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Over the past twenty years economists have developed econometric approaches for estimating

the impacts of climate change on agriculture by accounting for farmer adaptation implicitly. These

reduced-form approaches are simple to implement but provide little insights into impact mechanisms,

limiting their usefulness for adaptation policy. Recently, conflicting estimates for US agriculture have

led to research with greater emphasis on mechanisms including renewed interest in statistical crop

yield models. Findings suggest US agriculture will be mainly and severely affected by an increased

frequency of high temperatures with crop yield suggested as a major driver.

This dissertation is comprised of three essays highlighting methodological aspects in this litera-

ture. It contributes to the ongoing debate and shows the preeminent role of extreme temperature

is overestimated while the role of soil moisture is seriously underestimated. This stems from issues

related to weather data quality, the presence of time-varying omitted weather variables, as well as

from modeling assumptions that inadvertently underestimate farmers’ ability to adapt to seasonal

aspects of climate change. My work illustrates how econometric models of climate change impacts on

crop production can be improved by structuring them to admit some basic principles of agronomic

science.

The first essay shows that nonlinear temperature effects on corn yields are not robust to alter-

native weather datasets. The leading econometric studies in the current literature are based on a

weather dataset that involves considerable interpolation. I introduce the use of a new dataset to

agricultural climate change research that has been carefully developed with scientific methods to

represent weather variation with one-hour and 14 kilometer accuracy. Detrimental effects of extreme

temperature crucially hinge upon the recorded frequency at the highest temperatures. My research

suggests that measurement error in short amounts of time spent at extreme temperature levels has



disproportionate effects on estimated parameters associated with the right tail of the temperature

distribution. My alternative dataset suggests detrimental temperature effects of climate change over

the next 50-100 years will be half as much as in leading econometric studies in the current literature.

The second essay relaxes the prevalent assumption in the literature that weather is additive.

This has been the practice in most empirical models. Weather regressors are typically aggregated

over the months that include the growing season. Using a simple model I show that this assumption

imposes implausible characteristics on the technology. I test this assumption empirically using a

crop yield model for US corn that accounts for differences in intra-day temperature variation in

different stages of the growing season. Results strongly reject additivity and suggest that weather

shocks such as extreme temperatures are particularly detrimental toward the middle of the season

around flowering time, which corrects a disagreement of empirical yield models with the natural

sciences. I discuss how this assumption tends to underestimate the range of adaptation possibilities

available to farmers, thus overstating projected climate change impacts on the sector.

The third essay introduces an improved measure of water availability for crops that accounts for

time variation of soil moisture rather than season-long rainfall totals, as has been common practice

in the literature. Leading studies in the literature are based on season-long rainfall. My alterna-

tive dataset based on scientific models that track soil moisture variation during the growing season

includes variables that are more relevant for tracking crop development. Results show that models

in the literature attribute too much variation in yields to temperature variation because rainfall

variables are a crude and inaccurate measure of the moisture that determined crop growth. Con-

sequently, I find that third of damages to corn yields previously attributed to extreme temperature

are explained by drought, which is far more consistent with agronomic science. This highlights the

potential adaptive role for water management in addressing climate change, unlike the literature

now suggests.

The fourth essay proposes a general structural framework for analyzing the mechanisms of climate

change impacts on the sector. An empirical example incorporates some of the flexibilities highlighted

in the previous essay to assess how farmer adaptation can reduce projected impacts on corn yields

substantially. Global warming increases the length of the growing season in northern states. This

gives farmers the flexibility to change planting dates that can reduce exposure of crops during the

most sensitive flowering stage of the crop growth cycle. These research results identify another

important type of farmer adaptation that can reduce vulnerability to climate change, which has

been overlooked in the literature but which becomes evident only by incorporating the principles of

agronomic science into econometric modeling of climate change impact analysis.
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Essay I

Nonlinear Temperature Sensitivities of Crop

Yields in Climate Change Research

Abstract

Several recent studies suggest US agriculture will be negatively affected by climate change

through more frequent exposure to extremely high temperatures. For example, the most re-

spected of these studies finds that temperature is particularly harmful beyond a threshold of

around 30ºC and, as a result, predict that yields of major US crops will decrease by 30-82%

under climate change. In this paper I show that these estimated detrimental effects of extreme

temperature are highly dependent on the climate dataset they use. I find that detrimental

effects of extreme temperature are reduced by 50% in a replication for US corn yields based

on an alternative high-quality climate dataset. This alternative dataset is derived from the

North American Land Data Assimilation System (NLDAS) which is a joint project of four ma-

jor US agencies and universities. The results stems from the fact this alternative dataset has

a thicker right tail of the temperature distribution (>35ºC). My findings highlight the need

for future studies to conduct thorough cross-validation with gold standard climate datasets to

ensure external validity.

JEL Classification Codes: Q54, Q15

Keywords: climate change, agriculture, extreme temperature, nonlinear effects
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1 Introduction

Recent studies point to extreme temperature as the main driver of large negative projected

impacts of climate change on agriculture. The evidence is based on hedonic studies of land prices

(e.g. Schlenker et al., 2006) as well as on statistical crop yield models for the US and elsewhere

(Schlenker and Roberts, 2009a, Lobell et al., 2011). In this line of research, Schlenker and Roberts

(2009, henceforth SR) make an important contribution by showing temperature effects on crop yields

are nonlinear and increasingly detrimental beyond crop-specific thresholds. They find crop yield

losses in the range of 30–82% under climate change, driven primarily by the increase in temperature

exposure above threshold values of 29°C (corn), 30°C (soybean), and 32°C (cotton). Meerburg et al.

(2009) find these large damages pessimistic and argue that corn is successfully grown in countries like

Brazil where temperature above these thresholds is more common. Schlenker and Roberts (2009b)

argue, however, that results for Brazil are in line with their findings for the US.

The estimation of detrimental effects of extreme temperature obviously hinges on the correlation

of low crop yields with extremely high temperatures. However, extreme temperatures remain rare

and have very short durations. In a 27-year sample of 800 Midwest counties explored in this paper,

exposure beyond 35°C represents, on average, about 0.5% of the March-August period. Because

of the waveform shape of the temperature curve, measurement error in temperature levels lead to

larger measurement errors in exposure to extreme temperature. A seemingly small difference in

a handful of hours over the growing season can lead to substantially different estimated effects of

extreme temperature on yield and therefore on climate change impact projections.

In order to explore the role of measurement error in the right tail of the temperature distribu-

tion, I replicate the model in SR for US corn using an alternative weather dataset and a 27-year

corn yield panel of 800 Midwest rainfed counties representing 70% of US corn production. The

alternative weather dataset I use is based on the North American Land Data Assimilation System

(NLDAS) which is a joint project of the National Aeronautics and Space Administration (NASA),

the National Oceanic and Atmospheric Administration (NOAA), Princeton University and the Uni-

versity of Washington. The NLDAS forcing weather dataset features hourly and 14-km resolution

and has been shown to closely match observations of highly precise weather stations in the Great

Plains (Cosgrove et al., 2003). In contrast, the dataset in SR is interpolated by the authors by

combining daily weather station data with monthly data from the Parameter-elevation Regressions

on Independent Slopes Model (PRISM) from Oregon State University and simply assumes a daily

temperature sine-curve.
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My findings suggests that nonlinear effects are highly sensitive to very small differences in the

right tail of the temperature distribution (>35 °C). Specifically, the NLDAS dataset I use has a

slightly thicker right tail resulting in a reduction of roughly 50% of the estimated detrimental effects

of extreme temperature on yield. Both weather datasets fit well the production data and I was

not able to statistically discriminate between them. The comparison, however, highlights that the

large impacts in these studies are significantly dependent on the weather dataset, and particularly

on how fat the tails of temperature distributions are. This work thus serves as a word of caution

and hopefully will lead to the development of thoroughly cross-validated and externally validated

climate datasets for climate change impact analysis.

The paper is organized as follows. Section 2 describes data sources and compares the NLDAS

dataset to the SR dataset. Section 3 briefly discusses the crop yield model developed in SR. I present

regression results based on both datasets and discuss implications in section 4 before concluding in

section 5.

2 Data

2.1 Data sources and dataset construction

This study seeks to explore the role measurement error of extreme temperature exposure in the

estimation of nonlinear temperature effects on crop yields. To do so I replicate the statistical crop

yield models developed in SR using two weather datasets: the original SR dataset which was kindly

provided by the authors and an alternative dataset derived from the NLDAS and is publicly available

for download.1

SR provide the details of how the weather dataset is constructed in the appendix of their paper.

In summary, the authors generate daily weather data by interpolating daily but spatially sparse

weather station data using monthly but spatially detailed model-generated weather data from the

Parameter-elevation Regressions on Independent Slopes Model (PRISM) developed at Oregon State

University. The interpolation yields daily precipitation as well as minimum, maximum and average

temperature for each 2.5× 2.5 mile grid over the contiguous US for the 1950-2005 period. County-

level weather data is obtained by aggregating grids covered with agricultural land as measured by

a LandSat satellite image. As the following section will show, the semi-parametric crop yield model

relies on variables representing the exposure to individual temperature bins during the growing

season. To replicate their results I use daily county-level weather data to derive the distribution
1See http://ldas.gsfc.nasa.gov/nldas/NLDAS2forcing_download.php for directions.
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of temperature exposure for each degree bin under the assumption of a sine-shaped temperature

curve.2

The NLDAS weather dataset is derived from the North American Regional Reanalysis (NARR).

Details about the NLDAS and NARR are provided in Mitchell et al. (2004) and Mesinger et al.

(2006), respectively. The NLDAS was developed to account for the role of soil water in surface

energy fluxes which are important for weather forecasting. NARR was developed to provide a time

and spatially consistent weather dataset over North America. NLDAS uses a spatially-downscaled

and time-disaggregated version of the NARR dataset as input and features hourly observations for

each 6.8× 8.6 mile grid over the contiguous US since January 1, 1979.3 Cosgrove et al. (2003) show

the NLDAS dataset closely matches the highly precise weather observations of the Department of

Energy’s Atmospheric Radiation Measurement (ARM) program in the Great Plains.

Agricultural data were obtained from the U.S. Department of Agriculture’s National Agricultural

Statistics Service (USDA-NASS). Because corn production data, which is the same as used by SR,

is available only at the county-level, the hourly gridded weather data must be spatially aggregated

for each county. I do so by weighting each NLDAS data grid within a county by the amount of

cropland within each grid. The cropland area is derived from the USDA-NASS’s 2011 Crop Data

Layer which has a 30-meter resolution. This allows weighting NLDAS data grids according to the

amount of farmland they include in constructing the county-level observations. Hourly observations

were subsequently used to construct exposure to individual degree-bins for the March-August period

for each year and county.

Because rainfed and irrigated corn yields are expected to respond differently to exogenous envi-

ronmental conditions, their respective parameters must be estimated separately. For this purpose,

I restrict the sample to counties where at least 75% of the acreage, on average, is rainfed. Figure 1

illustrates where the sample counties are located. The dataset corresponds to a balanced corn yield

panel of 800 Midwest rainfed counties for 1979-2005, which represents 70% of US corn production.

This sample period is restricted to the overlapping periods of the two weather datasets.

2.2 Dataset comparison

Aggregation leads to loss of information. I thus compare daily weather observations rather than

pluri-monthly aggregate measures as weather regressors in the crop yield model. Because of the
2In the appendix in SR, the authors insist that the distribution of temperature for each degree must be performed

for each individual grid prior to aggregating at the county level. This procedure is more computationally demanding
than the one I describe and yields virtually identical results. The likely reason is that there is almost perfect correlation
of temperature for bins falling within the agricultural land of a given county.

3The source NARR dataset features 32-km and 3-hour resolution.
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Figure 1: Rainfed counties in the sample

central role of temperature in the results in this literature, I restrict the comparison to this variable.

Figure 2 shows the pairwise comparisons of daily minimum, average and maximum temperature

by month for the full sample (1979-2005, 800 counties). The red line represents a smooth spline

curve associated with the regression of each variable in the SR dataset on the same variable in

the NLDAS dataset. The dashed black line represents the bisector along which observations across

datasets are identical. In each quadrant I provide a blue (green) density function representing the

empirical distribution for each variable in the SR (NLDAS) dataset.

The two datasets are highly similar for the most common values of each variable. This is in-

dicated by the close connection of the red fitted line with the bisector around the highest density

concentrations. However, the red fitted line tends to be flatter than the bisector indicating a lower

range of variation in the SR dataset. This pattern is apparent for minimum temperature but is par-

ticularly strong for maximum temperature during the warmer months of the summer. This suggests

that extremely hot events, which typically occur during these months, register lower temperature

in the SR dataset than in the NLDAS dataset. The obvious implication is that less exposure to

extremely high temperature is reflected in the SR dataset.

A systematic bias between datasets would be reflected as parallel shifts of the red fitted line in

relation to the bisector. This is not the case. Rather, a bias toward the mean of each variable is

apparent in the SR dataset, which is particularly apparent for maximum temperature in the summer.

To assess how these differences affect weather regressors, I represent the average time spent in

each degree bin for various months in figure 3. The first two panels (A-B) are box-plots representing

temperature variation within each temperature bin for various months.4 Panel C shows variation
4Each box provides the level of the median, the 25th and 75th percentiles. The whiskers extend to the most

extreme data point which is no more than the interquartile range from the box.
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Figure 2: Temperature comparison
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Figure 3: Comparison of temperature distributions
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of the difference of daily exposures to each bin between datasets. Positive (negative) values for a

bin indicate that the SR dataset records more (less) time spent within that particular bin than

the NLDAS dataset. Panel D represents the log-ratio of time spent in a bin between datasets.

Positive values indicate that the SR dataset has relatively higher exposure to a particular bin than

the NLDAS dataset.5

Panels A through C reveal fairly small absolute differences between the datasets for all bins.

The NLDAS dataset exhibits a more distinctive mode for most months, particularly for the warmer

months of June-August. This is represented in panel C as a dip of boxes in the 20-25ºC range. This

pattern is also visible for the full March-August period in the last row. Notably, the differences are

small in absolute terms for the right tail of the distribution. Indeed, the boxes are virtually centered

around zero for high temperature bins for all months.

Panel D, on the other hand, reveals particularities of how temperature exposure differs at the tails

in both datasets. For the cooler months of March and April, the SR dataset shows higher relative

levels of exposure to high temperature (25-30ºC). However, for the warmer months of May-August,

the SR dataset exhibits a much lower relative prevalence of exposure to high temperature (>35ºC).

In other words, the SR has higher (lower) exposure levels to high temperatures during the colder

(hotter) months.

In summary, the SR dataset records a lower level of extremely high temperature as a represen-

tation of aggregate exposure for the March-August period (last row). In other words, the NLDAS

dataset has a thicker right tail of the temperature distribution. As an illustration, table 1 shows

the average exposure in the March-August period to temperature above 35ºC is 14.4 hours and 22.3

hours in the SR and NLDAS datasets, respectively. While the difference is a mere 7.9 hours in a

six-month window, this represents a hefty 55% decrease in observations that are responsible for the

major predicted yield differences.

The next section demonstrates that the nonlinear effects of extreme temperature are based on

the recorded exposure at these extreme values.

3 The model

Statistical models that regress crop yields on weather variables have traditionally relied on

monthly or pluri-monthly average temperature and precipitation data. Early examples can be

traced back to the early part of the last century (Wallace, 1920; Hodges, 1931). Since then, the
5This calculation is based on the ratio of the average total monthly exposure for each bin, rather than the monthly

average of the daily exposure ratios for each bin. This approach avoids issues related to zero exposure to a bin in a
day. In addition, bins for which the average total monthly exposure is zero were obviously omitted from the graph.
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Table 1: Average exposure to various temperature intervals for March-August

SR dataset NLDAS dataset Difference % change

Interval (hours) (hours) (SR-NLDAS) (SR-NLDAS)/SR

25-29ºC 638.7 685.9 -47.2 -7.4

30-34ºC 211.9 180.6 31.4 14.8

>35ºC 14.4 22.3 -7.9 -55.2

convention has been to include linear and quadratic variables based on temporally aggregated data

to capture the nonlinear effects of both temperature and precipitation on yield. Marginal effects

of these variables are typically expected to exhibit an “inverted U” shape, suggesting diminishing

marginal effects of each weather variable with a unique optimum.

Schlenker and Roberts (2009a) made an important contribution by recognizing that daily average

temperature fails to convey the consequences of exposure to extreme temperature and, thus, may not

be adequate for capturing nonlinear effects of temperature on corn yields. Hypothetically, two days

with equal average temperature may represent very different exposures to very high temperatures.

This suggests that the shape of the daily time curve matters.

To address this needed refinement, SR developed an innovative approach that estimates the effect

of exposure to different levels of temperature on yield separately. They compute the amount of time

spent during the season (March-August for corn) in each of many temperature bins. The exposure

to each degree bin is then adapted to various specifications. This is an extension of previous hedonic

work on land prices in Schlenker et al. (2006), but with greater flexibility in the specification of the

temperature response function.

Here, I replicate their model for corn yields for purposes of comparison. I restrict the sample

period to the 1979-2005 period of overlapping data, which is shorter than the 1950-2005 period used

by SR. However, their results are reported to be similar for temporal subsets of the sample.

Their general model assumes that temperature effects on yield are cumulative and substitutable

over time. The nonlinear effects of temperature on yield are captured by the function g(h) repre-

senting “yield growth” that depends on temperature h. Logged corn yield yit in county i and year t

are represented as:

yit =

ˆ h

h

g(h)φit(h)d(h) + pitδ1 + p2
itδ2 + zitτ + ci + εit (1)
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where φit(h) is the time distribution of temperature (i.e., the temperature-time path) for March-

August, pit is precipitation, zit is a state-specific quadratic time trend and the ci are county fixed-

effects. The maximum likelihood estimation procedure accounts for spatial correlation of the errors.

Over thirty different spatial weight matrices were evaluated by comparing models that only differ by

the weight matrix. The weight matrix based on the inverse distance of the seven nearest neighboring

counties yielded the highest value of the likelihood function at the optimum parameter values and

thus was selected.6

Equation (1) cannot be estimated directly because of the integral. Therefore, I follow SR and

consider different specifications to approximate the integral as a sum: a step function allowing

different effects at each 1ºC interval (SR1), another step function allowing different effects at 3ºC

intervals (SR2), an eighth-degree polynomial (SR3), and a cubic B-spline with eight degrees of

freedom (SR4).7 The specification for SR1 is:

yit =

40∑
h=0

g(h+ 0.5)[Φit(h+ 1)− Φit(h)] + pitδ1 + p2
itδ2 + zitτ + ci + εit

where Φit(h) is the cumulative distribution of temperature in county i and year t. Specifications for

SR2, SR3, and SR4 and more detailed results for each specification are provided in the appendix.

For the SR1 specification, the effects of the data differences explored in section 2 are clear. A

thicker right tail for temperature distributions in the NLDAS dataset results in higher values of

Φit(h + 1) − Φit(h) for very high temperature (e.g. h >35ºC). All else equal, this should result in

lower estimated effects of g(h + 0.5). In other words, the detrimental effects of temperature would

seem lower at such high values. A similar reasoning applies to the other specifications, although

these assume a certain degree of dependence on effects of neighboring temperature bins.

4 Results and discussion

Figure 4 shows nonlinear effects of temperature on corn yield based on the SR (left) and NLDAS

(right) datasets.8 The temperature distributions are represented with red histograms under the

corresponding graph. Temperature effects exhibit similar thresholds around 29°C, but detrimental
6The weighting matrices included eight neighboring structures and four weighting schemes. The neighboring struc-

tures are: 5 through 10 nearest neighbors, neighbors within 200km, and neighbors using the Delaunay triangulation.
The weighting schemes are: binary, inverse distance, inverse squared distance, and inverse square root of distance.

7Only SR2 and SR3 are part of the original SR study. In addition, SR developed a piecewise linear model which
yields similar results to the other specifications. The SR1 was included to assess the effects of narrow temperature bins
and SR4 to allow for a more flexible less susceptible to extreme polynomial curvature near the end points specification.

8The precipitation response function is omitted but remains very flat. I also rely on the precipitation data from the
SR dataset only so that I isolate the effect of the temperature difference. Nevertheless, results based on season-long
precipitation variables from the NLDAS dataset are virtually identical.
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Figure 4: Nonlinear temperature effects using different datasets
A. SR dataset B. NLDAS dataset

effects of high temperature under the SR dataset are roughly twice those obtained with the NLDAS

dataset. As expected, the result based on the SR dataset is very similar to that reported in SR.

Because the impacts are driven by extreme temperature, the NLDAS dataset suggests projected

climate change impacts would be roughly reduced by half in this model.9

Thus, the lower recorded exposure to very high temperature in the SR dataset explains why

extreme temperatures appear more detrimental when the analysis is based on their dataset. The

average exposure difference in the March-August period to temperature above 35ºC (7.9 hours)

amounts to less than 0.2% of the length of the growing season. Yet, this small difference clearly

seems to drive this result.

In order to confirm this claim, I construct two hybrid datasets for which I swap the exposure

to extreme temperature (>35ºC) across the SR and NLDAS datasets. I re-ran the models with

the two hybrid datasets and results are shown in figure 5. Panel A (B) shows the models based on

temperature bin exposure in the 0-34ºC from the SR (NLDAS) dataset combined with bin exposure

above 35ºC from the NLDAS (SR) dataset. A comparison with figure 4 shows this swap of extreme

temperature bins results in an exchange of the portion of the temperature response curves above

30°C.
9 A non nested J-test based on the two weather datasets was inconclusive. This suggests that both weather datasets

have distinctive explanatory power in explaining yield variation. Because exposure to extreme temperature is limited

in the sample, an inability to statistically discriminate between datasets is unsurprising when comparing how well

alternative datasets explain yield variation over the full sample period.
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Figure 5: Results with hybrid datasets
A. SR (0-34ºC) + NLDAS (>35ºC) dataset B. NLDAS (0-34ºC) + SR (>35ºC) dataset

This result stems from the local flexibility given to each temperature bin in its effects on yield.

These results illustrate that substantial differences in the detrimental effects of temperature can be

driven by seemingly small absolute differences in the right tail of temperature distribution (>35ºC),

well beyond the threshold level (29ºC). This explains how the two datasets can fit the yield data

essentially equivalently well overall, but yet suggest remarkably different effects of very high tem-

peratures on yield.

In section 2 I emphasized that the difference between datasets was not a systematic bias in tem-

perature. Such bias would simply shift the temperature response function horizontally in figure 4,

which it does not. Rather, the evidence clearly implies that the high detrimental effects of temper-

ature obtained by SR stems from the “thickness” of the right tail of the temperature distribution in

their dataset.

I have undertaken further analysis to verify that the difference in the right tail of the temperature

distribution does not originate from the assumption of a sine-shaped temperature curve, which I do

not report here. Similar results are obtained when a daily sine curve assumption is imposed to the

NLDAS dataset as well.

5 Conclusion

SR have made an important methodological contribution by showing with large-scale weather
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and production observational data that temperature has highly nonlinear effects on crop yield. They

find major US crops would be dramatically affected under climate change with yield losses in the

range of 30–82% depending on the crop and scenario.

However, this study shows their quantitative result is highly sensitive to the weather dataset.

More precisely, the replication of their model based on an alternative high quality weather dataset

suggests detrimental effects of roughly half those found with the SR dataset.

A closer look at the differences in temperature distributions between the SR and the NLDAS

datasets reveals that the critical difference is that the latter dataset has a slightly “thicker” right

tail. The difference is small in absolute terms, but it is large relative to the total exposure at the

critical temperature levels. Such differences are shown to be the source of the discrepancy in the

regression results.

The implications of these results for climate change impact assessments on agriculture are impor-

tant. The work in SR and related studies suggest that extreme temperature is the greatest threat to

agriculture under climate change. The evidence they present highlights the highly negative effects

of extreme temperature on crop yields, which is also reflected in hedonic models of agricultural land

prices. In parallel, they find that precipitation changes play a small role, even for rainfed areas.

Thus, accepted wisdom is that climate change impacts will be driven primarily by the shift of the

temperature distribution to the right. This would increase the frequency of exposure to detrimental

temperature levels and generate large losses to the sector.

However, the simple replication carried in this study, based on an alternative dataset from a highly

respected source employing advanced interpolation techniques, indicates that estimated impacts

on corn yields could be half of those reported by SR based on the same model. Perhaps more

importantly, results here raise questions regarding the robustness of the model to alternative weather

datasets as results seem highly dependent on small differences in extreme temperature recordings.

Appendix

The specification for the model with a step function allowing different effects at each 3ºC interval

(SR2) is:

yit =

39∑
h=0,3,6,9...

γh [Φit(h+ 3)− Φit(h)]︸ ︷︷ ︸
xit,h

+pitδ1 + p2
itδ2 + zitτ + ci + εit

The model effectively regresses yield on the time spent within each interval in a given county

and year xit,h.

Model SR3 assumes that the “yield growth” function g(h) is an eighth-degree polynomial of the

13



form g(h) =
∑8
j=1 γjTj(h) where where Tj() is the jth order Chebyshev polynomial. Replacing g(h)

with this expression yields:

yit =

39∑
h=−1

8∑
j=1

γjTj(h+ 0.5)[Φit(h+ 1)− Φit(h)] + pitδ + zitτ + ci + εit

=

8∑
j=1

γj

39∑
h=−1

Tj(h+ 0.5)[Φit(h+ 1)− Φit(h)]︸ ︷︷ ︸
xit,j

+pitδ + zitτ + ci + εit

The model effectively regresses yield on eight temperature variables xit,j which represent the

jth-order Chebyshev polynomial evaluated at each temperature bin.

In a similar fashion, model SR4 assumes that g(h) =
∑8
j=1 γjS

3
j (h) where S3

j () is the piece-wise

cubic polynomial evaluated for each jth interval defined by eight control points.

yit =

8∑
j=1

γj

39∑
h=−1

Sj(h+ 0.5)[Φit(h+ 1)− Φit(h)]︸ ︷︷ ︸
xit,j

+pitδ + zitτ + ci + εit
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Essay II

Is weather really additive in agricultural

production? Implications for climate change

impacts

Abstract

Recent reduced-form econometric models of climate change impacts assume climate is addi-

tive. This is reflected in climate regressors which are aggregated over several months that include

the growing season. In this paper I develop a simple model to show how this assumption im-

poses implausible characteristics on the production technology which are in serious conflict with

the agricultural sciences. The additivity assumption implies equal marginal productivities of

weather as well as equal interactive effects of weather with endogenous inputs across all season

stages. I test this assumption using a crop yield model of US corn that accounts for variation in

weather at various times of the growing season. Results strongly reject additivity and suggest

that weather shocks such as extreme temperatures are particularly detrimental toward the mid-

dle of the season around flowering time, in agreement with the natural sciences. I discuss how

the additivity assumption tends to underestimate the range of adaptation possibilities available

to farmers, thus overstating projected climate change impacts on the sector.

JEL Classification Codes: Q54, Q51, Q12

Keywords: climate change, agriculture, production, additivity
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1 Introduction

Agriculture is arguably one of the most researched sectors in the climate change impacts litera-

ture. Statistical and econometric approaches have become increasingly popular among economists as

an alternative to their earlier biophysical process-based counterpart. These empirical approaches ex-

ploit cross-sectional or time variation of observational data to recreate hypothetical counter-factual

changes in local climate based on the revealed preference paradigm (e.g. Schlenker, Hanemann and

Fisher, 2005, and Deschênes and Greenstone, 2007). The typical approach consists in estimating

a reduced-form model capturing the sensitivity of agricultural production or welfare to changes in

monthly or pluri-monthly climate variables and multiplying the resulting parameters by the pre-

dicted changes of climate variables under climate change to derive potential impacts on the sector.

A crucial challenge in this line of research is to choose the right climate variables. This is a difficult

task because of the complex interactions of farmer behavior with crop growth and environmental

conditions. Weather fluctuates and affects crop growth throughout the growing season and informed

farmers adjust the timing and level of inputs accordingly. Attempts to capture too many of these

bio-physical and behavioral complexities statistically quickly become subject to multicolinearity and

spurious correlations (see Kaufmann and Snell, 1997, for a discussion).

Somewhat dichotomous approaches have developed in the literature. In the econometric lit-

erature, researchers have made somewhat arbitrary choices of variable types (e.g., precipitation,

temperature, soil moisture) and time-frames of aggregation (pluri-monthly or monthly averages or

totals) with little basis for discrimination other than model fit and parsimony. A more parsimonious

model, i.e., with less parameters to estimate, may be chosen because it offers comparable predictive

power despite violating agronomic wisdom. This seems to be the case regarding the choice of time-

frame of aggregation for climate variables in this literature. Alternatively, in the agronomic and

agricultural science-based literature, models have been grounded in agronomic principles and agri-

cultural production experiments without considering behavior and revealed preferences of farmers.

In practice, these objectives conflict. While agronomic science suggests that environmental condi-

tions have varying effects throughout the season, some of the most influential econometric studies

have relied on climate variables aggregated over several months. For instance, the econometric

studies of Schlenker, Hanemann and Fisher (2006) and Deschênes and Greenstone (2007) aggregate

climate variables over the April-September period while Schlenker and Roberts (2009, henceforth

SR) regress crop yields on climate variables aggregated over the March-August (corn and soybeans)

and April-October (cotton) periods.
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Agriculture is well-known to be a time-sensitive activity and pluri-monthly aggregation of weather

over the season seems at odds with this fundamental characteristic. This feature is not only known

to farmers and agronomists, but to agricultural economists who have developed production models

accounting for the sequential nature of its decision-making process (e.g., Mundlak and Razin, 1971;

Antle, 1983). Season-long pluri-monthly windows for weather aggregation imply serious assumptions

about the technology and farmer’s ability to adapt in the long run. In particular, it imposes neutral

technical change as well as implausible interactions of weather with endogenous farmer inputs and

decisions. It also conceals the potential for farmer adaptation through changes in the timing of the

growing season. Although this practice might be innocuous for short run forecasting purposes, it

can have serious consequences for long-term climate change impact analysis.

The purpose of this paper is to explore whether the temporal additivity of weather assumption

is valid for agricultural production. This is a prevalent premise in the econometric climate change

literature for which consequences have received little attention. In my exposition, I develop a simple

theoretical model to explore the implicit assumptions stemming from the adoption of a reduced form

approach and the use season-long weather variables. By a reduced form model, I refer to a model

that not only excludes the accompanying structure of how decision processes interact with changing

technology, but also a model that aggregates some of the processes temporally for the purposes of

empirical implementation. For clarity of exposition I focus on reduced form crop yield models, such

as SR, that regress crop yields on weather variables. I then explore this question empirically and test

for weather additivity using a 31-year balanced panel of US county-level corn yields representing 70%

of US production. Results suggest that weather effects are not additive, and rather that extreme

temperatures are particularly detrimental during the middle of the growing season. I then discuss

some of the implications of these findings for adaptation and the related shortcomings of assuming

additivity of weather in the context of climate change impact analysis.

The paper is organized as follows. In section 2 I develop a simple theoretical model to illustrate

the implicit assumptions of time aggregation in reduced-form crop yield models which are widely used

in this literature. In section 3 I present an empirical model to explore effects of these assumptions

and discuss the results and implications for climate change impact analysis. Section 4 concludes.
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2 Implicit assumptions of weather additivity

To explore the implications of imposing additivity of weather inputs in reduced form crop yield

models, consider an underlying optimization model in which the farmer makes decisions sequentially

during the season. Input decisions in a stage of the growing season s = {1, ..., S} are made with

uncertainty about remaining weather and are conditioned on decisions already made as well as

weather already observed. Assume a risk-neutral farmer. The expected profit maximization problem

is:

max
xts

Es

ptyt − s∑
j=1

rtjxtj −
S∑

j=s+1

rtjx
∗
tj(xts) | wt1, ..., wt,s−1, xt1, ..., xt,s−1

 (1)

subject to

yt = ft (xt1, ..., xtS , wt1, ..., wtS) + εt (2)

where Es represents an expectation at the beginning of crop stage s, input price vectors rj apply to

input vectors xtj chosen at each growing stage j, output price pt applies to yield yt which depends

on variation in weather wti as well as input decisions xtj that apply through the various stages of the

growing season. x∗tj (xts) represents the optimal input decision vector at future stages given input

decisions at all prior production stages xt1, ..., xt,s−1 and all prior observed weather wt1, ..., wt,s−1

during the growing season as well as the current decision xts at stage s assuming all future decisions

will be made optimally given further weather realizations. Yield can be represented generally as

shown in (2) where εt is a random error in production.

Changing Technology

The technology denoted by ft must be considered as changing over time t for the long-run nature

of climate change analysis. If output price and yield are considered uncorrelated at the individual

farmer level and the output price expectation does not vary with the crop stage (for conceptual

simplicity), then the first-order conditions for (1) after substituting (2) are:

E(pt)
∂

∂xts
E
[
ft
(
xt1, ..., xt,s−1, xts, x

∗
t,s+1, ..., x

∗
tS , wt1, ..., wtS | wt1, ..., wt,s−1, xt1, ..., xt,s−1

)]
−rts = 0

(3)

Clearly, this optimization process, which is solved by backwardation, causes input decisions at

stage s to depend on weather variables at prior stages wt1, ..., wt,s−1. This is a direct theoretical
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reason why interactions among weather and input decisions arises. Further, input decisions and

weather variables could also be correlated because some input decisions can affect vulnerability of

crops to future weather during the growing season (see Just and Pope, 1979).

Correlation of Input Choices and Weather

Yield is a central component of farmer profit and therefore an important channel for analyzing

climate change impacts. The literature readily recognizes that accuracy of climate change impact

assessments for agriculture depend on representing yield impacts correctly. While representing the

full complexity of this decision model is impractical, a first approximation of the crop yield model

implied by this optimization problem might be represented as:

yt = Ttα+Xtβ +Wtγ + Ztδ + εt (Model 1)

where Tt = [1, t], Xt = [g(xt1), . . . , g(xtS)],Wt = [h(wt1), . . . , h(wtS)], and Zt is a vector of functions

of applicable interaction terms among and between input decisions and weather. The g and h

functions represent nonlinear effects of inputs and weather variables, respectively. For instance, the

functional form of h could capture well-known detrimental effects on crop yield of high temperatures

and extreme precipitation levels.

In contrast, however, standard practice in the literature omits farmer inputs and interactions,

which reduces Model 1 to a further simplified form,

yt = Ttα
∗ +Wtγ

∗ + ut (Model 2)

where the constant term in α∗ is implicitly modified by X̄β + Z̄δ and the error term implicitly

represents ut = Xtβ− X̄β+Ztδ− Z̄δ+ εt. This simplification, however, can severely bias estimates

of the γ∗ parameters that are used to assess the impacts of climate change. The reason is that

weather variables are correlated with the omitted input variables and with the interactions of terms

among and between input and weather variables.

One reason economists in this field have been willing to use highly approximating specifica-

tions is that the interest is not in unbiased estimates of γ, but in unbiased long-run yield fore-

casts ∆y = ∆Wγ∗. However, such forecasts based on Model 2 assume that the correlation be-

tween Wt and ut remains unchanged as climate change occurs. In other words, Wt functions as

a proxy not only for weather conditions but also for correlated farmer behavior. This assumption
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is violated if the conditioning of optimal input choices on previous input decisions and weather

x∗ts (xt1, ..., xt,s−1, wt1, ..., wt,s−1) change. This means that if the correlation of the proxy with the

omitted variable of interest changes in the forecasting period then forecasts are biased. This can

occur for various reasons.

Non-neutral Technical Change

First, Model 2 imposes neutral technical change. This is problematic for assessing climate change

effects because the parameters in γ∗ are likely functions of t. This would alter the optimal choice

x∗ts and thus change the correlation between Wt and ut which would bias forecasts. This also occurs

when technical change is induced by climate change, which would make γ a function of long run

climate.1 Second, changes in relative prices can lead to changes in optimal input use as shown in

(3). Such changes may be major over a long time period, and thus introduce an additional source

of bias for long-run yield projections.

Weather Aggregation Bias

The simplification that is also taken in most econometric studies of climate change analysis is to use

season-long measures of weather. For US corn a common period is March to August because it spans

the full growing season for most producing regions. This practice imposes the same γ parameters

on weather variables in all stages of crop growth in the same season:

yt = Ttα
∗ + h

 S∑
j=1

wtj

 γ̄ + vt (Model 3)

where the number of parameters in γ∗ is reduced by a factor of S to obtain γ̄ and the error term is

implicitly further modified to vt =
∑S
j=1 (h(wtj)− h(w̄j)) γ+Xtβ− X̄β+Ztδ− Z̄δ+ εt.2 This third

model assumes [h(wt1), . . . , h(wtS)] γ∗ = h
(∑S

j=1 wtj

)
γ̄, which assumes h is factor-wise separable.

This implies that weather realizations wt1, ..., wtS are perfect substitutes within the growing season.

However, this is assumption is in serious conflict with evidence from the agricultural sciences.

Aggregation of weather effects throughout the growing season can be very misleading. Extreme

weather events are not equally likely across stages of the growing season. Many crops across the

Midwest are planted in the spring and harvested in the fall when temperatures are cooler. The
1It is possible to allow γ∗ to vary over time (e.g. Roberts and Schlenker, 2011) but estimates are inevitably

confounded with potential time-trends in β. For instance, if inputs are becoming more productive (increasing β) but
make crops more vulnerable to weather shocks (δ < 0), γ∗ may well appear becoming more detrimental over time
despite γ and δ actually remaining unchanged.

2The expression in (Model 3) can be easily adapted to allow season-long averages of weather variables.
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Table 1: Characteristics of yield models
Inputs Weather Interactions

Model Specification Error term β γ δ

1 yt = Ttα+Xtβ +Wtγ + Ztδ + εt εt
iid∼ N (µ, σ2) U U U

2 yt = Ttα
∗ +Wtγ

∗ + ut ut = Xtβ − X̄β + Ztδ − Z̄δ + εt C U C
3 yt = Ttα

∗ + h
(∑S

j=1 wjt

)
γ̄ + vt vt =

∑S
j=1 (h(wtj)− h(w̄j)) γ + ut C E C+E

U: Parameters are unrestricted; C: Parameters are constant over time but may differ across stages;
E: Parameters are equal across stages.

middle of the season, which includes the sensitive flowering stage, typically occurs in the summer

months when extreme temperatures are more prevalent. As a result temperature shocks aggregated

over the entire season may appear to be detrimental to all crop stages, rather than to the most

sensitive stages of crop growth.

Moreover, the model also presumes that the correlation between season-long weather variable

h
(∑S

j=1 wtj

)
and the unexplained residual vt would remain constant under climate change. Given

the underlying model in (1) is sequential this presumes the first order conditions in (3) remain

unchanged for any sequence of weather variables wt1, ..., wt,s−1 with the same sum, that is,

∂

∂xts
E
[
ft
(
xt1, ..., xt,s−1, xts, x

∗
t,s+1, ..., x

∗
tS , wt1, ..., wtS | wt1, ..., wt,s−1, xt1, ..., xt,s−1

)]
=

∂

∂xts
E

ft
xt1, ..., xt,s−1, xts, x

∗
t,s+1, ..., x

∗
tS , wt1, ..., wtS |

s−1∑
j=1

wtj , xt1, ..., xt,s−1


which suggests no interactions among and between weather and endogenous inputs across stages. As

an illustration, this suggests that farmers would time fertilizer, pesticide, and irrigation applications

independently from weather. This is obviously incorrect. The preeminent role of weather forecasts

in agricultural production constitutes a clear counterexample.

Summary

Table 1 summarizes the key points of this section. Yield forecasts under climate change based on

all three models assume constant relative prices, a likely artifact of the unpredictability of relative

prices far in the future. Model 1 can accommodate more general forms of technical change than

model 2, but both models 1 and 2 impose neutral technical change. In that sense, model 1 has wider

applicability as it allows the exploration of interactive effects of weather and endogenous farmer

inputs. This could include analysis of input uses that attenuate vulnerability to weather shocks.

However, such farmer behavior is generally poorly observed. Model 2 offers an alternative spec-
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ification that omits farmer inputs and interaction effects. This model presents a somewhat flexible

form to explore implicitly the potential changes in yield with varying effects throughout the sea-

son. However, because the functional form assumes neutral technical change, input and interactive

parameters are assumed to remain constant over the sample and forecasting periods.

Model 3, which is the widely used specification in the literature, imposes additive weather and

thus implies equal marginal productivities of weather as well as equal interactive effects of weather

with endogenous inputs across all season stages. This is in additional to assuming constant weather

and interactive parameters as for model 2. To explore the validity of the additivity assumption in

model 3, I rely on model 2 and test for equality of parameters across stages. I develop an empirical

model for this purpose in the next section.

3 Empirical exploration

Data

To explore the assumption of weather additivity in crop yield models requires matching data on

weather conditions with crop progress at various times over the growing season in each location.

The highly detailed weather data used in this paper is based on the North American Land Data

Assimilation System (NLDAS) which is a joint project of the National Aeronautics and Space Ad-

ministration (NASA), the National Oceanic and Atmospheric Administration (NOAA), Princeton

University and the University of Washington. The NLDAS weather dataset features hourly and 14-

km resolution and has been shown to closely match observations of highly precise weather stations

in the Great Plains (Cosgrove et al., 2003). These data thus allow considerable local specificity. For

instance, Indiana, which has the lowest average county size in the Midwest (1,025 km2), includes

over five NLDAS grids per county on average.

Agricultural data are obtained from the U.S. Department of Agriculture’s National Agricultural

Statistics Service (USDA-NASS). Because corn production data is available only at the county-level,

the hourly gridded weather data must be spatially aggregated for each county. I do so by weighting

each NLDAS data grid within a county by the amount of cropland within each grid. The cropland

area is derived from the USDA-NASS’s 2011 Crop Data Layer which has a 30-meter resolution. This

allows weighting NLDAS data grids according to the amount of farmland they include in constructing

the county-level observations. Hourly observations were subsequently used to construct exposure to

individual degree-bins for the March-August period for each year and county.
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Figure 1: Rainfed counties in the sample

Because rainfed and irrigated corn yields are expected to respond differently to exogenous en-

vironmental conditions, their respective parameters are estimated separately. For this purpose, I

restrict the sample to counties where at least 75% of the acreage, on average, is rainfed. Figure 1

illustrates where the sample counties are located. The dataset corresponds to a balanced corn yield

panel of 800 Midwest rainfed counties for 1981-2011, which represents 70% of US corn production.

My major focus in this paper is to evaluate the validity of time-aggregation of weather vari-

ables throughout the growing season. In order to do so, I account for variation in weather conditions

throughout the growing season. This allows estimation of possible varying effects from intra-seasonal

environmental conditions on crop yield. Accounting for the timing effect using standard agronomic

principles requires information on crop stages. I thus rely on the Crop Progress and Conditions

weekly survey by USDA/NASS which provides state-level data on farmer activities and crop pheno-

logical stages from early April to late November. Reporting across states and years is not balanced.

Although state reports date back to 1979, reporting for corn that includes both the onset (plant-

ing/emergence) and the end of the season (maturation/harvesting) begin in 1981 for the major

producing states.

Specifically, this survey reports the percentage of a state’s corn acreage undergoing certain farm-

ing practices and reaching specific crop stages.3 As a consequence, it does not offer clear “boundary”

dates between stages because of the timing variations within states.4 For the purpose of defining
3The report includes progress of farming activities (planting and harvesting) and of corn phenological stages

(emerged, silking, doughing, dented and mature). The USDA defines these crop stages as follows. Emerged: as
soon as the plants are visible. Silking: the emergence of silk-like strands from the end of corn ears, which occurs
approximately 10 days after the tassel first begins to emerge from the sheath or 2-4 days after the tassel has emerged.
Doughing: normally half of the kernels are showing dent with some thick or dough-like substance in all kernels.
Dented: occurs when all kernels are fully dented, and the ear is firm and solid, and there is no milk present in most
kernels. Mature: plant is considered safe from frost and corn is about ready to harvest with shucks opening, and there
is no green foliage present.

4Visual inspection of district-level crop progress reports, which are available for only a few states, surprisingly
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such boundaries of the growing season for each county, I obtain stage median acreage dates. These

correspond to the dates at which 50% of the acreage in a given state has reached each stage in a

given year.5

Crop stages reported by the USDA are not equally spaced in the growing season. They arguably

correspond to visible markers that can be easily verified to simplify data collection. Some past

studies (e.g.,Kaufmann and Snell, 1997) have relied on weather variables matched to precise crop

stages. However, results are sometimes difficult to interpret, especially for non-agronomists. In order

to convey a more accessible crop advancement metric, I divide the growing season into eight segments

centered around flowering (i.e. silking), which is considered the midpoint of the season. Four equally-

spaced periods occur in the vegetative phase (between planting and silking) and four equally-spaced

periods occur in the reproductive or grain-filling phase (between silking and maturation). For

simplification, the crop advancement division is converted into percentages with intervals of 12.5%.

Thus, the 0-12.5% and 87.5-100% stages correspond, respectively, to the first and last segments just

after planting and just before maturation, and 37.5-50% and 50-62.5% correspond, respectively, to

the segments just before and just after flowering.

Natural scientists have found that crop development or phenology is proportional to accumulated

Growing Degree-Days (GDD, see e.g. Hodges, 1991; Smith and Hamel, 1999; Fageria et al., 2006;

Hudson and Keatley, 2009). This variable is defined by the area under the temperature-time curve

that falls between two temperature thresholds (10 and 30ºC for corn) during a given period of time.

Warmer conditions generally lead to faster GDD accumulation and more rapid crop development.

This concept can be used to split the growing season into equally-spaced segments.

Following this approach, I compute a cumulative GDD variable starting at planting for each

state and year and use it to represent the eight segments of the season. Figure 2 illustrates how

these seasonal segments are located in the 2001 calendar for Illinois. Although the segments have

a different number of days, segments 1-4 and 5-8 are equally spaced in terms of GDD. Thus, wider

segments signal slower development due to cooler conditions.

Exposure to temperature bins is aggregated within each of these segments. As a result, the

temperature variables account for exposure to different temperature levels during the eight individual

segments of the growing season. This allows assessment of how sensitivity to temperature varies with

crop advancement. Finally, because exposure to some temperature levels is low or nonexistent for

reveals variation similar to overall state progress for most years.
5For a few states and years, crop progress reporting began too late (the state had already surpassed the 50%

acreage level) or stopped too early (the state had not yet reached the 50% acreage level). For these cases, which
represent less than 5% of the cases, I obtained the median acreage date by extrapolation.
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Figure 2: Season divisions for Illinois corn in 2001.

some crop stages, I aggregate bins at the extremes that do not represent more than 0.15% of the

growing season on average over the sample period.

The summary statistics for each stage are presented in table 2. As expected, the early and late

parts of the season are slightly longer in terms of days. Total average precipitation by stage is fairly

even when adjusting for crop stage length. Also, exposure to low (high) temperatures are more likely

in the extreme (middle) parts of the season. This point should be kept in mind when assessing the

effects of extreme temperature on crop yields. It is clear that exposure to high temperature (>30ºC)

is considerably higher on average for stages 4 through 7, spanning over the middle of the season

Table 2: Summary statistics of weather variables by stage
Stage 1 2 3 4 5 6 7 8 1 - 8
Advancement (%) 0-12.5 12.5-25 25-37.5 37.5-50 50-62.5 62.5-75 75-87.5 87.5-100 0-100
Length (days) 25.1 17.2 15.1 13.9 13.1 13.0 13.9 18.9 130.0
Precipitation (mm) 90.4 65.6 52.6 48.9 42.4 40.4 43.7 55.9 439.8
Exposure (hours)

0-10ºC 58.8 0.0 0.0 0.0 0.0 0.0 0.0 35.5 94.2
10-20ºC 330.9 147.8 85.0 61.9 58.6 71.7 96.0 203.2 1055.1
20-30ºC 208.4 245.5 246.0 232.7 214.0 201.5 200.3 189.2 1737.8
>30ºC 9.5 31.2 45.9 53.9 55.6 53.0 49.7 34.2 332.9
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when corn flowering occurs.

Model

In this section I present an empirical version of Model 2 to test for weather additivity throughout the

growing season. The model approximates the reduced form crop yield model in SR, which introduced

an innovative approach to estimate the effect of exposure to different levels of temperature on yield

separately using temperature bins. A key characteristic of their study is that the exposure to

different temperature levels is computed during the entire season (March-August for corn). Thus,

their estimated model uses season-long weather variables as in Model 3. To generalize to the case of

Model 2, I relax the additivity assumption and explore different response functions throughout the

growing season.

While the SR model assumes that temperature effects on yield are cumulative and substitutable

over time, the nonlinear effects of temperature on yield are captured by the function h(w) repre-

senting “yield growth” that depends on temperature w. Function h is obviously homologous to the

function by the same name presented in the theoretical section. Logged corn yield yit in county i

and year t are represented as:

yit =

ˆ w

w

h(w)φit(w)dw + pitγ1 + p2
itγ2 + zitα+ ci + εit (4)

where φit(w) is the time distribution of temperature (i.e., the temperature-time path) for March-

August, pit is precipitation, zit is a state-specific quadratic time trend and the ci are county fixed-

effects. In order to relax the additivity assumption I allow h, γ1 and γ2 to vary within the growing

season. The following model introduces this flexibility:

yit =

ˆ s

s

ˆ w

w

h(w, s)φit(w, s) + pit(s)γ1(s) + p2
it(s)γ2(s)dwds+ zitα+ ci + εit (5)

where φit(w, s) is the time distribution of temperature at each stage of the season s. Note that s

indicates the advancement of the growing season for a given year and location. Equation (5) cannot

be estimated directly because of the double integral. Therefore, I follow an approach similar to SR

and approximate the integral as a sum according to four alternative approaches: a step function

allowing different effects at each 1ºC interval (S1), a step function allowing different effects at 3ºC

intervals (S2), an eighth-degree polynomial (S3), and a cubic B-spline with eight degrees of freedom
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(S4). This is done for each of eight stages of the season. The specification for S1 is:

yit =

8∑
s=1

40∑
w=0

h(w + 0.5, s)︸ ︷︷ ︸
γh
ws

[Φit(w + 1, s)− Φit(w, s)] + pitsγ1s + p2
itsγ2s + zitα+ ci + εit (6)

where Φit(w, s) is the cumulative time in temperature bin w in county i and year t in stage s.6

Specifications for S2, S3, and S4 are provided in the appendix. Because unobserved explanatory

factors are likely to be spatially correlated, I account for spatial correlation of the errors in the

estimation.

Results

Figure 3 presents the temperature response function for each stage of the growing season. There

is agreement between the four specifications for each individual stage, although some discrepancies

can be perceived at extreme temperature values. The most important result is that the response

functions clearly differ by stage of the growing season. For instance, exposure to temperatures

exceeding 30ºC have detrimental effects on crop yield toward the middle of the growing period (e.g.,

37.5-50%) but not toward the end of the season (e.g., 87.5-100%). This confirms wisdom from the

agricultural sciences that crop growth around the flowering stage of corn is the most sensitive to

environmental stress. Note that temperature response functions do not extend over the same range

of temperature for all stages (e.g. they do not extend to temperatures higher than 30ºC for the

0-12.5% stage). This is due to lack of observations of extreme values at some stages of the growing

season.

I performed a simultaneous test of equality of weather parameters across stages for both tempera-

ture and precipitation effects to confirm the visual differences.7 An asymptotic chi-square test rejects

equality of parameters across stages with p-values below 2 × 10−16. Thus there is strong evidence

that both the temperature and precipitation response functions vary throughout the season.

These generalizations have important implications for climate change impact analysis. If climate

change is particularly detrimental through an increased exposure to very high temperatures, then

this type of weather shock is more likely to occur in the summer, which is roughly around the middle
6Note that because some temperature levels do not occurred in some stages, the associated parameters are not

estimated. For instance, h(0.5, s = 5) = 0, because temperature around 0ºC never occur in the fifth stage, thus the
associated parameter γh0,5 is not estimated.

7The test was conducted for both step function specifications which offer clear parameter equivalence across stages.
The spline and polynomial specifications have eight parameters per stage but are defined over different temperature
ranges which does not allow comparing these eight parameters directly across stages in a meaningful way.
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Figure 3: Temperature response by stage
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of the current growing season for corn in the Midwest. As figure 3 reveals, extreme temperature

is more damaging toward the middle of the season. As a consequence, in the presence of climate

change with an increase in the frequency of high temperatures, farmers would be able to shift the

growing season. A shift of, even a few weeks can be sufficient to reduce exposure during the most

heat-sensitive stages of growth. Some part of the growing season would still be affected by extreme

temperature, but the detrimental effects would be reduced. This type of adaptation scenario is

made possible when weather is treated as non-additive. Ortiz-Bobea and Just (2013) explore this

possibility and show sizable benefits for farmers of changing the timing of the growing season through

changes in planting dates.

On the other hand, models that impose additivity of weather imply much more limited possi-

bilities for adaptation. The reason is that shifting the growing season does not lead to any sizable

estimated benefit because weather shocks are assumed to have the same effects over all parts of the

growing season. This is particularly relevant when considering that climate change is estimated to

change intra-seasonal climate patterns.

4 Conclusion

One of the crucial challenges in empirical studies that assess the potential impacts of climate change

on agriculture is the choice of the right climate variables. A common practice in this literature is

to rely on season-long variables because it leads to parsimonious models with relatively high levels

of statistical fit. In contrast, this paper I shows that the underlying assumption of this approach is

invalid. While a reduced-form model with non-additive weather may provide some insights in how

production might change in response to a change in climate, the additional assumption of weather

additivity introduces strong restrictions which are at odds with the accepted wisdom of agronomic

science. It not only assumes that all marginal productivities of weather variables are equal across

stages of crop growth, and that weather variables are perfect substitutes among states, but also that

the interaction with time-sensitive endogenous inputs (e.g., fertilizer and pesticides) is constant no

matter when the weather input is realized. This latter point would imply that farmers do not rely

on weather forecasts for adjusting the timing of input decisions, which is obviously incorrect.

Based on an empirical analysis of US corn yields, I show that both temperature and precipitation

effects statistically differ across stages. Results strongly reject the additivity assumption. Crop yield

is shown to be especially sensitive to temperatures exceeding 30ºC toward the middle of the season
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during the flowering period. The same temperature levels do not seem to affect yield when they

occur close to the end of the season at maturation time.

Relaxing the additivity assumption in this literature can open the door to assessment of a richer

set of adaptation possibilities. Climate change impact studies that restrict the range of farmer

adaptation will inevitably overestimate potential costs. In that sense results stemming from current

yield models are pessimistic.

Appendix

The specification for the model with a step function allowing different effects at each 3ºC interval

(S2) is:

yit =

8∑
s=1

39∑
w=0,3,6,9...

γhws [Φit(w + 3, s)− Φit(w, s)]︸ ︷︷ ︸
xits,h

+pitsγ1s + p2
itsγ2s + zitα+ ci + εit

The model effectively regresses yield on the time spent within each interval in a given county

and year xits,h.

Model S3 assumes that the “yield growth” function h(w) is an eighth-degree polynomial of the

form h(w, s) =
∑8
k=1 γ

h
ksTks(w) where where Tk() is the kth order Chebyshev polynomial. The h

superscript in γ simply differentiates temperature parameters from precipitation parameters. Re-

placing g(h) with this expression yields:

yit =

8∑
s=1

39∑
w=−1

8∑
k=1

γhksTks(w + 0.5, s)[Φit(w + 1, s)− Φit(w, s)] + pitsγ1s + p2
itsγ2s + zitα+ ci + εit

=

8∑
s=1

8∑
k=1

γhks

39∑
w=−1

Tks(w + 0.5, s)[Φit(w + 1, s)− Φit(w, s)]︸ ︷︷ ︸
xits,k

+pitsγ1s + p2
itsγ2s + zitα+ ci + εit

The model effectively regresses yield on eight temperature variables xits,k which represent the

kth-order Chebyshev polynomial evaluated at each temperature bin.

In a similar fashion, model S4 assumes that h(w, s) =
∑8
k=1 γksS

3
ks(w) where S3

k() is the piece-
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wise cubic polynomial evaluated for each jth interval defined by eight control points.

yit =

8∑
s=1

8∑
k=1

γhks

39∑
w=−1

Sks(w + 0.5, s)[Φit(w + 1, s)− Φit(w, s)]︸ ︷︷ ︸
xits,k

+pitsγ1s + p2
itsγ2s + zitα+ ci + εit
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Essay III

Understanding Temperature and Moisture

Interactions in the Economics of Climate

Change Impacts and Adaptation on

Agriculture

Abstract

Growing econometric and statistical evidence points to high temperature as the main driver

of large negative effects of climate change on US agriculture. This literature also suggests a

limited role for precipitation in overall impacts. This paper shows this finding stems from the

widespread use of calendar precipitation variables, which poorly represent water availability for

rainfed crops. I rely on a state-of-the art dataset with very high spatial (14km) and temporal

(1h) resolution to develop a statistical model and unpack the effects of temperature and drought

stress and analyze their interactions. Using a 31-year panel of corn yields covering 70% of US

production, I account for nonlinear effects of soil moisture with varying effects throughout

the growing season, in addition to nonlinear temperature effects. I show that yield is highly

sensitive to soil moisture toward the middle of the season around flowering time. Results show

that omission of soil moisture leads to overestimation of the detrimental effects of temperature

by 30%. Because climate change affects intra-seasonal soil moisture and temperature patterns

differently, this omission also leads to very different impacts on US corn yields, with a much

greater role for water resources in overall impacts. Under the medium warming scenario (RCP6),

models omitting soil moisture overestimate yield impacts by almost 100%. The approach shows

a more complete understanding that climate change impacts on agriculture are likely to be

driven by both heat and drought stresses, and that their relative role can vary depending on

the climate change scenario and farmer ability to adapt.

JEL Classification Codes: Q54, Q15, Q51, R15

Keywords: climate change, agriculture, impacts, adaptation, drought, temperature stress,

nonlinear effects, omitted variable bias, spatial error panel model.
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1 Introduction

Agriculture is arguably one of the most vulnerable sectors to climate change. Much economic work

has focused on developing econometric approaches to evaluate overall impacts of climate change

on the sector implicitly (Mendelsohn, Nordhaus and Shaw, 1994; Schlenker, Hanemann and Fisher,

2005; Deschênes and Greenstone, 2007). Controversy even on the sign of these impacts persists and

remains unresolved because of the inherent vulnerability of these highly-reduced-form approaches

to various forms of omitted variable bias (see Deschênes and Greenstone, 2007; Fisher et al., 2012).

Although these approaches differ by the structure of the underlying data (cross-sectional or panel),

they share an important common characteristic in how they capture water availability and heat

effects through the use of precipitation and temperature variables.

Most innovation in econometric climate change impact studies regarding climate variables con-

cerns the measurement of heat exposure. In their seminal hedonic paper, Mendelsohn, Nordhaus

and Shaw (1994) regressed US land price data on linear and quadratic terms of average monthly pre-

cipitation and temperature for the months of January, April, July and October. However, Schlenker

et al. (2006) triggered a small revolution by suggesting that monthly averaging eliminates valuable

information regarding daily exposure to very high temperatures. They proposed accounting sep-

arately for the cumulative exposure to moderate (8-32ºC) and high (34ºC) temperatures over the

entire growing season. This approach has been found to improve the fit of the hedonic model, and

can be found in leading studies such as Schlenker et al. (2005) and Deschênes and Greenstone (2007).

Further work on this area has been carried out by Schlenker and Roberts (2009, henceforth

SR), who have developed the most advanced approach to date for capturing the nonlinear effects

of temperature on crop yields. They make use of highly detailed weather data and flexible semi-

parametric techniques that allow each temperature bin to have separate effects on yield.

Although econometric and crop yield studies have attempted to account for heat in increasingly

flexible ways, little attention has been given to how these studies treat water availability. Most

studies simply rely on monthly or pluri-monthly precipitation variables. A possible explanation is

the growing consensus across econometric and statistical crop yield studies that precipitation plays

a limited role in climate change impacts. My word shows that improving the representation of water

availability has been undervalued.

For instance, based on worldwide observational data, Lobell and Burke (2008) explore the relative

role of temperature, precipitation, and choice of climate model on climate change impact uncertainty.

They find for most crops and regions that uncertainties related to temperature, in particular yield
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sensitivity to temperature, represents a greater contribution to climate change impact uncertainty

related to precipitation. They conclude that understanding crop responses to temperature is one of

the most important needs for climate change impact assessments and adaptation efforts for agricul-

ture.

The growing consensus from econometric models (e.g. Schlenker et al., 2005) and statistical yield

models is that climate change impacts will be largely driven by exposure to heat. For instance, SR

find that substituting a single full day of the growing season at 29°C with a full day at 40°C translates

into a predicted decline of 7% for corn yields holding all else constant. According to this study, corn,

soybean and cotton yields would decrease by 30–46% before the end of the century under the slowest

warming scenario, and by 63–82% under the most rapid warming scenario, if current growing regions

and seasons remain fixed. A surprising result is that a hypothetical drop of 50% in precipitation

reduces corn yield by just over 10%.

The evidence that changes in precipitation may have only a marginal role in overall climate

change impacts presages a dire future for US agriculture. Indeed, it implies that water management

practices that provide greater control of soil moisture, such as irrigation, would not offer a significant

counterbalancing effect to yield losses from heat stress.

However, this evidence is difficult to reconcile with agronomic experimental evidence. For sen-

tence, yield reductions in excess of 90% for corn can occur when water-deficits span key stages of the

season (NeSmith and Ritchie, 1992). A possibility is that heat and drought stresses are statistically

confounded in the modeling efforts to date. This is plausible for three major reasons. First, heat

waves and drought have a well-known interconnection. Second, drought significantly affect crop

yields. Third, variables used to capture water availability for rainfed crops, such as precipitation ag-

gregated over several months, are a poor representation of water supply. in the form of soil moisture,

which is the form in which it matters for crop production.

Relying on season-long precipitation as a measure of water availability to crops has potentially

crucial shortcomings. A pivotal concern is the implicit assumption that rainfall is a perfectly substi-

tutable input over time within a season. This implies that it does not matter when it rains as long

as it rains within the season. The agronomic literature suggests otherwise and, specifically, that

crop sensitivity varies considerably throughout the season. For instance, Fageria et al. (2006, p.89,

93, 157, 180) argue that water deficiency and extreme temperatures during the mid-season flowering

period of cereal and leguminous crops has greater implications for yield than any other period.

Another potential issue is that water availability for crop growth should arguably be more closely

related to the stock of water in the soil (soil moisture) at any given point in time than to the inflow
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of water to the ground over a long period (such as measured by pluri-monthly precipitation for

rainfed crops). For instance, the soil is quickly saturated during intense rainfall and additional rain

runs off and is no longer available to crops. Thus, the same amount of rainfall spread over time

yields greater availability of water to crops because it allows rain to seep in the soil. Indeed, the

fraction of rain that infiltrates the soil and becomes available for crop growth depends on how wet

the soil is initially. Also, rain water evaporates more rapidly during hot, dry and windy conditions.

Thus, a given rainfall event in the summer is not as effective in keeping the soil wet as in the cooler

spring or fall. Precipitation also seeps to deeper soil layers out of root reach in more porous soil (e.g.

sandy soil). As a consequence, factors such as recent rainfall, temperature, humidity, soil type, slope

or crop stage affect the extent to which precipitation can be effectively available for crop growth.

In summary, precipitation is only a part of the equation of water availability to crops whereas soil

moisture itself is arguably a more appropriate metric.

Unpacking the relative contributions of heat and drought stress in climate change impact scenar-

ios is a major priority for econometric analysis because it should improve understanding of potential

impact and adaptation mechanisms. ? emphasize that clarifying the structure of adaptation mech-

anisms facilitates the assessment of potential welfare impacts. Informed assessment of adaptation

possibilities depends fundamentally on capturing the mechanisms that facilitate farmers’ abilities

to adapt to new climatic inputs and constraints. As a consequence, the timing of environmental

conditions within the season may matter if farmers can choose to limit their exposure to adverse

intra-seasonal conditions by shifting planting times, changing the crop mix, or making other coun-

teracting production decisions.

In essence, the choice of climate variables is intimately related to the structure of the farmer’s

optimization problem. For instance, choosing fixed calendar periods for climate variables assumes a

fixed growing season. ? show that such a restriction overestimates corn yields damages by 30 to 70%

under a 5ºF warming scenario in the Upper Midwest. They rely on the fact that a warmer climate

results in a longer non-freezing period that provides greater flexibility in the choice of planting

date. Because yield sensitivity to high temperatures is stronger around the middle of the season

(when corn is flowering), earlier planting by two to three weeks shifts the sensitive period away from

the most detrimental summer heat. Thus, under-representation of adaptation possibilities leads to

overestimation of impacts.

In this paper, I expand the horizons of literature by unpacking the effects of heat stress and

drought stress, and identifying their interactions. I build on previous frontier work by SR on non-

linear effects of temperature and explore the nonlinear effects of soil moisture on yields at different
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points during the growing season. The emphasis on timing has the ultimate purpose of improving

representations of farmer adaptation possibilities given changes in relevant environmental conditions

forecasted by accepted climate change models. This should facilitate econometric adaptation anal-

ysis based on revealed preference data that accounts for intra-seasonal changes of environmental

conditions associated with climate change.

To develop my model of the role of soil moisture as well as other climate variables, I rely on a

state-of-the-art soil moisture and weather dataset from the North American Land Data Assimilation

System (NLDAS), which offers very high resolution in both space (14km) and time (1h). I replicate

the SR panel model for corn yield and contrast it with a model that accounts for the timing and level

of soil moisture using various flexible semi-parametric specifications. To demonstrate these issues

clearly, I focus only on corn production in the Upper Midwest, which is the most productive area

for high-valued field crops in the US.

Results suggest sizable nonlinear effects of soil moisture on crop yields that are particularly large

toward the middle of the season around the flowering period. Results show that failure to account for

soil moisture not only significantly reduces model fit, but leads to overestimation of the detrimental

effects of heat stress by about 30%. This stems from the fact that soil moisture has so far been

confounded with high temperatures leading to omitted variable bias. Because soil moisture and

temperature change patterns differ within the season, this omission also leads to an overestimation

of overall impacts by almost 100% by the end of the century under the medium warming scenario

(RCP6). These results imply that water resources will play a major role in the overall impacts, in

stark contrast to models based on calendar precipitation variables.

This paper is organized as follows. Section 2 describes data sources and how regressors and

climate change scenarios were constructed. Section 3 presents estimates of the leading reference

model using this refined dataset and contrasts these results with a model augmented with the soil

moisture possibilities facilitated by this dataset. Section 4 projects climate change impacts for these

models under various climate change scenarios and compares results in terms of overall impacts with

focus on the relative roles played by heat and drought stress. Section 5 presents discussion about

the implications of this model for climate change impact assessment and outlines an agenda for the

future research it motivates. I conclude in section 6.
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2 Data sources and variables

2.1 Soil moisture and weather Data

This paper seeks to improve understanding of drought stress for the purposes of climate change

impact assessment by improving the representation of water availability to crops. Rather than using

precipitation variables, I rely directly on measures of water content in the soil. While disaggregated

weather data can be obtained with relative ease, this is not the case for soil moisture. Detailed soil

moisture measurements are typically confined to experimental fields in some states. The feasible

alternative for broad-based geographic models is to rely on the latest model-generated soil moisture

estimates which serve as proxies.

The North American Land Data Assimilation System (NLDAS, Mitchell et al., 2004) is a joint

project by the National Oceanic and Atmospheric Administration’s National Centers for Environ-

mental Prediction (NOAA/NCEP), the National Aeronautics and Space Administration (NASA),

Princeton University, and the University of Washington. It offers state-of-the-art gridded weather

and soil moisture datasets. The NLDAS uses weather station, satellite, radar and reanalysis data

together with four different land surface models to generate estimates of soil moisture across North

America.1 These estimates account for parameters such as soil type, land cover, and slope with a

1km resolution. Specifically, the second stage of the NLDAS project, or NLDAS-2, provides model

output data in the form of water mass for several soil layers as well as the model input weather data

at an impressive level of detail. The large dataset contains hourly observations in near real time

with a spatial resolution of 14km over North America since January 1979.2

The NLDAS project team is particularly attentive to the accuracy of its forcing weather data

(precipitation and temperature, etc.) as well as of its model output (soil water content, etc.).

Cosgrove et al. (2003) describe the techniques used to generate the hourly NLDAS weather data.

They perform a cross-validation for the 1/1/1998 to 11/30/1999 period against observed data from

U.S. Department of Energy’s Atmospheric Radiation Measurement program Clouds and Radiation

Testband (ARM CART) sites. For instance, the cross-validation regression for hourly temperature

exhibits an R2 of 0.980 with a small bias of -0.479ºC. This is accomplished with an ARM CART site

in the Southern Great Plains that covers hundreds of thousands of square kilometers and contains

the world’s largest collection of advanced remote sensing instruments, which is considered one of the

best outdoor laboratories in the world. Its purpose is to serve as a gold standard to cross-validate the
1The soil model names are Noah, Mosaic, Sacramento Soil Moisture Accounting (SAC-SMA), and Variable Infil-

tration Capacity (VIC).
2The size of the NLDAS-2 weather and soil moisture hourly dataset for 1979-2011 for the North American domain

in gridded format exceeds 2,000GB for only one of the four soil models.
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output of global climate models. Needless to say, the measurements from this facility are superior to

that of any standard weather station. Although this validation spans less than a year of observations,

this is an impressive level of precision for cross-validation of hourly NLDAS weather data.

At the time of this writing, the cross-validation for NLDAS-2 model output (soil water storage)

was under submission and unavailable.3 However, Schaake et al. (2004) carried out a cross-validation

for the first phase of the NLDAS project, NLDAS-1, which might provide a hint on how these soil

models compare for NLDAS-2. They show that simulated water storage values from both the SAC

and Noah soil models agree well with the measured values in several sites across Illinois, one of

the major producing states in the sample of this paper. Their study also shows that the ranges of

variability of SAC-SMA, Noah, and VIC water storage are close to the observed range. Expectations

are that simulated water storage has been improved further in the NLDAS-2 data that I use in this

paper.

The NLDAS dataset provides several advantages. First, it arguably offers the most reliable proxy

of soil moisture across North America. Second, it offers spatial and temporal resolutions that allow

a high level of detail in constructing county-level variables with the temporal detail necessary to

match environmental conditions in critical parts of the growing season. Third, its hourly resolution

eliminates the need to make assumptions about the temperature-time curve within a day (often

assumed to follow a sine curve) which could provide more accurate measures of the distribution of

temperature exposure.

The dataset could also present some shortcomings. First, it offers four different soil models. Al-

though they yield qualitatively similar soil moisture contents, which one provides the best estimates

is still unclear. However, the cross-validation for the NLDAS-1 project could provide a hint into

which models perform better. Second, the NLDAS does not account for actual soil depth. The

models apply over a fixed 2 meter soil column divided into 4 layers (0-10cm, 10-40cm, 60-100cm,

100-200cm). Locations with shallow soils have a lower water holding capacity and become saturated

or dry out more quickly, which would interfere with correct estimation. However, my study region

has some of the deepest soils in the US and this should not be a concern. Third, the NLDAS soil

moisture estimates only account for water supplied through precipitation. As a result, they do not

offer an accurate representation of soil moisture in irrigated areas. At best, they estimate the soil

moisture deficit that is made up by irrigation in these locations.

For the above reasons, not withstanding the shortcomings, I rely on the NLDAS-2 dataset to

extract hourly weather (precipitation and temperature) and water soil content for the upper soil
3David Mocko (NASA), personal communication, November 21, 2012
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Figure 1: The construction of county-level observations.

layer based on the Noah soil model.4 To my knowledge, this is the first study to use the NLDAS

dataset in this literature.

To construct county-level observations, I account for the amount of cropland within each NLDAS

soil moisture and weather data grid. I proceed by overlaying USDA’s 2011 Crop Data Layer (with

30m resolution) over the NLDAS data grid (with 14km resolution) to compute the total amount of

cropland falling within each data grid. I then overlay the NLDAS grid over US county boundaries

and compute the share of each grid falling within each county. I finally generate the hourly county-

level observations by weighting each NLDAS data grid within a county by the amount of cropland it

contains. Figure 1 offers a representation of crop cover, the NLDAS data grid, and county boundaries

for the state of Maryland.

For illustrative purposes, figure 2 presents hourly soil moisture, precipitation, and temperature

for in a midwest county. Panel A illustrates how soil moisture (shown in blue in the upper part

of the graph) suddenly increases after a precipitation event (shown in green in the lower part of

the graph) and then gradually decreases as the soil dries out. Panel B illustrates how soil moisture

varies rather slowly over time (aside from the spikes at precipitation events) when compared to daily

fluctuations in temperature (shown in red).

Panel A in figure 3 shows the temperature variation within each bin for the March-August time
4The moisture in this superficial layer (0-10cm) is highly correlated with moisture in deeper layers although the

correlation weakens with depth and varies throughout the year. Because simulating climate change impacts consists
in multiplying estimated parameters by the projected change in the associated variables, assessing the effect of deeper
soil moisture changes would require climate change data on these layers. Unfortunately, data is only available for the
superficial layer and, therefore, I cannot directly assess the contribution of deeper soil moisture changes.
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A. Precipitation and resulting soil moisture

B. Temperature and soil moisture in August

Figure 2: Environmental variables for 1988 in Adams county, Illinois
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Figure 3: Temperature and soil moisture exposure distributions

window within the sample. For each temperature bin, the central line, box edges, and whiskers,

represent the median, quartiles, and extremums, respectively. The most frequent temperatures fall

between 20 and 25ºC. Temperature exposure under -5ºC was collapsed to the same bin and explains

the tall bar and whiskers on the left. This is mainly driven by northern counties in the sample for

which exposure to sub-freezing temperatures in march is not uncommon.

In a similar fashion, panel B of 3 illustrates the soil moisture variation within each bin for

March-August. The most frequent soil moisture level is 280 grams of water per liter of soil (g/L).

Soil moisture at or above 400g/L is collapsed to a single bin which explains the taller bar on the

right. It is worth emphasizing that exposure to high levels of moisture, say above 350g/L, are often

short-lived and typically correspond to exposure driven by moisture “spikes” after rainfall events (as

illustrated in figure 2).

In order to assess the non-linear effects of soil moisture, I construct variables corresponding to the

time spent within each 10g/L soil moisture interval in the 120-350 g/L range. These moisture bins

are represented by the dashed lines in figure 2A. Because moisture outside this interval occurs, on

average, less than 8 days in the March-August period, I aggregate exposure to these extreme levels

to its closest moisture bin. In a similar fashion to SR, I also construct variables for the exposure

to temperature bins used to account for heat stress. In particular, I collapse temperature exposure

above 40ºC to the same bin.
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The dataset developed in this paper compares to the dataset generated by SR, which is the

most sophisticated weather dataset previously used for this type of analysis. They developed a daily

weather dataset by interpolating daily but spatially sparse data from weather stations, with monthly

but spatially detailed (4km) data from the Parameter-elevation Regressions on Independent Slopes

Model (PRISM) dataset developed by Oregon State University. According to their cross-validation,

the spatio-temporal interpolation yields fairly accurate values for daily temperature but not for daily

precipitation. Although this dataset has a longer time coverage (1950-2005), its obvious limitation

for the purpose of this paper is the lack of soil moisture information.

As a way to verify the existence of a meaningful difference between the SR dataset and the data

I derived from the NLDAS, labelled as “OB”, I illustrate temperature exposure and precipitation

densities from both datasets in figure 4. The figure shows data for the overlapping period across

datasets (1979-2005) and for 800 counties in the rainfed sample of this study.

Panel A shows that the relative frequency of temperatures are somewhat different. The most

common temperature range in the SR dataset is around 17-20ºC while it is 20-23ºC in the OB

dataset. Also, in the OB dataset, the decrease in exposure around the most frequent temperatures

is steeper toward higher temperatures (>23ºC) than toward lower ones (<20ºC). This is not exactly

the case for the SR data. The graph on the right in panel A, illustrates the difference in exposure

between both datasets and shows that the frequency of temperatures in the 20-27ºC range is lower

in the SR data, but higher for lower and higher ranges. Particular attention should be given to the

higher frequency of 28-35ºC temperatures in the SR dataset because observations in this range are

used to estimate the effects of extreme temperature on yield. These differences are possibly due,

in whole or in part, to the assumption of a daily sine curve in the temperature variation, or the

spatio-temporal interpolation used to generate the temperature exposure data used by SR.

Finally, panel B shows that precipitation distributions are similar and differences for the large

majority of cases do not exceed 50mm, or 2 inches, over the March-August period.

2.2 Accounting for timing of soil moisture conditions

My major contribution is to account for the nonlinear effects of soil moisture and timing in the grow-

ing season, which permits putting the role of temperature variation in context. This should facilitate

more accurate econometric analysis of adaptation possibilities to climate change that accounts for

changes in intra-seasonal environmental conditions.

Accounting for the timing effect requires information on crop stages. I thus rely on the Crop
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A. Temperature exposure for March-August

B. Precipitation distribution for March-August

Figure 4: Comparison of SR and OB datasets (sample counties, 1979-2005).
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Progress and Conditions weekly survey by USDA/NASS which provides state-level data on farmer

activities and crop phenological stages from early April to late November. Reporting across states

and years is not balanced. Although state reports date back to 1979, reporting for corn that includes

both the onset (planting/emergence) and the end of the season (maturation/harvesting) begin in

1981 for the major producing states.

Specifically, this survey reports the percentage of a state’s corn acreage undergoing certain farm-

ing practices and reaching specific crop stages.5 As a consequence, it does not offer clear “boundary”

dates between stages because of the timing variations within states.6 For the purpose of defining

such boundaries of the growing season for each county, I obtain stage median acreage dates. These

correspond to the dates at which 50% of the acreage in a given state has reached each stage in a

given year.7

Crop stages reported by the USDA are not equally spaced in the growing season. They arguably

correspond to visible markers that can be easily verified to simplify data collection. Some past

studies (e.g.Kaufmann and Snell, 1997) have relied on weather variables matched to precise crop

stages. However, results are sometimes difficult to interpret, especially for non-agronomists. In order

to convey a more accessible crop advancement metric, I divide the growing season into eight segments

centered around flowering (i.e. silking), which is considered the midpoint of the season. Four equally-

spaced periods occur in the vegetative phase (between planting and silking) and four equally-spaced

periods occur in the reproductive or grain-filling phase (between silking and maturation). For

simplification, the crop advancement division is converted into percentages with intervals of 12.5%.

Thus, the 0-12.5% and 87.5-100% stages correspond, respectively, to the first and last segments just

after planting and just before maturation, and 37.5-50% and 50-62.5% correspond, respectively, to

the segments just before and just after flowering.

Natural scientists have found that crop development or phenology is proportional to accumulated

Growing Degree-Days (GDD, see e.g. Hodges, 1991; Smith and Hamel, 1999; Fageria et al., 2006;

Hudson and Keatley, 2009). This variable is defined by the area under the temperature-time curve
5The report includes progress of farming activities (planting and harvesting) and of corn phenological stages

(emerged, silking, doughing, dented and mature). The USDA defines these crop stages as follows. Emerged: as
soon as the plants are visible. Silking: the emergence of silk-like strands from the end of corn ears, which occurs
approximately 10 days after the tassel first begins to emerge from the sheath or 2-4 days after the tassel has emerged.
Doughing: normally half of the kernels are showing dent with some thick or dough-like substance in all kernels.
Dented: occurs when all kernels are fully dented, and the ear is firm and solid, and there is no milk present in most
kernels. Mature: plant is considered safe from frost and corn is about ready to harvest with shucks opening, and there
is no green foliage present.

6Visual inspection of district-level crop progress reports, which are available for only a few states, surprisingly
reveals variation similar to overall state progress for most years.

7For a few states and years, crop progress reporting began too late (the state had already surpassed the 50%
acreage level) or stopped too early (the state had not yet reached the 50% acreage level). For these cases, which
represent less than 5% of the cases, I obtained the median acreage date by extrapolation. More details are provided
in the appendix.
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Figure 5: Season divisions for Illinois corn in 2001.

that falls between two temperature thresholds (10 and 30ºC for corn) and two time periods. Warmer

conditions generally lead to faster GDD accumulation and more rapid crop development. This

concept can be used to split the growing season into equally-spaced segments.

Following this approach, I compute a cumulative GDD variable starting at planting for each state

and year and use it to represent the eight segments of the season. Figure 5 illustrates how these

season segments are located in the 2001 calendar for Illinois. Although the segments have a different

number of days, segments 1-4 and 5-8 are equally spaced in terms of GDD. Thus, wider segments

signal slower development due to cooler conditions.

Exposure to moisture bins is aggregated within each one of these segments. As a result, the

moisture variables account for exposure to different moisture levels during each one of the eight

segments of the growing season. This allows assessment of how drought sensitivity varies with crop

advancement.

2.3 Agricultural data and sample counties

Agricultural data were obtained from publicly available USDA/NASS sources and include county-

level corn yield and acreage. Yield is the dependent variable in estimation models and acreage is
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Figure 6: Rainfed and irrigated counties in the sample

used to weight county-level climate change impacts to obtain aggregate estimates for the sample.

Because rainfed and irrigated corn yields are expected to respond differently to exogenous environ-

mental conditions, their respective parameters must be estimated separately. For this purpose, I

split the sample into rainfed and irrigated counties where a county is considered rainfed if at least

75% of its acreage, on average, is non-irrigated. Figure 6 illustrates how the sample is divided.

The dataset corresponds to a balanced panel of 800 rainfed and 90 irrigated counties for 1981-2011.

Although this paper focuses on rainfed counties located in 14 different states, results for irrigated

counties are reported in the appendix for illustrative and falsification purposes.

2.4 Climate Change Data and Scenarios

Climate change data were obtained from the second version of the Hadley Centre Global En-

vironment Model (HadGEM2). The HadGEM2 is one of the latest and most advanced climate

models. It has a higher spatial resolution and improved representation of the atmosphere compared

to the earlier HadCM3 model which is commonly used in the literature (Collins et al., 2008). The

HadGEM2 model is also being used in the preparation for the Intergovernmental Panel on Climate

Change (IPCC) Fifth Assessment Report (AR5), scheduled for publication in late 2013.

In the upcoming AR5 report, the nature of climate change scenarios has been modified. They

no longer represent “emission scenarios” but are “representative concentration pathways” (RCPs).

Instead of describing economic scenarios and their resulting emissions (e.g., the familiar A1B, A1,

B1 scenarios), they now represent sets of a wide range of projections for the main drivers of climate

change, which are greenhouse gases, air pollutants and land use change. These scenarios are classified

in terms of their “radiative forcing”, which roughly represents the strength of different human and
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natural agents in causing climate change (See IPCC 2007, p.131 for a detailed definition). The

convention is to associate the radiation level by 2100 to the scenario name. For instance, the most

severe RCP8.5 scenario represents a rising radiative forcing pathway leading to 8.5 watts/m² in

2100.8 The higher the radiative forcing, and the greater is the resulting warming.

Because the crop stage time windows do not correspond to calendar periods, I cannot rely on

widely used monthly data. Instead, I obtain daily data corresponding to the RCP2.6, RCP6, and

RCP8.5 scenarios for average temperature, precipitation, and soil moisture for the superficial soil

layer (0-10cm) for periods 1985-2005, 2039-2059, and 2079-2099. The first period serves as a reference

period for current climate. The others represent the mid-century and end-of-century climates.

The variable changes for each grid are obtained by subtracting the mid-century and end-of-

century means from the current climate reference period. These changes are then matched to

the corresponding counties. However, regression models are based on nonlinear transformation

of these variables and, thus, the original level of the variable for the reference period 1985-2005

matters. Accordingly, I add the change in the untransformed variables to the NLDAS variables

before performing nonlinear transformations. As explained in Fisher et al. (2012), this approach

maintains the spatial smoothness of projected climate changes.

Figure 7 presents projected changes in temperature, precipitation, and soil moisture for the

three scenarios for the mid-century and end-of-century periods. Panel A shows that the frequency

of temperatures below 20-25°C will almost uniformly decrease while the frequency increases would

be clustered around 30-35°C. This is a manifestation of the nonlinear changes in exposure to high

temperature from an increase in temperature.

Panel B shows that precipitation changes are mixed, although most counties will see their March-

August precipitation decrease in most scenarios. With a mean precipitation around 550mm (see

figure 4B), mean precipitation reductions hover around 0-7% except for the most severe scenario,

which has mean precipitation reductions in the 10-25% range.

Panel C illustrates how soil moisture is expected to vary for each of the eight seasonal segments

(using current average segment windows). The lower (upper) part of each graph represents early

(late) segments of the season. The general pattern is that more humid soils will be more frequent at

the beginning of the season while decreases in their frequency occur towards the latter stages. This

is represented by blue (red) areas located toward the bottom right (left) corner, and red (blue) areas

located toward the upper right (left) corner. Only the more severe RCP8.5 scenario does not follow

this pattern with almost universal decreases in the frequency of humid soils. This is represented by
8A watt is the standard unit of power, which is a transfer of energy per unit of time.
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blue (red) areas toward the left (right) side of the graph.

A interesting pattern arises in panel C that is highly meaningful for econometric adaptation

analysis. A moisture “inversion” occurs during the season. The early season becomes more humid,

while the end of the season becomes drier. This suggests that farmers may be able to adapt to

this intra-seasonal change by altering planting dates to limit their exposure to detrimental parts of

the season. This pattern is not perceptible in the March-August precipitation changes that solely

suggest modest season-long decreases.

3 Models for heat and drought stress

3.1 Replication of a reference model for heat stress

Statistical models that have regressed crop yields on weather variables have traditionally relied

on monthly or pluri-monthly average temperature and precipitation data. Early examples can be

traced back to the early part of the last century (Wallace, 1920; Hodges, 1931). Since then, the

convention has long been to include linear and quadratic variables based on temporally aggregated

data to capture the nonlinear effects of both temperature and precipitation on yield. Marginal effects

of these variables are typically expected to exhibit an “inverted U” shape, suggesting diminishing

marginal effects of each weather variable with a unique optimum.

Schlenker et al. (2006) made an important contribution by recognizing that daily average tem-

perature fails to convey the consequences of exposure to extreme temperature and, thus, may not

be adequate for capturing nonlinear effects of temperature on farm prices. Hypothetically, two days

with equal average temperature may represent very different exposures to very high temperatures.

This suggests that the shape of the daily time curve matters.

To address this needed refinement, SR developed an innovative approach that estimates the effect

of exposure to different levels of temperature on yield separately. They compute the amount of time

spent during the season (March-August for corn) in each of many temperature bins. The exposure

to each degree bin is then adapted to various specifications.

Here, I replicate their model for corn for purposes of comparison. As stated in the data section,

I restrict the sample period to 1981-2011. This is shorter and later than the 1950-2005 period used

by SR. However, their results are reported to be similar for temporal subsets of the sample. The

balanced panel dataset in this paper represents over 70% of US corn production annually.

Their general model assumes that temperature effects on yield are cumulative and substitutable

over time. The nonlinear effect of temperature on yield are captured by the function g(h) representing

“yield growth” that depends on temperature h. Logged corn yield yit in county i and year t are
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A. Temperature exposure change for March-August
.

B. Precipitation change for March-August
.

C. Soil moisture change for each season stage

Figure 7: Changes in environmental variables with climate change scenarios
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represented as:

yit =

ˆ h

h

g(h)φit(h)d(h) + pitδ1 + p2
itδ2 + zitτ + ci + εit (1)

where φit(h) is the time distribution of temperature (i.e., the temperature-time path) for March-

August, pit is precipitation, zit is a state-specific quadratic time trend and the ci are county fixed-

effects. The maximum likelihood estimation procedure accounts for spatial correlation of the errors.

Over thirty different spatial weight matrices were evaluated by comparing models that only differ by

the weight matrix. The weight matrix based on the inverse distance of the seven nearest neighboring

counties yielded the highest value of the likelihood function at the optimum parameter values and

thus was selected.9

Equation (1) cannot be estimated directly because of the integral. Therefore, I follow SR and

consider different specifications to approximate the integral as a sum: a step function allowing

different effects at each 1ºC interval (SR1), another step function allowing different effects at 3ºC

intervals (SR2), an eighth-degree polynomial (SR3), and a cubic B-spline with eight degrees of

freedom (SR4).10 The specification for SR1 is:

yit =

40∑
h=0

g(h+ 0.5)[Φit(h+ 1)− Φit(h)] + pitδ1 + p2
itδ2 + zitτ + ci + εit

where Φit(h) is the cumulative distribution of temperature in county i and year t. Specifications for

SR2, SR3, and SR4 and more detailed results for each specification are provided in the appendix.

Results are summarized in figure 8. The effects of exposure to various levels of temperature

vary considerably. Exposure to temperature in the 12-30ºC range are beneficial while exposure

is increasingly detrimental above 30ºC. These results are qualitatively similar to what SR report.

However, replication suggests that extreme temperature is considerably less damaging. While SR

report that exchanging a single day at 29ºC with a day at 40ºC reduces yield by approximately 7%,

none of the specifications in this replication suggest a yield reduction exceeding 3%.

To verify this discrepancy, I compare all specifications (SR1-SR4) applied to the OB and SR

datasets for the overlapping 1979-2005 period. Results are shown in figure 9. Surprisingly, estimates

of the same model used in the original SR study in panel B, show twice the sensitivity to high
9The weighting matrices included eight neighboring structures and four weighting schemes. The neighboring struc-

tures are: 5 through 10 nearest neighbors, neighbors within 200km, and neighbors using the Delaunay triangulation.
The weighting schemes are: binary, inverse distance, inverse squared distance, and inverse square root of distance.

10Only SR2 and SR3 are part of the original SR study. In addition, SR developed a piecewise linear model which
yields similar results to the other specifications. The SR1 was included to assess the effects of narrow temperature bins
and SR4 to allow for a more flexible less susceptible to extreme polynomial curvature near the end points specification.
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Response curves are centered around zero and weighted by temperature bin exposure or precipitation density. As a
result areas above zero correspond to the most beneficial half of occurrences. Confidence bands for the temperature
curve correspond to SR4.

Figure 8: The SR model
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A. OB data B. SR data

Figure 9: Comparison of the spline specification using OB and SR data (1979-2005)

temperature when based on the SR data as when based on the OB data as shown in panel A. This

is particularly striking given the seemingly small differences between the temperature distributions

shown in figure 4. Figure 4 reveals the datasets exhibit relatively small differences for most temper-

ature bins. However, these differences can exceed be relatively large for the very high temperatures.

The average exposure in the March-August period to temperature above 35ºC is 14.4 hours and

22.3 hours in the SR and OB datasets, respectively. These 7.9 hours represent a 55% difference.

The lower exposure to very high temperature recorded in the SR dataset is consistent with extreme

temperature appearing more damaging.

In an attempt to discriminate between the OB and SR datasets, I performed a J-test between

models based on these datasets. However, the test is inconclusive with t-statistics for the fitted values

of the alternative model in excess of 10. Although the test is not conclusive, the implicit damaging

effects of extreme temperatures are highly sensitive to nature of the weather data, particularly to

small absolute differences in recorded exposure to very high temperature.11

On the other hand, this replication suggests an optimal level of precipitation of 678 mm for

March-August, higher than the sample mean of 584 mm. Reaching the optimal precipitation level

through a 15% increase, implies an insignificant yield gain of just 1%. Similarly, a dramatic 50% drop
11In analysis not shown in the paper, I swapped the exposure to extreme temperature (>35ºC) across SR and OB

datasets and re-ran the models with the hybrid datasets. This resulted in an exchange of the shape of the temperature
response curve at these extreme temperature levels. This confirms that the difference in the slope of the temperature
response function for very high temperature mainly stems from the difference in recorded exposure to temperature
exceeding 35ºC between both datasets.
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in precipitation only represents a 15% yield reduction. Given that most climate change scenarios

predict mean decreases ranging from 0 to 10% (see figure 7), these precipitation changes are expected

to generate small to modest changes in yield according to this model. This is consistent with the small

role attributed to precipitation in SR and other studies such as Schlenker et al. (2005), Schlenker et

al. (2006) and Deschênes and Greenstone (2007). These results are at odds with agronomic evidence

that emphasizes the pivotal role of water in crop production (NeSmith and Ritchie, 1992; Blum,

1996; Barnabás et al., 2008).12

3.2 A model accounting for soil moisture

The models of Section 3.1 that mirrors prior methodology attempt to capture water availability

to crops with a season-long precipitation variable. My hypothesis is that this is an inappropriate

measure of water availability for crops because it does not represent soil moisture conditions and

their timing of these conditions in the growing season.

To address this potential shortcoming, I develop a model that assumes that crop yield also

responds to soil moisture in possibly nonlinear and varying magnitudes throughout the season.

Effectively, my model pools the SR model and the new soil moisture variables I introduce. The

new model, which I label “OB”, assumes that the effects of soil moisture m on yield are cumulative

but non- substitutable over time in the season. The nonlinear effects of soil moisture on yield are

captured by the function f(m, s) representing the dependence of yield growth on soil moisture m at

each stage of the season s. Logged corn yield yit in county i and year t are represented as:

yit =

ˆ h

h

g(h)φit(h)d(h) + pitδ1 + p2
itδ2 + +zitτ + ci︸ ︷︷ ︸

SR model

+

ˆ s

s

ˆ m

m

f(m, s)ψit(m, s)d(m)d(s)︸ ︷︷ ︸
Moisture effects

+εit (2)

where ψit(m, s) is the distribution of soil moisture (i.e., the soil moisture-time path illustrated in

figure 2) at each stage of the season s.

As in the SR model, equation (2) cannot be estimated directly. The objective is to approximate

the double integral on f(m, s) as a double sum. The first sum is over different moisture levels.

I consider the same four approximation specifications I used to estimate the SR model: a step

function allowing different effects for each 10g/L soil moisture interval (OB1), a step function allowing

different effects at 30g/L intervals (OB2), an eighth-degree polynomial (OB3) and a cubic B-spline
12In the appendix I also present results for irrigated counties. Although results are not as clear, temperatures

above 30ºC appear as detrimental as for rainfed counties. This is in contrast to the findings in SR that show in their
appendix that temperatures above 30ºC are more than twice as damaging for eastern and mostly rainfed counties.
The main discrepancy between my results and theirs concerns rainfed counties.
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with eight degrees of freedom (OB4).

The second sum is over different season stages. For this purpose the season is split into eight

segments as described in the data section so that s and s̄ correspond, respectively, to planting and

maturation.13

Note each SR specification is nested in the corresponding OB specification such that SR1 is

nested in OB1, SR2 in OB2, etc. The specification for OB1, for example, is:

yit =

40∑
h=0

g(h+ 0.5)[Φit(h+ 1)− Φit(h)] + pitδ1 + p2
itδ2 + zitτ + ci

+

8∑
s=1

350∑
m=120

f(m+ 5, s)[Ψit(m+ 10, s)−Ψit(m, s)] + εit

where Ψit(m, s) is the cumulative distribution of moisture for the s-th season segment in county i

and year t. Specifications for OB2, OB3, and OB4 and more detailed results for each specification

are provided in the appendix.

Results are summarized in figures 10 and 11. The 3-dimensional graph in panel A of figure 10

corresponds to the soil moisture effects on yield based on the cubic B-spline specification (OB4).

It shows that yield effects vary considerably over the season.14 Early in the season (at low crop

progress) the yield response function is fairly flat, suggesting that deficient levels of moisture at

this stage do not affect yield very much. In fact, high levels of moisture (>300g/L) at this stage

are slightly detrimental, which is consistent with well-known damages from water-logging to young

plants.

As the season advances, soil moisture levels around 265g/L imply crop yields on the trend,

but lower or higher levels of moisture lead, respectively, to low and high yields. Yield damages

are the most severe, as expected, right around the middle of the season when corn flowering occurs.

Replacing a single day at 265 g/L with a day at 125g/L represents approximately a 1% yield decrease.

Although this result is 3 times lower than for the hypothetical exchange of a full day at 29ºC

with a day at 40ºC (see the previous section), comparisons should be considered with care. Figure

2 illustrates that soil moisture deviations are much more persistent than temperature deviations,

suggesting that the potential exposure to detrimental levels of moisture are likely to last days or
13Soil moisture conditions after maturation do not have an impact on yield although they might affect other quality

characteristics such as kernel humidity.
14The tessellation is obtained by joining the stage-specific soil moisture yield responses (presented individually with

confidence bands in the appendix) at regular intervals of soil moisture. A look at the individual stage-specific yield
responses and their confidence bands (in the appendix) shows that this pattern is statistically significant.
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A. Soil moisture effects at different season stages

B. Distribution of soil moisture at different season stages

Figure 10: Soil moisture effects for the OB model
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even weeks. On the other hand, the daily fluctuations of temperature require several days to build

up to an extreme day or two of exposure to high temperatures (>30ºC).

Higher than normal levels of moisture, on the other hand, seem beneficial to yield. This is

particularly the case in the second half of the season. Replacing a full day at 265 g/L with a day

at 355g/L causes a yield increase in the range of 0.4 − 1%. This is consistent with the high water

demand during flowering and grain-filling stages in corn.

At the end of the season the yield response flattens. Variations in soil moisture still make a

difference but not as much as in the middle of the season. Because the statistical model and the

climate change impact scenarios only consider the superficial 10cm soil layer, these results may

overlook the fact that adult plants extract water from deeper soil layers late in the season.

A somewhat puzzling result is that very high soil moisture is virtually always found to be ben-

eficial except for very early stages in the season. Extreme events such as flooding are undoubtedly

detrimental, but these are not captured by the soil moisture variables. This is likely due to the

division of the growing season into relatively short segments that do not account for cumulative

exposure to very high levels of moisture spanning several segments. Perhaps these extreme events

are captured by a season-long precipitation variable, which exhibits a significant role only for very

high levels of precipitation as shown in the bottom of figure 11.

Interestingly, the precipitation response curve in figure 11 is similar to that of irrigated counties

(see the appendix), which suggests that, after accounting for moisture, season-long precipitation

captures only extreme events such as flooding in both rainfed and irrigated areas. This provides

additional evidence that season-long precipitation is a rather poor measure of water supply for

rainfed crops because it fails to account for the timing of soil moisture levels throughout the season.

A crucial finding is that the temperature response in the OB model, on the top of figure 11, is

flatter for high temperatures than in the SR model. I superimpose the temperature response in both

models in figure 12. In particular, high temperatures appear to be about 30% less detrimental to

yield when soil moisture is considered. This difference is consistent with omitted variable bias and

can occur if low soil moisture is both correlated with high temperature and is a good predictor of

yield.

The correlation between dry soil and maximum daily temperature does not come as a surprise

because this phenomena is well understood and documented in the climate science literature.15

15The reason is that water in the soil plays a crucial role in the partition of energy transfers between “latent heat” and
“sensible heat.” When the soil is wet, solar energy is spent evaporating this water without generating a temperature
change (latent heat). However, when the soil is dry, no water is available to evaporate so solar energy is directly spent
heating up the surroundings (sensible heat).
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Figure 11: Temperature and precipitation effects for the OB model
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Figure 12: Comparing temperature effects between the SR and OB models.

In a recent paper, Mueller and Seneviratne (2012) show evidence on a global scale that dry soil is

correlated with high temperatures, particularly during the hot months of the year. This phenomenon

is also acknowledged by climate scientists and weather forecasters in their models. Global Climate

Models (GCMs), such as the HadGEM2 used in this paper, include soil moisture modules precisely

to account for the role of soil water in atmospheric energy balances. As an illustration, the original

motivation for developing soil moisture estimates by the NLDAS was to improve weather forecasts:

“specifically, this system is intended to reduce the errors in the stores of soil moisture and energy

which are often present in numerical weather prediction models, and which degrade the accuracy of

forecasts” (NLDAS website).

Figure 13 shows the empirical joint-density of soil moisture and temperature using the hourly

NLDAS data for the March-August window. The shape of the density and iso-density curves clearly

show that high temperatures are more likely when soil moisture is low. This pattern is even more

salient during hot periods of the day (e.g., 4:00PM), suggesting that the high temperatures of the

day are particularly correlated with low levels of soil moisture.

The fact that high temperatures are correlated with dry soil and that dry soil is a good explana-

tory variable for yield gives clear evidence that soil moisture is an omitted variable in models using

season-long precipitation variables such as the SR model, Schlenker et al. (2005) and Deschênes and

Greenstone (2007). Because dry soil negatively affects yield, the direction of the bias is downward,
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Figure 13: Empirical joint density of hourly soil moisture and temperature for rainfed counties
during the March-August period (1979-2011).

toward greater damages from extreme temperature. Thus, the results in this section imply to an

overestimation of extreme temperature effects of about 30% in models that use only a season-long

measure of precipitation.

3.3 Robustness analysis

Aside from the qualitative implications of accounting for soil moisture in the OB model, the inclusion

of soil moisture also yields improved statistical fit. However, the OB model introduces a relatively

large number of parameters.16 A genuine concern is that the improvement is only artificial. To

test this possibility, I rely on the fact that the SR model is nested within the OB model to run

likelihood ratio tests of whether the improved fit is statistically significant given the number of

additional parameters. The tests strongly reject the hypotheses (p < 0.000001) that the improved

fit is random.

Figure 14 shows out-of-sample reductions of root mean squared error (RMSE) with respect to

a model that regresses log yield only on a county time-trend. Years were sampled 1000 times at

random for sample splits representing 20, 50 and 80% of the observations in the sample. Estimated

parameters at each round were used to forecast out-of-sample observations. The reductions in

average RMSE are reported. The RMSE reductions range from 40 to 75%.

The OB model outperforms the SR model in out-of-sample predictions for all sample splits. If
16Specifications OB1, OB2, OB3, and OB4 introduce an additional 192, 71, 64 and 64 parameters ,respectively,

with respect to the corresponding SR specifications.
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Figure 14: Model fit and out-of-sample predictions.

the model is over-fitting observations, the out-of-sample superiority would be expected to deteriorate

as larger splits of the data are used for out-of-sample prediction. However, this is not the case.

4 Climate Change Impacts

Statistical models are commonly used to assess the potential impacts of climate change on agri-

culture. The conventional approach is to multiply the estimated parameters by the projected mean

changes in regressors under alternative climate scenarios. Effectively, this approach relies on the

estimated yield sensitivity to environmental conditions during the sample period, and predicts yield

changes conditional on the projected changes in those conditions.

The changes in temperature, precipitation, and soil moisture conditions are presented in figure 7.

The general pattern for temperature is an increase in the frequency of high temperatures, particularly

around 30 to 35°C. The general pattern for precipitation is toward a slight to moderate decrease

under all scenarios. Soil moisture changes, on the other hand, present a rich picture of seasonal

dependence because predicted changes vary at different stages of the season. The general pattern

points to an increase in soil moisture earlier in the season and a drying-out towards the end of the

current growing season such as could not be captured by a season-long variable.

The contribution of each variable (temperature, precipitation and soil moisture) as well as their
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Figure 15: Climate change impacts and individual variable contributions
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joint net effect on yield are presented in figure 15 for all models and climate change scenarios for

the 2039-2059 and 2079-2099 periods.

Impacts for the low warming scenario RCP2.6 are close to zero (in the top row). The SR model

predicts mid-century yield reductions of about 3% while the OB model predicts even smaller yield

effects of about 1%. For the end of the century, the SR model predicts even smaller yield reductions

than in mid-century, while the OB model predicts slight yield increases of about 2%. Under the

RCP2.6 scenario, the temperature stabilizes around the middle of the century, which explains why

detrimental temperature effects do not increase over the century. However, soil moisture patterns

change as shown in figure 7C. In particular, soil moisture increases over much of the season with

the exception of sharp moisture reductions in the last two season stages when lower soil moisture is

less damaging. While the SR model predicts small damages from lower precipitation, the OB model

predicts small gains from increases in soil moisture during key stages, particularly at the end of the

century. This underscores the importance of accounting for the timing of climate changes within the

growing season.

Impacts for the most severe scenario RCP8.5 (in the bottom row) are negative for both models

although they are somewhat smaller for the OB model at the end of the century (right column

in figure 15). However, the impact channels, as shown by the relative role of variables in each

model, differ considerably. In the SR model, temperatures overwhelmingly drive negative impacts

as indicated by the long red bars. The reduction in season-long precipitation plays a slightly negative

and relatively small role.

The OB model suggests a very different relative role of variables in the most severe scenario. At

mid-century, negative effects from soil moisture exceed negative effects from temperature. These

negative impacts of soil moisture stem from detrimental decreases of soil moisture during the middle

and the end of the growing season. At the end of the century, temperature damages exceed soil

moisture damages, but their relative role is much lower than in the SR model. Damages from

temperature are over 30% lower when soil moisture is considered. This stems from the lower damages

from high temperatures in the OB model as illustrated in the model section by figure 12.

The medium warming scenario RCP6 presents the most interesting and contrasting impacts for

both mid-century and end-of-century periods. For the mid-century period, the SR model implies

virtually no impacts while the OB model suggests positive effects of about 5%, driven by increases

in soil moisture during the first half of the growing season (see the central column of figure 15C).

Toward the end of the century, the SR model predicts impacts of about -13% while the OB model

predicts damaging effects of little more than half as much at about -8%. Again, temperature effects
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in the OB model play a relatively smaller role (about half) and end-of-season soil drying explains

the remaining part of the damage.

In summary, these findings suggest that accounting for soil moisture changes both overall im-

pacts for some scenarios, but especially the relative role of variables driving these impacts. While

precipitation is found to have a very small role in the SR model, soil moisture is a major factor in

explaining impacts in the OB model. Furthermore, accounting for soil moisture reduces the share

of the impacts attributable to heat stress by half in scenarios with the largest damages.

Finally, it is crucial to emphasize that these results assume a fixed growing season. A warmer

climate, for instance, lengthens the growing season and provides added planting flexibility. In this

context, the added intra-seasonal soil moisture representations of this model provide unique insights.

A shift toward earlier planting dates, which is the direction found to be possible and beneficial in

?, would undoubtedly move the growing season in the direction where critical soil moisture levels

are increased under the more severe climate change scenario. In other words, these findings show

that much of the negative impacts found in these simulations are due to detrimental conditions that

can be avoided, even more than could be accounted for by models ignoring intra-seasonal moisture

changes.

5 Discussion

Statistical yield models are and will be a critical component of econometric climate change impact

assessment models for agriculture as an alternative to biophysical process-based impact models. The

fundamental strength of the structural econometric approach will be the ability to include farmer

adaptation behavior grounded in the revealed preference paradigm. Observed yield fluctuations

reflect optimal decisions based on within-season adaptations to cope with a changing and exogenous

weather.

Climate change impacts will depend critically on the ability of farmers to adapt to changing environ-

mental situations. For reliable estimates of adaptation possibilities and assessment of plausibility,

the role of major variables must be unpacked in overall estimates. The current widespread approach

of relying on season-long precipitation variables for capturing water availability underestimates the

role of drought stress in climate change impact studies. This underestimation leads to an almost dou-

bling of overall implicit damages for the middle warming scenario RCP6 at the end of the century.

Because low soil moisture negatively affects crop yield but is correlated with high temperatures,

the exclusion of soil moisture variables leads to omitted variable bias that suggests an even higher

detrimental effect of temperature.
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Models that suggest that water supply plays a limited role in climate change impacts in contrast

to the central detrimental role of high temperature have suggested a dire future for US agriculture.

These models suggest that access to water management practices, such as changing planting dates,

or changing irrigation or no-till farming practices that help control the timing or keep moisture in

the soil, would play only a marginal role if the overwhelming impacts are driven by heat stress alone.

On the contrary, however, accounting for soil moisture and its timing throughout the season

shows that water availability is and could be a major factor in explaining potential impacts. For the

mid-century projections, soil moisture appear to be the most determining factor in explaining yield

impacts. This offers a more complete picture of agricultural impacts, and makes clear the fact that

both, heat and drought stress will play major roles.

Turning to policy implications, agricultural adaptation policy should be concerned not only about

resilience to heat but also to drought. Better modeling of channels is crucial to attribute effects

to interrelated environmental variables. Relying on simple variables such as total precipitation can

omit factors that are correlated with other variables in the model and thus generate bias in predicted

patterns of climate change impact channels.

Because soil moisture data is difficult to obtain, some might be tempted to justify the use of

models that omit soil moisture conditions, suggesting instead that temperature effects serve as a

valid proxy for both heat and drought related stress. However, the results of this paper show that

this justification is flawed. The validity of a proxy depends not only on its good correlation with

the variables of interest during the estimation sample period, but also on whether this correlation

is maintained during the projection period, which in this case is many decades into the future.

That temperature and soil moisture conditions will maintain the same correlation in the future is

a cavalier assumption. For instance, an important implication is that the patterns emerging from the

HadGEM2 point to a wetter early season but dryer late season. This is not the same pattern found

for temperature. Thus, the correlation justifying extreme temperature as an appropriate proxy is

not warranted for climate change analysis.

Moreover, given that the non-freezing period will be longer with warmer temperatures, farmers

will very likely have greater flexibility in choosing planting dates. Given that the most sensitive pe-

riod to drought is toward the middle of the season, earlier planting would possibly lead to substantial

yield damage reductions through summer and fall drought avoidance. ? show this mechanism is

important in avoiding heat stress during the sensitive flowering period in corn. Their results suggest

that earlier planting, ranging from 2 to 3 weeks depending on the state, reduces corn yield impacts

of a uniform 5ºF warming scenario by 30 to 70% in the Upper Midwest. Interestingly, this is the
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same direction of change in planting dates that would tend to increase soil moisture in the critical

time of crop development under all climate change scenarios analyzed in this paper. In summary,

shifting the growing season earlier in the calendar will plausibly lead to substantial gains both from

heat and drought stress avoidance.

6 Conclusion

This paper develops a statistical crop yield model that accounts for both nonlinear temperature

effects and nonlinear soil moisture effects throughout the crop season. Because soil moisture is not

recorded over large areas, the model makes use of the state-of-the-art NLDAS dataset with hourly

and 14km resolution observations of environmental conditions. I contrast this model with a leading

model in the literature by Schlenker and Roberts (2009a) that accounts for water availability through

a season-long precipitation variable.

Findings suggests that water availability plays a much greater role than previously suggested by

the competing model. Yields are found to be very sensitive to soil moisture conditions particularly

toward the middle of the season, precisely when high water demand and sensitivity to drought are

expected.

Because of well-known correlations between soil moisture and high temperatures, omitting soil

moisture conditions from statistical models overestimates damages by almost 100% by the end of

the century for the medium warming scenario (RCP6). This is also reflected in the projected climate

change impacts. Temperature effects play a substantially smaller role, ranging from a third to a

half less in overall impacts, than in models omitting soil moisture. On the other hand, patterns in

climate change projections from the HadGEM2 model suggest that temperature alone should not be

considered as an appropriate proxy to capture dry soil conditions because the correlation between

these two variables is not warranted in the climate change forecasts (although it might serve as a

good proxy in the sample period).

The inclusion of soil moisture conditions also substantially and significantly improves model fit.

Results indicate that the improved fit is not the result of over-fitting as out-of-sample predictions

do not deteriorate as smaller shares of the sample are used for prediction.

This paper suggests that precipitation, and more precisely soil moisture, is a crucial aspect of

climate change impact assessment for agriculture. It also warns that the omission of soil moisture

conditions can lead to overestimation of heat related stress. This counters the prevailing view in the

statistical literature that future impacts and adaptation possibilities would primarily hinge upon

crop resilience to heat stress. These results point to a more complete understanding that both
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heat and drought stress will have fairly large roles in driving impacts, and these roles might change

depending on the scenario under consideration.

The empirical model validated by this paper can have a number of useful applications both within

and beyond climate change impact assessment. Most importantly, a model with the richness of soil

moisture conditions is needed to add assessment of farmer adaptation possibilities using revealed

preference data and models. However, in the short run, extreme weather can jeopardize harvests and

lead to drastic increases in food prices with serious economic and social implications. This model

coupled with the rising availability of remote sensing data for weather and phenological information

could be an important part of an early-season warning system for regional or global food crises.

Another related application could be in improving early-season crop yield forecasts. For exam-

ple, the USDA produces early season forecasts of crop production based on extensive survey data

obtained by expensive agronomic sampling techniques requiring localized quantification of crop yield

components (plant density, number of kernels per ear, kernel weight, etc). By using highly detailed

remote sensing data, the approach of this paper could yield competing estimates at a fraction of the

cost. These early-season forecasts could eventually compete with heavily parametrized process-based

crop models used by traders in agricultural commodity futures markets.

A final word of caution applies to this form of climate change impact assessment. Because

greenhouse gas concentrations do not vary significantly during 1981-2011, the approach cannot

possibly account for the effects of CO2 fertilization. In addition, the approach generally accounts for

changes in mean climate and ignores the potentially crucial impacts of change in climate variability.

However, this approach offers a first approximation of potential damages if the overall sensitivity

of yields, growing regions, and seasons remain unchanged. Complementary studies can account for

other additional sources of adaptation and yield more nuanced climate change impact scenarios.

Appendix

A1. Determining growing season boundaries

As indicated on footnote 7, crop progress reporting began too late (the state had already surpassed

the 50% acreage level) or stopped too early (the state had not yet reached the 50% acreage level)

for a few states and years. For these cases, I obtain the median acreage date by extrapolation.

For this purpose I estimate, through non-linear least squares, a 2-parameter logistic model for

all observations for a given stage and state. The model has a common slope or discrimination

parameter a and year-specific threshold or difficulty parameters byear. The model regresses stage
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progress PROG on day of the year DOY for a given state and stage. The model is:

PROGDOY,year = (1 + exp (−a (DOY − byear)))−1
+ εDOY,year

Figure 16, on the left, shows the fit of the model for North Carolina (red line) corresponding

to the silking stage for the average year, i.e. for b = b̄. The common parameter a assumes that

silking progress has a similar “shape” from year to year. The year-specific threshold parameter byear

allows the curve to be shifted horizontally. Allowing for b to vary over years is important because

it is precisely for unusually early-planting and late-harvesting years that progress data lacks median

progress dates. The fit of the model for the incomplete year of 1995 (shown on the right) is shown in

a red dotted line and the extrapolated progress observations are shown as red dots. The crop stage

boundary is obtained when the extrapolated curve reaches 50% of the state’s acreage.

The paper requires stage boundary dates for 14 states, 3 crop stages (planted, silking, mature) and

31 years (1981-2011), or a total of 1302 stage boundaries. The interpolation procedure was necessary

for only 55 cases or less than 5% of the cases. This concerned the states of North Carolina (42 cases),

Pennsylvania (3), Missouri (2), Illinois (1), Indiana (1), Kansas (1), Kentucky (1), Michigan (1),

Ohio (1), South Dakota (1) and Wisconsin (1).

A2. More on the SR model

The specification for the model with a step function allowing different effects at each 3ºC interval

(SR2) is:

yit =

39∑
h=0,3,6,9...

γh [Φit(h+ 3)− Φit(h)]︸ ︷︷ ︸
xit,h

+pitδ1 + p2
itδ2 + zitτ + ci + εit

The model effectively regresses yield on the time spent within each interval in a given county

and year xit,h.

Model SR3 assumes that the “yield growth” function g(h) is an eighth-degree polynomial of the

form g(h) =
∑8
j=1 γjTj(h) where where Tj() is the jth order Chebyshev polynomial. Replacing g(h)

with this expression yields:

67



The graph on the left shows the 2-parameter logistic fitted model for the average year in red. On the right,
the dotted red line represents the model for year 1995 and the red dots are the extrapolated progress levels.
The boundary date for year 1995 is obtained from the extrapolated progress reaches 50% of the state’s
acreage that year.

Figure 16: Stage boundaries for years with incomplete progress data

yit =

39∑
h=−1

8∑
j=1

γjTj(h+ 0.5)[Φit(h+ 1)− Φit(h)] + pitδ + zitτ + ci + εit

=

8∑
j=1

γj

39∑
h=−1

Tj(h+ 0.5)[Φit(h+ 1)− Φit(h)]︸ ︷︷ ︸
xit,j

+pitδ + zitτ + ci + εit

The model effectively regresses yield on eight temperature variables xit,j which represent the

jth-order Chebyshev polynomial evaluated at each temperature bin.

In a similar fashion, model SR4 assumes that g(h) =
∑8
j=1 γjS

3
j (h) where S3

j () is the piece-wise

cubic polynomial evaluated for each jth interval defined by eight control points.

yit =

8∑
j=1

γj

39∑
h=−1

Sj(h+ 0.5)[Φit(h+ 1)− Φit(h)]︸ ︷︷ ︸
xit,j

+pitδ + zitτ + ci + εit

Figure 17 and 18 presents the results for all specification for rainfed and irrigated counties.

Figure 17 shows, for rainfed counties on the left, a close agreement across specifications for the
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damaging effects of temperatures above 30ºC. The polynomial (SR3) and spline specifications (SR4)

show a peculiar upward bent which is not significant due to the low number of observations over that

extreme range. For irrigated counties on the right, results are not as clear. Temperatures around

15 and 30 appear beneficial but temperatures around 10 and 22 and above 30 are detrimental. This

repeated inversion on the sign of temperature effects is odd and has no clear physical underpinning.

A possibility is that this pattern reflects mixing effects of day-time and night-time temperature

exposure. However, the damaging nature of temperatures over 30ºC is of similar magnitude to

rainfed counties.

Regarding precipitation in figure 18, the response curve for rainfed counties is very similar across

specifications, with very low (<400mm) and very high (>800mm) precipitation levels reducing yield.

However, this response curve is almost flat for irrigated counties on the right column, as expected.

Indeed, Farmers in irrigated areas control the water supply for very dry years. However, very high

levels of precipitation seem to reduce yield, and this could be consistent with damages from flooding

events.

A3. More on the OB model

The specification for the model with a step function allowing different effects at each 30 g/L interval

(OB2) is:

yit =

39∑
h=0,3,6,9...

γh [Φit(h+ 3)− Φit(h)]︸ ︷︷ ︸
xit,h

+pitδ1 + p2
itδ2 + zitτ + ci

+

8∑
s=1

340∑
m=100,130...

f(m+ 15, s) [Ψit(m+ 30, s)−Ψit(m, s)]︸ ︷︷ ︸
zit,m

+εit

Model OB3 assumes that the “yield growth” function g(h) is an eighth-degree polynomial of

the form f(m, s) =
∑8
j=1 λjsMj(m, s) where where Mj() is the jth order Chebyshev polynomial.

Replacing f(m, s) with this expression yields:
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Figure 17: Temperature effects for the SR model
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Figure 18: Precipitation effects for the SR model
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yit =

39∑
h=−1

8∑
j=1

γjTj(h+ 0.5)[Φit(h+ 1)− Φit(h)] + pitδ1 + p2
itδ2 + zitτ + ci

+

8∑
s=1

350∑
m=120

8∑
j=1

λjsMj(m+ 5, s)[Ψit(m+ 10, s)−Ψit(m, s)] + εit

=

8∑
j=1

γj

39∑
h=−1

Tj(h+ 0.5)[Φit(h+ 1)− Φit(h)]︸ ︷︷ ︸
xit,j

+pitδ1 + p2
itδ2 + zitτ + ci

8∑
s=1

8∑
j=1

λjs

350∑
m=120

Mj(m+ 5, s)[Ψit(m+ 10, s)−Ψit(m, s)]︸ ︷︷ ︸
zit,m

+εit

The model effectively regresses yield on eight temperature variables xit,j and eight moisture vari-

ables for eight different stages zit,m. Each variable represents the jth-order Chebyshev polynomial

evaluated at each temperature and moisture bin.

In a similar fashion, model OB4 assumes that f(m, s) =
∑8
j=1 λjsZ

3
j (m, s) where Z3

j () is the

piece-wise cubic polynomial evaluated for each jth interval defined by eight control points:

yit =

8∑
j=1

γj

39∑
h=−1

Sj(h+ 0.5)[Φit(h+ 1)− Φit(h)]︸ ︷︷ ︸
xit,j

+pitδ + zitτ + ci

+

8∑
s=1

8∑
j=1

λjs

350∑
m=120

Zj(m+ 5, s)[Ψit(m+ 10, s)−Ψit(m, s)]︸ ︷︷ ︸
zit,m

+εit

Figures 19 through 23 present the results for all specifications for rainfed and irrigated counties.

Figure 19 shows the temperature response functions for the OB model. The left column on rainfed

counties shows that agreement over all for damages above 30ºC. The confidence bands become much

wider for extreme temperature and the polynomial (OB3) and spline specifications (OB4) show the

same peculiar upward bent than in SR3 and SR4. However, this quirk is not significant. The right

column for irrigated counties exhibit a rather different response function, although it also suggests

negative effects of high temperature.

Figure 20 shows the precipitation response functions for the OB model. Aside from the width

of confidence bands, all response functions are extremely similar across specifications and for both

rainfed and irrigated counties. They are also very similar to the precipitation response function for
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the SR model over irrigated areas (on the right column of figure 18). This is evidence that once soil

moisture is accounted for in rainfed areas, precipitation only captures yield variation for very high

precipitation levels (e.g. flooding).

Figure 21 shows the soil moisture response functions for the polynomial (OB3) and spline (OB4)

specifications. The exhibit fairly similar results for rainfed counties, with the strongest yield re-

sponses toward the middle of the season. These response functions are statistically significant as

shown in the left columns of figures 22 and 23, which show confidence bands.

The soil moisture response functions for irrigated counties were included in figure 21 as a fal-

sification exercise. Because soil moisture data do not account for irrigation, we should expect the

variable to explain yield variation much. Indeed, the surfaces are rather flat, with the exception of

very high moisture values which happen to be insignificant, as shown on the left columns of figures

22 and 23. This clearly shows that very low levels of predicted moisture do not explain yield in

irrigated counties, as expected.
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Figure 19: Temperature effects for the OB model
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Figure 20: Precipitation effects for the OB model
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Figure 21: Soil moisture effects for the OB model
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Figure 22: Soil moisture effect for the 8th Degree Polynomial specification (OB3)
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Figure 23: Soil moisture effect for the Cubic B-Spline specification (OB4)
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Essay IV

Modeling the Structure of Adaptation in

Climate Change Impact Assessment 1

Abstract

The paper proposes a structural approach for elucidating the mechanisms through which

climate change will affect agriculture. Clarifying specific adaptation possibilities facilitates not

only the assessment of potential welfare impacts, but also offers the possibility of evaluating poli-

cies for improved adaptation. This is in stark contrast with prevalent reduced form approaches

in the literature that provide impact estimates without identifying adaptation mechanisms. An

empirical illustration of the crop yield impact channel showcases how this analysis provides in-

sights about adaptation possibilities. The example shows how Midwest corn producers from 8

states could reduce yield damages from a 5ºF warming by as much as 30 to 70 percent through

earlier planting, thus saving an estimated $3.4 billion annually. The adaptation is made pos-

sible by the lengthening of the growing season which provides greater flexibility to farmers for

reducing the exposure of sensitive periods of the growing season to detrimental conditions in

the summer.

JEL Classification Codes: Q54, Q15, Q51

Keywords: climate change, agriculture, adaptation

1This essay was co-authored with Richard E. Just as second author and is published in the American Journal of
Agricultural Economics, Volume 95 (2013), pages 244-251.
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1 Introduction

While a major focus of econometric climate impact assessments on agriculture has been prediction

of overall impacts, future research should identify impact mechanisms and adaptation possibilities.

Clarifying specific adaptation possibilities facilitates not only the assessment of potential welfare

impacts, but also offers the possibility of evaluating policies for improved adaptation. This depends

on capturing mechanisms that provide farmers’ abilities to adapt to new climatic constraints in

counter-factual conditions.

These impact mechanisms are represented with elaborate detail in agronomic crop models that

convey the science of crop production. However, the agronomic models are not well integrated with

revealed preferences (e.g., Adams 1989, Adams et al. 1990, Easterling et al. 1992, Rosenzweig and

Parry 1994). Thus, congruence of agronomic adaptation possibilities with economic behavior that

might be observed in counterfactual circumstances is open to question.

Econometric methods have attempted to represent adaptation implicitly by estimating reduced-

form relationships between economic variables and arbitrary forms of aggregate weather measures.

Leading examples include the Ricardian approach based on cross-section regression of land prices

on weather variables (Mendelsohn, Nordhaus and Shaw 1994 and Schlenker, Hanemann and Fisher

2005, henceforth MNS and SHF) and the profit panel approach consisting of fixed-effects regressions

of net annual revenue on weather variables ( Deschênes and Greenstone 2007, henceforth DG).

Thus, modeling shortcuts have been used to assess potential impacts of exogenous weather variation

without modeling decision-making and adaptive innovation explicitly, and without consideration of

the specific weather variables of importance in the science of crop production. Therefore, land prices

and observed net revenues may capture farmers’ optimal adaptive behavior with an unknown degree

of imperfection.

While these highly reduced-form approaches have provided first-cut estimates of climate effects,

they do not reflect the mechanisms through which impacts occur, which calls into question the

feasibility of predicted adaptive behavior as well as robustness to omitted variables bias. Aggregated

approaches also prevent identification of structural relationships necessary to consider adaptation

policy assessment and cross-validation.

Recently, research using the econometric approach has focused increasingly on impact mecha-

nisms partly as a means of validating results from reduced-form approaches. This includes renewed

interest in statistical yield models (e.g. Schlenker and Roberts 2009a, Lobell and Burke 2010)

because crop yields represent major mechanisms through which higher temperatures may affect pro-
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ducer welfare. However, most yield models rely on season-long weather variables that overlook the

varying sensitivity of crops during the growing cycle, and implicitly assume that growing seasons

remain fixed.

Under-representation of flexibility causes overestimation of yield impacts. An example is estima-

tion of heat effects ignoring the flexibility offered by lengthening of the growing season. Conventional

agronomic wisdom established through field trials on annual crops is that stress during the relatively

short flowering period reduces yield more than in any other stage of growth (Fageria, Baligar, Clark

and Clark 2006, p.89). This phenomenon is substantial and statistically significant in US county

corn yields (Ortiz-Bobea 2011). Thus, a longer season may allow flexibility to shift the flowering

period away from a hotter traditional flowering period. This flexibility is ignored by typical econo-

metric approaches, although common in the agronomic models. Other research has considered the

agronomic analysis of agricultural zones (Newman 1980, Adams et al. 1990, Kaiser et al. 1993) by

considering potential changes in crop mix using multinomial logit models (Mendelsohn and Dinar

2009, ch.5). However, these possibilities are typically considered separately rather than jointly. Of

course, capturing all adaptation possibilities is a daunting task given the diversity of agriculture.

But accounting for major and obvious adaptation strategies based on revealed preferences provides

a critical foundation for adaptation policy analysis. Preliminary work, including Ortiz-Bobea (2012)

and an example in this paper, implies that climate change assessment should not stop short of

exploring these possibilities.

2 A structural approach

This paper proposes an econometric framework for assessing potential impacts of climate change on

agriculture that tractably unpacks some of the major impact mechanisms. Following the implicit

definition in other empirical work, we define climate as the probability distribution of all aspects of

weather relevant to a particular period of time, but (i) define the relevant weather variables for our

problem based on scientific knowledge of the underlying mechanisms of production, and (ii) use a

behavioral model as an empirical underpinning to capture adaptation given those mechanisms. The

key element is the explicit treatment of climate change within a classical constrained optimization

framework given potential adaptive private and public actions. In this paper, we consider only the

simple behavioral model of profit maximization, but more general applications based on revealed

preferences are planned.

As an example, higher temperatures lead to the detrimental effects of hotter summers, but also
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lengthen the frost-free period, offering farmers the option of longer-season cultivars, different crops, or

even relay cropping. Only by a disaggregated approach can the potentially dominating mechanisms

of both the detrimental and beneficial aspects of climate change be revealed. And only by combining

agronomic knowledge with revealed preferences can these potential counter-factual mechanisms be

properly assessed. In addition, this approach can serve to cross-validate qualitatively conflicting

results of current leading econometric approaches (see SHF and DG).

For structural modeling, our proposed approach, like most others, presumes prior knowledge of

the distribution of climatic inputs and the major climatic constraints imposed by climate change.

Specifically, climatic inputs are characterized by the timing and level of their exogenous supply.

Climatic constraints arise when the supply of climatic inputs render production infeasible. An

example is the time of onset of the growing season which is driven by the last spring frost in the

American Midwest. Adequate models must determine whether each constraint is binding in each

locality and how its variation contributes to welfare (i.e., to each constraint’s shadow price). A

disaggregated approach can determine the significance of individual aspects of climate change and

their geographic distribution. Shadow prices can then guide investment in adaptation research and

related public policy, both topically and financially.

We focus on careful treatment of the physical role of weather variables in production as under-

stood in the production sciences. For example, farmers in temperate US regions choose cultivars that

reach maturity before fall frosts because freezing temperatures damage non-mature crops and result

in significant yield loss. Reduced-form models attempt to capture this effect through correlations

with weather variables such as average October temperature (MNS) or April-to-September growing

degree-days (SHF, DG). However, arbitrary calendar variables are likely correlated (imperfectly)

with relevant omitted factors, blurring their interpretation for adaptation policy analysis. In con-

trast, our approach is to rely on variables directly related to the probability distribution of the first

fall frost date whereby the benefit of reaching maturity only a week or two later would be reflected

in a simulation.

Estimates of such adaptation mechanisms can provide a transparent framework to assess the

diverse effects of climate change on the agriculture. Preliminary results we exemplify below call for

a fertile research agenda to estimate effects of individual climate change constraints. Such models

hold promise for bridging the gap between the econometric and agronomic modeling families by

developing a common ground for analysis. Further, structural modeling in a theoretical framework

where relationships are qualitatively understood at the outset can reduce omitted variable bias and

potential misinterpretation of reduced-form counterparts. For example, reduced-form approaches
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can provide little basis for determining expected qualitative relationships. Structural approaches,

on the other hand, can answer questions in terms of the estimated strength of qualitatively clear

components necessary to facilitate welfare and policy analysis.

3 An optimization-based Approach

Our conceptual framework of behavior is a constrained optimization model where the farmer deter-

mines a vector of choice variables or weather-dependent choice rules, x(·), including choice of crop

mix and cultivars, other technology choices such as machinery and irrigation/drainage investments,

planting dates, and factor input levels. The optimization problem for a risk-neutral farmer with

opportunity cost π0 is

max
x(�)≥0

π (x(·), p, w, θ) ≡ p(Q(θ)).q(θ, x(θ))− w(θ) · x(θ) s.t. π > π0 (1)

where p and w are output and input price vectors, Q and q are market and farmer output vectors,

and the vector θ describes the timing and level of the exogenous weather inputs.

Applying the envelope theorem to the profit function associated with (1) yields a decomposition

of the long-run change in profit from a change in climate,

∂π

∂θ

∣∣∣∣
x=x∗

=
∂p

∂Q

∂Q

∂θ
q(θ, x∗(θ)) +

(
∂q

∂θ
+

∂q

∂x∗
∂x∗

∂θ

)
p(Q(θ))−

(
∂w

∂θ
x∗(θ) + w(θ)

∂x∗

∂θ

)
(2)

where x∗ is the optimal decision vector. The first term represents the effect of output price on

profit stemming from the large-scale effect of climate on aggregate supply given aggregate demand.

This term is potentially significant if climate change affects production and product mix over broad

areas. Grasping its magnitude requires estimating the correlation of heterogeneous regional climate

change impacts and how they aggregate into global agricultural output and consequent local price

impacts. This difficulty likely explains why climate change studies typically assume fixed prices (e.g.

MNS, SHF, DG). However, this effect is likely to have attenuating implications because equilibrium

price adjustments tend to spread economic effects across a broad array of markets and, thus, soften

impacts on the most affected markets through product substitution.

The second term represents the contribution of climate change to profit through its effect on the

individual farmer’s output. Crop output can be expanded as the product of acreage a(θ) and yield

y(θ, x(θ)) where
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∂q(θ, x(θ))

∂θ
=
∂a(θ)

∂θ
· y(θ, x(θ)) +

(
∂y(θ, x(θ))

∂θ
+
∂y(θ, x(θ))

∂x

∂x(θ)

∂θ

)
a(θ)

and a(θ) is a subvector of x(θ). This expression highlights the importance of focusing carefully

on the response of both the optimal crop mix and the yields of alternative crops to climate change,

and how particular climate-dependent farmer responses affect each.

The third term in (2) measures the cost effect of climate change associated with climate-induced

changes in input prices and input use. The former might stem from changing demand pressure on

input markets. The latter arises from a wide range of possibilities for changing cultivation practices

and crop mix. For example, a farmer might purchase more irrigation water on a given crop to

compensate for reduced rainfall or adopt mitigating measures to maintain arable land in the event

of an increase in farm-wide flooding, drought, or consequent adverse pest populations.

Such an optimization model thus provides a framework in which to analyze separate climate

change impact mechanisms. Major adaptive behaviors within each channel can be explored sep-

arately to identify policy-relevant insights for improved adaptation. The model can obviously be

expanded to consider additional mechanisms that affect adaptation subject to the limitations of

econometric identification. For example, allowing risk aversion can facilitate welfare analysis of

changing climate variability, in which case an analysis of reservation utility can shed light on agri-

cultural regions that might no longer farm, or other regions that might begin farming.

4 An empirical illustration

Obviously, an empirical illustration of specific modeling of each of the mechanisms delineated in

this model is beyond the scope and space limitations of this paper. Alternatively, we present an

empirical example that explores the yield impact channel, ∂y(θ, x(θ))/∂x · ∂x(θ)/∂θ, to illustrate

subtle but important potential for plausible adaptive behavior and opportunities that tend to remain

unexplored in reduced-form models. In particular, we explore the potential effect on corn yield of

a 5°F uniform warming through both extreme heat during different crop production stages and the

widening of the frost-free period. We explore how the climate-dependent choice of planting date,

represented by ∂x(θ)/∂θ, may affect yield.

The example is fundamentally based on a statistical corn yield model with weather regressors

matched to key stages of the corn production cycle, namely the vegetative, flowering, and the grain-

filling periods (see Ortiz-Bobea 2011). This allows estimation of phenological regression coefficients

84



that are disconnected from fixed calendar periods (Dixon et al. 1994). The advantage of this approach

is that the regression results can be easily employed in simulations that allow for shifting growing

seasons. Geographic variation in growing seasons can then be used to project future variation in

growing seasons under climate change. The model specification is

yit =
∑
s

(
β1,sPrecits + β2,sPrec

2
its + β3,sGDDits + β4,sDDDits

)
+ ψ(t) + αi + εit

where yit is yield in county i in year t; s is the set of key stages of corn production; Prec, GDD

and DDD are precipitation, growing degree-days (8-32°C) and damaging degree-days (>34°C); ψ(t)

is a quadratic time trend; and the αi are county effects.

We use a county-level corn yield panel dataset (1985-2005) from a mostly rainfed area covering 8

states, which represents over 65 percent of US corn production. County production and state crop

progress data were obtained from USDA-NASS and daily weather data for the 1950-2005 period is

from Schlenker and Roberts (2009a).

Following the literature, simulated impacts are obtained by multiplying estimated parameters by

the projected mean climate change for the corresponding variables and time frame. However, the

phenological approach allows shifting time frames for crop stages. In this context, climate differences

are obtained by subtracting current mean climate for the current time frame of a crop stage from the

projected mean climate for its simulated time frame. This contrasts with models based on monthly

variables that keep the time frame, and therefore the growing season, fixed.

Results from the baseline corn yield model, assuming a fixed growing season (table 1), reflect

estimated average damages of 26.3 percent for the sample. Of course, these damages have substan-

tially heterogeneous geographic distribution, which raises significant issues of potential geographic

adaptation of crop mixes, but we leave that analysis to another paper. Interestingly, over two-thirds

of this damage is associated with high temperature during the flowering period, which is a short

period in the full growing season (approximately 2-3 weeks in the June-August period, depending

on location). This sharp sensitivity during the flowering period coincides with agronomic findings,

but contrasts sharply with econometric models that use season-long weather variables.

The resulting optimization problem is represented in figure 1. The objective is to assess whether

relaxation of the freezing constraints in the spring and fall provide sufficient flexibility of planting

dates for farmers to reduce exposure to extreme heat during the sensitive flowering period.

If farmers in the Midwest are constrained by the length of the frost-free period, then we should

expect a spatial pattern of earlier planting dates coupled with earlier frost-free days in the spring to
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Table 1: Yield Sensitivity by Corn Growth Stage
Corn growth stage Yield Impact from a Share of stage

5ºF warming with a influence in total
fixed growing season yield impact (%)

(%) / (bu/acre)
Vegetative -8.9/ -11.7 33.3
(Planting to flowering)
Flowering -17.6/-23.0 65.8
(4 weeks around silking)
Grain-filling 0.3/0.3 0.9
(Flowering to maturity)
Full cycle -26.3/34.4 100

Figure 1: Key corn stages and climatic constraints in Iowa
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Figure 2: Corn growing season and freezing dates

emerge. This pattern is indeed verified in the first panel of figure 2. A similar pattern might also

be expected in the fall, with later maturation dates associated with later first fall frosts if the fall

frost date is constraining. The second panel of figure 2 shows this pattern up to a point (around

day 290 of the year) after which there is a clear disconnect. Clearly, extending the frost-free period

as depicted in the lower part of figure 2 shows that states with a narrower frost-free period tend to

plant and reach maturity systematically at dates with higher probabilities of freezing. Only when

the frost-free period reaches 180 days does the probability of frost at maturation decline to zero.

These data suggest that the spring frost threshold is binding for all states, but the fall threshold is

only binding for states with less than 180 frost-free days.

To explore the potential effect of shifting the growing season in the year by altering the planting

date, we simulated earlier planting dates by shifting the planting date earlier in one-day increments

until the planting date coincides with the new spring freezing threshold under a 5°F uniform warm-

ing. We also shifted the planting date later until the maturation date coincides with the new fall

freezing threshold. At each increment, a new climate dataset was constructed for the time windows

corresponding to the vegetative, flowering, and grain-filling periods. The spring and fall thresholds

were set to maintain the current probability of freezing levels at planting and maturation for each

state. This confines the simulation to a plausible range.

Simulation results are presented in figure 3 where each line represents an acreage-weighted state-
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Figure 3: Overall state yield response and planting adaptation

level yield response to the shift in planting date. All states show considerable yield losses without

planting adaptation as shown by the negative intercepts. The downward sloping curves, however,

show that earlier planting under a 5°F warming scenario reduces damages from higher temperatures.

This is the result from shifting the most sensitive period of the production cycle away from higher

temperatures in the summer months. Table 2 shows that earlier planting by around 2 weeks results

in a significant reduction of damages, ranging from 30 to 70 percent depending on the state. In terms

of value, this represents around $3.4 billion for the 8 states combined, or 14 percent of the region’s

$24 billion annual average production for the 2000-2010 period. For comparison, SHF estimate $5.0

billion in annual damages for the entire US agricultural sector with the same warming scenario

together with an 8 percent increase in precipitation; DG estimate $1.3 billion in annual benefits for

an alternative scenario.

5 Conclusion

In this paper we propose, and provide evidence on, the need for a model that elucidates some of the

major mechanisms through which both the damaging effects and adaptation possibilities from climate

change impact agriculture. We submit that a transparent structural econometric approach can open
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Table 2: Corn Yield Impacts From a Uniform 5ºF Warming
Without With Impact Optimal Savings
change in change in mitigated change from
planting planting with in adaptation
date (%)/ date adaptation planting (Million
(bu/acre) (%)/ (%) date 2010

(bu/acre) (days) US$)
Illinois -34.7/-47.3 -21.9/-29.9 36.9 -16 $1,371
Indiana -26.8/-35.3 -14.9/-19.6 44.4 -18 405
Iowa -27.1/-37.2 -18.0/-24.7 33.6 -14 848
Michigan -19.2/-21.6 -6.6/-7.5 65.3 -18 168
Minnesota -20.6/-26.8 -11.2/-14.6 45.5 -14 330
Ohio -21.4/-27.0 -10.4/-13.1 51.4 -17 116
Pennsylvania -23.9/-24.7 -7.0/-7.2 70.6 -20 61
Wisconsin -17.3/-20.8 -7.4/-8.9 56.8 -15 102
Full sample -26.3/-34.4 -14.0/-18.5 44.1 -15.8 $3,401

the door to more detailed adaptation policy analysis grounded in revealed preferences. A structural

approach grounded in the science of crop production should also allow cross-checking the plausibility

of overall reduced-form estimates. Our empirical example shows that plausible adaptation strategies

with little extra cost could significantly reduce projected corn yield damages for the 8 states in the

sample. The results are demonstrated by a yield model that introduces disaggregated phenological

weather variables matched to the production cycle.

Several limitations of our proposed approach should be borne in mind. Crop progress data is

available for major producing states only at the state level, obscuring some variations within states.

Also, we have not considered other agronomic aspects, such as the accelerating effect of higher

temperature on the crop cycle, the potential to adopt different cultivars, or the influence of lower

solar radiation on crop photosynthesis during shorter spring days. Our model also assumes three

distinct crop stages where weather inputs are separable.

The complexity of the effect of environmental conditions on yield typically leaves researchers with

a choice between imperfect proxies. Some of these may imply strong restrictions on farmer flexibility,

as our example shows. Weather variables that better capture the effect of environmental conditions

and their interaction, such as water balance measures tied to relevant crop stages, also offer new

tools for more transparent methods of econometric climate change assessment that may help bridge

the gap between alternative methods used for assessing impacts. Indeed, better capturing of the

effect of weather variables on production allows better assessment of the physical constraints farmers

face but, more importantly, facilitates assessment of the possibilities available for adaptation that

have received relatively less attention to date.
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