
Semantic Query Optimization for Bottom-Up

Evaluation

�

P. Godfrey

1

, J. Gryz

1

, J. Minker

1;2

fgodfrey, jarek, minkerg@cs.umd.edu

Department of Computer Science

1

and Institute for Advanced Computer Studies

2

University of Maryland, College Park, Maryland 20742

Abstract

Semantic query optimization uses semantic knowledge in databases (rep-

resented in the form of integrity constraints) to rewrite queries and logic

programs for the purpose of more e�cient query evaluation. Much work

has been done to develop various techniques for optimization. Most of

it, however, is only applicable to top-down query evaluation strategies.

Moreover, little attention has been paid to the cost of the optimization

itself. In this paper, we address the issue of semantic query optimization

for bottom-up query evaluation strategies with an emphasis on overall ef-

�ciency. We restrict our attention to a single optimization technique, join

elimination. We discuss various factors that in
uence the cost of semantic

optimization, and present two abstract algorithms for di�erent optimiza-

tion approaches. The �rst one pre-processes a query statically before it is

evaluated; the second approach combines query evaluation with semantic

optimization using heuristics to achieve the largest possible savings.

Keywords: Intelligent Information Systems, Databases, Semantic Query

Optimization.

�

This research was supported by by the following grant: NSF IRI-9300691

1

1 Introduction

Semantic query optimization uses semantic knowledge in the form of integrity

constraints to rewrite queries and logic programs for the purpose of more e�cient

query evaluation. Several researchers have developed methods for semantic op-

timization in relational and deductive databases [1, 8, 16]. Recently, this work

has been extended to programs with recursion [9, 10, 12] and negation [2]. In

this paper we accomplish the following. First, our semantic query optimization

method applies to bottom-up query evaluation strategies. Such optimization

methods are crucial because bottom-up query evaluation is signi�cantly more

e�cient, in most all cases, than top-down evaluation. To our knowledge only

one paper [11] addresses speci�cally the issue of semantic query optimization

for bottom-up evaluation. However, the optimizations they consider are re-

stricted to certain types of integrity constraints, and no general technique for

query rewriting is provided. Second, we present a cost analysis of our opti-

mization approach and we show how our method exploits this analysis. Last,

our optimization technique allows for the e�cient use of integrity constraints

which contain both EDB and IDB predicates. In most previous work, integrity

constraints are restricted to contain only EDB predicates. (Papers [9, 12, 16]

state this condition explicitly.)

The paper is organized as follows. Section 2 introduces notation, and dis-

cusses the advantage of bottom-up over top-down query evaluation. Section 3

describes the main focus of our optimization algorithms, namely the removal of

joins of tables, which are known beforehand (via deduction over the ICs and

rules) not to return any answers. The cost of this semantic optimization is

discussed in Section 4. An overview of two such optimization algorithms is pro-

vided in Section 5. The paper concludes with a summary and future research

directions in Section 6.

2 Preliminaries

2.1 Terminology

We assume familiaritywith the terminology of relational and deductive databases

[17]. A database, DB, consists of an extensional database (EDB), an intensional

database (IDB), and a set of integrity constraints (IC). We assume that DB is

function-free, the EDB consists of ground, positive facts and the IDB of rules.

We also assume here that IDB rules are nonrecursive. An integrity constraint

is a rule with an empty head and whose body contains nonground atoms. EDB

predicates are those that appear only in bodies of rules. IDB predicates are the

rest.

We also describe the concept of a query tree (an AND/OR tree). A query tree

of an IDB predicate p is the \parse tree" of an expression in relational algebra

2

(X,p p,)

employee(X,p p) bene�ts(X,hmo)

faculty(X,p p,) ta(X,p p) sta� health-plan(X,hmo,) life-ins(X,hmo,)

query(X)

Figure 1: The query tree representation of the query of Example 1

that yields the relation p in terms of the EDB.

1

We are mainly interested in union

and join operations, so we do not represent selections and projections explicitly

in the tree. However, selections and projections are implicitly apparent. Also,

whenever an intermediate node of the query tree represents an IDB predicate

q, we likewise label that node as q.

The following example shows a query tree for the query query(X).

Example 1 Let the database contain �ve base relations: faculty(Name, Depart-

ment,Rank), sta�(Name, Department,Years of Employment), ta(Name, Depart-

ment), life ins(Name, Provider, Monthly premium) and health plan (Name, Pro-

vider, Monthly premium).

Let there be two rules in the database: the �rst one de�nes an employee rela-

tion (via the union of the ta relation and projections from the faculty and sta�

relations); the second de�nes a bene�ts relation (via the union of projections

from the life ins and health plan relations).

employee(X,Y) faculty(X,Y,Z). bene�ts(X,Z) life ins(X,Z,W).

employee(X,Y) sta�(X,Y,Z). bene�ts(X,Z) health plan(X,Z,W).

employee(X,Y) ta(X,Y).

Let a query ask for the names of all employees of the physical plant, p p,

whose bene�ts are provided by hmo:

query(X): employee(X,p p), bene�ts(X,hmo)

The query tree representation of this query is given in Figure 1.

It is very easy to translate a tree representation of a query to an equivalent

relational algebra representation. We often switch between the two representa-

tions. The relational algebra representation

2

of the query (call it Q) of Example 1

is:

Q= (�

X

faculty(X,p p,Y)) [�

X

sta�(X,p p,Z) [ta(X,p p))

1(�

X

life ins(X,hmo,W)[�

X

health plan(X,hmo,V))

Next we de�ne several concepts which we will use in the paper.

1

Algorithm 3.2 of [17] describes how such an expression is derived.

2

We ignore for clarity explicit representation of select operations.

3

De�nition 2.1 Let Q be a query. U is an unfolding of Q in DB i�

� U = Q;

� U = q

1

(v

1

); :::; q

i�1

(v

i�1

); P �; q

i+1

(v

i+1

); :::; q

m

(v

m

), where

U

0

= q

1

(v

1

); :::; q

i�1

(v

i�1

); q

i

(v

i

); q

i+1

(v

i+1

); :::; q

m

(v

m

)

is an unfolding of Q and there is a rule < q

i

(x

i

) P > in IDB for which

q

i

(v

i

)� = q

i

(x

i

)� and � is an mgu.

U is a complete unfolding of Q if it contains only EDB predicates .

Example 2 A set of complete unfoldings of the query of Example 1 is:

faculty(X,p p,),life ins(X,hmo,): faculty(X,p p,),health plan(X,hmo,):

ta(X,p p),life ins(X,hmo,): ta(X,p p), health plan(X,hmo,):

sta�(X,p p,),life ins(X,hmo,): sta�(X,p p,), health plan(X,hmo,):

Note that atoms in a (complete) unfolding of a query Q represent (leaf)

nodes in the respective query tree for Q.

De�nition 2.2 Let U be an unfolding (not necessarily complete) of Q. U is a

null unfolding of Q in DB i� IDB [IC j= :9 U

Example 3 Let an integrity constraint be: < ta(X,Y), life ins(X,Z,W)>,

which states that teaching assistants are not entitled to receive life insurance.

Then, ta(X,p p),life ins(X,hmo,) is a null unfolding of Q of Example 1.

We assume that the null unfoldings of a query are identi�ed beforehand and

are provided as input to the optimization algorithm. The reader is refered to

[4] for details on how this is done.

In this paper, we discuss the problem of semantic query optimization in the

context of bottom-up query evaluation. We assume that the query evaluation

proceeds bottom-up, as described in the semi-naive algorithms presented in [17]

(chapter 3) and in [7]. The problem we address in this paper can be stated

informally as follows: given a query tree and a set of null unfoldings, rewrite

the query tree (that is, reformulate the query) to achieve the largest savings

possible. We focus on the elimination of redundant joins. Thus, to achieve the

largest savings means maximizing the di�erence between the savings conferred

by the join elimination and the cost of computing the optimized form itself.

This cost, as we show later in the paper, can be non-trivial. This is a very

di�erent scenario from semantic query optimization for a top-down evaluation

strategies. In the top-down case, the cost of optimization is only the cost of

identifying null unfoldings . We share that cost also, which can be non-trivial

too, but we do not consider that issue here.

2.2 Top-Down versus Bottom-Up Query Processing

Most work in semantic query optimization has been done in the context of

the top-down, PROLOG style query processing. This type of query processing,

however, is impractical in most cases for database query evaluation. First, a top-

down approach requires evaluating independently all the complete unfoldings

of the query. The number of complete unfoldings for a given query can be

exponential in the size of the rule base. In most contemporary databases, this

4

is not so problematic since the number of rules (views) is often small. The

introduction of deductive databases (such as Aditi [14] and CORAL [13]), and

heterogenous database systems, incurs increases to the size of the rule base, to

the point where top-down query processing becomes unmanageable.

Another problem incurred with a top-down approach is redundancy in query

processing. If a predicate P is de�ned by two rules, say R1 and R2, and each

of these rules, given the selections and projections of the query, computes many

of the same set of tuples, then the two unfoldings will compute many of the

tuples twice. If there are k unfoldings, a given answer (tuple) may be computed

k times. Bottom-up evaluation largely escapes this problem.

Example 4 Consider again the database and the query of Example 1. Assume

additionally that the provider hmo sells its life insurance and its health insur-

ance as a single package, in other words, �

X

(�

Y=

0

hmo

0

(health plan(X,Y,Z)) =

�

T

(�

V=

0

hmo

0

life ins(T,V,W)). Then, all answers to the query can be found via

just three unfoldings:

faculty(X,p p,),life ins(X,hmo,).

ta(X,p p),life ins(X,hmo,).

sta�(X,p p,),life ins(X,hmo,).

To evaluate any of the rest of the unfoldings would be redundant.

The di�erence between top-down and bottom-up query evaluation can be

expressed as a di�erence in query representation. For top-down evaluation, the

query is represented as a set of complete unfoldings; for bottom-up evaluation,

as a query tree. These two representations di�er greatly in their compactness

when viewed as formulas in relational algebra written over the EDB predicates.

If this compactness is measured (inversely) by the number of elementary join and

union operations that need to be executed to evaluate the query, then the top-

down query representation is the least compact of all equivalent (in relational

algebra) query forms.

3

On the other hand, the query tree tends to minimize the

number of these operations providing a compact form of query representation.

Example 5 Consider the database and the query of Example 1. The query tree

requires four operations to evaluate the query (two union operations over the

three EDB relations in the left branch, one union over the two EDB relations in

the right branch and the �nal join); whereas the top-down representation of the

same query in Example 2 requires eleven operations (six joins and �ve unions).

The query tree representation in this example is most compact.

To unfold a query is to distribute one (or more) of the unions of its relational

algebra representation; to refold it is to factor out one (or more) of its subexpres-

sions from one (or more) of the unions of its relational algebra representation.

Thus, unfolding a query increases the number of its operations, while refolding

decreases the number.

3

We assume non-redundancy in the formula.

5

3 General Optimization Strategy

The problem we need to address �rst is the following: given a query tree and a

set of null unfoldings of the query,

4

rewrite the tree to guarantee that the joins

that these unfoldings represent are not part of the transformed query. Note that

by doing this (assuming that the tables to be joined are not empty) we always

save in terms of query processing time by not having to do the unnecessary join

(in other words, the join of tables from the null unfolding) which we know is not

going to return any values anyway. In the extreme case, when a query itself is a

null unfolding (such a query is called a simple misconception in the cooperative

answering literature [3]), the query does not need to be evaluated at all since

we know the answer set is empty. As stated in Section 2.2, redundant join

elimination is straightforward for top-down query processing. Thus, the �rst

approximation to an optimization algorithm can be stated as follows:

1. unfold the query in all possible ways;

2. remove null unfoldings; and

3. refold the query resulting from step 2 back as much as possible.

Clearly, we do not need to unfold the query in all possible ways. Rather, it is

enough to unfold the query partially, just to the extent that the null unfoldings

are explicitly represented so that they may be removed.

We show informally how this is done on the following example.

Example 6 Consider again the database and the query of Example 1 and the

null unfolding of Example 3. The query Q and the null unfolding N expressed

in relational algebra are respectively:

Q = (�

X

faculty(X,p p,Y)) [�

X

sta�(X,p p,Z) [ta(X; p p))

1 (�

X

life ins(X,hmo,W) [�

X

health plan(X,hmo,V))

N = �

X

(life ins(X,hmo,W) 1 ta(X; p p))

To represent the unfolding explicitly, we may unfold the query (partially) as:

Q

0

= (�

X

faculty(X,p p,Y) [�

X

sta�(X,p p,Z)) 1 �

X

life-ins(X,hmo,W)

[ta(X,p p) 1 �

X

life-ins(X,hmo,W)

[(�

X

faculty(X,p p,Y) [ta(X; p p) [�

X

sta�(X,p p,Z))

1 �

X

health-plan(X,hmo,V)

After the null unfolding is removed we obtain:

Q

1

= Q

1

1

[Q

2

1

, where:

Q

1

1

= (�

X

faculty(X,p p,Y)[�

X

sta�(X,p p,Z)) 1 �

X

life-ins(X,hmo,W)

Q

2

1

= (�

X

faculty(X,p p,Y)[ta(X,p p)[�

X

sta�(X,p p,Z))

1 �

X

health-plan(X,hmo,V)

Q

1

1

and Q

2

1

have straightforward representations as query trees as shown in

Figure 2.

Since unfolding a query always increases the number of operations in its

respective relational algebra representation, it may be viewed as bringing the

query form closer to its top-down representation. In the extreme case, when

4

An algorithm for computing this set for a given database and a query is presented in [4].

6

1

1

Q (X)

Q (X)

2

1

sta� ta(X,p p) sta�faculty(X,p p,) (X,p p,) faculty(X,p p,) (X,p p,)

life ins(X,hmo,) health plan(X,hmo,)

Figure 2: The query tree representation of Q

1

1

and Q

2

1

there are many null unfoldings the query may have to be unfolded almost com-

pletely and cannot be refolded to any extent, this worst case converges on the

form of the query's top-down representation.

The last issue that deserves to be addressed is the compactness of the opti-

mized query. As stated in Section 2.2, the di�erence between the top-down and

bottom-up query representations can be expressed syntactically as a di�erence

in their number of operations (unions and joins). The top-down approach max-

imizes that number, while the bottom-up approach tends to minimize it. We

assumed above that the query is unfolded only to the degree necessary so that

the null unfoldings are represented explicitly, and then after removing these null

unfoldings refolded back from that form. This does not guarantee, however, that

the �nal form of the query is in the most compact form (that is, has the least

number of operations). The following example shows this.

Example 7 Let the query be:

Q = G 1 (A 1 (B [C 1 D) [E 1 (F [C 1 D))

and the null unfolding be:

U = E 1 F

By simply unfolding the query, removing the null unfolding and refolding the

query back we get:

Q

0

= G 1 (A 1 (B [C 1 D) [E 1 C 1 D)

However, the most compact query form is:

Q

00

= G 1 (C 1 D 1 (A [E) [A 1 B).

There are two reasons for not trying to minimize (absolutely) the number

of operations in the query. First, it can be shown easily that the minimization

problem is NP-complete. Second, we adopt as a working hypothesis the as-

sumption that the input to the optimization algorithm, the query tree, is close

to any minimum representation of the query. We conjecture then that the op-

timized query is also close to any ideal optimized query. We argue, moreover,

that even if a polynomial time algorithm were available for optimality, there are

still good reasons for not choosing the number of operations as our sole criterion

for designing an algorithm. In the next section, it is shown that other costs of

7

semantic optimization can easily overshadow the value of an optimal (in the

above sense) algorithm.

4 Optimization trade-o�s

As stated in the previous section, removing null unfoldings from a query pro-

duces a less compact query, bringing it closer to its top-down representation.

As a consequence, some of the undesirable features of the top-down approach

to query evaluation become prominent in the evaluation of the optimized query.

1. Query fragmentation.

Query fragmentation is an inherent feature of semantic optimization for

bottom-up query evaluation. There is only one type of null unfolding re-

moval of which does not increase the number of operations in the optimized

query. We call such null unfoldings which have this property nice.

5

De�nition 4.1 Let Q = A

1

1 ::: 1 A

n

be a query expressed in relational

algebra and U be an unfolding of Q. U is nice i� U = A

i

1

1 ::: 1 A

i

n�1

1

B; i

j

2 f1; :::; n� 1g; i

j

6= i

k

if j 6= k where B is a subexpression of A

i

n

.

On the other hand, there are cases where the optimized query will have

almost twice the number of operation of the original one.

The degree of query fragmentation depends also on the algorithm used.

If the optimization algorithm is iterative, that is, it removes null unfold-

ings sequentially, independently of one another, query fragmentation can

be worse than in the case of a global approach. Consider the following

extension of Example 6.

Assume that health plan is not an extensional predicate, but is further

de�ned as:

health plan(X,W,V) subsidized health plan(X,W,V).

health plan(X,W,V) unsubsidized health plan(X,W,V).

Assume also that there is another null unfolding to consider:

ta(X,p p),subsidized health plan(X,hmo,).

Removing this unfolding from a query Q

1

of Example 6, (where health plan

(X, hmo,) has been rewritten via the above rules fragments the query

again.

Notice, however, that if the original query were split in a di�erent way,

for instance, into:

Q

2

(X) = Q

1

2

(X) [Q

2

2

(X) in which:

Q

1

2

(X)=(faculty(X,p p,)[sta�(X,p p,)) 1 (subsidized health plan(X ,hmo,)

[unsubsidized health plan(X,hmo,) [life ins(X,hmo,))

Q

2

2

(X)=ta(X,p p) 1 (subsidized health plan(X ,hmo,)

[unsubsidized health plan(X,hmo,))

then removing the second null unfolding does not increase the number of

nodes in the tree (only the second subquery, Q

2

2

(X) needs to be rewritten).

5

Such integrity constraints (with two atoms) were called semi-complete join pairs in [11].

8

One of the key di�erences between the two algorithms presented in the

next section is the way they handle the removal of multiple null unfoldings.

2. Recomputation of joins due to table overlaps.

Materialized tables in bottom-up query evaluation described here do not

contain duplicates (we assume that duplicates are removed whenever ta-

bles are unioned). Consider again the database and the query of Example 6

and the condition of Example 4 holds, that is

health plan(X,hmo,Y) life ins(X,hmo,Z).

Then, all answers to the query Q are computed by Q

2

1

and so Q

1

1

is re-

dundant. This redundant computation would not have taken place if the

query had not been optimized.

3. Recomputation of joins due to independent computation of subqueries.

Consider yet another extension of Example 6: assume that health plan is

not an extensional predicate, but it is further de�ned as:

health plan(X,Y,Z) personel(SSN,X),insurance(SSN,Y,Z).

Also assume that the query has been split as in Q

3

.

Q

3

(X) = Q

1

3

(X) [Q

2

3

(X) in which:

Q

1

3

(X)=(faculty(X,p p,)[sta�(X,p p,)) 1 (personel(SSN,X)1 insur-

ance(SSN,hmo,) [life ins(X,hmo,))

Q

2

3

(X)=ta(X,p p) 1 personel(SSN,X) 1 insurance(SSN,hmo,)

Note that both Q

1

3

and Q

2

3

involve computing the join of personel(SSN,X)

1 insurance(SSN,hmo,). However, since the two queries are evaluated

independently, the optimal plan for query Q

2

2

(X)=ta(X,p p) 1 personel

(SSN,X) 1 insurance(SSN,hmo,)may require computing the join ta(X,p p)

1 personel(SSN,X) �rst and then joining the result with insurance (SSN,

hmo,). Clearly, considering the fact that the join personel (SSN,X) 1

insurance (SSN, hmo,) has to be computed as part of Q

1

3

, it may be

better to compute Q

2

3

in a di�erent order.

4. Elusive savings.

The savings achieved by join elimination are proportional to the sizes of

tables whose join can be eliminated from the query because of the presence

of an appropriate null unfolding. These savings may be too small, however,

to justify applying semantic optimization, given the overhead costs.

Assume that ta(X,p p) in Example 6 is empty; that is, there is no teaching

assistant employed in the physical plant department. Thus, removing the

null unfolding ta(X,p p)1 life ins(X,hmo,) saves nothing. In the ideal

situation, we should be able to discover such cases to avoid rewriting the

query.

The problems discussed in points 2 and 3 can be solved easily. Recompu-

tation of joins due to table overlap can be solved in the following fashion. Let

U

1

; :::; U

n

be a null unfolding, U

1

i

; :::; U

k

i

be the siblings of U

i

; 1 � i � n, in the

query tree. We state without formal proof that substituting U

j

i

; 1 � j � k with

U

j

i

� U

i

does not change the answer set of the evaluated query while prevent-

9

ing at the same time recomputation of joins due to table overlaps.

6

Note also

that this computation does not add an extra cost to query evaluation since it is

equivalent to duplicate removal from materialized tables.

The problem of recomputation of joins due to independent evaluation of

subqueries is addressed bymultiple query optimization (see [6, 15] on this topic).

If the savings analysis is to be a part of an optimization algorithm, then

the sizes of the tables in the query tree must be part of the input to the al-

gorithm. But the only way

7

the sizes of intermediate nodes of the query tree

can be learned is by materializing these nodes. Materializing all the nodes of

the tree before doing any semantic optimization of course defeats the purpose

of optimization (since this is equivalent to evaluating the query). Hence, ma-

terialization should be done in stages, interleaving the steps of evaluation and

optimization. A consequence, however, is that this type of optimization algo-

rithm must be iterative since we cannot know in advance which null unfoldings

should be removed. Thus, there is a clear trade-o� between a global optimiza-

tion (which produces a potentially more compact query as point 1 of this section

showed) and exploiting the savings analysis. The two algorithms in the next

section emphasize these di�erent choices.

5 The Algorithms

5.1 A Global Algorithm

First we consider a global approach in which all the null unfoldings are removed

from the query in parallel. The algorithm will ensure that the rewritten query

is minimal.

We wish to avoid \evaluating" any of the known null unfoldings of a query

whenever we evaluate the query. Our approach is to rewrite the query as a

set of unfoldings that are independent of the null unfoldings, but which, when

evaluated, result in the same answer set as the query's.

This unfolding set, call it S, should have the following properties. Let N be

the set of null unfoldings.

� No unfolding in S should overlap with any unfolding in N ; that is, for

U 2 S and V 2 N , U and V have no unfolding in common. (Call U and

V independent of one another in this case.)

� N [S should be a cover of the query; that is, any complete unfolding of

the query is an unfolding of some unfolding in N or S.

� Set S should be most general:

{ no unfolding in S can be refolded at all, and still preserve the above

properties; and

6

Note that the di�erence operationmakes sense because nodes in the tree represent tables.

We also assume that all atoms of null unfoldings are OR nodes in the query tree.

7

Estimating the sizes of intermediate nodes based on the sizes of the tree leaves may be

very unreliable

10

{ for any U 2 S, (N [S) � fUg is not a cover of the query.

Techniques from the Carmin System can be used to determine the set of

null unfoldings, N , for a query [5, 4]. Carmin is a cooperative database system,

which provides cooperative responses to queries, in addition to the answer sets.

If Carmin can �nd a set of null unfoldings N for a query which is a cover of

the query, and each such null unfolding is provably null, the query is said to

be a complex misconception. Carmin detects misconceptions (both simple and

complex), and explains them (based on the proofs) to the user.

Detecting that a query is a misconception is the ultimate in semantic query

optimization; the query does not need to be evaluated because its answer set is

known to be empty. A system like Carmin will determine N in attempting to

deduce misconceptions. We are interested in intermediate cases where N is not

a cover, and so we still need to evaluate (some optimized form of) the query.

8

Given a query Q and its set of null unfoldings N , the routine �nd cover

�nds the unfolding set S as de�ned above.

�nd cover (Q, N)

S := fg

while new unfolding (Q, N [S, U)

V := refolding (U, N)

S := S [fVg

return S

The routine new unfolding is implemented in Carmin. It returns false if

N [S is a cover of Q. Otherwise, it evaluates true, and returns a new complete

unfolding as U which is not a sub-unfolding of any unfolding in N [S. (So

U is a witness that N [S is not a cover.) This routine is the computational

bottleneck in this approach. It is NP-hard over the size of N [S. However, for

reasonably small input sizes, it runs with good average case performance.

The refolding step is simple. It refolds the unfolding U as much as possible

without overlapping with any of the null unfoldings in N .

Evaluating each unfolded query in S and unioning the results is equivalent

to evaluating the original query. It is also obvious this does not evaluate any

of the join expressions of the null unfoldings. This approach's key advantage

is that S can be guaranteed to be minimal. The disadvantage is that if N is

large, the algorithm will tend towards intractable. This can also happen if the

minimal S deduced is inherently large (although there are reasons to believe

that this does not happen, in average case, unless N is large.)

A second disadvantage, perhaps, is that every null unfolding is \removed",

regardless of whether that truly yields a worthwhile optimization. This method

does not allow for potential savings to be estimated, to decide which null unfold-

ings to attend and which to ignore, in conjunction with the query rewrite and

8

We do not discuss the costs of deducing N in this paper.

11

evaluation. Next, we consider an alternate, dynamic approach which integrates

estimations, rewriting, and evaluation.

5.2 A Dynamic Iterative Algorithm

We have assumed so far that the null unfoldings of a query are given as input and

are to be removed. This is an acceptable strategy if the number of null unfoldings

is small (hence the degree of query fragmentation will be small). Contemporary

databases, however, often contain too many integrity constraints, resulting in

too many null unfoldings for a given query, to make the use of all of them for

optimization feasible.

9

We could focus instead on a small subset of the null

unfoldings for the given query. We would like this subset of unfoldings to be

optimal, in the sense that it contains only unfoldings that yield large savings

in the query's evaluation (and leaves out ones resulting in only insigni�cant

savings). As we demonstrated earlier, the savings can be measured via the sizes

of the tables involved in a given null unfolding. Then only those unfoldings that

\save" the most in that sense are selected.

We propose a dynamic algorithm to rewrite the query during the evaluation,

removing null unfoldings iteratively throughout the evaluation. The idea of this

approach is to proceed with the evaluation in stages. Each stage proceeds until

enough tables have been materialized so that there is enough information to

estimate the savings that would be achieved by removing a given null unfolding.

If the estimated savings are greater than some �xed threshold, the query is

rewritten and the evaluation proceeds until the next checkpoint. Otherwise,

that unfolding is not removed, and the query evaluation proceeds as normal.

The downside of this type of dynamic optimization is a non-optimal query

fragmentation. Since we do not know in advance which null unfoldings are

to be removed, we cannot predict what the best query rewriting at any given

checkpoint will be. Point 1 Query fragmentation of Section 4 illustrates this

problem.

We assume for this algorithm that the set of null unfoldings N for a given

query Q with a query tree T is ordered.

10

We also assume that we are given

some threshold value, say h (for example based on experiments) which indicates

how big the tables to be joined ought to be to justify the optimization step.

remove unfolding(T ,N) is a simple algorithm described informally in Exam-

ple 6 that given a query tree and a null unfolding unfolds the query, removes

that unfolding, and refolds back the query to its compact form.

9

Besides the set of integrity constraints given by the database administrator one can also

use for optimization the so-called propagated integrity constraints [10] as well as dynamic

integrity constraints [18].

10

Informally, N

1

is before N

2

in a sequence of ordered unfoldings if all atoms of N

1

are

below atoms of N

2

in the query tree. A formal de�nition of the ordering and a discussion of

a possibility of such ordering is beyond the scope of this paper.

12

We assume that all nice unfoldings have been removed prior to running this

algorithm.

evaluate optimize (T; N)

If N = ;

Materialize all nodes of T , return Root(T) [evaluated query]

Else

Let N = N

1

; :::; N

n

Let N

1

= N

1

1

; :::; N

n

1

Materialize all subtrees rooted at N

1

1

; :::; N

n

1

If Size(N

1

1

)�::: � Size(N

n

1

) > h

T :=remove unfolding(T;N

1

)

N := N �N

1

evaluate optimize(T; N)

6 Summary and Future Work

We discussed in this paper semantic query optimization for bottom-up query

evaluation strategies. We presented the goal of such an optimization, analyzed

its cost, and proposed two algorithms. Our optimization techniques are general

enough so that they can be implemented with any particular bottom-up query

evaluation method.

We believe that the bottom-up evaluation strategy will be a method of choice

in future deductive and heterogenous database systems. Such databases tend

to have a large number of integrity constraints which could be used to constrain

the search space for answers by means of semantic optimization.

We plan to extend this work in two directions. First, algorithms for other

types of semantic optimization (such as restriction elimination or restriction

introduction) should be developed and tested. Second, the algorithms for join

elimination presented here should be generalized to work for databases with

resursion and negation (in queries, rules and ICs).

We intend to implement the algorithms on the testbed provided by the

Carmin system [4, 5]. We plan to experiment with large databases to de-

termine the conditions under which these algorithms perform well, and when to

use one method over another.

References

[1] U. Chakravarthy, J. Grant, and J. Minker. Logic-based approach to semantic

query optimization. ACM Transactions on Database Systems, 15(2):162{207,

June 1990.

13

[2] T. Gaasterland and J. Lobo. Processing negation and disjunction in logic pro-

grams through integrity constraints. Journal of Intelligent Information Systems,

2(3), 1993.

[3] Terry Gaasterland, Parke Godfrey, and Jack Minker. An overview of coopera-

tive answering. Journal of Intelligent Information Systems, 1(2):123{157, 1992.

Invited paper.

[4] Parke Godfrey. An Architecture and Implementation for a Cooperative Database

System. PhD thesis, University of Maryland, Dept. of Computer Science, Univer-

sity of Maryland, College Park, MD 20742, USA, December 1995.

[5] Parke Godfrey, Jack Minker, and Lev Novik. An architecture for a cooperative

database system. In Witold Litwin and Tore Risch, editors, Proceedings of the

First International Conference on Applications of Databases, Lecture Notes in

Computer Science 819, pages 3{24. Springer Verlag, Vadstena, Sweden, June

1994.

[6] J. Grant and J. Minker. On optimizing the evaluation of a set of expressions.

International Journal of Computer and Information Sciences, 11:179{191, 1982.

[7] L.J. Henschen and S.A. Naqvi. On compiling queries in recursive �rst-order

databases. J.ACM, 31(1):47{85, January 1984.

[8] J.J. King. Quist: A system for semantic query optimization in relational

databases. Proc. 7th International Conference on Very Large Data Bases, pages

510{517, September 1981.

[9] Laks V. S. Lakshmanan and R. Missaoui. On semantic query optimization in de-

ductive databases. In Proc. IEEE International Conference on Data Engineering,

pages 368{375, 1992.

[10] S. Lee and J. Han. Semantic query optimization in resursive databases. In Proc.

IEEE International Conference on Data Engineering, pages 444{451, 1988.

[11] S. Lee, L.J.Henschen, and G.Z. Qadah. Semantic query reformulation in deductive

databases. In Proc. IEEE International Conference on Data Engineering, pages

232{239, Los Amitos, CA, 1991. IEEE Computer Society Press.

[12] A.Y. Levy and Y. Sagiv. Semantic query optimization in datalog programs. In

Proc. PODS, 1995.

[13] Raghu Ramakrishnan, Per Bothner, Devesh Srivastava, and S. Sudarshan.

CORAL { A database programming language. Technical Report TR-CS-90-14,

Dept. of Computing and Information Sciences, Kansas State University, 1990.

Also in NACLP90 Workshop on Deductive Databases, ed Jan Chomicki.

[14] K. Ramamohanarao. An implementation overview of the aditi deductive database

system. In Proc. 3rd International Conference DOOD, Arizona, 1993. (Invited

Talk).

[15] T. Sellis. Global query optimization. Proc. 1986 ACM-SIGMOD International

Conference on Management of Data, May 1986.

[16] S.T. Shenoy and Z.M. Ozsoyoglu. Design and implementation of a semantic query

optimizer. IEEE Transactions on Knowledge and Data Engineering, 1(3):344{361,

September 1989.

14

[17] J. D. Ullman. Principles of Database and Knowledge-Base Systems II. Principles

of Computer Science Series. Computer Science Press, Rockville, Maryland 20850,

1988.

[18] Clement T. Yu and Wei Su. Automatic knowledge acquisition and maintenance

for semantic query optimization. IEEE Transactions on Knowledge and Data

Engineering, 1(3):362{375, September 1989.

15

