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ABSTRACT

The concept of structured singular value was recently
introduced by Doyle (Proc. IEE, vol. 129, pp. 242-250, 1982)
as a tool for the analysis and synthesis of feedback systems
with structured uncertainties. In this paper an equivalent
expression for the structured singular value is proposed, lead-
ing to an alternative algorithm for its computation. The new
approach is based on the geometric properties of a certain
family of sets. Similar to previously considered schemes, the
algorithm proposed here is proven to give the correct value
for block-structures of size up to 3. For larger sizes, insight is
gained in the question of the possible ‘gap’ between the struc-
tured singular value and its known upper bound.

INTRODUCTION AND PRELIMINARIES

The concept of structured singular value was recently
introduced by Doyle {1} as a tool for the analysis and syn-
thesis of feedback systems with structured uncertainties. In
this paper an equivalent expression for the structured singular
value is proposed, leading to an alternative algorithm for its
computation. The new approach is based on the geometric
properties of a certain family of sets. Similar to previously
considered schemes, the algorithm proposed here is proven to
give the correct value for block-structures of size up to 3. For
larger sizes, insight is gained in the question of the possible
‘gap’ between the structured singular value and its known
upper bound.

Throughout the paper, given any square complex matrix
A, we denote by o(A ) its largest singular value and by A H
its complex conjugate transpose. If A is Hermitian, A >0
(resp. A >0) expresses that A is positive definite (resp. semi-
positive deflnite). Given any complex vector z, z# indicates
its complex conjugate transpose and ||:r || its Euclidean norm.
The unit sphere in C" is denoted by JB, ie,
dB={z € C" |r|=1}. Given a set S, coS and intS
respectively denote its convex hull and interior. A block-
structure of size m is any m-tuple k = (kg - ky) of

positive integers.“7 Given a block-structure k of size m, we
make use of the family of diagonal matrices

1 This research was supported by the National Sclence Foundation under
grants No DMC-84-51515 and OIR-85-00108. During the time the research was per-
formed, the first author was a Fellow of the Minta Martin Foundatlon, College of En-
gineering, University of Maryland.

2 This corresponds, (n the terminology of [1i, to structures with no repeated
blocks

d = {block diag (d,Jy , - - - .dy Iy ) | d, € (0.c0)}
and of the projection matrices

P; = block diag (O, *+ .0y _ Iy ,Op .~ .0 ),

where, for any positive integer k, [, is the k Xk identity
matrix and Oy the k Xk zero matrix.

Definition 1. ® {2, 3] The structured singular value of a com-
plex n Xn matrix M with respect to the block-structure

m
k = (ky, -+ ky)of size m, where n == 3] k;, is the nonne-
i=1

gative scalar

p=max {[Mr| | [Pz [IMz]=1P;Mz]
recC*

,i=1, " ,m}. (1)

Notice in particular that, if k=(n), the structured singular
value is equal to the largest singular value (A ).

The question of how to compute g has been addressed
by several authors. Doyle {1} showed that, while in general

p < inf 7(DMD™Y), Y
ped (2)
it m <3,

u = inf F(DMD™). (3)
ped

He produced a counterexample to (3) for the case m =4 4.
The minimization problem in (2) has no stationary point
other than its global minimizers (5] and algorithms exist to
solve it (1, 8]. Another approach for computing p is to solve
directly optimization problem (1). Although local maxima are
generally present, global optimality can be checked whenever
(3) holds [3]. For such cases, an algorithm proposed in [3]
results in a typical speedup of an order of magnitude over
algorithms based on (3). However, the question of obtaining
an algorithm to compute g for any block-size remains open.
1t is hoped that the geometric framework introduced in this
paper for the computation of u will contribute to the progress
towards answering this question.

In the next section, we propose a new algorithm for com-
puting the structured singular value, based on the distance

3 This definitlon of the structured singular value, while computationally more
tractable, is equivalent to that originally proposed by Doyle [1].



between the origin and members of a certain family of subsets
V' (a) of R™. This distance can be efliciently computed when
these subsets are convex. which is shown to be the case for
block-structures of size no larger than 3. In the final section,
a new upper bound for g is derived for the case m >4 and
upper bound gaps are related to a specific type of non-
convexity of l'(;f"). An algorithm for plotting the boundary
of a set 1 (a) when m =2 is given in the appendix.

CONCEPTS AND ALGORITHM

For i =1, - ,m, and any real number a, let A; (o) be
defined as

Aj(@)=aP; -M¥ P, AL,
and consider the nonnegative scalar function ¢ (+) defined as
c(@)=min {flll v € V(a)}
where
Vi)={v ER" |y = tH A )z, r €0B) .

Our first theorem gives an equivalent formula for g.

Theorem 1. ¢ (#°)=0, and ¢ (a)>0 for all a> x> so that

p = (inf {a | ¢ (8)>0 for all f>a})V/* .

Proof. First, let T € 9B be a global solution of (1), i.e.,
p=\F| and u|P;F|=|P, MZ| for i=1, - .m. This
implies
m i
¢ (uf) = min_ {(ia(z”A.- (492 )1}
m
S E A whTH

1=1

= (D WP, FF - P, MEF)/ =0

1 =1

Thus

e(p¥)y=0.
Second. let a be such that ¢ (a)=0. There must exist some
x € 8B such that, for i =1, - - ,m,

oz F- P, Mz =0 (4)
For any such z, one then has
o= SalpizP =P, 5)
§=1

Relations (4) and (5) imply that z is a feasible point for (1).
Hence, by (1),

B2 M =a.

Proposition 1. For any s >0, and for any real o
c(a+s) < c(a)+s
Proof.

+ — f = H 4. 2\1/2
¢lass) = min {(3 (% A;(a+s)z))"}

=1

m

= min {(El(r” A (o)z +s [Pz F)'?)

Using the triangular inequality in IR™ , we obtain

m m
: H 241, 2 21241 2
cla+s) < min {(3(z7 A (a)z)) *+s (S (P 2 YD 7}
2 €08 o 1=1
Replacing the second term in the '‘min’ by its constrained
maximum, since s >0, we can write

¢lats) £ min {( 3 (04 4 @)z )15 ) = ¢ (o)

i=1

Based on these facts, provided one has an algorithm to com-
pute ¢ (&), p can be obtained as follows.

Algorithm 1. Computation of p

Step 0. Set ag = (M) and k = 0.
Step 1. Set oy = ap ~ ¢ (ay ).
Step 2. Set k = k +1 and go to Step 1.

Theorem 2. The sequence {a; } generated by Algorithm 1 is
monotone decreasing and

lim ap = p?.
k—o0

Proof. We first show by induction that ay >p® for all k.
Clearly, ay=07(M)>u® Assuming the claim is true for k
and using Proposition 1 and Theorem 1, we can write

clag) = c(uitlay - uD) € c(WD)+ay — p¥ = agp - pt.

Thus, in view of the construction in Step 1 of Algorithm 1,

the claim is true for k +1. Now, since the sequence {a } is

monotone nonincreasing, it follows that it converges to a limit
* . .

a  satisfying

a" > pt.

Since ¢ (-) is clearly continuous, the construction in Step 1

now implies, letting & —oo,

o =a" -c")
and thus ¢ (a')=04 The result now follows from Proposition
1.
n
U
Existing algorithms [1, 8], proposed in a slightly different con-
text, can be used to compute the distance between the origin
and coV («), thus yielding ¢ (o), among other instances, when

V(a) is convex. The next proposition shows that the latter
case is of definite interest.

Proposition 2. For m <3 and for any real number a, V' (a)
is convex.

Nl
NI

In proving this proposition we will make use of the following
three lemmas.

Lemma 1. Let m =3. Then for any real number a and for
any u,v € V(a), there exists an ellipsoid? E (u,v), possibly

14 Following the standard usage we call elllpsold & surface, not a volume, to be
compared to a sphere rather than to a ball. Lemma 1 states that such a surface
‘passes through® u and v and Is entirely In V (a).



degenerate, containing u and v and contained in 1" (a).

a b
b, ¢ |’
where a,. ¢; €R, b, € C', and b; is the complex conjugate
of b,. Any unit vector e in (% can be written as
cos(f)

e = exp(y o) sin(@)(cos(v)+ 7 sin(y?)
for some ¢. 8, ' € IR, where j 1s the square root of ~1. Ele-
mentary manipulations yield

Proof. For ¢ =1. 2. 3. let

H, =

a, ~¢,

e"H e =
. cos(26)
S Re(b;) Im(bi)} sin(26) cos(¥) | (6)
sin(28) sin(y?)

so that the set £ defined by
e H e
E ={ |e®H,e

et Hye

e € C%lel=1 (7

is a possibly degenerate ellipsoid centered at
a,+c,
Lie +c
2 2t C o
Q37 Ca
Now let a €IR and u.v € V(o) and let z,y € C" be the
unit vectors such that, for {=1,2,3, u =1HA,<(a);t and
v,-=yHA, (a)y. Without loss of generality, assume that z
and y are lLnearly independent. Pick an orthogonal basis
{F. 7} for the subspace of IR" spanned by {z,y}. For
=1, 2, 3. let
H =z §i" A ()T 7] (3
and denote by E (u,v) the corresponding ellipsoid (7). It is
easily checked that £ (u ,v) satisfles the required conditions.
0"
U

Lemma 2. V(o) is not a non-degenerate ellipsoid.

Proof. By contradiction. Suppose V(a) is a non-degenerate
ellipsoid. Clearly such a set does not have any ellipsoid as a
proper subset (except for single points). Thus, in particular, if

r, y and z are any points in 8B such that®

<r,y>=<z,2>=0and if v, v and w in R® have com-

ponents u, =z¥ A;(a)r, v =y” A (a)y . w; =zHA,~ ()2,
Fuv)=FE(u,w)

where these sets are ellipsoids as in Lemma 1. The centers of

these two ellipsoids must coincide, i.e., from (6) and (8),

Y A, (a)r +yH A;(a)y = P A (a)z +zHA‘~ (@)z 1=1,2,3

so that

$ Such a cholce Is possible because n >m ==3. This Is in fact the only use we
make of the properties of the A,'s If matrices of size 2X2 were consldered, Proposi-
tion 2 would have to be replaced by the weaker result that the corresponding sets

yH Ay =8 A0): i=1,2,3.

Since y and 2z are arbitrary. this implies that, for some
nwEC

Aja) =1

so that 17(a) is a singleton. This 1s a contradiction.

1=1,2,3

Lemma 3. For any u.v € V(a). coF (u.v)CV(a). where
E (u.,v)is as in Lemma, 1.

Proof. Let u.v € V(a). If F(u.v) is a degenerate ellipsoid.
then £ (u,v)=coF (u,v) and the result follows from Lemma
1. Suppose now that E(u,v) is non-degenerate. Lemma 2
implies that there exists v’ € V(o) with w’ ¢ E(u.r).
Suppose first that w’ € int coF (u ,v). For any
w € int coF (v .v), wFw " denote by w, and w, the inter-
sections of the line through w “ and w with E(u.,v) with v,
on the side of w " and w, on the side of w . Clearly

w € coF (w ' ,wy)
but
w & coF (uw” wy) .

Continuity considerations then show that there is some
W € EF(u,v) such that a corresponding E(w',m) passes
through w. This implies that w € V(a), so that
coF (u,v)C V(a). Suppose now that w ' & int coF (u,v).
Again, for any w € int coE (u,v) denote by wq and w, the
intersections of the line through w' and w with E(u.v),
this time with w, on the far side from w’. Since, if
E(w fw 1) is nondegenerate, w, € V(a)N int cof (w T N
it follows from the discussion of the previous case that
coF (w' 2w ,)C V(a). Since, clearly w € coF (w ‘ ), it fol-
lows that coE (u,v)C V{a).

Proof of Proposition 2. If m =1, 1"(a) is an interval. thus
1t is convex. The proof for the case m =2 can be found in
another context in (7] and [1]. For m =3, the result follows
directly from Lemmas 1 and 3.

Figure 1 shows the boundaries of sets V' () for the matrix
(1,0.2) (-0.1,5) (0.2,3)

(0,1.2) (0.1.0.1) (0.1,0)
(1,2) (0.3,-0.2) (0.1,-2)

M =

with block structure k={1,2}, for o equal to the successive
values 0, 15, y2=21.1, 29, and 52(‘\[)=36.6. The algorithm
used for plotting these boundaries is given in the appendix.

In view of Proposition 2, Algorithm 1 provides an alter-
native way to compute the structured singular value for
block-structures of size no larger than 3. It is not clear
whether the proposed algorithm has any computational
advantage over existing methods.

PROPERTIES OF UPPER BOUNDS FOR u

For block-structures of size larger than 3, V' (a) may not
be convex. Algorithms from {1} and {6] would then yield,
instead of ¢ (&), the value
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Figure 1. V(o) Sets, with 0<a, <p®<a,<F(M)

¢’ (@) =min {Jv]|| v € coV(a)}

which is a lower bound for ¢ (a). Using this value instead of
¢ (a) in Algorithm 1 would then yield, as the limit of the
sequence {a,'/?}, an upper bound p’ for u, with

' = (inf {a| ¢’ (3)>0 forall >a})V?. (9)

While it is not clear that this upper bound can be better than
inf a(DMD™), the following proposition shows that it is

D€

never worse,

Proposition 3. Let u/ be defined by (9). Then

u < u < inf FDMD™y.
ped

Proof. Let « > int FDMD™).

(10)

There exists D =block
De
diag (d; [k') € d such that, for any 9>«,
BI - (DMD-Y (DMD") > o,
which implies

BD:-MYD >0,

ie.,
m
N dHAP, -MEP M) >0
1=1
so that
S22 BP, - MY P M)z >0 forallz € 9B .
i=1
Hence,

<y 2> >0 forallv € V(B)

where )\=[dl2 S dmz}T. Therefore, for any B>a, coV ()
does not contain the origin, so that ¢! (f)>0. In view of the
definition of ¢’ , we conclude that a>p’ 2

The next proposition shows that the absence of gap
between the three quantities in (10) is equivalent to a separa-
tion condition for V (u?%).

Proposition 4.

g =y = inf g(DMD™)
ped

(11)

if, and only if there exists a vector X\ € R™, with X\, >0 for
all ¢, such that V (¢?) is contained in the closed half space
HXy={v ER™ | <v.A>>0}.
Furthermore, the infimum in (11} is achieved if, and only if all
the X; s can be chosen strictly positive. In this case,
D" = block diag (M'/21, )

is a minimizer.

Proof. We first prove the second statement. Let X; >0 and
D' = block diag (Xi”zlk‘). Using the definition of V (p?), it
is easily checked that V (#®)C H (\) if, and only if

m
Sz (PP - MY P, M) >0 forallz € 3B

i=1
or, equivalently
p D -MED"'M >o0.
Since D * is invertible, this can occur if, and only if
Wi - (D MDD MDY > 0
i.e., iIf, and only if
FD'AMD TY< .

Clearly, in view of (2), this happens if, and only if

FD MDY=y = min 5(DMD ).

D€

If the infimum in (11) is not achieved, we can always find a

matrix N arbitrarily small such that inf (D (M +N)D ™)
D e

is achieved. The result then follows by continuity.

(

Referring back to Fig. 1, one can check that there does indeed
exist a half space H ()\) as specified in the proposition.

Finally, the following proposition gives a condition
verifiable a priori, under which the infimum in (10) is
achieved. In this proposition, we denote by M,-j the 17 th
block of M for the given structure k. ie. the ki X k; matrix

f-1 i-1
whose (p ,q) entry is the (3 & +p, 3 k +¢) entry in A .
=1 =1

Proposition 5. Suppose that for any nonempty proper sub-
set [ of {1, - ,m} there exist { € I, 7 & [ such that Af;
is not identically zero. Then the infimum in (10) is achieved.

Proof. By contraposition. Suppose the infimum in (10) is not
achieved and let D = block diag (di'!kl), where some of the
d;" may be infinite, be such that, for some sequence {D, } con-
verging to D *
lim D, MD,™) = inf &HDMD™).
k—co D d
€



Without Joss of generality, assume that there exist integers
* *
i.j €{1.- - .m}such that d; =0 and d;50. Let

I ={ie{1 - .m}|d’F#o}.
Since the 7jth block of DMD ™ 1s (d; /di)M;;, in order to

ensure that a(DMD ™) is finite when D —D it is necessary
that, forallt € [, j &€ 1.

1\],-]- =0.

APPENDIX

We describe an algorithm to plot the boundary of V («)
when this set is in IR® (m ==2). Such an algorithm was used
to generate the plots of Fig. 1.

Via) is convex, i.e. for any

Suppose strictly

u,v € V(a),
Mu~(1-XN)v € intV{(a) forall X € (0.1).

Then clearly there is a one to one correspondence between the

points of the boundary of 1V {a) and the support hyperplanes -

to 17{a), namely, for any u € bd V (&) there exists a unit vec-

tor h =cos# sin@'7 such that u achieves the minimum in
min{ <v.,h> | v € V(a)}.

In view of the definition of V{(a), uy =IHA, (a)z, for

{==1, 2, where z achieves the minimum in

min {2 (cosfA ,(a)+sinbA Ha))z }
z €08

is a unit eigenvector corresponding to the smallest
This leads to the follow-

ie. r
eigenvalue of cosfA (a)+sinfA o).
ing algorithm.

Algorithm A.

Step 0. Set 6=0 and N = a large integer.
Step 1. Let z be any unit eigenvector corresponding to the

smallest eigenvalue of cosfA (a)+sinfA 5(a). Set

¥4 (a)x

Va2 == IHAQ(Q)I

If 940, draw the line segment y ,yo. If 62, stop

Step 2. Set y, = y,, §=0+27/N and go to Step 1.

(1]
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