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The transient forces produced by large-amplitude transverse gust encounters

and plunge maneuvers were studied experimentally in a water-filled towing tank.

Forces were measured as a flat plate wing with an aspect ratio of four was towed

through a fluid gust and as the same wing performed plunge maneuvers which

matched the shape of the gust velocity profile. The transient velocity in each case

conformed to the sine-squared profile, and the peak transient velocities were of the

same order of magnitude as the steady towing velocities. In most cases, the wing

pitch angle was high enough to cause constant flow separation. Even at low wing

pitch angles, the increase in flow incidence angle by the transverse gust or plunge

velocity was enough to cause flow separation. Transient force magnitudes were shown

to increase with increasing stream-normal velocity for both the gust encounters

and plunge maneuvers. Transient forces varied with increasing wing pitch angle

during gust encounters but not during plunge maneuvers. Force histories in each

case were compared to predictions made by existing small-perturbation force models,



and adaptations were made to those models based on physical interpretation of the

observed characteristics. Measured forces in both the gust encounters and the plunge

maneuvers were found to correspond more closely to predictions made based on

attached flow than on separated flow, which supports the suggestion that the presence

of a leading edge vortex significantly augments the transient lift. Additionally, a large

trailing edge vortex forms at the end of the gust encounter which temporarily reduces

the force production below the steady-state values. This was not observed in the

plunge maneuver force histories, which were much closer to quasi-steady than were

the gust encounter force histories. This analysis contributes to the understanding of

unsteady force production in large-amplitude events, and in particular in conditions

with separated flow, the behaviors of which are not adequately captured by existing

small-perturbation models.
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Chapter 1: Introduction

Unsteady aerodynamic force production is a topic of interest in many

applications. The proper control of an aircraft (and the comfort of its occupants)

flying through a gusty environment, in which the local flow velocities vary over time

and location, depends on the quantification of the forces produced by the varying

flow conditions [1]. The efficiency of rotors in helicopters and wind turbines are

significantly affected by the unsteady forces related to dynamic stall [2]. Micro air

vehicles (MAVs) are particularly vulnerable to atmospheric gusts due to the relative

scaling of steady and transient velocities. Additionally, flapping wing MAVs rely on

unsteady aerodynamics for lift, thrust, and control and so require unsteady force

quantification in their design [3]. It is these MAV applications in particular which

lead the current work to study force production of large-amplitude unsteady events.

The decreasing size of practically-realizable micro air vehicles has increased

interest in unsteady force models that do not assume small perturbations [3–6].

The primary difficulty of large-amplitude unsteady phenomena is that they cause

flow separation, which greatly increases the complexity of the flow around the wing

and leads to unsteady and non-linear forces. The current work investigates the

aerodynamic force production of large-perturbation, two-dimensional, unsteady flows;
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it is therefore useful to review the particular branch of analytical aerodynamic models

that addresses various forms and degrees of flow unsteadiness.

1.1 Steady aerodynamics

The first quantifications of force created by lifting bodies were for various steady

flow conditions. The assumption that neither the body nor the flow characteristics

were changing in time allowed for the intentional neglect of several complicating

features, such as vorticity in the wake of the wing and the inertial reactive force

caused by accelerations.

1.1.1 Thin-airfoil theory

The simplest of lifting bodies is the idealized thin, flat, infinite span (for an

effectively two-dimensional problem) plate. If the flow is further assumed to be

incompressible and inviscid, then the complex effects of flow separation, often called

stall, can be removed. By analytically finding the vorticity distribution over the

wing that is required to prevent flow passing through the wing, the classical solution

of thin-airfoil lift coefficient can be found:

CL ≈ 2π sin(α) (1.1)

Where α is the wing pitch angle above horizontal. This solution requires that the

flow is steady, inviscid, and incompressible, and that the wing is thin, flat, and very

nearly aligned with the flow (α ≈ 0). The first restriction that can be loosened is
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the requirement that the wing be flat. The linearizing small-angle approximation

which is commonly applied to the wing chord line (through α) can also be applied

to the wing camber line to extend this solution to wings that are not exactly (but

still very nearly) flat. By again finding the vorticity distribution which enforces no

flow through the surface of the wing, it is found that minor camber of a thin airfoil

causes a shift in the zero-lift angle of attack but does not change the slope of the lift

coefficient with respect to that angle [7].

1.1.2 Joukowsky airfoils

The idealized thin wings of the previous section can be made more physically

representative by incorporating structural thickness. Conformal mapping is used to

transform the shapes of aerodynamic bodies into shapes more readily formulated

by potential flow elements. The Joukowsky (or Zhukovsky) transform is a common

mapping between a circle and an airfoil shape. The surface of the airfoil is represented

by a path in the coordinates z = x + iy, which is transformed to a circle in the

corresponding coordinates ζ = χ+ iη by the equation:

z = ζ +
1

ζ
(1.2)

A circle of radius a in the ζ-plane which is centered on the origin corresponds to a flat

plate of chord 4a in the z-plane. Moving the circle center off of the origin introduces

thickness and camber to the z-plane lifting body. In this way, the relatively simple

potential flow solutions for a circle can be used to investigate the aerodynamic

3
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Figure 1.1: Various Joukowsky airfoils and the corresponding ζ-plane circles.

qualities of physically-realizable airfoil shapes.

It is worth emphasizing that the Joukowsky transform can create many z-plane

shapes which are not airfoils; aerodynamic application of this equation requires

that the ζ-plane circle intersect the point ζ = 1. Several Joukowsky airfoils are

demonstrated in figure 1.1.

1.1.3 Empirical extensions

A common compromise in the quantification of aerodynamic force production

is the application of empirical data as an adaptation or replacement for an analytical

model. Thin-airfoil theory cannot address stalled flow over a wing, but its general form

of lift as a dimensionless coefficient multiplied by dynamic pressure can be extended

to a semi-empirical model by substituting lift coefficient values from observations.
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This system of measurement and careful interpolation allows for the quantification

of forces during stall and for bodies of arbitrary shapes. Anderson [7] compares

the simplified analytical solution for drag on a cylinder (potential flow predicts no

pressure drag in steady flow — d’Alembert’s paradox) to the measured results for

a range of Reynolds numbers. The proper scaling of these empirical coefficients is

perhaps the best method of predicting drag on cylinders.

1.1.4 Quasi-steady analysis

One step towards an unsteady flow solution is quasi-steady analysis. In this

method, the flow and body conditions are allowed to change over time, but the

force production at any time is calculated using steady-flow formulas based on the

characteristics at that particular moment. Any changes in the flow are assumed to

immediately develop to the steady-state condition, so no time delay is present in the

force production and the events in the flow history are not accounted for.

Quasi-steady analysis introduces the ability to capture inertial force production;

the instantaneous flow characteristics can include an acceleration, which accounts

for forces not present in steady conditions. For a thin, flat plate [2, 8]:

F⊥ = −1

4
πρc2lV̇⊥ (1.3)

Where F⊥ is the force normal to the wing, V̇⊥ is the wing-normal component of the

acceleration of the wing, c is the wing chord, and l is the wing span. This inertial

force is not due to the mass of the wing — that force is separate and is removed from
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aerodynamic force considerations — it is due to the acceleration of local fluid, which

increases the apparent inertia of the wing [9]. This is called the “apparent-mass”

or “added-mass” force. Only chord-normal acceleration causes this effect — any

chord-wise component of acceleration causes no added-mass force, and no added-mass

force is oriented chord-wise. For a wing which can accelerate horizontally or vertically

(surging and plunging):

Cl, inertial =
F⊥

1
2
ρU2
∞cl

cos(α) (1.4)

V̇⊥ = U̇ sin(α)− V̇ cos(α) (1.5)

Equation 1.3 can be expanded and normalized by equations 1.4 and 1.5:

∴ Cl, inertial =
πc

2U2
∞

(
U̇ sin(α)− V̇ cos(α)

)
cos(α) (1.6)

This expresses the inertial contribution to lift, Cl, inertial, as a linear scaling of the

chord-normal projections of the surge and plunge accelerations, U̇ sin(α)− V̇ cos(α).

Since the added-mass force is chord-normal, the lift component requires an additional

cos(α) projection.

1.2 Unsteady solutions

In practice, changes in the flow take time to develop into a new steady state.

By Kelvin’s Circulation Theorem, any change in circulation around the wing must

be matched by opposing circulation shed into the wake [7]. The presence of this

vorticity in the wake affects the forces on the wing. As the wake departs farther from
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the wing, this effect is decreased and eventually becomes negligible. This gradual

change in force production in response to instantaneous changes in flow conditions is

the core concept for modeling of unsteady aerodynamic force production.

1.2.1 Impulse response

A foundational work on unsteady force production is the analytical solution

to small-perturbation impulsive (as in a Heaviside “step” function) lift changes by

Wagner [10]1. Wagner’s solution describes the temporary lift deficiency caused by

vorticity introduced in the wake of the wing by the change in circulation. The

influence of the wake vorticity decreases as the wake is left behind the translating

wing, and so the lift asymptotically approaches the steady-state condition. As in

steady thin-airfoil theory, Wagner’s solution requires the assumption that the wing

and wake are very nearly aligned with the flow. It also retains the assumptions of

inviscid, incompressible, and two-dimensional flow.

Wagner’s function is typically represented by φ(s), where s = 2tU∞
c

is a

normalized time, equivalent to twice the number of chord-lengths traveled by the

wing. The function cannot be written in a regular algebraic form, so it is either

tabulated or approximated by the following equation [8]:

φ(s) ≈ 1− 0.165e−0.0455s − 0.35e−0.3s (1.7)

Wagner’s function is plotted in figure 1.2.

1Wagner’s and Küssner’s original papers are in German; their results are described in English in
a later aeroelasticity textbook by Blisplinghoff et al. [8].
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Figure 1.2: Wagner’s and Küssner’s unsteady lift solutions.

Jones [11] extended Wagner’s work by adding tip vortex effects. Jones’s

solution varies with respect to wing aspect ratio, and suggests that the transient

force production is less affected by the tip vortices than is the steady-state lift.

1.2.2 Sharp-edged gust

Küssner [12] produced an analytical solution for the unsteady lift on a wing

entering a sharp-edged transverse gust. While Wagner’s “gust” reaches the whole

wing simultaneously, Küssner’s gust progresses from the leading edge to trailing edge

of the wing.

As with previous results, Küssner’s solution relied on the assumption that the

gust velocity was much smaller than the steady forward velocity of the wing so that

the effect of the gust was only a small perturbation to the steady conditions. It was
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also assumed that the flow is always attached to the suction surface of the wing,

which is mainly dependent on the same small perturbation limit. Küssner’s function

is (as is Wagner’s) an equation that describes the temporary deficiency in lift caused

by the circulation in the wake of the wing. Küssner’s function is typically represented

by ψ(s), which can be approximated by [8]:

ψ(s) ≈ 1− 0.500e−0.130s − 0.500e−s (1.8)

Küssner’s function is plotted in figure 1.2.

As an extension of Küssner’s solution, Miles [13] solved for the forces caused

by a sharp-edged gust that is traveling through the fluid (in addition to the wing

moving through the fluid). Miles’s function falls somewhere between the solutions

of Wagner and Küssner (see figure 1.2), depending on a velocity factor describing

the rate of travel of the gust relative to the wing, λ−1 = 1− Ugust

Uwing
. When the gust

is stationary, λ = 1 and the solution converges to Küssner’s function. When the

gust moves so rapidly that it appears nearly instantaneously, λ→ 0 and the solution

converges instead to Wagner’s function.

1.2.3 Harmonically oscillating wings

Theodorsen [14] developed a solution for the unsteady lift produced by a wing

which harmonically oscillates. Theodorsen’s work allowed for wing plunge and pitch

and for the deflection of a trailing edge flap. Theodorsen’s solution divides the

force production into circulatory and non-circulatory (intertial) and expresses the
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unsteady circulatory lift as an amplitude and phase variation of the quasi-steady

circulatory lift. The complex “Theodorsen function,” C(k), presents the gain and

lag of unsteady force production as a function of reduced frequency, k = fc
2U∞

.

As with preceding work, Theodorsen’s analysis required that the flow was

two-dimensional, inviscid, incompressible, and that the motions of the wing were only

small perturbations compared to the mean flow. Garrick [15] extended Theodorsen’s

work by solving for the thrust generated by the same conditions. Isaacs [16] and

Greenberg [17] each extended Theodorsen’s work to include oscillating longitudinal

velocity.

1.2.4 Arbitrary wing motion

von Kármán and Sears [18] produced an analytical solution for the unsteady

lift caused by arbitrary small-perturbation motion of a two-dimensional thin wing

in a spatially varying gust. The quantification of force production was approached

differently than in previous works; the force production was related to the growth and

movement of vorticity rather than directly to surface pressure. This work combined

and extended the solutions of Wagner, Küssner, and Theodorsen, and emphasized

the physical significance of the resulting equation. The lift production was separated

into three physically-distinct terms (for each of these terms, the wing chord is 2 units

long and the lift is expressed per unit span):

Quasi-steady lift: The lift corresponding to the enforcement of the Kutta condition.

This quasi-steady thin airfoil theory term is unaffected by the vorticity in the wake
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of the wing.

L0 = ρUΓ0 (1.9)

where ρ is the fluid density, U is the horizontal velocity of the wing, and Γ0 is the

bound circulation required to achieve tangential velocity at the trailing edge.

Inertial lift: The lift produced as an inertial response to the acceleration of the

surrounding fluid. This is called “apparent mass” or “added mass” and is presented

as:

L1 = ρ
d

dt

∫ 1

−1
γ0(x)xdx (1.10)

where x is the spatial coordinate along the chord of the wing and γ(x) is the chordwise

distribution of vorticity on the wing. As is typical, x is measured in semi-chords

away from the mid-chord of the wing.

Unsteady lift: The vorticity in the wake of the wing influences the vorticity

distribution on the wing and so alters the lift. This is presented as:

L2 = ρU

∫ ∞
1

γ(ξ)√
ξ2 − 1

dξ (1.11)

where ξ is the spatial coordinate extending horizontally into the wake and γ(ξ) is

the vorticity distribution in the wake. ξ is also measured as semi-chords behind

mid-chord.

This analytical solution is limited to conditions in which the flow around the

airfoil is two-dimensional, the vertical wing movement and fluid velocity is small
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enough that the wing and wake can be considered to lie on the x-axis everywhere,

the flow remains attached to the wing, and the Kutta condition is enforced. In

addition to these limitations, the model by von Kármán and Sears requires knowledge

of the vorticity distribution over the wing and in the wake, or some quantified

relation between wing kinematics and that vorticity. von Kármán and Sears used

this to recreate the solutions of Wagner, Küssner, and Theodorsen, for which the

vorticity distributions were solvable; such solutions are not available for separated

flow phenomena. It is the physical interpretations of lift production that will be

useful in the current work rather than the vorticity-impulse equations themselves.

Unsteady force production in cases of separated flow has been addressed more

recently by applying potential flow analysis to shear layers shed from both the

leading and trailing edges. A blade-element model was developed for insect-like

wings in flapping hover by Ansari et al. [4, 19, 20]. A similar model was developed

by Eldredge and Darakananda [21, 22] which applies to general wing motion but

requires empirical tuning. Each of these models lacks a closed-form solution, and

was designed to be implemented by numerical integration.

1.2.5 Indicial theory

Wagner’s function and Küssner’s function represent indicial responses, which

can be used to find the response of the system to arbitrary forcing using Duhamel’s

integral [23]. This technique approximates arbitrary forcing (wing kinematics or gust

velocity distributions) as a series of independent step changes. The resulting lift
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from each step gust can be superimposed as long as the system response is a linear

function of the forcing; the small perturbation and small angle assumptions used in

Wagner’s and Küssner’s theories have already linearized the aerodynamic response.

When taken to the limit of infinite step changes of infinitesimal magnitude,

this approximation becomes the integral of the indicial response and the rate of

change of the forcing conditions. Using Küssner’s function as an example, the lift

coefficient, Cl, caused by a wing translating at constant velocity, U∞, through an

arbitrary gust field, wg(x), using convective time, s, as above and σ as a bound

variable for integrating to s, is [2]:

Cl(t) =
2π

U∞

(
wg(0)ψ(s) +

∫ s

0

dwg(σ)

dσ
ψ(s− σ) dσ

)
(1.12)

Here 2π is the normalized lift curve slope, wg(σ)

U∞
is the linearized flow incidence angle,

and ψ(s) is Küssner’s function. The first term captures the initial condition, and the

second term integrates the cumulative effects of flow velocity changes for 0 ≤ σ ≤ s.

1.3 Empirical adaptation

More recently, contributors to AVT-202 [24–27] developed a simplified model

for force production by flat plate wings surging from rest at a fixed, high angle of

attack. By significantly limiting the allowable wing kinematics, they were able to

substitute empirical trends for some of the more complex components of analytical

models like that by von Kármán and Sears.
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Pitt Ford and Babinsky [28] suggested that flow separation for a thin flat plate

at high incidence results in negligible bound circulation. Instead of creating attached

flow with vorticity contained in a boundary layer, the sharp edges of the plate cause

flow separation which causes the vorticity to collect in leading and trailing edge

vortices. In Babinsky et al. [26], the observed influence of leading edge separation on

transient lift production led the new model to replace the “bound” circulation (from

the Kutta condition in attached flow) with a modeled leading edge vortex. The wake

is further simplified into two point vortices of strength Γ instead of wake sheets with

vorticity distributions. This eliminates the need to solve integrals when determining

the force using the vorticity impulse method. To better represent the observed wake

behavior with only two vortices, these vortices convect relative to the background

fluid — unlike the stationary wake of von Kármán and Sears. The influence of these

vortices on the unsteady lift is:

Cl, circ. = − 2

U2
∞c

[
(uLEV − uTEV) Γ + (xLEV − xTEV) Γ̇

]
(1.13)

The terms inside the brackets are vortex strength, Γ, scaled by the vortices’ relative

velocity, (uLEV − uTEV), and vortex growth, Γ̇, scaled by the vortices’ separation

distance, (xLEV − xTEV).

Estimates of the vortex sizes and trajectories, which were needed to calculate

lift production, were made based on experiments [25]. The relative vortex velocity

14



was approximated as half of the free-stream velocity:

uLEV − uTEV ≈
U∞
2

(1.14)

This approximation only holds in the immediate transient for a surging wing; the

relative vortex velocity will approach zero as each vortex becomes stationary relative

to the background flow. The horizontal separation of the vortices was approximated

as the horizontal projection of the wing chord:

xLEV − xTEV ≈ c cos(α) (1.15)

This separation is constant, which conflicts with the inclusion of non-zero relative

vortex velocity but does not significantly affect the results [26]. The vortex circulation

is then approximated by a scaled modification of Wagner’s function, φ(s). Typically,

a varying velocity profile would be incorporated using indicial theory (see section

1.2.5). This was rejected in favor of a simpler approximation; the gradual nature of

the surging acceleration is reconciled with the impulsive start of Wagner’s function

by scaling the result by the ratio of instantaneous to final velocity:

Γ ≈ Γ∞
U(t)

U∞
φ(t) (1.16)

The steady-state value of circulation was approximated using linearized thin-airfoil
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theory:

ρU∞Γ∞ ≈ (2πα)
1

2
ρU2
∞c (1.17)

∴ Γ∞ ≈ παcU∞ (1.18)

The non-circulatory added-mass lift was approximated using potential flow for an

accelerating flat plate, equation 1.6. All of these approximations together form a

simplified quasi-steady model for lift produced by a surging-from-rest flat plate:

Cl =
−2παU(t)

U2
∞

[
U∞
2
φ(t) + c cos(α) φ̇(t)

]
+

πc

2U2
∞
U̇ sin(α) cos(α) (1.19)

The left half of equation 1.19 represents the circulatory force production by vorticity

in the wake of the wing. The right half of the equation represents the non-circulatory

force production by the acceleration of the wing. The simplifications made in the

derivation of this model have made it easy to implement, but have restricted its

applicability to surging-from-rest flat plates at high wing pitch angles.

1.4 Experiments

Unsteady aerodynamic force production from translational acceleration (surge

and pitch) has also been investigated experimentally. Force measurements in cases

with flow separation are particularly interesting, as those results have allowed the

direct comparison to results of predictive models. Measurements (and qualitative

visualizations) of the associated flow velocities have allowed the testing of the validity

of each model’s assumptions, such as verifying attached or separated flow. Existing

16



literature has measured forces and tested models for a range of conditions, including

harmonic oscillations in surge, plunge, and pitch, and surge-from-rest maneuvers.

The current work adds to this by investigating non-oscillating transverse events for

both moving-fluid and moving-wing cases.

1.4.1 Streamwise perturbations

Dickinson and Götz [29] measured unsteady force production for rapid surge-

from-rest maneuvers. Inertial force production was intentionally neglected, but it

was concluded that even post-acceleration the transient lift and drag were higher

than steady-state. Both the transient and steady-state forces were predominantly

chord-normal. Mancini et al. [30] further studied the force production and vortex

characteristics for a surging flat plate during a variety of start-from-rest maneuvers.

The unsteady force production was compared to the sum of two terms, added-

mass inertial forces and a quasi-steady simplification of Wagner’s function. It was

concluded that the leading edge vortex caused the observed transient lift to exceed

the prediction made by the two quasi-steady terms. It was also noted for high-

incidence cases that the recovery time was greater than expected; the unsteady

forces did not return to steady-state values within the measured duration of 14

chord-lengths traveled. Stevens et al. [25] continued to study surging flat plates.

Results were compared from different facilities (and computational methods) to

confirm the presence and influence of shed vortices at high incidence. The vortex

dynamics observed in this work allowed for the simplifications in the semi-empirical
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model by Babinsky et al. [26].

Much of the experimental literature on gust encounters focuses on longitudinal

gusts, which can be created by varying wind tunnel speed [31–33]. The alignment

of the steady and transient velocities in the longitudinal cases makes them quasi-

one-dimensional, and so they are experimentally and analytically simpler than

the transverse cases. Granlund et al. [33] presented a comparison of oscillating

longitudinal gust experiments using two facilities. One facility was fitted with

rotating vanes in the tunnel to create an oscillating free stream velocity around a

stationary model. The other facility oscillated the model within a steady free stream

flow. It was concluded in that work that the analytical estimation of added-mass

forces was accurate and that subtracting the inertial forces in the moving model case

allowed for the direct comparison of moving-model and moving-fluid results.

1.4.2 Transverse perturbations

More literature exists for transverse unsteadiness caused by plunge maneuvers

rather than fluid gusts. This is particularly common in the context of flapping-wing

MAVs, and so most of the work on this subject has focused on frequency-based

models for wings which harmonically oscillate in plunge (and often also in pitch).

Unsteady force measurements were shown to exceed quasi-steady predictions [34, 35].

The measured forces matched predictions by Theodorsen’s model (at least as closely

as did predictions by quasi-steady or computational models) despite flow separation

[36–38]. Flow visualizations and flow velocity measurements indicated that the
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unsteady force was strongly affected by the wing-vortex interactions [39–41].

Non-harmonic plunge maneuvers are not covered so thoroughly. Kriegseis et al.

[42] studied both surging and plunging maneuvers in an investigation of the influence

of flow history. The transient velocities in each case were ramp-up maneuvers, which

are commonly studied for surge but not for plunge. Each maneuver was designed

to reach the same steady-state condition from different initial conditions, and it

was concluded that the pre-maneuver presence of a developed boundary layer in the

plunge case had little effect on the unsteady force production.

Transverse gusts are more difficult to experimentally recreate than longitudinal

gusts, and are less commonly addressed in the literature. Kuethe [43, 44] created a

gust encounter by moving a wing over a vertically-oriented open-section wind tunnel.

The test article was mounted at the end of a whirling arm as it would have been for

steady aerodynamics tests. At one location around the circular path of the wing, the

wing passed over a gust generator which allowed for the measurement of transient

forces. The lift produced during the gust encounter was found to be in agreement

with predictions made by the theory of von Kármán and Sears [18]. Holmes [45]

created an extraordinary wind tunnel with cam-actuated, sinusoidally-waving walls.

The phasing of the cams determined the shape of the wind tunnel interior which

could be configured to create an oscillating longitudinal or transverse gust at the

wing. It was concluded that analytical models were valid for low-amplitude gusts, but

that flow separation at higher amplitudes caused significant disagreement between

predictions and observations. The highest ratio of the gust velocity to the steady

velocity, the “gust ratio,” among these tests was G = 0.24.
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Wong et al. [46] compared experimental moving model results and

computational moving fluid results for harmonic transverse gusts to investigate

their possible equivalence. Unlike the longitudinal case by Granlund et al. [33], Wong

et al. concluded that inertial effects were not the only difference between the two

arrangements. This was highlighted by observing that the forces in each case were

different even at the moment that each transverse acceleration was zero.

1.5 Present work

Preceding work has incrementally advanced the understanding of unsteady

aerodynamic force production in various related aspects, but none have yet thoroughly

addressed the force production by non-harmonic transverse unsteady events which

are too large to be simplified by small-perturbation assumptions. This document

describes an experimental investigation of transverse gusts and plunging maneuvers

which works towards a closed-form analytical model of force production with flow

separation. This is similar to the approach of Babinsky et al. [26]; the physical

understanding granted by the analytical solution of von Kármán and Sears will be

adapted based on empirical findings so that the resulting model better represents

the high-amplitude unsteadiness of fluid gusts and plunging wing maneuvers for

limited kinematics. Some time will also be taken to expand on the moving-model to

moving-fluid comparisons of Granlund et al. [33] and Wong et al. [46].

Chapter 2 describes the experimental facility and methods which enabled this

work. The test apparatus, tools for data collection, and methods of data processing
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are presented to aid in understanding the following results. Chapter 3 presents and

discusses the unsteady force production for transverse gust encounters. Chapter

4 presents the measured forces from various plunging wing maneuvers designed

to be geometrically similar to the gust encounters. It also directly compares the

force production of the moving-model and moving-fluid cases. Finally, chapter 5

summarizes the present work and its significant conclusions, and presents several

suggestions for future work.
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Chapter 2: Methods

The current work is primarily experimental; its foundation is the measurement

of forces and fluid velocities resulting from deliberately controlled gust encounters

and plunging maneuvers of a flat plate wing. This chapter discusses the towing tank

facility in which these experiments took place, the gust generator added to that tank

for these experiments, the flat plate wing used as the test article, the techniques

used for collecting the data, the parameters defining the tested conditions, and some

general treatment of the collected data.

2.1 Towing tank

Experiments were conducted in the University of Maryland’s water-filled towing

tank, shown in figure 2.1. The tank is 7 m long, 1.5 m wide, and the water in it is

1 m deep. Using water as the working fluid instead of air allowed for higher forces at

the achievable towing speeds and greatly improved the ability to conduct particle

imaging velocimetry (PIV) on highly unsteady and separated flows.

The tank had a steel frame holding glass walls and a glass floor which allowed

optical access for PIV. The frame also carried a four degree-of-freedom motion control

system for maneuvering the test article. The motors were controlled by PID feedback
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Figure 2.1: The experimental facility, a water tow tank with four degree-of-
freedom motion control.

based on encoder position readings. Three degrees of freedom were used in the

current experiments: streamwise towing and two parallel vertical control rods. The

parallel inputs were converted by a slide-crank mechanism to stream-normal motion

and angle of attack.

2.2 Test article

The test article was the simplest form of lifting surface, a flat plate wing. In

these experiments the flat plate had a 5 cm chord, 20 cm span, and 1.6 mm thickness.

This makes the aspect ratio 4 and the thickness-to-chord-ratio 3%. This wing was

designed to match that of previous experiments by AVT-149 [6].

Two wings of this design were created using different materials. The first of
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Figure 2.2: CAD rendering of the glass flat plate wing attached to the force
balance and the maneuvering apparatus.

these was made of brass. This metal wing was machined using a computer numerical

control (CNC) mill to ensure accurate sizing and edge characteristics. Brass was

selected because it is more corrosion resistant in water than aluminum and lighter

than stainless steel. The second wing was made of glass to allow for PIV illumination

without a shadowed region. Glass was selected over transparent plastics for high

bending stiffness. The manufacturing process for the glass wing did not allow the

same precision (for square edges in particular), but no difference in results was

observed between the two wings. The wing and the apparatus for maneuvering it

are shown in figures 2.2 and 2.3.

The static force coefficients of the flat plate wing are shown in figure 2.4. The
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Figure 2.3: The brass flat plate wing and the maneuvering apparatus
prepared for installation. Black paint reduces PIV laser reflections.
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Figure 2.4: Static force coefficients measured for the flat plate wing at
Re = 20,000.

forces are predominantly plate-normal, although a small plate-tangent force is present

even at α = 0°. The peak lift coefficient is CL = 0.95, produced at α = 23°. The

plate-normal force coefficient has a local maximum at α = 25° of CN = 1.1, and a

peak value of CN = 1.39 at α = 90°. This is also the peak drag value and angle.

These measurements agree with those published by Ortiz et al. [47] if the difference

in wing aspect ratio is properly accounted for.
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Figure 2.5: The plumbing and nozzle array of the gust generation system.
The arrows indicate the flow direction.

2.3 Gust generator

The fluid gust created for these experiments was a vertically-oriented,

approximately planar water jet. A pool circulation pump moved 60 gallons of

water per minute through a recirculating system with an outlet manifold made of 30

cylindrical nozzles, shown in figure 2.5. The nozzles had 1
4

in. inner diameter and

were spaced 1
2

in. center-to-center. The conical jets that form from each nozzle merge

into one planar jet above the nozzle array. This jet passes through a size 28 steel

mesh (0.7 mm wire spacing, 52% open area) which was used as a low-profile flow
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Figure 2.6: Streamwise gust velocity distribution extracted from PIV with
and without the flow-straightening screen. The shaded region around each
curve shows the standard deviation of the velocity over time. The gust

profile was approximated as V (x) = 0.34 sin
(
πx
0.16

)2
for 0 ≤ x ≤ 0.16.

straightener to remove the streamwise waving of the planar jet. Figure 2.6 shows

the velocity profile of the gust with and without the screen. The screen reduces the

variations over time (the shaded region in figure 2.6 shows one standard deviation

in gust velocity measurements) but also reduces the time-averaged peak velocity of

the gust. The jet continues vertically through the water tank to inlet pipes at the

top surface, which draw in the water for the pump. This forms a closed loop system

with a “free jet” (conceptually similar to Kuethe’s design in section 1.4). Away from

the spanwise ends of the nozzle array, the gust can be considered approximately

two-dimensional and can be characterized by a streamwise distribution of transverse

velocity. The gust system manifold is 37 cm wide, which covers 1.85 times the

wingspan. This leaves 1.7 chord-lengths between each wingtip and the spanwise ends

of the manifold, so the wing is within the two-dimensional flow region of the gust.
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The uniformity of the spanwise velocity distribution was confirmed qualitatively with

dye flow visualization. At the height above the nozzles used for all tests, 15 cm, this

gust formed a canonical sine-squared velocity profile with a span of 16 cm and a peak

velocity of 0.34 m
s
. This best-fit profile can be compared to the mean measured gust

velocity profile in figure 2.6.

2.4 Gust encounter kinematics and parameter matrix

Force data was collected as the flat plate wing was towed at constant velocity

and constant pitch angle through the transverse gust. The size of the tow tank

limits the total towing distance to approximately 6 m. Figure 2.7 shows the tested

kinematics, which in detail were: 6 chord-lengths of constant acceleration from rest

to full towing speed, 25.9 chord-lengths of constant velocity before reaching the

gust, 3.2 chord-lengths in the gust, 60.9 chord-lengths of constant velocity after

the gust (90 total chord-lengths, 4.5 m, of constant velocity towing), and finally 6

chord-lengths of constant acceleration to return to rest.

Those kinematics were repeated for several values of towing velocity and angle

of attack. The tested gust encounter cases were limited by the force measurement

sensitivity for low speeds and by the motor capabilities for high speeds. Tests were

conducted at freestream Reynolds numbers of Re ≡ U∞c
ν

= 10,000, 20,000, and

40,000. These three cases can be described by their corresponding wing velocities of

U∞ = 0.2, 0.4, and 0.8 m
s
, or by the associated peak gust ratios of G = 1.68, 0.84,

and 0.42. The pitch angle of the wing was also varied from −4° to 45°. The primary
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Figure 2.7: The horizontal towing velocity of the wing and the vertical gust
velocity at the leading edge of the wing over the course of a Re = 20,000
case.

cases tested at each Reynolds number were 5°, 10°, 15°, 20°, and 45°; these cases are

emphasized with bold pitch angles in table 2.1, and were repeated between 4 and

10 times. A distribution of additional low angle cases were tested; these cases were

measured only once or twice. 140 total measurements were made between the 30

cases.

The irregular cases in the test matrix were caused by hardware limitations

of the motion control system. The system was able to set a specified wing pitch

angle by feedback control, but this could allow the wing to change angle of attack

briefly during the gust encounter (as it was perturbed by the gust forcing). This was

avoided by increasing the input threshold for motion of the slide-crank mechanism

which was controlled by torque on the pivoting and sliding pins. This also worked

against the motion control system, which occasionally became fixed at an angle other
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Table 2.1: Cases tested transverse gust encounters characterized by gust
ratio and pitch angle.

Reynolds Gust ratio, Pitch angles,
number G α (o)

10,000 1.68 2, 3, 4, 5, 6, 7, 10, 15, 20, 45

20,000 0.84 2, 4, 5, 6, 10, 15, 20, 45

40,000 0.42 -4, -1, 0, 1, 3, 5, 6, 7, 10, 15, 20, 45

than the prescribed angle. Instead of discarding the collected force data in those

cases, the achieved angles were recorded and new repetitions were measured until

the prescribed angles were accurately reached for enough measurements. This issue

was resolved by further PID tuning before the more recent tests described below.

2.5 Plunge maneuver kinematics and parameter matrix

The maneuver for all cases in this study was the sine-squared gust, also known

as the one-minus-cosine gust due to the identity 2 sin(θ)2 = 1− cos(2θ). This profile

was chosen to match the canonical approximation of fluid gust encounters [1] to

facilitate comparison of this data to transverse gust encounter data. The plunge

velocity of the wing during the maneuver was:

V (t) = Vp sin

(
πt

T

)2

for 0 ≤ t ≤ T (2.1)

where Vp is the peak plunge velocity and T is the maneuver duration. This is

shown in figure 2.8. By integration, the vertical distance traveled during the gust

is h = 1
2
VpT . The wing traveled at constant horizontal velocity, U∞, therefore
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Figure 2.8: Plunge velocity profile for h
w

= 1.

the horizontal distance covered during the gust was w = U∞T . The duration and

chord-normalized size of the maneuver (T , w
c
, and h

c
) are the controlled variables for

this experiment.

This study measured forces for 135 different plunge maneuvers, which primarily

varied in height and width traveled by the wing during the maneuver. There were

72 unique combinations of height and width, each ranging from 2.5 cm to 30 cm, or

0.5c to 6c. The path of the wing during three of these plunge maneuvers and the

endpoints of each maneuver are plotted in figure 2.9. The plunge begins at the top

left corner of the plot and ends at the associated endpoint marker for each case.

Two plunge speeds were tested. Each of these 72 maneuver sizes was tested at

a duration set so that the peak total velocity was Umax = 0.75 m
s

by:

T =

√
(2h)2 + (w)2

Umax

(2.2)
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Figure 2.9: Plunge profile for 3 of the 72 maneuver sizes in the test matrix.
The marked grid of points represent the end location of each tested maneuver.

Cases with integer-valued sizes, plotted as circles in figure 2.9, were tested again at

Umax = 0.25 m
s
. Nine of the original cases were repeated at angles of attack above

zero: 10°, 20°, and 45°. The full test matrix is presented in table 2.2.

The Reynolds numbers based on the peak total velocity, Umax, are 37,500 and

12,500. The Reynolds numbers based only on the horizontal velocity, U∞, vary

between 1,038 (w = 1c, h = 6c, Umax = 0.25 m
s
) and 36,895 (w = 5.5c, h = 0.5c,

Umax = 0.75 m
s
).

The positions of the motors were recorded during each test at 32 Hz. Figure

2.10 shows the plunge kinematics as prescribed and performed over three repetitions
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Table 2.2: Experimental test matrix characterized by size and speed of the
plunge maneuver. Colors correspond to cases in figure 2.9

w
c

h
c

Umax

(
m
s

)
α

0.5 0.5, 1.5, 2.5, 3.5, 4.5, 5.5 0.75 0°

1 1, 2, 3, 4, 5, 6 0.25, 0.75 0°

1.5 0.5, 1.5, 2.5, 3.5, 4.5, 5.5 0.75 0°

2 1, 2, 3, 4, 5, 6 0.25, 0.75 0°

2.5 0.5, 1.5, 2.5, 3.5, 4.5, 5.5 0.75 0°

3 1, 2, 3, 4, 5, 6 0.25, 0.75 0°

3.5 0.5, 1.5, 2.5, 3.5, 4.5, 5.5 0.75 0°

4 1, 2, 3, 4, 5, 6 0.25, 0.75 0°

4.5 0.5, 1.5, 2.5, 3.5, 4.5, 5.5 0.75 0°

5 1, 2, 3, 4, 5, 6 0.25, 0.75 0°

5.5 0.5, 1.5, 2.5, 3.5, 4.5, 5.5 0.75 0°

6 1, 2, 3, 4, 5, 6 0.25, 0.75 0°

1 1, 3, 6 0.75 10°, 20°, 45°

3 1, 3, 6 0.75 10°, 20°, 45°

6 1, 3, 6 0.75 10°, 20°, 45°

for one of the most aggressive plunge maneuvers, w = 1c, h = 1c. Minor overshoot

of 0.04 m
s

(6% of the peak velocity) was recorded at the end of the maneuver. The

motors follow the prescribed kinematics even more closely in most cases — the

average overshoot is 0.6% of the plunge velocity.
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Figure 2.10: Plunge motor velocities as prescribed compared to the performed
motor motions over three repetitions of an aggressive plunge maneuver
(w = 1c, h = 1c).

2.6 Force measurements

The forces produced by the gust encounters and plunging maneuvers were

measured using a six degree-of-freedom force and torque balance (ATI Mini-40)

sampled at 1 kHz. The force balance was located between the slide-crank pitch

mechanism and the sting, as is visible in figure 2.2. Internal strain readings were

converted to wing-fixed forces and moments using the manufacturer’s calibration.

Figure 2.11 shows lift coefficient measurements for eight repetitions of an example

gust encounter case. The gust encounter takes place during the shaded portion of

the x -axis.
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Figure 2.11: Lift measurements from individual repetitions, ensemble average,
and post-processing for one gust encounter case. α = 45° and G = 0.84
(Re = 20,000).

The data packets were transmitted from the moving tow tank carriage to the

stationary control computer by a dedicated wireless network. The data transfer took

place real-time and was limited to User Datagram Protocol (UDP) to achieve that

speed. That protocol is simple and efficient, but is unconfirmed, so any individual

data packets which were transmitted incorrectly or incompletely were unrecoverable.

Data was recorded at a high rate to ensure that enough temporal measurement

resolution was achieved even when some data points were lost. If a single run of

data collection (one repetition of one case) lost more than 5% of the data packets, it

was discarded and restarted.

Mechanical vibrations created measurement noise that limited the lowest viable
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Reynolds number. The standard deviation of repeated measurements was 0.1 N,

which corresponds to a measurement uncertainty of ±2% of the mean forces measured

for cases at Re = 40,000, ±7% for cases at Re = 20,000, and ±30% for cases at

Re = 10,000.

The guide rails and magnetic propulsion of the towing carriage were not

perfectly smooth and sometimes introduced substantial transient vibrations to the

measured forces, as is visible in figure 2.11 at t∗ = 16. For all plunge maneuver

force data the starting location of the test is shifted by a random movement of

up to ±100 mm so that the fixed location of the track bumps appear as varying

locations in the experiment. This minimizes the effects of the track unevenness on

the ensemble-averaged data. However, the location of the gust system in the tank

was not variable, so the starting location of the gust encounter tests could not be

varied.

2.6.1 Post-processing

Force measurements for this experiment were repeated and the results were

ensemble-averaged. However, the force data collection device and wing kinematics

control computer operated on separate internal clocks, so the measurements had

to be synchronized to the kinematics timeline before averaging or further analysis

was possible. The kinematics and force measurements were triggered to begin

simultaneously, so each could be simply considered relative to the start time. This

was found to introduce an error of up to 0.1 s, which significantly affected the averaged
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Figure 2.12: Force measurements were aligned to kinematics by correlation
of water pressure and transducer depth.

results. Instead, the measured side-force was cross-correlated with the expected

side-force — based on the transducer’s depth in the water and the total velocity

— to find the best alignment. This alignment can be seen in figure 2.12, which

shows the side-force for one of the plunge maneuver repetitions (for which h = 1

and w = 1). The experimental hardware is symmetric, so the measured side-force

is only affected by the water pressure at the transducer’s measurement face. The

changes in pressure can be approximated as a function of transducer depth and speed,

∆P = ρg∆h + 1
2
ρ (∆Utotal)

2. The initialization of the test article to the starting

position (t < 6 in figure 2.12), the plunge maneuver (t ≈ 17.5), and the return of

the test article to rest (t > 23) each provide significant pressure changes with which

the kinematics and force measurements can be synchronized. In this example, the
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force measurements timing (in blue) began 0.26 seconds after the kinematics timing

began (from which the red line was estimated). This separation was identified by

normalized cross-correlation of these quantities; the appropriately aligned results are

shown in green.

The data alignment process identified the true time-stamp for each measurement

but each repetition had a slightly de-synchronized sample timing, so the ensemble-

averaged data had to be created based on linearly-interpolated points. This was

acceptable because of the high sample rate; the maximum interpolation “distance”

was 0.5 ms and the unsteady events being studied lasted at minimum 8 ms and on

average 500 ms. Measurement points which were lost by the UDP transfer were not

used in the ensemble average; individual data points for which this occurred were

therefore averaged over one or two fewer repetitions than the overall force history.

Measurement noise and mechanical vibrations created visible noise in the

measured force data. For the remainder of this document, presented force data has

been filtered using weighted quadratic local regression (“loess” in Matlab). This

particular filter reduces noise effectively but also preserves the peaks measured

during these unsteady events. Basic low-pass frequency filters were considered as an

alternative, but were found to either have too little effect or to truncate the peak

forces depending on the cut-off frequency. The span of the loess filter was set based

on convective time so that the filter covered t∗ = 2 in the gust encounter cases and

t∗ = 0.2w in the plunge maneuver cases. It can be seen in figure 2.11 that this did

not truncate the peak force or otherwise distort the force history.
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Figure 2.13: Measured lift during a plunge maneuver repeated after draining
the tow tank water and again after removing the test article.

2.6.2 Dynamic calibration

The mass of the wing, sting, and parts of the force balance contribute to the

measured inertial loads during the plunge maneuver cases. To isolate the aerodynamic

contributions to those forces, a dynamic calibration procedure was performed on 13

of the plunge test cases by repeating those measurements in air instead of water,

and then repeating each of those cases again with the wing and sting removed.

By comparing the forces measured under those three conditions, the mass of each

component could be verified and the inertial load of the force transducer itself could

be identified. An example of these force results is shown in figure 2.13.

The mass of the glass wing was 38 g, the brass wing was 126 g, the sting was

39



88 g, and the part of the force balance on the measurement side of the strain gages

was determined to be 120 g. The calibration tests in air do experience added-mass

forces, but they are proportional to the fluid density, and so are only 1.2% of the

force experienced in water. For the remainder of this document, the inertial forces

caused by the mass of the test hardware have been removed from the presented

measurements (this is only relevant in the plunge maneuver cases).

Dynamic calibration is often also used to identify the dynamic response of

the measurement equipment. However, in this experiment the effective frequency

of the plunge maneuver was at most 0.5% of the force balance’s resonant frequency

of 3.2 kHz. Therefore, the harmonic response of the force balance did not affect the

measurements and was not further quantified here.

2.6.3 Lift normalization

In cases of high gust ratio, G, or high plunge aspect ratio, h
w

, the majority of

the total relative fluid velocity mid-event is contributed by the unsteady vertical

velocity component. In these cases the typical force normalization by freestream

dynamic pressure leads to unreasonably high force coefficients. The gust ratios in this

experiment did not reach high enough values to cause difficulty in comparisons, but

several of the plunge cases did. The left axis of figure 2.14 shows lift coefficients for

six plunge maneuvers, but most of the data is indiscernible because of the excessive

magnitude of the normalized lift in the w = 1c, h = 6c case. Because of this, the

measured lift in each plunge case is also presented as normalized by the mean kinetic
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Figure 2.14: Lift normalization by freestream dynamic pressure (left) and by
mean specific kinetic energy (right). The exaggerated magnitude of forces
for the high plunge aspect ratio case on the left diminishes the differences
between the lower aspect ratio cases. The alternate normalization removes
this effect, making all cases visibly comparable.

energy per unit mass during the maneuver [48]. To see the difference, take the typical

definition of lift coefficient,

CL =
L

1
2
U2
∞ρS

, (2.3)

which exaggerates the lift produced by maneuvers with high velocity ratios since

the normalizing factor, U∞, is only a small component of the total velocity. If the

dynamic pressure part of the equation is replaced by a term which incorporates the

unsteady vertical velocity magnitude then the normalizing factor better reflects the
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total velocity of the maneuver. The mean specific kinetic energy is defined as:

K̄E

m
=

1

T

∫ T

0

1

2

(
U2
∞ + V (t)2

)
dt (2.4)

For the sine-squared plunge profile studied here (equation 2.1), the new normalization

of lift coefficient becomes:

Lnorm =
L

1
2

(
U2
∞ + 3

8
V 2
p

)
ρS

(2.5)

∴ Lnorm =
CL

1 + 3
2

(
h
w

)2 (2.6)

This new normalization allows for the direct comparison of the varying plunge

maneuvers, as seen in the right axis of figure 2.14. This scaling reduces the magnitude

of the normalized lift for the most aggressive plunge in the current data (w = 0.5c,

h = 5.5c) by a factor of nearly 200, which greatly improves the quantitative and

visual comparisons of the aggressive and gentle plunging force data. In chapter 4 the

forces will be presented using both normalizations for comparison.

2.7 Flow velocity measurements

Particle imaging velocimetry (PIV) was used to measure the flow around the

wing. A Phantom v641 camera recorded 4 MP images (2560× 1600 pixels) at 1 kHz

as it was towed along with the wing. The water was seeded with hollow glass spheres

of 37µm diameter which were illuminated by a Litron LDY300 pulsed Nd:YLF laser.
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Figure 2.15: Diagram of PIV measurement setup. The camera and laser
optics are suspended from the towing carriage outside of the tank so that
each travels along with the wing.

The beam was spread into a thin sheet by a Powell lens. The measurement plane

was aligned with the towing velocity and the gust velocity, and intersected the wing

one chord-length from the centerline — and, due to the aspect ratio of four, also

one chord-length from the near-camera wing tip. The laser sheet optics were also

towed on the carriage so that the illuminated region traveled with the wing. This

arrangement is shown in figure 2.15. The laser sheet passed through the free water

surface inside of an acrylic carrier block to avoid distortion of the laser sheet by

refraction. The field of view, shown in figure 2.16, was 25× 15 cm. This resulted in a

spatial resolution of 0.1 mm per pixel or 500 pixels per chord-length. The normalized

temporal resolution was 150 images per convective time.

Only one PIV case is discussed in the current work1. This case was recorded

using a towing velocity set equal to the characterized gust velocity, U∞ = 0.34 m
s
.

1During subsequent PIV measurements, it was observed that the generated gust velocity declined
over several days. The water pump system failed and was found to be unrepairable.
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Figure 2.16: The field of view for PIV measurements. In this case, α = 45°.
The wing is centered in the image and is visible by the laser illumination at
its surface (even glass reflects a little of the laser). The force transducer is
hidden behind the black foil disc between the sting and pitch mechanism,
which are visible in the lower right of the image.

The wing was set at α = 45° and was centered in the field of view.

The captured images were analyzed in sequence using DaVis software, which

ran multi-pass cross-correlation to measure the seed particle displacements. The

interrogation regions were 32× 32 pixel windows for the first coarse pass and 16× 16

pixels for the second pass. The second pass used a circular weighting to remove

diagonal bias. Each pass used 50% interrogation region overlap to maximize vector

resolution without overly sacrificing measurement independence. The final vector

spacing was 0.75 mm, or 67 vectors per chord-length. The resulting vector fields were

post-processed using local-median outlier removal (7% of vectors were replaced) and

no smoothing.

The velocity fields were used first as flow visualization to observe the vortex
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dynamics during the transverse gust encounters. Flow vorticity was then calculated

to aid in identifying vortices and to investigate quantitative correlation between

near-wing vorticity and transient force production.

2.8 Chapter summary

A water-filled towing tank was outfitted with a recirculating gust generation

system to experimentally investigate unsteady force production by transverse gust

encounters and plunge maneuvers. Forces were measured using a six degree-of-

freedom force and torque balance and flow velocities were measured using PIV towed

along in the wing reference frame. Gust encounters were recorded for various towing

velocities for which 10,000 ≤ Re ≤ 40,000 and wing pitch angles of −4° ≤ α ≤ 45°.

Forces and flow velocities from gust encounters are presented in chapter 3. Plunge

maneuvers which followed the canonical sine-squared gust velocity profile were also

investigated. Plunge maneuvers were varied in the distance traveled in the streamwise

and stream-normal directions during the maneuver, the duration of the maneuver,

and wing pitch angles between 0° ≤ α ≤ 45°. Freestream Reynolds numbers for

plunge maneuvers were 1,038 ≤ Re ≤ 37,500. Forces from plunge maneuvers are

presented in chapter 4.
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Chapter 3: Force production in transverse gust encounters

This chapter will present the force and flow measurements made during sine-

squared profile transverse gust encounters of a flat plate wing. These observations

aid in identifying and quantifying mechanisms of unsteady aerodynamic force

production. Transverse gust encounters are investigated for gust velocity ratios

between G = Vg
U∞

= 0.42 and 1.86, and for wing pitch angles between α = −4° and

45°. The details of the tested parameter space are presented in section 2.4. The

analysis begins with a qualitative description of the recorded force histories and a

connection between those forces and the flow structures observed in the measured

velocity fields. Several force prediction models are compared to the measured force

histories. Force predictions made by these models are further compared to measured

forces by extracting peak forces from each gust encounter as characteristic values.

3.1 Gust encounter force history features

The effects of the gust encounter on the force coefficients of the flat plate wing

are visible in figure 3.1. The x -axis of this figure is convective time, t∗ = tU∞
c

, the

number of chord-lengths traveled by the wing since its leading edge entered the gust.

In the case displayed in figure 3.1, the angle of attack is 45° and the gust ratio is
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Figure 3.1: Force coefficient history for gust encounter of flat plate at 45°
and a gust velocity ratio of 0.84. The wing and gust overlap during the
shaded portion of the x -axis; the leading edge of the wing enters the gust at
the left edge of this region, t∗ = 0, and the trailing edge of the wing exits
the gust at the right edge of the region, in this case t∗ = 3.88. The forces
are oriented and normalized relative to the towing velocity of the wing. The
circles are for reference in figure 3.2.

0.84. The forces are normalized by the towing dynamic pressure. The lift and drag

decomposition is performed relative to the constant horizontal towing velocity. There

are significant plate-normal forces, but the tangential forces are nearly constantly

zero as is expected for this thin, flat wing at the tested Reynolds numbers. Because

the wing is thin and flat, the forces at the narrow edges can be neglected. This

means that the forces are approximated as acting only on the top and bottom wing

surfaces, so the pressure forces on the wing are entirely plate-normal and skin-friction

forces are entirely plate-tangent. The magnitude of the measured plate-normal forces
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as compared to the plate-tangent forces indicates that pressure is the dominant

mechanism of force production here rather than skin friction.

As the wing enters the gust, the total local velocity increases and the relative

angle of incidence between the wing and the total fluid velocity increases. Both

of these effects tend to increase the force production on the flat plate (until the

incidence angle increases beyond 90°). In the example in figure 3.1, the normal-force

coefficient increases from 1.2 before the gust is reached to a peak of 2.2 during the

gust encounter. The relative increase in peak force production, 83%, was slightly

greater than the relative increase in peak dynamic pressure, 71%.

As the wing exits the gust, the force production drops below the steady value

momentarily. This event is not adequately explained by the variations of total

velocity and incidence angle, each of which return to the steady towing values

without overshoot. The local minimum in forces observed here is the first clear

indication that the force production by this gust is significantly affected by flow

unsteadiness.

After the wing exits the gust, the force production rises again above the steady

values, although not as high as was observed while the wing was in the gust. The

nominal flow conditions at this time are the same as at all other points outside of

the gust, but the forces are temporarily still affected by the gust encounter. Because

the effects of the gust on force production last longer than the gust encounter itself,

only a force model which incorporates the flow history can properly capture the gust

recovery behavior.
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3.1.1 PIV flow velocity measurements

Figure 3.2 shows sequential velocity and vorticity fields captured by particle

imaging velocimetry (PIV) during a similar gust encounter to the example case

described above. For the PIV data collection, the wing was slowed to the measured

gust velocity, so the gust ratio is changed slightly to G = 1.0. The flow features

associated with the force history displayed in figure 3.1, for which G = 0.84, are

expected to be qualitatively the same as observed in the PIV results. The circles in

figure 3.1 highlight the associated times of each of the frames in figure 3.2.

Figure 3.2a shows the wake of the wing during steady towing before the wing

reaches the gust. The flow is fully separated and the wake extends horizontally.

Periodic vortex shedding occurs during the steady towing, but compared to the

transient effects of the gust the forces at this moment can be considered steady.

Figure 3.2b shows the flow around the wing one chord-length after entering the

gust. The rapid change in flow magnitude and direction causes vortices to form and

shed from the leading edge of the wing. The nominal gust velocity at the location of

the leading edge is 0.23 m
s

, 69% of the peak velocity. At the same time the velocity at

the trailing edge of the wing is only 0.03 m
s

, 8% of the peak velocity. At this moment,

the forces on the wing are approaching their peak. The peak measured force is

reached at t∗ = 1.6 — exactly when the leading edge reaches the peak gust velocity.

This suggests that the force production is closely tied to the flow conditions at the

leading edge of the wing rather than another chord-wise location or a chord-averaged

characterization.
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The local minimum in forces occurs during the time captured by figure 3.2c,

t∗ = 4. The gust encounter has passed, so the nominal gust velocities at both the

leading and trailing edge of the wing are 0 m
s
. A large trailing edge vortex, which is

visible in this frame, forms as the gust recovery process begins. Over the previous

two chord-lengths traveled, the velocity gradient across the trailing edge of the

wing caused exceptionally high positive vorticity production. This concentration

of positive vorticity at the suction surface of the wing causes the concurrent lift

deficiency.

Similarly, figure 3.2d shows a leading edge vortex over the wing which causes

the lift to increase to the secondary peak seen at t∗ ≈ 7 in figure 3.1. This moment

is even further removed from the gust encounter, and yet significant unsteady force

production still occurs. The large trailing edge vortex in figure 3.2c causes the

leading edge shear layer, the line of negative vorticity visible in figures 3.2a and 3.2b,

to move downward; its gradual return to horizontal begins with the formation of the

large leading edge vortex seen here.

Figures 3.2e and 3.2f look increasingly similar to the steady condition seen in

figure 3.2a, but only after 20 more chord-lengths traveled do the forces return to

their steady values. It appears that the alternating vortex shedding from the leading

and trailing edges gradually decreases in vortex strength from the maximum seen in

figures 3.2c and 3.2d to the steady shedding present in figure 3.2a.

The influence of near-wing vorticity can also be evaluated quantitatively. Figure

3.3 compares the lift history from figure 3.1 to the positive, negative, and net local

vorticity contained in the PIV data of figure 3.2. The quantification of vorticity used

50



(a) t∗ = −2 (b) t∗ = 1

(c) t∗ = 4 (d) t∗ = 7

(e) t∗ = 10 (f) t∗ = 13

Figure 3.2: PIV results of the gust encounter at α = 45° and G = 1.0. The
central rectangle indicates the wing position, the background color indicates
vorticity, and the curve along the bottom indicates the vertical velocity
profile of the gust. Most vectors were omitted for visual clarity; only 1.2%
are shown here (one in nine vectors were plotted in each direction).
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Figure 3.3: Comparison of force history from figure 3.1 to local vorticity for
a gust encounter at α = 45° and G = 1.0.

in this comparison is an inverse-distance weighted average, which emphasizes the

vorticity in the area close to the wing. This is accomplished by scaling each vorticity

measurement by the radial distance from the mid-chord of the wing:

γ̄ =

∑ γ√
(x−x0)2+(y−y0)2∑

1√
(x−x0)2+(y−y0)2

(3.1)

This weighted average diverges as the radial distance approaches zero. That does

not effect the results in the current work because the PIV data is masked at the

wing surface.

The near-wing vorticity corresponds closely with the simultaneous force

production. The negative circulation is associated with the leading edge vortex
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and lift augmentation, while the positive circulation is associated with the trailing

edge vortex and lift reduction. Both the lift and the negative local vorticity increase

from t∗ ≈ 0 to t∗ ≈ 2, and then decrease to t∗ ≈ 4. The positive local vorticity

increases and decreases similarly, but with a delay of t∗ ≈ 2. The peak in positive

local vorticity occurs at the same time as the minimum in force production. The net

local vorticity at this moment is positive (note that −γnet is displayed in figure 3.3)

and the lift is below the steady-state value. After this, a leading edge vortex forms

which causes the secondary lift peak. These events correspond to the flow fields in

frames 3.2c and 3.2d.

3.1.2 Trends with respect to gust parameters

In order to better understand the effects of gust encounter characteristics on

the resulting force production, measured forces were compared for cases which vary

in only one gust parameter at a time. Figure 3.4 shows force coefficient histories for

three example cases with varied pitch angles of α = 5°, 20°, and 45° at the same gust

ratio, G = 0.84. Note that the wing pitch angle, α, is the constant angle of the wing

chord relative to horizontal. The relative fluid velocity is θ = tan
(
V(t∗)
U∞

)−1
, which

varies over the gust encounter and in this case peaks at 40°. The total incidence

angle of the fluid on the wing is the sum of these components, α + θ. The peak

normal force coefficient increases with pitch angle to α = 20°, but then decreases

as the pitch angle increases from 20° to 45°. The variation in peak normal force

coefficient between these three cases, CN ≈ 2 to 2.5, is notably smaller than the
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Figure 3.4: Force coefficient history for gust encounters at varied pitch
angles. The gust ratio was 0.84 in each case. The wing is in the gust during
the shaded portion of the x -axis. The forces are oriented and normalized
relative to the towing velocity of the wing.

variation in steady normal force coefficients, CN ≈ 0.4 to 1.2. The magnitudes of

the force oscillations during the gust recovery — the local minimum and following

secondary maximum in force production as the wing exits the gust — are reduced at

lower wing pitch angles.

Figure 3.5 shows force histories for example cases with varied gust ratios of

G = 0.42, 0.84, and 1.68, but the same pitch angle, α = 45°. The peak force

coefficients during the gust encounter increase with gust ratio (for all other tested

pitch angles as well), which was expected since the forces are normalized by the

steady flow velocity so higher gust ratios experience higher normalized dynamic
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Figure 3.5: Force coefficient history for gust encounters at varied gust ratio.
The plate was set at 45° in each case. The wing is in the gust during the
shaded portion of the x -axis. The forces are oriented and normalized relative
to the towing velocity of the wing.

pressures:

qpeak
q∞

=
1
2
ρ
(
U2
∞ + V 2

g

)
1
2
ρU2
∞

= 1 +G2 (3.2)

The unaccounted-for additional dynamic pressure causes the force coefficients to

increase with gust ratio. The magnitudes of the force oscillations during the gust

recovery also increase with increasing gust ratio.

The timing of the force oscillations as the wing exits the gust were consistently

correlated with the trailing edge position. The slight misalignment of those oscillations

in figure 3.4 (most visible at the force minimum) is an effect of the reduced projected

chord of the wing due to the pitch angle. The leading edge of the wing exits the
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gust at the same convective time in each case (t∗ = 3.18). The time at which the

trailing edge exits the gust depends on the pitch angle: t∗ = 4.18 at α = 0°, t∗ = 4.17

at α = 5°, t∗ = 4.12 at α = 20°, and t∗ = 3.88 at α = 45°. The primary example

case is α = 45°, so the boundary of the shaded area in each figure is t∗ = 3.88. The

connection between trailing edge location and force oscillation timing reinforces the

notion that the trailing edge vortex dynamics are the cause of the lift deficiency.

3.2 Force history predictions

The preceding results were used to guide the adaptation of existing models of

aerodynamic force production to the current problem of large-amplitude transverse

gust encounters. The measured force histories were compared to several theoretical

models in order to identify which models accurately predict the force production for

segments of the studied parameter space. The captured or missing elements of each

model also helped to identify the dominant mechanisms of force production during

the gust encounters. The models considered here were a quasi-steady empirical

look-up table and three adaptations of Duhamel’s convolution integral applied to

Küssner’s function. One adaptation was based on the empirical data, and two were

based on thin-airfoil theory.

The simplest tool for predicting unsteady forces is an empirical quasi-steady

model. A quasi-steady model bases instantaneous force predictions on instantaneous

conditions, and does not incorporate the flow history in any way. This limits the

model to predictions of forces during the gust encounter; the nominal instantaneous
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conditions after the gust are unchanging so the forces predicted by this method do

not change outside of the gust either. This model is empirical because the force

coefficients at any time are based on the associated force coefficients measured during

matching steady conditions. This is represented by the following equations, in which

a tilde is used to indicate static data from matching flow incidence angles. The

relative flow angle in the case of the gust encounter varies across the wing chord, so

the static data is matched to a single location, the leading edge:

CN(t) = C̃N(α+θ(t))

(
1+

V (t)2

U2
∞

)
(3.3)

CT (t) = C̃T (α+θ(t))

(
1+

V (t)2

U2
∞

)
(3.4)

The wing-fixed forces are simply scaled by the instantaneous velocity increase, since

the force production is proportional to the total velocity but the force normalization

is based only on the freestream velocity. The flow-fixed forces need to be scaled and

rotated, since C̃L is normal to the total velocity but CL is normal to the freestream

velocity.

CL(t) =
(
C̃L(α+θ(t)) cos(θ(t)) + C̃D(α+θ(t)) sin(θ(t))

)(
1+

V (t)2

U2
∞

)
(3.5)

CD(t) =
(
C̃D(α+θ(t)) cos(θ(t))− C̃L(α+θ(t)) sin(θ(t))

)(
1+

V (t)2

U2
∞

)
(3.6)

The static force measurements were obtained from a gust-off angle-of-attack sweep

at Re = 20,000. The results of this model can be compared to measured forces for
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Figure 3.6: Quasi-steady gust force prediction based on static force data.

α = 45° and G = 0.84 in figure 3.6. The steady and peak forces are closely matched,

but the gradual gust recovery is completely missed — as was anticipated due to the

inherent limits of the quasi-steady model.

3.2.1 Adaptations of indicial theory

The transverse gust encounters studied here were intentionally significantly

unsteady events. The lingering effects of the gust encounter over the roughly 30

chord-lengths after the wing has exited the gust indicates that the force production

is (as expected) impacted by the flow history rather than just the instantaneous

conditions. Because of this, unsteady aerodynamic models may better capture the

gust encounter force production.
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Indicial theory allows the impulse response of a system to be extended to

model the response to arbitrary forcing by approximating that forcing as many small

impulse changes. Küssner’s function is the impulse response of a two-dimensional

flat plate wing to an encounter with a small-perturbation sharp-edged gust. By using

Duhamel’s integral, the convolution of the impulse response with the slope of the

arbitrary forcing, Küssner’s function can be extended to spatially distributed gusts.

The typical application of Duhamel’s integral and Küssner’s function is based

on thin-airfoil theory. The validity of this method for transient force production

during high-amplitude gust encounters will be discussed below, but it is at least clear

that thin-airfoil theory is not applicable during the steady-state conditions preceding

the gust encounter. To proceed with this method, the steady-state force production

must be made to match the separated flow conditions by substituting empirical

results for the initial condition, CN, static(t
∗ = 0). All three adaptations tested in the

current work include this change. Note that in the small-perturbation scenarios for

which thin-airfoil theory was derived, lift and plate-normal force are approximately

equivalent, and the results are typically presented as lift. In the current work, normal

force was chosen for these large-perturbation adaptations so that the thin-airfoil

theory results approach the more reasonable solution CN(90°) = 2π sin(90°) = 2π

rather than CL(90°) = 2π when the measured CL(90°) = 0.

The variations in the three present adaptations are contained in the unsteady

term, in which the arbitrary forcing in Duhamel’s integral is expressed in a manner

that captures the aerodynamic response of the system, CN, response. This general form
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of the indicial method using Küssner’s function adapted for large gusts is therefore:

CN(s) = CN, static(0) +

∫ s

0

[
d

dσ
CN, response(σ)

]
ψ(s−σ) dσ (3.7)

In this equation, CN(s) is the resulting unsteady normal force coefficient. As stated

above, CN, static(0) is the empirical normal force coefficient measured at the same

wing pitch angle, which is used here as the initial condition so that the models agree

with the measured force histories before and after the gust encounter. ψ(s− σ) is

Küssner’s function, which was derived for small-perturbation sharp-edged gusts, but

is the closest available indicial response for the large-amplitude gusts of interest

in the current work. CN, response(σ) is a placeholder which will be replaced by some

function of the quasi-steady aerodynamic response of the wing. The independent

variable here is s = 2tU∞
c

, the semi-convective time. The final variable, σ, is a bound

variable for integration over all values of s in the flow history.

In the usual small-angle application of the indicial method for a gust response

(see equation 1.12), the forcing, CN, response, is expressed as in linearized thin airfoil

theory, CN ≈ CL = 2π sin(θ) where θ = α+ tan
(
V(t)
U∞

)−1
. This can be linearized by

sin(θ) ≈ θ and tan
(
V(t)
U∞

)−1
≈ V(t)

U∞
. In the current work, a correction is incorporated

for the finite aspect ratio of the test article: dCL

dα
= 2π

1+ 2
A

= 4π
3

[7]. This unsteady

force production model will be referred to here as the linearized unsteady thin-airfoil

model, or in figure legends as “linearized.”

CN(s) = CN, static(0) +
2π

U∞
(
1+ 2
A

) ∫ s

0

[
d

dσ
V (σ)

]
ψ(s−σ) dσ (3.8)
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Only one term of linearized thin-airfoil theory is not constant, so much of this model,

2π

U∞(1+ 2
A

)
, can be moved outside of the integration. The unsteady aerodynamics here

are expressed directly as a function of the gust velocity profile, V (σ).

The use of linearized thin-airfoil theory is typical because the flat-wake

assumption necessary for Küssner’s function means that small-angle approximations

are valid. However, the simplification of the general form which converted equation

3.7 into equation 3.8 does not need to be taken so far. By using thin airfoil theory

without the linearizing small-angle approximations, the model can be applied to

higher incidence angles (caused by higher gust ratios) without the additional error

introduced by linearizing. Those same high incidence cases violate the flat-wake

and attached flow assumptions built into Küssner’s function, but this is true of

each model described here. If the quasi-steady aerodynamic response of the system

is modeled using thin-airfoil theory without the small-angle approximations, the

resulting equation is:

CN(s) = CN, static(0) +
2π

1+ 2
A

∫ s

0

[
d

dσ
sin

(
α + tan

(
V (σ)

U∞

)−1)]
ψ(s−σ) dσ (3.9)

As with equation 3.8, the constant parts of the lift-curve slope, 2π
1+ 2
A

, can be removed

from the integration. In equation 3.9, however, much more remains in the unsteady

term. The forcing function of Duhamel’s integral in this case is not the gust

velocity profile as before; the forcing is the sine of the effective flow incidence

angle, sin

(
α + tan

(
V(σ)
U∞

)−1)
. While both the linear and non-linear versions of this

model incorporate the initial conditions into CN, static(0), only the non-linear model
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incorporates those conditions into the unsteady portion by depending on α. This

unsteady force production model will be referred to here as the non-linear unsteady

thin-airfoil model, or in figure legends as “non-linear.”

The theoretical aerodynamics of thin-airfoil theory are not a required component

of this indicial convolution method. The static force curve, CN ≈ CL = 2π sin(θ),

can be replaced entirely by the empirical quasi-steady response. This adaptation

incorporates the features of the static flow into the unsteady model, such as flow

separation and the static force curve, CN(θ). However, those features do not remain

unchanged between the static and unsteady cases, so this model is still only an

approximation of the unsteady behavior.

CN(s) = CN, static(0) +

∫ s

0

[
d

dσ
CN, static(σ)

(
1 +

(
V (σ)

U∞

)2
)]

ψ(s−σ) dσ (3.10)

In equation 3.10, the quasi-steady aerodynamic response is represented by an

empirical look-up table of force coefficients, CN, static(σ), and a relative variation

in total dynamic pressure,

(
1 +

(
V(σ)
U∞

)2)
. This third unsteady force production

model will be referred to here as the semi-empirical unsteady model, or in figure

legends as “semi-empirical.”

The force history predictions made by these models can be compared to

measurements in figure 3.7. Each plot shows the force history for one gust encounter,

which are grouped into columns by wing pitch angle, and into rows by gust ratio.

Four models are compared to each measured force history: first the quasi-steady

semi-empirical model, then the three adaptations of the indicial method. All of the
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models predict force histories which are vaguely correct in magnitude and shape,

although the quasi-steady model does not capture the gust recovery behavior, and

each model is up to 50% off of the peak force magnitude in some of the cases.

The use of small-angle approximations causes the linearized and non-linear

unsteady thin-airfoil models to predict similar results for low angles and gust ratios,

and different results for higher angles and gust ratios. The non-linear unsteady

thin-airfoil model most closely matches the results except for the highest gust

ratio. In that case, the effective incidence angle passed plate-normal and peaked

at α + θ = 104°. The behavior of the non-linear unsteady model did not remotely

match the measured results in that case. However, the unsteady semi-empirical

model matched the measured results for the high gust-ratio case quite well. The

quasi-steady semi-empirical model predicts the peak force production at the correct

time in each case, while all of the indicial methods lag behind the measured behavior.

The local minimum in force production as the wing exits the gust poses an interesting

challenge for future work as it is not captured by any of the current models. In

fact, each of the present models is inherently incapable of predicting that particular

feature, since the unsteady models are all based on the indicial response given by

Küssner’s function which does not predict overshoot under any circumstances.

In the various gust encounters presented in figure 3.7, different models match

most closely to the measured forces depending on the parameters. None of the

models accurately capture the peak force for all of the six cases. Also, none of the

models fully capture the gust recovery process, although the indicial methods mirror

the overall behavior over a shorter time span.

63



-5 0 5 10 15 20
0

1

2

3

4

5

-5 0 5 10 15 20
0

1

2

3

4

5

-5 0 5 10 15 20
0

1

2

3

4

5

-5 0 5 10 15 20
0

1

2

3

4

5

-5 0 5 10 15 20
0

1

2

3

4

5

-5 0 5 10 15 20
0

1

2

3

4

5

Figure 3.7: Comparison of measured to predicted normal force coefficients
for six measurements and four models.
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3.3 Variations in peak force production

The variations in force histories and predictions across the measured parameter

space can be analyzed in a more quantitative manner if the data is reduced to a

set of characteristic scalar quantities. Each of the 140 measured force histories was

characterized by the peak values and steady values of lift and drag coefficients — or

equivalently and interdependently: plate-normal and plate-tangent force coefficients.

The steady forces in each case were taken as the mean force produced over the final

25 chord-lengths of constant towing velocity, 36 < t∗ < 61. The peak force in each

case was taken as the maximum force measured during the gust encounter. To avoid

exaggeration of maximum forces due to measurement noise, the force histories were

smoothed using weighted quadratic local regression (“loess” in Matlab) with a span

equal to half of the gust width before finding the peak value. The characteristic

values of force coefficients are demonstrated in figure 3.8.

The steady forces after gust recovery are plotted in figure 3.9 as black circles.

As expected, all of these measurements agree with the static angle-of-attack sweep

data represented by the black line. These points have been plotted with some

transparency so that the varying saturation of color can qualitatively indicate the

overlap of repeated measurements.

The peak gust forces can be compared similarly by accounting for the increased

total velocity and relative angle due to the gust. For a pitch angle, α, freestream

velocity, U∞, and gust velocity, Vg, the peak effective angle of attack and total
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Figure 3.8: Each force history was reduced to a set of characteristic steady
and peak forces.

velocity are:

αpeak = α + tan

(
Vg
U∞

)−1
(3.11)

Vtotal =
√
U2
∞ + V 2

g (3.12)

The peak forces are plotted at αpeak on the x-axis and normalized by Vtotal. The lift

and drag coefficients are decomposed relative to αpeak. This is the reverse of the

process used for the empirical quasi-steady model described in section 3.2. These

re-normalized peak forces are plotted as diamonds colored by the associated gust

ratio. Despite the rapid change of conditions around the wing during the gust

encounter, the measured peak force coefficients were found to be close to the static

measurements for a wide range of conditions.
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Figure 3.9: Quasi-steady analysis of peak unsteady gust forces.

It is apparent based on deviations between the steady and unsteady data

(particularly in normal-force coefficient) that some unsteady effect is present that is

not accounted for by the empirical quasi-steady analysis. The influence of unsteady

effects is further observed by recalling the trend in peak forces in figure 3.4, which

in disagreement with static data showed decreasing peak normal force coefficients

with increasing angles of attack between 20° and 45°. This is visible in the CN axis

of figure 3.9 by noting that the right-most points of each color descend as the angle

increases, but the black line that shows static force coefficient increases (if unevenly)

for all angles up to α = 90°.

The difference between the geometric pitch angle of the wing and the peak

effective angle-of-attack during the gust is (non-linearly) proportional to the gust
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Figure 3.10: Convergence of peak forces for gust encounters with different
initial conditions (a subset of the data from figure 3.9).

ratio. Cases with identical pitch angles, represented by overlapping black circles in

figure 3.9, but different gust ratios result in different peak relative angles, represented

by colored diamonds spread out across the x -axis. Several cases are particularly

interesting; these cases have different pitch angles and gust ratios that cause the peak

relative angles to coincide. Specifically, cases at α = 45° with a gust ratio of 0.42

and α = 7° with a gust ratio of 1.68 both result in a peak effective angle-of-attack

within 1° of αpeak = 67°. It can be seen in figure 3.10 that the re-normalized peak

lift and drag in these cases agree, suggesting that these forces depend on the peak

quasi-steady conditions and not the pitch angle or gust ratio independently.
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3.3.1 Unsteady analysis of peak force

The influence of unsteady aerodynamics on the peak forces can be investigated

using the indicial models given by equations 3.8, 3.9, and 3.10. The peak normal

forces predicted by the adaptations of Küssner’s function were characterized and

compared to the measurements using the same procedure shown in figure 3.8. Figure

3.11 shows these peak predicted values, although they are plotted differently than

the measurements. The peak value for each indicial model is a function of only the

initial pitch angle, the gust ratio, and the gust width. In the current work only one

gust width was tested, so the remaining two-dimensional variation in peak force

predictions was plotted as one line for each gust ratio (colored to match the measured

results for each tested gust ratio).

The linearized unsteady thin-airfoil model (dotted lines) matches the magnitude

of the forces well for each gust ratio, but does not capture the proper trends with

respect to pitch angle. This is particularly visible for the highest gust-ratio cases

(green), for which the measured peak forces decrease with increasing pitch angle but

the predicted peak forces increase with increasing pitch angle.

The non-linear unsteady thin-airfoil model (solid lines) under-predicts the force

magnitudes as the gust ratio increases, but matches the trend with respect to pitch

angle very closely. If the results for the middle and higher gust ratio cases (red and

green) were transposed upward by the appropriate amount, this model could fit very

closely to the measured peak force for every case in the current work. This seems to

indicate that the effect of flow incidence angle on peak force production is recreated
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Figure 3.11: Adaptations of Kussner’s function compared to measured peak
normal force coefficients.

accurately by the non-linear unsteady thin-airfoil model, but that the effect of local

dynamic pressure — which changes with gust ratio — is mis-characterized.

The unsteady semi-empirical model (dashed lines) does not match the

magnitudes or the trends of the measured peak forces. This model seems to under-

predict the increase in lift due to both the flow incidence angle and the local dynamic

pressure. The under-prediction with respect to flow incidence angle in particular

supports the interpretation that the unsteady force production is better modeled by

the attached flow of theoretical aerodynamics rather than the separated flow of the

static data.
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3.4 Chapter summary

In this chapter, measured forces were presented and analyzed for sine-squared

transverse gust encounters of width w = 3.2c, gust ratios G = [0.42, 0.84, 1.68], and

wing pitch angles between −4° ≤ α ≤ 45°. These gust encounters created large

transient forces which were observed to coincide with vortex formation at the leading

edge during augmented lift and at the trailing edge during reduced lift.

The magnitudes of the peak forces were compared to predictions made using a

quasi-steady empirical model and large-perturbation adaptations of indicial theory

using Küssner’s function. The peak predicted forces did not perfectly agree with

measurements for any of the available models, but the general magnitude was matched

by the quasi-steady empirical model and the linearized unsteady thin-airfoil model.

The shape of the force trend with respect to pitch angle within each gust ratio

was matched very closely by the predictions of indicial theory using the non-linear

unsteady thin-airfoil model.
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Chapter 4: Plunging wing force production

This chapter presents the measured force production by a thin, flat, rectangular

wing performing single plunging maneuvers. These results serve to test aerodynamic

models which do not rely on the harmonic nature of those in previous studies. The

maneuvers vary in horizontal and vertical extent, duration, and wing pitch angle.

The details of the tested parameter matrix are presented in section 2.5.

The force production during these plunge maneuvers was measured and

qualitative trends with respect to each of the independent parameters are discussed.

A data reduction procedure was then used to identify quantitative trends in force

production across multiple axes of the parameter space. Additionally, force production

was compared between the plunge maneuvers and the transverse gust encounters.

4.1 Plunging wing force history features

Figure 4.1 shows the force coefficient histories for four differently-shaped plunge

maneuvers. The forces produced in each case are presented as lift and drag coefficient

normalized first by the freestream dynamic pressure and then by the mean plunge
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Figure 4.1: Example measurements of lift coefficient during the plunge
maneuvers. In each case, α = 0°.

kinetic energy (see section 2.6.3):

CL =
L

1
2
U2
∞ρS

(4.1)

Lnorm =
L

1
2

(
U2
∞ + 3

8
V 2
p

)
ρS

=
CL

1 + 3
2

(
h
w

)2 (4.2)

There are several striking features of these force histories. First, the magnitude

of the lift coefficients is unreasonably high; it is important to keep in mind that this is

an artifact of the freestream-dynamic-pressure method of normalization rather than

a true indication of lift efficiency. The mean-kinetic-energy normalization attempts
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to correct this, although the magnitudes of the coefficients are still high. Second, the

force histories vary substantially in shape, even though the wing kinematics are all

variations of the same shape. This supports the expectation that multiple physical

sources of force production are involved. Third, as was also observed for this flat

plate wing in the gust, force production is dominated by plate-normal pressure forces.

Plate-tangent skin friction forces are negligible. The wing pitch angle in each case

shown here is 0°, so the lift is equivalent to the plate-normal force and the drag is

equivalent to the tangent force. Those components will be discussed separately for

cases with pitch angles above zero. Finally — and most surprisingly — there is very

little unsteady force production after the plunge maneuver has ended. Unlike the

extremely long recovery process from the gust encounters, the wing appears to return

to steady force production within one chord-length traveled. This suggests that

quasi-steady analysis may be a reasonable approach despite the large unsteadiness

of the plunge maneuver itself.

The plunge maneuver kinematics associated with the cases displayed in figure

4.1 vary in both width and height, and no clear trend in force production with respect

to kinematics is visible from this data. Of these four cases, the largest peak lift

coefficient is observed during different kinematics depending on the normalization

method: the highest CL in figure 4.1 is 33 in the w = 2c, h = 3c case, but the highest

Lnorm is 9.4 in the w = 1c, h = 1c case. This is because the mean-kinetic-energy

normalization incorporates the plunge velocity component, which suitably reduces

the normalized forces for cases which have high a plunge velocity ratio. The lowest

lift coefficient is observed for the same kinematics in each normalization, w = 6c and
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h = 3c.

4.2 Trends with respect to plunge kinematics

To understand how the variations in force production are related to variations

in each of the plunge maneuver parameters, comparisons will be made between force

histories measured for cases which vary in only one of these parameters at a time. It

is also useful to identify how these maneuver parameters affect the primary physical

quantities associated with force production: acceleration and dynamic pressure. The

plunge maneuver kinematic used in all cases of the current study was the sine-squared

gust profile:

V(t) = Vp sin

(
πt

T

)2

for 0 ≤ t ≤ T (4.3)

This can be rewritten based on the distances traveled during the maneuver, h = 1
2
VpT

and w = U∞T , as:

V(t) =
2hU∞
w

sin

(
πtU∞
w

)2

(4.4)

The plunge acceleration during the maneuver can then be written as:

V̇(t) =
4hU2

∞
w2

sin

(
πtU∞
w

)
cos

(
πtU∞
w

)
(4.5)

The horizontal velocity, U∞, is constant, so it does not contribute to the acceleration.

The freestream velocity does contribute to the peak dynamic pressure, though:

1

2
ρU2

max =
1

2
ρ

[
U2
∞ +

(
2hU∞
w

)2
]

=
1

2
ρU2
∞

[
1 +

(
2h

w

)2
]

(4.6)
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Figure 4.2: Measurements of forces during plunge maneuvers which vary
only in freestream Reynolds number.

The proportional variations of acceleration and dynamic pressure with respect to

each of the maneuver parameters, h, w, and U∞, will help to decipher the observed

effects that each of these parameters has on the measured force production.

4.2.1 Effects of varying Reynolds number

Figure 4.2 shows lift coefficient histories for cases which vary only in Reynolds

number, which determines the freestream velocity and thus also the maneuver

duration. Both the peak acceleration experienced by the wing and the peak dynamic

pressure increase proportionally with the square of the freestream velocity. This

proportionality is precisely why lift coefficient is typically normalized by freestream
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dynamic pressure, and as seen here the normalized forces are not changed by the

varied Reynolds number.

Figure 4.2 only shows the comparison for the w = 1c, h = 1c case, but each

other set of cases which only varied by Reynolds number also resulted in matching

force coefficients. This is true for both CL and Lnorm, since the difference between

these normalizations does not vary with Reynolds number. These results agree

with previous conclusions that force production by thin flat plates is insensitive to

Reynolds number [27]. This result is useful primarily in reducing the parameter

space to the more manageable size of three independent parameters, and for allowing

comparisons of maneuvers with different Reynolds numbers.

4.2.2 Effects of varying plunge height

The peak acceleration of the wing increases linearly proportionally with

the maneuver height. The variation in peak dynamic pressure with respect to

maneuver height is more complex since it depends on both the horizontal and vertical

velocities. This is displayed in figure 4.3. The peak dynamic pressure normalized

by the freestream dynamic pressure is shown in blue on a logarithmic plot. The

contribution to peak dynamic pressure by the vertical velocity, shown in red, increases

proportionally with the square of the maneuver height. The contribution by the

horizontal velocity, shown in green, does not increase at all. This causes the variation

in peak dynamic pressure with respect to plunge height, d
dh

(qmax), to approach

quadratic for high velocity ratios, but to fall below the quadratic variation for lower
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Figure 4.3: Variations in dynamic pressure contributions by U∞ and Vp with
respect to plunge velocity ratio.

velocity ratios.

Figure 4.4 shows force coefficient histories for cases which vary in plunge

maneuver height. These cases also vary in freestream Reynolds number (they

were defined so that the peak velocity matched instead), but it was shown in the

previous section that variations in Reynolds number did not change the normalized

force histories. The lift coefficient axis (top left) of figure 4.4 clearly shows that

increasing the plunge height increases the normalized force production. The increased

plunge height (when the width is fixed) corresponds to an increase in the relative

contribution of the vertical velocity component compared to the horizontal velocity.

The normalization of forces by freestream dynamic pressure does not account for this,

so the normalized force is bound to increase. Interestingly, the mean-kinetic-energy

lift normalization collapses four of the six curves, which means that the variation

in force production with respect to plunge depth is proportional to the variation in
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Figure 4.4: Measurements of forces during plunge maneuvers which vary in
height but not width.

mean kinetic energy for these cases. The two lowest-amplitude cases fall below the

trend. This is related to the discussion of variations in peak dynamic pressure with

respect to plunge height, since the freestream dynamic pressure and the mean kinetic

energy are related by a similar nearly-quadratic term (see section 2.6.3): 1 + 3
2

(
h
w

)2
.

For the four higher velocity ratio cases here, Vp
U∞

= 2h
w
>= 2, and so the variations in

both the peak dynamic pressure and the mean kinetic energy begin to converge to

the same quadratic trend.
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4.2.3 Effects of varying plunge width

The peak acceleration of the wing increases proportionally with the inverse

square of the maneuver width: ∝ 1
w2 . A wing in a wider plunge maneuver experiences

less acceleration — as long as the height is fixed. The peak dynamic pressure has a

similar (but inverse) behavior with respect to plunge width to that which it had with

respect to plunge height. The relative contribution of peak dynamic pressure by the

horizontal velocity increases proportionally with the square of the maneuver width,

but the contribution by the vertical velocity does not increase at all. In terms of

equation 4.6, the peak dynamic pressure approaches the freestream dynamic pressure

for very wide maneuvers, and is higher than the freestream dynamic pressure for

narrower maneuvers.

Figure 4.5 shows force coefficient histories for cases which vary in plunge

maneuver width (and Reynolds number, but as previously discussed, this did not

affect the force coefficients). This figure is a good demonstration of the weakness of

the typical lift coefficient normalization by freestream dynamic pressure. The first

case plotted here peaks at CL ≈ 120 and so had to be truncated so that the other

five cases would be visually discernible. This amplitude difference is primarily caused

by the relative magnitudes of the vertical and horizontal velocity components, and so

that difference is minimized by the mean-kinetic-energy lift normalization. In both

plots, it is clear that the peak normalized lift decreases with increasing maneuver

width, as do both the peak acceleration and dynamic pressures experienced by the

wing during the maneuver. As is particularly apparent in figure 4.5, it is difficult to
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Figure 4.5: Measurements of forces during plunge maneuvers which vary in
width but not height.

say quantitatively how the magnitudes of these force histories vary because they also

vary significantly in overall shape. This is addressed below in section 4.3.1 in order

to better quantify the trends in force production with respect to plunge maneuver

height and width.

4.2.4 Effects of varying wing pitch angle

The geometric pitch angle of the wing does not appear in the kinematic

equations for either acceleration (equation 4.5) or dynamic pressure (equation 4.6),

which were suggested to be the key contributors to force production. However, the

variation in force production with respect to acceleration and dynamic pressure are
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Figure 4.6: Measurements of forces during plunge maneuvers which vary in
wing pitch angle but not width or height.

dependent on other quantities as well. Some of these, such as fluid density, ρ, and

wing planform area, S, were not varied in the current work. The wing pitch angle, α,

was varied here in order to inspect its effects on unsteady force production. During

the plunge maneuver, the relative incidence angle of the fluid is the sum of the wing

pitch angle and the angle of the velocity vector of the wing, α + tan
(
V(t)
U∞

)−1
.

Figure 4.6 shows force coefficient histories for cases which vary in wing pitch

angle, but are otherwise the same maneuver kinematics. These α 6= 0° cases separate

the lift from the normal force, and so further verify that the force production

is primarily plate-normal. Somewhat surprisingly, each of the four plotted cases

produced nearly the same normal force histories. The lift and drag projections of

normal force change with pitch angle, but the plate-normal forces are not significantly
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affected by the wing pitch angle for the tested range, 0° ≤ α ≤ 45°.

In these example cases, the plunge maneuver increases the flow incidence angle

by tan
(
2h
w

)−1
= 63° at the peak. It should be expected then that the case which

began at α = 0° and increased to α + θ = 63° would produce different transient

forces than that which began at α = 45° and increased to α + θ = 108°. The change

in quasi-steady force production, dCN

dα
, certainly varies between these two ranges (as

shown in figure 2.4). Instead, it was observed that these cases — and those for wing

pitch angles in between — resulted in similar force histories. This suggests that the

initial pitch angle has very little impact on the overall transient force slope, dCN

dθ
,

although the mechanism behind that behavior is unknown.

The initial pitch angle does impact the steady state normal force before and

after the plunge, but this effect is negligible in figure 4.6 due to the relative magnitude

of the steady and unsteady force contributions. Even in these moderate plunge cases

(w = 3c, h = 3c) the peak force coefficients during the maneuver reach CN ≈ 15,

which is much greater than any normal force coefficient measured outside of the

maneuver. The steady-state normal force coefficient at the highest angle tested here,

α = 45°, was CN = 1.2, only 8% of the peak observed value in figure 4.6.

It can be seen from equation 1.6 that the inertial component of unsteady forces

should also vary with respect to wing pitch angle. That equation can be simplified

for the current maneuver to show inertial normal force due to plunge acceleration:

CN, inertial = − πc

2U2
∞
V̇ cos(α) (4.7)
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This potential flow model indicates that the normal force production is proportional

to the chord-normal projection of the acceleration, V̇ cos(α), which depends on wing

pitch angle. This can be reconciled with the observed force histories by recognizing

that both the relative change in cos(α) and the magnitude of inertial forces are

small compared to the peak observed forces. The chord-normal component of plunge

acceleration is 100% at α = 0°, 98% at α = 10°, 94% at α = 20°, and 71% at α = 45°.

Therefore, in figure 4.6, only the case at α = 45° experiences a significantly different

chord-normal acceleration from the others, although even in this case there is no clear

difference in observed force production. Equation 4.7 predicts that the peak added-

mass force for w = 3c, h = 3c, α = 0° is CN, inertial = 3.3, which is only 22% of the

observed peak force. Assuming for the moment that this model accurately represents

the inertial force production of the plunging wing, the non-inertial forces are far

greater than the inertial forces in figure 4.6. This can be qualitatively corroborated

by observing the high force production at t∗ = 1.5, since at that moment the plunge

acceleration is V̇ = 0 and so no inertial force is expected. Since the magnitudes of

the steady and inertial forces are small compared to the total unsteady force, their

known variations with respect to wing pitch angle does not necessarily contradict

the observed lack of variation in total force.

Figure 4.6 only shows cases for which w = 3c, h = 3c, but these results held

for other plunge kinematics as long as the steady-state forces were small compared

to the unsteady forces. The normal force histories of each tested maneuver size (for

which α was varied) are shown in figure 4.7.

The variations in steady-state force production are only easily apparent in the
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Table 4.1: Peak steady normal force coefficient (1.2) as a percent of peak
observed force coefficient for plunge maneuvers in figure 4.7.

CN, steady

CN, peak
w = 1c 3c 6c

h = 1c 5.7% 30% 60%
3c 0.92% 8.0% 22%
6c 0.32% 2.9% 9.2%

Table 4.2: Added-mass normal force coefficient as a percent of peak observed
force coefficient for plunge maneuvers in figure 4.7.

CN, inertial

CN, peak
w = 1c 3c 6c

h = 1c 47% 27% 14%
3c 23% 22% 15%
6c 16% 16% 13%

three lowest velocity ratio cases (the top-right and adjacent plots). This observation

is in agreement with the relative magnitudes of the steady and unsteady forces for

these cases, shown in table 4.1. Only in those three cases were the unsteady forces

low enough that the differences in steady-state force production due to wing pitch

angles were not negligible. In all of the other five cases, the normal force histories

were not significantly affected by changes in wing pitch angle.

Similarly, table 4.2 shows the relative magnitudes of the added-mass and total

unsteady forces for these cases. Most of these cases are only slightly influenced by

inertial forces. The top-left axis of figure 4.7 shows forces for the case of w = 1c,

h = 1c, for which the potential flow model predicts that the added-mass force —

which, according the model, ought to vary with respect to wing pitch angle — is

the highest of these cases at 47% of the peak observed force. Despite this greater

inertial contribution than in the w = 3c, h = 3c case from figure 4.6, no obvious

force variation with respect to wing pitch angle is visible.
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Figure 4.7: Measurements of normal force coefficient during several plunge
maneuvers. Each axis shows a group which varies in wing pitch angle but
not width or height. Note that the axes of each are scaled differently.
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4.3 Force history characterization

As was done for the gust encounter data, plunge maneuver force production

can be more usefully quantitatively analyzed if the force histories are reduced to a

few characteristic scalars. This could be accomplished by extracting peak unsteady

force production, but as is particularly evident in the Lnorm axis of figure 4.5, the

force production during the plunge maneuver has two constituent shapes which

blend between the cases. In order to capture the behavior of these two separate

components, the unsteady force production will be characterized by two scalars

instead of one.

4.3.1 Two-term decomposition

As was noted above, force histories for these sine-squared plunge maneuvers

seem to contain two distinct constituent shapes. Force histories for plunge maneuvers

which are much taller than they are wide, h
w
� 1, are mainly the shape of a sine

wave. The shallower plunge cases, h
w
� 1, result in force histories which are mainly

a one-minus-cosine shape. Each force history can be modeled as the sum of these

two shapes scaled by some coefficients, C1 and C2, and some residual, R. While the

wing is plunging (0 ≤ t∗ ≤ w):

FN(t∗) ≈ C1

[
1− cos

(
2πt∗

w

)]
+ C2 sin

(
2πt∗

w

)
+ R (4.8)
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The functions can be related back to the two primary sources of force production:

acceleration and dynamic pressure. For the sine-squared kinematics of the current

study, acceleration and dynamic pressure, given by equations 4.4 and 4.5, are these

same two general shapes (the sine-squared plunge maneuver tested here is equivalent

to one-minus-cosine by 1− cos(2θ) = 2 sin(θ)2). The resulting simplified model for

normal force production, FN , is then a scaled contribution from dynamic pressure

plus another scaled contribution from acceleration. Any possible higher order effects

are combined in the residual. This model can be fit to each measured force history

by finding values for the coefficients which minimize the residual using least-squares

regression. This general model is expressed in equation 4.9, and the shape of each

term is isolated in equation 4.10. The latter equation was the one used for the

least-squares curve fit.

FN(t∗) = −C1V (t∗)2 − C2V̇ (t∗) + R (4.9)

FN(t∗) = C1 sin

(
πt∗

w

)4

+ C2 sin

(
πt∗

w

)
cos

(
πt∗

w

)
+ R (4.10)

This equation was fit to each of the measured force histories to characterize them by

the two coefficients, C1 and C2, and to quantify the minimum residual, R. To avoid

confusion, it is worth stating that the regression process was applied to the non-

normalized force data (in Newtons), although each normalization option is a linear

operation and so would not affect the outcome. The coefficients were normalized by

either method after the force history characterization.
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Figures 4.8 and 4.9 show examples of this decomposition model fit to measured

force histories. Although the two example cases are very different, the model fits

closely to each set of measured forces. The plunge maneuver which produced the

forces in figure 4.8 was 1c in both width and height — an aggressive plunge maneuver.

The coefficients normalized by mean kinetic energy were C1 = 4.9 and C2 = 6.2. In

this case, the acceleration was responsible for slightly more force production than

was the variation in dynamic pressure. The root-mean-square (rms) of the residual

was 0.9, which is acceptably small compared to the two characteristic terms. The

other example, shown in figure 4.9, was a much more gentle plunge maneuver of

width 6c and height 3c. The coefficients normalized by mean kinetic energy were

C1 = 4.0 and C2 = 0.1. In this case, the acceleration was responsible for far less

force production amplitude than the dynamic pressure. The rms of the residual was

0.4, which is again acceptably small even though C2 is also quite small in this case.

This process was repeated for each of the 108 measured plunge kinematics for

which α = 0°. In that way, the force production variations with respect to both

maneuver width and height were quantified in terms of C1, C2, and rms(R). Figure

4.10 shows those results — the same data is plotted in each axis, but it is displayed

differently in each. The top row shows CL and the bottom row shows Lnorm. The left

column is linearly scaled and the right column is logarithmically scaled (x -axis only).

The x -axis for this figure is plunge maneuver aspect ratio, h
w

, because it appeared as

an important term in the equations for both the peak acceleration and peak dynamic

pressure during each maneuver. It is visible (and unsurprising) that this parameter

only incompletely captures the variation in plunging wing force production across
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Figure 4.8: Best fit of the two-term lift decomposition for a high velocity
ratio plunge maneuver: w = 1c, h = 1c.

the parameter space.

The linear axis of CL (top left) shows that — at least for high aspect ratio,

aggressive plunge maneuvers — both contributions to force production increase

vaguely quadratically. This is corroborated by both the linear and logarithmic axes

of Lnorm, which shows that the mean-kinetic-energy-normalized force production is

roughly constant for plunge maneuver aspect ratios above one. The roughly constant

values of Lnorm can be justified by the same proportionality to dynamic pressure

that caused most of the data in figure 4.4 to converge for the mean-kinetic-energy

normalization. The “banding” of smaller groups of data points within the overall

trend — particularly visible in C1 on the logarithmic axis of Lnorm (bottom right) —

suggests that other parameter variations are also responsible for variations in plunge
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Figure 4.9: Best fit of the two-term lift decomposition for a low velocity
ratio plunge maneuver: w = 6c, h = 3c.

force production. Additionally, it is clear that there are outliers in the C2 amplitudes

using Lnorm (at h
w

= 1, there are C2 observations ranging from 2 to 13) which also

indicates variations with respect to other plunge maneuver parameters. To identify

more complete characterizations of these variations, the characteristic amplitudes

can be compared to those predicted by various analytical models.

4.3.2 Comparison to analytical models

The small-perturbation solution for unsteady force production by a moving wing

by von Kármán and Sears [18] divided total force production into three components:

quasi-steady, inertial, and wake contributions (see section 1.2.4). The division of
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Figure 4.10: Magnitude of best-fit coefficients for each case. The top row
shows CL and the bottom row shows Lnorm. The left column is linearly
scaled and the right column is logarithmically scaled (x -axis only).

measured forces in the current study parallels the constituent parts of that analytical

model.

The force production term for quasi-steady circulatory lift is associated

with meeting the Kutta criteria under the instantaneous conditions. In the von

Kármán and Sears model, this reduces to the simple thin-airfoil theory solution of

L = CL
1
2
ρU2
∞S and CL = 2π sin(α). This contribution to force production varies
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proportionally with dynamic pressure and with some expression of force coefficient

and is therefore connected to the C1 component of the current decomposition. The

small-angle approximations inherent in the analysis of von Kármán and Sears mean

that CL ≈ CN and no distinction is made. For the larger perturbations of interest

in the current work, these force orientations are distinct and the thin-airfoil theory

solution may be more usefully posed as CN = 2π sin(α). Alternately, the equation

for CN may be altogether replaced by a look-up table based on empirical normal

force coefficients measured under truly steady conditions, which would indirectly

remove some of the flow assumptions (attached, inviscid flow for example) built into

the thin-airfoil theory model.

The second term of von Kármán and Sears is the inertial force produced by

“apparent mass,” which is connected to the C2 component of the current decomposition.

For small perturbations, this is represented by a potential flow solution of an

accelerating flat plate, CN = πc ˙V⊥
2U2
∞

. This solution has been used successfully in several

studies of large, unsteady events despite the theoretical limitations of the inviscid

flow model [26].

The third term of von Kármán and Sears is the lift deficiency due to wake

vorticity. This term is not directly included in the current decomposition approach,

although it is unreasonable — particularly for the aggressive plunge maneuvers —

to assume that wake vorticity is insignificant. Some of this wake vorticity force

production contribution will not match either of the decomposition’s constituent

shapes. This would be captured in the residual term, R, which was relatively small

for all cases measured in the current work. Alternately, some of this wake vorticity
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force contribution will match the shape of the C1 or C2 terms. It is important to

consider this wake vorticity force production term when comparing the observed and

predicted amplitudes for each of the two directly included terms.

The coefficient C1 in the current model corresponds to the magnitude of forces

produced by the relative fluid velocity and so can be compared to simple aerodynamic

models such as thin-airfoil theory or a quasi-steady empirical method.

CN(t) = C̃N(α+θ(t))

(
1+

V (t)2

U2
∞

)
(4.11)

where the tilde indicates quasi-steady quantities related to the total flow velocity

rather than the pre-maneuver freestream velocity. The angle α is the geometric pitch

of the wing relative to horizontal, while θ = tan
(

V
U∞

)−1
is the relative plunge velocity

angle. Thin airfoil theory (with an aspect-ratio correction) predicts C̃N = 2π
1+ 2
A

sin(θ),

while the empirical look-up method returns values from the static force data.

These equations represent the velocity-proportional force production, but do

not share the exact form of C1V (t)2 which would be needed for a direct comparison

to the decomposed measured forces. Both thin-airfoil theory and static data give

values for C̃N which vary as a function of θ(t). The predicted circulatory lift histories

(for example, the orange line in figures 4.8 and 4.9) are not exactly sinusoidal, and

so the peak value is not truly representative of C1. To facilitate the comparison

between observed and predicted circulatory forces, the predicted force histories

were also characterized by a least-squares fit of C1V (t)2 so that the C1 values from

measurements and predictions could be directly compared in figure 4.11.
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Figure 4.11: Comparison of measured and predicted lift for velocity-
proportional C1 term

Figure 4.11 shows the C1 values from force measurements (blue triangles)

normalized by mean kinetic energy and plotted as a function of peak effective angle

of attack, θ = tan
(
2h
w

)−1
. Variations in force production with respect to peak

dynamic pressure are collapsed by the normalization, so the remaining variations

are primarily a function of the plunge-velocity-induced flow incidence angle — or, in

the case of the analytical models, exclusively so. Thin-airfoil theory, plotted as the

solid line in figure 4.11, accurately predicts lift for gentle plunge maneuvers which

reach peak effective angles of attack below 45°. The treatment of flow over the wing

as inviscid and therefore attached leads to over-prediction of force production at

excessively high peak incidence angles. Viscosity and flow separation can be indirectly

incorporated into the aerodynamic model by using an empirical look-up table. The
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results of this semi-empirical method are plotted as the dashed line in figure 4.11.

In general, this model under-predicts the plunge maneuver lift production. The C1

values from measurements fall somewhere between these two predictions, suggesting

that the wake vorticity effects — the here-unaccounted-for term from von Kármán

and Sears — augment the transient lift but not as much as though the flow was

entirely attached. As was the case in the model by Babinsky et al., the transient

lift is more closely approximated by attached flow than by separated flow (equation

1.18). It is possible that the influence of a substantial leading edge vortex could

justify use of the attached flow thin-airfoil theory results at angles well beyond stall

[28].

The coefficient C2 represents the magnitude of forces produced by the fluid

acceleration. The potential flow approximation of inertial forces in equation 1.6

applied to the sine-squared plunge maneuver at zero geometric angle of attack

produces:

Faccel =
ρπ2c2AhU2

∞
w2

sin

(
πt∗

w

)
cos

(
πt∗

w

)
(4.12)

∴ C2 =
2π2h

w2

(
1

2
ρU2
∞c

2
A

)
(4.13)

This predicted amplitude can be easily compared to the C2 values from measurements.

As before, figure 4.12 shows a scatter of the best-fit C2 from measurements plotted

against an x-axis for which the available model collapses to a single line. In this

case, that x-axis parameter is less intuitive; it is found by normalizing the prediction

for added-mass force, equation 1.3, using the kinetic-energy method, equation 2.5.

This step ensures that the model for predicting C2, equation 4.13, can be visualized
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Figure 4.12: Comparison of measured and predicted lift for acceleration-
proportional C2 term

as a single line in figure 4.12.

The potential flow model for added-mass, plotted as the solid line in figure

4.12, under-predicts the inertial force amplitudes, C2, that were extracted from the

measurements in most cases. Interestingly, most cases were under-predicted by nearly

the same factor, and so a semi-empirical model can be formulated which greatly

improves the agreement between predictions and measurements:

C′2 = 1.6C2 (4.14)

This empirically tuned potential flow model is plotted as the dashed line in figure

4.12.
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The color of each C2 point in figure 4.12 corresponds to the peak effective

angle of attack reached during that maneuver. It is apparent that the points which

agree with one or the other predicted line are grouped by this peak angle. Gentle

plunge maneuvers which reached peak θ < 40° are closer to the potential flow model

while aggressive plunge maneuvers which reached peak θ > 50° are closer to the

linear fit. This trend indicates that some unsteady effect may be contributing to

the C2 component of lift production. This increase in force production may also

be attributed to wake vorticity, although the mechanism is less clear than in the

interpretation of observed C1 magnitudes.

In combination, these terms form a model which accurately represents force

production from somewhat low-amplitude sine-squared plunge maneuvers. The

quasi-steady model based on thin-airfoil theory is:

CN(t) =
2π

1+ 2
A

sin(θ(t))

(
1+

V (t)2

U2
∞

)
+
πc ˙V (t)

2U2
∞

(4.15)

where again, θ(t) = tan
(
V(t)
U∞

)−1
. Each term of this model matched the observed

amplitudes for cases in which θ ≤ 45° (see figures 4.11 and 4.12). Cases in which

θ > 45° are over-predicted by the velocity-proportional term, C1, and under-predicted

by the acceleration-proportional term, C2. The acceleration term can be seen to

converge to a new value for those higher angles, and so in those cases it may be

useful — if not physically insightful — to “tune” the model by scaling the C2 term

by 1.6.

Additionally, the observations made in section 4.2.4 indicate that the wing

98



pitch angle has little effect on the unsteady force production for most cases tested in

the current work. Although the effects of wing pitch angle on the unsteady force

were observed to be negligible for most of the tested kinematics, those effects can

still be incorporated into the model so that the steady-state predictions better match

to measured forces and the inertial force term better matches to the potential flow

model. The acceleration-proportional term of equation 4.15 can be made to match

that of the potential flow added-mass model by scaling based on the plate-normal

projection using a factor of cos(α). The effects of the wing pitch angle on the

velocity-proportional term of equation 4.15 only appeared to affect the steady-state

forces, which can be represented by an additional term, C̃N(α). Each of these effects

is small compared to the total unsteady force, but they are still included in the final

model:

CN(t) = C̃N(α) +
2π

1+ 2
A

sin(θ(t))

(
1+

V (t)2

U2
∞

)
+
πc ˙V (t)

2U2
∞

cos(α) (4.16)

This model presents the normal-force coefficient resulting from a sine-squared profile

plunge maneuver as the sum of three parts: the empirical steady-state coefficient

due to the wing pitch angle, the transient circulatory force linked to the leading edge

vortex, and the non-circulatory inertial force. This is a semi-empirical quasi-steady

model which was made to match unsteady force production by strictly limiting the

plunge maneuver to sine-squared kinematics. Note that the inertial component of

the force coefficient is a function of wing chord, c, which indicates that the relative

contribution of inertial and circulatory forces do not scale equally. For geometrically-
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Figure 4.13: Comparison of measured and predicted force production for a
high velocity ratio plunge maneuver: w = 1c, h = 1c, α = 0°.

similar plunge maneuvers, wings of unequal size will produce the same normalized

circulatory force (that is the purpose of the normalization), but different inertial

forces.

Figures 4.13, 4.14, and 4.15 show examples of plunging wing force history

predictions made by this model compared to the measured forces. As expected based

on the discussion of C1 and C2 amplitudes, this model accurately represents forces

produced by low-amplitude plunge maneuvers, but is increasingly incorrect as the

velocity ratio increases. For the high-amplitude plunge maneuver in figure 4.13, the

force production is mainly inertial, and the empirically tuned C2 term improves the

model accuracy. Figure 4.14 shows results for a low-amplitude plunge maneuver.

In this case (and all similar cases) the model matches the measured forces closely.
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Figure 4.14: Comparison of measured and predicted force production for a
low velocity ratio plunge maneuver: w = 6c, h = 3c, α = 0°.

Both of these figures show results from cases for which α = 0°. Figure 4.15 shows

results from a high-amplitude plunge maneuver for which α = 20°. The substantial

unsteady force production dominates, so the steady-state influence of the wing pitch

angle does not visibly affect the results. In this case, θ ≈ 80° and so the model

over-predicts the force production as expected based on figure 4.11.
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Figure 4.15: Comparison of measured and predicted force production for a
high velocity ratio plunge maneuver with wing pitch angle: w = 1c, h = 3c,
α = 20°.

4.4 Comparison to gusts

It is also useful to compare the force production between the transverse gust

encounters and the sine-squared plunge maneuvers, which are geometrically similar

moving model and moving wing scenarios. In both cases, the steady flow is horizontal

and the transient flow is vertical and has a sine-squared velocity profile.

The plunge maneuver kinematics are simpler to create and vary than is the

generated fluid gust profile [46] (this is why even in the current work there are many

more plunge cases than gust encounters — compare tables 2.1 and 2.2). Because of

this, the investigation of gust encounter force production would be greatly simplified if
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Figure 4.16: Comparison of normal force histories for a set of geometrically
similar gust encounter and plunge maneuver at α = 0°.

the results from plunging wings could be used to represent the gust encounter and so

remove the need for a fluid gust generator. The current work includes measurements

of both scenarios, and so is able to compare the force production in each and identify

the inherent differences.

Figures 4.16 and 4.17 show force histories from gust encounters and plunge

maneuvers as closely matched as was available in the data of the current work. The

forces produced during the gust encounters are plotted in blue, and those from the

plunge maneuvers are in red. The other lines are discussed in the following sections.

In figure 4.16, the gust encounter and plunge maneuver both take place at α = 0°,

but the widths and velocity ratios are not exactly matched. The gust width is fixed

at w = 3.2c, and in this case the velocity ratio was G = Vg
U∞

= 0.42. The closest
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Figure 4.17: Comparison of normal force histories for a set of geometrically
similar gust encounter and plunge maneuver at α = 20°.

plunge maneuver had a width of w = 3c and a velocity ratio of Vp
U∞

= 0.67. In figure

4.17, the gust encounter and plunge maneuver both take place at α = 20°, but the

gust encounter was defined by w = 3.2c, G = 0.84, and the closest plunge maneuver

was w = 3c, Vp
U∞

= 0.67.

It is apparent and expected that the force production from similar-kinematics

gust encounters and plunge maneuvers are not inherently the same. The differences

between these cases must be quantified and counteracted in order to most closely

match the force histories. In this work, no process is found which allows for the

complete replacement of results from gust encounters by results from plunging wings,

although the progress towards this goal is still worth discussing.
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4.4.1 Inertial forces

The most obvious difference between moving model and moving fluid scenarios

(for kinematics which include acceleration) is the presence or lack of inertial forces.

In the gust encounters in the current work, the fluid is not accelerating — instead,

the wing is passing through a region of varying fluid velocity. This does not induce

any inertial force production. Alternately, the plunging wing experiences significant

inertial forces during its acceleration. While the inertial response caused by the mass

of the wing (and measurement hardware) was removed during post-processing, there

is still an inertial force contribution from the surrounding fluid, the “added-mass”

force.

Because this quantity is present in only the plunge maneuver cases, it can

simply be subtracted from the plunge force histories. The magnitude of the added-

mass force is given by equation 1.3, which reduces here to the right-most term of

equation 4.16. This is plotted in figures 4.16 and 4.17 as the green line. The result of

subtracting this from the total plunge force production is the “non-inertial” plunge

force production, plotted in purple. This procedure has not caused the gust encounter

and plunge maneuver forces to coincide, but it has caused the plunge maneuver

force histories to be similar in shape to the gust encounter force histories, rising

from steady state to peak over t∗ ≈ 1.5 and then descending to steady state without

overshoot. As was also observed in the investigation of harmonic plunging by Wong

et al. [46], the difference in forces produced by the moving model and moving fluid

cases at the moment of zero acceleration indicates that inertial effects are not the
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only difference between transverse gusts and plunge maneuvers.

4.4.2 Velocity distribution

The more complex difference between the gust encounters and the plunge

maneuvers is the chord-wise distribution of the transient velocity. In the case of the

plunge maneuvers, the kinematics vary in time, so the leading and trailing edges of

the wing (and all points in between) experience simultaneous variations in transient

velocity. This is not the same in the gust encounters. The gust profile is fixed in

space, and the wing passes steadily through it. The leading edge of the wing reaches

the gust first, and each point along the wing experiences different transient velocities

than one another.

One effect of this is that the trailing edge of the wing does not exit the gust

until t∗ = w+ c cos(α), making the gust encounter last up to one chord-length longer

than the width of the fluid gust. However, the forces observed for the gust encounters

in the current work were most closely related to the conditions at the leading edge of

the wing. Because of this, the gust encounters were compared to plunge maneuvers

with widths of w = 3c rather than w = 4c.

Additionally, there is no moment during the gust encounter during which the

entire wing experiences the peak gust velocity. This means that the chord-averaged

peak dynamic pressure is lower in the gust encounter than in a plunge maneuver

with the same characteristic velocity. This can be compensated for by effectively

distributing the plunge maneuver velocity profile in the same way that the gust
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velocity is distributed. The velocity itself can not be physically distributed in

the experiment; instead, the force production resulting from that velocity can be

distributed in the analysis.

At any moment during the gust encounter, each chord-wise location on the wing

experiences a different nominal gust velocity. During the plunge maneuver, however,

each location experiences the same simultaneous plunge velocity. The effects of

the plunge can be distributed over the velocity profile of the gust by treating each

chord-wise location on the wing as producing the plunge forces from the moment

during which the wing was plunging at the appropriate velocity. For example, at

t∗ = 0.5 the trailing half of the wing has not entered the gust, and so in the plunge

case no force contribution is considered there, even though at t∗ = 0.5 the entire

wing was plunging. The force production on each chord-wise point of the plunging

wing is taken from the plunge force history at the moment that matches the gust

velocity at that time and chord-wise location.

The distributed force production at any point is the average over the preceding

chord-length of the un-distributed force production (accounting for the horizontal

projection of the chord, the average is taken over t∗ = cos(α)). This procedure

incorporates both the effective delay in the transient event for the trailing edge

compared to the leading edge and the reduced peak chord-averaged transient velocity.

The result of this is plotted as the dashed purple line in figures 4.16 and 4.17. In

these cases, this distribution of the plunge maneuver force production does not make

it conclusively closer or further from the gust encounter force production. The effects

of the velocity distribution — and thus the ability to test this procedure — would
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be increased for a narrower gust encounter (or larger wing), but that is not available

to the current study.

4.5 Chapter summary

In this chapter, force measurements from sine-squared profile plunge maneuvers

were displayed and analyzed. The force histories were shown to be dominated by

plate-normal forces, to vary significantly in shape depending on the plunge kinematics,

and to recover to steady state force production almost immediately after the plunge

maneuver ended.

Variations in force production were then inspected with respect to one

independent parameter at a time. The freestream velocity had little effect on the

normalized force histories, which indicates that the force production is insensitive to

Reynolds number within the tested range. The wing pitch angle also had little effect

on the transient force production, which was unexpected and remains unexplained.

The plunge maneuver width and height both changed the force histories, because

they each changed the ratio of steady and transient velocities. The measured data

was reduced to characteristic scalars by curve fitting based on the instantaneous

acceleration and dynamic pressure of the maneuver. The reduced data helped to

identify that forces predicted by thin-airfoil theory and potential flow added-mass

matched the measured force production closely for roughly half of the tested cases.

The other half of the tested cases, which had higher velocity ratios, were over-

predicted by thin-airfoil theory and under-predicted by added-mass, which likely
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indicates that unmodeled unsteady force production becomes more significant in

those cases. The resulting force production model was presented (equation 4.16)

and the predicted and measured force histories were compared for several example

kinematics.

Force production was then compared between the plunge maneuvers and the

gust encounters. Two important differences, inertial forces and spatial velocity

distribution, were discussed and methods of counteracting those differences were

tested. For the available data, the described treatment of force histories was not

adequate to collapse results between moving model and moving fluid force production.
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Chapter 5: Summary and conclusions

An experimental investigation of unsteady force production by stream-normal

phenomena was conducted in order to extend present unsteady force models to these

two-dimensional, large-perturbation conditions. Consideration was given to small-

perturbation analyses of two-dimensional events including Wagner [10], Küssner

[12], and von Kármán and Sears [18], and to large-perturbation analysis of quasi-

one-dimensional events such as Granlund et al. [33] and Babinsky et al. [26]. The

current work adapted the existing small-perturbation models to large-velocity-ratio

transverse gust encounters and plunge maneuvers by the physical interpretation

of correlations between the defined kinematic parameters and the observed force

production.

Unsteady force production was measured for a flat plate wing during many

variations of transverse gust encounters and plunge maneuvers in the University of

Maryland automated motion-controlled towing tank. The velocity profile in each

case was limited to the sine-squared shape, but parameters such as the wing pitch

angle, wing towing velocity, gust velocity ratio, plunge maneuver height, and plunge

maneuver width were varied. Flow velocities around the wing were measured for

several gust encounters to aid in identifying the sources of unsteady force fluctuations.
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Force histories which were measured during gust encounters were characterized

by peak normal force in each case. The magnitudes of these peaks within the

current parameter space were found to be reasonably approximated by quasi-steady

analysis, but the variations in peak force with respect to wing pitch angle suggested

non-negligible unsteady effects (as did the duration of the gust recovery process).

The flow velocity measurements made by PIV identified large leading and trailing

edge vortices as a likely mechanism for the unsteady influence on force production.

Force histories which were measured during the plunge maneuvers were

compared by decomposing the force production into two sinusoidal terms which

corresponded to the quasi-steady terms of the model by von Kármán and Sears. The

residual of this model was found to be low in all cases, which indicated that unsteady

force production during the tested plunge maneuvers was accurately represented by

quasi-steady analysis. The unsteady influence on force histories instead augmented

each of the quasi-steady terms, which were found to be under-predicted by typical

analytical models.

5.1 Key gust encounter conclusions

The transverse gust encounters in the current work were shown to produce

one primary peak in force production during the gust encounter and diminishing

oscillations in force production after the gust encounter. The gradual return of forces

to the steady-state levels occurred over roughly 30c — an order of magnitude greater

than the duration of the gust encounter.
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The initial minimum in these oscillations, which occurs just as the trailing

edge of the wing exits the gust, causes the force production to temporarily dip below

the steady-state force production of the towed wing. The force oscillations during

gust recovery were connected to the presence of large vortices in the wake of the

wing. Concentrations of negative vorticity from the leading edge vortices caused force

augmentation, while concentrations of positive vorticity from trailing edge vortices

caused force reduction.

The magnitude of the peak force production in most of the studied gust

encounters was found to match in magnitude to predictions made by quasi-steady

empirical analysis. The trend in peak force production with respect to wing pitch

angle was more accurately recreated by indicial convolution of Küssner’s function

and non-linear thin airfoil theory, but that model poorly recreated the trend in peak

force production with respect to gust velocity ratio. This close agreement suggests

that Küssner’s function and non-linear thin airfoil theory adequately represent the

transient force production during these transverse gust encounters but that the

current implementation misses a variation in magnitude which scales with gust ratio

— perhaps unidentified in the current work due to the lack of tested variations in gust

width.

5.2 Key plunge maneuver conclusions

Force production by the sine-squared profile plunge maneuvers in the current

work was shown to vary with respect to the plunge maneuver width and height, but
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not with respect to freestream Reynolds number and only slightly with respect to

wing pitch angle. Wing pitch angle does significantly affect the steady-state force

production, but the unsteady force production dominates in most of the tested cases.

The observed invariance in transient force production with respect to wing pitch angle

goes against available analytical models and remains unexplained. Although the

unsteady force production was significant during the maneuver, the forces returned

to steady-state levels nearly immediately after the maneuver ended.

A physically-based, quasi-steady model was formulated which matched to the

measured force histories for many of the conditions tested in the current work. The

model combined a semi-empirical steady-state term, the potential flow solution for

added-mass, and quasi-steady thin-airfoil theory. The model did not match as closely

to force histories from plunge maneuvers with very high velocity ratios. Some of

those cases were able to be corrected by an empirical tuning of the inertial force

production estimate.

Fundamental differences between transverse gust encounters and plunge

maneuvers were unable to be counteracted in a way which could allow the translation

of results from one case to the other. Force production by the gust encounters

was significantly lower than that of geometrically-similar plunge maneuvers. This

difference was not adequately accounted for by inertial force production or spatial

velocity distributions.
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5.3 Highlighted original contributions

In the current work, it was demonstrated that a large-perturbation adaptation

to indicial theory using non-linear thin-airfoil theory and Küssner’s function was able

to closely match the trends in peak force production by transverse gust encounters for

variations in wing pitch angle. This improved on the predicted trends of both quasi-

steady analysis and the typical application of indicial theory using linearized thin

airfoil theory, although those two models each captured the trends with respect to

gust velocity ratio better than the proposed model. This model extends the preceding

work in small-perturbation transverse gusts and large-perturbation longitudinal gusts

to the current subject of large-amplitude transverse gusts.

It was also demonstrated that the quasi-steady components of the model by von

Kármán and Sears can account for most of the force production during sine-squared

profile plunge maneuvers. The missing term, which accounts for wake vorticity, may

explain the under-prediction of semi-empirical methods. This agrees with the gust

encounter results of the current work and with preceding work in surge maneuvers,

in which the effect of the leading edge vortex was to augment the force production

so that it approached that of attached flow even at high incidence angles [26].

5.4 Suggestions for future work

The experimental data in the current work and the models developed based

on that data have several limitations which can be addressed in future research.
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Hardware limitations meant that the fluid gust velocity was not variable during these

tests; the gust velocity ratio was changed by varying the towing velocity of the wing.

It was expected based on previous work that the tested variations in freestream

Reynolds number did not have significant independent effects on the force coefficient

histories, but verification of that assumption is only possible using a gust generator

which has variable speed control.

Additionally, the chord-normalized gust width was not varied in the current

work. This could be varied in future work by a controllable-width gust generator or,

perhaps more easily, by repeating tests in a fixed-width gust using a smaller or larger

wing. This would be particularly helpful in the further development of indicial models,

which integrate the force production over the flow history and so are significantly

changed by the duration (in convective time) of the transient gust velocity. The

investigation of this effect could help to reconcile the otherwise-successful predictions

of the proposed adaptation to indicial theory with the observed trends in peak force

production with respect to gust ratio.

The lack of variation in plunge maneuver force production with respect to wing

pitch angle remains unexplained. The wing pitch angle affects the steady-state force

production and alters the orientation of the plate-normal force, but it had little effect

on the magnitude of the transient plate-normal force. For most of the cases tested in

the current work, the transient forces were far greater than the steady-state forces,

so the wing pitch angle appeared to have little overall effect on the force production

during the plunge maneuvers. Neither thin-airfoil theory nor the empirical look-up

method agree with the observed result that the variation in normal force production
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with respect to the plunge-velocity-induced flow incidence angle, dCN

dθ
, is unaffected

by the initial pitch angle, α. Further investigation of the effect of wing pitch angle

on plunge maneuver force production is needed to identify the mechanisms behind

the observations of the current work.

During the decomposition of plunge maneuver force production, the model

fit residual was low for all cases despite the conflicting nature of applying a quasi-

steady model to highly unsteady force production. The effects of the unsteady

wake vorticity term of the model by von Kármán and Sears were thought to be

contained in the quasi-steady model terms, rather than being truly absent as the low

residual might suggest. This was helpful in the development of a physically-based

quasi-steady model for plunging wing force production, but limits that result to

sine-squared profile plunge maneuvers. Further analysis of von Kármán and Sears for

large-perturbation plunge maneuvers could separate the unsteady and quasi-steady

effects by testing maneuvers with non-sinusoidal velocity profiles, for which the quasi-

steady and unsteady force production components would have more notably different

shapes. This would significantly increase the parameter space and complicate the

decomposition method of analysis but could eventually allow for a more generalized

model for unsteady force production during plunge maneuvers with separated flow.

The vortex dynamics of a surging flat plate were simplified by Babinsky et al.

so that their unsteady effects could be expressed in a quasi-steady model [24–26].

The constant longitudinal acceleration of that maneuver greatly simplified the vortex

trajectories compared to what could be expected for the plunging wing maneuvers

of the current work. The two-dimensional relative motion of the wing and the
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shed vortices in the plunging case would require a more elaborate characterization

than the one-dimensional motion of the surging wing. Despite this difficulty, PIV

measurements of vortex growth and trajectories during plunging maneuvers could

provide an alternate formulation for a quasi-steady model of plunging wing force

production. A similar approach could be applied to transverse gusts, although the

vortex trajectories may be even further complicated due to the leading edge vortices

being temporarily “shielded” from the gust by the wing. Even if vortex tracking

does not lead to quasi-steady models for force production in these cases, increased

knowledge of the vortex behavior for various transverse gusts and plunging maneuvers

may help to justify the observed forces in the current work.
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