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Chapter 1

Introduction

1.1 Introduction to Radiation Reaction

1.1.1 Motivation and Background

The subject of effect of radiation emitted from a charged particle on the motion

of that particle has long been a topic of interest amongst physicists [1, 3]. DeWitt

and Breheme [4] studied the radiation reaction force and motion of particles in the

curved space-time. By virtue of the principle of equivalence a particle always moves

on a geodesic of space-time, such that a local observer will be unable to distinguish

the effect of gravitational field from that of curvature on the motion of particle.

However a charged particle is affected by a non-gravitational field and therefore

subject to “external” force. It then follows that the charged particle will not move

on a geodesic of space-time.

One of the predictions of the General Relativity theory is existence of gravitational

radiation emitted by a particle of mass m while moving in curved space-time [6].

This raises new and interesting possibilities, for example now even a neutral par-

ticle’s motion can be affected by the gravitational radiation reaction. There has

been intense activity (for excellent reviews look at [8]) concentrated on finding the

effect of the gravitational radiation reaction on the motion of particles in strong
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gravitational field. The launch of project LISA [7], a space-based interferometric

gravitational wave observatory has given these efforts new impetus. Understand-

ing the effect of GRR (Gravitational Radiation Reaction) will enable researchers

to create accurate templates for detecting the signal and interpreting the obtained

information from the spacecraft.

The initial attempts at calculating the self-force involved using conservation of en-

ergy. By computing the energy-momentum tensor of the radiation and obtaining

the energy being taken away from the particle through radiation one can find the

rate of change in momentum. In flat space-time this approach leads to Abraham-

Dirac-Lorentz equation of motion. This approach however has certain limitations

as it produces run-away solutions [9] . A general approach was developed later to

find the equation of motion of particles in CST (curved space-time). These efforts

were culminated in works by Mino, Sasaki and Tanaka [10] and also by Quinn and

Wald [11]. Application of the general equation of motion, however, is not trivial

and there has been intense activity in this regard. A significant amount of work has

been devoted to using various approximation schemes [12, 13] ( weak-field, post-

newtonian, etc) for solving this problem. A second group of papers have dealt with

solving the field equations by mode decomposition and regularization of each mode

function [33].The Mode Sum Regularization Prescription has yet to be proven to

be generally valid, even though it has been shown that in certain simple cases it

provides the correct answer. The gravitational radiation reaction lends itself to one

more approach. Since in this case the particle is assumed to carry no charge, the

equivalence principle applies. This approach treats the motion of a particle as caus-
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ing a perturbation in the space-time curvature. It is then possible to separate the

effect of the particle on its own path and compute this effect perturbatively.

1.1.2 Motion of Particles in General Space-Time: Electric, Scalar

and Gravitational cases

The Abraham-Lorentz-Dirac [3, 2] equation of motion for an electrically charged

particle of charge q in flat space-time is often written as:

maµ = fµ
ext +

2

3
q2 (δµ

ν + uµuν)
daµ

dτ
(1.1)

It has been observed that the equation of motion has run away solutions and reme-

dies have been proposed [9, 14] . This equation of motion was extended to the case

of CST [4, 5].

Assuming that metric is denoted by gαβ and Ricci tensor by Rα
β the field equation

for potential Aα is

2Aα −Rα
βAβ = −jα (1.2)

where 2 is the Laplace-Beltrami operator and Rα
β the Ricci tensor. For jα, the

covariant current vector we have:

jα(x) = q
∫ ∞

−∞
dzα(τ)

dτ
δ4

(
x, z(τ)

)
(−g)

1
2 dτ (1.3)

where zα(τ) describes the position of moving particle of charge q. The retarded

solution to the above equation 1.2 can be written as :

Aα(x) = q
∫

Gα
β R(x, z(τ))uβdτ (1.4)
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where Gα
β R(x, x′) is the retarded Green’s function , uβ = dzβ(τ)

dτ
the four-velocity and

τ the proper time.

The generalized equation of motion in CST is written as

maµ = fµ
ext +

2

3
q2 (δµ

ν + uµuν)
(

D aν

dτ
+

1

2
Rν

αuα
)

+ q2uα

∫ τ−

−∞
uβ′∇αGµ

β′R

(
z(τ), z(τ ′)

)
dτ ′

(1.5)

where uβ′ = dz(τ ′)/dτ ′ and τ− = τ − ε with ε being infinitesimal so that the diver-

gence of the Green’s function is avoided.

If a particle has scalar charge then the potential is described by the following equa-

tion:

(2− ξR) Φ = −ρ (1.6)

where R is the Ricci scalar and ξ identifies the coupling (in this thesis we mostly

adopt ξ = 0 as zero coupling). We also have:

ρ(x) = q
∫ ∞

−∞
δ4

(
x, z(τ)

)
(−g)

1
2 dτ (1.7)

The solution to the scalar equation can be written using the scalar Retarded Green’s

function as

Φ(x) = q
∫

GR

(
x, z(τ)

)
dτ (1.8)

The equation of motion for a particle of mass m and scalar charge q has been found

as [20]

aµ =
1

m
fµ

ext +
1

3
q2 (δµ

ν + uµuν)

(
D aν

dτ
+

1

2
Rν

αuα + 3
∫ τ−

−∞
∇νGR

(
z(τ), z(τ ′)

)
dτ ′

)

(1.9)
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It was noted that since a scalar charge has a potential field of spin zero, unlike the

electromagnetic case it can radiate its mass away and so the mass is not constant.

The equation governing the variation of mass was found [20] (extended to non-zero

coupling in [8] ) to be:

dm

dτ
= −q2

(
1

12
(1− 6ξ) R + uµ

∫ τ−

−∞
∇µGR

(
z(τ), z(τ ′)

)
dτ ′

)
(1.10)

As it was already discussed even when the particle is neutral its motion in a curved

space-time can cause gravitational radiation to be emitted therefore the effect of the

gravitational radiation reaction on particle’s motion must be accounted for.

We assume that the particle is moving in a background space-time characterized

by the metric gµν . The presence of such particle is going to cause a perturbation

in the back-ground space-time, which can be denoted by δgµν . The ”gravitational

potential” produced by a particle of mass m can be then described by the trace-

reversed potential hαβ:

hαβ = δgαβ − 1

2
gαβ (gµνδgµν) (1.11)

the potential satisfies the field equation

2hαβ + 2Rα
µ

β
νh

µν = −4T µν (1.12)

where the Riemann tensor Rα
µ

β
ν is calculated with respect to the background metric

and the harmonic gauge hαβ
;β = 0 is considered. The solution can be formally

written as

hαβ = 4m
∫

Gαβ
Rµνu

µuνdτ (1.13)
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The equation of motion for such particle has been found to be [10, 11]

aµ = −2 m (gµν + uµuν) uλ uρ ×
∫ τ−

−∞
dτ ′uα′uβ′

[
2∇ρGνλα′β′(x, x′)−∇νGλρα′β′(x, x′)

−
(
gνλ∇ρ − 1

2
gλρ∇ν

)
Gσ

σα′β′(x, x′)

]

x=z(τ),x′=z(τ ′)

(1.14)

f It is important to note that the above equation of motion is not gauge invariant.

This is because the equation has been obtained using a specific gauge, namely har-

monic gauge.It has been shown [15] that under a gauge transformation a new gauge

dependent acceleration appears. Therefore one should be cautioned that the gravi-

tational equation of motion in and out of itself, can not provide answer to physical

questions.

1.1.3 The Field and The Green’s Function in CST: Massless scalar

field with minimal coupling

The single most important ingredient of the above equations is the Retarded

Green function. Consider, for example the massless scalar field equation with min-

imal coupling

2Φ = −ρ (1.15)

The Green’s function is formally a solution of the following equation

2G(x, x′) = −δ4(x, x′) (1.16)
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By solving this equation it can be shown that in Minkowski FST(flat space-time),

there are two linearly independent solutions to this equation, the Retarded and

Advanced Green’s functions, given as

GR = θ(t− t′)

(
δ(t− t′ + |x− x′|)

4π|x− x′| − δ(t− t′ − |x− x′|)
4π|x− x′|

)
(1.17)

GA = θ(t′ − t)

(
δ(t− t′ − |x− x′|)

4π|x− x′| − δ(t− t′ + |x− x′|)
4π|x− x′|

)
(1.18)

One can see that GR = −θ(t − t′)G and GA = θ(t′ − t)G with G (also known as

Pauli-Jordan or Schwinger function)

G(x− x′) =
δ(t− t′ − |x− x′|)

4π|x− x′| − δ(t− t′ + |x− x′|)
4π|x− x′| (1.19)

Using the mode decomposition one can separate the positive frequency modes from

the negative ones and write G(x− x′) as

iG(x, x′) = G+(x, x′)−G−(x, x′) (1.20)

The positive and negative frequency functions are known as Wightman functions

and in FST are given by

G+(x, x′) = − 1

4π2

1

(t− t′)2 − |x− x′|2 +
δ(t− t′ − |x− x′|)− δ(t− t′ + |x− x′|)

8πi|x− x′|
(1.21)

G−(x, x′) = − 1

4π2

1

(t− t′)2 − |x− x′|2 −
δ(t− t′ − |x− x′|)− δ(t− t′ + |x− x′|)

8πi|x− x′|
(1.22)

From these one can calculate Hadamard’s elementary function defined by

G(1)(x, x′) = G+(x, x′) + G−(x, x′) (1.23)
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and in FST can be shown to be equal to

G(1)(x, x′) =
1

2π2

1

|x− x′|2 − (t− t′)2
= − 1

4π2σ
(1.24)

σ is half of the square of the distance between the two points denoted by x and x′

and in FST is equal to σ = 1
2
(x− x′)2 = 1

2
ηαβ(xα − x′α)(xβ − x′β).

The definition of σ(x, x′) also known as Synge’s World Function [17] will be general-

ized to the case of curved space time (CST) in the future sections. Another function

of interest is Feynman propagator defined as,

iGF = θ(t− t′)G+(x, x′) + θ(t′ − t)G−(x, x′) (1.25)

and also of importance is the Ḡ which is defined as half of the retarded plus half of

advanced.

Ḡ =
1

2
(GR + GA) (1.26)

It then can be seen that

−GF = Ḡ + i
1

2
G(1) (1.27)

or equivalently

G(1) = 2 Im(−GF ) (1.28)

There is extensive literature on the Green’s function, the above is only for future

reference for the purpose of this thesis.
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1.1.4 Generalization to Curved Space-Time (CST)

Some of the above notions can be easily generalized to CST. The Green’s

function for the scalar field will be a solution of the field equation

2G(x, x′) = −δ4(x, x′)√−g
(1.29)

Hadamard [18] ansatz for the Retarded and Advanced Green’s function (sometimes

called Hadamard Elementary solution) is given by

G±(x, x′) =
u(x, x′)

4π
δ±(σ) +

v(x, x′)
8π

θ±(−σ) (1.30)

where σ is again, Synge’s world function and δ+(σ) ( δ−(σ) ) is defined such as it is

equal to δ(σ) if x is in the future (past) of a space-like surface on which x′ resides and

zero otherwise and also similarly θ+(−σ) (θ−(−σ)) is one if x is in the future (past)

of the space-like surface and zero otherwise. Consequently δ(σ) = δ+(σ) + δ−(σ)

and also θ(−σ) = θ+(−σ) + θ−(−σ). It then follows that the Hadamard ansatz for

Ḡ is

Ḡ(x, x′) =
u(x, x′)

4π2
δ(σ) +

v(x, x′)
4π2

θ(σ) (1.31)

In FST v(x, x′) vanishes and therefore the integral part in equations (1.5),(1.9),(1.10)

and (1.14) will disappear and in the electrical or scalar case we are back to flat space

results and the gravitational result becomes trivial.

The existence of the so called ”tail term” v(x, x′) makes the acceleration of particle

at any point in the space-time dependent on its entire past history.

By substituting the Hadamard ansatz into the differential equation we can find that

9



[60, 4]

u(x, x′) = ∆1/2(x, x′) (1.32)

where ∆(x, x′) is called Van Vleck-Morrett determinant defined by

∆(x, x′) = −det[∂α∂β σ(x, x′)]√
g(x)g(x′)

(1.33)

It can then be shown that

2v(x, x′) = 0 (1.34)

and

v(x, x) = −1

6
R(x) (1.35)

where R(x) is the Ricci scalar.

1.1.5 Self-Force using Quasi-Local expansion

Computation of the self-force for a point particle in orbit around a black hole

is a topic of active research today (see [58] and references there in) prompted by the

preparation of gravitational wave detectors such as LISA which are capable of de-

tecting gravitational waves emitted when a compact object falls into a supermassive

black hole [22, 23].

An exact expression for the self-force in a black hole spacetime has been ob-

tained only for the cases of a scalar or electric charge held at rest in a Schwarzschild

spacetime [24, 25, 26, 27] and an electric charge held at rest on the symmetry axis of

a Kerr spacetime [28, 29]. Approximate analytical expressions have been obtained
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using Green’s functions for scalar, electric, and gravitational charges in various weak

field limits [30, 31, 32]. Most other calculations have involved the use of mode sum

techniques [33, 34] in cases of high symmetry such as a static charge [35, 36, 37],

radial infall [38, 39], a circular orbit [40, 41, 42, 43], or a slightly elliptical orbit [42].

Since the mode-sum regularization procedure has been developed extensively,

aiming at practical calculations, it is important to find independent ways to check its

accuracy and reliability. This of course also applies to any other method, numerical

or analytical that might be developed in the future. To date the checks on various

mode-sum regularization procedures which we are aware of fall into three categories:

1) comparisons with exact analytical results, 2) comparisons with analytical approx-

imations, 3) comparisons of the results of one mode-sum regularization technique

with those of another. Most of the comparisons that have been made fall into the

third category [45, 43, 42, 41, 39, 44]. Comparisons with exact analytical results

are of course the most reliable but also the most limited. They have only been

done in the case of static scalar and electric charges held at rest in a Schwarzschild

spacetime [35]. Comparison with an analytic approximation in the weak field limit

has been made for a static scalar charge at rest in an axisymmetric spacetime [37].

In this paper we present results which can be used as a check in the second category.

However, unlike most previous analytical approximations to the self-force, ours is

valid in the strong field as well as the weak field limit. Specifically, we consider the

case of a particle with scalar charge which is held at rest until a time t = 0 and

subsequently falls radially towards a Schwarzschild black hole.
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1.2 Introduction to Noise Kernel

Consider the simplest form of the semi-classical general relativity theory

Gab = κT q
ab (1.36)

where Gab is the Einstein tensor and T q
ab is the energy momentum tensor derived

from and due to the quantum field. κ depends on the choice of units.

The question of how a quantum field contributes to space-time curvature has been

answered by defining T q
ab as the vacuum expectation value of the energy-momentum

operator valued tensor of a quantum field. That is T q
ab = 〈T̂ab〉V EV . Now assume, we

are dealing with a “weak” quantum field in the sense that its presence distorts the

space-time to the extent that the difference from the classical vacuum can be dealt

with perturbatively, with acceptable accuracy. To proceed we assume that the full

“quantized” metric is composed of a fully classical part and a fully quantized part

that is:

ĝab = gabÎ + ĥab (1.37)

Consistent with our initial assumptions, we further assume that gab satisfies the

semi-classical field equations and ĥab satisfies the quantized general relativity field

equations, that is

Gab = κ〈T̂ab〉V EV (1.38)

2ĥab = κ
(
T̂ab − Î〈T̂ab〉

)
(1.39)

We must note that the above equations are ill-defined as it is well known that 〈T̂ 〉V EV

diverges and renormalization procedures have been applied [16]. We focus on the
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second equation and further consider that an operator valued metric has yet to be

a well-defined quantity. Nevertheless a formal solution to Eq. (1.39) can be given

as

ĥab(x) =
∫

Ga b c′ d′(x, x′)t̂c
′ d′(x′)d4x′ (1.40)

where t̂a b(x) = T̂ ab(x)− Î〈T̂ ab(x)〉.

We may ask, what is the closest non-operator valued quantity that could re-produce

the quantum effect to the lowest non-vanishing approximation? One could answer

this question by considering quantum fluctuations and attempting to re-produce

quantum fluctuations within the work frame of stochastic mechanics. To proceed,

we note that,

〈ĥab(x)〉q =
∫

Ga b c′ d′(x, x′)〈t̂c′ d′(x′)〉qd4x′ = 0 (1.41)

where the 〈 〉q notation indicates quantum vacuum expectation value of the sym-

metrized product. At the next order we can look at auto-correlation of metric

quantum perturbations. Here we have to be careful since we are dealing with opera-

tor valued quantities that may or may not commute with each other when evaluated

at different space-time points and multiplied. Bearing this on mind we have,

1

2
〈{ĥab(x)ĥc′d′(y

′)}〉q =
∫

Ga b p q(x, y) Gc′ d′ p′ q′(x
′, y′)

1

2
〈{t̂p q(y)t̂p

′ q′(y′)}〉qd4yd4y′

(1.42)

One can investigate the possibility of replacing the quantum fluctuation operators

with stochastic functions in the hope of reproducing the above mentioned expecta-
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tion values. A complete answer has been given by ref. [65] where the authors have

used influence functional methods to show that a stochastic source can reproduce the

auto-correlation quantity above. Consequently we introduce the quantum-stochastic

tensor Tab
qs such that,

T qs
ab ≡ 〈Tab〉q + T s

ab (1.43)

where 〈Tab〉q identifies the mean value of the energy momentum tensor and T s
ab is

a stochastically fluctuating tensor that identifies the quantum fluctuations around

the mean. In semi-classical stochastic gravity the noise kernel extends the role of

VEV of energy momentum tensor via the Einstein-Langevin equation [67, 68, 69]:

Gab[g] + Λgab = 8πG(Tab
c + Tab

qs) (1.44)

where Gab is the Einstein tensor Λ, G are the cosmological and Newton constants

respectively. We use the superscripts c, s, q to denote classical, stochastic and

quantum respectively. As it was noted above, the new term T s
ab = 2τab which is

of classical stochastic nature measures the fluctuations of the energy momentum

tensor of the quantum field. One defines t̂ab to be,

t̂ab(x) ≡ T̂ab(x)− 〈T̂ab(x)〉Î (1.45)

which is a tensor operator measuring the deviations from the mean of the stress

energy tensor. We are interested in the correlation of these operators at different

space-time points. Here we focus on the stress energy (operator-valued) bi-tensor

t̂ab(x)t̂c′d′(y) defined at nearby points (x, y). A bi-tensor is a geometric object that

has support at two separate spacetime points. In particular, it is a rank two tensor
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in the tangent space at x (with unprimed indices) and also in the tangent space at

y (with primed indices).

The noise kernel Nabc′d′ bi-tensor is defined as

4Nabc′d′(x, y) ≡ 1

2
〈{t̂ab(x), t̂c′d′(y)}〉 (1.46)

where again {} means taking the symmetric product.

The noise kernel defines a real classical Gaussian stochastic symmetric tensor field

τab which is characterized to lowest order by the following relations:

〈τab〉τ = 0 〈τab(x)τc′d′(y)〉τ = Nabc′d′(x, y) (1.47)

where 〈 〉τ means taking a statistical average with respect to the noise distribution

τ (for simplicity we don’t consider higher order correlations). With these new defi-

nitions the new stochastic source will generate the same auto-correlation quantities.

More specifically considering Einstein Langevin equation one can see that the auto-

correlation with respect to quantum vacuum expectation value is equivalent to the

one evaluated with respect to stochastic source that is

〈hs
ab(x)hs

c′d′(x
′)〉τ =

∫
Ga b p q(x, y) Gc′ d′ p′ q′(x

′, y′)Np q p′ q′(y, y′)d4yd4y′

(1.48)

Stochastic gravity contains information about the correlation of fields (and the re-

lated phase information) which is absent in semiclassical gravity. This feature moves

stochastic gravity closer than semiclassical gravity to quantum gravity in that the

correlation in quantum fields and geometry fully present in quantum gravity is par-

tially retained in stochastic gravity, and the background geometry has a way to
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sense the correlation of the quantum fields through the noise term in the Einstein-

Langevin equation, which shows up as metric fluctuations. Further more, the noise

kernel can be used to investigate the limits of semi-classical gravity [70, 71, 75].

It can be shown that the noise kernel at the coincidence limit diverges and if

the coincidence limit is to be taken, the noise kernel has to be regularized. The regu-

larization of the noise kernel, via covariant point-splitting has been carried out [82].

It is commonly believed that structures in our universe originate from quantum

fluctuations of the inflaton field being amplified by the inflationary expansion in the

very early universe. Calculating metric fluctuations in the inflationary cosmological

models can reveal the characteristics of fields that cause inflation. For example,

assuming one takes the following form for the lagrangian for the inflaton field,

L(φ) =
1

2
∂aφ∂aφ +

1

2
m2φ2 (1.49)

one can consider a flat Friedmann-Robertson-Walker model and calculate the stochas-

tic average of the two point correlation of the metric function. Comparison of these

results and the gravitational fluctuations derived from the small values of the Cos-

mic Microwave Background anisotropies detected by COBE [79] and WMAP [81],

allows one to impose a severe bound on the mass of the inflaton field. This bound

can be estimated to be of the order of (m/mP ) ∼ 10−6 [80], where mP is the Planck’s

mass. Applications of the noise kernel in cosmology have been discussed in [72, 73].

Another important application of the noise kernel is in calculating the metric fluctua-

tions near event horizon of black holes. Calculations such as these involve computing

the effects of back reaction on space-time and due to complexity involved, complete
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results are not yet available. However, under some reasonable approximations some

significant new results have been obtained. In particular, using the noise kernel, It

has been shown [74] that the magnitude of fluctuations near black hole event horizon

could grow with time to the extent that semi-classical approximations could break

down long before quantum gravity related regime arrives ( For more details on these

applications see [77] and references there in.)

In chapter 4, we present general relations that give the Noise Kernel for a scalar

field conformally coupled to the optical Schwarzschild space-time and introduce a

method by which to calculate the elements.

1.3 Overview

In what follows we explain a method to calculate the v(x, x′) via Hadamard-

WKB ansatz. The method is dependent on a specific coordinate system and it has

been carried out for the Schwarzschild metric. We then use this method to calculate

the self-force for a particle that has been released from rest after it was held at rest

from infinite past. In the following chapter, this method is generalized to the case

where the particle is launched with a certain initial velocity on a general geodesic.

The expressions are used to calculate the self-force for a particle put on a circular

orbit with Keplerian frequency.
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Chapter 2

The Retarded Green’s Function via Hadamard-WKB Quasi-Local

Expansion

2.1 Elements

In this section we briefly introduce the elements of Hadamard elementary so-

lution to the following differential equation.

gµν∇µ∇νG(x, x′) = 0 (2.1)

We only mention these items for completeness and future reference since there are

extensive reviews that have already dealt with these issues at length.

2.1.1 Synge’s world function

Synge’s world function is defined as one half of the geodesic distance between

two points. Let zα(λ) describe a geodesic curve connecting two points x and x′, that

is we have

λ = 0 zα(0) = xα (2.2)

λ = τ zα(τ) = x′α (2.3)

and we have

d2zα

dτ 2
= Γα

βγ

dzα

dλ

dzβ

dλ
(2.4)
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The Synge’s world function is defined as

σ(x, x′) =
1

2

∫ τ

0
gµν

dzµ(λ)

dλ

dzν(λ)

dλ
dλ (2.5)

The world function is an example of a bi-scalar, a function that maps coordinates

of two points in the manifold into a scalar. A derivative of this bi-scalar can be

obtained at either of two points. The notations Dσ/dxα ≡ σ;α = σα and similarly

Dσ/dx′α ≡ σ;α′ = σα′ are normally adopted.It can be shown that

σ =
1

2
σασα =

1

2
σα′σ

α′ (2.6)

2.1.2 The Van Vleck-Morrett determinant

Another relevant quantity is the Van Vleck - Morrett determinant defined as

∆(x, x′) =
det(σαβ′)√

−g(x)
√
−g(x′)

(2.7)

It can be shown that the above bi-scalar has the following relationship with σ

1

∆
(∆σα);α = 4 (2.8)

2.1.3 Hadamard elementary solution

Hadamard, in his classic work [64] presented the following ansatz for the

Green’s function:

G(x, x′) =
u(x, x′)

σ
+ v(x, x′) log(σ) + w(x, x′) (2.9)

The solution can be substituted back into the differential equation (2.1) to show

that

if σ 6= 0 2v(x, x′) = 0 u;ασα =
(
2− 1

2
2σ

)
u; (2.10)
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if σ = 0 2vασα + (2σ − 2)v = 2u. (2.11)

where 2 is Laplace-Beltrami operator equal to gαβ∇α∇β. After substitution into

Eq. (2.1), it can be shown that

u(x, x′) = ∆1/2(x, x′) (2.12)

The bi-scalar v(x, x′) is called the tail term of the Green’s function.

2.2 WKB solution for Euclidean Green function, relationship to the

tail term.

We consider a certain space-time with the following line element.

ds2 = −f(r)dt2 + h(r)dr2 + r2dΩ2 (2.13)

where f(r) and h(r) are arbitrary functions of the radial coordinate and dΩ2 is the

metric of a 2-sphere.

2.2.1 The tail term

Now consider the Euclidean Green function. For a massless scalar field with

minimal coupling it is given as:

2GE(x, x′) = −δ(x, x′)√
gE

(2.14)

It has the following relationship with the Feynman propagator, GF .

GE = iGF (2.15)
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We make the following analytic continuation

− (t− t′)2 → −(t− t′)2 + iε (2.16)

and since ImGF (x, x′) = −1
2
G(1)(x, x′) (with G(1)(x, x′) being the Hadamard ele-

mentary solution), we find

ReGE =
1

2
G(1) =

1

8π2

(
u(x, x′)

σ
+

1

2
v(x, x′) log (σ(x, x′)) + w(x, x′)

)
(2.17)

Now the crucial point is that if the separation of point x from point x′ is such that,

the contribution of time separation is an order or more larger than the contribution

of spatial separation that is if

σ = −f(r)(t− t′)2 + O[(x− x′)3] (2.18)

v(x, x′) would be proportional the factor of log
[
(τ − τ ′)2

]
in expression of GE. This

is essentially how calculation of the tail term is carried out here. In the following we

first find a solution for GE and then introduce a method for collecting all the terms

that together constitute the one that is logarithmically divergent when points are

brought together then the coefficient of log(τ − τ ′) is the tail term of the Green’s

function denoted usually by v(x, x′).

Hence to find the tail term, we should find a suitable expression for GE, one that

a term containing log(τ − τ ′) can be extracted from. To calculate GE we can use

the symmetry of space-time exhibited by the line element (2.13) to write a potential

solution as

GE(x, x′) ∼
∫

dω cos ω(τ − τ ′) p1(r)p2(r
′) Y (γ) (2.19)
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where γ is the angle between three dimensional vectors ~x and ~x′. We substitute this

ansatz back into the differential equation (2.14) and we find that,

GE(x, x′) =
1

4π2

∫ ∞

0
dω cos[ω(τ − τ ′)]

∞∑

l=0

Clω(2l + 1)Pl(cos γ)pωl(r<)qωl(r>)

(2.20)

where Pl(x)’s are Legendre polynomials and r> (r<) is the larger (smaller) of r and

r′. Cωl’s are to be determined such that the right hand side of (2.14)gives the correct

result when integrated over a domain including r = r′.

For r 6= r′ substituting this ansatz int the (2.14) will yield the following differential

equation for both pωl(r) and qωl(r) (collectively denoted by Sωl(r)):

1

h(r)

d2Sωl(r)

dr2
+

(
2

rh(r)
+

f ′(r)
2f(r)h(r)

− h′(r)
2h(r)2

)
dSωl(r)

dr
−

(
ω2

f(r)
+

l(l + 1

r2

)
Sωl(r) = 0

(2.21)

To satisfy the inhomogeneous differential equation (2.14), the mode functions pωl(r)

and qωl(r) have to satisfy the following Wronskian condition,

Cωl

(
pωl(r)q

′
ωl(r)− qωl(r)p

′
ωl(r)

)
= − 1

r2

(
h

f

)1/2

(2.22)

(we drop the functional dependence of p q,f and h from now on as it is obvious

that they all only depend on radial coordinate) First to simplify future relations we

define:

% =
f

h
(2.23)
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Then we proceed by expressing the mode functions in terms of

pωl =
1

(2r2W )1/2
e
∫ √

% W dr

qωl =
1

(2r2W )1/2
e−

∫ √
% W dr (2.24)

with

2 W 2 = 2 Ω2 +
%′

r
+ %

W ′′

W
+ %′

W ′

2W
− 3

2
%

(
W ′

W

)2

(2.25)

and

Ω2 = ω2 + l(l + 1)
f

r2
(2.26)

One can solve (2.25) iteratively. To that end, first we take the square root of both

sides of (2.25) and use a first order approximation to write it as,

W = Ω +
1

2Ω


%′

r
+ %

W ′′

W
+ %′

W ′

2W
− 3

2
%

(
W ′

W

)2

 (2.27)

For reasons that will become clear shortly, we let the consecutive orders of iteration

to be spaced from each other by 2. Hence the equation that takes us from a lower

order of iteration, (henceforth called WKB order ) to the next is given simply by

Wn+2 = Ω +
1

2Ω


%′

r
+ %

W ′′
n

Wn

+ %′
W ′

n

2Wn

− 3

2
%

(
W ′

n

Wn

)2

 (2.28)

To lowest order, one has W0 = Ω and higher orders can be obtained by applying

Eq.(2.28).

Substituting (2.24) into (2.22) yields Cωl = 1 and as a result,

GE(x, x′)|r=r′ =
1

4π2

∫ ∞

0
dω cos[ω(τ − τ ′)]

∞∑

l=0

(2l + 1)Pl(cos γ)
1

2r2W
(2.29)
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2.3 Calculating v(x, x′) as a quasi-local expansion in coordinate sep-

aration via WKB-Hadamard method

Our goal is to use the results of the previous section to find v(x, x′) as an

expansion in separation of coordinates that is an expansion in powers of (r − r′) ,

(t−t′), (θ−θ′) and (φ−φ′). However it is already clear that the angular dependence is

entirely through cos γ and therefore for an expansion in terms of angular coordinates,

a first step would be to expand in powers of cos γ − 1, therefore our objective is to

find v(x, x′) as

v(x, x′) =
∑

i,j,k

vi,j,k(t− t′)2i(cos γ − 1)j(r − r′)k (2.30)

That the expansion has to only involve even orders of (t−t′) can be seen from the fact

that for every value for separation we have to have v(x, x′) = v(x′, x). Furthermore

from symmetry of the line element (2.13), it is clear that the coefficients can only

depend on r. To find the tail term v(x, x′) one first uses the iterative procedure

detailed in the previous section to calculate 1/W to the desired WKB order. The

result would be of the following general form,

1

W
=

∑
m,p

amp
(l (l + 1))m

Ωp
(2.31)

The Eq. (2.29) gives GE only when r = r′. To find the expansion in radial separa-

tion, one has to expand Eq. 2.20. Without loss of generality one can assume r′ < r

and expand pωl(r
′) around r. Using the Eq. (2.21), one can write,

p′′ωl(r) = D(0)pωl(r) + D(1)p′ωl(r) (2.32)
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with

D(0) =

(
1

%

) (
ω2 +

l(l + 1)

r2
f

)
(2.33)

D(1) = −
(

2

r
+

%′

%

)
(2.34)

To find higher order derivatives of pωl(r) we can use the same procedure, specifically

we can use the following relations

p
(n+2)
ωl (r) = D(n)pωl(r) + D(n+1)p′ωl(r) (2.35)

D(n+2) =
dD(n)

dr
+ D(0)D(n) + D(n+1) (2.36)

D(n+3) =
dD(n+1)

dr
+ D(1)D(n) (2.37)

From the above recursion relations, one can calculate the contribution of the coeffi-

cient of (r − r′)k in the expansion of v(x, x′), Let bk be that coefficient, then it can

be shown that,

bk =
(

1

2r2 k!

) (
rD(k) −D(k−1)

r
W−1 + D(k−1)

(
1

2

dW−1

dr
+ %−1/2

))
(2.38)

The next step is to expand the Legendre Polynomials in powers of cos γ − 1 (these

two steps are actually independent from each other and one can deal with them

in any order that one chooses). Pl(x) is usually expressed as a polynomial in x.

However one can always expand them in x − 1 . To be able to proceed with the

computation one needs the general form of this expansion, that is, if we write:

Pl(cos γ) =
∑

j

cj,l (cos γ − 1)j (2.39)
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we need the general dependence of cj,l on j and l. This dependence can be obtained

from the following recursion relation,

cj,l =
l(l + 1)− (j − 1)(j − 2)

2 (j − 1)2
cj−1,l (2.40)

with c1,l = 1 for all values of l. Now to find the coefficient of the temporal separation,

we substitute all of these coefficients into (2.20) that is

GE =
1

4π2

∫ ∞

0
dω cos[ω(τ − τ ′)]

∞∑

l=0

(2l + 1) cj , l bk (cos γ − 1)j(r − r′)k (2.41)

The dependence of bk on ω and l(l+1) is solely through the dependence of W−1 and

dW−1

dr
on Ω, furthermore the dependence of cj,l on l is entirely through l(l + 1), from

these considerations and also from Eq. (2.31), it is clear that the final mix would

only include some odd power of 1/ω and some power of l(l +1) multiplied by 2l +1.

The next step after calculating cj,lbk is to expand the result in powers of l(l+1) and

collect the coefficients, the final expression would be of the following form,

GE =
1

4π2

∫ ∞

0
dω cos[ω(τ − τ ′)] qab

1

ω2b+1

∞∑

l=0

(2l + 1) la (l + 1)a (cos γ − 1)j(r − r′)k

(2.42)

Now we have to perform the sum over l values. This can be done using Plana sum

rule, which states,

∞∑

n=N

F (n) =
1

2
F (N) +

∫ ∞

N
+i

∫ dt

e2πt − 1

(
F (N + it)− F (N − it)

)
(2.43)

The final step of this procedure is to extract the coefficient of temporal expansion,

this can be done using the following.

Note that:

∫
cos ω(τ − τ ′)

1

ω2n+1
=

(−1)(n+1)

(2n)!
(τ − τ ′)2n log(τ − τ ′) (2.44)

26



If the points are split only in the time direction then one finds that using a second

order WKB expansion gives v to zeroth order in (t−t′), a fourth order one gives v to

second order in (t− t′), and so forth. For Schwarzschild space-time the lowest non-

vanishing order is (t− t′)4 which requires use of a sixth order WKB approximation.

Finally collecting all coefficients will yield the desired expansion as

v(x, x′) =
∑

i,j,k

vijk(t− t′)2i (cos γ − 1)j (r − r′)k (2.45)

In order to get the complete expansion, one must further expand the angular part

in (θ − θ′) and (φ− φ′). The result of such expression can be formally expressed as

v(x, x′) =
∑

i,j,k

vikmn(t− t′)2i (r − r′)k (θ − θ′)m (φ− φ′)n (2.46)

2.4 Verification, properties of v(x, x′) and concluding remarks

Since the calculations are fairly complicated, verification is in order. One

should check the results against established properties of v(x, x′). The two equations

(1.34) and (1.35) being the obvious ones. The important point to bear in mind is

that, in this method, all calculations are done so that they are correct to a certain

order. It might be worth noting that once that an expression for a quantity has

been obtained and found to be correct to a certain order, say N , manipulating it

will change its correctness order in ways that are not always straightforward.

The relevant case here is of course v(x, x′). If v(x, x′) is correct to the N th order

then 2v(x, x′) will be correct to an expansion order of N − 2. It then follows that if

we perform a calculation of N th WKB order, we should expect 2v(x, x′) to vanish

up to and including series order of N − 4.
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Here it would be helpful to have an expression for the coefficients of expansion of

2v from coefficient of expansion of v. A calculation of 2v in the form of Eq. (2.46)

yields:

2v(x, x′) =
∑

i,j,k,m,n

(
− 1

f
(2i + 1)(2i + 2)vi+1,k,m,n

+
1

h

(
(k + 1)(k + 2)vi,k+2,m,n + 2(k + 1)

dvi,k+1,m,n

dr
+

d2vi,k,m,n

dr2

)

+

(
2

rh
+

1

(2fh)
f ′ − h′

2h2

) (
(k + 1)vi,k+1,m,n +

dvi,k,m,n

dr

)

+
1

r2

(
(m + 1)(m + 2)vi,k,m+2,n + 2(m + 1)

dvi,k,m+1,n

dθ
+

d2vi,k,m,n

dθ2

)

+
cot θ

r2

(
(m + 1)vi,k,m+1,n +

dvi,k,m,n

dθ

)

+
1

r2 sin2 θ
(n + 1)(n + 2)vi,k,m,n+2

)
(t− t′)2i

(r − r′)k
(θ − θ′)m

(φ− φ′)n

(2.47)

To verify vanishing of this expression to order N −4, one will limit the computation

to all terms such that 2i + k + m + n ≤ N − 4.

One important property that vi,j,k’s and consequently vi,k,m,n’s possess is that there is

a certain recursion relation among them. This can be seen from the following consid-

erations. Let us assume we have an expansion of v(x, x′) around r = r′ . For brevity

we assume that every time we write v(r, r′) we implicitly mean v(t, r, θ, φ; t′, r′, θ′, φ′)

v(r, r′) =
∑

vn(r)(r′ − r)n (2.48)

we also have

v(r′, r) =
∑

vn(r′)(r − r′)n (2.49)
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Now we use v(r, r′) = v(r′, r) to equate the left sides and therefore

∑
vn(r)(r′ − r)n =

∑
vn(r′)(r − r′)n (2.50)

we take the kth derivative of both sides with respect to r.

dk

drk
v(r, r′) =

∑
n

dk

drk

(
vn(r) (r′ − r)n

)
=

∑
n

vn(r′)
dk

drk
(r − r′)n (2.51)

and then use:

dk

drk
(fg) =

k∑

l=0

k!

l! (k − l)!
f (l)g(k−l) (2.52)

to write:

∑

n=l

k∑

l=0

(
k!

l! (k − l)!

)
dk−lvn(r)

drk−l

n!

(n− l)!
(−1)l (r′ − r)n−l =

∑

n=k

vn(r′)
n!

(n− k)!
(r − r′)n−k

(2.53)

This can be written as

∑

n=0

k∑

l=0

(
k!

l! (k − l)!

)
dk−lvn+l(r)

drk−l

(n + l)!

n!
(−1)l (r′ − r)n =

∑

n=0

vn+k(r
′)

(n + k)!

n!
(r − r′)n

(2.54)

We put r = r′, all terms vanish except n = 0. We have

k∑

l=0

k!

(k − l)!

dk−lvl(r)

drk−l
(−1)l = k!vk(r) (2.55)

we separate the last term on the left side.

k−1∑

l=0

k!

(k − l)!

dk−lvl(r)

drk−l
(−1)l + k!(−1)kvk(r) = k!vk(r) (2.56)

and set k = 2m + 1,this yields

2m∑

l=0

(2m + 1)!

(2m + 1− l)!

d2m+1−lvl(r)

dr2m+1−l
(−1)l − (2m + 1)!v2m+1 = (2m + 1)!v2m+1 (2.57)
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From this we get the following recursion relation for odd numbered coefficients:

v2m+1 =
1

2

2m∑

l=0

(−1)l

(2m + 1− l)!

d2m+1−l

dr2m+1−l
vl(r) (2.58)

Some special cases are:

m = 0 v1 =
1

2

dv0

dr
(2.59)

m = 1 v3 =
1

2

(
1

3!

d3v0

dr3
− 1

2

d2v1

dr2
+

dv2

dr

)
(2.60)

m = 2 v5 =
1

2

(
1

5!

d5v0

dr5
− 1

4!

d4v1

dr4
+

1

3!

d3v2

dr3
− 1

2

d2v3

dr2
+

dv4

dr

)
(2.61)

The even ordered coefficients however are not related to each other and must be

found using the WKB method.

The WKB-Hadamard method yields analytical expressions valid in the region that

points denoted by x and x′ are close and can be applied in a variety of investigations.

One pertinent question is the radius of convergence of the series expansion in Eq.

(2.45) or Eq. (2.46). A general expression for the series coefficients is not available,

therefore a rigorous answer is not possible. Even though, one can still ask for an

approximate measure. An upper limit to the radius of convergence can be obtained

by noting that the Hadamard ansatz will break down as soon as the points are too

far to be described adequately within the domain of validity of Riemann Normal

Coordinates. The reason is usually attributed to caustics since it can be shown that

for points that are connected by more than one geodesics, Van Vleck determinant

diverges, making Hadamard solution invalid [4]. One method to investigate this

issue is to look at all points that are residing on a certain path ( preferably a radial

line or a circle ) and investigate the growth of the ratio of a higher order term to a
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lower one, say,vi,j,k+1(r + d)/vi,j,k(r) for various values of r. One can use the rate at

which this ratio grows to estimate a measure of convergence radius. It can be seen,

then, that one might be able to formulate certain reasonable criteria in order to

ascertain the convergence of the series and estimate its radius of convergence. The

issue is still an open problem and the work on the radius of convergence is underway.

We hope to report on this topic in near future.

In the following chapters we use Eq. (2.45) and Eq. (2.46) to calculate the effect of

radiation reaction and find a quasi-local series expansion of the self-force.
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Chapter 3

Calculation of self-force using quasi-local expansion of the Green’s

function

3.1 Self-force for a particle in motion after being held at rest from

infinite past.

In this chapter we review a method to calculate the self-force for a particle that

was held at rest from t = −∞ to t = 0 at which it begins to move on a geodesic of

space-time. In doing so we are working in an approximation that ignores the effect of

the self-force on the motion. In other terms we assume that even with the presence

of the self-force the particle is still moving on the same geodesic. This assumption

can be given more validity if we assume that there is an external force that cancels

the self-force and change the problem to one that attempts to find this external force.

3.2 Introduction

An exact expression for the self-force in a black hole space-time has been

obtained only for the cases of a scalar or electric charge held at rest in a Schwarzschild

space-time [24, 25, 26, 27] and an electric charge held at rest on the symmetry axis of

a Kerr space-time [28, 29]. Approximate analytical expressions have been obtained
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using Green’s functions for scalar, electric, and gravitational charges in various weak

field limits [30, 31, 32]. Most other calculations have involved the use of mode sum

techniques [33, 34] in cases of high symmetry such as a static charge [35, 36, 37],

radial infall [38, 39], a circular orbit [40, 41, 42, 43], or a slightly elliptical orbit [42].

Since the mode-sum regularization procedure has been developed extensively,

aiming at practical calculations, it is important to find independent ways to check its

accuracy and reliability. This of course also applies to any other method, numerical

or analytical that might be developed in the future. To date the checks on various

mode-sum regularization procedures which we are aware of fall into three categories:

1) comparisons with exact analytical results, 2) comparisons with analytical approx-

imations, 3) comparisons of the results of one mode-sum regularization technique

with those of another. Most of the comparisons that have been made fall into the

third category [45, 43, 42, 41, 39, 44]. Comparisons with exact analytical results are

of course the most reliable but also the most limited. They have only been done in

the case of static scalar and electric charges held at rest in a Schwarzschild space-

time [35]. Comparison with an analytic approximation in the weak field limit has

been made for a static scalar charge at rest in an axisymmetric spacetime [37]. In

this chapter we present results which can be used as a check in the second category.

However, unlike most previous analytical approximations to the self-force, ours is

valid in the strong field as well as the weak field limit. Specifically, we consider the

case of a particle with scalar charge which is held at rest until a time t = 0 and

subsequently falls radially towards a Schwarzschild black hole.

In the following section we detail a method which is based on the quasi-local expan-
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sion of the tail term of the Green’s function which we have calculated in the last

chapter.

3.3 Review of the method

Consider a massless scalar field with a source term consisting of a point particle

of scalar charge q. The wave equation that was given in (1.15) is

2Φ = −ρ (3.1)

where

ρ(x) = q
∫ ∞

−∞
δ4( x, z(τ) )√−g

dτ (3.2)

The self-force is given formally by

fµ(τ) = q [∇µΦ(x)]x=z(τ) . (3.3)

This expression is divergent and must be regularized. Quinn [20] has shown that the

regularized expression for the self-force can be split into a local term plus a finite

integral over the gradient of the retarded Green’s function. The latter is often called

the ‘tail term’.

The Hadamard expansion for the retarded Green’s function [20, 52, 49, 50]

was given in (1.30) as

GR(x, x′) = θ(x, x′)

{
u(x, x′)

4π
δ[σ(x, x′)]− v(x, x′)

8π
θ[−σ(x, x′)]

}
(3.4)

Here θ[−σ(x, x′)] is defined to be zero if the point x′ is inside the light cone of the

point x and zero otherwise, while θ(x, x′) is defined to be one if the point x resides in
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the future of a space-like hypersurface involving the point x′ and zero otherwise. The

quantity σ(x, x′) is equal to one-half the square of the proper distance between x and

x′ along the shortest geodesic connecting them. The function v(x, x′) contributes to

the tail part of the self-force [20]. It obeys the equation

2xv(x, x′) = 0 (3.5)

and is symmetric under the exchange of the two points, i.e. v(x, x′) = v(x′, x).

In a general spacetime [48, 60]

v(x, x) = −1

6
R(x) . (3.6)

The tail term for the self-force obtained from Eqs. (3.5) and (3.1) can be written in

the form (see, e.g., [54])

(fµ(τ))tail = − q2

8π

∫ τ

τ0

(
∂

∂xµ
v[x, z(τ ′)]

)

x=z(τ)

dτ ′

+ q2
∫ τ0

−∞

(
∂

∂xµ
GR[x, z(τ ′)]

)

x=z(τ)

dτ ′ . (3.7)

It is necessary that τ0 be chosen so that the Hadamard-WKB expansion for v con-

verges throughout the region of integration of the first integral in Eq. (3.7). From a

WKB expansion of order (2N) (detailed in the previous chapter) one can obtain an

expansion for v(x, x′) that includes terms up to order (x− x′)2N−2. For the metric

ds2 = −(1− 2M/r)dt2 + dr2/(1− 2M/r) + r2dΩ2 , (3.8)

the expansion for v is of the form

v(x, x′) =
∑

i,j,k=0

vijk(r)(t− t′)2i(cos γ − 1)j(r − r′)k (3.9)
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with

cos γ ≡ cos θ cos θ′ + sin θ sin θ′ cos(φ− φ′) . (3.10)

To calculate the self-force we need to calculate the two terms in (3.7).

3.4 The case of a particle released from rest

3.4.1 Preliminaries

Consider the following problem. A particle has been held at rest from infi-

nite past till the time that it is released from rest in the Schwarzschild spacetime

described by

ds2 = −(1− 2M/r)dt2 + dr2/(1− 2M/r) + r2dΩ2 , (3.11)

the particle is going to fall on a radial path toward the center of black hole. The

geodesic equations of motion can be written as [56]

τ = −
√

E
∫ r

r′

dr̄

(1− Ef(r̄)− J2f(r̄)
r̄2 )1/2

(3.12)

t− t′ = −
∫ r

r′

dr̄

f(r̄)(1− Ef(r̄)− J2f(r̄)
r̄2 )1/2

(3.13)

φ− φ′ = −J
∫ r

r′

dr̄

r̄2(1− Ef(r̄)− J2f(r̄)
r̄2 )1/2

(3.14)

where f(r) ≡ 1− 2M/r. Note that J = 0 yields a radial geodesic and E = 0 a null

one.
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For radial fall from rest, these equations of motion can be solved in detail and

its path can be described by [6]

t

2M
=

(
r0

2M
− 1

)1/2 ((
r0

4M
+ 1

)
η +

r0

4M
sin η

)
+ ln

∣∣∣∣∣
( r0

2M
− 1)1/2 + tan(η/2)

( r0

2M
− 1)1/2 − tan(η/2)

∣∣∣∣∣

(3.15)

where

η = cos−1
(

2r

r0

− 1
)

(3.16)

In terms of r and r0 it can be written as

t

2M
=

(
r0

2M
− 1

)1/2
( (

r0

4M
+ 1

)
cos−1

(
2r

r0

− 1
)

+
r0

2M

√
r

r0

(
1− r

r0

) )

+ ln

∣∣∣∣∣∣
( r0

2M
− 1)1/2 +

√
r0

r
− 1

( r0

2M
− 1)1/2 −

√
r0

r
− 1

∣∣∣∣∣∣

(3.17)

Assuming a photon that arrives at x = (t, r) from x0 = (tR, r0) we have

tR = t− (r′ − r)− 2M ln
r′ − 2M

r − 2M
. (3.18)

3.4.2 Review of the method

To calculate the self-force we need to calculate the potential which is formally

given as

Φ(x) = − q2

8π

∫ τ

τ0
(v[x, z(τ ′)])x=z(τ) dτ ′ + q2

∫ τ0

−∞
(GR[x, z(τ ′)])x=z(τ) dτ ′ . (3.19)

To that end, first consider the problem of computing the field Φstatic at the point y

due to an eternally static charge q at the position r = r0, θ = θ0, φ = φ0. One can
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use Eq. (3.1), to write the field due to the static charge as

Φstatic(y) = q
∫ ∞

−∞
GR[t, r; t′(τ ′), r0]dτ ′ . (3.20)

On the other hand, The solution to this problem in a Schwarzschild spacetime has

been given by Wiseman [26]. For the above locations of the charge and field point,

with a metric of the form (3.11), and while taking into account a difference in sign

conventions, it can be written as

Φstatic(y) =
1

4π
q

√
1− 2M

r0

1

r0 − r
. (3.21)

Here and for the rest of this section we suppress the dependence of various quantities

on the angles θ0 and φ0. Dividing the region of integration for Eq. (3.20) in the

same way as was done in Eq. (3.7) and using the Hadamard expansion (3.4) one can

write this latter equation as

Φstatic(y) =
q

4π

√
1− 2M

r0

∫ t

0
u[t, r; t′, r0] δ[σ(t, r; t′, r0)] dt′

− q

8π

√
1− 2M

r0

∫ tR

0
v[t, r; t′, r0] dt′ + q

∫ 0

−∞
GR[t, r; t′(τ ′), r0] dτ ′

(3.22)

In the first two terms the integration variable has been changed from τ ′ to t′. The

two theta functions in Eq. (3.4) result in an upper limit for the second integral which

is equal to the retarded time tR which is given in Eq. (3.18). The time t is taken to

be the time that it would take a particle to fall from r0 to r assuming that it starts

at rest. Then the third term on the right in Eq. (3.57) is the same, except for the

gradient and a factor of q, as the second term on the right in Eq. (3.7). The value
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of this term can be obtained by computing the other three terms in the equation.

The term on the left is given in Eq. (3.56) and the second term on the right can be

computed using the Hadamard-WKB expansion.

To calculate the first term on the right in Eq. (3.57), we note that the argument

of the delta function vanishes on the light cone of the point y. Since the charge is

static

σ(t, r; t′, r0) = σ(t, r; tR, r0) +

(
∂

∂t′
σ(t, r; t′, r0)

)
|t′=tR (t′ − tR) + ...

= σtR(t′ − tR) + ... , (3.23)

where the shorthand notation σµ ≡ σ;µ has been used. Then

δ(σ(t, r; tR, r0)) = δ[σtR(t′ − tR)] =
δ(t′ − tR)

|σtR |
. (3.24)

Next one must calculate u(y, yR) with y and yR ≡ (tR, r0, θ0, φ0) connected by

a null radial geodesic. By substituting the Hadamard expansion into the equation

satisfied by the Green’s function it is possible to show that in general [47, 48, 60]

u(x, x′) = ∆(x, x′) (3.25)

∆(x, x′) = − det(−σ;µν′)√
−g(x)

√
−g(x′)

Thus what remains is to calculate σtR and σ;µν′ for the two points x = y and

x′ = yR. Although there may be some simple way to reason out the answer, as

shown in Appendix A, it can be obtained by solving the geodesic equations and

integrating the result to obtain the proper distance along the geodesic. The result

is

σtR(t, r; tR, r0) = r0 − r
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u(t, r; tR, r0) = 1 . (3.26)

Substituting Eq. (3.26) into Eq. (3.57) and computing the integral one finds

that
∫ 0

−∞
GR[t, r; t′(τ ′), r0] dτ ′ =

1

8π

√
1− 2M

r0

∫ tR

0
v[t, r; t′, r0]dt′ (3.27)

With the definitions

Φs(y) =
q

8π

√
1− 2M

r0

∫ tR

0
v[t, r; t′, r0] dt′ (3.28)

Φf (y) =
q

8π

∫ τ

0
v[t, r; t′(τ ′), r′(τ ′)] dτ ′ (3.29)

Eq. (3.7) becomes

fµ(τ) = q

[
∂

∂yµ
(Φs(y)− Φf (y))

]
. (3.30)

Here the fact that v(x, x) = 0 in Schwarzschild spacetime has been used to inter-

change the order of integration and differentiation in the Φf term. Note that this

derivation only works for the time and radial components of the self-force. Because

of spherical symmetry, the angular components of the self-force for a radial trajec-

tory are zero. Finally the subscript “tail” has been dropped because for a geodesic

trajectory the local part of the self-force is zero in a Schwarzschild spacetime [20].

As a result of Eq. (3.30), the problem of calculating the self-force reduces to

calculating Φs and Φf . This is an exact result. We now calculate the right hand

side of Eq. (3.30) using the Hadamard-WKB expansion for v(x, x′) whose form is

given in Eq. (3.9). For radial geodesics, cos γ = 1, so only the coefficients vi0k(r)
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contribute. The result for Φs is

Φs(y) =
q

8π

√
1− 2M

r0

∞∑

i,k=0

(
1

2i + 1

)
vi0k(r)

[
t2i+1 − (t− tR)2i+1

]
(r − r0)

k

(3.31)

To calculate Φf one can use the geodesic equations (3.4.1) to convert the inte-

gral (3.62) to an integral over the radial coordinate r. One can further solve the

geodesic equations to obtain the trajectory t(r). After substituting the Hadamard-

WKB expansion for v, the integral (3.62) can be computed numerically.

An alternative is to expand all relevant quantities in both Φs and Φf in Taylor

series about r0. This allows one to compute the integrals analytically order by order.

The derivation is given in more detail in the next section. We find

ft(τ) = q2
(5 r0 − 12M)

√
1− 2M

r0

5600 π r6
0

(r − ro)
3 + O[(r − r0)

4] (3.32)

fr∗(τ) = −q2 3
√

M(r0 − 2M)

11200
√

2πr0
6

(r − r0)
5/2 + O[(r − r0)

7/2 (3.33)

with r∗ the Regge-Wheeler coordinate defined by

r∗ ≡ r + 2M log
(

r − 2M

2M

)
. (3.34)

It turns out that each subsequent order of the WKB expansion adds another term

to the series. Using a 16th order WKB expansion we have results for a total of

six terms in the expansions for both ft and fr∗. The coefficients of these terms are

displayed in Appendix B.
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3.4.3 Computing the self-force: Details

Φs has been calculated in (3.92). However calculation of Φf is not entirely

straightforward. In terms of the geodesic equations (3.4.1) Φf can be written as:

Φf = − q

8π

∑
vik00(r)

∫ r1

r0

dr′√
E2 − (1− 2M

r′ )
(t′ (r′)− t)

2i
(r − r′)k (3.35)

With t′(r′) given in (3.17).

3.4.3.1 Numerical evaluation of the integrals in Φf

The self force contribution coming from the portion of path,where the charge

is falling can be calculated as

ffalling = − q2

8π

[√
r0

2M

∑

i,k

(
dvik00

dr
+ (k + 1)vi,k+1,0,0

)
×

∫ r1

r0

dr′

√√√√√
r′
r0

1− r′
r0

(t(r′)− t)
2i

(r − r′)k
]

r=r1 t=t(r1)
(3.36)

To go further, we need to calculate the integral. We change the variables so that all

the variables are dimensionless. We adopt

x =
r′

2M
, a =

r0

2M
, b =

r1

2M
, u =

r

2M
, v =

t

2M
, y(x) =

t(r′)
2M

(3.37)

Now one can write the self force as

ffalling = − q2

8π

√
a

∑

i,k

I(i, k)

[
dvik00

dr
+ (k + 1)vi,k+1,0,0

]

r=r1 t=t(r1)

(3.38)

where we have

I(i, k) = (2M)(2i+k+1)
∫ b

a
dx

(
a

x
− 1

)−1/2

(y(x)− v)2i (u− x)k (3.39)
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and

y(x) =
√

a− 1




(
1 +

a

2

)
cos−1 ((2x/a)− 1) + a

√
x

a
− x2

a2


 + ln

∣∣∣∣∣∣

√
a− 1 +

√
a
x
− 1

√
a− 1−

√
a
x
− 1

∣∣∣∣∣∣

(3.40)

The dimensionless part of I(i, k) can be evaluated numerically.

However there is an obstacle in the way of numerical integration. The integrand

diverges at x = a and all numerical integration schemes involve evaluating the

integrand at the initial point. A way out of this is to notice that

dy

dx
=
√

a− 1

√
x

a− x

(
x

x− 1

)
(3.41)

Therefore the above integration can be written as:

I(i, k) =
1√

a− 1

∫ b

a
dx

(
x− 1

x

) (
1

2i + 1

) (
d

dx
(y(x)− y(b))2i+1

)
(b− x)k (3.42)

Now integration by part, can be used to write the integral as:

I(i, k) =

(
1

(2i + 1)
√

a− 1

)
×

( [
x− 1

x
(y(x)− y(b))2i+1 (b− x)k

]b

a
−

∫ b

a
dx

(
y(x)− y(b)

)2i+1 d

dx

[
x− 1

x
(b− x)k

] )
(3.43)

which in turn is equal to:

I(i, k) =

(
1

(2i + 1)
√

a− 1

) { (
a− 1

a

)
y(b)2i+1(b− a)k +

∫ b

a
dx

1

x2

(
y(x)− y(b)

)2i+1
(b− x)k−1

(
kx2 − (k − 1)x− b

)}

(3.44)

The last term in the above expression is finite in all points in the range [a, b] and

the integral can be evaluated numerically without a problem.
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3.4.3.2 Analytical evaluation of the self-force: The power series ex-

pansion.

Since we are using essentially a power series expansion for v(x, x′) one can

see that the integrals do not have to be accurate to all orders. There is an error

in calculation nevertheless which comes from an approximate series expansion of

v(x, x′) and the evaluation of the integrals only need to be correct to the same order

that we have expanded that function to. Since this is the main approach we have

taken elsewhere [57], we now present the full calculation of the self-force using this

method. In this section an expansion for the self-force in powers of r − r0 will be

derived. The coefficients of the expansion depend on the mass M of the black hole,

the radius r0 at which the particle begins falling, the radius r which is its present

location, and the charge q.

To begin, consider Φs in Eq. (3.28). Its contribution to the self-force is given

in Eq. (3.30). From Eq. (3.18) it is clear that ∂t = ∂tR . Making use of the fact that

v(t, r; t1, r1) is a function of (t− t1)
2 one finds that

∂Φs

∂t
=

q

8π

√
1− 2M

r0

[
v(t, r; tR, r0)−

∫ tR

0

∂

∂t1
v(t, r; t1, r0)dt1

]

=
q

8π

√
1− 2M

r0

v(t, r; 0, r0) . (3.45)

Here as in section 3.4.2 we suppress the dependence of v on θ0 and φ0.

Next consider Φf in Eq. (3.62). The geodesic equations (3.4.1) can be used to

change the integration variable from the proper time to the coordinate time. In this

case J = 0 as the geodesic is radial. Since it starts from rest at r0 it can be seen
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from the geodesic equations that E = (1− 2M/r0)
−1. The result is

Φf =
q

8π

1√
1− 2M

r0

∫ t

0
v(t, r; t1, r1)

(
1− 2M

r1

)
dt1 . (3.46)

Noting that in a Schwarzschild spacetime v(x, x) = 0 and v(x, x1) is a function of

(t−t1)
2 due to the time translation and time reversal invariance of the metric (3.11),

one finds

∂Φf

∂t
= − q

8π

1√
1− 2M

r0

∫ t

0

(
∂v(t, r; t1, r1)

∂t1

) (
1− 2M

r1

)
dt1 . (3.47)

Since the particle is freely falling, r1 = r1(t1) and one can write

∂v

∂t1

(
1− 2M

r1

)
=

d

dt1

[
v

(
1− 2M

r1

)]
− dr1

dt1

∂

∂r1

[
v

(
1− 2M

r1

)]
(3.48)

with the result that

∂Φf

∂t
=

q

8π

1√
1− 2M

r0

{
v[t, r; 0, r0]

(
1− 2M

r0

)

+
∫ r

r0

∂

∂r1

[
v(t, r; t1, r1)

(
1− 2M

r1

)]
dr1

}
. (3.49)

Thus

ft = − q2

8π

1√
1− 2M

r0

∫ r

r0

∂

∂r1

[
v(t, r; t1, r1)

(
1− 2M

r1

)]
dr1 . (3.50)

The computation of fr∗ is straightforward. Taking the derivative of Eqs. (3.92)

and (3.62) and then using the geodesic equations (3.4.1) and Eq. (3.34) one finds

fr∗ =
q2

8π

√
1− 2M

r0

(
1− 2M

r

) ∞∑

i,k=0

(
k

2i + 1

)
vi0k(r)

[
t2i+1 − (t− tR)2i+1

]
(r − r0)

k−1

+
q2

8π

(
1− 2M

r

) √
r0

2M

∫ r

r0

∂v(t, r; t1, r1)

∂r

√
r1

r0 − r1

dr1 . (3.51)
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The next step is to expand t in powers of r0−r and t1 in powers of r0−r1. This

is done using the geodesic equation (3.13). Then making the change of variables

s =

√
r0 − r

r0

s1 =

√
r0 − r1

r0

x0 =

√
2M

r0

f0 =

√
1− 2M

r0

(3.52)

gives

t =
r0

x0


2s

f0

+
(

2

3
− y2

0

) (
s

f0

)3

+ ... .


 (3.53)

Substituting this and the corresponding expression for t1 into Eqs. (3.50) and (3.51),

expanding in powers of s and s1 and computing the integrals give

ft = q2
∞∑

n=3

a2ns
2n (3.54)

fr∗ = q2
∞∑

n=2

b2n+1s
2n+1 . (3.55)

In Appendix B, we have given the results that we have obtained using the highest

WKB order result for v(x, x′) which is available to us.

3.5 The case of a particle launched from rest with an initial velocity

on a general geodesic

3.5.1 Preliminaries

We begin by considering the scalar charge being held at rest at r = r0, θ =

π
2
, φ = 0 from t = −∞ to t = 0. At t = 0 the charge is given an initial velocity in
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a general direction and it continues to go along a geodesic for a duration of proper

time equal to τ and coordinate time equal to t until it reaches the point with spacial

coordinates r, θ and φ.

The general framework for calculating the self-force has been laid out in the last

section. Here we generalize the arguments given there to apply them to the case

of a general geodesic. It has been already noted that the self-force comes from two

parts. The first part is the contribution of the particle trajectory from infinite past

to the moment at which it is released and the second part is the contribution due

to particle’s motion after that. However since the first part is identical between

the proposed trajectory here and the trajectory of an eternally static particle and

since the potential for such a particle (that is the result of the full integration of the

Green’s function from t = −∞ to t = +∞ ) is found by Wiseman [26], we can use

that result to calculate the first part. In the last section the particle trajectory was

in the radial direction so we only needed to know the potential for the points that

reside on the same radial direction that the charge’s location is (that is θ = θ′ and

φ = φ′). Here we need to know the potential everywhere.

3.5.2 Generalizing the Method to apply to a general Geodesic

The Wiseman potential for a stationary scalar charge at x = (r0, θ = π
2
, φ = 0)

is:

Φstatic(r, η; r0) = − 1

4π
q

√
1− 2M

r0

1√
∆r2 − 2ηr0(r0 − 2M)− 2η∆r(r0 −M) + M2η2

.

(3.56)

47



where η = cos γ − 1 and cos γ = cos θ cos θ′ + cos(φ− φ′) sin θ sin θ′

One can formally obtain the same result by using Hadamard ansatz as:

Φstatic(y) =
q

4π

√
1− 2M

r0

∫ t

0
u(t,x; t′,x′) δ[σ(x, x′)] dt′

− q

8π

√
1− 2M

r0

∫ tR

0
v(t,x; t′,x′) dt′

+ q
∫ 0

−∞
GR[t,x; t′(τ ′),x′(τ ′)] dτ ′ (3.57)

It was then shown in the last section, that for the first term we have:

∫ t

0
u(t,x; t′,x′) δ[σ(x, x′)] dt′ =

u(x, x′)
σt

|σ=0 (3.58)

It can be shown to the desired order that the right side of (3.58) is identically equal

to the Wiseman result (For details look at Appendix A). The fact that the tail term

of the Green’s function does not contribute could be in and out of itself interesting.

It then, follows that:

∫ 0

−∞
GR[t,x; t′(τ ′),x′(τ ′)] dτ ′ =

1

8π

√
1− 2M

r0

∫ tR

0
v(t,x; t′,x′) dt′ (3.59)

The result of this calculation is that, one of the results of the last section, Eq.(3.27),

along with Eqs (3.28) and (3.62) are basically valid for any general geodesic path

that the scalar charge is moving on after its release. For reference we repeat that

result with new notation which will be explained shortly.

fa
tail = q ∂a (Φs − Φf ) (3.60)

Φs =
q

8π

∫ tR

0
v[t,x; t′, r0, 0, 0]

√
1− 2M

r0

dt′ (3.61)

Φf =
q

8π

∫ τ

0
v[t,x; t′(τ ′),x′(τ ′)] dτ ′ (3.62)
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3.6 Calculation of ft, the temporal part of the self-force

In the section for radial trajectory, arguments were given to simplify the cal-

culation of ft here we generalize those arguments. For time derivative of the Φs part

we have the following:

∂t

∫ tR

0
v(t,x; t′,x0)

√
1− 2M

r0

dt′ =

√
1− 2M

r0

v(t,x; 0,x0) (3.63)

To move further we note that the dτ ′ as the integral measure in the last equation

is a complete differential, that is, we have substituted the r′ as r′(t′) and also other

coordinates. Therefore one can write

dτ ′ =
dτ ′

dt′
dt′ (3.64)

From here one can follow the rest of argument

∂tΦf =
q

8π

∫ τ

0
∂tv[t,x; t′,x′(t′)]

dτ ′

dt′
dt′

= − q

8π

∫ τ

0

dτ ′

dt′
∂t′v[t,x; t′,x′] |x′=x′(t′) dt′ (3.65)

From the geodesic equations, Eqs. ( 3.4.1) we one can see that,

dτ

dt
=
√

Ef(r) (3.66)

We have the following:

dτ ′

dt′
∂t′v[t,x; t′,x′] = ∂t′

(
dτ ′

dt′
v[t,x; t′,x′]

)
− v[t,x; t′,x′] ∂t′

(
dτ ′

dt′

)
(3.67)

The derivative ∂t′ is with respect to explicit time dependence not the dependence

through x′(t′). From (3.66), we notice that dτ ′
dt′ does not explicitly depend on t′

the coordinate time along the geodesic path. Hence the second term in the recent
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equation vanishes. For any function (say, V (t′, x′) ) whose t′ dependence is both

explicit and implicit (e.g. through dependence of x′ on t′) we can write

dV (t′,x′)
dt′

= ∂t′V (t′,x′) +
3∑

i=1

dx′i
dt′

∂x′iV (t′,x′) (3.68)

Therefor we have

dτ ′

dt′
∂t′v[t,x; t′,x′] =

d

dt′

(
dτ ′

dt′
v[t,x; t′,x′]

)
−

3∑

i=1

dx′i
dt′

∂x′i

(
dτ ′

dt′
v[t,x; t′,x′]

)
(3.69)

From above we can deduce,

∂tΦf =
q

8π

[
dτ ′

dt′
v[t,x; t′,x′]

]

t′=0;x′i=xi
0

+
q

8π

3∑

i=1

∫ xi

xi
0

dx′i ∂x′i

(
dτ ′

dt′
v[t,x; t′,x′]

)

(3.70)

Putting all the pieces together, we can write:

ft =
q2

8π

(√
1− 2M

r0

− dτ ′

dt′
‖t′=0,x′i=xi

0

)
v(t,x; 0,x0)

− q2

8π

3∑

i=1

∫ t

0
dt′

dx′i

dt′
∂x′i

(
dτ ′

dt′
v[t,x; t′,x′]

)
(3.71)

One point to clarify is that in the above equation, second term, we first take the

derivative ∂xi , then substitute the path equations and then take the integration.

At the end, depending on the path equation one can write the final result as an

expansion in powers of t , (r − r0) or (φ− φ0).

For the general case, expanding the self-force in terms of the time series has this

advantage that it can be easily applied to all geodesics. Henceforth our basic goal

is to write the self-force as a series expansion in terms of the coordinate time. To

that end first we need to find the parametric path equation of a particle following a

geodesic path in Schwarzschild space-time. Without loss of generality we presume
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that the geodesic is in the equatorial plane, and therefore the only coordinates that

change with time are r(t) and φ(t). One can then easily write the equations of

motion for such a particle in terms of t as follows:

r̈ =
1

f(r)

(
3M

r2
ṙ2 + rf(r) φ̇2 − M

r2
f 2(r)

)
(3.72)

φ̈ = −2ṙφ̇

r

(
1− M

rf(r)

)
(3.73)

where ṙ,r̈,φ̇ and φ̈ are equivalent to dr
dt

, d2r
dt2

,dφ
dt

and d2φ
dt2

and f(r) = 1− 2M/r.

This is a non-linear system of coupled differential equations. To solve this we assume

that r(t) and φ(t) can be written as time series:

r(t) =
N∑

n=0

ant
n (3.74)

φ(t) =
N∑

n=0

bnt
n (3.75)

Then we substitute the two series into (3.72) and (3.73) and solve for the coef-

ficients an’s and bn’s. The final result for the most general equatorial geodesic in

Schwarzschild spacetime will be determined in terms of a1 and b1, these are of course

the initial velocities given to the particle at the time of lunch. To find the temporal

component of the self-force in for a general geodesic, we then need to compute the

two parts in (3.71) in a way that is convenient for calculation as a time series. To

that end we use the symmetries of the space-time and the Eq. (3.66) to write the

integrand in the second part of the equation (3.71) as follows

dr′

dt′
∂r′

(
dτ ′

dt′
v(t,x; t′,x′)

)
+

dφ′

dt′
∂φ′

(
dτ ′

dt′
v(t,x; t′,x′)

)
=

√
E

(
ṙ′

df(r′)
dr′

v(t,x; t′,x′) + f(r′)

(
ṙ′

dv(t,x; t′,x′)
dr′

+ φ̇′
dv(t,x; t′,x′)

dφ′

) )

(3.76)
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where, ṙ′ and φ̇′ are defined as dr′
dt′ and dφ′

dt′ , respectively. Using the result of [46], we

can write :

v(t,x; t′,x′) =
∑

vi,k,m,n(t− t′)2i(r − r′)k(θ − θ′)m(φ− φ′)n (3.77)

Then the integrand can be written as:

dr′

dt′
∂r′

(
dτ ′

dt′
v(t,x; t′,x′)

)
+

dφ′

dt′
∂φ′

(
dτ ′

dt′
v(t,x; t′,x′)

)
=

√
E

∑
(t− t′)2i(r − r′)k(φ− φ′)n

(
ṙ′

df(r′)
dr′

vi,k,0,n − ṙ′f(r′)(k + 1)vi,k+1,0,n −

φ̇′f(r′)(n + 1)vi,k,0,n+1

)
(3.78)

After substitution of x = {r(t), φ(t)} and x′ = {r′(t′), φ′(t′)} and expansion one can

evaluate the integral and find the result as a power series expansion in time. If the

particle has non-zero initial velocity, for the three lowest non-vanishing terms, we

can write ft as follows:

ft = ft4t
4 + ft5t

5 + ft6t
6 + O[t7] (3.79)

The fourth order term can be written as:

ft4 =
3 q2M2

17920
√

f0 π r0
8

(
5 f0

4 (1−Q)− 3 f0
2 (2−Q) a1

2 + a4
1

+ 9 f0
3 (2−Q) r0

2 b1
2 − 6 f0 r0

2 a1
2 b1

2 + 3 f0
2 r0

4 b1
4
)

(3.80)

where

Q =

√√√√
(

1− a2
1 + r2

0f0b2
1

f 2
0

)
(3.81)

f0 = 1− 2M

r0

(3.82)
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The fifth order term can be given as:

ft5 =
3 f0

3
2 q2M2 a1

89600 π r0
11

×
(

106 QM2 +
(
305 f0 (1−Q)− 93 Q

)
Mr0 − 20

(
5 f0 (1−Q)−Q

)
r0

2

+
2 r0 a1

2

f0

(37 M − 12 r0) (3Q− 5) +
5 r0 a1

4

f 3
0

(13 M − 4 r0)

− 6 r0
3 b1

2 (45 M − 16 r0) (3Q− 5)− 10 r0
3 a1

2 b1
2

f 2
0

(47 M − 16 r0)

+
15 r0

5 b1
4

f0

(21 M − 8 r0)
)

(3.83)

In the special case of a particle released from rest the above terms vanish and what

remains is of sixth order which for a general case can be written as:

ft6 =
M2f0

7
2

537600 π r0
12
×

(
3 M Q (53 M − 20 r0) + 40 (1−Q)

(
3 M2 − 23 M r0 + 7 r0

2
)

−2 a1
2

f 2
0

(
21 M2 (−1035 + 1396 Q)− 2 M (−6675 + 9427 Q) r0

+ 10 (−195 + 292 Q) r0
2
)

+
3 a1

4

f0
4

(
M2 (−17820 + 12521 Q)− 20 (−560 + 397 Q) M r0

+ 8 (−210 + 151 Q) r0
2
)

+2
r0

2 b1
2

f0

(
3 M2 (−870 + 767 Q) + M (615− 1109 Q) r0

+ 5 (15 + 26 Q) r0
2
)

−6 r0
2 a1

2 b1
2

f0
3

(
3 M2 (−12990 + 9067 Q) + 2 (13395− 9431 Q) M r0

+ 2 (−2235 + 1591 Q) r0
2
)

+
9 r0

4 b1
4

f0
2

(
M2 (−2160 + 1189 Q)− 4 (−445 + 257 Q) M r0

+ 72 (3 Q− 5) r0
2
)
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−6 r0
2 a1

4 b1
2

f 5
0

(
M2 (13980− 44 Q) + (−9305 + 13 Q) M r0 + 1495 r0

2
)

+
18 r0

4 a1
2 b1

4

f0
4

(
M2 (4185− 11 Q) + 4 (−775 + Q) M r0 + 560 r0

2
)

−2 a1
6

f 6
0

(
21 M2 (−235 + Q) + (2990− 6 Q) M r0 − 430 r0

2
)

+
2 r0

7 b1
6

f0
2

(
3 M (−335 + 3 Q) + 370 r0

))
(3.84)

For the case of particle released from rest, that is for a1 = 0,b1 = 0, the sixth order

result reduces to

ft =


f0

7
2 M3 (53 M − 20 r0)

179200 π r0
12


 t6 (3.85)

which after converting the t-dependence to r-dependence, via geodesic equation, will

agree with the result presented in Eqs (3.32).

3.7 Calculation of fi, The spacial components of the self-force.

For calculating the spacial coordinates of the self-force, we go back to calcu-

lating Φs. Incidentally this part is straightforward and can be written as:

Φs =
q

8π

√
1− 2M

r0

∑

i,j,k

(
1

2i + 1

)
vi,j,k

(
t2i+1 − (t− tR)2i+1

)
(cos γ − 1)j (r − r0)

k(3.86)

Therefore, self-force can be written rather trivially as:

fi =
∂

∂xi


 q2

8π

√
1− 2M

r0

∑

i,j,k

(
1

2i + 1

)
vi,j,k

(
t2i+1 − (t− tR)2i+1

)
(cos γ − 1)j (r − r0)

k




− q2

8π

∫ τ

0
dτ ′∂xiv(t,x; t′(τ ′),x′(τ ′)) (3.87)

We further redefine the two terms of (3.87) as follows
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fRi
≡ ∂

∂xi




√
1− 2M

r0

∑

i,j,k

(
1

2i + 1

)
vi,j,k

(
t2i+1 − (t− tR)2i+1

)
(cos γ − 1)j (r − r0)

k




(3.88)

fPi
≡

∫ τ

0
dτ ′∂xiv(t,x; t′(τ ′),x′(τ ′)) (3.89)

fi =
q2

8π
(fRi

− fPi
) (3.90)

As for the first part, first we re-expand the angular part in powers of (θ − θ′) and

(φ − φ′) and again without loss of generality assume that the geodesic is in the

equatorial plane. We break the first part as follows

Φs1 ≡ ∑

i,j,k

(
1

2i + 1

)
vi,k,0,nt

2i+1 (φ− φ′)n
(r − r′)k (3.91)

Φs2 ≡ ∑

i,j,k

(
1

2i + 1

)
vi,k,0,n(∆tR)2i+1 (φ− φ′)n

(r − r′)k (3.92)

fRi
=

(√
1− 2M

r0

)
∂

∂xi
(Φs1 − Φs2) (3.93)

tR must be expanded as indicated in the Appendix A, in Eq. (A.8). The difference

between t which characterizes the current coordinate time at which the particle is

at r,θ and φ and tR for which a point with coordinate r′,θ′ and φ′ resides on the past

light cone of the former point, depends on r,∆r = (r − r′), θ and (θ − θ′) and also

(φ− φ′). The dependence can be extracted from the expansion given in Eq. (A.8).

After substituting the expansion and combining everything we have for Φs2 (3.92):

Φs2 =
∑

k,m,n

Pk,m,n(r, θ) (θ − θ′)m
(φ− φ′)n

(r − r′)k (3.94)

After taking the derivative and substituting the path equations, The final result

would be an expansion in the powers of t. For a general geodesic with general a1
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and b1, the result of this computation can be written as

fr∗ = fr4t
4 + fr5t

5 + O[t6] (3.95)

where we have:

fr4 =
3 f0

5
2 M2 a1

17920 π r0
8

(
3 Q− 4 +

a1
2 − 3 r0

2 f0 b1
2

f0
2 (4−Q) +

4 a1
3

f0
3 − 12 r0

2 a1 b1
2

f0
2

)

(3.96)

fr5 = − 3 f0

7
2 M2

89600 π r0
10

(
M + 4 (1−Q) (16 M − 5 r0)

+ 2
a2

1

f 2
0

(
M (−185 + 144 Q) + 12 (5− 4 Q) r0

)
− 40Ma3

1

f 3
0

+
a4

1

f 4
0

(
M (305− 88 Q)− 4 (25− 7 Q) r0

)
+

40a5
1

f 5
0

(11M − 4r0)

+
r2
0b

2
1

f0

(
M(290− 171Q)− (100− 63Q)r0

)
+

60 M r0
2 a1 b1

2

f0
2

− 3r2
0a

2
1b

2
1

f 3
0

(
M (390− 111 Q)− (140− 39 Q) r0

)
− 20 r0

2 a1
3 b1

2

f0
4 (73 M − 26 r0)

+
3 r0

4 b1
4

f0
2

(
M (45− 11 Q)− 5 (4−Q) r0

)
− 60 r0

5 a1 b1
4

f0
2

)
(3.97)

After putting, Q = 1,a1 = 0 and b1 = 0 for the case of release from rest, we

have fr4 = 0 and the above result reduces to

fr∗ = −3f
7/2
0 q2 M3

89600πr10
0

t5 + O[t6] (3.98)

which again after using geodesic equations to convert t-dependence to r-dependence

we arrive at the result presented in Eq. (3.33).

The azimuthal component of the self-force can be calculated along the same

lines and the result for the lowest non-vanishing order is:
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fφ =
−9 f0

5
2 M2 b1

17920 π r0
6

(
3Q− 4− a2

1 − r2
0b

2
1

f 2
0

(Q− 4) +
4a3

1

f 3
0

+
4 r0

2 a1 b1
2

f0
2

)
t4 + O[t5]

(3.99)

In practice, one must expand the relevant quantities only to the necessary

order. Since, expanding some quantities to a higher order than is needed will produce

undue computational cost in terms of memory and time, which sometimes can render

the computation impractical.

3.8 A Specific example: Particle launched on a Keplerian circular

orbit

Here we deal with an specific example. The particle is held at r = r0 from

t = −∞ to t = 0 at which time, the particle is launched with Keplerian velocity on

a Keplerian circular orbit. The path is,

zα(t) = {r0,
π

2
,

√
M

r0

t

r0

, t} (3.100)

dt

dτ
=

√
r0

r0 − 3M
(3.101)

dφ

dτ
=

1

r0

√
M

r0 − 3M
(3.102)

For comparison we note that these formulae are equivalent to a geodesic with

a1 = 0 (3.103)

b1 =

√
M

r3
0

(3.104)
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With the Keplerian circular orbit, one can see that the calculations will be partic-

ularly simplified. For example ft can be readily calculated to all orders for which

the quasi-local expansion of v(x, x′) as noted in (3.77) is available . It, then can be

seen that for ft we have:

f
(kc)
t =

q2

8 π

√
r0 − 3 M

r0

×

∑

i,n

(
M

r3
0

)n
2

((
1−

√
r0 − 2M

r0 − 3M

)
vi,0,0,n − Ω t

(
n + 1

2i + n + 1

)
vi,0,0,n+1

)
t2i+n

(3.105)

This formula can be compared with the general formula applied to Keplerian orbit

using (3.103). The equivalence provides a further check on that result.

Calculation of the spacial components has two parts. The part denoted by fR

involves tR and even with the simplification afforded by using the circular Keplerian

orbit, providing a general formula is neither useful nor straightforward. The second

part, fP , that is the path dependent part can be calculated using a general formula

similar to (3.105). At any rate the overall result of the calculation of fr? for the

lowest non-vanishing order is

fr? =
−3 f0 M2 q2

89600 π r0
12

(
(185 ω0 − 53 β0) M3 − 18 (5 ω0 + 3 β0) M2 r0

− 9 (5 ω0 − 9 β0) M r0
2 + 20 (ω0 − β0) r0

3

)
t5 + O[t6]

(3.106)

β0 =

√
1− 2M

r0

(3.107)

ω0 =

√
1− 3M

r0

(3.108)
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and for fφ

fφ =
−9 f0 M2

17920 π r0
8

√
M

r0

(
4 β0 (M − r0)− ω0 (5 M − 3 r0)

)
t4 + O[t6] (3.109)

Higher order results are given in Appendix C.
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Chapter 4

The noise kernel of a massless, conformally coupled scalar field in the

optical Schwarzschild space-time.

4.1 Introduction and Background

In chapter 1, we introduced the noise kernel and showed how it presents the

next step from semi-classical gravity on the way to quantum gravity. Here we bring

the relationships that yield the noise kernel and proceed by calculating its trace

from two related approaches.

The general form of the noise kernel for a general space-time and coupling has

been obtained [66]. For massless scalar field and conformal coupling, the complete

form of the noise kernel functional Nabc′d′ [G] is

Nabc′d′ [G] = Ñabc′d′ [G] + gabÑc′d′ [G] + gc′d′Ñ
′
ab [G] + gabgc′d′Ñ [G] (4.1)

with 1

72Ñabc′d′ [G] = 4 (G;c′b G;d′a + G;c′a G;d′b) + G;c′d′ G;ab + GG;abc′d′

−2 (G;b G;c′ad′ + G;a G;c′bd′ + G;d′ G;abc′ + G;c′ G;abd′)

1 Notice that these equations have two slight but crucial differences with the equations of [66].

The sign of the last term of the equation for Nabc′d′ and also the sign of the term GGp′

a,b,p′ have

been corrected.
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+2 (G;a G;b Rc′d′ + G;c′ G;d′ Rab)

− (G;ab Rc′d′ + G;c′d′ Rab) G +
1

2
Rc′d′ RabG

2 (4.2)

288Ñ ′
ab [G] = 8

(
−G;p′b G;

p′
a + G;b G;p′a

p′ + G;a G;p′b
p′

)

4
(
G;

p′ G;abp′ −G;p′
p′ G;ab −GG;abp′

p′
)

−2 R′ (2 G;a G;b −GG;ab)

−2
(
G;p′ G;

p′ − 2 GG;p′
p′

)
Rab −R′ RabG

2 (4.3)

288Ñ [G] = 2 G;p′q G;
p′q + 4

(
G;p′

p′ G;q
q + GG;p

p
q′

q′
)

−4
(
G;p G;q′

pq′ + G;
p′ G;q

q
p′

)

+R G;p′ G;
p′ + R′ G;p G;p

−2
(
R G;p′

p′ + R′ G;p
p
)
G +

1

2
R R′G2 (4.4)

In ref. [82] the Gaussian approximation for the Green’s function has been computed

and used to calculate a re-normalized expression for the noise kernel.

However we believe that the noise kernel is a distribution and physical observable

quantities are obtained by integrating suitable functions with the noise kernel. As

such, the noise kernel with points kept separated contains additional information

over and beyond its coincidence limit. On the other hand, the noise kernel in and

out of itself can be used as a device to study fluctuations of the stress-energy tensor.

Studying correlation of these fluctuations at two different points can yield new and

important information, hence, calculating the noise kernel at two separated points

is useful and hitherto unexplored. Consequently, in the following sections we take a

different approach as we assume that the points at which the noise kernel is to be

61



evaluated are not brought together. This assumption frees us from the requirement

of renormalization and allows us to consider other forms of Green functions.

For the rest of this chapter, we calculate the Wightman Green functions and verify

that they indeed satisfy the field equations. We then demonstrate how Wightman

and other functions with the same form can be used for calculating the noise kernel

bi-tensor.

4.2 Wightman function in optical Schwarzschild space-time and cal-

culation of the noise kernel

4.3 Preliminaries

We are considering the following general metric

ds2 = −dt2 + gijdxidxj (4.5)

Any metric that has gtt = −1 in Minkowskian or gττ = 1 in Euclidean space-time is

called an optical metric. Furthermore if the metric is time independent we have an

ultra-static metric. One can go from Minkowskian to Euclidean space by using

τ = −i t (4.6)

for non-zero temperature we define:

κ =
T

2π
(4.7)

For a conformally coupled massless scalar field we have:

(2− ξR)G+(x, x′) = (∇µ∇µ − 1

6
)G+(x, x′) = 0 (4.8)
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The optical Schwarzschild metric is defined as

ds2 = −dt2 +
1

(
1− 2M

r

)2dr2 +
r2

1− 2M
r

dΩ2 (4.9)

which is conformally related to normal Schwarzschild metric. Synge’s world function

then is equal to

σ(x, x′) =
1

2

(
−(t− t′)2 + r2

)
(4.10)

where

r =
√

2 (3)σ (4.11)

Note that r (with bold roman font) denotes the square root of three dimensional

Synge’s world function while r (with normal italic font) denotes the radial coordi-

nate. and (3)σ is the three dimensional world function.

4.4 Wightman function by Analytical Extension of Hadamard Green

function : Gaussian Approximation

The Gaussian approximation for Hadamard Green function of a massless scalar

field, conformally coupled to an Euclidean optical Schwarzschild spacetime has been

calculated as follows [78]:

GGauss(τ,x, 0,x′) =
1

8π2

κ∆1/2

r

sinh κr

cosh κr− cos κτ
(4.12)

This can be expanded to yield [82]:

GGauss =
∆

1
2

8 π2 σ
+

∆
1
2

8 π2

{
κ2

6
+

κ4

180

(
2 ∆τ 2 − σ

)
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+
κ6

3780

(
4 ∆τ 4 − 6 ∆τ 2 σ + σ2

)}
+ O

(
σ

5
2 , δτ 5

)
(4.13)

To arrive at the Wightman function we apply the following prescription

t− t′ → t− t′ + iε (4.14)

and use the principal value theorem as

1

x + iε
= P.V.

1

x
− πiδ(x) (4.15)

Since except for the first term in (4.106) the rest are regular, it follows that we only

need to apply the prescription to the first term. Working in ultra-static Euclidian

metric we write

σ =
1

2

(
∆τ 2 + r2

)
(4.16)

where ∆τ = i∆t and r = (2 (3)σ)1/2 the three dimensional σ. Carefully applying the

prescription

∆t → ∆t− iε (4.17)

this means,

σ =
1

2

(
∆τ 2 + r2

)
→ 1

2

(
−(∆t− iε)2 + r2

)
=

1

2

(
−∆t2 + r2 + 2i ∆t ε + ε2

)
(4.18)

We have:

1

−∆t2 + r2 + 2i ∆t ε + ε2
=

1

2r

(
1

−∆t + r + iε
+

1

+∆t + r− iε

)
(4.19)

That is:

1

− (∆t− iε)2 + r2
=

1

2r

(
1

−∆t + r + iε
+

1

+∆t + r− iε

)
(4.20)
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=
1

2r

(
1

−∆t + r
− iπδ(r−∆t) +

1

∆t + r
+ iπδ(r + ∆t)

)

=
1

−∆t2 + r2
− iπ

(
δ(−∆t + r)− δ (∆t + r)

2r

)
(4.21)

We then conclude that

G+ = GGauss − i∆1/2

8π

(
δ(−∆t + r)− δ (∆t + r)

2r

)
(4.22)

4.5 Verification

We have to show that

(
∇µ∇µ − R

6

)
G+(x, x′) = 0 (4.23)

First we start with the imaginary part of G+(x, x′), that is we try to show that

(
∇µ∇µ − R

6

) (
i∆1/2

8π

(
δ(−∆t + r)− δ (∆t + r)

2r

))
= 0 (4.24)

4.5.1 The Imaginary part

We define,

D ≡ δ(−∆t + r)− δ (∆t + r)

2r
(4.25)

we then have

(
2− R

6

)
8πImG+ = D

(
∇µ∇µ − R

6

)
∆1/2 + 2∇µD ∇µ∆1/2 + ∆1/22D (4.26)

To evaluate the right hand side of the above equation, let us calculate the effect of

two relevant operators on δ(r±∆t)
r

. First let us calculate the effect of operating 2,

2
δ(r±∆t)

r
=

(
− ∂2

∂t2
+∇µ∇µ

)
δ(r±∆t)

r
(4.27)

= r−1

(
− ∂2

∂t2
+∇µ ∇µ

)
δ(r±∆t) + 2∇µr−1 ∇µδ(r±∆t) + δ(r±∆t)2r−1

65



In an optical ultrastatic metric, r and ∆1/2 are independent of time, hence,

2
δ(r± t)

r
= −1

r

[ (
1−∇ir ∇ir

)
δ′′(r± t)

+
1

r2

(
r∇i∇ir− 2∇ir ∇ir

)
(rδ′(r± t)− δ(r± t))

]

(4.28)

where we have adopted the notation that δ′(u) = dδ(u)
du

and δ′′(u) = d2δ(u)
du2 and ∆t is

redefined as t with t′ = 0. We then calculate
(
∆1/2

)
,i
(r−1δ(r± t))

,i

(
∆1/2

)
,i

(
δ(r± t)

r

),i

=
1

r2

(
∆1/2

),i ∇ir
(
rδ′(r± t)− δ(r± t)

)
(4.29)

Using the above relationships we can show that the last two terms of (4.26) are

equal to

2∇µ

(
δ(r± t)

r

)
∇µ∆1/2 + ∆1/22

(
δ(r± t)

r

)

=
(

1

r2
2

(
∆1/2

)
,i
∇ir +

1

r2
∆1/2(r∇i∇ir− 2∇ir ∇ir)

)
(r δ′(r± t)− δ(r± t))

(4.30)

We now use the properties of ∆1/2, r and σ:

r = (2 3σ)1/2 (4.31)

∇ir =
3σi

r
(4.32)

∇2r =
3σi

i − 1

r
(4.33)

∇ir ∇ir =
3σi

3σi

2 3σ
= 1 (4.34)

2
(
∆1/2

)
,i
∇ir =

(
2

r
−∇2r

)
∆1/2 (4.35)

where ∇2 = ∇i∇i. Because of Eq. (4.34) and Eq. (4.35), the equation Eq. (4.30)

vanishes. Furthermore, the first term of Eq. (4.28) is identically zero. From these
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considerations one can see that the last two terms of Eq. (4.26) vanish. As a result

we have,

(
2− R

6

)
8π Im G+ = D

(
∇µ∇µ − R

6

)
∆1/2 (4.36)

To proceed further, we use the sixth order expansion of ∆1/2 given by

∆1/2 = 1 + ∆(2)
pq σpσq + ∆(3)

pqrσ
pσqσr + ∆(4)

pqrsσ
pσqσrσs + ∆

(5)
pqrstσ

pσqσrσsσt

+∆
(6)
pqrstuσ

pσqσrσsσtσu (4.37)

where

∆(2)
ab =

Rab

12
(4.38)

∆(3)
abc

.
= −Rab;c

24
(4.39)

∆(4)
abcd

.
=

1

1440
(18 Rab;cd + 5 Rab Rcd + 4 Rpaqb Rc

q
d
p) (4.40)

∆(5)
abcde

.
= − 1

1440
(4 Rab;cde + 5 Rab;c Rde + 4 Rpaqb;c Rd

q
e
p) (4.41)

∆(6)
abcdef

.
=

1

362880
(315 Rab;c Rde;f + 180 Rab;cdef + 378 Rab;cd Ref

35 Rab Rcd Ref + 84 Rab Rpcqd Re
q
f

p − 270 Rpaqb;c Rd
q
e
p
;f

−288 Rpaqb;cd Re
q
f

p + 64 Rpaqb Rrdc
q Re

r
f

p) (4.42)

as shown in [76] where
.
= is defined to mean equal after symmetrization.

Consequently we have

(
∇µ∇µ − R

6

)
∆1/2 = Q0 + Qpσ

p + Qpqσ
pσq + · · · (4.43)

where the right hand side is to be determined. To do so, we substitute (4.37) into

(4.43) and consider that

σab = gab +
1

3
(Racdb + Radcb) σcσd + · · · (4.44)
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For the zeroth order term on the right side of Eq. (4.43) we find:

Q0 = 2∆(2)
pq gpq − 1

6
R =

R

6
− R

6
= 0 (4.45)

For the first order we find,

Qa = ∆(2)
pq;a − 3∆(3)

pqa (4.46)

Using Eqs. (4.38) and (4.39) for the values of the coefficients of expansion of ∆1/2,

we have:

Qa = Ra
b

;b − 1

2
R;a = Ga

b
;b = 0 (4.47)

Since Einstein tensor is divergenceless by virtue of the Bianchi identities. This

proves that ∆1/2 expanded to the third order satisfies the conformally coupled field

equation. For the second order term on the right hand side of Eq. (4.43) we have:

Qab =
(

1

360

) (
9 R ;a b + 9 R a b ;p

p − 42 R b p ;a
p + 18 R b p;

p
a + 30 R a

p R b p

− 36 R p qR a
p

b
q + 4 R a

u p q R b u p q + 4 R a p q u R b
q p u

)
(4.48)

This expression does not always vanish. However, one can show that for the Optical

Schwarzschild metric, it vanishes identically, consistent with [78, 76].2

4.5.2 The Real Part

The real part of the Green’s function is Ggauss and we now attempt to find

out to what order it satisfies the field equation, that is, we try to verify

(
∇µ∇µ − 1

6
R

)
Ggauss = 0 (4.49)

2The author thanks Dr. Albert Roura for pointing out a previous error in the calculation of

(4.48)
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We remind ourselves that

Ggauss =
u

r

κ sinh(κ r)

cosh(κ r)− cos(κ τ)
(4.50)

Due to the fact that the metric is ultra-static, the field equation can be written as

a spatial and a temporal part, (with τ = −it).

∇µ∇µGgauss =

(
∂2

∂τ 2
+∇i∇i

)
Ggauss (4.51)

and after applying the differential operator and using (4.34) and (4.35)the right

hand side contains two main terms, one is a factor of ∇2r = ∇i∇ir and the other a

factor of ∇2u, (where u ≡ ∆1/2 ).

A rigorous calculation has to include using Eq. (4.34) and Eq. (4.35). The result

of such a calculation is

∇µ∇µGgauss = Cu∇2u (4.52)

Cu =
1

r

κ sinh(κ r)

cosh(κ r)− cos(κ τ)
(4.53)

(All other terms cancel each other in the process of applying the above identities)

Therefore

(
2− 1

6
R

)
Ggauss = Cu

(
∇2 − 1

6
R

)
∆1/2 (4.54)

Once the divergent parts of Cu is factored out, the rest is at least of second order,

or higher, showing that the original expression, if expanded to fourth order, satisfies

the field equation.

We have already demonstrated that (2−R/6) ∆1/2 is of second order.
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4.6 Comparing and contrasting various formulations for Green func-

tions

Calculating the Green’s functions in curved space-times is usually at the heart

of many inquiries involving quantum field processes. Here we go over some of the

known results [66] and compare them with our result obtained above.

In all these expressions, the Hadamard ansatz for the Green’s function is as-

sumed as follows:

G(x, x′) =
1

(4π)2

(
u(x, x′)

σ
+ v(x, x′)log(σ) + w(x, x′)

)
(4.55)

where, σ is Synge’s world function and u(x, x′), v(x, x′) and w(x, x′) are functions

to be determined such that the Hadamard function satisfies the following equation:

(2− ξR) G(x, x′) = 0 (4.56)

where ξ is called the conformal factor and we have ξ = 0 for minimal coupling

or ξ = 1
6

for conformal coupling. One can easily substitute the Hadamard ansatz

into this differential equation and find relationships amongst u(x, x′), v(x, x′) and

w(x, x′) [4]. It is worth mentioning that w(x, x′) can not be determined from the

field equation since it depends on specific boundary conditions. After substituting

the Hadamard ansatz, and using the properties of the van Vleck determinant we

find that

u(x, x′) = ∆1/2 (4.57)

(2− ξR) v(x, x′) = = 0 (4.58)
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From the above equations, (provided that σ 6= 0):

(2− ξR)∆1/2 = (2−2σ)v − 2v;ασα (4.59)

Phillips and Hu [82] obtained the following expressions for v(x, x′) for a mass-

less conformally coupled scalar field,

v(x, x′) = v0(x, x′) + σv1(x, x′) + σ2v2(x, x′) + O(σ3) (4.60)

v0(x, y) = v
(0)
0 + σpv

(1)
0p + σpσqv

(2)
0pq + σpσqσrv

(3)
0pqr + σpσqσrσsv

(4)
0pqrs (4.61)

v1(x, y) ≈ v
(0)
1 + σpv

(1)
1p + σpσqv

(2)
1pq (4.62)

v
(2)
0ab = (R;ab − 3 Rab;p

p + 4 Rpa Rb
p − 2 Rpq Ra

q
b
p + 2 Rpqra Rb

rpq) /360

(4.63)

v
(3)
0abc = (5 R;abc − 14 Rpa;bc

p − 7 Rab;pc
p + 5 Rab;p

p
c + 8 Rab;cp

p

+10 Rpa;b Rc
p + 15 Rab;p Rc

p − 10 Rpaqb;c Rpq

−24 Rpq ;a Rb
q
c
p + 4 Rpa;q Rb

q
c
p − 8 Rpaqr ;b Rc

pqr

+2 Rpaqb;r Rc
pqr − 2 Rpaqr ;b Rc

qpr + 2 Rpaqb;r Rc
qpr

+2 Rpaqr ;b Rc
rpq) /1440 (4.64)

The second result we want to compare with is due to Décanini and Folacci [83].

Their results, when specialized to the conformal coupling massless case yield:

v(x, x′) =
∞∑

n=0

vn(x, x′)σn (4.65)

v0(x, x′) = v0 − v0 aσ
;a +

1

2!
v0 abσ

;aσ;b − 1

3!
v0 abcσ

;aσ;bσ;c

+
1

4!
v0 abcdσ

;aσ;bσ;cσ;d + O
(
σ5/2

)
(4.66)

v1(x, x′) = v1 − v1 aσ
;a +

1

2!
v1 abσ

;aσ;b + O
(
σ3/2

)
(4.67)
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v2(x, x′) = v2 + O
(
σ1/2

)
(4.68)

v0 = 0 (4.69)

v0 a = 0 (4.70)

v0 ab = −(1/120) 2Rab + (1/360) R;ab

+(1/90) Rρ
aRρb − (1/180) RρσRρaσb − (1/180) Rρστ

aRρστb (4.71)

v0 abc = (1/240) R;(abc) − (1/80) (2R(ab);c) + (1/8) m2 R(ab;c)

+(1/240) RR(ab;c) + (1/30) Rρ
(aR|ρ|b;c)

−(1/120) Rρ
σR

σ
(a|ρ|b;c) − (1/120) Rρ

σ;(aR
σ
b|ρ|c) − (1/60) Rρστ

(aR|ρστ |b;c)

(4.72)

v1 = (1/720) 2R− (1/720) RρσR
ρσ + (1/720) RρστκR

ρστκ (4.73)

v1 a = (1/1440) (2R);a − (1/720) RρσR
ρσ

;a + (1/720) RρστκR
ρστκ

;a (4.74)

where a notation like Rρ
(aR|ρ|b;c)is defined as being symmetrized with respect to

indices a, b and c excluding the index ρ.

The third result is due to Anderson and Hu [84], also detailed in this thesis in

chapter 2. For a massless scalar field in Schwarzschild space-time, using specific

Schwarzschild coordinates, It expresses v(x, x′) as a coordinate expansion as follows:

v(x, x′) =
∑

vi,j,k(t− t′)2i(r − r′)k(cosγ − 1)j (4.75)

where γ is the angle between the three dimensional vectors x and x′. The relevant

part of their result shows that the coefficients of terms of collective order of three

and lower vanish. The last result we quote is the result related to Gaussian approx-

imation which has been obtained above and with renormalization in [76]. At zero

72



temperature the non-renormalized result is given as

Ggauss,T=0 =
∆1/2

σ
(4.76)

Using specific coordinates we have computed that the first three results agree on

the fact that for the coefficient of the logarithmically divergent term, (i.e. v(x, x′)

) in the conformally coupled case, both in Schwarzschild and optical Schwarzschild

for all the terms of third order and lower in coordinate separation vanish. That is,

if we write:

v(x, x′) = v0(x) + va(x)σa + vab(x)σaσb + vabc(x)σaσbσc + O(σaσbσcσd) (4.77)

The first three terms vanish for Schwarzschild and optical Schwarzschild, for confor-

mally coupled massless fields. Now we state that this result is in agreement with the

zero-temperature result we obtained using Gaussian approximation for the following

reason.

Using Eq.(4.59) one can see that the order up to which the right hand side

of the Eq.(4.43) is correct, depends on the order up to which v(x, x′) has been

calculated. Specifically one can see that if v is written as the coincidence limit

expansion (i.e. as in Eq.(4.77)), correct up to a certain order, the right hand side

of (4.43) would be correct to the same order. Therefore it can be seen, that if

v(x, x′) is vanishing up to a certain order, the right hand side of the Eq.(4.43)

should vanish to the same order. We have computed and shown that the right

hand side of Eq.(4.43) is vanishing for all terms up to and including the third order.

Therefore for our result to agree with the three mentioned published results above,
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one has to make sure that all of their expressions for v(x, x′) vanish when computed

for their respective metrics up to and including the third order in expansion. Such

calculation will also yield a consistency check amongst these same results. Indeed

we have calculated zeroth, first , second and third order terms in the expansions

derived in Phillips and Hu[66] and also in Décanini and Folacci [83] and found that,

all of them are vanishing. Anderson and Hu [84] have already shown the vanishing

of v(x, x′) expansion coefficients up to the third order in their paper.

4.7 Calculation of the trace of the noise kernel

For the massless scalar conformal case, the trace of the noise kernel reduces to

N [G] =
1

144

{
RR′G2 − 6G (R2′ + R′2) G + 18 ((2G) (2′G) + G2′2G)

}
(4.78)

This equation can be written in terms of (2− (R/6)) G and (2′ − (R′/6)) G. To do

that, we add and subtract RG/6 and also R′G/6 to terms containing 2G and 2′G

respectively. The result can be shown to be equal to:

N(G) =
1

8

(
G

(
2′ − R′

6

) (
2− R

6

)
G +

(
2G− RG

6

) (
2′G− R′G

6

))

(4.79)

From this expression it becomes clear that, the vanishing of the noise kernel depends

explicitly on G satisfying the field equation. We already know that the Gaussian

approximation does not satisfy the field equation, in fact we have:

(
2− R

6

)
GWightman =

(
2− R

6

)
(C + iD) ∆1/2 = (C + iD)

(
2− R

6

)
∆1/2

= (C + iD)
(
Qabσ

aσb + O(σaσbσc)
)

(4.80)
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C =
1

8π2r

κ sinh(κ r)

cosh(κ r)− cos(κ τ)
(4.81)

D =
δ(r−∆t)− δ (r + ∆t)

16πr
(4.82)

To compute the trace, we make the following definitions:

P (x, x′) = C + iD (4.83)

Q(x, x′) =
(
2− R

6

)
∆1/2 (4.84)

Q′(x, x′) =

(
2′ − R′

6

)
∆1/2 (4.85)

Incidentally it can be inferred that

Q′(x, x′) = Qab(r
′)σa′σb′ + · · · (4.86)

Therefore We have

(
2′ − R′

6

) (
2− R

6

)
G =

(
2′ − R′

6

)
(P (x, x′)Q(x, x′))

= P (x, x′)

(
2′ − R′

6

)
Q(x, x′) + Q(x, x′)2′P (x, x′)

+ 2∇α′P (x, x′) · ∇α′Q(x, x′) (4.87)

With P (x, x′) being in the form given by Eq.(4.83), we have already shown that

2∇α′P (x, x′) · ∇α′∆1/2(x, x′) + ∆1/22′P (x, x′) = 0 (4.88)

This results in

2′P (x, x′) = −∇α′P (x, x′) · ∇α′ ln ∆(x, x′) (4.89)

Combining the last two results yields

(
2′ − R′

6

) (
2− R

6

)
G = P (x, x′)

(
2′ − R′

6

)
Q(x, x′)
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+ ∇α′P (x, x′) ·
(
2∇α′Q(x, x′)−Q(x, x′)∇α′ ln ∆(x, x′)

)

(4.90)

Combining all of the above, we have:

8 N(G) = P 2(x, x′)Q(x, x′)Q′(x, x′) + ∆1/2(x, x′)P 2(x, x′)

(
2′ − R′

6

)
Q(x, x′)

+ ∆1/2(x, x′)P (x, x′)∇α′P (x, x′) ·
(
2∇α′Q(x, x′)−Q(x, x′)∇α′ ln ∆(x, x′)

)

(4.91)

The reason for trying to find a relationship using P (x, x′) and Q(x, x′) is because we

want to find a formula that can be used readily to calculate the noise kernel by using

what we have already computed in the previous sections. Since the dependence in

P (x, x′) is through the followings:

∆t = t− t′ (4.92)

r =
√

2 (3)σ (4.93)

we can rewrite the trace of the noise kernel in terms of P and its derivatives,

N(G) = P (r, ∆t)

(
P (r, ∆t)T1(x, x′) +

1

r

∂P (r, ∆t)

∂r
T2(x, x′)

)
(4.94)

T1(x, x′) =
1

8

(
Q(x, x′)Q′(x, x′) + ∆1/2

(
2′ − R′

6

)
Q(x, x′)

)
(4.95)

T2(x, x′) =
1

4

(
∇i′

(3)σ
) (

∆1/2∇i′Q(x, x′)−Q(x, x′)∇i′∆1/2
)

(4.96)

A calculation of T1(x, x′) and T2(x, x′) up to second order yields the following:

T1(x, x′) =
3 M2 (r − 2 M)2

28 r10

(
(r − r′)2

+ (φ− φ′)2
+ 7 r (r − 2 M) (θ − θ′)2

)

+ O[(x− x′)3] (4.97)

T2(x, x′) = O[(x− x′)3] (4.98)

76



4.8 The noise kernel in the optical Schwarzschild space-time

To calculate the noise kernel we notice two crucial points. First, the Green’s

function is of the following general form:

G(x, x′) = P (x, x′)U(x, x′) (4.99)

and second, the dependence of P (x, x′) on the coordinates of the two point is of the

form P (r, ∆t). one can see that,

P;a = δ4,a
∂P (r, ∆t)

∂∆t
+ δi,a

(
σi

r

)
∂P (r, ∆t)

∂r
(4.100)

P;c′ = −δ4,c′
∂P (r, ∆t)

∂∆t
+ δi,c′

(
σi

r

)
∂P (r, ∆t)

∂r
(4.101)

We can continue this operation to express higher covariant derivatives of P (x, x′) in

terms of regular partial derivatives of P (r, ∆t). Then we can substitute all of these

covariant derivatives into general formulae Eqs.(4.1) and subsequent equations for

the noise kernel. The result of this procedure is that the noise kernel functional

dependence on P , U and σ is clearly split in such a way that all the different

components of the noise kernel are determined via covariant derivatives of U = ∆1/2

and σ with normal partial derivatives of P (r, ∆t) carried along as factors. This

expression for the noise kernel is detailed in the following.( Here u and U both

denote ∆1/2

We write the noise kernel as the following combination:

Nabc′d′ =
38∑

n=0

An(P ) B
(n)
abc′d′(U, σ) (4.102)
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Quoting B factors is a non-trivial task. For example this is the first one.

B
(1)
abc′d′(U, σ) =

U ;c′b U ;d′a

18
+

U ;c′a U ;d′b

18
+

U ;c′d′ U ;ab

72
− U ;b U ;c′ad′

36

− U ;a U ;c′bd′

36
− U ;d′ U ;abc′

36
− U ;c′ U ;abd′

36
+

U U ;abc′d′

72

− R′ U ;a U ;b gc′d′

72
+

R′ U U ;ab gc′d′

144
− U ;p′

p′ U ;ab gc′d′

72

+
U ;p′ U ;ab

p′ gc′d′

72
− U U ;abp′

p′ gc′d′

72
− U ;p′b U ;q′a gc′d′ g

p′q′

36

+
U ;b U ;p′aq′ gc′d′ g

p′q′

36
+

U ;a U ;p′bq′ gc′d′ g
p′q′

36
− R U ;c′ U ;d′ gab

72

+
R U U ;c′d′ gab

144
− U ;c′p U ;d′

p gab

36
− U ;c′d′ U ;p

p gab

72

+
U ;p U ;c′d′

p gab

72
+

U ;d′ U ;c′p
p gab

36
+

U ;c′ U ;d′p
p gab

36
− U U ;c′d′p

p gab

72

+
R R′ U2 gc′d′ gab

576
+

R U ;p′ U ;
p′ gc′d′ gab

288
+

R′ U ;p U ;p gc′d′ gab

288

− R U U ;p′
p′ gc′d′ gab

144
+

U ;p′p U ;
p′p gc′d′ gab

144
− R′ U U ;p

p gc′d′ gab

144

+
U ;p′

p′ U ;p
p gc′d′ gab

72
− U ;p U ;p′

pp′ gc′d′ gab

72
− U ;

p′ U ;p
p
p′ gc′d′ gab

72

+
U U ;p

p
p′

p′ gc′d′ gab

72
+

U ;a U ;b Rc′d′

36
− U U ;ab Rc′d′

72

− R U2 gab Rc′d′

288
− U ;p U ;p gab Rc′d′

144
+

U U ;p
p gab Rc′d′

72

+
U ;c′ U ;d′ Rab

36
− U U ;c′d′ Rab

72
− R′ U2 gc′d′ Rab

288
− U ;p′ U ;

p′ gc′d′ Rab

144

+
U U ;p′

p′ gc′d′ Rab

72
(4.103)

There are 44 terms in this expression. One can continue quoting other B’s. However

the form of the A factors can be determined from the following considerations. A1

is P (r, ∆t) the rest are of the following form,

AN =
∂m∂nP

∂rm∂∆tn
∂p∂qP

∂rp∂∆tq
(4.104)
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where

0 ≤ m, n, p, q ≤ 3 and m + n + p + q = 4 (4.105)

They can be found in Table 4.1.

One immediate application of this form is the expression of the noise kernel for hot

flat space-time [82]. To reproduce the Eq. (4.3) in [82] via our method it suffices

to write the renormalized Gaussian approximation expression for P as

P (r, ∆t) =
1

120960 π2
κ2

(
2520− 42 κ2

(
r2 − 3 τ 2

)
+ κ4

(
r4 − 10 r2 τ 2 + 5 τ 4

))

(4.106)

This expression can be further simplified by noting that in this case r is simply the

Euclidean expression. In flat space-time we further have the following simplifications

U = 1 , Rab = 0 , Rabcd = 0 , gab = ηab (4.107)

Using our expression quoted (partially) here in Eqs. (4.102) and (4.103) and in

Table (4.1) , we can evaluate the coincidence limit of the noise kernel, the answer

is:

Nabc′d′ =
41 π4 T 8 δ 4

a δ 4
b δ 4

c δ 4
d

85050
− 13 π4 T 8 δ 4

c δ 4
d gab

204120
− 29 π4 T 8 δ 4

b δ 4
d gac

510300

− 29 π4 T 8 δ 4
b δ 4

c gad

510300
− 29 π4 T 8 δ 4

a δ 4
d gbc

510300
+

π4 T 8 gad gbc

85050

− 29 π4 T 8 δ 4
a δ 4

c gbd

510300
+

π4 T 8 gac gbd

85050
− 13 π4 T 8 δ 4

a δ 4
b gcd

204120
+

41 π4 T 8 gab gcd

4082400

(4.108)

This expression is in agreement with Eq. (4.3) in [82], except for a factor of 2.

That the correct expression has to be twice bigger can be seen from the following
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A1(P ) = P (r, τ)2 A2(P ) = P (1,0)(r, τ) P (3,0)(r, τ)

A3(P ) = P (1,0)(r, τ) P (2,1)(r, τ) A4(P ) = P (1,0)(r, τ) P (1,2)(r, τ)

A5(P ) = P (0,3)(r, τ) P (1,0)(r, τ) A6(P ) = P (0,1)(r, τ) P (3,0)(r, τ)

A7(P ) = P (0,1)(r, τ) P (2,1)(r, τ) A8(P ) = P (0,1)(r, τ) P (1,2)(r, τ)

A9(P ) = P (0,1)(r, τ) P (0,3)(r, τ) A10(P ) = P (2,0)(r, τ)
2

A11(P ) = P (1,1)(r, τ) P (2,0)(r, τ) A12(P ) = P (0,2)(r, τ) P (2,0)(r, τ)

A13(P ) = P (1,1)(r, τ)
2

A14(P ) = P (0,2)(r, τ) P (1,1)(r, τ)

A15(P ) = P (0,2)(r, τ)
2

A16(P ) = P (1,0)(r, τ)
2

A17(P ) = P (0,1)(r, τ) P (1,0)(r, τ) A18(P ) = P (0,1)(r, τ)
2

A19(P ) = P (1,0)(r, τ) P (2,0)(r, τ) A20(P ) = P (1,0)(r, τ) P (1,1)(r, τ)

A21(P ) = P (0,2)(r, τ) P (1,0)(r, τ) A22(P ) = P (0,1)(r, τ) P (2,0)(r, τ)

A23(P ) = P (0,1)(r, τ) P (1,1)(r, τ) A24(P ) = P (0,1)(r, τ) P (0,2)(r, τ)

A25(P ) = P (r, τ) P (1,0)(r, τ) A26(P ) = P (r, τ) P (0,1)(r, τ)

A27(P ) = P (r, τ) P (2,0)(r, τ) A28(P ) = P (r, τ) P (1,1)(r, τ)

A29(P ) = P (r, τ) P (0,2)(r, τ) A30(P ) = P (r, τ) P (3,0)(r, τ)

A31(P ) = P (r, τ) P (2,1)(r, τ) A32(P ) = P (r, τ) P (1,2)(r, τ)

A33(P ) = P (r, τ) P (0,3)(r, τ) A34(P ) = P (r, τ) P (4,0)(r, τ)

A35(P ) = P (r, τ) P (3,1)(r, τ) A36(P ) = P (r, τ) P (2,2)(r, τ)

A37(P ) = P (r, τ) P (1,3)(r, τ) A38(P ) = P (r, τ) P (0,4)(r, τ)

Table 4.1: A Factors
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considerations. After κ = 2πT is substituted, The Gaussian function will be( from

[82] Eq. 3.1)

GGauss
ren (τ, σ) = ∆1/2

(
T 2

12
− π2 σ T 4

90
+

2 π4 σ2 T 6

945
+

π2 T 4 τ 2

45
− 4 π4 σ T 6 τ 2

315
+

8 π4 T 6 τ 4

945

)

(4.109)

If G is any function Q times U = ∆1/2 we have :

G;ab = Q;abU + Q;aU;b + Q;bU;a + U;abQ (4.110)

Since U = 1, which is true when space-time is flat,

G;ab = Q;ab (4.111)

Let us apply this to the renormalized Gaussian function, followed by taking the

coincidence limit (σ → 0, τ → 0).

G;ab =
2 π2 T 4 τaτb

45
+

4 π4 T 6 (σa) (σb)

945
− π2 T 4 (σab)

90
(4.112)

since τ → τ − τ ′ it can be seen that τa = δ4
a and just for completeness τc′ = −δ4

c′

considering that [σa] = 0 we have:

[Gren
ab ] = −π2 T 4 (σab)

90
+

2 π2 T 4 τaτb

45
(4.113)

which is Eq.(4.2b) in the same ref. [82]. The more important part is that if we

accept (4.2b) and (4.2c) of ref. [82], we should be able to find out (4.3), specially

the first term. The Nab, Nc′d′ and N terms in the basic equations of noise kernel

given by ref. [66] do not contribute. Only the first line of Eq. (3.25 a) contributes

to the first term of (4.3) of [82]. That line is

(4(G;c′bGd′a + Gc′aGd′b) + Gc′d′Gab + GGabc′d′) (4.114)
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All that we have to do to find the first line of (4.3) is to substitute (4.2a, 4.2b and

4.2c) into the above line. The result is

4
((

2

45

)
×

(
2

45

)
δ4
aδ

4
b δ

4
cδ

4
d +

2

45
×

(
2

45

)
δ4
aδ

4
b δ

4
cδ

4
d

)

+
(

2

45

)
×

(
2

45

)
δ4
aδ

4
b δ

4
cδ

4
d +

64

315× 12
δ4
aδ

4
b δ

4
cδ

4
d (4.115)

The final result of this calculation is

41

85050
δ4
aδ

4
b δ

4
cδ

4
d (4.116)

Therefore the first term can be easily calculated and shown to agree with the elab-

orated result, particularly that would confirm the factor of 2.

A second verification can be obtained by calculating the Trace of B
(1)
abc′d′(U, σ)

and expanding the result in separation of points (i.e. expanding it in (r − r′) ,

(θ − θ′) and (φ − φ′) ). One can compare this calculation with the indirect result

calculated in (4.94). A thorough calculation has to overcome several challenges in

terms of computing. At the time of this writing we have computed the contribution

of the first term that is Eq.(4.103) to the total trace of the noise kernel expressed

as Eq.(4.102) and up to the second order we have confirmed that this contribution

matches Eq.(4.97). However a complete verification of our results requires calcula-

tion of the trace of all 38 terms in Eq. (4.102).

Our ultimate aim is to calculate the noise kernel as a quasi-local expansion in co-

ordinate separations up to a certain order Ω that is, we want to express the noise
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kernel as sum of terms in the following form

Babc′d′(x, x′) =
4∑

q=0

(
1

r

)q i+j+k≤Ω∑

i,j,k=0

B
(q)
abc′d′ {ijk}∆ri∆θj∆φk (4.117)

where ∆r = (r − r′), ∆θ = (θ − θ′) and ∆φ = (φ − φ′) and the coefficients of

expansion, namely, B
(q)
abc′d′ {ijk} for a massless scalar field conformally coupled to

an optical Schwarzschild metric, depend on r and θ. ( the inclusion of braces in

the above, that is, the notation, {ijk}, imparts no further property and is only

to distinguish expansion related indices from tensor related indices).The factors of

these terms will depend on the specific form of P (r, τ) functions. For example for

That the power of square root of three dimensional Synge’s world function can not be

more than 4 can be easily seen from Eq. (4.100), since from Eq. (4.1) and equations

that follow it, we know that the final expression will include up to four covariant

derivative of P (x, x′) and for each one there will be one 1/r. The steps that are

required to arrive at this recent equation, starting from Eq. (4.102) are cumbersome

but more or less straightforward. One obviously has to substitute for the relevant

quantities and expand to the desired order. The expansion for U = ∆1/2, (3)σ and

their derivatives are obtained in [85].

The task of computation however is non-trivial as it is evident from the large number

of terms and expressions that are involved. The real challenge is in finding the

proper algorithm such that the entire project can be carried out within limitations

of computing processing time and memory. The key to accomplishing this task is to

find out which terms contribute to the total sum and take the necessary precautions

as to include only the contributing terms and nothing more.
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4.9 Summary

In this chapter, we found an expression for the Wightman function for a mass-

less scalar field conformally coupled to optical Schwarzschild metric. We then veri-

fied the result, finding the order up to which it will satisfy the field equation. In the

course of this investigation, we also checked for the consistency of all of the known

published results for the tail-term function v(x, x′) and verified that these results are

also consistent with ours. Having found the Wightman function we used a generic

form written as any bi-scalar denoted by P (x, x′) multiplied by U = ∆1/2 with ∆

being the square root of van Vleck determinant. We then substituted this generic

form, writing the noise kernel as the sum of terms consisting of two factors, one

entirely dependent on P (r, τ) and its derivatives and the other entirely dependent

on U and σ and their covariant derivatives. This enabled us to use the already cal-

culated expanded forms of U and σ to finally calculate the general point-separation

expanded form of the Noise Kernel. The procedure, in principle, can be carried out

to the desired order limited only by computing time and memory resources. Such

calculation can be important and useful in investigating:

1. metric fluctuations

2. correlation of stress energy tensor fluctuations in two distinct points

3. certain physical quantities that are obtained by integrating suitable functions

over the noise kernel factored in as a tensor with distribution like properties.

Future developments can follow using these expressions [86].
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Appendix A
Calculation of σ(x, x′) , tR and u(x, x′) as coordinate expansion in
separation of end-point coordinates

Van Vleck determinant, ∆(x, x′) and Syng’s world function, σ(x, x′) have been

calculated using the covariant geodesic point separation ([61],[60] and [66]). Con-

crete calculations however, need to be done in coordinate dependent fashion in one of

the convenient coordinate systems. Specially Syng’s world function, is often needed

and a calculation of this function in a useful coordinate system seems to be relevant.

We start by noting that σ(x, x′) satisfies the following non-linear differential equa-

tion:

σ =
1

2
gαβσασβ (A.1)

We do this for geometries that have the following line element:

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2dθ2 + r2 sin2 θdφ2 (A.2)

For the metric (A.2) the diff. eq. can be explicitly written as

σ =
1

2


− 1

f(r)

(
∂σ

∂t

)2

+ f(r)

(
∂σ

∂r

)2

+
1

r2

(
∂σ

∂θ

)2

+
1

r2 sin2 θ

(
∂σ

∂φ

)2

 (A.3)

It can be seen that the angular part can be entirely described in terms of cos γ =

cos θ cos θ′ + cos(φ− φ′) sin θ sin θ′ In the following manner:

gθθ

(
∂σ

∂θ

)2

+ gφφ

(
∂σ

∂φ

)2

=
1

r2

(
∂σ

∂ cos γ

)2

(1− cos2 γ) (A.4)

Therefore one can describe the angular dependence of σ(x, x′) entirely in terms of

cos γ. We decide to describe this dependence in terms of (cos γ − 1) and to make
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the expressions shorter we define:

η ≡ cos γ − 1 (A.5)

Now since the metric does not depend on time, we can see that σ(x, x′) must

be a function of ∆t ≡ (t− t′) since any time translation should leave it unchanged.

we therefore write σ(x, x′) as a function of η,∆t and ∆r ≡ r − r′ as follows:

σ(x, x′) =
∑

i,j,k

si,j,k(r)∆t2i∆rkηj (A.6)

It has to be in terms of even powers of (t− t′) since σ(x, x′) = σ(x′, x). In terms of

these variables one can write the differential equation as

σ =
1

2


− 1

f(r)

(
∂σ

∂∆t

)2

+ f(r)

(
∂σ

∂r

)2

− 1

r2

(
∂σ

∂η

)2

(η2 + 2η)


 (A.7)

Now one can substitute the expansion (A.6) into the differential equation (A.7) and

attempt to solve for the coefficients, order by order. The procedure succeeds since in

the course of calculation, it becomes clear, that all the equations are one-equation-

one-unknown algebraic equations. Furthermore, there will be no need to solve any

differential equation to find the coefficients. To fourth order we have

σ(4)(x, x′) = −1

2
f∆t2 +

1

2f
∆r2 − r2η + r∆rη +

1

6
r2η2(1− f)

+
∆t2 ∆r f ′

4
+

∆r3 f ′

4 f 2
+

r ∆r2 η f ′

12 f

− (r ∆t2 η f f ′)
12

− ∆t4 f f ′2

96
+

r ∆r η2 (−2 + 2 f + r f ′)
12

−
∆t2 ∆r2

(
−3 f ′2 + 4 f f ′′

)

48 f
−

∆r4
(
−15 f ′2 + 8 f f ′′

)

96 f 3

The expansion is particularly useful for calculating tR. To that end we write tR as
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an expansion in powers of ∆r and η

∆tR =
∑

j,k

qj,k(r)η
j∆rk (A.8)

The q coefficients must be calculated in a way that after substitution in the expres-

sion for σ(x, x′), the expression vanishes.

To calculate van Vleck determinant ∆(x, x′) or its square root, u(x, x′) we can use

the fact that u(x, x′) satisfies the following differential equation:

(ln ∆)ασα = 4−2 σ (A.9)

It could be worth mentioning that 2 σ has the same angular dependence that σ has.

Indeed It can be shown that 2 σ = σα
α can be written as an expansion as

2 σ =
∑

i,j,k

di,j,k(r)∆t2i∆rkηj (A.10)

di,j,k = f(r)

(
d2 si,j,k

dr2
+ 2(k + 1)

dsi,j,k+1

dr
+ (k + 1)(k + 2)si,j,k+2

)

+ X

(
dsi,j,k

dr
+ (k + 1)si,j,k+1

)

− 1

f(r)
(2i + 2)(2i + 1)si+1,j,k − 2 j2

r2
si,j+1,k − j(j − 1)

r2
si,j,k (A.11)

X = f ′(r) +
2

r
f(r) (A.12)

The left side of the Eq. (A.9) can be written as:

(ln ∆)ασα =
1

2

(
− 1

f(r)

(
∂σ

∂∆t

) (
∂ ln ∆

∂∆t

)
+ f(r)

(
∂σ

∂r

) (
∂ ln ∆

∂r

)

− 1

r2

(
∂σ

∂η

) (
∂ ln ∆

∂η

)
(η2 + 2η)

)

Hence one can write ln ∆ as an expansion similar to the expansion of σ and solve for

the undetermined coefficients of expansion. ∆ then can be found by exponentiating
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ln ∆ and expanding to the desired order.

After calculation of ∆(x, x′) and substitution of tR − t from A.8, One can calculate

∆(x, x′) for x and x′ separated with a null geodesic. the result is:

∆(x, x′)|σ=0 = 1 +
2 η2 M2

5 r2
+

2 ∆r η2 M2

5 r3
+ O(|x− x′|3) (A.13)

Calculating σ2
t at the null separation yields

σ2
t |σ=0 = ∆r2 + 2 η (2 M − r) r + 2 ∆r η (−M + r) + η2 M2 (A.14)

+
2 ∆r2 η2 M2

5 r2
+

4 η3 M2 (2 M − r)

5 r
+

2 ∆r3 η2 M2

5 r3
+

4 ∆r η3 M3

5 r2
+

2 ∆r4 η2 M2

5 r4

+ higher order terms

=
(
∆r2 + 2 η (2 M − r) r + 2 ∆r η (−M + r) + η2 M2

) (
1 +

2 η2 M2

5 r2
+

2 ∆r η2 M2

5 r3

)

Hence it can be deduced that:

u(x, x′)
σt

|σ=0=
1√

∆r2 − 2ηr0(r0 − 2M)− 2η∆r(r0 −M) + M2η2
(A.15)
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Appendix B
Power Series Expansion for the Self-Force

Using a 16th order WKB expansion for v(x, x′) we find

a6 =
−1

5600 π r0
2

(
f0 − 6 f0

3
)

a8 =
−1

3763200 π r0
2 x0

2 f0

(
33 + 1673 f0

2 − 6505 f0
4 − 801 f0

6
)

a10 =
−1

1862784000 π r0
2 x0

4 f0
3

(
1485 + 58135 f0

2 + 1318420 f0
4 − 6320024 f0

6 + 9543963 f0
8

−8129979 f0
10

)

a12 =
−1

4262049792000 π r0
2 x0

6 f0
5

(
64350 + 17996550 f0

2 + 260849550 f0
4 + 3865599526 f0

6

−23615537141 f0
8 + 39720954511 f0

10 − 8647606803 f0
12 − 20916240543 f0

14
)

a14 =
−1

775693062144000 π r0
2 x0

8 f0
7

(
−50450400 + 601200600 f0

2 + 7645255800 f0
4

+66115588280 f0
6 + 793355275637 f0

8 − 6317820122409 f0
10 + 15546245547034 f0

12

−21861205897898 f0
14 + 24851959906665 f0

16 − 14951493087309 f0
18

)

a16 =
−1

1054942564515840000 π r0
2 x0

10 f0
9 (−59339129850

+199482633350 f0
2 + 2284989775250 f0

4 + 15281113074290 f0
6 + 99509041653021 f0

8

+1135360622213657 f0
10 − 11642046270515187 f0

12 + 35642217287656961 f0
14

−48909059709636311 f0
16 + 9979576112044621 f0

18 + 50856188133399573 f0
20

−39894377180673375 f0
22

)
(B.1)

and

b5 =
3 x0 f0

2

22400 π r2
0
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b7 =
1

940800 π x0r2
0

(
−147 + 1031 f0

2 − 2004 f0
4
)

b9 =
1

1117670400 π x3
0r

2
0

(
725274− 4840427 f0

2 + 7544064 f0
4 − 1384911 f0

6
)

b11 =
1

3196537344000 π x5
0 r2

0

(
−5192394350 + 35645887586 f0

2 − 76724155827 f0
4

+74055537336 f0
6 − 34933610745 f0

8
)

b13 =
1

27703323648000 π x7
0 r2

0

(
88650418610− 652839443586 f0

2 + 1715470441205 f0
4

−2048237904519 f0
6 + 938994638717 f0

8 + 27641613573 f0
10

)

b15 =
1

197801730846720000 π x9
0 r2

0

(
−1082712168000450 + 8690022729803252 f0

2

−27039642594514215 f0
4 + 43159798466443548 f0

6 − 40035939562445204 f0
8

+24271024582691064 f0
10 − 8499901220531595 f0

12
)

. (B.2)
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Appendix C
Self-force Calculation Results for a particle previously held at rest
but launched on a circular orbit with Keplerian frequency

Here we bring the results of the calculation of the self-force for Keplerian cir-

cular orbit to the highest order available to us. Let f
(kc)
t denote the time component

of the self-force for Keplerian circular orbit.

To the extent that it is possible and meaningful, We try to express the results in

terms of the following dimensionless parameters,

x0 =
r0

M

f0 = 1− 2 M

r0

ω0 =

√
1− 3 M

r0

β0 =

√
1− 2 M

r0

(C.1)

the following The result of the calculation can be written as

f
(kc)
t =

∑
f2n

(
t

M

)2n

(C.2)

and we have :

f4
t =

3 f0

17920 π r0
2 x0

8

( (
13 + 2 x0 − 5 x0

2
)

β0 +
(
2− 11 x0 + 5 x0

2
)

ω0

)

(C.3)

f6
t =

−f0

107520 π r0
2 x0

12

(
β0

(
−1302 + 688 x0 + 522 x0

2 − 378 x0
3 + 56 x0

4
)

ω0

(
327 + 614 x0 − 1063 x0

2 + 448 x0
3 − 56 x0

4
) )

(C.4)
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f8
t =

f0

141926400 π r0
2 x0

16
×

(
2 β0

(
4103055− 5118465 x0 + 472505 x0

2

+1948602 x0
3 − 1093758 x0

4 + 223705 x0
5 − 15750 x0

6
)

+

3 ω0

(
− 1274130 + 417945 x0 + 2023852 x0

2 −

2166754 x0
3 + 881199 x0

4 − 159170 x0
5 + 10500 x0

6
) )

(C.5)

f10
t =

f0

6199345152000 π r0
2 x0

20
×

(
β0

(
1616491337742− 3187571421681 x0 + 1879624942785 x0

2 +

278397740030 x0
3 − 835465289640 x0

4 + 416773889931 x0
5 −

97913745743 x0
6 + 11232774240 x0

7 − 498960000 x0
8
)

+

3 ω0

(
− 321226132428 + 462825450396 x0 + 55536384285 x0

2 −

507007548036 x0
3 + 423045891786 x0

4 − 167783526144 x0
5 +

35671434261 x0
6 − 3872778080 x0

7 + 166320000 x0
8
))

(C.6)

The result for fr∗ can be presented as :

fr∗ =
∑

f r∗
n

(
t

M

)n

(C.7)

And we have :

f5
r∗ =

3

89600 π r0
2 x0

10

(
− 5 β0

(
37− 18 x0 − 9 x0

2 + 4 x0
3
)

+ω0

(
53 + 54 x0 − 81 x0

2 + 20 x0
3
) )

(C.8)

f6
r∗ =

9 β0 (2 x0 − 5)

35840 π r0
2 x0

12
(C.9)
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f7
r∗ =

1

1505280 π r0
2 x0

14
×

(
− 14 β0

(
6714− 7153 x0 + 256 x0

2 + 2025 x0
3 − 764 x0

4 + 80 x0
5
)

+ω0

(
21510− 5281 x0 − 26084 x0

2 + 21465 x0
3 − 6020 x0

4 + 560 x0
5
) )

f8
r∗ =

β0 (72− 85 x0 + 22 x0
2)

430080 π r0
2 x0

16
(C.10)

f9
r∗ =

ω0

1277337600 π r0
2 x0

18
×

(
103311450− 124020270 x0 − 35018287 x0

2 + 128131276 x0
3

−83133090 x0
4 + 24674038 x0

5 − 3498265 x0
6 + 189000 x0

7
)

(C.11)

f10
r∗ =

−β0 (90− 140 x0 + 41 x0
2)

6451200 π r0
2 x0

19
(C.12)

Similarly we can present the result of calculation of fφ as follows:

fφ =
∑

fφ
n

(
t

M

)n

(C.13)

The non-vanishing coefficients of the above expansion they have been computed so

far are,

fφ
4 =

9 f0

17920 π r0 x0
15
2

(ω0 (5− 3 x0) + 4 β0 (−1 + x0)) (C.14)

fφ
5 =

−9 β0 f0

8960 π r0 x0
19
2

(C.15)

fφ
6 =

f0

107520 π r0 x0
23
2

(
ω0

(
975− 1302 x0 + 541 x0

2 − 70 x0
3
)

+

β0

(
−882 + 1356 x0 − 606 x0

2 + 84 x0
3
) )

(C.16)

fφ
7 =

β0 f0 (3− 2 x0)

35840 π r0 x0
27
2

(C.17)
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fφ
8 =

f0

141926400 π r0 x0
31
2

×
(
ω0

(
4383720− 8983095 x0 + 7016566 x0

2

−2603058 x0
3 + 456081 x0

4 − 30100 x0
5 ) +

β0

(
− 4062960 + 8940360 x0 − 7329824 x0

2

+2817456 x0
3 − 507144 x0

4 + 34400 x0
5
))

(C.18)

fφ
10 =

f0

6199345152000 π r0 x0
39
2

×
(

ω0

(
652812940458− 1799095070493 x0 + 2046234095640 x0

2

−1242624904078 x0
3 + 433672385718 x0

4 − 86576688501 x0
5

+9100557040 x0
6 − 385560000 x0

7
)

+β0

(
− 609320914020 + 1759649090850 x0 − 2072310397920 x0

2

+1292397157340 x0
3 − 460467765420 x0

4 + 93463692930 x0
5

−9966677600 x0
6 + 428400000 x0

7
))

(C.19)
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