, completed problems, time 

interactions, number of steps, errors, etc.) was collected from eleven teachers and 358 

students (6th and 7th grades) across six middle schools in the Southeastern United 

States. Dr. Ottmar and colleagues, who analyze FH2T data, released this student 

clickstream data from the game for researchers (Chan et al., 2021). For this study, I 

use their data visuals — Measure Charts, Treemaps and Sankey Diagrams, and 

Indivisualizer— to investigate my research questions: Do students’ digital gestures 

within playing FH2T affect their decision to keep playing or not?, Under what 

conditions affect their decision to keep playing or not? These four visuals have 

different features. Measure Charts, Treemaps, and Sankey Diagrams cover all 

students’ data in one graph. I investigated these representations for specific puzzles 

and analyzed them in detail. The Indivisualizer is conducted for each student 

individually for each puzzle. I randomly selected 15 students by using Excel’s 

random number generator (Quirk et al., 2020) and analyzed their data in detail. 
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The graphics (Figure 4.4-Left) from the research dashboard illustrate that 358 

students solved Puzzle 1.1 (World 1 Puzzle 1). However, in Puzzle 11.6 (World 11 

Puzzle 6) (Figure 4.4-Right), only 16 participants (less than 5%) completed the 6th 

Puzzle in World 11. The number of students solving the puzzles gradually decreases. 

Since only 5% of participants solved Puzzle 11.6, I decided to investigate if there is 

any connection between patterns of digital gestures used and the length of gameplay 

- from Puzzle 1.1 to Puzzle 11.6. In other words, are students discouraged by making 

unsuccessful gesture patterns that cause them to make an error, and do they stop 

playing FH2T because of these gestures?  

     

Figure 4.4: Measure Chart for Puzzle 1.1 - Left and Puzzle 11.6 - Right. 

Data and Study Design 

Quantitative data (e.g., Figure 4.4) was collected by the developers of FH2T 

in 2019 (Chan et al., 2021). The developers also established a researcher dashboard to 

provide information about students while they played FH2T. I accessed the data for 

this study through the dashboard. The game dashboard has its own data logging 
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system which records each student’s moment-by-moment problem-solving steps such 

as time spent, mouse clicks, and errors (See Figure 4.4). In the dashboard, students’ 

in-game behaviors are displayed through different kinds of data visualizations: 

Measure Chart (See Figure 4.5); Treemap (See Figure 4.6); Sankey Diagram (See 

Figure 4.7) and Indivisualizer (See Figure 4.8). In the Quantitative Gesture study, I 

used an embodied mathematical cognition perspective to code these four 

visualizations of different puzzles of the game and looked for emergent patterns (See 

Appendix 4.3 Flow Chart). 

Measure Chart 

The Measure Chart displays information about the puzzle and the players’ 

actions. I used the Measure Chart to understand the likelihood and the conditions of 

students quitting the game. Figure 4.5 shows the chart of Puzzle 1.1 for the 358 

players of the study. In my analysis, I am interested in the labeled rows: ‘Number of 

students completed’, ‘Number of steps’, ‘Number of total errors’, ‘Number of keypad 

errors’, ‘Number of shaking errors’, and ‘Number of snapping errors’ (marked by 

blue stars in Figure 4.5). The rows labeled ‘number of students completed’ provides 

information about how many students solved the puzzle. The differences in the 

‘Number of students completed’ between two puzzles explains how many students 

quit playing the game, or how many students decided to stop solving the second 

puzzle. Another row, ‘the number of steps’, will give me the average number of steps 

it took students to solve the puzzle. In the game, each step also means an action or 

gesture. Therefore, the ‘the number of steps’ row displays how many gestures had 

been done by players to solve the puzzle. Other rows in Figure 4.5, ‘number of total 
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errors,’ ‘number of keypad errors’, ‘number of shaking errors’, and ‘number of 

snapping errors’ give information about what kind of errors students made. In the 

game, errors also indicate the possibility of the player doing incorrect gestures while 

solving the puzzles. I looked at the Measure Charts of puzzles7 from the Game 

Interaction Study which has a high number of total errors, keypad errors, shaking 

errors, and snapping errors.  

 
Note: Stars mark relevant information. 

Figure 4.5: Measure Chart for Puzzle 1.1. 

Treemap 

Treemap is another model of representation that displays the first actions 

made by all participants for a single puzzle. Figure 4.6 shows the Treemap of Puzzle 

1.2 which illustrates frequencies for each action by area, size, and color across all the 

students. The size and color of the rectangles are determined by the number of 

 
7Puzzles: 1.9, 1.12, 1.14, 2.7, 2.10, 2.13, 2.14, 3.11, 3.13, 3.14, 3.16*, 4.6, 4.7, 4.10, 4.15*, 5.6, 5.7, 5.9, 
5.10, 5.11, 5.12, 5.17*, 6.6, 6.8, 6.9, 6.10, 6.15*, 6.16*, 6.18*, 7.7, 7.8, 7.10, 7.13, 7.14, 7.17*, 8.1, 8.8, 
8.11, 8.15*, 9.3, 9.4, 9.5, 9.6, 9.9, 9.13, 10.3, 10.5, 10.12, 10.18*. 
*Player can skip the puzzles 15, 16, 17 and 18 in each World. 
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students and by the percentages of students. Darker and larger rectangles indicate a 

greater number of students who took that specific step. In Figure 4.6, each rectangle 

introduces four pieces of information: the first line (e.g., 1, see the black text box on 

the figure) shows in which order the students used the expression; the second line 

(e.g., 3+0+1+2, see the black text box on the figure) represents the first mathematical 

expression made by students; the third line (e.g., 53.24%, see the black text box on 

the figure) indicates the percentages of students; and the fourth line (e.g., 189, see the 

black text box on the figure) represents the number of students who made that 

expression. In other words, 53.24% of all students prefer to first drag ‘3’ or ‘the last 

item on the right’ to the left. In the analysis, I explain in detail how I code the 

Treemaps of different puzzles. 

 

Note: Magnified glass and black box are added to help readers. 
Figure 4.6: Treemap for Puzzle 1.2. 

1    ORDER 
3+0+1+2   EXPRESSION 
53.24%     PERCENTAGES 
189            NUMBER of STUDENTS 
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Sankey Diagram 

The Sankey Diagram (Flow Diagram) displays the flow of the strategies for 

solving the puzzles. The designers use the Sankey Diagram to visualize different 

strategies of students into one graph (Lee et al. 2021). Figure 4.7 shows the diagram 

of Puzzle 1.1 which represents the flow of solutions (the steps of solutions) and their 

frequencies (student density) from one set of values to another by using line widths. 

In the diagram, the vertical bars (e.g., b+c+a - labeled as A; b+a+c - labeled as B; 

a+b+c - labeled as C - for Puzzle 1.1) show the students’ mathematical problem-

solving steps or their choice of mathematical expressions. The thickness of the path 

illustrates the number of students who took that path. The Sankey Diagram gives me 

a representation of the quantitative data, but it does not clearly explain the problem-

solving strategies or patterns of students. To understand the strategies of students, I 

recorded Sankey Diagrams of selected puzzles8 (from the Game Interaction Study) in 

folders categorized by puzzles and coded students’ gestures through diagrams. In the 

analysis section, I explain in detail how I code the Sankey Diagrams of puzzles. 

 

 
Note: A, B, C, D labels are added to help readers. 

Figure 4.7: Sankey Diagram for Puzzle 1.1 

 
8Puzzles: 1.12, 2.13, 3.11, 3.16*,  
*Player can skip the puzzles 15, 16, 17 and 18 in each World. 

A 
B C 

D 
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Indivisualizer 

The Indivisualizer is another representation that illustrates information about 

the participants individually. Figure 4.8 is an Indivisualizer showing one participant’s 

actions between the start state and the goal state in Puzzle 1.2. Figure 4.8 represents 

the start states, goal states, and best steps of Puzzle 1.2. The light blue boxes (labeled 

as A in Figure 4.8) represent the player’s actions leading to the transformation and the 

number above the light blue box indicates the time (in seconds) taken between 

transformations. The light-yellow boxes (labeled as B in Figure 4.8) represent the 

player’s actions as an error (keypad error, snapping error, shaking error). The red 

boxes (labeled as C in Figure 4.8) indicate that the player hit the reset button to restart 

the puzzle. The green box (labeled as D in Figure 4.8) indicates that the participant 

reached the goal state of the puzzle. In the analysis section, I explain in detail how I 

code the participants’ indivisualizers.   

 
Note: A, B, C, D labels are added to help readers 

Figure 4.8: A Student’s Actions in Puzzle 1.2 - Indivisualizer. 

 

C
 

A 

B 

D 
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In summary, the first purpose of this study is to investigate the students’ 

strategies for solving the highlighted puzzles in the game interaction study then to 

understand the patterns of players’ gestures in those puzzles, for to answer the 

research questions: Do students’ digital gestures within playing FH2T affect their 

decision to keep playing or not? What conditions affect their decision to keep playing 

or not? This study will also help me identify potential interview questions for the 

student observation study conducted in Chapter 5, building upon my overarching 

research question: How do digital gestures connect to students’ mathematical 

understanding when playing FH2T? 

Analysis  

I discuss my analysis in four analytical parts: (1) Analyzing Measure Charts, 

(2) Analyzing Indivisualizers, (3) Analyzing Treemaps, and (4) Analyzing Sankey 

Diagrams. This section provides a detailed explanation of these analyses. 

Analyzing Measure Charts 

The first part involved using Measure Charts to examine patterns of progress 

for all the players. I analyzed if there is any correlation among labeled rows in the 

Measure Charts for each puzzle (See Figure 4.9). To analyze, I created an Excel Sheet 

(See Table 4.1) to record the labeled rows I am interested in (See blue stars in Figure 

4.9 - ‘Number of students completed’, ‘Number of steps’, ‘Number of total errors’, 

‘Number of keypad errors’, ‘Number of shaking errors’, ‘Number of snapping 

errors’). Then to answer the research question - “Are there digital gestures that relate 

to whether or not students keep playing?” - I added the columns named ‘Number of 

students left,’ ‘Best Step,’ and ‘Mean - Best Steps’. ‘Number of students left’ is the 
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difference in the ‘Number of students completed’ between two puzzles. ‘Best Step’ is 

the minimum number of steps to solve the puzzle. ‘Mean - Best Steps’ is the 

difference between the ‘Number of steps’ and ‘Best Step’ for the puzzle. I had 

selected 49 puzzles9 from over 256 puzzles of the game based on my play experience 

(see the Game Interaction Study – Chapter 3 – for my selection parameters). I 

checked the rows of these puzzles (except Puzzles 3.16, 4.15, 5.17, 6.15, 6.16, 6.18, 

7.17, 8.15, and 10.18 because students can pass these puzzles and start the new 

world).  

 

Note: Stars mark relevant information. 

Figure 4.9: Measure Chart for Puzzle 1.1. 

 
9 Puzzles: 1.9, 1.12, 1.14, 2.7, 2.10, 2.13, 2.14, 3.11, 3.13, 3.14, 3.16*, 4.6, 4.7, 4.10, 4.15*, 5.6, 5.7, 5.9, 
5.10, 5.11, 5.12, 5.17*, 6.6, 6.8, 6.9, 6.10, 6.15*, 6.16*, 6.18*, 7.7, 7.8, 7.10, 7.13, 7.14, 7.17*, 8.1, 8.8, 
8.11, 8.15*, 9.3, 9.4, 9.5, 9.6, 9.9, 9.13, 10.3, 10.5, 10.12, 10.18* 
* Player can skip the puzzles 15, 16, 17 and 18 in each World. 
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Then, I used the Excel CORREL function (Salkind, 2017) to understand the 

relationship between:  

a) The number of students left and the number of steps  
b) The number of students left and the number of differences between mean and best 
steps 
c) The number of students left and the total number of errors 
d) The mean number of steps and the total number of errors 
e) The number of differences between mean and best steps and the total number of 
errors 

Analyzing Indivisualizers 

In the second analytical part, Indivisualizers were used to review students’ 

actions. The Indivisualizer is conducted for each student individually for each puzzle. 

I randomly selected 15 students (~5% of participants) by using Excel’s random 

number generator (Quirk et al., 2020) and analyzed each of their data in detail. For 

the current analysis, I checked the performance of the selected students in these 

puzzles by using their measure charts. Depending on their status, I labeled the 

students into three categories: I marked students as Solved (S) when they solved the 

puzzle, as Not Attempted (NA) when they did not try to solve the puzzle, or as Not 

Solved (NS) when they started to solve but did not finish it. Student labels were added 

to an excel spreadsheet that displayed student progress up to World 11 (see Appendix 

4.1 Players’ Status). 

I then coded each student’s Indivisualizers of the selected puzzles to 

determine how many attempts and steps the student took to solve each puzzle. 

Depending on the number of steps, I categorized students as Good – G (who solved in 

the best number of steps, Figure 4.10), Moderate – M (who solved between the best 

and mean number of steps, Figure 4.11), or Developing – D (who solved in more than 
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the mean number of steps, Figure 4.12). I realized that some students in the Good 

category solved without any errors while other students in the same category made 

errors when solving the puzzle. In order to distinguish between the two, I did a 

second round of analysis that included the number of errors students made in the 

coding and separated these errors by type (keypad, shaking, snapping errors). I then 

split the category of Good students in two as Good – G and Good+Error – G+E 

(Figure 4.13). Hence the order for the codes from successful to effortful is G, G+E, 

M, and D (see Figures 4.10 – 4.13; see Appendix 4.2 Performance of Players).  

 
Note: Blue box labels are added to help readers. 

Figure 4.10: Good - G Code 

Figure 4.10 shows that the student (FS0602-109) solved Puzzle 1.9 in one 

attempt and three steps and the best number of steps for this puzzle is also three. As a 

result, this player was coded as a Good - G student for Puzzle 1.9. 

1. step 
 
2. step 

3. step 

 

1. attempt 
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Note: Blue box labels are added to help readers. 

Figure 4.11: Good + Error - G+E Code 

Figure 4.11 shows that one student (FS0103-121) solved Puzzle 1.9 in one 

attempt and three steps. The best number of steps for this puzzle is also three, 

however, the student made a keypad error. As a result, this player was coded as a 

Good + Error - G+E student for Puzzle 1.9. 

 
Note: Blue box labels are added to help readers. 

Figure 4.12: Moderate - M Code 

Figure 4.12 shows that one of the students (FS0103-313) solved Puzzle 1.9 in 

two attempts and five steps. The best number of steps for this puzzle is three and the 
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1. attempt 

2. step 
 
3. step 
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sample mean step number is 7.279. As a result, this student was coded as a Moderate 

- M student for Puzzle 9. 

Figure 4.13 shows that another student (FS0703-419) solved Puzzle 9 (1.9) in 

four attempts and eight steps. The best number of steps for this puzzle is three and the 

sample mean step number is 7.279. Therefore, this student was coded as a Developing 

- D player for Puzzle 9. 

 
Note: Blue box labels are added to help readers. 

Figure 4.13: Developing - D Code 

I marked the students’ actions in this second analytical part based on what 

were their situation on the puzzle (e.g., Solved (S), Not Solved (NS), and Not Attempt 

(NA)), then coded their performance in the puzzle – Good (G), Good +Error (G+E), 

Moderate (M), and Developing (D), see Appendix 4.2 Performance of Players. I 

needed more data to understand the gestures of the players. Hence, I screen-captured 

Treemaps and Sankey Diagram of each puzzle in the next analysis because these 

graphs provide more insight into students’ gestures. 
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2. step 
 
3. step 
 

5. step 
 

8. 
step 

7. step 
 

4. step 
 

6. 
step 

1. attempt 2. attempt 3. attempt 4. attempt 



 

 

103 
 

Analyzing Treemaps 

The third analytical part compares each player’s Indivisualizers and Treemaps of the 

puzzles. For the comparison, I first numbered the Treemaps for each puzzle10 from 

largest to smallest percentage (Figure 4.14) and added the total numbers into the 

coding sheet (for example, for the Puzzle 1.9 there are 25 different first actions, see 

Table 4.2). Then, I used this number system to code each participant’s first action in 

the puzzles (For example, student FS0103-121 – Player 1–, Figure 4.11, did 

6+1+6+b+10 which belongs the 6th box, Figure 4.14, see Table 4.2 for all coding). In 

the second round of this analytical part, I calculated the Pearson correlation 

coefficients to understand if there is any relation between: 1) the variety in the types 

of first actions taken by students and the mean number of steps of the puzzle and 2) 

the first action of the player and the performance of the player. 

 
Note: Numbered from largest to smallest percentages. 

Figure 4.14: Treemap for Puzzle 1.9. 

 
10 The dashboard provided Treemaps of the following selected Puzzles: 1.9, 1.12, 1.14, 2.7, 2.10, 2.13, 
2.14, 3.11, 3.14, 3.16, 4.7, 4.10, 4.15, 5.17.  
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Analyzing Sankey Diagrams 

I then investigated the Sankey Diagrams to understand the different problem-

solving approaches students use to complete the puzzles; in other words, their 

variability in puzzle solving. For instance, Figure 4.15 illustrates the students’ 

different steps to solve Puzzle 1.2. The puzzle consists of two mathematically 

equivalent expressions, a start state (labeled as A in Figure 4.15) and a goal state 

(labeled as D in Figure 4.15). For Puzzle 1.2, the minimum – best – number of steps 

to solve it is 3. Some students were able to solve in 3 steps, however others exceeded 

3 steps because they did what I am calling nonproductive gestures. I define 

productive gestures as gestures that help students solve the puzzle in the best number 

of steps. Conversely, nonproductive gestures are extra steps that are not necessary for 

solving the puzzle. Hence, I coded the Sankey Diagrams of the Puzzle for productive 

(ex. B and C) and nonproductive (ex. E) gesture steps. For example, to solve Puzzle 

1.2 in 3 steps, most students preferred to drag the last item on the right to the left, in 

order of 3, then 2, then 1; Starting ® 0+1+2+3 (labeled as A in Figure 4.15), First 

Step ® 3+0+1+2 (labeled as B in Figure 4.15), Second Step ® 3+2+0+1 (labeled as 

C in Figure 4.15), Goal ® 3+2+1+0 (labeled as D in Figure 4.15). 
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Note: A, B, C, D, E labels are added to help readers. 

Figure 4.15: Sankey Diagram for Puzzle 1.2. 

I recorded the Sankey Diagrams of each puzzle, then selected one puzzle from 

each categorization of players performance; developing (e.g., Puzzle 1.12), moderate 

(e.g., Puzzle 2.13), good (e.g., Puzzle 3.11) and not attempt (e.g., Puzzle 3.16), and 

analyzed these four in detail to understand the student gesture in different 

categorization. 

Findings 

This section covers the findings of each analytic section separately. (See 

Appendix 4.4 Concept Map for the Summary) 

Analyzing Measure Charts 

In the first analytical session, Analyzing Measure Charts, I created an Excel 

Sheet (Table 4.1) to record the labeled rows that I am interested in.  
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Table 4.1: Measure Charts’ Data 

Puzzle 
# 

#  
Student 
completed 

# 
Student  
left 

# 
Best 
Steps 

#  
Steps 

Mean - 
Best 
Steps # 

# Total 
errors 

# 
Keypad 
errors 

# 
Shaking 
errors 

# 
Snapping 
errors 

9 352 6 3 7.279 4.279 6.387 2.641 2.285 1.796 
12 351 7 5 9.863 4.863 3.900 1.903 1.447 0.788 
14 350 8 2 4.194 2.194 0.721 0.041 0.295 0.505 
25 348 10 2 3.057 1.057 1.658 0.000 1.348 0.468 
28 345 13 2 3.386 1.386 3.339 2.136 1.066 0.282 
31 344 14 3 5.051 2.051 1.206 0.400 0.511 0.387 
32 343 15 2 4.701 2.701 1.003 0.366 0.255 0.503 
47 309 49 1 1.210 0.210 2.068 1.146 0.549 0.756 
49 304 54 2 2.864 0.864 8.514 4.687 1.425 2.687 
50 300 58 3 6.354 3.354 3.784 2.076 1.038 0.780 
60• 278 80 4• 15.068• 11.068• 4.367 0.604 2.309 2.000 
61 274 84 1 3.121 2.121 0.721 0.121 0.191 0.423 
64 269 89 1 1.075 0.075 0.616 0.511 0.082 0.060 
78 246 112 3 8.306 5.306 1.253 0.437 0.188 0.849 
79 243 115 2 2.905 0.905 0.148 0.004 0.037 0.165 
81 239 119 2 3.188 1.188 2.017 0.613 1.042 0.650 
82 233 125 3 4.954 1.954 2.903 1.765 0.727 0.550 
83 233 125 2 2.164 0.164 0.599 0.517 0.069 0.043 
84 232 126 3 4.953 1.953 1.129 0.228 0.250 0.780 
96 208 150 2 2.212 0.212 0.962 0.590 0.278 0.255 
98• 195 163 2• 10.500• 8.500• 7.293 0.976 4.938 1.971 
99• 188 170 4• 14.431• 10.431• 6.292 0.426 4.097 2.815 
100• 182 176 5• 31.293• 26.293• 9.654 0.495 6.149 5.128 
115• 149 209 8• 19.307• 11.307• 4.493 0.040 3.460 2.500 
116• 144 214 7• 21.698• 14.698• 11.678 0.376 9.591 11.577 
118• 133 225 6• 20.745• 14.745• 26.596 3.525 19.745 4.950 
121• 127 231 6• 19.176• 13.176• 19.183 0.725 13.969 6.267 
122 126 232 6 11.969 5.969 2.969 0.071 1.898 1.717 
127 117 241 1 1.516 0.516 3.885 2.180 0.713 1.869 
134 91 267 6 8.781 2.781 1.063 0.375 0.146 0.844 
137 80 278 10 18.875 8.875 11.216 1.318 7.420 3.125 
147 57 301 6 8.034 2.034 1.431 0.000 0.897 0.638 
148• 53 305 7• 40.193• 33.193• 5.246 0.333 2.842 2.789 
149 51 307 8 22.528 14.528 3.415 0.283 1.717 3.057 
150 48 310 7 12.922 5.922 1.392 0.000 0.941 4.804 
153• 40 318 6• 18.500• 12.500• 2.452 0.095 1.071 1.738 
157 37 321 8 12.256 4.256 0.872 0.026 0.487 0.846 
165 35 323 1 1.657 0.657 1.314 0.000 0.743 0.657 
167 35 323 5 7.143 2.143 4.343 0.000 3.314 1.257 
174 31 327 5 9.406 4.406 8.156 0.000 3.594 6.719 

Note: • mark the results which is twice as much of best step numbers.  

I used the Excel CORREL function (Salkind, 2017) to calculate various 

Pearson correlation coefficients. Separate Pearson correlation coefficients were 

computed to assess various relationships (see Table 4.2). 
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Table 4.2: Pearson Correlation Coefficients among variables 

Variables Coefficient Constant 
r 

T-value 
t 

Significance 
p 

The number of students left and the number 
of steps 0.4785 3.3595 0.0018 

The number of students left and the number 
of differences between mean and best steps 0.3696 2.4516 0.0189 

The number of students left and the total 
number of errors 0.2036 1.2821 0.2076 

The mean number of steps and the total 
number of errors 0.5029 3.5864 0.0009 

The number of differences between mean and 
best steps and the total number of errors 

0.4912  3.4765 0.0013 

According to Table 4.2, there was a significant positive but weak correlation 

between the number of students left and the number of steps variables, r = .4785, N = 

40, p = .0018. Moreover, the correlation between the number of students left and the 

number of differences between mean and best steps was significantly positive but 

weak, r = .3696, N = 40, p = .0189. These two relationships show that an increase in 

the number of steps to solve the puzzle was correlated to an increase in the number of 

students who left the game. As the number of steps increases in each new puzzle, 

more steps also cause more time to play, which might mean that students stopped 

playing because time was over. Hence, there is a correlation between steps and 

leaving the game however, there is another variable that I did not include in my 

models which is the time.  

The relationship between the number of students left and the total number of 

errors was weak and positive, r = .2036, n = 40; however, the relationship was not 

significant (p = .2076). This shows that the number of students left did not appear to 

be associated with the number of errors. On the other hand, there was a significant 

moderate, positive correlation between the mean number of steps and the total 

number of errors, r = .5029, n = 40, p = .0009. The relation between the number of 
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differences between mean and best steps and the total number of errors was a 

significant positive and moderate relationship, r = .4912, n = 40, p = .0013. This 

shows that an increase in the total number of errors was correlated to an increase in 

the number of steps for solving the puzzles. Similarly, as the number of errors 

increases in each new puzzle, more errors also cause students to think the problem is 

difficult for them, then cause more steps to solve it.   

In addition, players were particularly struggling in Puzzles 60 (4.6), 98 (6.8), 

99 (6.9), 100 (6.10),115 (7.7), 116 (7.8), 118 (7.10), 121 (7.13), 148 (8.4), and 153 

(9.9) because the mean number of steps is more than twice the best step amount. I 

will observe students’ reactions and strategies to solve these puzzles in the next study.   

Analyzing Indivisualizers 

In analyzing Indivisualizers, I first created an Excel sheet (See Appendix 4.1 

Player’ Status) to record the players’ actions for each puzzle based on if they were 

able to solve the puzzle or if they did not solve it. Figure 4.16 is a bar chart of the data 

that shows that all students solved the puzzles selected from World 1 and World 2. 

The number of players who solved puzzles in subsequent worlds decreases as the 

number of worlds increases. Only one (Player 2- See Appendix 4.1 Player’s Status) 

player solved some puzzles in World 10.  
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Figure 4.16: Number of Players Solved Each World. 

I coded each player’s Indivisualizers and created another excel spreadsheet 

(See Appendix 4.2 Performance of Players) to record the player’s categorization of 

their successfulness for each puzzle. Figure 4.17 illustrates a bar chart of the 

Performance of Players (Good – G (GREEN), Good+ Error – G+E (ORANGE), 

Moderate – M (BLUE), Developing – D (RED), Not Solved – NS (GRAY), Not 

Attempt – NA (YELLOW)). Figure 4.17 shows that players were mostly categorized 

as Moderate– M (BLUE) because they solved between the best and mean number of 

steps. Most of the players who solved Puzzle 47 (3.11), Puzzle 64 (4.10), and Puzzle 

96 (6.6) were labeled as G (GREEN) and no players struggled (D - RED) with these 

puzzles. In Puzzle 28 (2.10), some players were labeled as G+E (ORANGE) because 

they solved the puzzle in the best number of steps but also made some errors. In 

Puzzle 52 (3.1611), Puzzle 69 (4.158), Puzzle 89 (5.178), Puzzle 105 (6.158), Puzzle 

 
11Player can pass the puzzles 15, 16, 17and 18 in each World.  
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106 (6.168), and Puzzle 108 (6.188), I labeled most players as NA (YELLOW) 

because they preferred to skip these puzzles without attempting to solve them. In 

Puzzle 49 (3.13), Puzzle 52 (3.168), Puzzle 98 (6.8), and Puzzle 100 (6.10), at least 

one player was labeled as NS (GRAY) because they attempted to solve the puzzle but 

not finished it.  

 
Note: Green circles and red circles are added to help readers 

Figure 4.17: Performance of Players 

According to Figure 4.17, players had the highest performance in these 

puzzles: Puzzle 47 (3.11) – 8 players, Puzzle 64 (4.10) - 10 players, Puzzle 79 (5.7) - 

8 players, Puzzle 83 (5.11) - 7 players, Puzzle 96 (6.6) - 8 players (Green circles in 

Figure 4.17); and in which players were struggling: Puzzle 12 (1.12) - 4 players, 

Puzzle 28 (2.10) - 5 players, Puzzle 49 (3.13) - 5 players, Puzzle 50 (3.14) - 7 players, 

Puzzle 60 (4.6) - 4 players (Red circles in Figure 4.17). In the next chapter, I will 

observe students’ reactions and strategies to solve these puzzles.   
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In analyzing Sankey Diagrams part, I looked at specific puzzles in detail; 

Puzzle 12 (1.12) where players were struggling, Puzzle 31 (2.13) where players were 

mostly coded as moderate, Puzzle 47 (3.11) where players were coded as good, and 

Puzzle 52 (3.16) is another selected puzzle, but players preferred to skip it.  

Analyzing Treemaps 

I created an Excel sheet (Table 4.3) to record the players’ first action code in 

the puzzles. The first row in Table 4.3 shows how many different first actions 

occurred in each puzzle. For example, there are 25 different first actions in Puzzle 9 

(1.9), 10 different first actions in Puzzle 12 (1.12), etc. Other rows represent each 

player and their first action in each puzzle. For example, in Puzzle 9 (1.9), Player 1 

did the sixth rectangle’ action in the Treemap (For Puzzle 9 (1.9), the start state is 

7+6+b+10 and Player 1 used the keypad and rewrote 7 into 6+1, so their action was 

6+1+6+b+10), but Player 2 did the third rectangles’ action in the Treemap (For 

Puzzle 9 (1.9), the start state is 7+6+b+10 and Player 2 used the keypad and rewrote 

10 into 5+5, so their action was 7+6+b+5+5) (See Figure 4.4). In Puzzles 25 (2.7), 47 

(3.11), and 64 (4.10), 12 players, 12 players, and 11 players, respectively, used the 

most preferred action (1s) to solve the puzzle.  
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Table 4.3: Treemaps’ Data 

Puzzle 
# 9 12 14 25 28 31 32 47 50 52 61 64 

Total 25 10 22 13 10 9 18 6 11 9 10 9 
P.1 6 3 1 1 2 1 8 1 4 NA 1 1 
P.2 3 1 1 6 2 2 1 1 1 1 2 1 
P.3 1 3 4 1 1 1 7 1 6 NA 2 1 
P.4 2 1 2 2 1 1 1 NA NA NA NA NA 
P.5 3 1 2 1 1 4 X 1 1 NA 2 1 
P.6 1 3 X 1 5 3 2 2 2 NA 6 1 
P.7 1 4 2 1 1 2 4 1 4 1-1 4 8 
P.8 5 2 6 1 2 1 3 2 5 NA 3 1 
P.9 6 1 X 4 1 2 2 1 2 1 1 1 

P.10 7 8 3 1 2 1 1 1 1 NA 4 1 
P.11 2 1 2 1 2 2 4 1 1 NA 3 1 
P.12 1 3 4 1 1 4 8 1 NA NA NA NA 
P.13 X 1 4 1 2 2 3 1 2 NA 2 1 
P.14 3 1 1 1 1 1 1 1 1 NS NA NA 
P.15 1 1 3 1 3 1 1 1 5 NA 1 1 

Code Note: X: Unable to read the section of the Treemap. NA: Player did not attempt 
to solve. NS: Player started to solve the puzzle but did not finish.  

I used the Excel CORREL function (Salkind, 2017) to calculate the Pearson 

correlation coefficient. A Pearson correlation coefficient was computed to assess two 

relationships (see Table 4.4). 

According to Table 4.4, there was a weak, positive correlation between the 

amount of the first actions in the Treemap and the mean number of steps of the 

puzzle, r = .2968, n = 12. However, the relationship was not significant (p = .3488). 

This shows that the amount of the first actions reflected in the Treemap did not 

appear to be associated with the mean number of steps students took to complete the 

puzzle.  
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Table 4.4: Pearson Correlation Coefficients Among Variables 

Variables Coefficient Constant 
r 

T-value 
t 

Significance 
p 

The amount of the first action coded in the 
Treemap and the mean number of steps 0.2968 0.9830 0.3488 

The first action of each player and 
the performance of the player. 

P.1 0.3705 1.2614 0.2358 
P.2 0.5486 2.0747 0.0647 
P.3 0.4603 1.6398 0.1321 
P.4 -0.3746 -1.2778 0.2302 
P.5 0.1401 0.4476 0.6640 
P.6 0.5640 2.1602 0.0560 
P.7 0.1511 0.4835 0.6391 
P.8 -0.1870 -0.6023 0.5604 
P.9 0.4599 1.6380 0.1325 
P.10 0.2129 0.6890 0.5064 
P.11 0.4121 1.4301 0.1831 
P.12 0.5727 2.2092 0.0516 
P.13 0.4195 1.4616 0.1745 
P.14 -0.0762 -0.2023 0.8454 
P.15 0.32 1.0681 0.3105 

For the correlation between the first action of the player and the performance 

of the player, I calculated the Pearson coefficient for each player separately. 

According to Table 4.4, with the exception of 3 players (Player 4, Player 8 and Player 

14), there was a weak, positive correlation between the variables (for example, Player 

1’s result is r = .3705, n = 12). However, the relationships were not significant (p > 

0.05, for example, for Player 1 p= .2358). This shows that the players’ first actions 

for solving the puzzles did not appear to be associated with the performance of the 

players.  

The next section, Analyzing Sankey Diagrams, gives more information on the 

flow of the actions for solving each puzzle.    
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Analyzing Sankey Diagrams 

I recorded the Sankey Diagrams of the puzzles from the dashboard provided. I 

then used my Indivisualizers analysis to select one puzzle from each category of the 

performance of players (e.g., from the developing, moderate, good, and not 

attempted) and analyzed these puzzles in detail. Puzzle 12 (1.12) (Figure 4.18) is a 

puzzle where players were struggling, Puzzle 31 (2.13) (Figure 4.19) is a puzzle 

where players were mostly coded as moderate, Puzzle 47 (3.11) (Figure 4.20) is a 

puzzle where players performed in the good category, and Puzzle 52 (3.16) (Figure 

4.21) is a puzzle that players preferred to not attempt to solve or skip. I coded the 

Sankey diagram of these puzzles for productive and nonproductive gestures and the 

impression of the paths that the majority of players followed. 

 

 

Note: A, B, C, D, E, F labels are added to help readers. 

Figure 4.18: Sankey Diagram for Puzzle 1.12 
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Before starting to analyze Puzzle 1.12, I wanted to clarify the mathematical 

rules students learned in previous puzzles. World 1 covers Addition, so the rules are 

related to addition. Students had four rules until Puzzle 1.12: 1. “Drag terms to 

commute. Blue lines show you where you can drop the term” (i.e., Commute Terms). 

2. “You can add by tapping on a '+' sign or by dragging one number on top of the 

other” (i.e., Perform Operations by Tapping or Dragging). 3. “The keypad lets you 

substitute a number with an equivalent “(i.e., Substitute Numbers Using the Keypad). 

4. “This keypad decomposes a number into two addends. Use the keypad twice to 

decompose a number into 3 addends.” Students can change the place of numbers by 

dragging, they can add numbers by tapping '+' sign or dragging them onto another 

number and they can rewrite a number by using the keypad button.  

For Puzzle 1.12, the starting state is 3+3+3+3 (labeled as A in Figure 4.18) 

and the goal state is 4+4+4 (labeled as F in Figure 4.18). To solve the puzzle in 5 

steps, most students prefer to add the first two 3’s together, then add the last two 3’s 

together, then add these two 6’s, and then substitute the number twice: Starting ® 

3+3+3+3 (labeled as A in Figure 4.18), First Step ® 6+3+3 (labeled as B in Figure 

4.18), Second Step ® 6+6 (labeled as C in Figure 4.18), Third Step ® 12 (labeled as 

D in Figure 4.18), Fourth Step ® 4+8 (labeled as E in Figure 4.18), Goal ® 4+4+4 

(labeled as F in Figure 4.18).  

The nodes in Figure 4.18 illustrate a different mathematical expression made 

by students to solve Puzzle 1.12. The column of the B label shows that there are 10 

different first steps. For this puzzle, 9 steps are productive first steps and students are 

still able to solve the puzzle in 5 steps. There is just one nonproductive step, 3+3+3+3 
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(labeled as B’ in Figure 4.18) which is the same as the starting state and it needs an 

extra step to solve the puzzle. The top three preferred productive first steps are 6+3+3 

(48.72%), 3+3+6 (13.96%), 2+1+3+3 (12.25% labeled as B* in Figure 4.18) while all 

other steps are chosen at less than 10%. This data indicates that students prefer to start 

operating from left to right and to combine numbers first and then substitute them. To 

understand more about students’ gesture preferences, I will conduct a future 

qualitative study to observe student interactions in the next chapter.   

Similarly, before starting to analyze Puzzle 2.13, I analyzed the rules that 

students learn in this World. World 2 covers Multiplication and the rules are related 

to multiplication. Students receive 3 new rules in this World: 1. “Drag a number to 

commute! Does the order of multiplication matter?” 2. “You can multiply by tapping 

the dot (i.e., multiplication sign) or dragging one number on top of the other.” 3. “Use 

the keypad to factor. You can use the keypad twice.” After seeing the rules, students 

can multiply numbers by tapping the '×' sign or dragging the number onto others and 

rewriting a number by using the keypad button.  

For Puzzle 2.13, the starting state is 6 × 10 (labeled as A in Figure 4.19) and 

the goal state is 2 × 15	 × 	2 (labeled as D in Figure 4.19). To solve the puzzle in 

three steps, most students prefer to multiply the numbers, then substitute the number 

twice, i.e. Starting ® 6 × 10 (labeled as A in Figure 4.19), First Step ® 60  (labeled 

as B* in Figure 4.19), Second Step ® 2 × 30 (labeled as C* in Figure 4.19), Goal ® 

2 × 15 × 2  (labeled as D in Figure 4.19). 
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Note: A, B, C, D labels are added to help readers, and the right side of the diagram 
had cut to make it seeable. 

Figure 4.19: Sankey Diagram for Puzzle 2.13 

The nodes in Figure 4.19 illustrate a different mathematical expression made 

by students to solve Puzzle 31 (2.13). The column of the B label shows that there are 

eight different first steps. For this puzzle, five steps are productive first steps and 

students are still able to solve the puzzle in three steps. There are three nonproductive 

first steps: 6 × (15 − 5), 6 × 10, and 6 × (5 + 5) (labeled as B’ in Figure 4.19). 

6 × 10 is the same as the starting state and is an extra step to solving the puzzle. 

6 × (15 − 5) and 6 × (5 + 5)	also cause extra steps because students need to put the 

number which is inside the parenthesis out of the parenthesis. The top three preferred 

productive first steps are 60 (37.93%), 2 × 3 × 10 (32.47%), 3 × 2 × 10 (15.52%), 

and the others are less than 10%. These steps show us students prefer to combine 
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numbers first then substitute them and start operating from left to right (I will observe 

these gesture preferences in the next study).  

Before starting to solve Puzzle 47 (3.11), students learned a new rule in this 

Puzzle: “Use the keypad and highlight the whole term '2y', then substitute with y + y” 

with animation (Figure 4.20a). Hence this is the new rule that players deal with 

rewriting variables via keypad. For Puzzle 47 (3.11), the starting state is 2𝑦 (labeled 

as A in Figure 4.20b) and the goal state is 𝑦 + 𝑦 (labeled as C in Figure 4.20). To 

solve the puzzle in one step, students need to use the keypad function and rewrite 2𝑦 

as 𝑦 + 𝑦,	i.e. Starting ® 2𝑦 (labeled as A in Figure 4.20b), First Step ® 𝑦 + 𝑦 

(labeled as C* in Figure 4.20b). 

 

Figure 4.20a: Puzzle 47 (3.11) 
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Note: A, B, C labels are added to help readers, and the right side of the diagram had 
cut to make it seeable. 

Figure 4.20a: Sankey Diagram for Puzzle 47 (3.11). 

However, students made different mathematical expressions to solve Puzzle 

47 (3.11).  The nodes in Figure 4.20b illustrate these different steps. The column of 

the B label shows that there are five different first steps. One step is a productive first 

step because the Puzzle is solvable in one step. There are four nonproductive first 

steps: 𝑦2, (1 + 1) × 𝑦, 1 × 2 × 𝑦, and 2𝑦. 2𝑦 is the same as the starting state and it 

needs an extra step to solve the puzzle, and (1 + 1) × 𝑦	also causes an extra step 

because students need to put 𝑦 to the inside of the parenthesis. These steps show that 

although the selected students in my data were coded as good, the majority of 

students struggled (I will observe these gesture preferences in the next study.). 

Before starting to analyze Puzzle 3.16, students must follow specific rules 

related to the World. World 3 covers Order of Operations + and × and each rule 

relates to this concept. Students receive 3 new rules on World 3: 1. “If the terms 

shake, you are trying to do something that is not mathematically possible”. 2. “To 

move 2y, select the 2, then drag it down until it is joined by the y, then move 2y as 

A 

C 

C* 
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one object”. 3. “Use the keypad and highlight the whole term '2y', then substitute with 

y + y”. Following an introduction to the rules, students can rewrite a number by using 

the keypad button. 

 

Note: A, B, C, D, E labels are added to help readers, and the right side of the diagram 
had cut to make it seeable. 

Figure 4.21: Sankey Diagram for Puzzle 3.16. 

For Puzzle 3.16, the starting state is 1𝑎 + 2𝑏 + 3𝑐 (labeled as A in Figure 

4.21) and the goal state is 𝑎 + 𝑏 + 𝑏 + 𝑐 + 𝑐 + 𝑐 (labeled as E in Figure 4.21). To 

solve the puzzle in four steps, most students prefer to decompose the variable 2𝑏 first, 

then substitute 3𝑐 in two steps, then multiply 1𝑎 to eliminate 1: Starting ® 1𝑎 +

2𝑏 + 3𝑐  (labeled as A in Figure 4.21), First Step ® 1𝑎 + 𝑏 + 𝑏 + 3𝑐   (labeled as B 

in Figure 4.20), Second Step ® 1𝑎 + 𝑏 + 𝑏 + 𝑐 + 2𝑐 (labeled as C in Figure 4.21), 

Third Step ® 1𝑎 + 𝑏 + 𝑏 + 𝑐 + 𝑐 + 𝑐, Goal ®	𝑎 + 𝑏 + 𝑏 + 𝑐 + 𝑐 + 𝑐  (labeled as E 

in Figure 4.21). 

The column of the B label nodes in Figure 4.21 illustrates a different 

mathematical expression made by students to solve Puzzle 52 (3.16). There are six 
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different first steps. For this puzzle, four steps are productive first steps and students 

are able to solve the puzzle in four steps. There are just two nonproductive steps: 

𝑎1 + 2𝑏 + 3𝑐  (labeled as B’ in Figure 4.21) and 1𝑎 + 2𝑏 + 3𝑐. 1𝑎 + 2𝑏 + 3𝑐 is the 

same as starting state and causes an extra step to solve the puzzle. The top two 

preferred productive first steps are: 1. 1𝑎 + 𝑏 + 𝑏 + 3𝑐 (64.74%), 2. 𝑎 + 2𝑏 + 3𝑐 

(21.79%), and the others are less than 10%. These steps show that students prefer to 

start operating from left to right and substitute left items first. I will observe these 

gesture preferences in next chapter.   

Discussion  

This study explored whether digital gestures within playing FH2T affect 

players’ decisions to keep playing or not. The goal of this study was also to determine 

interesting and challenging puzzles for analyzing students’ reactions as well as 

interview questions for the forthcoming Student Observation studies. Through the 

analysis exploring students’ gesture while playing FH2T under the embodied 

mathematical cognition and visual learning analytics perspective, I have determined 

that digital gestures cause errors and affect players’ decisions to keep playing the 

game. 

Limitations  

I designed this study as a second study of my dissertation research. The 

overarching aim of the research is to explore how digital gestures connect to students’ 

mathematical understanding when playing FH2T. However, there are some 

limitations of the research and this study. First, the participants for each study will be 

different – in the Analysis, the participant is myself, in the Quantitative Gesture study 
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there are 358 sixth and seventh-grade students, and in the Student Observation study 

there will be at least six undergraduate students. The variability in research 

participants throughout the research project might affect the research findings because 

each participant will bring his/her own previous gameplay experiences and 

mathematical understanding to the study. Moreover, the playing time will be limited 

in the subsequent studies; I was able to finish all levels for the first, the Game 

Interaction study, but in this study, each player spent different amounts of time on the 

game while in the Student Observation studies, students will have restricted time and 

may not complete all of the worlds in FH2T.  

Future Studies 

My two goals for this Quantitative Gesture study are to explore whether 

students’ digital gesture clusters in playing FH2T determine if they keep playing or 

not and to look at the conditions that affect their game play. With information about 

students’ gestures, I highlight potential interview questions for the Student 

Observation study. My two goals for the next study – Student Observation – will be 

to investigate learners’ mathematical emergent experience in playing FH2T and build 

upon my overall question of how digital gestures connect to students’ mathematical 

understanding when playing FH2T. 

Conclusion 

I explored players’ digital gestures while playing FH2T through embodied 

mathematical cognition and visual learning analytics frameworks to determine how 

digital gestures affect players' decisions to keep playing or not. I used quantitative 

data and four different visual learning analytics; Measure Charts, Indivisualizer, 
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Treemap, and Sankey Diagrams. The study's research questions were: Do students’ 

digital gestures within playing FH2T affect their decision to keep playing the game or 

not? What conditions affect their decision to keep playing or not? Results indicate 

that the increase in the number of digital gestures, in other words, the number of 

steps, increases the number of students who quit playing FH2T.  

In the next Students Observation study, I will use the qualitative analysis 

method to observe students' gameplay and learning experiences within FH2T under 

the embodied mathematical cognition framework. 
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Chapter 5:  The Student Observation Study 

Overview 

This exploratory study investigates how student gestures while playing a 

mathematical education game, From Here to There! (FH2T), affect their gameplay 

experience. Data for this research was collected from undergraduate students. The 

interviews and the gameplay observations were recorded on videotape. The research 

results show that pointing gestures demonstrate the particular objects in the game 

participants were mentioning, representational gestures (dynamic and static) indicate 

participants' mental reflection, metaphoric gestures show body-based metaphors of 

the topic, and feedback gestures convey participants' emotional response.  

Introduction 

Computers are increasingly used in education (Leinonen, 2005). Students 

learn through educational technologies (Hefzallah, 2004). Videogames are one way to 

engage students and improve their learning, especially in mathematics (Gresalfi & 

Barnes, 2015; Kebritchi et al., 2010; Williams-Pierce, 2016). While playing 

mathematical video games, students use both their minds and bodies (Gee, 2008), a 

process called embodied mathematical cognition. Embodied mathematical cognition 

is a theory claiming that the body’s interaction with the environment can promote 

mathematical understanding (Cook et al., 2008; Nathan & Walkington, 2017; Nathan 

et al., 2016; Núñez, 2004; Williams-Pierce et al., 2017). Games and applications that 

are designed for learning mathematics through touchscreen devices increase the effect 

of embodied mathematical cognition. 
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This study is the final stage of a longer trajectory of research on the overall 

research question: How do digital gestures connect to students’ mathematical 

understanding when playing From Here to There! (FH2T)? The research previously 

involves two studies; The Game Interaction (Katirci et al., 2022), and The 

Quantitative Gesture (Katirci & Williams-Pierce, in submission). In the Game 

Interaction study (Katirci et al., 2022) where I played the game From Here to There! 

(FH2T), I realized that some puzzles might be challenging for students. In the 

Quantitative Gesture study (Katirci & Williams-Pierce, in submission) I analyzed 

what digital gesture clusters students made and how students solved the puzzles in the 

game. However, in the previous studies, I did not observe students. The questions of 

why students make some gesture clusters while solving puzzles and how these digital 

gestures affect students' mathematical understanding could not be answered with the 

previous data.  

Ideas around embodied mathematical cognition guide me to design the 

Student Observation Study to explore three additional sub-research questions: 1) 

What is the student's mathematical gameplay experience in playing FH2T? 2) What 

sort of physical gesture clusters do they use to explain what they are doing with their 

digital gesture? And 3) How do failure and feedback manifest in mathematical 

gameplay within playing the game from the student's perspective? Hence, in this 

study, I observed and video-recorded students while they played the game and used 

an embodied cognition perspective to analyze their actions (Figure 5.1). I investigated 

how students interacted with the game to further contribute to the literature on 

mathematics education games and embodied cognition in mathematics education by 
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analyzing qualitative student data (pre-interview, observation, play-aloud, and post-

interview).  

 

Figure 5.1: The Student Observations Study Organization 

Theoretical Frameworks 
This section describes the theoretical frameworks of the study. Embodied 

mathematical cognition (Alibali & Nathan, 2012; Cook et al., 2008; Goldin-Meadow 

et al., 2001; Lakoff & Núñez, 2000; Nathan & Walkington, 2017; Nathan et al., 2016; 

Núñez, 2004; Walkington et al., 2014; Williams-Pierce et al., 2017) frames this study 

because FH2T covers mathematical content and involves embodied cognition 

(Shapiro, 2011; Wilson, 2002; Wilson & Golonka, 2013) through interactions with 

touchscreen devices. In this study, I focus on students' gestures while they play 

FH2T. 

Embodied Cognition  

Embodied cognition is a theory in cognitive science claiming that “states of 

the body modify states of the mind” (Wilson & Golonka, 2013, p.1). In other words, 

cognition is rooted in the body’s potential interaction with the physical world 
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(Wilson, 2002). Cognitive scientists think that there are many co-existing views of 

embodiment (Shapiro, 2011; Wilson, 2002). 

Shapiro (2011) presents his three themes of embodiment: Conceptualization, 

Replacement, and Constitution. Conceptualization refers to the concepts that an 

organism depends on to understand the surrounding world based on its body type. So, 

if organisms differ in their bodies, they also differ in how they understand the world. 

Replacement refers to the system that represents the interaction between an 

organism’s body and its environment. Replacing the environment helps to understand 

the world's computational processes. Therefore, cognition can be explained without 

appealing to computational processes. Constitution means that the elements of 

cognition are beyond the mind; the body and world play not just a causal role but also 

a constitutive role in cognitive processing. 

Wilson (2002) took a different approach and stated six claims of embodied 

cognition: 

1. Cognition is situated.  

2. Cognition is time pressured. 

3. We off-load cognitive work onto the environment. 

4. The environment is part of the cognitive system. 

5. Cognition is for action. 

6. Offline cognition is body-based. 

She claims that when cognition is situated, activities occur in the environment's 

context. As humans, we need to solve our problems in real-life situations, and time-

pressured environments influence our performance and decisions. We off-load 

cognitive work onto the environment by using equipment from the environment. 

Therefore, the environment is part of the cognitive system and is assumed to have a 
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function in cognitive activity. I am particularly interested in the fifth claim, cognition 

is for action, because researchers found that gestures are representational or simulated 

actions (Hostetter & Alibali, 2008; Novack & Goldin-Meadow, 2017). Cognitive 

processing is tied in some way to bodily processes of immediate sensation and motor 

control, a process she refers to as offline cognition is body-based (Wilson 2002).  

Embodied Mathematical Cognition (EMC) 

Lakoff and Núñez (2000) argue that mathematical ideas (e.g., numbers, 

arithmetic operations, set theory, algebra, and infinity) can be understood as image 

schemas (e.g., images of subsets), aspectual systems (the structures of events, e.g., 

tapping), conceptual metaphors (e.g., conceptualize numbers as points on a line), and 

conceptual blends (combination of two structures, e.g., the center of the circle, and 

the radius of the circle) grounded in normal language usage and the sensory-motor 

system (e.g., addition as object collection). Mathematical thinking is embodied, and 

the body’s interaction with the environment can promote mathematical understanding 

(Cook et al., 2008; Nathan & Walkington, 2017; Nathan et al., 2016; Núñez, 2004; 

Williams-Pierce et al., 2017). 

According to McNeill (1992), a gesture is one form of embodiment in 

language and thought. McNeill (1992) categorized gestures into four groups: iconic 

(i.e., the semantic content of speech), metaphoric (i.e., the semantic content by 

metaphor), deictic (i.e., pointing), and beat (i.e., showing a rhythm) gestures. Alibali 

and Nathan (2012) used McNeill’s (1992) typology of gesture to influence their 

categorization. When Alibali and Nathan (2012) analyzed mathematics teachers’ and 

learners’ gestures through an exploratory study, they identified three types of 
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gestures: pointing (deictic), representational (iconic), and metaphoric. Alibali and 

Nathan (2012) argued that pointing gestures indicate the base of cognition, 

representational gestures demonstrate action and perception, and metaphoric gestures 

display conceptual body metaphors. Through pointing gestures, students reduce 

cognitive load, through representational gestures, students visualize the model of the 

issue, and through metaphoric gestures, students are able to understand the 

psychological reality shaped by subjective facts, experiences, and observations of the 

abstract concept's facts (Alibali & Nathan, 2012). Building on Alibali and Nathan’s 

(2012) categorization, Walkington et al. (2014) classified gestures into two types: 

dynamic depictive gestures (“display a mathematical object being transformed using 

the affordance of the body,” p. 479) and static depictive gestures (“display an 

unmoving, unchanging mathematical object in bodily form,” p. 479). These 

classifications seem different but, after McNeill’s general categorizations of revealing 

gestures about thoughts, they are just subclassifications to understand people deeply 

when they are talking about mathematical conceptions. 

Students' gestures and speech have also been researched (e.g., Williams-

Pierce et al., 2017). In the mathematics classroom, when students produced proofs for 

the triangle inequality conjecture (the sum of the length of any two sides of the 

triangle must be higher than the measure of the third side), they used hand gestures to 

justify themselves (Williams-Pierce et al., 2017). Some scholars (Katirci et al., 2020; 

Nathan & Walkington, 2017; Sinclair & Heyd-Metzuyanim, 2014) also include 

technology (video games or applications; e.g. DragonBox, The Hidden Village, and 

TouchCounts, respectively) in their interactions with students. Sinclair and Heyd-
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Metzuyanim (2014) claimed that the body, fingers, hands, and emotions play an 

essential role in learning mathematics. They supported their claim by designing and 

investigating an educational application, TouchCounts. They found that TouchCounts 

helps kindergarten students develop number sense through counting and adding by 

using their fingers in other words by using their embodied cognition. Moreover, 

Katirci et al. (2020) conducted an impact study to determine students' embodied 

interaction and touchscreen technology when playing another game (DragonBox 

12+). According to their findings, students used touchscreen gestures and performed 

similar gestures (e.g., dragging) during the discussion phase after gameplay to support 

and build upon each other's mathematical reasoning. Evidence of the relationship 

between embodied mathematical cognition and gameplay also led Nathan and 

Walkington (2017) to design an embodied mathematical interaction tool, The Hidden 

Village video game. The Hidden Village is a kinetic-based computer game where 

players use their arms to make depictive gestures (dynamic or static) to prove and 

disprove geometric conjectures. According to Nathan and Walkington’s (2017) 

finding, gesturing while playing the game helps students to formulate mathematical 

insights and to make informal proof of the geometrical conjectures. 

Studies focusing on mathematical video games do not investigate embodied 

cognition through touchscreen technology. More research is needed to understand 

how students learn or practice mathematics through gesture interactions with 

touchscreen games without teacher intervention or guidance. I posit that FH2T might 

be used as a digital learning tool for promoting students’ embodied mathematical 

cognition when teachers are not present. More specifically, digital gestures in FH2T 
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might enhance student learning of mathematical concepts. In the next section, I 

explain the methods of the study.  

Methods 

This section describes the methods of the Student Observations study and is 

separated into four sections: 1) description of case study methodologies, 2) the study 

design, 3) data collection and 4) data analysis. 

Case Study  

 This study draws on qualitative case study analysis; Yin (1994) claimed that 

case study research is used to answer “how” and “why” questions within a real-life 

contemporary setting. Case studies focus on a detailed investigation of a single person 

or several people, an event, or a problem to describe-explore-explain (Yin, 1994). 

Creswell (2013) stated that “case study research begins with the identification of a 

specific case” (p. 98). In this study, the students played the game, FH2T, and verbally 

expressed their mathematical play experience to the researcher. Since playing FH2T 

is a kind of activity that students engage within, each student will be a case study and 

investigated in detail.   

Study Design 

The data was collected from seven undergraduate students. Students were 

representative of different departments (e.g., Journalism, Mechanical Engineering, 

Letters and Science, Public Health Science, Information Science (2), and Computer 

Science). Before playing FH2T, students were asked about their gameplay 

experiences and habits. Students ranged from having extensive gameplay experience 

to none. At the end of the study, participants received payment (a $20 Gift Card) for 
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being a part of the research study. Sample demographics of the participants are 

provided in Table 5.1. Pseudonyms are used to protect their identities.  

Table 5.1: Participants  

Name (Pseudonyms) Gender Department Year 
Ava She Letter and Science Freshman 
Bella She Information Science Senior 
Carl He Public Health Science Senior 
Demi She Computer Science Freshman 
Evan He Information Science Junior 
Fin He Mechanical Engineering Freshman 
Gina She Journalism Senior 

 Data collection consisted of three 40 minutes sessions (120 minutes) and was 

broken down into four different phases: pre-test (~20 min, on the first session), 

gameplay (~60 min, 20 min on the first session, and 40 min on the second session), 

playing aloud (Pellicone et al., 2022) (~20 min in the third session) and post-test (~20 

min, in the third session). At the beginning of the study, participants answered 

interview questions about their gameplay experiences and habits and solved four 

algebraic equations as a pre-test. At the end of the study, participants answered game-

related interview questions and solved four similar algebraic equations as a post-test. 

After completing the pre-test, participants started playing FH2T for the first and 

second sessions. In the third session, called the Play Aloud session, participants kept 

playing the game as the researcher observed and interviewed them; they played aloud, 

and as a researcher, I asked each participant to explain how they solved the puzzles 

and had them describe the reasons for the digital gestures or actions they were using.  

Data Collection  

 This study used qualitative data collection methods – observations, 

documents, and interviews (Creswell, 2013). Data were collected in three different 
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ways to enhance the credibility and quality of the research, triangulate information, 

and provide validity to the findings (Creswell, 2013).  

 The first type of data collection consisted of pre-interview and pre-test scores 

of the participants (approximately 20 minutes). Participants completed a paper and 

pencil pre-test that contained four algebraic equations related to the game. In the 

second data collection process, I observed participants while they played FH2T and 

took field notes on participants’ digital and physical gestures as well as their reactions 

to the gameplay elements. Participants played FH2T on an iPad (for the touchscreen 

experience of game playing) for approximately 60 minutes. In the third data 

collection process, the participants kept playing the game but were asked to play 

aloud (Pellicone et al., 2022). The final part of the data collection was a post-

interview focusing on student opinions regarding FH2T and how the embodied 

components of the game playing influenced their ability to solve mathematical 

problems. All parts were video, and audio recorded. The video and audio recording 

occurred using two standalone cameras which were placed on both sides of the 

students. These cameras captured the touchscreen devices and the students’ gestures 

and algebraic patterns in the game while they were playing. 

Data Analysis  

The qualitative data includes personal documents (Pre-test), observations (Game 

Play), play-aloud conversations, and post-interview transcripts. Each part of the data 

collection process was video-recorded and transcribed, and personal data were added 

to the transcript to triangulate the information. The data was coded solely by the 

researcher using open coding, to code the data with open description (e.g, what 
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participants said in pre- and post-interview and how they played the game in 

gameplay and play-aloud sessions) (Creswell, 2013). The analysis of each data source 

consists of four sections: 1) Pre-interview, 2) Game Play, 3) Play Aloud, and 4) Post-

interview.  

Pre-Interview Protocol 

The first section involved a pre-interview consisting of two parts: 1) general 

opinions about playing games and habits and 2) ability with mathematics. For each 

participant, it took approximately 20 minutes. There were ten questions in total: 

Q1. Do you like to play games in your free time? 
Q2. What’s your average time of playing video games within a week? 
Q3. What sort of game do you typically play? 
Q4. How well do you think you do/did in math class?  
Q5. How much do you like doing algebra?  
Q6. Have you ever played educational mathematics games? 

a) What games? 
b) Did you play at school or somewhere else?  
c) How much did you like playing that game/s? 

Q7. 3 + 4 = 7   What does this symbol (	= ) mean? 
Q8. Solve   

4 + 3 + 𝑎 + 9 = 8 + ___ + 𝑎 
Q9. Solve 

10 ⋅ 10𝑎 ⋅ 20 ⋅ 5 = 𝑎 ⋅ 100 ⋅ ___ 
Q10. Solve  

120 = 5 ⋅ 12 + 12 ⋅ ___ 
 

The answer to the first six questions were short answers. Students' answers to 

these questions were transferred to a Microsoft Word document to analyze. I used 

these questions specifically to get a sense of each participant’s background in 

gameplay by looking patterns among them. 

The last four are mathematics problems. I picked these questions which cover 

fundamental rules of algebra (e.g., the meaning of equality, addition property, 

multiplication property, and distributive property). Students’ answers were 
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photographed first and then were classified into three categories: (1) larger error, 

which results from the wrong operation because of a misunderstanding of the 

principles of solving equations; (2) small error which results from a technical 

mistake; and (3) perfect, which means a completely correct answer. I divided it into 

three categories to use a more inclusive spectrum instead of binary labeling them 

wrong and right.  

Game Play 

Participants played the game for 20 minutes after the pre-interview, took a 5-

minute break, and continued to play for another 40 minutes non-stop without any 

researcher questioning. The analysis procedure of this section consists of two steps. 

First, as a researcher, I took field notes while participants played the game. These 

field notes were transferred to a Microsoft Word document. Second, I created a 

Microsoft Excel Spreadsheet to transcribe the students’ digital gestures puzzle by 

puzzle. On the Microsoft Excel Spreadsheet, I sorted the information by columns. 

The columns created were as follows: 

1. Notes about the play,  
2. World Number and Topic,  
3. Puzzle Number,  
4. Start, 
5. The goal,  
6. Min Step,  
7. In which attempt was solved,  
8. Attempt 1,  
9. How solved,  
10. #Step,  
11. #Clover12,  
12. Notes about the attempt,  

 
12 The game gives Clovers as symbolic rewards after solved the puzzle. (See Chapter 3- How are 
clovers collected? part for more information.)  
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13-17 same as 8-12 (if could not solve in the first attempt), and continues until they 
are solved.  

This Excel Spreadsheet helped me to organize the students’ gameplay experience 

in detail (e.g., to see in how many attempts students solved the problem – Column #7, 

how many clovers they won – Column #11, and if they lost any clover, what was their 

reaction – Column #12, etc.) I started analyzing first with open coding, how the student 

solved the puzzle, then comparing different puzzles within the same student, looking 

at patterns and categorizing to understand students’ action in more detail and answer 

the first and third research questions which are both related to students’ mathematical 

gameplay experience. 

Play-Aloud Protocol 

After playing the game for 60 minutes in silence, participants started the Play-

Aloud session (Pellicone et al., 2022). In this session, students kept playing the game 

while simultaneously explaining their thoughts and describing out loud their 

gameplay decision-making. As a researcher, I started the session by asking “If you 

had to describe this game to a friend, how would you describe it? Could you play like 

you are doing a Livestream to your friends?” I needed to ask additional questions 

when the students did not mention the key components of FH2T (e.g., gesture and 

hint buttons) in their talk aloud. Flexible follow-up questions varied depending on 

each student’s gameplay actions. Students' answers to these questions transcribed, 

and the result from these questions will be analyzed in later papers. The following are 

some example questions: 

● How would you solve that problem?  
● Why did you drag that item first?  
● Why did you tap that sign first?  
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● Why did you tap the Hint button? 
○ How would you describe tapping the Hint button? 
○ What would you recommend to your friend about using the Hint button?  

● Why did you tap the Gestures button? 
○ How would you describe tapping the Gesture button? 
○ What would you recommend to your friend about using the Gesture 

button?  
● Why did you start over? 

○ How would you describe starting over? 
○ What would you recommend to your friend about starting over? 

● Why did you turn back?  

The analysis procedure of this section consisted of two steps. First, I took field 

notes when participants were playing the game. These field notes were transferred to 

a Microsoft Word document. Second, I transcribed the students’ spoken language and 

physical and digital gestures within the game into Excel spreadsheets individually. 

Alibali and Nathan (2012) used McNeill’s (1992) typology of gesture to 

influence their categorization. When Alibali and Nathan (2012) analyzed mathematics 

teachers’ and learners’ gestures through an exploratory study, they identified three 

types of gestures: pointing, representational (dynamic and static), and metaphoric. 

While I analyze the data, I used their typology. For example, I observed participants 

show or point to an object on the game screen with their index finger, coded as a 

pointing gesture. For the code representational gesture, for instance, one of the 

participants drew a zero in the air to represent a number and showed its location. 

Moreover, when participants use conceptual metaphors and show gestures coded as 

metaphoric. I also added another category as feedback when participants express their 

emotions (positive or negative) through gestures.  



 

 

138 
 

Post-Interview Protocol 

The final data collection process, the post-interview, took approximately 20 

minutes for each participant. The questions in the post-interview focused on students’ 

1) general opinions of gameplay sessions and 2) ability with mathematics and 

mathematics gaming. There were 16 questions in total.  

Q1) What was your general impression of the game? 
Q2) How will you describe this game to your friends/or family? OR if you were 

describing this game to a friend, what would you say?   
Q3) How much did you like playing this game?  

 
Q4) Was it fun? Would you keep playing it if you could? 
Q5) Does this game remind you of any game that you have played before? 
Q6) This game was designed for you to learn something. What do you think this 

game is designed for you to learn? 
Q7) Did the game remind you of anything else in your life?  
Q8) Was it like other games you've played before? 
Q9) Was it liking any math you've done before? 
Q10)  How similar or different were these puzzles with respect to something you 

have done before?  
Q11) Is there something that you might not have thought about before that occurred 

during this gameplay session?  
Q12) Do you think you learned anything from playing this game? What? 
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Q13) How did you solve this puzzle? Could you describe and solve it again from 
the tablet?  
(FH2T Puzzle 1.9 similar to Pre-interview Q8) 

 

Q14) How did you solve this puzzle? Could you describe and solve it again from 
the tablet?  
(FH2T Puzzle 2.14 similar to Pre-interview Q9) 
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Q15) How did you solve this puzzle? Could you describe and solve it again from 
the tablet?  
(FH2T Puzzle 3.14 similar to Pre-interview Q10) 

 
 

Q16) How did you solve your latest puzzle? Could you describe and solve it again 
from the tablet?  
 

The first 12 questions (Q1-Q12) were short answers. Students' answers to these 

questions will be transcribed, and the result from these questions will be analyzed in 

later papers. The last four questions (Q13-Q16) are mathematics problems from the 

game. These questions are similar or the same as the pre-interview math questions. 

Students solved these problems through the iPad. The students’ spoken language, 

relevant digital gestures within the game, and physical gestures were transcribed to a 

Microsoft Word document with their respective video recordings.  

Findings 

This qualitative study aimed to explore three sub-research questions: 1) What 

is the learner’s mathematical gameplay experience in playing FH2T? 2) What sort of 

physical gesture clusters do they use to explain what they are doing with their digital 

gesture? And 3) How do failure and feedback manifest in mathematical gameplay 
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within playing the game from the learner’s perspective? This section presents the 

findings of the study in four sub-sections: pre-interview, gameplay, play-aloud, and 

post-interview.  

Pre-Interview 
According to the pre-interview (Q1- Q3), all participants liked playing games 

in their free time. Their weekly amounts of play time ranged between 1 (Evan13) to 15 

(Fin) hours per week. Participants' choice of game genres also varied. For example, 

Ava mentioned that she likes playing fighting and adventure/open-world games. Bella 

likes free-play games such as the Sims and Animal Crossing. Carl, Demi, and Gina 

said they like RPG [Role Playing Games] and multiplayer games. Evan mentioned 

sports and action games. Fin also included tabletop and board games that he likes 

playing. Almost all of them have played educational mathematics games (Q6) in the 

past except Bella. Ava and Carl mentioned that they played “CoolMath” games which 

is a network started in 1997 (CoolMath, n.d.) that offers interactive math games (Agosto, 

2004). Evan gave an example of “IXL” which is a personalized learning website founded 

in 1998, offering online games and hands-on activities in math, language arts, science, 

and social studies for K-12 students (IXL, n.d.). 

For the participants’ mathematical self-evaluation (Q4 and Q5), they thought 

they were above average in math class (e.g.; Ava: “I’m pretty decent with math.”, 

Bella: “Moderate”, Evan: “Above Average” ) and moderately liked algebra (e.g.; 

Ava: “I dislike algebra the least.”, Bella: “not much but I’m okay with it,” Evan: ‘Not 

but favorite but I don’t hate it”). To understand more about their ability to solve 

 
13 All participants' names pseudonyms 
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algebraic problems, I asked them to solve four mathematical equations in the pre-

interview: 

Q7. 3 + 4 = 7   What does this symbol (	= ) mean? 
Q8. Solve   

4 + 3 + 𝑎 + 9 = 8 + ___ + 𝑎 
Q9. Solve 

10 ⋅ 10𝑎 ⋅ 20 ⋅ 5 = 𝑎 ⋅ 100 ⋅ ___ 
Q10. Solve  

120 = 5 ⋅ 12 + 12 ⋅ ___ 

All participants correctly answered the first question (Table 5.2). Five of the 

participants gave a short answer that simply means “equals to” whereas Carl and Fin 

gave a long answer: “To equate, it gives the what14 shows how both sides of an 

equation are numerically equal to each other” and “The combinations of symbols on 

each side effectively mean the same thing. That is to say we know they are 

equivalent.”  Hence, they all know the meaning of the =	symbol, which will help 

them to solve other questions in the pre-interview and also in the game. Furthermore, 

when students say “equals”, mathematics educators know that when there is a symbol 

(	= ), it is not necessarily equivalence both sides, it needs perform and action. While 

giving detailed answer, Carl and Fin provide stronger evidence of their understanding 

of the symbol (	= ). 

 

 

 

 

 

 
14 The player, Carl, struck through the words when he was solving the pre-test.  
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Table 5.2: Pre-interview Q7- Mathematical Equation Solutions 

Name Answer 
Ava “Is equal to”. 
Bella Equals to 

Carl To equate, it gives the what shows how both sides of an equation 
are numerically equal to each other 

Demi Equals, is equal to  

 Evan It means “equal to” 

 Fin The combinations of symbols on each side effectively mean the 
same thing. That is to say we know they are equivalent. 

Gina Equals 

 
 

All participants solved Q8 correctly except Gina who made a small error 

(Table 5.3). There are small differences in the solutions of the participants who 

solved correctly. For example, Ava (Figure 5.2) named the blank “𝑥”, rewrote the 

equation by adding two numbers (7 and 9) together, and solved it by subtracting the 

number (8) first, then the letter (a). On the other hand, Fin (Figure 5.3) solved it 

correctly but without any explanation on the paper. In Gina’s case (Figure 5.4), she 

made a small error when she preferred to transfer the numbers to one side and the 

letters to the other (she wrote 8 = 𝑎 instead of 𝑏𝑙𝑎𝑛𝑘 = 8 or 8 = 𝑏𝑙𝑎𝑛𝑘). 

Table 5.3: Pre-interview Q8-Q9-Q10 Codes 

Name Q8 Q9 Q10 
Ava Perfect/3 Perfect/3 Perfect/3 
Bella Perfect/3 Large Error/1 Perfect/3 
Carl Perfect/3 Perfect/3 Perfect/3 
Demi Perfect/3 Large Error/1 Large Error/1 
Evan Perfect/3 Large Error/1 Perfect/3 
Fin Perfect/3 Perfect/3 Perfect/3 
Gina Small Error/2 

 

Large Error/1 Large Error/1 
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Figure 5.2: Ava’s Pre-interview Q8-Perfect/3 Solution 

 

Figure 5.3: Fin’s Pre-interview Q8-Perfect/3 Solution 

 

Figure 5.4: Gina’s Pre-interview Q8-Small Error/2 Solution 

For Q9 (Table 5.3), three participants (Ava, Carl, and Fin) solved it correctly. 

Similar to Q8, Ava solved Q9 by naming the blank “𝑥”, rewriting the equation by 

multiplying four numbers (10, 10, 20, and 5), solving it by dividing from the mind 

10000 to 100, and finally, checking her work by multiplying 100 and 100 (Figure 

5.5). Fin solved it correctly without any solution and just wrote the correct answer 

(Figure 5.6). Carl just wrote 10000 which is supposed to be the multiplication of 10, 

10, 20, and 5	then the correct answer (Figure 5.7).  



 

 

145 
 

 
 

Figure 5.5: Ava’s Pre-interview Q9-Perfect/3 Solution 

 

Figure 5.6: Fin’s Pre-interview Q9-Perfect/3 Solution 

 

Figure 5.7: Carl’s Pre-interview Q9-Perfect/3 Solution 

For Q9, four participants (Bella, Demi, Evan, and Gina) made large errors. 

Their errors were different from each other. For example, Bella (Figure 5.8) did not 

realize there was a blank in the question of that she needed to solve the equation for 

the blank. As a result, she solved the equation for 𝑎. Similarly, Gina (Figure 5.9) also 

did not solve for the blank. She made conceptual errors like moving 20 and 5 from 

the left side of the equation to the right side, but their operations were multiplication. 

She moved them like addition, changing the sign of 20 and 5 from positive to 

negative but kept them as multipliers. Evan (Figure 5.10) just wrote a 10 in the blank, 

possibly because he misinterpreted the first 10 as being the number of the question 

rather than a number in the actual equation. Demi (Figure 5.11) rewrote the equation 
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for calculating the left side numbers that were equal to 400, then from this calculation 

arrived at an answer of 4.  

 

Figure 5.8: Bella’s Pre-interview Q9-Large Error/1 Solution 

 
 

Figure 5.9: Gina’s Pre-interview Q9-Large Error/1 Solution 

 

Figure 5.10: Evan’s Pre-interview Q9-Large Error/1 Solution 

 

Figure 5.11: Demi’s Pre-interview Q9-Large Error/1 Solution 
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Five participants (Ava, Bella, Carl, Evan, and Fin) solved Q10 correctly while 

Demi and Gina did not (Table 5.3). Carl (Figure 5.12) and Fin (Figure 5.13) solved 

the question without any calculations written on the paper and just wrote the correct 

answer, 5. Ava (Figure 5.14) first wrote parentheses onto the equation to simplify the 

orders of operation, multiplied 5 and 12 (equal to 60) in her head to write the 

equation as 60 + 12. __, then wrote 5 as the answer for the blank. She also checked 

her work by confirming that 60 + 60 = 120. Bella (Figure 5.15) first multiplied 5 

and 12 (equal to 60) in her head, then rewrote the equation as 120 = 60 + 12. __, 

then wrote 	__ = 5	as a correct answer. Evan (Figure 5.16) also multiplied 5 and 12, 

equal to 60 and wrote 60 above the equation. He made some other calculations as 

60 + 12 = 72, 120 − 72 = 48, and wrote 48 on the blank, but then he realized he 

made a mistake he scrubbed out 48 and wrote 5 on the blank. 

 

Figure 5.12: Carl’s Pre-interview Q10-Perfect/3 Solution 

 

Figure 5.13: Fin’s Pre-interview Q10-Perfect/3 Solution 
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Figure 5.14: Ava’s Pre-interview Q10-Perfect/3 Solution 

 
 

Figure 5.15: Bella’s Pre-interview Q10-Perfect/3 Solution 

 

Figure 5.16: Evan’s Pre-interview Q10-Perfect/3 Solution 

Demi and Gina made large errors for Q10. Both made a conceptual error and a 

calculation error. Demi (Figure 5.17) first multiplied 5 by 12,	equal to 60	in her head, 

then rewrote the equation as 120 = 60 + 12. __ writing a 2 instead of a 5. Similarly, 

Gina (Figure 5.18) multiplied 12 by 5	equaling to 60, but then added 12 to 60 and 

found 72 (which is a conceptual error as an order of operation). She then subtracted 

72 from 120 to get 38 (which is another calculation error). She rewrote the equation 

as 120 = 5.12 + 12. 38, and underlined 38 as her answer. 
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Figure 5.17: Demi’s Pre-interview Q10-Large Error/1 Solution 

 

Figure 5.18: Gina’s Pre-interview Q10-Large Error/1 Solution 

In summary, Ava perfectly solved all three mathematical equations in the pre-

test. She showed her work by rewriting the equations and also checked her work by 

redoing the calculation. Ava’s problem-solving approach showed me that she 

understands mathematics and prefers to write out her thinking while solving 

equations. Carl and Fin also successfully solved all of the pre-test equations, but they 

did not write out their thinking processes on the paper. Instead, they just wrote the 

correct answers. Their problem-solving approaches suggest that they are familiar with 

basic algebra and prefer solving problems in their heads rather than writing down 

their ideas. Bella and Evan solved the first and third equations perfectly, but they 
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made large errors on Q9. Bella’s error was conceptual, while Evan’s error was 

probably notation-based because he misinterpreted the first 10 in the question. 

Meanwhile, Demi and Gina could not solve Q9 and Q10 on the pre-test. Their 

conceptual errors suggest that they may have not solved algebraic equations in a 

while or that other factors are at play. More information about the participants and 

further analysis are needed to understand their mathematical knowledge. In the next 

section, Game Play, I present participants' game-playing experiences.  

Game Play 

 While participants played From Here to There!, their gameplay actions were 

videotaped. I analyzed the participants’ physical and digital gestures with an iPad to 

understand their mathematical gameplay experiences; I looked at how they used 

different icons on the game screen and how they reacted to their failure (for example, 

keypad15, shaking16, and snapping errors17) and feedback (i.e., formative, summative, 

informative feedback18) from the game. There were seven participants, and each of 

them had a different playing style. None of them finished all of the levels within the 

time limit, and their final levels ranged from World 3 Puzzle 18 to World 10 Puzzle 

10. I analyzed each player’s data individually. 

Ava’s Actions. As mentioned in the pre-interview, Ava likes playing games 

in general and played educational games when she was in middle school. This game 

was not difficult for her because she had previously played games via iPad and 

 
15 Keypad Errors: Errors that the student made by attempting to enter a non-equivalent expression 
using the keypad. 
16 Shaking Errors: Errors that the student made by attempting to incorrectly use existing operators. 
17 Snapping Errors: Errors that the student made by attempting to incorrectly reorder terms. 
18 See Chapter 3 - System Feedback part for more information. 
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educational games. She solved Q8 to Q10 with a “perfect” score in the pre-interview, 

suggesting a good mathematical background. She reached the 8th World’s 18th puzzle 

by the end of the gameplay session.  

In the first world of the game, she tried to earn as many clovers as possible for 

each puzzle; if she was able to solve the puzzle but only earned 1 or 2 clovers, she 

would restart the puzzle and try to decrease her problem-solving steps to earn 3 

clovers. For example, to solve Puzzle 1.4 (Figure 5.19), she first dragged 𝑦 to the 

front (i.e.; 𝑦 + 5 + 𝑥 + 2), then dragged 𝑥 next to 𝑦 (i.e.;𝑦 + 𝑥 + 5 + 2), and dragged 

2 next to x (i.e.; 𝑦 + 𝑥 + 2 + 5). 

 

Figure 5.19: Puzzle 1.4 

In this solution, she exceeded the minimum number of steps for the puzzle 

(Figure 5.20, highlighted by a blue circle). However, since she solved the puzzle, she 

still got 2 clovers. She made a snapping error (dragging 5 to the end was the correct 

action for this case) in her second step (i.e., dragging x next to y) which led her to 

exceed the minimum number of steps.  Her reaction to getting two clovers was to 

retry the puzzle. In her second attempt, she first dragged 5 next to 2, then dragged y 

to the front and received three clovers as a reward.  
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Figure 5.20: Ava exceeded step numbers in Puzzle 1.4 

As a feature of the game, players are able to skip the last four puzzles (i.e., 

Puzzle 15,16,17, and 18) in each world; Ava took advantage of this feature in Worlds 

1, 2, and 3 and did not solve those puzzles. In World 1, Ava tried to perfectly solve 

each puzzle. However, in World 2, she stopped retrying puzzles even if she received 

one or two clovers. For example, she attempted to solve Puzzle 2.5 three times, but 

she got two clovers each time. Similarly, she attempted Puzzle 2.7 two times and got 

two clovers. 

For Puzzle 2.8 (Figure 5.21), she was able to solve the puzzle on her fifth 

attempt, got one clover, and then moved on to the next puzzle. Puzzle 2.8 was the first 

puzzle that she really struggled with. In her first three attempts, she got different 

answers. For instance, in the first attempt, she multiplied 24 and 24 making 576, in 

the second, she multiplied 24 and 16 making 384, and in the third, she multiplied 4 

and 16 making 64. None of these numbers were correct, so she restarted the puzzle. 

In her fourth attempt, she made a shaking error by tapping the multiplication sign 
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between variable (𝑐) and number (24). On the fourth attempt, she followed these 

steps: 

Start      Goal   Minimum Step 2 
1. Drag 6 between 24 and 16, made  

4𝑐 ∙ 24 ∙ 6 ∙ 16 
2. Tap on the multiplication sign between 6 and 16, made  

4𝑐 ∙ 24 ∙ 96 
*Tap on the multiplication sign between 4𝑐 and 24 [Shaking Error] 
*Drag 4 between 𝑐	and 24	then drop it, and it turns to its previous place.  

3. Drag 𝑐 next to 24, made  
4 ∙ 24𝑐 ∙ 96 

4. Tap on the multiplication sign between 4 and 24𝑐, made  
96𝑐 ∙ 96 

5. Drag 96	onto 96𝑐,	made 9216𝑐  
Tap on the restart icon (NOTE: * Participant did an action but not count as a 

step) 
 

 

Figure 5.21: Puzzle 2.8 

On the fifth attempt, she did not make any shaking errors and was satisfied 

with earning only one clover. Her steps were:  

Start      Goal  Minimum Step 2 
1. Drag 6 between 24 and 16, made  

4𝑐 ∙ 24 ∙ 6 ∙ 16 
2. Tap on the multiplication sign between 6 and 16, made 

4𝑐 ∙ 24 ∙ 96 
3. Drag 𝑐 next to 24, made  

4 ∙ 24𝑐 ∙ 96 
4. Tap on the multiplication sign between 4 and 24𝑐, made  

96𝑐 ∙ 96 
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5. Drag 96 to the front, made  
96 ∙ 96𝑐 
Get one clover as a reward 

Her gameplay suggests that the reason behind her extra steps was that she did not 

pay attention to the rule stating, “You can multiply by tapping the dot (i.e., 

multiplication sign) or dragging one number on top of the other.” (Italic added). 

Instead of dragging a number (e.g., 16) on top of another number (6𝑐), she preferred 

to first move one number next to another number (e.g., first steps in her fifth attempt) 

and then tap the multiplication sign (e.g., second steps in her fifth attempt), which 

caused extra steps. She remembered this rule in the next puzzles and reduced her 

number of steps to receive three clovers. When making extra steps in the earlier 

Worlds, she did not use the Hint or Gesture icons to remind herself about the rule or 

to learn the clue for solving the problem in fewer steps. It was only in the later worlds 

(ex., Puzzles 5.16, 7.3, 7.13) when she began to tap the Gesture and/or Hint icons for 

extra information (Figure 5.22). 

  

Figure 5.22: Puzzle 5.16 - After the Gesture Icon (Left) and Hint Icon (Right) 
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In summary, the observation and Ava’s gameplay records show that she was 

learning the game’s rules by playing the game. In the beginning, she re-tried the 

puzzle to eliminate extra steps and get the maximum rewards. She also used Gesture 

and Hint icons to obtain informative feedback when she could not solve the puzzle 

and needed clue to solve it, especially in later puzzles. 

Bella’s Actions. In the pre-interview, Bella mentioned that she likes to play 

games but did not have any previous educational gameplay experience. She solved 

Q8 and Q10 with a “perfect” score but made a large error in Q9 in the pre-test. She 

reached Puzzle 10.8 at the end of the gameplay session.  

Unlike Ava, Bella did not re-try any puzzles after solving and getting one or 

two clovers as a reward. This gameplay approach influenced her to solve more 

puzzles and go far worlds in the game. Bella solved the first World’s last four 

puzzles, but not the other Worlds’. Bella also seemed to not pay attention to the 

information or tutorial on the screen. For example, in Puzzle 6.4 (Figure 5.23), the 

game already gives information on how the puzzle is solved, such as “divide by 

tapping the division bar.” However, Bella preferred to drag 7 (denominator) onto 

56	(numerator) which decomposed 56 as 7 and 8	in the numerator, then she dragged 

7	(denominator) again onto 7 (numerator) to cancel the 7’s and got 8. This procedure 

was also repeated for other numbers (!"
#	
	and !"

%&
), and these repetitions caused three 

extra steps, resulting in one clover reward.  
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Figure 5.23: Puzzle 6.4 

Bella also solved puzzles in one or two attempts until World 7 Puzzle 10. She 

was able to solve this puzzle on her 11th attempt with one clover and did not use the 

Hint or Gesture icons. On the first attempt, she followed these six steps: 

Start        Goal    Minimum Step 2 

1. Tap on the multiplication sign between 𝑥𝑦 and '
(
, made  

(∙!∙#$ *+

,
∙ 0𝑧 

2. Tap on the multiplication sign between 𝑥 and +∙'
(

, made  
$!∙#
$ *+

,
∙ 0𝑧 

3. Tap on the 𝑥 (numerator) 𝑥's are gone, made  +∙'*+
,

∙ 0𝑧 
4. Tap on the multiplication sign between 𝑦 and 1,	made +*+

,
∙ 0𝑧 

5. Tap on the minus sign between 𝑦 and 𝑦, made -
,
∙ 0𝑧 

6. Tap on the multiplication sign between -
,
 and 0𝑧, made 0 

Tap on the restart icon. 

Her reaction to getting 0	after her sixth step was to restart the puzzle. In her 

second attempt, she tapped on the 𝑧 (which is next to 0) and made 0. After reaching 

0, she restarted the puzzle again. Instead, she should have used the keypad to rewrite 

0 as 0.0. On her third attempt, she started making shaking errors by tapping the 

division sign before simplifying the numerator. On her sixth attempt, out of 11 
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attempts, she made shaking errors by not paying attention to the order of operations. 

She may have made these errors because she did not realize what the failure was, or 

she was more focused on just passing the puzzle and did not care about making 

errors. Unlike Ava, Bella did not use any Gesture or Hint icons to get informative 

feedback from the game. 

Carl’s Actions. Carl was one of two participants who gave a long answer to 

Q7 and solved Q8 to Q10 with a “perfect” score in the pre-interview, suggesting a 

strong math ability. He reached the 8th World’s 3rd puzzle by the end of the gameplay 

session, and he was able to solve the last four puzzles (i.e., Puzzle 15,16,17, and 18) 

of all the Worlds except World 3. 

 Unlike Bella and Ava, Carl made silent gestures while playing the game. For 

example, while completing Puzzle 1.9, he made hand and head gestures in step 2: 

Start    Goal   Minimum Step 3 
*Tap on 7 (nothing happened) 

1. Tap on the keypad, tap 7, write 1 + 6, tap done, made 
1 + 6 + 6 + 𝑏 + 10 

2. Tap the plus sign between 6 and 6, made  
1 + 12 + 𝑏 + 10 [Hand and Head Gesture]  

3. Drag 10 onto 1, made  
11 + 12 + 𝑏 

4. Drag 12 to the front, made 
12 + 11 + 𝑏 
Get two clovers as a reward 

*Participant did an action but not count as a step 
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Figure 5.24: Carl’s Reaction-Gesture 

After adding 6 and 6 (in the second step), he realized that he made a mistake 

(because the order of the numbers need to change) and showed this with his hand and 

head gestures (Figure 5.24). 

In Puzzle 7.10, unlike Bella, Carl preferred to use the Hint icon in his second 

attempt (Figure 5.25 – Hint: Multiply 𝑥	with its inverse add −𝑦 with its opposite). In 

his first attempt, he tapped the multiplication sign before 0 and made 0 the whole 

equation. In his second attempt, he followed these ten steps:  

Start        Goal     Minimum Step 2  
1. Drag 𝑧 in front of 0, made  

𝑥𝑦 ∙ 1𝑥 − 𝑦
𝑧 ∙ 𝑧 ∙ 0 

2. Tap on the multiplication sign between 
(+∙#$*+

,
 and 𝑧, made 

D𝑥𝑦 ∙ 1𝑥 − 𝑦E ∙ 𝑧
𝑧 ∙ 0 

3. Drag 𝑧 (numerator) onto 𝑧 (denominator) 𝑧’s are gone, made 

(xy ∙
1
𝑥 − y) ∙ 0 

*Drag the screen down, and tap on the Hint icon (Hint: “Multiply x with its 
inverse add -y with its opposite” come to the screen – Figure 5.25) 

*Drag 𝑦 (next to 𝑥) to next to the other 𝑦, drop 𝑦 back next to 𝑥 
4. Drag −𝑦 to the front,	made 
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(−y + xy ∙
1
𝑥) ∙ 0 

5. Drag 𝑥 next to ∙ '
(
, made  

(−𝑦 + 𝑦 ∙
1
𝑥 ∙ x) ∙ 0 

6. Tap on the multiplication sign between '
(
 and𝑥, made 

(−𝑦 + 𝑦 ∙
1𝑥
𝑥 ) ∙ 0 

*Tap on the plus sign between −𝑦 and 𝑦 ∙ '(
(

 [Shaking Error] 

7. Tap on the multiplication sign between	𝑦 and  '(
(

, made  

(−𝑦 +
𝑦1𝑥
𝑥 ) ∙ 0 

*Tap on the division sign between 𝑦1𝑥 and 𝑥 [Shaking Error] 
8. Drag 𝑥	(numerator) onto 𝑥 (denominator) 𝑥’s are gone, made  

(−𝑦 + 𝑦 ∙ 1) ∙ 0 
9. Tap on the multiplication sign between 𝑦	and 1, made  

(−𝑦 + 𝑦) ∙ 0 
10. Tap on the plus sign between −𝑦	and 𝑦, made 

0 ∙ 0 
Get one clover as a reward. 

*Participant did an action but not count as a step

 

Figure 5.25: Puzzle 7.10 Hint 
He followed the Hint which says “multiply x with its inverse” he did this in 

the 8th step and “add -y with its opposite” he did this in the 10th step and finally he 

reached the goal. He made some shaking errors because he did not pay attention to 

the order of operations; he tried to do addition before multiplication (6th step). There 
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were also extra steps (the minimum step for a solution in this puzzle is 2), so he got 

only one clover. 

Carl’s gameplay shows that he did not pay attention to collecting rewards and 

instead focused on solving the puzzles. When he needed informative feedback, he 

did not hesitate to use the Hint icon. He also showed his reactions to the game 

through his gestures when he was thinking, when he thought he made a mistake, or 

when he was able to solve the puzzle.  

Demi’s Actions. Demi was one of the participants who struggled with the pre-

test questions. She also only reached the 6th World’s 14th puzzle by the end of the 

gameplay session because she turned back and replayed puzzles if she previously 

skipped them or only received one or two clovers. For example, when she was 

solving Puzzle 3.13, she could not solve it after her second attempt and decided to tap 

the World icon to go back to Puzzle 2.15, which she skipped when she was solving 

World 2’s Puzzles.   

Demi also used her finger to point at numbers on the screen before tapping 

them or to do an imaginary calculation (pointing gestures). For example, in Puzzle 

2.18 she used her finger when following these three steps: 

Start    Goal   Minimum Step 3 
*Tap on the keypad, tap 120, tap cancel  
*Tap on the keypad, tap 77, tap cancel 

1. Tap on the multiplication sign between 120 and 77, made 
9240 

2. Tap on the keypad, tap 9240, write 15 ∙ 571, and tap done, [Keypad Error 
“The total of the new expression should be the same as the original.” Figure 
5.26 – highlighted by blue circle], Delete 571 [Do math on her leg Figure 5.27], 
Write 616, tap done, made  
15 ∙ 616 

3. Tap on the keypad, tap 616, write 56 ∙ 11, tap done, made 
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15 ∙ 56 ∙ 11 
Get three clovers as a reward. 

*Participant did an action but not count as a step 
 

 

Figure 5.26: Puzzle 2.18- Demi’s Keypad Error 

In the second step, she made a keypad error because she could not decompose 

9240 correctly. After the keypad error, she needed to re-do the calculations because 

571 was not correct, so she used her right leg as a support (Figure 5.27) and did the 

calculation with the help of her right index finger. It appeared that she was using her 

finger to do a calculation of 56 multiplied by 11 on her leg.  

 

Figure 5.27: Demi used her finger and leg to do imaginary calculation. 
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Demi used hand gestures and the Gesture icon to solve the puzzles. When she 

was solving Puzzle 3.13, she kept getting keypad errors (Figure 5.28). She first used 

the Hint icon to get informative feedback (Figure 5.29) but it was not enough for her 

to solve the puzzle. She then decided to return to previous puzzles like 3.10, 2.17, and 

2.18. After some time, she went back to Puzzle 3.13 and immediately tapped on the 

Gesture icon to get informative feedback. When she was solving Puzzle 3.13, she saw 

five rules or gestures for the game (Figure 5.30) and she tapped the link and reread 

four of them: Perform Operations by Tapping or Dragging (Figure 5.31-Left), 

Substitute Numbers Using the Keypad (Figure 5.31-Right), Commute Terms 

(Figure5.32-Left), Select Multiple Terms to Commute by Pulling (Figure 5.32- 

Right). Remembering the usefulness of these rules, she solved Puzzle 3.13 by 

following these two steps:  

Start     Goal  Minimum Step 2 
1. Drag 𝑏 in 𝑏𝑐 after 𝑐, made  

𝑐𝑏 + 𝑐 + 𝑏 
2. Drag 𝑐 to the front, made 

𝑐 + 𝑐𝑏 + 𝑏 
Get the three clovers as a reward. 
 

   

Figure 5.28: Puzzle 3.13- Keypad errors 
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Figure 5.29: Puzzle 3.13- Hint 

 

Figure 5.30: Puzzle 3.13- Gesture icon 

  

Figure 5.31: Puzzle 3.13- Gestures: Perform Operations by Tapping or Dragging 
and Substitute Numbers Using the Keypad 
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Figure 5.32: Puzzle 3.13- Gestures: Commute Terms and Select Multiple Terms 
to Commute by Pulling 

 
In summary, Demi’s gameplay shows that she cared more about the rewards 

than solving the puzzles and did her best to collect all of the clovers. She also used 

her hand gestures to help her solve each puzzle as well as the Hint and Gesture icons 

when she needed extra informative feedback.  

Evan’s Actions. According to Evan’s pre-interview, he likes games but does 

not spend a lot of time playing them. He had experience playing educational and 

personalized learning games. He solved Q8 and Q10 with a “perfect” score but made 

a large error in Q9 in the pre-test. He reached Puzzle 6.16 at the end of the gameplay 

session. Evan did not retry any puzzle if he got one or two clovers and he solved the 

last four puzzles of all five Worlds.  
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Figure 5.33: Puzzle 1.11, 6=3+3 

Evan sometimes seemed to not pay attention to the tutorials on the game 

screen. For example, in Puzzle 1.11, the animated tutorial showed how players can 

decompose the number 6 into 2 + 2 + 2 in two steps. However, Evan preferred to 

decompose 6 into 3 + 3 (Figure 5.33), which is mathematically correct but not what 

the game asked for. Evan appeared to solve the puzzle by playing without caring 

about the rules of the game, the tutorial, or other information sources on the screen.  

Like Carl, Evan made hand gestures to express his thinking or reactions while 

playing the game. This behavior was most evident in Puzzle 2.8 where he made three 

attempts; in his first attempt, he reached a number by dragging 6	onto 24 to create 

144, which was not in the goal. As a result, he restarted the puzzle. In his second 

attempt, he followed these steps while using hand gestures:  

tart   Goal Minimum Step 2 
1. Drag 16 onto 6, made  

4 ∙ 96𝑐 ∙ 24 
2. Tap on the keypad, tap 24, write 12 ∙ 12, tap done  

[Keypad Error] Delete 12, write 2, tap done, made 4 ∙ 96𝑐 ∙ 12 ∙ 2 
3. Drag 4 onto 12, made  

96𝑐 ∙ 48 ∙ 2 
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4. Drag 48 onto 2, made  
96𝑐 ∙ 96  [Hand Gesture-Figure 5.34] 
Tap on the restart icon  

 

Figure 5.34: Evan’s Gesture  

After dragging 48 onto 2 (in the fourth step), he realized he made a mistake 

(because the order of the numbers needed to change) and showed this with his hand 

gesture (Figure 5.34). In response to his mistake, he tapped on the restart icon. He 

then solved the puzzle in his third attempt with two steps (Step 1: Drag 16 onto 6, 

made 96𝑐, Step 2: Drag 24 onto 4, made 96) and got three clovers. He also used 

pointing gestures before tapping any numbers or variables on the game screen (Figure 

5.35).  

 
Figure 5.35: Puzzle 1.10 Pointing Gestures 
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Evan solved the game puzzle by playing and sometimes did not pay attention 

to the information/tutorials that the game provided. He used pointing gestures and 

showed his reactions to the game through his gestures when he thought he made a 

mistake. He did not pay much attention to rewards, search for any extra informative 

feedback, or use the Hint or Gesture icons.  

Fin’s Actions. Fin was the second participant who gave a long answer to Q7 

and solved with a “perfect” score to Q8, Q9, and Q10 in the pre-interview. He 

reached the 10th World’s 10th puzzle by the end of the gameplay session because he 

skipped all of the last four puzzles (i.e., Puzzle 15,16,17, and 18) of the Worlds and 

did not retry any puzzles when he got one or two clovers. 

 Unlike other participants, he did not use any Hint or Gesture icons in the 

gameplay session. He sometimes used body gestures as a type of thinking gesture, 

like putting his hand to his chin (Figure 5.36 Puzzle 1.9-Right and Puzzle 9.7-Left).  

  

Figure 5.36: Fin’s Thinking Gestures Puzzle 1.9 and Puzzle 9.7 

Fin struggled the most with Puzzle 9.7. He was able to solve it in 16 steps 

which was the highest step number for him. He followed these steps: 

Start   Goal  Minimum 

Step 7 
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1. Drag 77 from the right to the left side of the equation, made 
 −91 − 9 + 44 + 33 − 77 = 77 − 77 − 21 − 79 

2. Drag −91 from the left to the right side of the equation, made 
−91 + 91 − 9 + 44 + 33 − 77 = 77 − 77 − 21 − 79 + 91 

3. Tap on the plus sign between −91 and 91, made 0 
0 − 9 + 44 + 33 − 77 = 77 − 77 − 21 − 79 + 91 

4. Tap on the plus sign between 44 and 33, made 77 
0 − 9 + 77 − 77 = 77 − 77 − 21 − 79 + 91 

5. Tap on the minus sign between 77 and 77, made 0 
0 − 9 + 0 = 77 − 77 − 21 − 79 + 91 

6. Tap on the plus sign between −79	and 91, made +12 
0 − 9 + 0 = 77 − 77 − 21 + 12 

7. Tap on the minus sign between 77 and 77, made 0 
0 − 9 + 0 = 0 − 21 + 12 

8. Tap on the minus sign between 0 and 21, 0 gone, made 
0 − 9 + 0 = −21 + 12 

9. Tap on the minus sign between 0 and −9, 0 gone, made 
−9 + 0 = −21 + 12 

10. Tap on the plus sign between −9 and 0, 0 gone, made 
−9 = −21 + 12 

11. Drag 12 from the right to the left side of the equation, made 
−9 − 12 = −21 + 12 − 12 

12. Drag −9 from the left to the right side of the equation, made 
−9 + 9 − 12 = −21 + 12 − 12 + 9 

13. Tap on the minus sign between 12 and 12, made 0 
−9 + 9 − 12 = −21 + 0 + 9 

14. Tap on the plus sign between −9 and 9, made 0 
0 − 12 = −21 + 0 + 9 

15. Tap on the plus sign between 0 and −12, 0 gone, made 
−12 = −21 + 0 + 9 

16. Tap on the plus sign between −21 and 0, 0 gone, made 
−12 = −21 + 9 
Got one clover as a reward. 

In this world (World 9), Fin got a new rule in Puzzle 9.1: "A new way to work 

with equations - dragging. Drag the 2 across the equals sign to add its opposite to 

both sides. Notice the sign change!” Fin was able to drag a number from one side to 

another side of the equation as he did in steps 1, 2, 11, and 12. He kept using this rule, 

but he needed to use it wisely. Instead of dragging 77 from the right to the left side in 

the first step, he should have added 77 and −79 on the right side and then added 44 

and 33, and −91 on the left side. Hence, he could reach the equation −9 − 14 =
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−21 − 2 with three steps. He also needed to use previous rules like one from Puzzle 

8.1 “Tap and hold the equals sign to do the same thing to both sides. The changes you 

make to 𝐸 in the keypad will happen on both sides.” With this rule, he should have 

added 11 to both sides. Hence, this old rule needed to be remembered to solve Puzzle 

9.7 in seven steps. If he used the Hint icon to get extra information, he had got the 

hint as "You need -21 and 9 on the right. Isolate -21 and drag -9 across the equals 

sign to add 9 to both sides.” hence he would not need to do steps 1, 2, 11, and reduce 

the step numbers at least 3 steps.  

Fin’s gameplay shows that he paid attention to the new rules in each new 

world and applied the rules to the puzzles. He did not pay attention to collecting 

rewards and instead just focused on solving the puzzles to move forward. He did not 

use any Hint or Gesture icons to get informative feedback from the game.  

Gina’s Actions. Gina was another participant who struggled with the pre-test 

questions and solved the least number of puzzles in the group. She reached Puzzle 

3.18 by the end of the gameplay session, and never skipped the last four puzzles of 

the worlds.  

Gina preferred to use her finger while she was reading the instructions. 

(Figure 5.37). She used her index finger to read in almost in every puzzle. Gina was 

able to solve only 54 puzzles (reached Puzzle 3.18) and was the participant to solve 

the least number of puzzles. It is possible that reading the tutorials with her index 

finger may have slowed her down.  
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Figure 5.37: Gina’s Following Finger Gesture 

In the second puzzle, Puzzle 1.2, after reading the instruction “Click the 

lightbulb on the left if you need a hint.” she followed the information and tapped the 

Hint icon (Figure 5.38) and got informative feedback: “Click on numbers and drag 

them to rearrange”. Puzzle 1.2 was similar to the previous puzzle, as in the Hint, the 

numbers needed to be rearranged. Therefore, her tapping showed that she read the 

instruction and followed it, so she was learning the game.  

 
Figure 5.38: Gina Following Information 
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However, in some puzzles, she seemed to not pay attention to the goal or 

animated instructions of the puzzle. For example, in Puzzle 1.11 (Figure 5. 39) the 

tutorial animation showed that the starting point is 6	and the goal is 2 + 2 + 2	(Figure 

5.39 –Blue Box). However, Gina approached the puzzle differently: 3 + 3 (in the first 

attempt), 2 ∙ 3 (in the second attempt), 2 ∙ (1 + 2) and 1 ∙ 2 ∙ (1 + 2) (in the third 

attempt), 2 ∙ 2 + 2 (in the fourth attempt) (Figure 5.40). These steps are 

mathematically correct but not what the game asked for. On the fourth attempt, after 

the incorrect decomposing of 4 (i.e.: rewriting 4	as 2 ∙ 2 instead of 2 + 2), she 

realized that she made a mistake and tapped the multiplication sign between 2 and 2 

to make 4, again, and rewrote 4 as 2 + 2 by using a keypad icon. If there were no 

tutorials in the puzzle in two modalities (e.g., written form and animation), I would 

say that Gina explored the game and tried out different options. However, there was a 

tutorial and Gina solved the puzzle in her fourth attempt. Gina appeared to solve the 

puzzle without caring about the tutorial on the screen and without caring about the 

number of steps and/or attempts and errors.  

 

Figure 5.39: Puzzle 1.11 
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Figure 5.40: Puzzle 1.11 Gina’s Different Decomposition of 6 

Gina worked the slowest through the puzzle and was able to reach just Puzzle 

3.18 at the end of the play sessions. She solved the puzzle by reading the instruction 

and playing but she did not pay attention to the animated tutorials or rewards. She 

used the Hint icon more than once after already using the offered Hint gesture. She 

used pointing gestures while solving the puzzles.  

In summary, participants had different gameplay strategies and paces, and 

showed different kinds of gestures while playing the game. Ava, Carl, Demi, and 

Gina preferred to use the Hint icon to get informative feedback, while Bella, Evan 

and Fin did not use any Hints. Ava and Demi also used the Gesture icon. Ava and 

Demi re-solved puzzles if they got one or two clovers, but Bella, Carl, Evan, Fin, and 

Gina did not re-solve puzzles after completing them and earning clovers. Ava skipped 

solving the last four puzzles in Worlds 1,2, and 3 but solved puzzles in the 4th to 8th 

Worlds. Bella just solved the last four puzzles in the 1st World, then skipped to other 

worlds. Carl skipped the last four puzzles in 3rd World, and Demi also just skipped 
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the 5th World’s last four puzzles. Meanwhile, Fin preferred to skip those puzzles. 

Evan and Gina solved all of the last four puzzles in the Worlds they reached. Evan, 

Fin, and Gina used pointing gestures, and Carl and Fin showed their thinking through 

gestures. Fin (10.10), Bella (10.8), Ava (8.18), and Carl (8.3) went the farthest in the 

game while Evan (6.16), Demi (6.14), and Gina (3.18) solved puzzles in the earlier 

worlds. In the next section, Play Aloud, I present how players express themselves 

while playing the game.  

Play-Aloud  

After gameplay, I observed the students in a play-aloud session (Pellicone et 

al., 2022) to understand what sort of physical gesture clusters the participants used to 

explain their digital gestures. The participants started playing the puzzle that was their 

last puzzle at the end of the gameplay session, but this time they explained out loud 

what they were doing. At the beginning of the session, I also asked each participant 

“If you had to describe this game to your friends, how would you describe it, could 

you play like you are doing live streams to your friends?” I asked this question to 

clarify the meaning of the play-aloud session by giving the known example of live 

stream videos.  

My open-coding process included some priori codes which were defined by 

Alibali and Nathan (2012): Pointing gestures, Representational gestures (dynamic and 

static), and Metaphoric gestures. Moreover, I added the gesture code and labeled each 

gesture as: Feedback gestures; thinking gestures, and negative and positive emotion 

gestures.  
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Pointing Gestures. Participants played the game on an iPad tablet, a 

touchscreen device. Hence, to play the game, they generally used their index finger to 

tap (“briefly touching the surface with a fingertip”, Villamor et al., 2010, p.1) on the 

number and to drag (“moving fingertip over the surface without losing contact”, 

Villamor et al., 2010, p.1) the number to the new place. Tapping and dragging are 

examples of touchscreen gestures. On the other hand, similar gestures with an index 

finger were defined as pointing gestures, “gestures that serve to indicate objects or 

locations, often with an extended index finger” (Alibali & Nathan, 2012, p.251) 

because players used their index finger or any other finger to show the variable before 

tapping or dragging it.  

For example, Demi’s first time through Puzzle 7.3. The topic of World 7 is 

Order of Operations, and in Puzzle 7.3, the given equation is  and the 

goal is  . Demi was seeing addition as another operation in the 

denominator for the first time. In Figure 5.41, Demi expressed her feelings about the 

situation. To solve this Puzzle 7.3, the player should start with parentheses like

 or  to follow the order of operations.  did not have visual 

parentheses, however, to follow the order of operations – Parentheses, exponents, 

multiplication-division (from left to right), and addition-subtraction (from left to 

right)	– or to do the division, she needed to tap the plus sign in  first. After 

pointing at , Demi tapped the plus sign between 2 and 1, and made 3, then 

kept solving the puzzle.  
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 I haven't seen, I don't think I've seen this yet, 
     pointing to the denominator, 2+1 
which is cool 
    tapping keypad icon, re-tap keypad icon 
Let’s set this up then 
   tapping plus sign between 2 and 1 made 3 
 

Note: For this and the following figures, gestures are shown indented and in bold, and 
actions are shown indented and italics. 

Figure 5.41: Demi – Pointing New Concept. 

Another example of a pointing gesture is pointing to two variables at the same 

time. In World 10, the topic is Distribution. In Puzzle 10.13 (Figure 5.42), the goal is 

to end with  when the starting equation is 

. To solve the puzzle, players need to multiply	4𝑥 and 6𝑦 by 

distributing (6𝑦 + 7) across (4𝑥 − 5). In Figure 5#2, Fin pointed together 4𝑥	and 6𝑦, 

then he pointed separately 4𝑥 and 6𝑦, and after thinking a little, he dragged 6𝑦 + 7 

into 4𝑥 − 5 to make 24𝑥𝑦 as the first variable of the goal. He then proceeded with 

solving the puzzle.  

 We want to combine 
        pointing 𝟒𝐱 and 𝟔𝐲 together 
 4𝑥 
        pointing 𝟒𝐱 
and 6𝑦 
        pointing 𝟔𝐲  
into 24𝑥𝑦… 
So, let’s see, it’s gonna be like this, then              
combine that 
        dragging (6𝑦 + 7) in the (4𝑥 − 5) 

Figure 5.42: Fin – Pointing Two Numbers Together 
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Representational Gestures. Representational Gestures are defined as 

“gestures that depict semantic content directly via the shape or motion trajectory of 

the hand” (Alibali & Nathan, 2012, p. 251). There are two subcategories of 

representational gestures; dynamic and static (non-dynamic) representational 

gestures. Dynamic representational gestures are used to investigate a variety of an 

object’s attributes (e.g., adjusting the angle of the triangle, Nathan et al., 2021). Static 

representational gestures are used to describe the characteristics of objects (e.g., 

location or shape, like showing two sides of a triangle with two hands, Nathan et al., 

2021). In this study, participants did a live stream of their game-playing to 

demonstrate their actions and perceptions as they expressed themselves through both 

dynamic and static representational gestures. 

Figure 5.43 highlights both dynamic and static features of representational 

gestures. It is dynamic because the participant showed the object’s properties like 

drawing 0 in the air, and it is static because the participant showed the location of 0. 

In Puzzle 7.13 (Figure 5.43), the goal is  and the starting equation is  

. Demi got 0 at the end of the equation by dragging −𝑧 onto 𝑧 

(Figure 5.#3). After getting 0, to solve the puzzle she needed 0 in the beginning of the 

equation. She represented 0	with a gesture by drawing 0 in the air (i.e., dynamic 

representation) at the beginning of the equation (i.e., static representation). Then she 

kept solving the puzzle, first canceling 𝑦’𝑠 in the equation and then canceling the 4’s 

to equal zero. So, Demi solved the puzzle in three steps. Hence, this example shows 

that some participants, like Demi, used representational gestures to cover 

mathematical knowledge and express themselves. 
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 We get our plus zero on the end 
pointing	𝟎 at the goal 
pointing 𝟎 at the equation  

and yes, technically, there should be a zero 
drawing 𝟎 in the air over y  

in the beginning 
dragging y (numerator) onto y 
(denominator) – canceling y’s 

in order to get our zero 
drawing 𝟎 in the air 

in the least amount of step, I’m going to bring the 
negative four to the positive four] 

dragging −4 onto 4 – canceling 4’s 

Figure 5.43: Demi – Drawing 0, Tracing a Circle in the Air. 

Representational gestures can also convey imaginative perceptions. In this 

game, From Here to There!, player skill is measured by step numbers. The purpose of 

these step numbers is to mimic the traditional step-by-step process of solving 

mathematics problems. Demi depicted these steps as gestures in Puzzle 2.16 (Figure 

5.44). The goal of the puzzle is and the start equation is 

. After dragging 5 (at the end) onto 5 (at the beginning) to make 25, 

Demi needed to decompose 24. In this example, Demi represented the steps by 

showing not an object but the imaginary place of the factors of 24; first 12 and 2 then 

3, 4, and 2. This example includes representational gestures, “split up … into…” 

which cover mathematical concepts like the factors of 24.  
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 Normally I would just split up the 24 
pointing 24 (first-row, one point) 

into other 12 and 2 
pointing two places for 12 and 2 below 

24 (second-row, two points) 
and then go into three four two 

 pointing three places for 3 4 2 below 12 
and 2 (third-row, three points)  
and then multiply the 2 by 4 

pointing a place for 2 and pointing 4 in 
the equation 
 

Figure 5.44: Demi – Trajectory the Steps 

Metaphoric Gestures. There is an argument that “metaphoric gestures reveal 

speakers’ body-based conceptual metaphors” (Alibali & Nathan, 2012, p. 267). As 

humans, we are understanding abstract concepts through concrete terms, in other 

words, conceptual metaphors (Lakoff and Núñez, 2001). Lakoff and Núñez (2001) 

presented some conceptual metaphors for mathematical concepts: Numbers Are 

Things in the World, Arithmetic is Object Collection, Arithmetic is Motion Along a 

Path, Arithmetic is Object Construction, etc.  

In this study, I observed the “Numbers are Things in the World” and 

“Arithmetic Is Object Collection (putting a collection together or taking smaller parts 

from the larger collection)” metaphors. Figure 5.45 shows how Demi solved Puzzle 

6.10, where the main topic of World 6 is division. In Puzzle 6.10, the given equation 

is  and the goal is . Demi used metaphors like numbers are things that can 

move or be manipulated (line 3), multiplication brings these objects together, and 

division splits up these objects (line 8). Moreover, Demi expressed herself through 

gestures (line 4 for moving the numbers and lines 10 and 13 for bringing and 

separating the numbers).  
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But these fractions  
pointing fractions 

are cool, because I liked, I could move them 
moving her hand from up and down 

and like like if I moved (23) up here 
dragging 23 (denominator) onto 46 (numerator) 

made 2.23 
then it would split this one (the 23 in the denominator) or 
this one (46 – 2.23 – NUMERATOR) 

bringing together her index and middle finger 
and then 

separate 
like into what is it called like common factors  

bringing together her left and right hand and 
then 

separate  
and then I could bring them together (23's) and 

dragging 23 (numerator) onto 23 (denominator) 
23’s gone 

Figure 5.45: Demi – Putting Together 

Another metaphoric gesture example is not related to mathematical 

understanding. This metaphoric gesture refers to the idea that brains can be 

colloquially considered machines, where Person 1 may chuckle at Person 2, who is 

thinking really hard, and say: “I can see your gears are turning!” After solving Puzzle 

11.13, Fin made a twirling motion reminiscent of gears turning with his index finger 

in the air and said, “talk it through, it really helps me get the [silence a moment – 

twirling motion in the air], I guess the best solution” (Figure 5.46). I coded this 

gesture as a metaphoric gesture because of what I observed and the alignment of his 

gestures with the definitions of metaphoric gestures. First of all, he did the gesture 

after solving the puzzle, then was silent for a second, and then made the gesture like 

he wanted to remember something or wanted to work the “gears in his brain.” His 

gesture looked like he was turning a gear.  
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Figure 5.46: “Brain is a Machine” 

Feedback Gestures. One of the research questions is “How do failure and 

feedback manifest in mathematical gameplay within playing the game from the 

student's perspective?” Hence, after some successful or unsuccessful puzzle-solving 

action, players would react to their achievement (e.g., by celebrating) or their failure 

(e.g., sunken shoulders). Some gestures meant that the player was thinking, and 

expressing either negative emotions (feeling confusion, getting bored, getting 

defensive, feeling nervousness, etc.) or positive emotions (feeling pride, enjoyment, 

etc). 

Thinking Gestures. In this study, the players’ thinking gestures were actually 

silent gestures; players did not say that they were thinking or what they were 

thinking. Instead, they just played silently while enacting gestures as a way to show 

that they were thinking. For example, they scratched their head (Figure 5.47 – Left) 

and put their hand to their chin (Figure 5.47 – Right).  
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Figure 5.47: Thinking Gesture – Scratching Head (Left) and Putting Hand to 
Chin (Right) 

Negative Emotions Gestures. The players’ negative emotions were also silent 

gestures; they did not say they were getting bored, getting defensive, or feeling 

nervous, but they did show these emotions through various kinds of gestures as a 

clue. In other words, their gestures helped to explain the negative emotions they were 

possibly feeling while playing. For example, cracking their fingers; meaning dealing 

with nervous energy (Shmerling, 2020) (Figure 5.48 – Left), crossing their arms; 

meaning feeling uncomfortable (Glass, 2002) (Figure 5.48 – Right), drumming their 

fingers; meaning nervousness (Glass, 2002) (Figure 5.49 – Left), self-touching; 

meaning uncomfortable (Glass, 2002) (Figure 5.49 – Right).  

  

Figure 5.48: Negative Emotions Gestures – Cracking Fingers (Left) and 
Crossing Arms (Right) 
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Figure 5.49: Negative Emotions Gestures – Drumming Fingers (Left) and Self-
touching (Right) 

Positive Emotions Gestures. Besides negative emotions, players showed some 

positive emotions. However, these positive emotions were not expressed through 

gestures. For example, players sometimes said “Yes!”, and “Perfect!” after getting 

three clovers from the puzzle. They also showed some enjoyment while solving 

puzzles and this joyfulness affected their voices. Even though they were wearing 

masks, I could still see them smile and laugh sometimes.  

In summary, these pointing, representational, metaphoric, and feedback 

gesture examples show that participants used these physical gesture clusters to 

explain themselves and to express their emotions. Moreover, their gestures helped us 

to understand what they meant by their comments about the game, and vice versa, 

their comments helped us understand their gestures.  

Post-Interview 

 According to the players’ post-interview responses, they generally liked 

playing the game during the gameplay session. Their responses will be analyzed in 

detail in later papers. In this study, the last four questions were analyzed.  

Q13) How did you solve this puzzle? Could you describe and solve it again from the 
tablet?  
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(FH2T Puzzle 1.9, Figure 5.50) 
 

 

Figure 5.50: Post-Interview Q13 – Puzzle 1.9 

Q14) How did you solve this puzzle? Could you describe and solve it again from the 
tablet?  

(FH2T Puzzle 2.14, Figure 5.51) 
 

 

Figure 5.51: Post-Interview Q14 – Puzzle 2.14 

Q15) How did you solve this puzzle? Could you describe and solve it again from the 
tablet?  

(FH2T Puzzle 3.14, Figure 5.52) 

 

Figure 5.52: Post-Interview Q15 – Puzzle 3.14 
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Q16) How did you solve your latest puzzle? Could you describe and solve it again 
from the tablet?  

Q13 Responses. The post-interview Q13 (Puzzle 1.9 Figure 5.50) is similar to 

pre-interview Q8 (Figure 5.53). The purpose of these questions is to understand 

participant knowledge of properties of addition like closure, commutative, 

associative, etc. In Puzzle 1.9, players need to first decompose 10, then add the factor 

of 10 to 7 and 6. 

 

Figure 5.53: Pre-interview Q8 

Ava solved Puzzle 1.9 in the gameplay session and got three clovers. In the 

post-interview, she chose to decompose 10 into 5 + 5 (Figure 5.54). She paid 

attention to the order of her digital gestures by tapping the “keypad” button to access 

the keyboard and then tapping the number (10). She then substituted the number 

correctly (5 + 5) to avoid a keypad error and tapped done to activate the substitution 

from the keypad to the game screen. To solve the puzzle and earn three clovers, she 

dragged the first 5 onto 6 to make 11 and then dragged the second 5 onto 7 to make 

12. Carl followed the same strategy as Ava (decomposing 10 into 5 + 5, then adding 

5’s to 6 and 7). 
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Figure 5.54: Ava and Carl’s Strategy on Puzzle 1.9  

Bella solved the puzzle in the gameplay session and got two clovers. In the 

gameplay session, she preferred to decompose 7 into 6 + 1, then she dragged 6 next 

to 6, and 10	next to 1, then tapped the plus sign between these number groups. This 

strategy involved extra two steps. However, in the post-interview, Bella decomposed 

6 as 5 + 1 (Figure 5.55), then dragged 10 onto 1 to make 11, and completed the 

problem by dragging 5 onto 7 to make 12. Since she solved the puzzle in three steps, 

she received three clovers.  

 

Figure 5.55: Bella’s Strategy on Puzzle 1.9  

Demi solved the puzzle in the gameplay session and got three clovers. In the 

post-interview, on her first attempt, she got two clovers. She first dragged	b to the 

end, which caused an extra step. To complete the problem, she then tapped the plus 
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sign between 7 and 6	to make 13, decomposed 13 into 12 + 1 (Figure 5.56 – Left), 

and tapped the plus sign between 1 and 10 to make 11. Therefore, she solved the 

puzzle in four steps and got two clovers. However, in her second attempt, she dragged 

10 onto 7 made 17, then decomposed 17 into 12 + 5 (Figure 5.56 –Right), and 

ended with tapping the plus sign between 5 and 6	to make 11. In this attempt, she 

solved the puzzle in three steps and got three clovers. 

  

Figure 5.56: Demi’s Strategies on Puzzle 1.9  

Evan solved the puzzle in the gameplay session and got two clovers. In the 

post-interview, on his first attempt, he tapped plus sign between 7 and 6	made 13, 

then restarted the puzzle. In his second attempt, he tried to decompose 6 into 3 + 2 

but received keypad error feedback: “The total of the new expression should be the 

same as the original” (Figure 5.57). After this feedback, he deleted 2 and tapped 3 on 

the keyboard. Then he tapped the plus sign between 7 and 3 and got 10. Then he 

decomposed 10	into 5 + 5, but then tapped the restart icon. In his third attempt, he 

decomposed 10 into 5 + 5, and then dragged one 5 onto 6 making 11, and the second 

5 onto 7 to make 12, solving the puzzle in three steps and getting three clovers. 
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Figure 5.57: Evan’s Strategy on Puzzle 1.9  

Fin solved the puzzle in the gameplay session and got two clovers. In the post-

interview, he preferred to decompose 7 into 1 + 6 (Figure 5.58– Left), then drag 6 

next to 6 making 12. After performing this step, he restarted the puzzle. In his second 

attempt, he decomposed 7 into 6 + 1 (Figure 5.58 – Right), dragged 10 onto 1 to 

make 11, and then 6 onto 6 to make 12, solving the puzzle in three steps and getting 

three clovers. 

 

Figure 5.58: Fin’s Strategy on Puzzle 1.9  

Gina solved the puzzle in the gameplay session and got two clovers. In the 

post-interview, she got 2 clovers again. She, like Fin, preferred to decompose 7 into 

6 + 1 (Figure 5.59), then drag 6 onto 6 to make 12. After performing these steps, she 

dragged b to the end of the equation, which caused an extra step. To complete the 
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problem, she dragged 1 onto 10 and made 11. She was able to solve the puzzle in 

four steps and got two clovers. 

 

Figure 5.59: Gina’s Strategy on Puzzle 1.9  

Q14 Responses. The post-interview Q14 (Puzzle 2.14, Figure 5.51) is similar 

to pre-interview Q9 (Figure 5.60). These questions help to understand participant 

knowledge of properties of multiplication like the commutative and associative 

properties. In Puzzle 2.14, players need to multiply	10 by 10 to make 100 and 20 by 

5 to make 100. Bella, Carl, Demi, Evan, and Fin each solved the puzzle as required 

by following these steps.  

 

Figure 5.60: Pre-interview Q9 

Ava solved Puzzle 2.14 in the gameplay session and got one clover. In the 

interview, she mentioned she treated the blank as an x during the pre-interview and 

solved for x. She did one side was equal to ten thousand 𝑎 and the other side one 

hundred 𝑎 times x. She solved the question by merging numbers together 𝑎, 100, and 

100 to multiply with each other. In the post-interview, while solving Puzzle 2.14, she 

dragged a to the beginning of the equation first, then tried to factor 20 as 10	times 5, 
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but this caused a keypad error (Figure 5.61). The feedback (Keypad yellow popup 

message: “The total of the new expression should be the same as the original) helped 

Ava realize that she made an error. After receiving this feedback, she changed 5 to 2, 

then dragged 2 onto 5 made 10, then multiplied 10’s each other to make 100 ∙ 100. 

Dragging	a to the front, decomposing 20 into 10 and 2, and multiplying 2 with 5 

caused her to make extra three steps, so she solved the Puzzle in five steps while the 

minimum step number is two. She got just one clover in the end. In her second 

attempt, she did not decompose 20, directly multiplied 5 with 20, and made 100, 

avoiding the extra two steps. However, instead of dragging 20 onto 5, she dragged 5 

onto 20a, creating an extra step to get	a alone. In this attempt, she solved the puzzle 

in three steps and got two clovers.  

 

Figure 5.61: Ava’s Strategy on Puzzle 2.14 

Gina solved the puzzle in the gameplay session and got two clovers. In the 

post-interview, she again got two clovers because she preferred to drag a to the front 

of the equation which caused an extra step (Figure 5.62). She then solved the puzzle 

in three steps by dragging 5 onto 20 making 100 and dragging 10 onto 10 making 

100.  
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Figure 5.62: Gina’s Strategy on Puzzle 2.14 

Q15 Responses. The post-interview Q15 (Puzzle 3.14, Figure 5.52) is the 

same as the pre-interview Q10 (Figure 5.63). The question aims to understand 

participant knowledge of properties of multiplication like the associative and 

distributive properties. In Puzzle 3.14, players need to decompose 120	to 60	and 60, 

factor the first 60 into 5 ∙ 12, and then the second 60 into 12 ∙ 5. Except for Gina, 

other participants – Ava, Bella, Carl, Demi, Evan, and Fin –solved the puzzle as 

required by following these steps.  

 

Figure 5.63: Pre-interview Q10 

Gina solved Puzzle 3.14 in the gameplay session and got two clovers. In the 

post-interview, she again got two clovers but solved them in two attempts. In the first 

attempt, she decomposed 60 into 6.10 (Figure 5.64-Left), which is mathematically 

correct but not the goal of the puzzle. In her second attempt, she also followed the 

needed steps: 1. Decomposing 120 into 60 + 60, and 2. Decomposing the first 60 as 

5 ∙ 12. However, in the third step, she again decomposed the second 60 as 5 ∙ 12 
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instead of as 12 ∙ 5, thus needing to change the order of 5	and 12 (Figure 5.64-Right) 

and causing an extra step.  

  

Figure 5.64: Gina’s Strategy on Puzzle 3.14 

Q16 Responses. The post-interview Q16 is the participants' last puzzle in the 

play-aloud session. Ava solved Puzzle 9.10 as her final puzzle. In Puzzle 9.10, the 

given equation is  and the goal is . 

Nine steps are enough to solve the puzzle, but Ava said she did not care about the step 

numbers or the number of clovers she gets. She first got rid of 𝑧’s from the equation 

by dragging 𝑧 from one side to another, which required five steps already. Then she 

realized 80 and 19 make 99 on the left side, so she dragged 80 from the right to the 

left side. She also realized 61 and 38 make 99 too, so she dragged 38 from the left to 

the right side (Figure 5.65). She then got rid of like terms (e.g., 38 and −38 on the 

left side and 80 and −80 on the right side). Finally, she solved the puzzle with 13 

steps and got one clover.  
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Figure 5.65: Ava’s Strategy on Puzzle 9.10 

Bella solved Puzzle 12.2 as her final puzzle (Figure 5.66). In Puzzle 12.2, the 

given equation is  and the goal is . Puzzle 12.2 is the first puzzle 

introducing the feature of allows players to divide the variable to the same number in 

both sides of the equation by tapping and holding an equal sign, which opens the 

keyboard. For this reason, the puzzle has an animated solution that Bella followed by 

first tapping and holding the equal sign to open the keyboard, then tapping the 

division sign, then 6, and then done on the keyboard. She solved the puzzle with one 

step and got three clovers.  

 

Figure 5.66: Bella’s Strategy on Puzzle 12.2 
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Carl solved Puzzle 8.1 as his final puzzle (Figure 5.67). Puzzle 8.1 is the first 

puzzle introducing the feature of tapping and holding an equal sign, which opens the 

keyboard and allows players to add a variable to both sides of the equation (the 

property of equality). Since the puzzle is the first puzzle that introduces the property 

of equality, it has an animated solution. Carl followed the animated solution by first 

tapping and holding the equal sign to open the keyboard, then tap the plus sign, then 

tap 1, and then done on the keyboard. So, he solved the puzzle with one step and got 

three clovers.  

 

Figure 5.67: Carl’s Strategy on Puzzle 8.1 

Demi solved Puzzle 8.6 as her final puzzle (Figure 5.68). In Puzzle 8.6, the 

given equation is  and the goal is . To solve Puzzle 

8.6 and earn all three clovers, players need to add 𝑐 in front of 𝐸, not after 𝐸. 

However, Demi added 𝑐	after 𝐸 (Figure 5.68), which caused extra steps for her 

because she needed to change the position of 𝑐 later.  After adding 𝑐	to the equation, 

she canceled out the 𝑐’s on the right side by tapping the plus sign between −𝑐 and 𝑐, 

then again tapping the plus sign between 62 and 0 to get rid of 0. She finished the 
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puzzle by dragging 𝑐 in front of 14	on the left side of the equation. She solved the 

puzzle with four steps and got two clovers.  

 

Figure 5.68: Demi’s Strategy on Puzzle 8.6 

Evan solved Puzzle 7.3 as his final puzzle (Figure 5.69). In Puzzle 7.3, the 

given equation is  and the goal is . He solved the puzzle in 

two attempts. In the first attempt, he received informative feedback by tapping the 

Hint icon (Figure 5.69a). He followed the Hint: “You can start with 2 + 1 or (4 +

1)”. Attempting to follow the hint’s advice, he got two different keypad errors. First, 

he tried to decompose −10 into 1 + 9 (Figure 5.70-Left) and second he tried to 

decompose 13 as −7 and −6	(Figure 5.70-Right). These examples show that he did 

not pay attention to the negative and positive properties of 10 and 13, respectively. 

He then restarted the puzzle and followed these steps: 

1. Tap on the plus sign between 4 and 1 made 5 
2. Tap on the multiplication sign between 2 and 5 made 10 
3. Tap on the plus sign between 2 and 1 made 3 
4. Tap on the division sign between 39 and 3	made 13 
5. Tap on the keypad icon, tap 13, the Keyboard open, tap −7	 − 6, tap done 

[keypad error] 
Delete −7	 − 6, tap 20 − 7, tap done 

6. Drag 20 onto −10 made 10 
7. Tap on the keypad icon, tap 10, the Keyboard open, tap 1 + 9, tap done.  

Got three clovers as a reward. 
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Figure 5.69: Evan – Puzzle 7.3 Hint 

  

Figure 5.70: Evan – Puzzle 7.3 Keypad Errors 

Fin solved Puzzle 12.7 as his final puzzle (Figure 5.71). In Puzzle 12.7, the 

given equation is  and the goal is . Puzzle 12.7 can 

be solved in six steps, which Fin accomplished:  

1. Drag −2 from right to left side made 22 + 2 = 14 + 10 − 2 + 2 
2. Tap on the plus sign between 14 and 10 made 22 + 2 = 24 − 2 + 2 
3. Tap on the minus sign between 24 and 2 made 22 + 2 = 22 + 2 
4. Tap on the plus sign between 22 and 2 made 22 + 2 = 24 
5. Tap and hold the equal sign, the Keyboard opens, tap ÷ 6, tap done made 

%%.%
"

= %#
"

 

6. Tap on the division sign between 24 and 6 made %%.%
"

= 4 
Got three clovers as a reward. 
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Figure 5.71: Fin - Puzzle 12.7 

Gina solved Puzzle 4.10 as her final puzzle (Figure 5.72). Puzzle 4.10 is the 

first puzzle introducing the feature of substituting a negative number with an 

equivalent expression. Since this is the first puzzle to introduce this new rule of the 

game, it displays an animated solution. Gina followed the animated solution by first 

tapping the keypad icon to open the keyboard, then tap the delete icon, then tapping 

−5 − 3, and then done on the keyboard. So, she solved the puzzle with one step and 

got three clovers. 

 

Figure 5.72: Gin - Puzzle 4.10 

In summary, Table 5.4 illustrates the performances of the participants. For 

Q13 and Q15, except for Gina, participants solved them with three clovers. For Q14, 

except for Ava and Gina, participants solved Q14 with three clovers. While 
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comparing their pre- and post-interview scores (Table 5.5), Bella, Demi, Evan, and 

Gina showed improvement in Q14, however, Ava did not. Demi and Gina showed 

improvement in Q15. 

Table 5.4: Post-interview Q13-Q14-Q15-Q16 Scores 

Name Q13 - 1.9 Q14 -  2.14 Q15 – 3.14 Q16 
 GP* PI^ GP PI GP PI  Puzzle GP PI 
Ava 3 3 1 1 3 3 9.10 - 1 
Bella 2 3 3 3 3 3 12.2 - 3 
Carl 2 3 3 3 2 3 8.1 - 3 
Demi 3 2&3 3 3 3 3 8.6 - 2 
Evan 2 3 2 3 3 3 7.3 - 3 
Fin 2 3 3 3 3 3 12.7 - 3 
Gina 2 2 2 2 2 2 4.10 - 3 

Note: *GP: Game Play, ^PI: Post Interview 

Table 5.5: Pre-interview Q8-Q9-Q10 Codes 

Name Q8 Q9 Q10 
Ava Perfect/3 Perfect/3 Perfect/3 
Bella Perfect/3 Large Error/1 Perfect/3 
Carl Perfect/3 Perfect/3 Perfect/3 
Demi Perfect/3 Large Error/1 Large Error/1 
Evan Perfect/3 Large Error/1 Perfect/3 
Fin Perfect/3 Perfect/3 Perfect/3 
Gina Small Error/2 

 

Large Error/1 Large Error/1 
 
Discussion   

The purpose of this study was to present theoretical justifications and 

illustrative examples of students’ digital and physical gestures while they played the 

game and expressed their mathematical understanding. For instance, pointing 

gestures demonstrated the particular objects in the game they were mentioning, 

representational gestures (dynamic and static) indicated their mental reflection of 

both the game and mathematics, metaphoric gestures showed their body-based 
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metaphors of the topic, and feedback gestures conveyed their emotional response to 

the environment. 

These gestures illustrate that mathematical understanding is embodied in 

several significant senses in mathematical discourse. This study provides evidence of 

learner-generated pointing gestures and affirms that mathematical understanding is 

rooted in the physical and virtual environment that contains mathematical 

expressions. Evidence from the study indicate that representational gestures show that 

mathematical understanding includes reflective actions on mathematical objects. 

Additionally, metaphoric gestures show the understanding of conceptual metaphors of 

mathematical topics. Finally, evidence from feedback gestures shows understanding 

of what learners' feelings are when they understand or talk about mathematical topics. 

Limitations  

I designed this study as a third study of the dissertation research. The 

overarching aim of the research is to explore how digital gestures connect to students’ 

mathematical understanding when playing FH2T. However, there are some 

limitations of the research and this study. First, the game, FH2T, is designed for 

middle school students' mathematical learning, however, undergraduate students were 

participants in this study. They brought their own previous gameplay experiences and 

mathematical understandings to the study. Additionally, the playing time was limited, 

and students did not complete all of the worlds in FH2T. The research time was 

limited too, as the pre-and post-interview had been done on the same day.  

Since this study observes the gameplay of a small sample of participants, I 

could not generalize the findings. However, this study emphasizes how every player 
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is unique. Each participant had a different gameplay experience when playing FH2T. 

Some of the participants wanted to get all clovers or to solve every puzzle in each 

world. Some of them were satisfied with earning only one clover and skipped the last 

puzzles of each world. There were also different perspectives on the game’s failure 

(keypad errors, shaking errors, and snapping errors), and feedback (formative, 

summative, and informative) system; some players cared about it while others did 

not. There were also instances where the participants manifested their thinking and 

emotions through gestures.  

Future Studies 

In this study, the participants' replies to the supplemental questions in the 

play-aloud session and their general opinions of gameplay questions in the post-

interview session were not analyzed. Their responses will be analyzed in detail in 

future studies. Another interesting direction for research would be to observe how 

students reflect their emotions through gestures while they are in mathematical 

learning environments.  

Conclusion 

In this research, I explored four ways participants used gestures when they 

explained what they were doing while playing the game: pointing gestures to show 

the specific variables they were mentioning, representational gestures (dynamic and 

static) to show their mental reflection, metaphoric gestures to show body-based 

metaphors of the topic, and feedback gestures to show their emotional reaction.  

In this work, I hope to further initiatives to create strategies that are 

empirically supported for enhancing students' mathematical gameplay experiences. At 
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the same time, I seek to improve the understanding of the nature of mathematical 

understanding, specifically how it develops throughout life and how video games may 

support it. I argue that integrating knowledge of embodied mathematical cognitive 

processes and behavior in the actual physical, social, and virtual interactions 

facilitates mathematical understanding.   
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Chapter 6: Discussion and Conclusion 

In this chapter, I discuss the research questions, results, and resulting scholarly 

contributions of three studies: 1) The Game Interaction, 2) The Quantitative Gesture, 

and 3) The Student Observation Study. After discussing the three studies individually, 

I then discuss the broader implications that the fields of Human-Computer Interaction 

(HCI) and Learning Sciences (LS) should consider. Throughout, I highlight potential 

future research that my work has identified.   

Study 1 – The Game Interaction Study  

The Game Interaction Study's research questions focused on how the game 

FH2T aligns with Game-Based Learning's structures, how failure and feedback 

manifest in mathematical play within the game, and whether the learning outcomes of 

the game meet the Common Core State Standards for mathematics required by the 

state of Maryland. The study's findings demonstrated that FH2T effectively integrates 

all elements of the Game-Based Learning model, including instructional content, 

feedback systems, and learning outcomes. In addition, the game's failure and 

feedback system was found to be well-designed, enabling players to learn from their 

mistakes while solving algebraic equations. Overall, the study suggests that FH2T has 

the potential to be an effective tool for teaching mathematics in a game-based 

learning environment. 

My approach to the Game Interaction Study was informed by the interaction 

analysis method. In short, Jordan and Henderson (1995) defined interaction analysis 

as “an interdisciplinary method for the empirical investigation of the interaction of 

human beings with each other and with objects in their environment” (p. 39). Jordan 
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and Henderson’s (1995) definition includes both human-to-human and human-to-

object interactions, but they do not specifically describe the object of investigation. 

Therefore, I contend that the object can be anything, technological or non-

technological. For example, calculators or an abacus used for calculation might be the 

subject of an interaction analysis from a mathematics education perspective. From the 

HCI perspective, Suchman (2007) claims that human-machine interaction covers both 

technical and popular aspects of computers regardless of their design and their 

utilization. She also points out that we should take the idea of human-computer 

interaction seriously as a form of interaction in the same way that we understand 

interactions between people. Lastly, interaction analysis is used to analyze how 

thoughts or understandings change through or after an interaction with tools, and 

Kirsh (2013) noted that “interacting with tools changes the way we think and 

perceive” (p. 1). In the Game Interaction study, “I” investigated FH2T, an educational 

game, “I” interacted with FH2T and interpreted the game from my perspective. 

Hence, in the study, I am both a participant and a researcher at the same time. While 

the above researchers did not specifically delimit interaction analysis to only include 

researchers observing other people’s interactions with the tools, that is how 

interaction analysis has been more generally taken up. However, I posit that first-

person interaction with tools could be in alignment with other interaction analysis 

research, and further research should investigate this expansion.   

As for the contribution of this study to the field, I offer insightful information 

on the potential of game-based learning through FH2T as a powerful tool for 

mathematics instruction. The findings of the study suggest that a well-designed 
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feedback system of educational games can help students learn from their errors and 

improve their understanding. Although the designers (Hulse et al., 2019; Chan et al., 

2021) designed the game and used it in another state, and Common Core Standards 

may vary from state to state, researchers and teachers in Maryland can use FH2T by 

showing this work to the authorities as evidence of appropriate fit. Moreover, in 

addition to other game-based learning research (e.g., de Feritas, 2006; Kiili, 2005; 

Prensky, 2003; Squire et al., 2005; Van Eck, 2006), this study’s findings contribute to 

the understanding of how game-based learning model can be used to teach 

mathematics and highlight the potential of such a model as a means of raising 

students' mathematical engagement and learning.  

Study 2 – The Quantitative Gesture Study  

The Quantitative Gesture Study's research questions focused on how digital 

gestures can impact students’ engagement and motivation to continue playing the 

game, FH2T. By using visual learning analytics and an embodied mathematical 

cognition perspective, this study helps to reveal the relationship between digital 

gestures and students’ choice to continue playing. The study’s findings indicate that 

digital gestures that lead to errors can have a significant influence on students’ 

decisions to continue playing.  

The study emphasizes how carefully game designers to pay attention the 

design of digital gestures within the educational game, for example, to help students 

stay in the flow (Csikszentmihalyi, 1990), not getting too frustrated when trying to 

solve the puzzles or too bored by only having easy puzzles. This knowledge can be 

used by developers to produce games with digital gestures that are more user-friendly 
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and error-proof, which could ultimately result in higher levels of student engagement 

and retention. In addition to other FH2T studies (Chan et al., 2022; Lee et al., 2022), 

the study contributes to the emerging field of visual learning analytics through the 

game by illustrating how digital gestures can be used as a source of data to analyze 

students' learning behaviors and decision-making processes.  

Study 3 – The Student Observation Study  

The Student Observation Study's research questions focused on the learner’s 

mathematical gameplay experience in playing FH2T, how failure and feedback 

manifested in mathematical play within the game through the learner’s perspective, 

and how physical gestures and digital gestures relate to explaining mathematical 

gameplay. The study on student observation revealed that learners utilized various 

types of physical gestures while explaining their actions in the game. For instance, 

they used pointing gestures to indicate specific variables, representational gestures 

(dynamic and static) to express their thoughts, metaphoric gestures to illustrate body-

based metaphors, and feedback gestures to show their emotional reactions.  

 One of the contributions of this study to the field is to present a unique 

approach to exploring the embodied mathematical cognition that occurs during 

gameplay by recognizing and categorizing the student’s gestures. As I mentioned 

above, in addition to Alibali and Nathan’s (2012) statement that some features of 

mathematical thinking are embodied and shown by pointing, representational, and 

metaphoric gestures. I included emotional feedback gestures (e.g., thinking, positive 

and negative emotion gestures) because learning mathematics can involve emotional 

aspects. The identification of specific types of gestures used by learners to express 
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mathematical concepts can inform the design of educational games that promote 

deeper learning and better engagement with mathematical concepts. Based on each 

student's unique needs and preferences, this study can be used to help personalize 

their learning experiences and interventions. 

In addition to the previous FH2T papers (Chan et al., 2021; Hulse et al., 2019; 

Lee et al., 2021; Ottmar et al., 2015), this study provides insights into the learner's 

mathematical gameplay experience in playing FH2T. Moreover, in this study, failure 

and feedback manifest in mathematical play from the learner's perspective. Through 

this study, understanding how learners experience failure and feedback in 

mathematical play can help educators develop effective feedback strategies that 

support learners' mathematical development, I will discuss this further in 

implications.  

Overarching Study  

The overarching study of these three studies research questions focused on 

how digital gestures connect to students’ mathematical understanding when playing 

FH2T. Having the “Gesture” icon and transferring each mathematical rule to digital 

gestures suggest that FH2T has been designed to help students improve their 

mathematical understanding through digital gestures. Students were simultaneously 

explaining their thoughts and describing their gameplay decision-making out loud, 

while also using physical and digital gestures to communicate. Physical and digital 

gestures help students visualize mathematical concepts and make them more tangible, 

leading to a better understanding of mathematics. In the game, each digital gesture 

provides immediate feedback, allowing students to quickly identify and correct 
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mistakes. Additionally, the game makes mathematical concepts more engaging, 

which can increase students' motivation and interest in mathematics. 

Regarding this study’s overall contributions to the field, it provides useful 

information about the connections among digital gestures, embodied cognition, 

educational game, and mathematical learning. By comprehending these connections, 

teachers and researchers can develop new approaches for mathematics education that 

make better use of both digital and physical gestures to increase students’ 

comprehension of and interest in mathematical concepts. This study can be a valuable 

tool for researchers and teachers seeking to deepen their understanding of 

mathematical understanding and promote effective learning strategies in educational 

games. 

Implications for the Game-Based Learning in Mathematics Education 

In this section, I discuss two major implications below, both organized around 

a revised version of the Garris et al. (2002) Game-Based Learning (GBL) Model. In 

the GBL model, the key component is the game cycle which is an iterative process 

that covers repeated user behavior-system feedback-user judgment loops. When 

integrating GBL into the classroom, the teacher’s feedback, the teacher’s judgment, 

and the teacher’s behavior should be added to the model. Through the development of 

a teacher dashboard, we could develop the students' gameplay and learning 

experience. I begin by describing how adding a teacher dashboard to FH2T could 

improve teachers’ ability to identify struggling students in class. I then recommend 

specific design components for any educational game, framed around the different 
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points of information and assessment (collectively called ‘feedback’ in Chapter 3): 

formative, summative, and informative. 

Teacher Dashboard  
 

FH2T is a self-paced, interactive game that supports mathematics learning. 

One primary difference between implementing and evaluating learning through 

playing FH2T in a laboratory setting (e.g., Chapter 5 Student Observation Study) and 

in a classroom setting is that while I was attending to a single student playing the 

game, teachers must attend to 30 or more. Consequently, one of the implications of 

my work is a better understanding of which digital patterns may inform teachers of a 

student’s need for support.  

In a traditional classroom, the teacher delivers instruction through lectures, 

discussions, and other forms of direct instruction while students listen, take notes, and 

complete assignments. On the other hand, in a classroom using FH2T, students are 

playing the game through touchscreen devices while they are looking at the game and 

tapping the variables on the screen to solve the puzzles. These students tend to be 

highly engaged and motivated to learn through the game (Chan et al., 2021; Hulse et 

al., 2019; Lee et al., 2021; Ottmar et al., 2015). Some students might become 

competitive and strive to earn all clovers and beat their classmates, while others might 

work collaboratively with their peers to solve puzzles and explain solutions through 

talking and gestures. Additionally, students develop a growth mindset, as they learn 

to view challenges and mistakes as opportunities for learning and they may also be 

more willing to take risks and made mistakes. Using the game in the classroom can 

create a positive learning environment where students feel safe to try new things, 
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without fear of failure or judgment (Gee, 2005; Hattie & Timperley, 2007; Williams-

Pierce, 2019).  

The FH2T backend data collection process can capture and analyze the 

complexity of an entire class playing, so a teacher dashboard that is updating live 

could in some ways replace the traditional classroom indicators of learning that 

teachers typically attend to. Through the dashboard, the teacher would be able to see 

an overview of their class, including each student's progress and performance on each 

puzzle. Moreover, like other technology-mediated classroom tools (e.g., Walkoe et al. 

2017), the teacher dashboard of FH2T would help teachers’ attend to the important 

parts of students’ thinking. In this section, I talk about some of the implications of my 

research for the design of a potential teacher dashboard.  

The game analytics process that has already been developed can create 

visualizations such as Indivisualizer, Measure Chart, Treemap, and Sankey Diagram, 

and the teacher dashboard could have simplified versions of these representations to 

support them in understanding how individual students and the class as a whole are 

performing. Teachers could view detailed data on game performance for individuals 

and the progress of the class as a whole. Below, I describe some potential teacher 

dashboard designs and simplified visualizations to support the productive use of 

FH2T in classrooms. 

To begin with, the teacher could click on the student’s name on the dashboard 

to view their progress in the game. For instance, an initial individual student view 

could provide overall descriptive statistics, or a quantitative sense of the student’s 

progress, including: the student’s latest puzzle, the errors they made on previous 
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puzzles, the clovers they earned on each puzzle, the time spent on each puzzle, and 

whether they tapped the hint or gesture button for informative feedback. The 

objective and learning goal of each puzzle would also be included in the dashboard, 

so the teacher could better understand each student’s performance. They could 

reassign specific puzzles or levels to resolve to help students achieve their learning 

objectives. Then clicking on an individual puzzle for the student, a version of the 

Indivisualizer could show all the student’s actions between the start state and the goal 

state. For instance, the number of steps, the errors, their reset and replay numbers, etc. 

In the Quantitative Gesture study, I categorized students' performance as Good, 

Good+Error, Moderate, and Developing, and this categorization could be automated 

by designers and integrated into the dashboard. Teachers could understand the 

student’s performance by checking for patterns of Moderate and Developing to 

pinpoint potential struggles, or by using the categories to match up students with 

different patterns to support peer learning.  

The teacher could also click on each puzzle to view the whole class's 

visualizations, for example, a simplified version of the Measure Chart. The Measure 

Chart would include data for each puzzle for the whole class on completion rates, 

number of steps taken, time spent on the puzzle, errors made by students, and use of 

hints. The Measure Chart interaction view could be improved by future designers, to 

reveal various ways in which students make specific errors and to make it easier for 

teachers to see the errors students are making. For instance, when teachers click on a 

section like “errors” – “keypad errors”, “shaking errors”, “snapping errors” – the 

interface may show a list of students who made that type of error in that puzzle, or the 



 

 

210 
 

section of  “use of hint,” they can see the list of students who used hints in that 

puzzle. With this information, teachers can bring the specific puzzle into classroom 

discussion, and they can talk more about strategies that students can use to improve 

their learning.  

A second visualization that can be incorporated into a teacher’s dashboard is a 

simplified version of the Treemap, which includes data on the percentage of students 

who took each first step for each puzzle for the whole class. In the Quantitative 

Gesture study, I calculated the Pearson Correlation coefficient between the first step 

and the performance of the player. For example, when teachers click on a section, 

they could see the list of students who took that first step and the following 

performance of the student in the puzzle. The relation between the first step and the 

mean number of the steps could be calculated and used to categorize the students. For 

extra classroom discussion, the teacher can bring the specific puzzles from particular 

categorizations and use them to foster student discussions. Furthermore, dashboard 

developers could use the whole user’s data from all students who played or are 

playing the game, and teachers could see how many of their students took a specific 

first step and could compare it to the rest of the data. Hence, teachers could get a 

sense of how their students might be struggling with puzzles compared to other 

students.  

Similarly, the Sankey Diagram (Flow Diagram), displays the flow of the 

strategies for the whole class for a single puzzle, which helps to visualize the different 

strategies of students into one graph. The vertical bars show the students’ 

mathematical problem-solving steps or their choice of mathematical expressions. The 
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thickness of the path illustrates the number of students who took that path. In the 

Quantitative Gesture study, I categorized gestures in the Sankey Diagram as 

productive (helping students solve the puzzle in the best number of steps) and 

nonproductive (extra steps that are not necessary for solving the puzzle). This 

categorization could be incorporated by designers and integrated with a simplified 

version of the Sankey Diagram into the dashboard, so teachers could understand the 

category by clicking the vertical bars. Moreover, another feature, when teachers click 

on any line in the flow, they could see the name of the students who took that step.  

 In summary, the Measure Chart, Treemap, and Sankey Diagrams could be 

simplified to provide teachers with an overview of all the students in a class, for each 

puzzle in FH2T. This could also be directly connected to the Indivisualizers by the 

designers. Through the useful design of linkages between these graphics, the teacher 

could better understand how the whole class and each student are performing, and 

compare the students with others and compare the students’ performance puzzle by 

puzzle. In the GBL model, the debriefing process provides a connection between the 

game cycle and the accomplishment of learning outcomes (Garris et al., 2002), and 

the teacher dashboard could help teachers gain valuable insights into the game cycle 

of students and help teachers debrief students' progress. Then, teachers could guide 

students through discussion of their experiences with the game and help them to 

connect their learning in the game to real-world applications. Hence, developing a 

teacher dashboard of FH2T could be an influential evaluation tool for assessing 

students, enhancing their learning, tracking their progress, and providing personalized 

support to students who need it.  
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Feedback System  

System feedback is an essential element of the Game-Based Learning model’s 

process stage (Garris et al., 2002). Players receive immediate feedback from the game 

on their performance, which helps them to identify the point of success and failure. 

FH2T provides three types of feedback – formative, summative, and informative (as 

outlined in the System Feedback section in Chapter 3). In this section, I discuss the 

implications of these feedback types for designers in more detail, as well as how the 

manifestation of these feedback types in gameplay could connect to the teacher 

dashboard. The game system gives on-time feedback, but some students also need in-

person feedback.  

Formative feedback is given by the game during the puzzle-solving. Through 

formative feedback, players can follow their actions’ reflections on the game screen. 

After feedback, they can adjust their behavior. For example, an existing type of 

FH2T’s formative feedback is changing the step number to red on the screen (which 

means they are over the minimum number of steps), so after that feedback, students 

can decide to reset the puzzle or to keep solving it. In addition, through the 

development of a teacher dashboard, teachers could see the real-time action of 

students, and offer formative feedback in-person as guidance to any student who 

appears to need it. By splitting the screen of the dashboard into multiple smaller 

screens, teachers could track all students' progress in the game while sitting at their 

desks. As a broader recommendation, game designers should always consider giving 

formative feedback during gameplay in any game to help players spot their mistakes 

and fix them right away.  
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Summative feedback, on the other hand, is given by the game after puzzle-

solving. Symbolic rewards such as collecting clovers, as well as making the next 

puzzle available, are forms of summative feedback in FH2T. Each clover also has 

meaning (3 clovers: Best Solution; 2 clovers: Completed with missing the best steps 

number; 1 clover: Just Completed), so students can assess their performance through 

clovers and decide whether to replay the puzzle or not. In the literature, for open-

online courses, Canessa and Pisani (2013) suggested that students re-watch the same 

lessons they received in their own classroom online at their own place and pace. 

Similarly, students have their own accounts for the game, and they could keep 

playing the game outside of the classroom. Moreover, if they want, they can replay 

the puzzles and worlds for practicing and getting speed on a mathematical operation. 

If the teacher dashboard provided a summary of each student’s 

development and performance, teachers could better identify any concepts in 

which students might benefit from extra help or instruction. Teachers could use these 

representations of summative assessments to assess their student’s understanding of 

the mathematical concepts covered in the game. Then teachers could use this 

information to reward students or go over again the concept to support their 

understanding. More broadly, game designers should offer summative feedback at the 

end of each puzzle or level to help players understand how well they performed and 

where they need to improve. This feedback could take the form of a scoreboard or 

report that details how the player or group of players performed in relation to 

particular goals and objectives.  
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Informative feedback is given on-demand by the game system to players 

seeking extra information. For example, in FH2T, informative feedback can be 

accessed by tapping the Hint icon to get a hint or by tapping the Gesture icon to 

revisit all the gesture-related rules needed to solve the puzzle. When students need in-

person informative feedback related to solving the puzzle, teachers could provide 

informative feedback to give each student individualized feedback through the 

teacher dashboard by tapping a newly designed “teacher” button or in-person by 

raising their hands and asking a question if they are in the classroom. Asking for 

informative feedback from the teacher also gives information on which mathematical 

concepts students struggling with. In the literature, Smith and Ferguson (2005) also 

recommended real-time chat opportunities with instructors for e-learning in 

mathematics courses. In game-based learning, also real-time chat or getting 

informative feedback from the teacher would help the learning. Game designers 

should also offer informative feedback for each puzzle in their game to assist players.  

Overall, FH2T supports learning and offers a fun and interesting way to 

practice algebra by incorporating formative, summative, and informative feedback. 

Teachers may be better able to support student learning, assess student progress, and 

offer specialized support to specific students who may be having difficulties by using 

these feedback types. Moreover, game designers should try to balance these three 

types of feedback to make games that are fun, challenging, and aids in the player’s 

skill development.  
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Implications for the Embodied Mathematical Cognition 

Research on embodied mathematical cognition can be used to make useful 

linkages to educational practice in any educational environment (e.g., mathematics 

classrooms, mathematical video games, mathematics museums, or summer camps). 

An embodied view offers a framework for analyzing how learners behave and interact 

in the educational environment. The embodied perspective also has the potential to 

anticipate the outcomes of particular learning practices. For instance, learning that 

involves engaging in actions may result in learners being better able to express 

themselves in gestures to re-invoke those actions.  

Teachers' or educators' implementations are another important bridge between 

research and practice. An embodied perspective supports teachers to focus on 

learners' gestures. Many examples of gestures and their meanings have been 

presented in this work. For instance, pointing gestures help educators to follow how 

students are working with each variable. Representational gestures help educators to 

understand the students' mental understanding of the concept. Metaphoric gestures 

help educators to find out the student's conceptual understanding of the topic. If 

educators are able to be aware of any of these gestures while teaching, they may 

prevent misconceptions from arising. Since mathematical understanding is also 

emotional, feedback gestures may inform educators about how students reflect their 

emotions in a mathematical learning environment. If educators are able to be aware of 

any negative emotions, they may want to change the situation in the environment to 

help students create a positive perception of mathematics.  
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Educational game designers also can use embodied mathematical cognition to 

create games that are more engaging and effective for teaching. They can integrate 

conceptual metaphors of the topic into their game. They can incorporate physical 

interaction into the game mechanics and design games for virtual reality tools too, as 

learning can be embodied, distributed, and dynamic in powerful ways through virtual 

reality tools (Walkington et al., 2021). They can create games that encourage players 

to take embodied action like measuring or manipulating objects in the game 

environment. They can also use haptic feedback to provide players with developing a 

better understanding of mathematical learning.  

Future Studies 

This study covers three studies, and each study can be extended in different 

ways. For the extension of the first study, further research could focus on first-person 

interaction with the tools as a theoretical extension of the interaction analysis 

methodology. Regarding the students' observation study, the participants were from 

the United States, which provides results from only one country. Mathematical 

understanding and embodied cognition, however, appear to be universal, therefore, it 

would be interesting to research how students from other countries reflect their 

understanding with gestures while playing FH2T and/or any other mathematical 

educational game. Moreover, touchscreen devices were used in the study, and future 

research projects might compare playing with desktop or laptop computers with 

touchscreen devices.  

While designing a teacher dashboard, the user interface should be intuitive 

and user-friendly for teachers. Future studies should involve, first, understanding the 
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needs of teachers for a game dashboard, then analyzing usability tests with teachers to 

identify meaningful or overwhelming points of the dashboard, and testing different 

data visualization formats to determine which are more effective and useful for 

teachers.  

Conclusion 

Integrating video games in an educational environment is a complex venture. 

This dissertation covers three studies (The Game Interaction, The Quantitative 

Gesture, and The Student Observation studies) to investigate an educational 

touchscreen video game, FH2T, from three different perspectives (e.g., from the 

researcher, middle school students, and undergraduate students) and three different 

methodologies (e.g., inspired by interaction analysis, visual learning analytics, and 

qualitative analysis). The results show that students used both digital (e.g., dragging, 

tapping) and physical gestures (e.g., pointing, representational, metaphoric, and 

feedback) to express their mathematical understanding when playing the game, 

FH2T, which covers all elements of the Game-Based learning model.  
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Appendices 

Appendix 3.1: Icons on the World 1 Screen 

Figure A3.1.1 

Outline of World 1 (Left-Started and Right-Finished)  

   

In this Appendix, the icons are described, and their duties are explained. The 

icon on the left corner (Figure A3.1.1-Left-A) is a “Menu” icon. When players tap the 

Menu icon, they return to the main page (Figure 3.3). The top banner (Figure A3.1.1-

Left-B) covers information about the world such as the number and the name of the 

world. On the left, the small icon is World 1’s icon which is visualized by a “growing 

seed” (Figure A3.1.1-Left-C). Next to the world’s icon, the number and the topic of 

the world are written (Figure A3.1.1-Left-D); this is the first world, and the subject is 

addition. On the right section of the banner, there is a number, 0/54, and the icon of a 

three-leaf clover (Figure A3.1.1-Left-E). The number – 0 – shows how many clovers 

were collected, and the other number – 54 – shows the total number of clovers that 

can be collected in this world. At the beginning of the game, 0 (zero) out of a possible 

54 clovers have been collected (Figure A3.1.1-Left-E). The process for collecting 

clovers is explained in the System Feedback section. Another icon on the right corner 
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(Figure A3.1.1-Left-F) is the “Pause” icon visualized by two vertical lines; this icon 

allows the player to take a break in the world. When the player clicks the Pause icon, 

a pop-up message appears on the screen (see Figure A3.1.2). Players need to click the 

“Resume Game” icon to turn back to the game. The lock icons (Figure A3.1.1-Left-

G) are opened one by one when the player solves the puzzle and passes to another 

puzzle. There are also stars on the right corner of some puzzles (Figure A3.1.1-Left-

H) that introduce the player/learner to a new rule. For example, the first rule is given 

in World 1-1 (see Figure A3.1.3) by using both animated graphics (visual) and text 

(textual). Rules are listed in Appendix 3.3-Rules of the Game).  

Figure A3.1.2 

Game Paused! - Pop-up Message  
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Figure A3.1.3 

World 1-1  

 

Appendix 3.2: Icons on the Puzzle Screen. 

Figure A3.2.1 

World 1-1  

 

In this Appendix, the icons are described, and their functions are explained. 

On the left, the first icon is the “Worlds” icon, which is visualized by nine small 

boxes (Figure A3.2.1-A). This “Worlds” icon allows the player turns to the “Main 
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Page” which shows all the available Worlds on the tree (see Figure 3.3). The second 

icon is the “Restart” icon visualized by a curved arrow (Figure A3.2.1-B), allowing 

players to start over the puzzle. When the player makes a mistake and wants to undo 

the last step, but s/he could not undo just one step. By tapping this restart icon, 

players restart the puzzle from the beginning. The third icon is the “Pause” icon 

figured by two vertical lines (Figure A3.2.1-C). The pause icon allows players to take 

a break from the puzzle, and a pop-up message appears on the screen (Figure A3.2.2). 

After pausing, the player must click the “Resume Game” icon to turn back to the 

puzzle. The fourth icon is the “Hint” icon visualized by a lightbulb (Figure A3.2.1-

D). After clicking this icon, a small hint about how to solve the problem appears in a 

written format above the white “Goal” box (see Figure A3.2.3- Hint). The fifth icon is 

the “Gestures” icon figured by a question icon (Figure A3.2.1-E). The Gesture icon 

gives the players clues to which gesture (rule) was used to solve the puzzle in a listed 

format with a pop-up message. Figure A3.2.4-Left shows the gesture in World 1 

Puzzle 1 (Other gestures are listed in -Appendix 3.4- the table of Gestures and 

Descriptions). Just one gesture is needed to solve this puzzle – “Commute Terms.” 

When the player clicked the “Commute Terms,” a new pop-up message explains it in 

detail with animated graphics and text format, as shown in Figure A3.2.4-Right. In 

this paragraph, the icons on the puzzle screen are explained. There are also animated 

graphics and text on the screen.  

In this paragraph, the animated graphics, and text in Figure A3.2.1 are 

explained. Figure A3.2.1-F (blue box) shows the new rule in the puzzle by animated 

graphics, and Figure A3.2.1-G (blue box) explains the rule in the text format. Figure 



 

 

222 
 

A3.2.1-H is the starting form of the puzzle. Figure A3.2.1-I shows how many steps 

have been done until now. This number turns red when the player exceeds the best 

solution steps number. Figure A3.2.1-J is the goal form of the puzzle; as mentioned 

above, the game aims to practice algebraic equations by reaching the goal form of the 

problem from the starting form with the best steps. And finally, Figure A3.2.1-K 

shows that in which puzzle the player is playing.  

Figure A3.2.2  

Game Paused! - Pop-up Message  

 

Figure A3.2.3 

Hint  
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Figure A3.2.4 

Gesture (Left- “Commute Terms,” Right- “Commute Terms” in detail) 
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Appendix 3.3: Table of the Rules of the Game  

World # Puzzle 
# 

Rule New Gesture as a Hint 

1 1 Drag terms to commute. Blue lines show you 
where you can drop the term. Make the 
expression look like the goal. 

Commute Terms 
 

1 3 You can add by tapping on a '+' sign or by 
dragging one number on top of the other. 

Perform Operations by 
Tapping or Dragging 

1 8 The keypad lets you substitute a number with 
an equivalent. 

Substitute Numbers 
Using the Keypad 

1 11 This keypad decomposes a number into two 
addends. Use the keypad twice to decompose 
a number into 3 addends. 

- 

2 1 Drag a number to commute! Does the order of 
multiplication matter? 

- 

2 3 You can multiply by tapping the dot (i.e., 
multiplication sign) or dragging one number 
on top of the other.” 

- 

2 10 “Use the keypad to factor. You can use the 
keypad twice. 

- 

3 1 If the terms shake, you are trying to do 
something that is not mathematically possible. 

Error Shaking 

3 9 To move 2y, select the 2, then drag it down 
until it is joined by the y, then move 2y as one 
object. 

Select Multiple Terms 
to Commute by Pulling 

3 11 Use the keypad and highlight the whole term 
'2y', then substitute with y + y. 

- 

4 1 Tap to subtract! - 
4 3 Use the keypad to substitute 3 with a 

subtraction expression. 
- 

4 4 Subtracting a negative number has the same 
result as adding the positive of the number. 

Subtracting Negative 
Numbers 

 
4 8 Since 6-4 is equivalent to 6+(-4), you can 

commute 6 and -4. 
Commuting Negative 
Numbers 

4 10 Use the keypad to substitute a negative 
number with an equivalent expression. 

- 

5  NO NEW RULE  
6 1 Tap the division bar to divide Dividing Numbers by 

Tapping Bar 
6 2 Dragging one number on top of another pulls 

out the largest common factor. 
Finding the Largest 
Common Factor by 
Dragging 

6 7 Tap the division bar or drag a number across 
it to factor the numerator and denominator. 

Dividing Numbers by 
Dragging 

6 9 Drag to factor each fraction. Finding Common 
Factors and Reducing 
Fractions 

6 11 Tap the multiplication sign to bring the 10 to 
the numerator. 

Multiply Numerators 

6 13 You can drag a factor out of a fraction. Dragging to Separate 
Numerators 

7  NO NEW RULE  
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8 1 Tap and hold the equals sign to do the same 
thing to BOTH sides. The changes you make 
to E in the keypad will happen on both sides. 

Performing Operations 
on Both Sides of the 
Equations 

9 1 A new way to work with equations - dragging. 
Drag the 2 across the equals sign to add its 
opposite to both sides. 
Notice the sign change! 

Performing Inverse 
Operations on Both 
Sides of the Equations 
by Dragging 

 2 Drag the -3 across the equals sign to add 3 to 
both sides. Notice the sign changes! 

- 

10 1 Tap and hold on any bracket to grab the 
parentheses term. Then drag to commute as 
one object. 

Commuting 
Parentheses 

 2 Drag a number into parentheses to distribute. 
This multiplies each term in the parentheses 
by that number. 

Distributing a Single 
Term 

 6 Tap the parentheses or subtraction symbols to 
distribute and clear the parentheses. 

Distributing an 
Operation Sign 

 9 If you distribute one expression across 
another, it multiplies the expression by each 
term in the parentheses. 

Distributing Multiple 
Terms 

11 1 Apply the distributive property to factor an 
entire expression. Drag the terms that share a 
common factor on top of each other to factor 
out the greatest common factor (GCF). 

Factoring Terms 

 5 Factor one number, then drag a common 
factor to the other number to factor the whole 
expression. 

Finding Greatest 
Common Factors 

 10 An expression in parentheses can be factored 
out by clicking and dragging a bracket. 

Factoring Multiple 
Terms 

 
12 1 Tap and hold the equals sign to do the same 

thing to both sides. 
- 

 2 NO TEXT- Just Animated graphic - 
 8 To simplify the right hand side, move the 

denominator towards the numerator. When a 
line shows up under each term, let go and the 
result is a sum of two fractions. 

Moving to Separate 
Numerators 

 13 The video only shows you how to get rid of 
the denominator by multiplying both sides by 
(x+3). You'll have to do the rest! 

- 

13 1 Drag a number from the denominator until 
you see a blue line to factor out the unit 
fraction. 

Break a Fraction into 2 
Terms 

 7 Dragging the 2 across the equals sign is a 
gesture shortcut to getting 6 alone. You won't 
have to do the gestures of multiplying both 
sides by two and clearing (2/2) from the left. 

Inverse Operations 
Shortcut by Dragging 
Across the Equals Sign 

 8 Divide both sides by 3 by dragging a 3 across 
the equals sign. Division is the inverse to 
multiplication. 

- 
 

14 12 Tap the equals sign to flip the equation. - 
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Appendix 3.4: Table of the Gestures and Descriptions  

 Gesture Description 
1 Commute Terms Drag terms to commute. Blue lines show you where 

you can drop the term. 
2 Perform Operations by Tapping or 

Dragging 
You can perform operations by tapping on an 
operation sign or by dragging one number on top of 
the other. 

3 Substitute Numbers Using the 
Keypad 

The keypad lets you substitute a number with an 
equivalent expression. 

4 Error Shaking If the terms shake, you are trying to do something 
that is not mathematically possible. 

5 Select Multiple Terms to Commute 
by Pulling 

To move 2y, select the 2, then drag it down until it 
is joined by the y, then move 2y as one object. 

6 Subtracting Negative Numbers Subtracting a negative number has the same result 
as adding the positive of the number. 

7 Commuting Negative Numbers Since 6-4 is equivalent to 6+(-4), you can commute 
the -4 

8 Dividing Numbers by Tapping Bar Tap the division Bar to divide. 
9 Finding the Largest Common Factor 

by Dragging 
Dragging one number on top of another pulls out 
the largest common factor 

10 Dividing Numbers by Dragging When there are several factors, tapping the division 
bar doesn't work. Drag to simplify. 

11 Finding Common Factors and 
Reducing Fractions 

Drag to factor each fraction. 

12 Multiply Numerators Tap the multiplication sign to bring the 10 to the 
numerator. 

13 Dragging to Separate Numerators If two terms are multiplied in the numerator, you 
can drag terms out from the fraction. 

14 Performing Operations on Both Sides 
of the Equations 

Tap and hold the equals sign to do the same thing to 
BOTH sides. E represents the Expression on both 
sides. 

15 Performing Inverse Operations on 
Both Sides of the Equations by 
Dragging 

A new way to work with equations - dragging. 
Drag the 2 across the equals sign to add its opposite 
to both sides. Notice the sign change! 

16 Commuting Parentheses You can tap and hold on any bracket to grab the 
parentheses term. Then drag to commute as one 
object. 

17 Distributing a Single Term You can drag a number into parentheses to 
distribute. This multiplies each term in the 
parentheses by that number. 

18 Distributing an Operation Sign You can tap the parentheses to distribute the 
operation sign. 

19 Distributing Multiple Terms If you distribute one expression across another, it 
multiplies the expression by each term in the 
parentheses. 

20 Factoring Terms Apply the distributive property to factor an entire 
expression. 
Drag the terms that share a common factor on top of 
each other to factor out the greatest common factor 
(GCF). 

21 Finding Greatest Common Factors Factor one number, then drag a common factor to 
the other number to factor the whole expression. 
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22 Factoring Multiple Terms A group of terms in parentheses can be factored out 
as well by grabbing and dragging a bracket. 

23 Moving to Separate Numerators Move the denominator on the right towards the 
numerator. When a line shows up under each term, 
let go and the result is a sum of two fractions. 

24 Break a Fraction into 2 Terms Drag a number from the denominator until you see 
a blue line to factor out the unit fraction. 

25 Inverse Operations Shortcut by 
Dragging Across the Equals Sign 

Dragging the 2 across the equals sign is a gesture 
shortcut to getting 6 alone. You won't have to do the 
gestures of multiplying both sides by two and 
clearing (2/2) from the left. 

 

Appendix 3.5: Students’ demographic information (Chan et al., 2021) 
 All 

 (N=475) 
FH2T  

(n=227) 
Problem Set 

(n=248) 
n % n % n % 

Gender male 261 54.9 127 55.9 134 54.0 
female 214 45.1 100 44.1 114 46.0 

Race 

White 165 34.7 81 35.7 84 33.9 
Asian 260 54.7 120 52.9 140 56.5 
Hispanic 23 4.8 10 4.4 13 5.2 
African American 10 2.1 6 2.6 4 1.6 
Native American 5 1.1 1 0.4 4 1.6 
Pacific Islander 1 0.2 1 0.4 0 0.0 
Multi-racial 11 2.3 8 3.5 3 1.2 

Grade Sixth 453 95.4 217 95.6 236 95.2 
Seventh 22 4.6 10 4.4 12 4.8 

Class Advanced 400 84.2 192 84.6 208 83.9 
 On-Level 34 7.2 14 6.2 20 8.1 
 Support 41 8.6 21 9.3 20 8.1 
Student 
Achievement 
Level 

Above grade 248 52.2 119 52.4 129 52.0 
 

Not above grade 227 47.8 108 47.6 119 48.0 
Pretest scores ( M , SD ) 3.80 1.61 3.86 1.60 3.75 1.62 
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Appendix 4.1: Players’ Status  
 P.1 P.2 P.3 P.4 P.5 P.6 P.7 P.8 P.9 P.10 P.11 P.12 P.13 P.14 P.15 
9 S S S S S S S S S S S S S S S 
12 S S S S S S S S S S S S S S S 
14 S S S S S S S S S S S S S S S 
25 S S S S S S S S S S S S S S S 
28 S S S S S S S S S S S S S S S 
31 S S S S S S S S S S S S S S S 
32 S S S S S S S S S S S S S S S 
47 S S S NA S S S S S S S S S S S 
49 S S S NA S S S S S S S NS S S S 
50 S S S NA S S S S S S S NA S S S 
52 NA S NA NA NA NA S NA S NA NA NA NA NS NA 
60 S S S NA S S S S S S S NA S NA S 
61 S S S NA S S S S S S S NA S NA S 
64 S S S NA S S S S S S S NA S NA S 
69 NA NA NA NA NA NA NA NA S NA S NA NA NA NA 
78 S S NA NA S S S S S S S NA S NA NA 
79 S S NA NA S S S S S S S NA S NA NA 
81 S S NA NA S S S S S S S NA S NA NA 
82 S S NA NA S S S S S S S NA S NA NA 
83 S S NA NA S S S S S S S NA S NA NA 
84 S S NA NA S S S S S S S NA S NA NA 
89 NA NA NA NA NA NA NA NA S NA NA NA NA NA NA 
96 S S NA NA S S S S S S NA NA S NA NA 
98 S S NA NA S S S S S S NA NA S NA NA 
99 NA S NA NA S S S S S S NA NA S NA NA 
100 NA S NA NA S S S S S S NA NA NS NA NA 
105 NA NA NA NA NA NA NA NA S NA NA NA NA NA NA 
106 NA NA NA NA NA NA NA NA S NA NA NA NA NA NA 
108 NA NA NA NA NA NA NA NA S NA NA NA NA NA NA 
115 NA S NA NA S S S S NA S NA NA NA NA NA 
116 NA S NA NA S S S S NA S NA NA NA NA NA 
118 NA S NA NA S S S S NA S NA NA NA NA NA 
121 NA S NA NA S S S S NA S NA NA NA NA NA 
122 NA S NA NA S S S S NA S NA NA NA NA NA 
125 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 
127 NA S NA NA S S S S NA S NA NA NA NA NA 
134 NA S NA NA NA S NA S NA S NA NA NA NA NA 
137 NA S NA NA NA NS NA NS NA S NA NA NA NA NA 
141 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 
147 NA S NA NA NA NA NA NA NA S NA NA NA NA NA 
148 NA S NA NA NA NA NA NA NA NS NA NA NA NA NA 
149 NA S NA NA NA NA NA NA NA NA NA NA NA NA NA 
150 NA S NA NA NA NA NA NA NA NA NA NA NA NA NA 
153 NA S NA NA NA NA NA NA NA NA NA NA NA NA NA 
157 NA S NA NA NA NA NA NA NA NA NA NA NA NA NA 
165 NA S NA NA NA NA NA NA NA NA NA NA NA NA NA 
167 NA S NA NA NA NA NA NA NA NA NA NA NA NA NA 
174 NA S NA NA NA NA NA NA NA NA NA NA NA NA NA 
180 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 

Coding: (S) means solved the puzzle, (NA) means did not attempt to solve, (NS) 
means started to solve but not finished. 
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Appendix 4.2: Performance of Players 
 P.1 P.2 P.3 P.4 P.5 P.6 P.7 P.8 P.9 P.10 P.11 P.12 P.13 P.14 P.15 
9 G+E M M M M G D G M M M M D G+E D 
12 G G+E G+E D M G+E D M M G+E G M D M D 
14 G G M M D M D M M G D M M G G 
25 M D M G M M D M M G+E M G+E G G+E G 
28 G+E G+E D G+E G+E D G D G+E G G G+E D D M 
31 M G M M G+E M G+E D G M D M M G M 
32 M G+E D M M M D G M G M M M M G+E 
47 G+E G+E G NA G+E M G+E M G G G G G G G 
49 G G G NA D D G D G+E D D NS G+E G G+E 
50 D G D NA G+E M D M D D M NA D M D 
52 NA G+E NA NA NA NA D NA G+E NA NA NA NA NS NA 
60 D M M NA D D M M M G+E M NA D NA M 
61 G M D NA D M M M G M M NA M NA G 
64 G G G NA G+E G M G G G G NA G NA G 
69 NA NA NA NA NA NA NA NA D NA D NA NA NA NA 
78 D M NA NA M G G G G+E G D NA M NA NA 
79 G G+E NA NA G G G G G G G NA D NA NA 
81 D D NA NA G G D G G G G+E NA G NA NA 
82 M M NA NA G G+E D M D G G+E NA D NA NA 
83 G G NA NA G+E G G G G+E G D NA G NA NA 
84 G+E D NA NA G D G D G+E G+E M NA G NA NA 
89 NA NA NA NA NA NA NA NA G+E NA NA NA NA NA NA 
96 G G NA NA G+E G G G G G NA NA G NA NA 
98 NS M NA NA M D G M D G+E NA NA D NA NA 
99 NA M NA NA M M G+E M D G NA NA D NA NA 
100 NA M NA NA M M D M D M NA NA NS NA NA 
105 NA NA NA NA NA NA NA NA G NA NA NA NA NA NA 
106 NA NA NA NA NA NA NA NA D NA NA NA NA NA NA 
108 NA NA NA NA NA NA NA NA D NA NA NA NA NA NA 
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Appendix 4.3: Flow Chart 
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Appendix 4.4: Concept Map 
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