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Inference of the connectivity structure of a network from the observed dynamics of the states

of its nodes is a key issue in science, with wide-ranging applications such as determination of the

synapses in nervous systems, mapping of interactions between genes and proteins in biochemical

networks, distinguishing ecological relationships between different species in their habitats etc.

In this thesis, we show that certain machine learning models, trained for the forecasting of

experimental and synthetic time-series data from complex systems, can automatically learn the

causal networks underlying such complex systems. Based on this observation, we develop new

machine learning techniques for inference of causal interaction network connectivity structures

underlying large, networked, noisy, complex dynamical systems, solely from the time-series of

their nodal states.

In particular, our approach is to first train a type of machine learning architecture, known as



the ‘reservoir computer’, to mimic the measured dynamics of an unknown network. We then use

the trained reservoir computer system as an in silico computational model of the unknown network

to estimate how small changes in nodal states propagate in time across that network. Since small

perturbations of network nodal states are expected to spread along the links of the network, the

estimated propagation of nodal state perturbations reveal the connections of the unknown network.

Our technique is noninvasive, but is motivated by the widely used invasive network inference

method, whereby the temporal propagation of active perturbations applied to the network nodes

are observed and employed to infer the network links (e.g., tracing the effects of knocking down

multiple genes, one at a time, can be used infer gene regulatory networks).

We discuss how we can further apply this methodology to infer causal network structures

underlying different time-series datasets and compare the inferred network with the ground truth

whenever available. We shall demonstrate three practical applications of this network inference

procedure in (1) inference of network link strengths from time-series data of coupled, noisy

Lorenz oscillators, (2) inference of time-delayed feedback couplings in opto-electronic oscillator

circuit networks designed the laboratory, and, (3) inference of the synaptic network from publicly-

available calcium fluorescence time-series data of C. elegans neurons. In all examples, we also

explain how experimental factors like noise level, sampling time, and measurement duration

systematically affect causal inference from experimental data.

The results show that synchronization and strong correlation among the dynamics of

different nodal states are, in general, detrimental for causal network inference. Features that

break synchrony among the nodal states, e.g., coupling strength, network topology, dynamical

noise, and heterogeneity of the parameters of individual nodes, help the network inference.

In fact, we show in this thesis that, for parameter regimes where the network nodal states are



not synchronized, we can often achieve perfect causal network inference from simulated and

experimental time-series data, using machine learning techniques, in a wide variety of physical

systems. In cases where effects like observational noise, large sampling time, or small sampling

duration hinder such perfect network inference, we show that it is possible to utilize specially-

designed surrogate time-series data for assigning statistical confidence to individual inferred

network links.

Given the general applicability of our machine learning methodology in time-series

prediction and network inference, we anticipate that such techniques can be used for better

model-building, forecasting, and control of complex systems in nature and in the lab.
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Preface

Causality in complex systems

This thesis is about inference of cause and effect relations from data. In complex systems

where there are many interacting agents, such causal interactions form networks that ultimately

dictate how the system as a whole behaves over time. Examples of such systems include neurons

in our brain affecting firing patterns of one another, predators and preys in an ecosystems causing

growth and decline of each other’s population, genes in our cells turning each other on and off, and

so on. A general theme of the study of networked dynamical systems has been identifying how

these individual causal interactions between parts of such complex systems result in the collective

dynamics of these systems as a whole (e.g., how do neurons in the visual cortex fire together when

we see an image). An artist’s impression of how the functioning of a multi-component system

could depend on the cause and effect interactions among its parts is depicted in the drawing of an

example of a scheme known as ‘Rube Goldberg machines’ in Fig. 1.

Since the functioning of a complex system depends crucially on the causal interactions

among its parts, it is important to identify such interactions to construct mathematical models of

the system, or for the purpose of predicting or controlling such systems. Regarding this, a natural

question to ask is: given only the observed behavior of different parts of a complex system over

time, is it possible to construct the network of cause and effect interactions that connects them?

For example, looking at how neurons in the visual cortex fire over time, can we reconstruct how

they are coupled via synaptic interactions? This brings us to the question of casual inference -
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Figure 1: An example of a Rube Goldberg machine to light up the electric bulb shown in the right
with the boxing glove and spring shown in the left, from Scout Life website.

connecting a set of observed events or dynamical agents with causal interactions. In some cases,

such causal interactions among different agents can be simple and propagating linearly from one

agent to another, without any feedback and with each agent being causally affected by only one

other agent and causally affecting only one (a different) agent - like falling dominoes. An example

is given by the machine in Fig. 1. There, cause and effect interactions flow along the following

sequence, from left to right, as the extending of the gloved spring on the left eventually lights up

the bulb on the right: boxing glove and spring, bowling ball, bowling pin, left string, birdcage,

small falling ball, dominoes, axe, right string, hammer, weighing scale, model of human hand,

light bulb. But, in more general cases, if there are many agents in a complex system, the cause
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and effect interactions among them constitute a directed network. An example is shown in Fig. 2,

where the causal predator-prey interactions form a network among the Chesapeake Bay waterbirds.

In such cases, identifying causal interactions amounts to inferring the directed network of cause

and effect relationships among the agents of a complex system. Moreover, as we shall see later

in this thesis, unlike the example network shown in Fig. 2, there could be bi-directional causal

effects between different agents, adding to a further layer of complication in causal inference. In

this thesis, we shall devise and test methods to infer these causal networks in various complex

systems.

Figure 2: An example of a directed network of predator-prey interactions, from Wikipedia.

The ladder of causation

Since inference of causality in complex systems is of utmost importance in understanding
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their inner workings, it is imperative to think about the different levels at which the task of

causal inference can be achieved. A formalization of this is found from ‘The Book of Why’ by

Judea Pearl and Dana Mackenzie [1], where the authors classify causal inference to three levels

- association (‘seeing’), intervention (‘doing’), and counterfactual (‘imagining’) - forming the

‘ladder of causation’, as shown in Fig. 3, since each of the levels build on its lower levels. To

consider this in more details, let us use the example of baking butter cookies. Suppose we wish to

understand whether adding butter causes the cookie to have a certain texture. How do we go about

it?

Figure 3: The ladder of causation showing three levels of abilities of a causal learner, for the
example of baking a butter cookie.

To begin with, we need data. Suppose we have baked many butter cookies with different

proportions of the baking ingredients and recorded the outcomes each time. The data relates the
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amount of butter in the cookies to different textures of the cookies, but this relationship is merely

an association, or, ‘correlation’, in the sense of statistics. In the language of probability, it means

to be able to calculate only the probability of a cookie to have a certain texture, given a certain

amount of butter in it (Fig. 3). This does not tell us for sure if the amount of butter is causing an

attribute of the texture of the cookie. So, this is the most basic information that we can extract

from the situation, if we only have the data available. At this stage, which is the first rung of the

ladder of causation, we can predict the texture of the cookie by the amount of butter in it - but

we do not know for sure whether it was the amount of the butter that caused this texture. This is

because we cannot answer questions like ‘what would the texture be like if the amount of butter

was halved?’ simply by looking at the data, since the amount of other ingredients are also varying

in the data. So, the change in texture when the amount of butter is changed may not actually be

due to the butter but, say because of the differing amounts of flour and sugar. So, relationships

based on simple associations can be misleading. How to know for sure that the butter is causing a

particular aspect of the texture?

The way to deduce if it was really the amount of butter that caused a particular texture

of the cookie is to do skillfully designed controlled experiments - baking many cookies with

different amounts of butter with the amount of all other ingredients and baking conditions held

fixed. This implies directly interacting with the system, using tools to actively intervene into it.

Such controlled experiments enable us to calculate the probability of a cookie to have a certain

texture, if the butter in it is changed by a certain amount (Fig. 3). This is the second rung of the

ladder of causation, and it involves doing the experiments, like the ones that generated the data of

rung one, in controlled way. As such, it assumes that we have an access into the system we wish

to model.
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The final rung of the ladder is imagining what would have happened if we changed the

conditions in a certain baking experiment, but, without doing any more experiment. So, suppose

we have done some experiments with different amounts of butter like in rung two, and maybe

others involving changing other ingredients as well. Then, we ask ”what would have happened if

we changed ingredient X in experiment number Y?” Unlike rung two, we cannot do an experiment

again. So this requires an additional level of sophistication - the intuition of an experienced baker.

What does this imply for causal inference in complex systems? If we observe different parts

of a complex systems over a period of time, we can record the changes of measured states of these

different parts (e.g., membrane potentials or calcium fluorescence from individual neurons in the

brain). The first thing to do with this data is to find correlations between states of different parts

of the complex system. While we just argued that such correlations are the most primitive forms

of causal modeling and may not necessarily imply causal interactions, we do obtain a wealth

of information relating different parts of a complex system, which are useful particularly if we

cannot make interventions into the system, and hence, cannot go up the ladder of causation easily.

For example, correlations between activities of different parts of the human brain can be used

to calculate functional connectivity, a measure that yields useful information, e.g., in studies on

schizophrenia [2] and learning [3].

However, simple associations between compositions of a complex systems with its

characteristics, without a mechanistic understanding of the underlying processes, has been shown

to be dangerous in science. An example is linking a person’s genes to their behavioral traits.

‘Some companies see a market in reading DNA like a fortune-teller reads tea leaves’, remarks a

Nature commentary [4], warning us against the consequences of misinterpreting these associations

as causal effects.
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Indeed, examples of misuse of associations abound in modern machine learning. It is

challenging for artificial intelligence (AI) to work by identifying causal relations in the data,

going beyond probabilistic associations that most of them are trained on [5]. As consequences,

mainstream AI still struggles to transfer learned skills to new environments, requires data-heavy

training, and often produces opaque machines reproducing and reinforcing non-causal associations

and biases in training data. ‘Widespread, mysterious, and destructive’ [6], Cathy O’Neil labels the

algorithms affecting our lives, for example, by performing facial recognition in surveillance and

calculating everything from credit scores, college rankings, to the amount of prison sentences.

Opaque AI algorithms learning by identifying non-causal associations have been shown to,

e.g., misclassify gender of a face depending on race [7], produce language models showing

stereotypical association and negative sentiments towards specific groups [8], misclassify objects

to be identified for steering angle prediction in self-driving cars [9] and produce false positive

melanoma recognition depending on spurious surgical skin markings in medical images [10].

Thus, a general goal in machine learning is to produce AI algorithms that learn not by identifying

statistical associations, but by identifying causal relationships in the training data. In order to do

so, we need a way to lift the AI algorithms to one rung up the ladder of causation. This thesis

is about machine learning architectures that are shown to be able to learn by identifying causal

interactions in complex systems.

Taking machines up the ladder of causation

What does it require for a causal learner to go one level up the ladder of causation? It is the

ability to do specifically designed controlled experiments. In the case of genetics experiments, the

approach of ‘perturbation biology’ [11] involves knocking down genes and observing downstream

effects of such knockdowns on other genes to infer causal gene interaction networks. However,
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while this example allows experimental access to the system under study, such might not be true

in more general cases. For example, in the case of ecological predator-prey relationships, it is not

desirable, in general, to have any human interventions to the population dynamics of different

species. Considering such cases, trained machine learning algorithms should be able to accurately

predict the effects of interventions, if they are to be placed on the second rung of the ladder of

causation. Is there a way that it can be achieved?

In the case of complex dynamical systems with many components connected by a network of

causal interactions, we show in this thesis that it is possible to have machine learning architectures

trained only on the time-series data from the components of a complex system, that can not only

fit to the training data (i.e., learn to model associations), but can also predict the causal interactions

among the components. In particular, our trained machines would be shown to accurately answer

questions like “would component X of a complex system change at time t′ as a result of a change

in component Y at time t, with t′ > t”? In many cases, a correct answer to these questions would

mean inference of the causal network underlying the complex system. In our examples in the

following chapters, we shall test the goodness of causal network inference by comparing the

inferred causal network to the ground truth causal network, with the latter being known in all

of our examples. The results will show that there are hopes of lifting mostly associational AI

algorithms of today one step up the ladder of causation, where they would be able to predict the

effect of interventions and different controlled experiments on the systems they would be trained

on.
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Chapter 1: Introduction

In this thesis, we infer causal interactions in complex dynamical systems from machine

learning models of their time-series data. This chapter serves as a background material for the

rest of the thesis. It introduces both the research questions that we shall address in the rest of this

thesis, and the main framework that we shall address them within.

We start by explaining with examples why an understanding of the network of causal

interactions underlying a complex system is essential for modeling and prediction of complex

systems. Then we discuss several traditional and contemporary methods developed for such

purpose. Finally, we shall introduce a new machine-learning-based technique for inference of

causal interaction network structure underlying complex dynamical systems, that we shall employ

in the next chapters.

1.1 A network science view of complex dynamical systems

The science of agents, objects, or systems connected by graphs - network science -

has flourished in the last two decades and provided us with a wealth of useful analytical and

computational techniques [12, 13] to describe and study complex systems in nature and society.

Examples of networked systems range from neuronal networks [14] in the brains of human and

other organisms, and gene regulation and protein interaction networks inside cells [15], to the
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internet and telecommunication systems. Network science has provided us with a ‘systems’

viewpoint of natural and social processes, that has been instrumental in their understanding and

control. A particularly important subfield of network science deals with collective properties

of complex dynamical systems connected via networks. Applications of such studies include

epidemic spreading [16], synchronization of dynamics [17], and growth of political polarization

[18] on complex networks, to mention a few. As such, networked complex systems are platforms

of studying a wide variety of dynamical phenomena arising from the interactions between network

topology and time-evolution of agents, acting as the network nodes, connected by the network

links.

1.2 Network inference techniques and applications

While studying the collective properties and dynamics of networked agents has been

interesting, the inverse problem, i.e., inference of network links from the observed dynamics of

the network nodal states, is also an important and challenging problem in itself. Applications

of network inference techniques include determination of the synaptic connectivity in nervous

systems [2, 19, 20], mapping of interactions between genes [21] and proteins in biochemical

networks [22], distinguishing relationships between species in ecological networks [23, 24],

and understanding the causal dependencies between elements of the global climate [25]. In

all such cases, a basic network structure among the agents of these complex systems (e.g.,

individual neurons, genes, proteins, and species) can be found by measuring correlations among

the time-dependent states of the agents. Examples include functional connectivity in neuroscience

which measures the correlation of neural activity among different parts of the brain [2, 14],
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gene co-expression networks that link genes which are statistically expressed together [26], co-

occurrence/co-exclusion networks of microbes [27] that map which microbes are statistically

present or absent together in the human microbiome etc. Such networks based on correlation,

co-occurrence or associations among different agents have been useful in, for example, relating

neural activity to neurodegenerative diseases [28, 29] and other conditions [2, 14] and relating

changes in gut microbial co-occurrence patterns to inflammatory bowel disease [30]. However,

despite the usefulness of correlation-based network models of complex systems, in the absence of

causal models, they are generally unable to predict how the complex systems would respond to

external perturbations. For example, it is impossible to predict how knocking down of a specific

gene would affect the expression of other genes and stimulating a specific neuron would affect

the firing pattern of other neurons, if the causal, directed interaction networks among the genes

and neurons are not known. So, therapeutic interventions into these systems will not be possible

without a thorough causal understanding of these systems. Thus, a broad goal of this thesis is to

extract the causal network connecting different components of a complex system, solely from the

time evolution of such components.

Given the usefulness of causal network inference, a number of methods have been proposed

for such purpose. We shall now briefly review some prominent network inference methods. It is

helpful to classify them into two types: (1) model-free, i.e., network inference techniques that do

not assume any particular mathematical model of the observed dynamics, and, (2) model-based,

i.e., network inference techniques which assume the dynamics of the system to be governed

by a particular class of mathematical models (e.g., a set of linear coupled ordinary differential

equations) with parameters which are fitted using the available time-series data. We now describe

some examples of the two types of network inference methods. For connectivity inference from
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neuronal recordings, a review of different network inference methods and their comparisons can

be found in Ref. [19].

1.2.1 Model free network inference techniques

1.2.1.1 Transfer entropy

Transfer entropy is an information theoretic causal network inference technique, which

measures the rate of transfer of information from one time-series to another [31]. For a pair of

agents (i, j) with dynamical states in a complex system, transfer entropy from i to j is defined by

the conditional mutual information between the future states of j and past states of i conditioned

by past states of j. It represents the amount by which the uncertainty in the future dynamics of j

is reduced by knowing the past dynamics of i conditioned on the past dynamics of j. Transfer

entropy is usually calculated pairwise, and can be used to construct a weighted, directed network

connecting the agents of a complex system based on the directional information flow between

them. Several generalizations and variations of transfer entropy also exist [19], to account for

experimental limitations to acquisition of time-series data.

1.2.1.2 Supervised learning of causal interactions

Model-free techniques of estimating causal interaction networks are rare because effects of

causal interactions between dynamical agents can potentially affect their dynamics in multiple,

unknown ways. In cases where there are available examples of dynamics with known ground

truth causal connectivity, one can use such examples to train machine learning algorithm to

detect the presence of causal interactions from dynamics [19, 32]. However, such techniques
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require data-heavy training and availability of ground truth causal interaction networks which

are often unknown. Furthermore, in many cases, such models lack interpretability if it is unclear

what features of a complex system’s dynamics are being used to predict the causal interactions

underlying the dynamics.

1.2.2 Model-based network inference techniques

In model-based techniques the causal connectivity is estimated by mathematically modeling

the processes that generates the sampled time-series data, and fitting model parameters to the

observed data. Some examples of such models are the following.

1.2.2.1 Granger causality

For a pair of agents (i, j) with dynamical states in a complex system, we say that j does

not Granger cause i if and only if i, conditional on its own past dynamics, is independent of the

past dynamics of j [33–36]. Alternatively, if we can have information on the past dynamics of

i from the past dynamics of j, then j would Granger cause i. The typical way to test this type

of dependency between two time-series involves fitting a vector autoregressive model for the

time-series for i, and measuring whether inclusion of the time-series of j in that model makes the

fitting error significantly lower. In such generative time-series models applied to test the predictive

powers of different time-series, one can simultaneously consider more than two time-series at

once, and can simultaneously include multiple time-delays in the generative model. However,

these models are linear, and stationary in nature whereas the original dynamics might be nonlinear

and non-stationary [37, 38]. Furthermore, the presence of unmeasured external inputs to the
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dynamics, noise, and finite sampling rate is also known to affect Granger causality [37, 38].

1.2.2.2 Bayesian network model

Bayesian networks model the conditional probability distributions of time-series from

different agents with a directed, acyclic graph [19, 24, 39] with parameters corresponding to, e.g.,

causal connectivity strengths. These parameters of the model are optimized to fit to the observed

data and assuming a particular form of the underlying probability distribution (e.g., Gaussian) of

the time-series variables from different agents [39].

1.3 Network inference with reservoir computing

1.3.1 Properties of computational models for network inference

In the preceding section, we saw some examples of popular techniques for causal

connectivity inference from time-series of complex systems. While model-free methods like

transfer entropy can capture causal connectivity by measuring information flow between different

dynamical agents of a complex system, they do not provide any generative model for the sampled

time-series data. In this thesis, we wish to extract causal interaction network connections from a

model of the observed time-series, that can accurately fit to and generalize the measured data.

Thus, we aim for a mathematical or computational model of the observed time-series from the

complex system that has the following three properties.

(i) Accurate fit to the sampled data: The model is sufficiently complex, potentially

containing a large number of adjustable parameter so that it can fit to the sampled time-series data

accurately.
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(ii) Prediction or generalization of the sampled data: The model is able to predict the

time-series of the complex system for some time duration in the future, or, at least be able to

generate time-series data which is statistically similar (e.g., has similar power spectrum) to the

original sampled time-series data.

(iii) Causal inference extraction from observed data: The model should be able to predict

the effect of small changes to the states of individual agents on the states of other agents at a later

time in the complex system. That is, it should have the capability to extract causal connectivity

structure among the dynamical states of different agents, using only the observed time-series data

that it has been fitted on.

In order to faithfully infer causal network connectivity from a model of time-series data, all

three of the above properties are essential. Since causal interactions can affect the dynamics of

individual agents in many ways, we wish to make sure that our model of the dynamics is sufficiently

complex to capture all of them, so we wish our model to fit accurately to the observed time-series

data. However, goodness of this fit alone does not guarantee that the model is indeed capturing the

ground truth dynamical processes of the actual system, as the model could overfit to the available

data. In order to avoid this overfitting, we ensure that the model is indeed able to autonomously

predict the future time evolution of the actual system, or generate time-series samples which are

statistically similar to the observed time-series of the complex system. Furthermore, to ensure

that the model is able to fit to and generalize the observed time-series not by identifying simple

statistical association between the time-series of different agents, we further require that the model

must be able to predict the effect of interventions to the time-series of the different agents. In this

thesis, we shall show that it is possible to obtain a model that satisfies the above three properties,

using a specialized machine learning architecture called the ‘reservoir computer’ (RC). In the next
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section, we describe the structure of a RC in more details.

1.3.2 Basic structure of a reservoir computer

In its most basic form, the reservoir computer is a machine learning architecture that takes

in multiple time-series at its input and produces multiple time-series at its output (Fig. 1.1). We

denote the time-series that has been sampled from the complex system by the time-dependent

vector u(t), of dimension Du, with its components denoting the time-series corresponding to

the states of individual agents of the system (note that, if the states of the agents are given by

vectors themselves, then multiple components of the time-series vector u(t) may be sampled

from the same agent). If the sampling time is δt, we have this time series vector measured at

times t = 0, δt, 2δt, ..., T δt. Based on the properties of causal models from the previous section,

we wish to obtain a computational model of the observed time-series yielding a corresponding

time-series ũ(t) of the dynamics that (i) fits to the observed time-series data u(t) (which we shall

call the ‘training data’), (ii) can generate time-series data ũ(t) with similar statistical properties as

u(t), and (iii) can predict the input data for a time duration (say, τ ) into the future, i.e., given u(t),

the model can predict ũ(t+ τ) at its output. Fig. 1.1 shows how this is done with an RC.

Input time-series

u1(t)

u2(t)

u3(t)

u4(t)

u5(t)

𝐮(t)
෦u1(t + 𝜏)

෦u2(t + 𝜏)

෦u3(t + 𝜏)

෦u4(t + 𝜏)

෦u5(t + 𝜏)

෥𝐮(t + 𝜏)

Predicted time-series

Figure 1.1: Schematics of a reservoir computer predicting a five-variable time-series u(t) a time τ
ahead into the future.
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As depicted in Fig. 1.1, the RC is a network consisting of a large number of nodes. The

number of nodes, Dr, is chosen such that Dr >> Du. Each of the nodes has a time-dependent

scalar state, all of which are collected in a time-dependent column vector R(t) of length Dr.

These reservoir nodes receive measured inputs of the system state vector u(t). At every time-point

t, this system state vector u(t) is fed into the reservoir via a Dr ×Du input-to-reservoir coupling

matrix Win (Fig. 1.1). Furthermore, the reservoir nodes are coupled among themselves with a

Dr ×Dr adjacency matrix W. The time evolution of the reservoir node states R over a small

time step ∆t are given by the equation,

R (t+∆t) = σ (Winu(t),WR(t)) , (1.1)

which maps the reservoir state at time t to the reservoir state at the next time step, t+∆t, where σ is

a general nonlinear ‘activation’ function of the input and reservoir states, acting componentwise on

its vector argument (which must the same dimension, Dr, as the reservoir state R). For simplicity,

in this instance we can assume that δt = ∆t, even though in more general cases, it suffices that

the reservoir time-evolution iteration time-step ∆t is an integer multiple of the sampling time-step

δt of the system. Based on the available time series from the system u(t) for T time steps, Eq. 1.1

can be iterated to generate a corresponding time series for the reservoir state, R(t).

Since the goal is to predict the future values of the sampled time-series u(t+ τ) from their

current observed values u(t), we may utilize the reservoir state vectors R(t) for this purpose. In

our case, this is done by using a suitable linear combination of the reservoir node states with a

Du ×Dr reservoir-to-output coupling matrix Wout (Fig. 1.1) according to the equation,

ũ(t) = WoutR(t), (1.2)
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where the tilde in ũ indicates that the vector is a prediction from the RC, as opposed to being

sampled from the actual system. Given the form of Eq. 1.2, the matrix Wout can be found by a

linear regression between the vectors u(t) and R(t). This linear regression constitutes the training

process of the RC, and the matrix Wout is the only element of the RC with adjustable parameters -

the other matrices, like Win and W, are chosen randomly at the beginning of iteration of eq. 1.1,

kept fixed throughout. Since the training constitutes of a linear regression, RCs can be trained

much faster than conventional deep learning neural networks which contain many adjustable

parameters which have to be trained by gradient descent. A comparison of the training time of RC

and other machine learning architectures is done in Ref. [40].

While the subsequent chapters in this thesis will contain more details about the form of

the nonlinear function σ, as well as the structure of the fixed matrices Win and W, we note here

the generality of RCs. Indeed Eq. 1.1 shows that any dynamical system with a sufficiently large

number of ‘nodes’ or computing units, having some nonlinearity, and a mechanism of receiving

inputs and providing readable outputs can serve as a potential RC. Indeed, as reviews on RC

realizations with physical systems demonstrate [41], RCs can be experimentally realized with

many different systems irrespective of the microscopic details of their dynamics. Such physical

implementation of the reservoir computer [41–43], include photonic [44–46], electronic and

opto-electronic [47, 48], neuronal [49], molecular [50], chemical [51], spin [52] systems, or even

a tank of water [53]. This flexibility of physical realization makes RCs a prime candidate for

‘neuromorphic computing’ [43], an unconventional computing paradigm that seeks inspiration

from neural systems to create novel computing architectures.
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1.3.3 Reservoir computer models of time-series data and network inference

RCs have been used for a variety of applications in time-series analysis, including forecasting

of spatially extended [54] and networked [55] chaotic systems, data-based reconstruction of long-

term statistical properties of dynamics like the Lyapunov spectrum [56, 57], separation of mixed

signals from two sources [53, 58], and fast classification of spoken words [44], to mention a few.

Among these applications, the first one is the most relevant for our purpose of network inference.

In terms of properties (i) and (ii) from Sec. 1.3.1, RCs with a moderate size (Dr ≈ 1000) are

known to fit to the training data of size Du ≈ 10 accurately. Furthermore, as Fig. 1.2(a) shows,

it is possible to use trained RCs for autonomous long-term time-series forecasting by running

them in a closed loop configuration where the output time-series from the RC ũ(t) at a given

time-step t is fed back as the input to the RC, thus eliminating the need to have any inputs from

the original time-series data. As shown in the example of Fig. 1.2(b), such predictions remain

accurate for a long time, even for chaotic systems. It is to be noted here that, for chaotic systems,

time-series starting from two different initial conditions separated by a small amount δu, are

expected to separate by an amount eΛmaxtδu after a time t, where Λmax > 0 is the maximum

Lyapunov exponent of the system. Forecasting of such chaotic trajectories several Lyapunov times

into the future thus shows that the closed-loop RC can serve as an accurate model of the observed

dynamics. Fig. 1.2(b) further shows that, even when the accuracy of the long-term RC prediction

breaks down (say after a time t such that Λmaxt > 6), the RC predicted time-series qualitatively

looks similar to the original time-series. This is confirmed by comparing long-term statistical

properties of the dynamics, like power spectrum (Fig. 1.2(c)) and Lyapunov spectrum (which is

the set of Lyapunov exponents of a chaotic systems, ordered according to their numerical values,
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shown in Fig. 1.2(d)) for the original time-series and closed-loop the RC predicted time-series.

Figs. 1.2(c,d) show that long-term statistical properties of the RC prediction indeed matches

with the corresponding properties of the original time-series data, thus fulfilling the ‘time-series

prediction and generalization’ condition (ii) of Sec. 1.3.1.

Win WoutRC

(a)

(b)
Original

Predicted

Error

(c)
Original data
RC prediction

Original data
RC prediction

(d)

×
+

Figure 1.2: Properties of time-series prediction by reservoir computers: (a) a schematic of closed-
loop configuration of a trained RC used for autonomous time-series prediction, (b) original and
RC-predicted time-series from a large, spatiotemporally chaotic system (Kuramoto-Sivashinsky
model) and the prediction error over time, with time measured in terms of the maximum Lyapunov
exponent Λmax, (c) comparison of the power spectrum, and (d) Lyapunov spectrum of the original
time-series data and RC prediction for the Kuramoto-Sivashinsky model. (a) and (b) are adapted
from Ref. [54] and (c) and (d) are adapted from Ref. [56].

Since the RC has been demonstrated in the literature to fulfill conditions (i) and (ii) of Sec.

1.3.1, we wish to know if it can capture the causal interactions between the dynamics of different

agents in the complex system (condition (iii) of Sec. 1.3.1). In our formalism, this is represented

by causal interaction among the components of the vector u(t). Mathematically, we suppose that,

if a component i of the vector u(t) is causally affecting another component j of u(t), then, the
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derivative ∂uj(t + τ)/∂ui(t) would be non-zero for some τ > 0. For example, if the system

does not have any time-delay, then over a very short period of time τ = δt, the derivative would

acquire a non-zero value if the dynamics of component i is causally affecting the dynamics of

component j. For time-delayed systems, we can set τ to be the time-delay of causal interactions to

have a similar effect. Note that, our notion of causality, as defined with the partial derivative of a

component of the state vector u(t) with respect to another component at a past time, is close to the

concept of causality in terms of interventions. That is, for example, if we changed a component

ui at time t by putting an external perturbation, that would cause a corresponding change to a

component uj a time τ later if and only if the component j is causally connected to the component

i over this time. As such, our task of causal inference in complex systems amounts to estimating

the derivatives ∂uj(t+ τ)/∂ui(t) from the sampled observations of the time-series of u(t).

Partial derivatives like ∂uj(t+ τ)/∂ui(t) cannot be directly calculated from the time-series

of u(t) directly in a straightforward way. This is because, when we test causal dependence

between a pair of variables, we wish to have the other variables unchanged, so that their effects

do not interfere with the testing pair of variables. In the partial derivative ∂uj(t+ τ)/∂ui(t), all

components of the vector u(t) other than the i-th and j-th components are assumed to be held

fixed. In the original time-series, this rarely happens, since, at every sampling time point, generally

there are changes to all components of the state vector u(t) together. Thus, the original time series

of u(t) itself cannot be used to calculate the partial derivatives ∂uj(t+ τ)/∂ui(t) indicating causal

interactions.

However, if we have a model for the observed dynamics of the state u(t), of the form

u(t+ τ) = M (u(t)), then we can use that model to calculate the partial derivatives: ∂uj(t +

τ)/∂ui(t) = ∂Mj/∂ui and test the causal dependence among the components of u(t). Since RCs
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are able to give us an excellent model of an observed time-series that not only fits to the sampled

data accurately, but can also both predict and generalize the sampled data, we use the RC model of

an observed time-series to calculate the partial derivatives. The model is obtained by combining

Eqs. 1.1 and 1.2 into a single equation, assuming a perfect fit to the training data by the RC (i.e.,

u(t) ≈ ũ(t)),

u(t+ τ) = Woutσ (Winu(t),WR(t)) , (1.3)

which we use as the model of the observed time-series to calculate the partial derivatives

∂uj(t + τ)/∂ui(t) = ∂Mj/∂ui. If the RC model of the time-series, given by Eq. 1.3 indeed

captures the true causal dependencies among the components of the time-series, the resulting

derivatives should indicate such. Throughout the rest of this thesis, we shall use equations like Eq.

1.3 to test whether RC models are able to actually predict the true causal dependencies among the

components of a complex system, which would be known in all cases that we shall consider. We

shall also investigate how properties of the time-series, like amount of correlations among their

components, and sampling limitations, like finite sampling time, observational and dynamical

noise systematically affect the causal learning performance of the RC.

1.4 Organization of this thesis

The next three chapters of the thesis are about three applications of causal inference by the

RC.
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1.4.1 RC inference of short-term causal dependence

In chapter 2, based on Ref. [59], we test whether RCs can capture short term causal

dependencies in the data, i.e., predict how one component of a time-series affects another over

a very short time. To test this, we shall use simulated data from complex networks of coupled

chaotic Lorenz oscillators. Varying the size of the network, as well as observational and dynamical

noise strengths in the time-series data, we show that the RC is able to correctly infer the causal

interactions networks if the degree of correlation among the time-series from different Lorenz

oscillators and the observational noise strength are sufficiently small. Interestingly, in contrast

to what we generally described so far in this chapter, presence of dynamical noise is shown to

aid RCs to identify causal interactions. We hypothesize that the reason of this is two-fold: (i)

dynamical noise breaks down correlations and synchrony among the time-series from different

Lorenz oscillators, and (ii) over a short time period, dynamical noise at one Lorenz oscillator

only propagates to those particular oscillators which are causally connected to that oscillator. As

such, dynamical noise in the network generates perturbations of the Lorenz oscillator nodal states,

which propagate in time to only causally connected nodal states, revealing the causal connectivity

structure in the process. Even for relatively small dynamical noise strengths, when these changes

are infinitesimal, the RC is shown to be able to successfully use their information to correctly

predict short-term causal connections among the networked Lorenz oscillators.

1.4.2 RC inference of time-delayed causal dependence

In contrast to the short-term causal inference in chapter 2, chapter 3, based on Ref.

[60], discusses inference of time-delayed causal interaction by the RC. In this chapter, we use
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experimental and simulated voltage data from networks of delayed-feedback-coupled nonlinear

optoelectronic oscillator (OEO) networks - an excellent testbed for studying nonlinear dynamics of

delay-coupled networks. The results are similar to the ones in chapter 2 in that the RC is shown to

be able to capture the causal interaction network correctly, provided the amount of synchronization

among the dynamical variables are small - something that can be achieved by tuning the coupling

strengths, increasing the dynamical noise strength, having different time-delays along different

feedback network links, or by rewiring the OEO networks. Moreover, the RCs identifying causal

interactions are here shown to perform equally well on experimental data. This observation

inspires us to apply the RC causal inference technique to more real-world time-series datasets

from less well-controlled experiments. This is the subject of chapter 4.

1.4.3 Effects of sampling conditions on RC causal inference and statistical

analysis

In chapter 4, we apply RC technique for short-term causal dependence, but on publicly

available experimental data on calcium fluorescence dynamics from the neural system of live C.

elegans. Such data suffers from low sampling temporal resolution, high noise level, large amount

of correlation among different variables, and only a partial measurement of the full biophysical

neural state of the organism. However, the C. elegans neuronal connectome is completely mapped

and thus serves as the ground truth for benchmarking the network inference performance of the

RC. To investigate the effect of data limitations on network inference in this system, we also

use time-series data from a synthetic model of coupled Lorenz oscillators on the same network

and systematically changed the different sampling parameters. In all such cases, when the data
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limitations restrict the complete identification of the causal network, we apply a previously-

developed statistical technique with surrogate time-series data to assign statistical confidence

to each inferred causal link. The RC network inference technique, together with the statistical

methodology, is shown to yield useful information about the C. elegans neural connectome, when

compared with the ground truth connectome.

Finally, the next section summarizes how RC can be used for inference of causal connections

in complex systems.
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Chapter 2: Inference of short term causal interactions:

applications in coupled Lorenz oscillators

This chapter is based on the publication “Using machine learning to assess short term

causal dependence and infer network links” by Amitava Banerjee, Jaideep Pathak, Rajarshi Roy,

Juan G Restrepo, Edward Ott, published as Chaos 29, 121104 (2019). The code to generate

some of the results can be found in the GitHub repository banerjeeamitava/Reservoir-Computer-

Network-Inference.

2.1 Overview

This chapter demonstrates the first concrete application of our network inference procedure,

using simulated time-series data from networks of coupled chaotic Lorenz oscillators. The

problem of determining causal dependencies among various agents, in an unknown time-evolving

system, from its time series observations, has wide-ranging and diverse applications. These

include inferring neuronal connections from spiking data, deducing causal dependencies between

genes from expression data, discovering long spatial range influences in climate variations, etc.

Previous work has often addressed such problems by considering correlations, prediction impact,

or information transfer metrics. In this chapter we propose a new method for causal inference

in complex systems that leverages the potential ability of a specific type of machine learning,
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called ‘reservoir computing’ (RC), to perform predictive and generative tasks involving complex

time-series.

Using RCs, We introduce and test a general computational technique for the inference of

short term causal dependence among the measured time-dependent state variables of an unknown

dynamical system. The basic method involves training the RC with the observed time-series

data of the state variables of the unknown dynamical system to construct a computer model for

the unknown dynamics, and, subsequently, estimating the causal dependencies of different state

variables on each other in that computer model.

We test our method on model complex systems consisting of networks of many

interconnected chaotic Lorenz oscillators. Comparing the causal networks inferred by the RC

to the ground truth, we find that dynamical noise can greatly enhance the effectiveness of our

technique, while observational noise and presence of synchronization degrades the effectiveness.

We believe that the competition between these two opposing types of noise, as well as the degree

of synchrony in the system will be the key factor determining the success of causal inference in

many of the most important application situations. These tests show that machine learning offers a

unique and potentially highly effective approach to the general problem of causal inference.

2.2 Introduction

The core goal of science is often described to be generalization from observations to

understanding [61], commonly embodied in predictive theories. Related to this is the desire to

use measured data to infer necessary properties and structure of any description consistent with

a given class of observations. On the other hand, it has recently emerged that machine learning
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(ML) is capable of effectively performing a wide range of interpretive and predictive tasks on

data [62]. Thus it is natural to ask whether machine learning might be useful for the common

scientific goal of discovering structural properties of a system from data generated by that system.

In this chapter we consider an important, widely applicable class of such tasks. Specifically, we

consider the use of machine learning to address two goals.

Goal (i): Determine whether or not a state variable of a time evolving system causally

influences another state variable.

Goal (ii): Determine the ‘strength’ of such causal influences.

In the terminology of ML, Goal (i) is referred to as “classification ML,” and Goal (ii)

is referred to as “regression ML.” These goals have previously been of great interest in many

applications (e.g., economics [33], neuroscience [63], genomics [21], climate [64], etc.). Many

past approaches have, for example, been based upon the concepts of prediction impact, [33,63]

correlation, [65–68] information transfer, [31, 69] and direct physical perturbations [11, 70]. Other

previous works have investigated the inference of network links from time series of node states

assuming some prior knowledge of the form of the network system and using that knowledge in a

fitting procedure to determine links [66, 71–74]. In addition, some recent papers address network

link inference from data via techniques based on delay coordinate embedding, [72] random forest

methods, [75] network embedding algorithms [76] and feature ranking [77]. In this chapter, we

introduce a technique that makes the use of an ML training process in performing predictive and

interpretive tasks and attempts to use it to extract information about causal dependencies. In

particular, here we use a particular type of machine learning (ML) called reservoir computing, an

efficient method of time series analysis which has previously been successfully used for different

tasks, e.g., prediction of chaotic dynamics [54, 78, 79] and speech recognition [44, 47] to mention
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a few. In our case, a “reservoir” dynamical system is trained such that it becomes synchronized to

a training time series data set from the unknown system of interest. The trained reservoir system

is then able to provide an estimation of the response to perturbations in different parts of the

original system, thus yielding information about causal dependencies in the actual system. We will

show that this ML-based technique offers a unique and potentially highly effective approach to

determining causal dependencies. Furthermore, the presence of dynamical noise (either naturally

present or intentionally injected) can very greatly improve the ability to infer causality, [71, 72]

while, in contrast, observational noise degrades inference.

This rest of this chapter is organized as follows: Sec. 2.3 mathematically defines our notion

of short term causal dependence (STCD) in the context of dynamical systems and argues how

it captures the effects of small external interventions into the system, which are often employed

in experiments to identify causal connections. Section 2.4 introduces the method of inferring

STCD using reservoir computer models of the dynamics. The next section, Sec. 2.5, illustrates

the performance of the RC-based STCD inference technique in the system of coupled Lorenz

oscillators, and identifies conditions which are helpful and detrimental for STCD inference.

2.3 Short Term Causal Dependence (STCD)

We begin by considering the very general case of an evolving, deterministic,

dynamical system whose state at time t is represented by the M -dimensional vector

z(t) = [z1(t), z2(t), . . . , zM(t)]T , where z(t) evolves via a system of M differential equations,

dz(t)/dt = F(z(t)), and has reached a statistically steady dynamical state (perhaps chaotic). In

this context, we frame the issue of causality as follows: Will a perturbation at time t applied to a
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component zi of the state vector z(t) (i.e., zi(t) → zi(t) + δzi(t)) lead to a subsequent change at a

slightly later time, t+ τ , of another scalar component zj (i.e., zj(t+ τ) → zj(t+ τ)+ δzj(t+ τ));

and how can we quantify the strength of this dependence? This formulation might suggest

comparison of the evolutions of z(t) that result from two identical systems, one with, and the other

without, application of the perturbation. However, we will be interested in the typical situation

in which such a comparison is not possible, and one can only passively observe (measure) the

state z(t) of the (single) system of interest. Aside from knowing that the dynamics of interest

evolves according to a system of the form dz/dt = F(z), we assume little or no additional

knowledge of the system, and that the available information is a limited-duration past time series

of the state evolution z(t). Nevertheless, we still desire to deduce causal dependencies, where

the meaning of causal is in terms of responses to perturbations as defined above. Since, as we

will see, accomplishment of this task, in principle, is not always possible, our approach will be

to first propose a heuristic solution, and then numerically test its validity. The main message

of this chapter is that our proposed procedure can be extremely effective for a very large class

of important problems. We will also delineate situations where our procedure is expected to

fail. We emphasize that, as our method is conceptually based on consideration of responses to

perturbations, in our opinion, it provides a more direct test of what is commonly of interest when

determining causality than do tests based on prediction impact, correlation, or entropy metrics.

Furthermore, although the setting motivating our procedure is for deterministic systems,

dz/dt = F(z), we will also investigate performance of our procedure in the presence of both

dynamical noise (i.e., noise added to the state evolution equation, dz/dt = F(z)) and observational

noise (i.e., noise added to observations of z(t) used as training data for the machine learning).

Both types of noise are, in practice, invariably present. An important result from our study is
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that the presence of dynamical noise can very greatly enhance the accuracy and applicability of

our method (a similar point has been made in Ref. [71] and Ref. [72]), while observational noise

degrades the ability to infer causal dependence.

To more precisely define causal dependence, we consider the effect of a perturbation on one

variable on the other variables as follows. Taking the jth component of dz/dt = F(z), we have

dzj(t)/dt = Fj(z1(t), . . . , z2(t), . . . , zM(t)),

for j = 1, 2, . . . ,M . Perturbing zi(t) by δzi(t), we obtain for small τ , that the component of the

orbit perturbation of zj at time (t+ τ) due to δzi is

δzj(t+ τ) = τ

{
∂Fj(z)

∂zi
|z=z(t)

}
δzi(t) +O(τ 2).

We define the Short Term Causal Dependence (STCD) metric, fji, of zj on zi by

fji =

〈
G

(
∂Fj(z)

∂zi

)〉
, (2.1)

where ⟨(. . .)⟩ denotes a long time average of the quantity (. . .) over an orbit, and the function G

is to be chosen in a situation-dependent manner. For example, later in this chapter, we consider

examples addressing Goal (i) (where we want to distinguish whether or not ∂Fj(z)/∂zi is always

zero) for which we use G(q) = |q|, while, when we consider an example addressing Goal (ii)

and are concerned with the time-averaged signed value of the interaction strength, we then use

G(q) = q. In either case, we view fji as quantifying the causal dependence of zj on zi, and the

key goal of this chapter will be to obtain and test a machine learning procedure for estimating fji

from observations of the state evolution z(t). For future reference, we will henceforth denote our

machine learning estimate of fji by f̂ji. In the case of our Goal (i) experiments, where G(q) = |q|,
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we note that fji defined by (1) is an average of a non-negative quantity and thus fji ≥ 0, as will be

our estimate, f̂ji ≥ 0. Furthermore, for that case we will define STCD of zi on zj by the condition,

fji > 0, and, when using our machine learning estimate f̂ji, we shall judge STCD to likely apply

when f̂ji > ϵ where we call ϵ > 0 the discrimination threshold. In the ideal case (f̂ji = fji), the

discrimination threshold ϵ can be set to zero, but, in practice, due to error in our estimate, we

consider ϵ to be a suitably chosen positive number. We note that, in the ideal case, ϵ = 0 can be

regarded as a test for whether or not Fj(z) is independent of zi.

As a demonstration of a situation for which the determination of STCD from observations

of the motion of z(t) on its attractor is not possible, we note the case where the attractor is a

fixed point (a zero-dimensional attractor). Here, the measured available information is the M

numbers that are the coordinates of the fixed point, and this information is clearly insufficient for

determining STCD. As another problematic example, we note that in certain cases one is interested

in a dynamical system that is a connected network of identical dynamical subsystems, and that such

a network system can exhibit exact synchronization of its component subsystems [80](including

cases where the subsystem orbits are chaotic). In the case where such a synchronized state is

stable, observations of the individual subsystems are indistinguishable, and it is then impossible,

in principle, for one to infer causal relationships between state variables belonging to different

subsystems. More generally, in addition to the above fixed point and synchronization examples,

we note that the dimension of the tangent space at a given point z∗ on the attractor is, at most, the

smallest embedding dimension of the part of the attractor in a small neighborhood of z∗. Thus

the full M ×M Jacobian of F(z) at z∗ cannot be precisely determined from data on the attractor

when the local attractor embedding dimension at z∗ is less than M , which is commonly the case.

Thus these examples motivate the conjecture that to efficiently and accurately infer STCD, the
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orbital complexity of the dynamics should be large enough so as to encode the information that

we seek. Note that these considerations of cases where inference of STCD is problematic do not

apply to situations with dynamical noise, e.g., dz/dt = F(z) + (noise), as the addition of noise

may be roughly thought of as introducing an infinite amount of orbital complexity. Alternatively,

the addition of noise increases the embedding dimension of the data to that of the full state space,

i.e., M .

2.4 Using Reservoir Computer to Determine Short Term Causal Dependence

We base our considerations on a type of machine learning called reservoir computing,

originally put forward in Refs. [81] and [82] (for a review, see Ref. [83]). We assume that we

can sample the time-series data z(t) from our system at regular time intervals of length τ , so

that we have a discrete set of observations {z(0), z(τ), z(2τ), ...}. To begin, we first describe a

reservoir-computer-based machine learning procedure in which the reservoir computer is trained

to give an output ẑ(t+ τ) in response to an M -dimensional input z(t) as illustrated in Fig. 2.1.

For our numerical tests we consider a specific reservoir computer implementation (Fig.

2.1) in which the reservoir consists of a network of R ≫ M nodes whose scalar states,

r1(nτ), r2(nτ), . . . , rR(nτ), are the components of the R-dimensional vector r(nτ).

The nodes interact dynamically with each other through an R×R network adjacency matrix

A, and their evolution is also influenced by coupling of the M -dimensional input z(nτ) to the

individual nodes of the reservoir network by the M × R input coupling matrix Win according to

the neural-network-type of evolution equation (e.g., Refs. [54, 78, 79, 83–85])

r((n+ 1)τ) = tanh(Ar(nτ) +Winz(nτ)), (2.2)
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z(nτ)

Win

z ̂((n+1)τ)

Wout
r((n+1)τ)

Figure 2.1: Schematic of the reservoir computing architecture used in this work. The input-to-
reservoir coupling matrix Win couples the input time series for the vector z to the reservoir state
vector r. The reservoir-to-output coupling matrix Wout generates the output vector ẑ from the
reservoir. ẑ is found to be a good estimate of z after training.

where tanh(v) for a vector v = (v1, v2, v3, . . .)
T is defined as (tanh v1, tanh v2, tanh v3, . . .)T .

For proper operation of the reservoir computer, it is important that Eq.(2.2) satisfy the ‘echo

state property’ [78, 81, 83] (in nonlinear dynamics this condition is also know as ‘generalized

synchronization’ [86–88]): given two different initial reservoir states, r1∗ and r2∗, for the same

input time series of z, the difference between the two corresponding reservoir states converges to

zero as they evolve in time (that is, |r1(t)− r2(t)| → 0 as t → ∞, implying that, after a transient

initial period, r(t) essentially depends only on the past history of z, z(t′) for t′ ≤ t, and not on the

initial condition for r).

Using measured input training data over a training interval of length Tτ , which begins after

the initial transient period mentioned above, we use Eq.(2.2) to generate r(τ), r(2τ), . . . , r(Tτ).

We also record and store these determined values r(nτ) along with the corresponding inputs,

z(nτ) that created them. The matrices A and Win are regarded as fixed and are typically chosen
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randomly. In contrast, the R×M output coupling matrix Wout, shown in Fig. 2.1, is regarded as

an adjustable linear mapping from the reservoir states r to an M -dimensional output vector ẑ,

ẑ((n+ 1)τ) = Woutr((n+ 1)τ). (2.3)

‘Training’ of the machine learning reservoir computer then consists of choosing the RM adjustable

matrix elements (‘weights’) of Wout so as to make ẑ(nτ) a very good approximation to z(nτ)

over the time duration (τ, 2τ, . . . , T τ) of the training data. This is done by minimization with

respect to Wout of the quantity,{∑T
n=1 ∥ z(nτ)−Woutr(nτ) ∥2

}
+ β ∥ Wout ∥2. Here β ∥ Wout ∥2, with β small, is a

‘ridge’ regularization term [89] added to prevent overfitting and (r(nτ), z(nτ)) are the previously

recorded and stored training data. In general, R ≫ M is required in order to obtain a good fit of ẑ

to z(t). For illustrative purposes we now consider the ideal case where ẑ = z (i.e., the training

perfectly achieves its goal).

For the purpose of estimating STCD, we now wish to eliminate the quantity r from the basic

reservoir computer system (Eqs.(2.2) and (2.3)) to obtain an evolution equation solely for the state

variable z. To do this, we would like to solve Eq. (2.3) for r in terms of z. However, since R, the

dimension of r, is much larger than M , the dimension of z, there are typically an infinite number

of solutions of Eq.(2.3) for r. To proceed, we hypothesize that it may be useful to eliminate r

by choosing it to be the solution of Eq.(2.3) with the smallest L2 norm. This condition defines

the so-called Moore-Penrose inverse [90] of Wout, which we denote Ŵ−1
out; i.e., the minimum L2

norm solution for r is written r = Ŵ−1
outz. We emphasize that Ŵ−1

outz is not necessarily expected

to give the correct r obtained by solving the system, Eq. (2.2) and Eq. (2.3). However, from

numerical results to follow, our choice will be supported by the fact that it often yields very useful
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estimates of fji.

Now applying Wout to both sides of Eq. (2.2) and, employing r = Ŵ−1
outz to eliminate

r(nτ) from the argument of the tanh function in Eq. (2.2), we obtain a surrogate time -τ map for

the evolution of z, z((n+1)τ) = H[z(nτ)], where H(z) = Wout tanh[(AŴ−1
out+Win)z] . Here

we note that we do not claim that this map in itself can be used for time-series prediction in place of

Eqs. (2.2) and (2.3), which were commonly used in previous works (e.g., Refs. [54,78,79,84,85])

. Rather, we use it as a symbolic represention of the result obtained after eliminating the reservoir

state vector r from Eqs. (2.2) and (2.3). In particular, the prediction recipe using Eqs. (2.2) and

(2.3) is always unique and well-defined, in contrast to the above map, where W−1
out is clearly

non-unique. So, we use this map only for causality estimation purposes, as described below.

Differentiating H(z) with respect to zi, we have

∂Fj(z)

∂zi
= τ−1

[
∂Hj(z)

∂zi
− δij

]
, (2.4)

where δij is the Kronecker delta, and we propose to use Eqs. (2.1) and (2.4) to determine STCD.

In our numerical experiments, the number of training time steps is T = 6×104 for Figs. 2.2,

2.3 and T = 2× 104 for Fig. 2.4. In each case, the actual training data is obtained after discarding

a transient part of 2 × 104 time steps and the reservoir system sampling time is τ = 0.02. The

elements of the input matrix Win are randomly chosen in the interval [−0.1, 0.1]. The reservoir is

a sparse random network of R = 5000 nodes for Figs. 2.2, 2.3 and of R = 1000 nodes for Fig.

2.4. In each case the average number of incoming links per node is 3. Each nonzero element of

the reservoir adjacency matric A is randomly chosen from the interval [−a, a], and a > 0 is then

adjusted so that the maximum magnitude eigenvalue of A is 0.9. The regularization parameter is

β = 10−4. These parameters are adapted from Ref. [79]. The average indicated in Eq. (2.1) is
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over 1000 time steps. The chosen time step τ is sufficiently small compared to the timescale over

which z(t) evolves that the discrete time series z(nτ) is a good representation of the continuous

variation of z(t).

Although we use a specific reservoir computing implementation, we expect that, with

suitable modifications, our approach can be adapted to ‘deep’ types of machine learning [62], as

well as to other implementations of reservoir computing [44, 47, 48, 91], (notably implementations

involving photonics [44], electronics [48] and field programmable gate arrays(FPGAs) [47]).

2.5 Tests of Machine Learning Inference of STCD

In order to evaluate the effectiveness of our proposed method, we introduce mathematical

model test systems that we use as proxies for the unknown system of interest for whose state

variables we wish to determine STCD. We next use the test systems to generate simulated training

data from which we determine STCD by our ML technique. We then assess the performance of

the technique by the correctness of its results determined from the known properties of the test

systems.

We first consider examples addressing our Goal (i) (G(q) = |q| in Eq. (2.1)), and for our

simulation test systems, we consider the case of a network of N nodes and L links, where each

node is a classical Lorenz system [92] with heterogeneity from node to node, additive dynamical

noise, and internode coupling,

dxk/dt = −10[xk − yk + c
N∑
l=1

a
(x,y)
kl (yl − yk)] + σDynnkx(t), (2.5)

dyk/dt = 28(1 + hk)xk − yk − xkzk + σDynnky(t), (2.6)
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dzk/dt = −(8/3)zk + xkyk + σDynnkz(t). (2.7)

The state space dimension of this system is M = 3N . The coupling of the N nodes is taken

to be only from the y variable of one node to the x variable of another node with coupling constant

c, and a
(x,y)
kl is either 1 or 0 depending on whether or not there is a link from l to k. The adjacency

matrix a
(x,y)
kl of our Lorenz network (not to be confused with the adjacency matrix A of the

reservoir) is constructed by placing directed links between L distinct randomly chosen node pairs.

For each node k, hk is randomly chosen in the interval [−h,+h], and we call h the heterogeneity

parameter. Independent white noise terms of equal variance σ2
Dyn are added to the left-hand sides of

the equations for dx/dt, dy/dt and dz/dt, where, for example, ⟨nkx(t)nk′x(t
′)⟩ = 2δkk′δ(t− t′).

For σ = c = h = 0, each node obeys the classical chaotic Lorenz equation with the parameter

values originally studied by Lorenz [92]. Furthermore, denoting the right-hand side of Eq. (2.5)

by Fxk, we have ∂Fxk/∂yl = 10c or 0, depending on whether there is, or is not, a link from yl to

xk.

Since in this case, the derivative ∂Fxk/∂yl is time independent, ⟨|∂Fxk/∂yl|⟩ is also either

10c or 0, and, adopting the notation f
(x,y)
kl = ⟨|∂Fxk/∂yl|⟩, we denote its machine learning estimate

by our previously described procedure by f̂
(x,y)
kl . For a reasonably large network, the number

N2 −N of ordered node pairs (k, l) of distinct nodes is large, and we consequently have many

values of f̂ (x,y)
kl . Bayesian techniques (see Ref. [93] and references therein) can be applied to such

data to obtain an estimate L̂ for the total number of links L, and one can then set the value of ϵ

so that there are L̂ values of f̂ (x,y)
kl that are greater than ϵ. Less formally, we find that making a

histogram of the values of f̂ (x,y)
kl often reveals a peak at zero and another peak at a higher positive

value with a large gap or discernible minimum in between. One can then estimate ϵ by a value in
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the gap or by the location of the minimum between the peaks, respectively. For simplicity, in our

illustrative numerical simulations to follow we assume that L is known (approximately equivalent

to the case that L is unknown but that a very good estimate (L̂) has been obtained).

Example 1: A heterogeneous noiseless case. We consider the parameter set c = 0.3,

h = 0.06, σDyn = σObs = 0, N = 20, and we vary the number of links L. Figure 2.2(a) (for

L = 50) and (b) (for L = 100) each show an array of 20×20 boxes where each of the boxes

represents an ordered node pair (k, l) of the 20-node network, and the boxes have been colored (see

Table 1) according to whether the results for our procedure predict a link from l to k (“positive”)

or not (“negative”), and whether the prediction is correct (“true”) or wrong (“false”).

TP (True Positive) Black
Square

TN (True Negative) White
Square

FP (False Positive) Blue
Square

FN (False Negative) Red
Square

Table 2.1: Color-coding scheme for Figs. 2.2 and 2.3.

We see that for a typical case with L = 50 (Fig. 2.2(a)) all the boxes have been correctly

labeled, corresponding to all boxes being either black or white. In contrast to this perfect result at

L = 50, at L = 100 (Fig. 2.2(b)) the method fails terribly, and the fraction of correct inferences

is small. In fact, we find excellent performance for L ≤ 50, but that, as L increases past 50,

the performance of our method degrades markedly. This is shown in Fig. 2.2(c) where we give

plots of the number of false positives (FP) normalized to the expected value of FP that would

result if L links were randomly assigned to the N2 −N = 380 node pairs (k, l). (We denote this

normalization ⟨FP⟩R; it is given by ⟨FP⟩R = L(380− L)/380.) Note that, with this normalization,
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for the different heterogeneities plotted in Fig. 2.2(c), the curves are similar, and that they all

begin increasing at around L = 60 and FP/ ⟨FP⟩R becomes nearly 1 (i.e., inference no better than

random) past L ∼ 100. In our earlier discussion we have conjectured that, for inference of STCD

to be possible, the orbital complexity should not be too small. To test this conjecture we have

calculated the information dimension DINFO of the network system attractor corresponding to

the parameters, c = 0.3, h = 0, σ = 0, N = 20, as a function of L. We do this by calculating the

Lyapunov exponents of the system Eqs.(2.5,2.6,2.7), and then applying the Kaplan-Yorke formula

for DINFO in terms of the calculated Lyapunov exponents. [94, 95] The result is shown in Fig.

2.2(d), where we see that DINFO decreases with increasing L. Regarding DINFO as a measure of

the orbital complexity, this is consistent with our expectation that the ability to infer STCD will be

lost if the orbital complexity of the dynamics is too small. As we next show, the above negative

result for L increasing past about 60 does not apply when even small dynamical noise is present.

Example 2: The effects of dynamical and observational noise. We first consider the effect

of dynamical noise of variance σ2
Dyn for the parameters h = 0 (homogeneous), c = 0.3, N = 20,

L = 200. Results (similar in style to Figs. 2.2(a) and 2.2(b)) are shown in Figs. 2.3(a), 2.3(b),

and 2.3(c). For extremely low dynamical noise variance, σ2
Dyn = 10−9 (Fig. 2.3(a)), the result is

essentially the same as for zero noise, and about one quarter of the boxes are classified TP, TN, FP,

and FN each (since there are 200 links and 400 boxes, this is no better than random assignment).

As the noise variance is increased to σ2
Dyn = 10−7.5 (Fig. 2.3(b)), the results become better, with

a fraction 0.75 of the boxes either TP or TF (as opposed to 0.52 for Fig. 2.3(a)). Upon further

increase of the dynamical noise variance to the still small value of σ2
Dyn = 10−6 (Fig. 2.3(c)),

the results typically become perfect or nearly perfect. Furthermore, excellent results, similar

to those for σ2
Dyn = 10−6, continue to apply for larger σ2

Dyn. This is shown by the red curve in
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Figure 2.2: Results of Experiment 1 (noiseless case). Panels (a) and (b) show the results of link
inferences for two noiseless cases for L = 50 links and L = 100 links. The inference is perfect
in (a), but is very bad in (b). (c) FP/ ⟨FP⟩R versus L for h = 0, 0.06, 0.15 averaged over 100
random realizations of the system and the reservoir adjacency matrix. (d) The orbital complexity
as measured by the attractor information dimension DINFO decreases with increasing L. Note
that at each value of L, we compute the DINFO for 10 random realizations of a network with L
links with h = 0. The Kaplan-Yorke dimension is then averaged over all network realizations and
the resulting plot is further smoothed by applying a moving average filter.
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Fig. 2.3(f) which shows FP/ ⟨FP⟩R versus σ2
Dyn (N = 20;L = 200). Importantly, we also note

that our normalization of FP by ⟨FP⟩R essentially makes the red curve L-independent over the

range we have tested, 50 ≤ L ≤ 200. Our interpretation of this dynamical-noise-mediated strong

enhancement of our ability to correctly infer links is that the dynamical noise allows the orbit to

explore the state space dynamics off the orbit’s attractor and that the machine learning is able to

make appropriate good use of the information it thus gains.

We now turn to the effect of observational noise by replacing the machine learning time

series training data formerly used, [xk(nτ), yk(nτ), zk(nτ)], by [xk(nτ) + σ̂Obsn̂kx(nτ), yk(nτ) +

σ̂Obsn̂ky(nτ), zk(nτ) + σ̂Obsn̂k(nτ)], where the parameter σ2
Obs is the observational noise variance

and the n̂kx, n̂ky, n̂kz are independent Gaussian random variables with, e.g., ⟨n̂kx(nτ)n̂k′x(n
′τ)⟩ =

2δkk′δnn′ . The blue curve in Fig. 2.3(f) shows the effect of adding observational noise of variance

σ2
Obs on top of dynamical noise for the situation σ2

Dyn = 10−5 of Fig. 2.3(c). We see from Figs.

2.3(d)-(f) that, when σ2
Obs is below about 10−5, it is too small to have much effect, but, as σ2

Obs is

increased above 10−5, the observational noise has an increasing deleterious effect on link inference.

This negative effect of observational noise is to be expected, since inference of characteristics

of the unknown system is necessarily based on the part of the signal that is influenced by the

dynamics of the unknown system, which the observational noise tends to obscure.

Example 3: Inferring Continuous Valued Dependence Strengths. We now wish to address

Goal (ii) (for which we take G(q) = q in Eq. (2.1)) and we, accordingly, consider the case where

f
(x,y)
kl for each (k, l) takes on a value in a continuous range (rather than the case of Examples 1

and 2 where f
(x,y)
kl is either 10c or zero for all (k, l)). For this purpose we replace Eq. (2.5) by

dxk/dt = −10(xk − yk) +
∑
l

f
(x,y)
kl yl, (2.8)
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Figure 2.3: The effect of noise on STCD inference. Panels (a), (b), and (c) shows the effect
of increasing the dynamical noise variance σ2

Dyn is to greatly enhance the effectiveness of link
identification even at the rather low noise level of σ2

Dyn = 10−6. In contrast, as shown in panels
(d), (e), and (f), starting with the situation (c) and increasing the observational noise variance σ2

Obs
degrades link identification. L = 200, h = 0 for all the subfigures here.

and consider Eqs. (2.6,2.7, 2.8) as our new test system, with h = 0.9, σ2
Dyn = σ2

Obs = 0, and

N = 100 nodes (corresponding to 100 × 100 = 104 possible connection strength values). We

choose the connection strength values as follows. A photographic portrait of Edward N. Lorenz is

divided up into 100× 100 = 104 boxes and, by using a shading scale from dark (coded as +10) to
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light (coded as -5), Fig. 2.4(a) is obtained, with the shading scale given to the right of Fig. 2.4(b).

Setting f
(x,y)
kl equal to the color scale value of box (k, l), we next numerically solve Eqs. (2.6,2.7,

2.8). We then use this orbit as the training data for input to our ML determination of causal strength

dependence, f̂ (x,y)
kl , and employing the same shading scale, use the thus determined values of f̂ (x,y)

kl

to reconstruct the original portrait, as shown in Fig. 2.4(b). We see that, although the reproduction

is not exact, the overall picture is still clearly recognizable, indicating the effectiveness of the

method for Goal (ii). For a more quantitative comparison of the actual and the estimated Jacobian

elements, we calculate the normalized Frobenius norm of their difference matrix f (x,y) − f̂ (x,y).

We first apply upper and lower cut-offs equal to 10 and -5.5 respectively to f̂ (x,y), in order to

eliminate some extreme values. Then we calculate the ratio

δ =

∣∣∣∣∣∣f (x,y) − f̂ (x,y)
∣∣∣∣∣∣
F〈∣∣∣∣∣∣f (x,y) − f̃ (x,y)

∣∣∣∣∣∣
F

〉 , (2.9)

where ||M ||F =
√

Trace(M †M) =
√∑

i,j

|Mij|2 is the Frobenius norm of the matrix M . Here

f̃ (x,y) denotes a matrix constructed by randomly permuting the elements of the matrix f (x,y), and

the angled brackets denote an average over such random permutations. So this ratio compares the

total error in the inferred Jacobian with the variation in the original matrix elements of f (x,y). For

example, for a perfect estimation of f (x,y), we will have δ = 0. In contrast, δ = 1 means that the

prediction error is equal to the average error when the elements of f (x,y) are randomized. For the

example shown in Fig. 2.4, we find that δ is approximately equal to 0.37.
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Figure 2.4: Results of Experiment 3. Panel (a) shows a 100×100 pixelated, shade-coded portrait
of Edward N. Lorenz; (b) reconstruction of (a) by our ML link inference technique. Note that, in
(b), we plot all the values greater than or equal to 10 as black and all the values less than or equal
to −5.5 as white.

2.6 Discussion

In this chapter, we have formulated and tested a new, highly effective, machine-learning-

based approach for inferring causal dependencies of state variables of an unknown system from

time series observations of these state variables. A key finding is that the effectiveness of our

approach is greatly enhanced in the presence of sufficient dynamical noise, provided that the

deleterious effect of observational noise is not too great. The competition between the opposing

effects of these two types of noise will likely be the essential key factor determining the success
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or failure of causality inference in many of the most important situations of interest (e.g., in

neuroscience and genomics). Much work remains to be done to more fully address the utility of

our method. In particular, further numerical tests on diverse systems, and, especially, experimental

studies in real world applications, will ultimately determine the circumstances under which the

method developed here will be useful.
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Chapter 3: Inference of time-delayed causal interactions:

applications in optoelectronic oscillator networks

This chapter is based on the publication “Machine Learning Link Inference of Noisy Delay-

Coupled Networks with Optoelectronic Experimental Tests” by Amitava Banerjee, Joseph D.

Hart, Rajarshi Roy, and Edward Ott, published as Phys. Rev. X 11, 031014 (2021). The code

to generate some of the results can be found in the GitHub repository banerjeeamitava/Delay-

Network-Inference.

3.1 Overview

In the previous chapter, we employed reservoir computers (RCs) to infer short term causal

interactions among the dynamical agents in a complex system. In this chapter, we formulate and

test a slightly modified approach of inferring an interaction network in the common situation

where the dynamics is noisy and the cause-and-effect interactions among units are delayed.

Building on our RC-based method developed in chapter 2, we propose a two-step method

for noninvasively inferring the network of time-delayed connections, using solely the measured

time-series data from the dynamics of the network-connected units. In the first step, we train

the RC to predict the state of the system after a certain delay time. In the second step, we track

the spread of small perturbations in that trained RC model, and use that information to infer the
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time-delayed networked interactions of the original system. Similar to chapter 2, our technique, by

its nature, is noninvasive but is motivated by the widely used invasive network inference method,

whereby the responses to active perturbations applied to the network are observed and employed

to infer network links (e.g., knocking down genes to infer gene regulatory networks).

We test this technique on experimental and simulated voltage time-series data from delay-

coupled optoelectronic oscillator networks, an excellent test bed for complex dynamics, with both

identical and heterogeneous time delays along the links. Similar to our results for short term causal

interaction inference in chapter 2, we show here that the RC-based technique is also able to infer

time-delayed network connectivity, particularly if the system does not exhibit strong synchrony

among the voltage dynamics of the individual oscillators. Similar to the results in chapter 2, we

also find that the presence of dynamical noise can strikingly enhance the accuracy and ability of

our technique, especially in networks that exhibit synchrony. Furthermore, in the optoelectronic

oscillator networks, synchrony among the voltage dynamics of the individual oscillators can be

broken by changing the coupling strength and network topology, and having heterogeneous delays

along the network links - all of which are shown to be helpful for RC-based network inference.

Based on the performance of the RC in finding the time-delayed causal interactions from

both experimental and simulated time-series data, we anticipate that this new method for inferring

delay-coupled interaction networks offers the promise of widespread future impact for the study

of dynamics on such networks.
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3.2 Introduction

Dynamically evolving complex networks are ubiquitous in natural and technological systems

[13]. Examples include food webs [96], biochemical [97, 98] and gene interaction [99, 100]

networks, neural networks [14], human interaction networks [16], and the internet, to mention

a few. Inference of the structure of such networks from observation of their dynamics is a key

issue with applications such as determination of the connectivity in nervous systems [2, 19,

20], mapping of interactions between genes [21] and proteins in biochemical networks [22],

distinguishing relationships between species in ecological networks [23, 24], understanding the

causal dependencies between elements of the global climate [25], and charting of the invisible

dark web of the internet [101]. In many of these problems, we can only passively observe

time series data for the states of the network nodes and cannot actively perturb the systems

in any way. Network inference for these cases has led to several different computational and

statistical approaches, including Granger causality [102, 103], transfer entropy [31], causation

entropy [104], event timing analysis [105], Bayesian techniques [21, 24, 39, 106], inversion of

response functions [66, 107], random forest methods [75], and feature ranking methods [77],

among others.

In this work, we are interested in the common situation of dynamics that evolves through

interactions mediated by the network links along which information transfer is subject to time

delay and dynamical noise. We propose and test, both experimentally and computationally, a

machine learning methodology to infer these time-delayed network interactions. In doing this,

we use only the sampled time series data of the network nodal states. We find that our method is

successful in both experimental and computational tests, for a wide variety of network topologies,
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and for networks with either identical or heterogeneous delay times along their links, provided the

time series we use contains sufficient information for the networks to be inferred.

Applications of machine learning techniques for network inference have recently begun to

be explored [59, 75, 76, 108, 109]. However, all of these treat networks without link delay. For

example, Ref. [109] uses machine learning, but considers inference of generalized synchronization,

rather than inference of links, between two systems. In particular, to our knowledge, there is no

paper in which the common general situation considered in this chapter is treated by machine

learning, namely, link inference in delay-coupled networks with arbitrary topology and noise.

Furthermore, a key feature of our work is that, in contrast with Refs. [59, 75, 76, 108, 109], we

present an experimental validation with known ground truth. Based on the surprising success of

machine learning across a wide variety of data-based tasks [62, 110], we believe machine learning

is a particularly promising approach to the general network inference problem that we address.

Our approach is based on the demonstrated ability of machine learning for the prediction

and analysis of dynamical time series data. In particular, we shall use a specific neural network

architecture called Reservoir Computing (RC) [41, 78], which has previously been used to analyze

time series data from complex and chaotic systems for such tasks as forecasting spatiotemporally

chaotic evolution [54, 111–113], determination of Lyapunov exponents and replication of chaotic

attractors [56], chaotic source separation [53, 58], and inference of networks (without link time-

delays) [59]. Reservoir computers have been implemented in a variety of platforms [41–43],

e.g., in photonic [44–46], electronic and opto-electronic [47, 48] systems. In our technique,

we first use time series data from an unknown delay-coupled network to train an RC to predict

the future evolution of the network. We then employ this trained network to predict how the

effect of imagined applied perturbations would spread through the network, thus enabling us

42



to deduce the network structure. This approach allows us to retain the non-invasive nature of

computational tools like the transfer entropy, while also retaining the conceptual advantage of

invasive methods [11, 114, 115].

We will test our network inference method on both simulated and experimental time series

data from delay-coupled opto-electronic oscillator networks. An opto-electronic oscillator with

time-delayed feedback is a dynamical system that can display a wide variety of complex behaviors,

including periodic dynamics [116], breathers [117], and broadband chaos [118]. Opto-electronic

oscillators have found applications in highly stable microwave generation for frequency references

[116], neuromorphic computing [119,120], chaotic communications [121], and sensing [122]. The

nonlinear dynamics of individual [123–125] and coupled opto-electronic oscillators [126–129] are

well-understood, making networks of opto-electronic oscillators an excellent test bed for network

inference techniques.

We find that our method accurately reconstructs the network from experimentally measured

time series data, as long as the coupling is sufficiently strong and the network does not display

strong global synchronization. We also find that the presence of dynamical noise, and heterogeneity

of delays along network links, may have a significant positive effect on the ability to infer links.

Our results provide a clear demonstration that reservoir computing, and possibly other related

machine learning methods, can provide accurate network inference for real networks, including

situations where complications like noise and time delays in the coupling are present.

This chapter is organized as follows. In Sec. 3.3, we introduce our network inference method

for a general delay-coupled network dynamical system. In Sec. 3.4, we present the opto-electronic

oscillator networks that we use for testing our method, along with a brief description of the

collective dynamics of these networks in different parameter regimes. Section 3.5 presents results
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of our tests of the effectiveness of our method for both simulated and experimental time series

data. Finally, we conclude in Sec. 3.6 with further discussion, suggested future directions, and

possible generalizations of our method.

3.3 Reservoir Computing Methodology for Network Inference

3.3.1 The General Delay-coupled Network

In this section, we present the principles of our RC-based network link inference method.

We consider a system of Dn nodes, with the interactions among them mediated by a network

of time-delayed links. For simplicity of presentation, in this section, we restrict ourselves to

networks with identical delays along different links. Later in this chapter (Sec. 3.5.3), we consider

application of our framework to networks with heterogeneous link delays. For the present purpose,

we assume that the state of the i-th node in the network is given by a time dependent vector

Xi[t] of dimension Ds, with i = 1, 2, 3, ..., Dn. We denote the components of this vector by Xµ
i

with µ = 1, 2, 3, ..., Ds. The coupled dynamics of the full system is governed by a general delay

differential equation of the form

dXµ
i (t)

dt
= F µ

i [Xi(t);X1(t− τ),X2(t− τ), ...,XDn(t− τ); t] . (3.1)

Here F µ
i is the function governing the dynamics of the µ-th component of the state vector of the

i-th node. F µ
i is a function of Xν

j if and only if there is a network link (connection) from the ν-th

component of the state vector of the j-th node to the µ-th component of the state vector of the i-th

node. Note that, as previously noted, for simplicity, in the above equation, we assume that the

couplings have only a single time delay τ , which is the time it takes a signal to propagate from
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one component of the system to another. In the experiments we shall consider here, the time series

data from the above dynamics is sampled at a time interval ∆t = τ/k (with k being an integer)

and are denoted by {Xi [∆t]} , {Xi [2∆t]} , {Xi [3∆t]}, ... and so on.

The problem we wish to address can be formalized as follows: If the observed time series

data {Xi[t]} is the only information from the system we have, can we infer the connections of the

network assuming that the underlying dynamical equations are of the general form as in Eq. (3.1)?

We note that we lack any explicit knowledge of the functions {F µ
i }. However, we shall henceforth

assume that we know the delay τ = k∆t, which, as shown in Appendix A, can, in the case of

our opto-electronic test system, be inferred from the available time series data. Furthermore, we

note that the performance of our method is not strongly dependent on the accuracy with which we

infer the delay time k. For example, in our cases where we typically had k = 34 (corresponding

to a delay time τ = 1.4ms) in the simulations and experiments, setting the inferred value of k

anywhere between 34 and 37 (delay time of 1.4ms and 1.5ms, respectively) gave us essentially

the same link inference results. (We chose the delay time in order to work in a regime where the

dynamics for our particular experimental test network is well-characterized [127–130]). While the

dynamics of the network depend on the delay time, we do not expect any change in the efficacy

of our link inference technique for different delay times. In those cases, we only need to change

the value of k (as in Eqs. (3.4)-(3.9)) in our inference procedures. Finally, we note that in general

situation, it might not be feasible to sample all the components of the state vectors. So, henceforth

we will assume that we may sample only a subset of the components of each of the nodal state

vectors {Xi[t]}, which, without loss of generality, we designate as the first D′
s(≤ Ds) components.

We now turn to a description of RC machine learning.

45



3.3.2 Time Series Prediction with a Reservoir Computer
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Figure 3.1: Schematics of the reservoir computer (RC) trained for predicting the time series k time
steps ahead. In the lower panel, the four time series represent scalar components of X [t].

In this work, our first step is to train an RC to predict the time evolution of the node states

one delay time τ = k∆t into the future, following which we will use that training information to

extract the network structure of the system. A schematic of our RC implementation ( [54, 59, 78])

is shown in Fig. 3.1. We consider an RC network consisting of a large number of nodes Dr (such

that Dr >> Dn ×D′
s ≡ DX). Each of the nodes has a time dependent scalar state, all of which

are collected in a column vector R of length Dr. These reservoir nodes receive measured inputs of

the unknown network system states {Xi[t]}. We concatenate the sampled input measurements of

the time-dependent node state vectors {Xi[t]} and place them in a single time-dependent column
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vector X [t] of length DX , such that the components of X [t] are arranged as follows;

X [t] =
(
X1

1 [t], X
2
1 [t], ..., X

D′
s

1 [t], X1
2 [t], X

2
2 [t], ..., X

D′
s

2 [t], ..., X
D′

s
Dn

[t]
)T

. (3.2)

This vector is fed into the reservoir via a Dr ×DX input-to-reservoir coupling matrix Win (Fig.

3.1). Furthermore, the reservoir nodes are coupled among themselves with a Dr ×Dr adjacency

matrix H. The time evolution of the reservoir node states R are given by the equation,

R [n∆t] = σ (HR [(n− 1)∆t] +WinX [n∆t]) , (3.3)

which maps the reservoir state at time (n− 1)∆t to the reservoir state at the next time step, n∆t,

where n is a positive integer, and σ is a sigmoidal activation function acting componentwise on its

vector argument (which has the same dimension, Dr, as R).

Keeping in mind the form of Eq. (3.1), our first step is to predict the future values of the

sampled components of {Xi [(n+ k)∆t]} in the concatenated form X [(n+ k)∆t] (Eq. (3.2))

from their current observed values X [n∆t] using the reservoir state vector R [n∆t]. In our case,

this is done by using a suitable linear combination of the reservoir node states with a DX ×Dr

reservoir-to-output coupling matrix Wout (Fig. 3.1) according to the equation,

X P [(n+ k)∆t] = WoutR [n∆t] , (3.4)

where the superscript P indicates that the vector is a prediction from the RC, as opposed to being

sampled from the actual system. During the training time, we measure the system training time

series data {X [t]} from the unknown system of interest for a large number of time steps. We use

this data along with Eq. (3.3) to generate the time series data for the RC nodal states {R [n∆t]},

which we store. For the training of the RC, we then find the elements of the matrix Wout by doing a
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linear regression from these stored reservoir states R [n∆t] to the measured time-advanced system

states {X [(n+ k)∆t]}, such that Eq. (3.4) provides a best mean squared fit of the prediction

X P [(n+ k)∆t] to the measured state X [(n+ k)∆t]. This amounts to the minimization of a cost

function C given by

C =
∑

Training Steps n

||X [(n+ k)∆t]−WoutR [n∆t]||2 + λ ||Wout||2 (3.5)

where the last term (λ ||Wout||2) is a “ridge” regularization term [89] used to prevent overfitting to

the training data and λ is typically a small number.

To completely specify the training procedure that we use, we now specify the structures of

the different associated matrices. The elements of the input matrix Win are chosen randomly from

a uniform distribution in the interval [−w,w]. The reservoir connectivity matrix H is a sparse

random matrix, corresponding to an average in-degree dav of the reservoir nodes. The non-zero

elements of H are chosen randomly from an uniform distribution [−h, h] and h is chosen such that

the spectral radius of H (i.e., the maximum magnitude of the eigenvalues of H) is equal to some

predefined value ρ. The hyperparameters w and dav are chosen using a Nelder-Mead optimization

procedure where we minimize C for a representative training data and the corresponding output

matrix Wout found from the training data. [We use w = 1.17 and dav = 2.38 for tests on simulated

data and w = 1.19 and dav = 2.56 for tests on experimental data. We typically use values

λ = 10−4 and ρ = 0.9 for the other two hyperparameters, 3× 104 steps (about 880 delay times)

for training, and the sigmoidal activation function σ is taken to be the hyperbolic tangent function.

The reservoirs we used typically had 3000 nodes]. After a successful training of the RC with these

specifications, Eq. (3.4) can be seen as an in silico model for the dynamics of the actual system.

Explanations for the special properties of trained RCs, which allow us to use RCs for our purpose,
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can be found in Refs. [56, 57, 131, 132].

3.3.3 Our Network Inference Procedure

We now describe how we use the training results of the previous subsection to obtain the

network structure of the unknown system. We first briefly discuss how the form of Eq. (3.1)

allows us to relate the network structure to the spread of the effect of small perturbations to the

system. Suppose that, at a time point t = n∆t, we perturb the ν-th component of the state of

node j by an infinitesimal amount δXν
j [n∆t]. Differentiating both sides of Eq. (3.1), we see

that this perturbation changes the µ-th component of the state of node i( ̸= j) at a later time

(n+ k)∆t = t+ τ via the corresponding change in the time derivative,

δ

(
dXµ

i

dt

∣∣∣∣∣
t+τ

)
=

∂F µ
i

∂Xν
j

δXν
j [t] +O

((
δXν

j [t]
)2)

. (3.6)

This equation shows that, to lowest order, the effect of the small perturbation on component ν of

the state of node j is propagated to the component µ of the state of node i with a delay of τ = k∆t

provided that there is a corresponding network link between them, i.e., if ∂F µ
i /∂X

ν
j ̸= 0. In

particular, propagation of a perturbation from component ν of the state of node j to component

µ of the state of node i with a delay of k time steps implies that a directional network link,

(j, ν) → (i, µ), exists between them.

While the above discussion is predicated on application of an active perturbation, we see

that the result is essentially determined by the partial derivative ∂F µ
i /∂X

ν
j . Thus we wish to

determine whether this partial derivative is zero (corresponding to the absence of a link) or not

(corresponding to the presence of a link). We attempt to do this by use of the trained RC (which,

as we emphasize, was obtained solely from observations, i.e., non-invasively). Indeed, when Eq.
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(3.4) is approximately true for a well-trained RC with X P [(n+ k)∆t] ≈ X [(n+ k)∆t], we can

use that equation to consider the RC-predicted dynamics as a proxy for the dynamics of the actual

system. In that case, within this assumed RC proxy model, we can analytically assess the effects

of small perturbations, and compare them to Eq. (3.6). To do so, we first combine Eqs. (3.3) and

(3.4) for the RC, and assume the relation X P [(n+ k)∆t] = X [(n+ k)∆t] for the training data

to obtain the equation,

X [(n+ k)∆t] = Woutσ (HR [(n− 1)∆t] +WinX [n∆t]) , (3.7)

where the time points belong to the training time series. In order to evaluate the effect of a

perturbation to one node on another, we desire to eliminate reservoir variables R from this

equation. Naively, this could be done by solving Eq. (3.4) for R [(n− 1)∆t] in terms of

X [(n+ k − 1)∆t]. However, the number of components of R is large compared to the number

of components of X , and so there are many solutions of Eq. (3.4) for R. As in our previous

work [59], we hypothesize (and subsequently test) that, for our purpose, the Moore-Penrose

pseudoinverse [90] (symbolically denoted by Ŵ−1
out ) provides a useful solution of the equation

X [(n+ k)∆t] = WoutR [(n− 1)∆t] for R [(n− 1)∆t]. With this, Eq. (3.7) becomes

X [(n+ k)∆t] = Woutσ
(
HŴout

−1X [(n+ k − 1)∆t] +WinX [n∆t]
)

(3.8)

yielding a putative dynamical model for the system from which we will now study the effect

of small perturbations. Thus, an infinitesimal amount of change in the network node states at

time step n∆t, written as δX [n∆t], propagates to a change at time (n + k)∆t as described by
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differentiating Eq. (3.8),

δX [(n+ k)∆t] =
(

1 −WoutĤ [n∆t]Ŵ−1
out

)−1

WoutŴin [n∆t] δX [n∆t] ≡ M [n∆t] δX [n∆t] ,

(3.9)

where we have used Eq. (3.3), assumed that ∆t is sufficiently small that δX [(n+ k)∆t] ≈

δX [(n+ k − 1)∆t], and defined the new matrix elements Ĥij [n∆t] = Hijσ
′ (Ri[n∆t]) and(

Ŵin

)
ij
[n∆t] = (Win)ij σ

′ (Ri[n∆t]) where σ′(u) = dσ(u)/du. We now employ this equation in

component form in the place of Eq. (3.6) as a proxy approximating how small perturbations spread

across the network. In particular, just like the partial derivative ∂F µ
i /∂X

ν
j determines whether a

change at the ν-th component of state of node j results in a change of the µ-th component of the

state of node i after k time steps in Eq. (3.6), Mi,j[n∆t] determines the same in Eq. (3.9), when

used in conjunction with our definition Eq. (3.2) for X [t].

We now describe how we use our determination of M in Eq. (3.9) to recover the network

structure. For this purpose, based on our knowledge of Mi,j[n∆t], we are interested only in

determining whether ∂F µ
i /∂X

ν
j is zero (no link (j, ν) → (i, µ)) or not. In the true Jacobian, the

absence of link would imply ∂F µ
i /∂X

ν
j = 0 exactly. However, in our procedure, there are errors

and thus, the elements of M [n∆t] are never zero. These errors are due to finite reservoir size,

finite training data length, noise in the training data, and the Moore-Penrose inversion which, as

we hypothesized, is useful but not exact.

Generally speaking, in past link inference methods, the common approach is to somehow

obtain a time-independent, continuous-valued score Sij hopefully accurately reflecting the

likelihood that node i is linked to j. Once the score is found, as is explained below, one can then

choose an appropriate statistical technique for translating the score into a good binary choice of
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whether or not i → j corresponds to an actual link. In essence, the key goal of our chapter is to

use machine learning to obtain good scores, and for that purpose we will use our machine learning

determination of M.

To form an appropriate score corresponding to each of the time-dependent elements Mij , we

use Sij ≡ ⟨|Mij|⟩t where ⟨⟩t denotes time-averaging over a time sufficiently long that the scores

Sij do not change appreciably upon, e.g., doubling the averaging time. In our tests (Sec. 3.5),

the averaging time is 1000∆t. Here the absolute value of Mij is to be taken so that the positive

and negative values do not cancel each other while doing the time averaging. If this assigned

score Sij is above a threshold for a particular element Mij , we assume that there is a network

link corresponding to that element, and if the score is less than a threshold, we assume that the

corresponding network link is absent.

With the scores Sij defined and calculated, choosing the threshold is a well-known problem

of binary categorization of a collection of continuous numerical scores. Since obtaining a useful

score for the network link inference is the goal of our machine-learning-based methodology, we

regard a detailed discussion of thresholding or other follow-up statistical analysis of the obtained

scores to be beyond the scope of this work. We comment only that once the scores Sij are found,

one can then choose an appropriate statistical technique for translating the score into a good binary

choice. This choice will depend on circumstances that are specific to the situation at hand (e.g.,

the cost of false positive link choice versus the cost of a false negative link choice). This is a basic

problem in statistics and addressed extensively in earlier works with methods such as Receiver

Operating Characteristic curves [133, 134], Precision-Recall curves [133, 134], fitting to mixtures

of statistical distributions [133], Bayesian techniques [133], etc. A recent paper [135] has proposed

a binary classification technique specifically designed for network inference purposes.
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To avoid the details of the statistical methodologies, we adopt a procedure which is simple

but sufficient for the purpose of evaluating the goodness of the scores of candidate links resulting

from our link inference method. Thus we shall henceforth assume that we know the total number

of links (denoted by L) in the unknown network and shall designate the largest L scores Sij as

corresponding to inferred network links, while those Mij with scores below the largest L scores will

be inferred to not correspond to network links. The performance of this link inference technique

will be measured by the corresponding number of falsely inferred links (“false positives”). Since

we assume that we know the total number of links, the number of falsely inferred links is also equal

to the number of missed links (“false negatives”). As we will show below, this method, applied

to our machine-learning-determined scores, can produce excellent results in link inference tasks

over a wide range of coupling strengths, network topologies, and noise levels. While in practice,

L may be unknown, and, depending on the situation, a user may wish to employ an appropriate

statistical technique for making the above binary choice from our score, we claim that the results

we obtained with L assumed known indicate the value of our technique for score determination,

without having to introduce and discuss more involved methods and their appropriateness in

different situations (e.g., precision-recall is more appropriate for sparse networks than Receiver

Operating Characteristic [134]). Later in this chapter, at the end of Sec. 3.5.1, we shall present

results that support this claim.

53



3.4 Opto-electronic Oscillator Networks

3.4.1 Description of the experiment

In this section, we introduce our opto-electronic network used as a platform to test our

network inference procedure. An individual opto-electronic oscillator is a nonlinear, time-delayed

feedback loop. Our network consists of four nominally identical opto-electronic oscillators

with time-delayed optical coupling between them. The individual and coupled dynamics of

opto-electronic oscillators have been studied extensively [118, 124, 125, 127–129, 136, 137].

An opto-electronic oscillator essentially consists of a nonlinearity whose output is fed

back into its input with some feedback time delay τ f . This feedback delay τ f is inherent to the

oscillator, and without it, the system would have no dynamical behavior. A description of one of

our opto-electronic oscillators follows:

A fiber-coupled continuous-wave laser emits light of constant intensity. The light passes

through an intensity modulator, which serves as the nonlinearity in the feedback loop and can be

modeled by cos2(πv/2Vπ) where v is the voltage applied to the modulator. For our modulators

Vπ = 3.4V. The feedback optical signal is converted to an electrical signal by a photodiode,

which is then delayed and filtered by a digital signal processing (DSP) board (Texas Instruments

TMS320C6713). This signal is output by the DSP board, amplified, and fed back to drive

the modulator. The normalized voltage x(t) ≡ πv(t)/2Vπ applied to the intensity modulator is

measured and is our dynamical variable. If there were no DSP board, the delay would be controlled

by the optical fiber length and the filtering would be done by the analog electronic components,

such as the amplifier. The DSP board simply provides enhanced control over the delay and filter
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Figure 3.2: Illustration of opto-electronic oscillator and coupling scheme. Red lines indicate signal
paths in optical fibers. Black lines are used to indicate electronic signals, and green indicates the
digital signal processing (DSP) board.

parameters.

In general, when one couples two oscillators together, a coupling delay will be induced by

the finite propagation time of the signal. That coupling delay becomes important when it is not

too much shorter than the fastest system time scale. This is the case for our network of coupled

opto-electronic oscillators. In general, for a network of oscillators with L links, there will be L

different coupling delays. We use the notation τ cij to refer to the coupling delay in the link from

node j to node i. In our experiments, we choose all the coupling delays to be identical, such that

τ cij = τ c (heterogeneous delays are considered in Sec. 3.5.3).

An illustration of a single networked opto-electronic oscillator is shown in Fig. 3.2. In order

to couple the opto-electronic oscillator to other nodes in the network, a 1× 4 fiber optic splitter is

introduced after the intensity modulator. One of the optical outputs of the splitter is fed back into

that node’s DSP board, creating a self-feedback electrical signal. The other three splitter outputs

are sent to the other three nodes in the network. Incoming optical signals from the other nodes
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pass through variable optical attenuators, which control the link strengths, then are combined by

a 3x1 fiber optic combiner. This combined optical signal is converted into a coupling electrical

signal by a second photodiode.

The feedback and coupling signals are delayed independently in the DSP board such that

τ f and τ c represent the feedback and coupling delay times, respectively. The outputs of the two

delay lines are weighted and combined in the DSP board. This combined signal is output by the

DSP, amplified, and used to drive the modulator. The ratio of amplification factors of the coupling

signal and feedback signal is given by the coupling strength ϵ.

The amplifier gain is set such that each feedback loop has identical round-trip gain β = 3.8,

phase bias ϕ0 = π/4, and feedback time delay τ f = 1.4 ms such that a single uncoupled node

behaves chaotically. The digital filter implemented by the DSP board is a two-pole Butterworth

bandpass filter with cutoff frequencies ωH/2π = 100 Hz and ωL/2π = 2.5 kHz and a sampling

rate of 24 kSamples/s. These parameters were chosen because the experimental system with these

parameters has been well-characterized [127–130].

For each set of measurements, the nodes are initialized from noise from the electrical signal

into the digital signal processing (DSP) board. Then feedback is turned on without coupling, and

the opto-electronic oscillators are allowed to oscillate independently until transients die out. At

the end of this period, the coupling to the other nodes is turned on and the voltage reading x(t) of

each opto-electronic oscillator is recorded on an oscilloscope.
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3.4.2 Mathematical Model and Numerical Simulations of the Opto-Electronic

Network

The equations governing the dynamics of our network of opto-electronic oscillators are

derived in Ref. [136] and are given by

dXi(t)

dt
=EXi(t)− βG cos2

(
X1

i (t− τ f ) + ϕ0

)
− ϵβG

∑
j

Aij[cos
2
(
X1

j (t− τ cij) + ϕ0

)
− cos2

(
X1

i (t− τ f ) + ϕ0

)
] + ξi(t)

(3.10)

where

E =

−(ωL + ωH) −ωL

ωL 0

 , G =

ωL

0

 , (3.11)

Here Xi = [X1
i (t), X

2
i (t)]

T (corresponding to Ds = 2 in Eq. (3.2)) is the state of the

digital filter of node i (with i, j ∈ {1, 2, 3, 4}, corresponding to Dn = 4). By virtue of the second

component of G being zero, coupling between nodes occurs only between X1
i and X1

j (i ̸= j),

where X1
i (t), the normalized voltage of the electrical input to the intensity modulator and is also

the only observed variable (i.e., X1
i (t) = x(t), corresponding to D′

s = 1). The nodes are coupled

via the adjacency matrix Aij , such that Aij = 1 if there is a link to the first component of the state

vector of node i from the first component of the state vector of node j, and Aij = 0 otherwise.

Since the coupling is between only the first components of the vectors Xi, we have dropped

the component indices in the adjacency matrix in Eq. (3.10). The coupling strength is given by

ϵ, and E and G are matrices that describe the filter. Finally, ξi(t) = [ξ1i (t), ξ
2
i (t)]

T is a vector

corresponding to white noise acting independently at each oscillator, and its components have the

property that
〈
ξµi [s]ξ

ν
j [t]
〉
= 2ζδ(s− t)δijδµν with ζ denoting the strength of the noise.
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In our experiments, we choose all the feedback delays and coupling delays to be nominally

equal (i.e., τ f = τ cij = τ ). In this case, Eq. (3.10) describes a network with Laplacian coupling:

dXi(t)

dt
= EXi(t)− βG cos2

(
X1

i (t− τ) + ϕ0

)
− ϵβG

∑
j

Lij cos
2
(
X1

j (t− τ) + ϕ0

)
+ ξi(t)

(3.12)

In this case the nodes are coupled via the Laplacian connectivity matrix Lij , defined so that

Lij = 1 if there is a link to the first component of the state vector of node i from the first component

of the state vector of node j, Lij = 0 if there is no such link, and Lii = −
∑

j ̸=i Lij . Laplacian

coupling tends to lead to global synchronization, which is a particularly challenging case for link

inference, as we show in the following sections.

Since the coupling is between only the first components of the vectors Xi, we have

dropped the component indices in the Laplacian adjacency matrix in Eq. (3.10). Comparison

with Eq. (3.1) shows that in our example, F i = EXi(t) − βG cos2 (X1
i (t− τ) + ϕ0) −

ϵβG
∑

j Lij cos
2
(
X1

j (t− τ) + ϕ0

)
+ ξi(t), where we have dropped the component superscripts.

The oscillators are identical, so these functions are independent of i, except for the noise term. The

relevant partial derivative controlling the propagation of perturbation is ∂F µ
i /∂X

ν
j ∝ Lijδµ1δν1,

for i ̸= j.

While Eq. (3.10) accurately describes the behavior of our network of opto-electronic

oscillators, numerical simulations are inherently discrete in time. Instead of discretizing Eq. (3.10)

directly, our simulations use a discrete-time model based on the discrete-time filter equations

implemented on the DSP board, which can be found in Ref. [138] and is explained in Appendix B.

In particular, for this case, we characterize the noise strength by the variable κ, so that κ = ζ∆t.

For the discrete equation that we simulate, the time step is 0.04ms, which corresponds to the
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2.4× 104 samples/second sampling rate used by the digital filter in our experiment.
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Figure 3.3: Examples of experimental and simulated time series from two opto-electronic oscillator
networks showing globally synchronous (upper panels) and completely desynchronized (lower
panels) behavior respectively. For the simulations, we have used the noise strength κ = 10−6. In
the plots, purple overlays orange, which overlays red, which overlays blue.

Our model is verified by comparison with the experiment, as shown in Fig. 3.3 for two sets

of examples. The upper panel shows experimentally measured (left) and simulated (right) time

series of the four opto-electronic oscillators arranged in the six-link network shown. The dynamics

are synchronized and are also the dynamics of an individual uncoupled opto-electronic oscillator,

since the effect of the Laplacian coupling vanishes for global synchronization. The lower panel

shows a measurement (left) and simulation (right) of the four opto-electronic oscillators coupled

in the nine-link network shown. In this case, the opto-electronic oscillators do not synchronize

even though the coupling is strong (ϵ = 0.6). In both cases, the simulations are in good agreement

with the experiment

As we shall see, the degree of synchronization of the oscillators in the network is an

important factor in the success of our method to infer the network topology. In order to quantify
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the degree of global synchrony, we define synchronization error as

Synchronization Error =
1

Dn(Dn − 1)

〈∑
i,j

|xi(t)− xj(t)|

〉
t

(3.13)

where ⟨⟩t means time average over a sufficiently long time. This non-negative measure

decreases with the amount of synchronization in the system and is zero for perfect global

synchrony. For example, in Fig. 3.3, the synchronized examples (upper panel) have

synchronization error ≈ 0.07, whereas the desynchronized examples (lower panel) have

synchronization error ≈ 1.04.

Possible  connected  network  topologies L 

3 
4 

5 
6 
7 

8 

9 

10 

11 

12 

Figure 3.4: List of possible connected directed 4-node networks [127] with different numbers of
links (L).

Using computer simulations, we have studied the dependence of the synchronization error
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on the network coupling strength ϵ and the number L of network links for all possible directed and

connected networks with 4 opto-electronic oscillator nodes. The list of the 62 possible networks is

shown in Fig. 3.4, and is adapted from Ref. [127]. Figure 3.5 shows the synchronization behavior

of these networks as a function of the coupling strength ϵ for fixed β = 3.8 and ϕ0 = π/4. In

Fig. 3.5, the color coded synchronization error for each of the 62 networks in Fig. 3.4 is shown

as one of the 62 horizontal bars for each value of the coupling strength. Here, the convention

we follow is that, for fixed number of links (L), moving upwards, the horizontal bars correspond

to the networks listed in Fig. 3.4 left to right. The same convention is followed in Figs. 3.6,

3.7 and 3.10. The results in Fig. 3.5 were obtained from numerical simulations without noise

(κ = 0). We see that for intermediate coupling strengths, the networks synchronize, but for small

and large coupling strengths, the networks do not synchronize. The seemingly counterintuitive

behavior that large coupling strengths lead to desynchronization has been studied for our network

of opto-electronic oscillators [130] and is characteristic of delay coupled systems in general [139].

Furthermore, for coupling strengths in the range ϵ > 0.5, for a fixed value of coupling strength,

sparser networks are seen to synchronize more readily than densely connected networks. This

behavior is also studied and explained in earlier works [130, 140].

3.5 Results of Link Inference Tests

In this section, we present tests of the efficacy of our machine learning technique. These

include numerical simulation tests for simulations with homogeneous link delays (Sec. 3.5.1),

opto-electronic experimental tests with nominally homogeneous link delays (Sec. 3.5.2), and

numerical simulation tests with inhomogeneous link delays (Sec. 3.5.3).
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Figure 3.5: Synchronization error for simulated time series of the networks in Fig. 3.4 realized with
opto-electronic oscillator nodes with different coupling strengths for random initial conditions.The
color coded synchronization error for each of the 62 networks in Fig. 3.4 is shown as one of the
62 horizontal bars for each value of the coupling strength. Here, the convention we follow is that,
for fixed number of links (L), moving upwards, the horizontal bars correspond to the networks
listed in Fig. 3.4 left to right. The same convention is followed in Figs. 3.6, 3.7 and 3.10.

3.5.1 Performance on Simulated Data - Homogeneous Delays

In this section, we test our methodology on simulated time series for our coupled opto-

electronic oscillator networks where links have identical delays. We will use these simulation

tests to study the effects of noise and coupling strength on the amount of synchrony in the system,

and their effect on the performance of link inference tasks. In particular, in Sec. 3.4.2 we showed

that our opto-electronic oscillator networks show synchronized dynamics for certain ranges of

the coupling strength ϵ. As we will now show, our method works excellently when the system

dynamics does not show pronounced global synchrony, while it does not work well when there
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Figure 3.6: Simulation test results with varying noise strength κ. (a) Number of false positives
and (b) synchronization error for simulated time series from different networks with progressively
increasing noise. As described in the text, each horizontal cut of the plots represents a single
trajectory of the system, starting from a random initial condition. The convention for sequence of
the networks is the same as in Fig. 3.5.
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is pronounced global synchrony. Furthermore, we will show that our technique gives excellent

results when there is a small amount of dynamical noise present so that the global synchrony

among the opto-electronic oscillators is appreciably broken.

In order to directly demonstrate the effect of loss of synchrony on link inference, we vary

the noise level and coupling strength in the following two sets of examples. In the first example

set, the system starts with a random initial condition with no noise for 5× 104 time steps (about

1470 delay times) and is allowed to settle down to an attractor. Then we continue the simulation,

but with the noise strength κ set to 10−6 for the next 5× 104 steps, then with the noise strength

set to κ = 10−4 for the next 5 × 104 steps, and so on, keeping the coupling strength fixed at

ϵ = 0.6 (Figs. 3.6(a) and 6(b)). As shown in Fig. 3.6(b), as the noise strength increases, it

drives the system away from the attractor and disrupts its global synchrony, resulting in larger

synchronization error, which allows better link inference performance, as shown in Fig. 3.6(a).

In these figures, for each of the time series segments with a fixed noise strength, we use the first

3 × 104 time steps (about 880 delay times) to train our RC and infer links using our procedure

described in Sec. 3.3. We repeat this process for each of the 62 possible connected networks of 4

opto-electronic oscillators [127], each one with a different random initial condition.

We use the same procedure in the next set of examples (Figs. 3.7(a) and 3.7(b)), but this

time we keep the noise level fixed at its nominal experimental value of κ = 10−6 and vary the

coupling strength ϵ stepwise. The results are summarized in Fig. 3.7. For both Figs. 3.6 and 3.7,

we simultaneously plot the number of false positives and synchronization error and follow the

same convention as in Fig. 3.5.

As we see from Fig. 3.6, a greater degree of global synchronization generally corresponds

to a larger number of false positives, consistent with the hypothesis that global synchrony is
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Figure 3.7: Simulation test results with varying coupling strength ϵ. (a) Number of false positives
and (b) synchronization error for simulated time series from different networks with progressively
increasing coupling strength. As described in the text, each horizontal cut of the plots represents
a single trajectory of the system, starting from a random initial condition. The convention for
sequence of the networks is the same as in Fig. 3.5.
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detrimental to the performance of link inference. This is expected because exact synchronization

makes the time series from the four opto-electronic oscillators indistinguishable and hence the

observed dynamics yields no information about their underlying causal interactions. In particular,

we see that networks with eight or more links do not synchronize sufficiently even in absence of

the noise, and we are indeed able to infer the links well, with, at most, only one false positive.

In contrast, for networks with smaller numbers of links, which are strongly synchronized for

noise levels κ ≲ 10−3, we have many false positive link inferences. Again, as we see from

Fig. 3.6, all the networks show a loss of global synchrony for sufficiently strong noise levels

(κ ≳ 10−2) and this results in almost perfect link inference until the noise strength becomes

significant compared to the noiseless opto-electronic oscillator signal amplitudes (κ ≳ 100). Other

examples of similar beneficial role of noise in link inference can be found at earlier works as well,

e.g., in [59, 66, 71, 72, 141–143]. Of these, Ref. [143] describes a network inference technique

based solely on noise correlations. However, Ref. [143] proposes a technique applicable only in the

case of Laplacian coupling, unlike our work which does not employ this model-specific restriction.

Furthermore, unlike our method, their method does not work in the absence of dynamical noise,

and was not validated using experimental data.

In the second set of examples (Figs. 3.7(a) and 3.7(b)), we fix the noise at a particular

strength κ = 10−6, and progressively increase the coupling strength ϵ. We estimate that this noise

level approximates that for the experimental tests reported in the next subsection (Sec. 3.5.2).

As in the previous examples, Fig. 3.7 shows that our link inference method performs well when

the global synchrony is not too strong. A difference in this set of results from the previous ones

is the non-trivial relationship between the coupling strength ϵ and global synchrony, which we

have already discussed in the last section (Fig. 3.5). Furthermore, we notice that, even in the
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absence of global synchrony, the coupling strength needs to exceed a minimum value (about

0.1) for successful link inference. For smaller coupling, the off-diagonal elements of the matrix

M[n∆t] could be so small in magnitude that the values corresponding to actual links are of the

same order as those corresponding to absent links. Thus, sufficiently large coupling strength ϵ is

beneficial for our link inference technique because of the better contrast among the elements of

M[n∆t] and diminished global synchrony.

When the number of links is unknown. Finally, to show the effectiveness of our procedure

in situations where the number of links L is unknown, in Fig. 3.8 we plot the distribution of the

scores Sij calculated from the matrix M[n∆t], for all the 62 networks listed in Fig. 3.4 with

coupling strength ϵ = 0.6 and noise strength κ = 10−3, where, in determining the statistics,

for each of the networks, we use a single random realization of initial condition and reservoir

couplings. Fig. 3.8 also shows the numerical values and properties of the scores we typically get in

our method. In Fig. 3.8(a), we have labeled individual scores into two types [those corresponding

to actual network links (colored blue), and those corresponding to absence of links (colored red)]

and plotted the scores with the respective synchronization errors in the network. We see that, in the

cases with complete desynchronization, where we obtain perfect network inference with known L

(as seen in Fig. 3.6(a)), it is also easy to predict a binary decision threshold on our scores (the

top histogram, Fig. 3.8(b)). These scores separate into two distinct populations according to their

magnitudes, with a gap in between them (Fig. 3.8(b)), and the populations correspond to actual

links or absence of links. In the cases for which Fig. 3.6(a) shows finite but small number of false

positives with known L, the two populations overlap, but there are still two distinct histogram

peaks (the middle histogram, Fig. 3.8(c)), so that one can expect good inference results in cases

where L is not known by choosing a suitable threshold based on the shape of the histogram.
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Figure 3.8: This figure shows statistics of our results for the link scores Si,j of all the possible
networks (listed in Fig. 3.4) with ϵ = 0.6 and κ = 10−3, where, in determining the statistics, for
each of the networks, we use a single random realization of the initial condition and reservoir
couplings. In panel (a), for each individual directed node pair (i, j), i.e., each candidate link, a
point is plotted in the sync-error/score plane with true links plotted in blue, and link absences
denoted in red, with red overlaying blue. The two black horizontal lines divide the sync-error/score
plane into three regions corresponding to networks that are highly desynchronized, moderately
synchronized, and strongly synchronized. Panels (b), (c), and (d) show histograms of the node
scores for each of the three levels of network synchronization demarcated in panel (a). Bins with
scores that all correspond to true links (absence of links) are colored blue (red). Bins with scores
corresponding to both true links and link absence are vertically stacked into upper and lower
pieces where the lower piece (blue) corresponds to the number of true links in the bin, and the
upper piece (red) corresponds to the number of missing links.

However, when the histogram overlap is so great that two peaks are not discernible, we expect that

the ability to infer links no longer exists (the bottom histogram, Fig. 3.8(d)). In Fig. 3.6(a), this

scenario corresponds to cases with a large number of false positives, even with a known L, because

the network exhibits global synchrony. We shall develop an effective statistical methodology to

extract useful link information in such cases in the next chapter (Chapter 4).
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3.5.2 Performance on Experimental Data
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Figure 3.9: Typical performance of our network inference method on experimental data. Each of
the vertical bars correspond to the experimental realization of a distinct opto-electronic oscillator
network, with the height indicating the corresponding number of links. Each bar is separated into
3 segments as shown, but in many of them only two are seen if there is a perfect link inference.
The numbers inside the segments indicate the corresponding heights of the segments, rounded to
the nearest integers. Ranges of coupling strength (ϵ) and synchronization error for all the examples
are indicated as well

.

Having established the usefulness of our network inference method on simulated time series,

we now report our experimental tests on the opto-electronic oscillator networks described in Sec.

3.4.1. In Fig. 3.9, we show some representative examples of the performance of our method on

experimental time series. Each column in the figure corresponds to a time-series from a distinct

network indicated above the column, with the respective global synchronization error indicated on

the horizontal axis. The height of the columns gives the total number of links in the corresponding
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network. The columns are each divided into three parts (colored in red, green, and black in the

plot). The height of the red portion indicates the number of falsely inferred links (“false positives”,

FP). This portion is absent in the many cases where we have perfect network inference. The

number of correctly inferred links (“true positives”, TP) is indicated by the total height of the green

plus black portions of a column. The height of the black portion indicates the expected number

of true positives on average (to nearest integer) that would be obtained if all L links were to be

guessed randomly, while the height of the green portion indicates the increase of true positives over

what would result from random selection. To evaluate the expected number of randomly selected

true positives, we note that, for L links randomly and uniformly assigned among the Dn (Dn − 1)

ordered pairs of Dn nodes, the expected number of false positive links is L
(
1− L

Dn(Dn−1)

)
and

the expected number of true positive links is thus L2/Dn (Dn − 1). If our method yields more

true positives than L2/Dn (Dn − 1), then we consider our method to be successful, even if it gives

some false positives.

To summarize our experimental results, consistent with the simulation results of Figs. 3.5

and 3.7, the time-series from the experimental opto-electronic oscillator networks (Fig. 3.9)

were either globally well synchronized or else were strongly desynchronized, and, when strong

desynchronization applied, our method correctly identified all of the links.

3.5.3 Performance on Simulated Data - Heterogeneous Delays

So far we have considered cases where the link time delays τ cij in Eq. (3.1) are the same

along all links (i.e.,τ cij = τ ). We now present results on simulated data for which the link delays

τ cij are chosen randomly from a uniform distribution of mean τ0 and width 2∆τ , where the mean
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link delay τ0 is assumed known. We then apply our previously described method treating all

links as if they had the same delay τ0, and assess the results as a function of the link delay

heterogeneity, as characterized by the fractional spread 2∆τ/τ0 of the link delays. We do this

for all networks listed in Fig. 3.4. For purposes of discussion, we divide these networks into two

categories: (1) networks for which we obtained perfect inference with homogeneous delays, and

(2) networks for which synchronization hindered link inference performance with homogeneous

delays (Fig. 3.6(a)). For a fixed mean delay time τ0 (corresponding to k = 34 with τ0 = k∆t),

the results for different amounts of spread of the delay times ∆τ are plotted in Fig. 3.10. The

results indicate that in case (1), we continue obtaining good results, with the average of maximum

number of false positives around 1, if the heterogeneity of the spread in delays is not too large (Fig.

3.10(a)). In case (2), we obtain better, and, in some cases perfect (i.e., zero false positives), results

with moderate delay heterogeneity. This improvement can be attributed to a change in network

dynamics: The heterogeneity of the link delays inhibits global synchronization, as is evident from

the corresponding synchronization error plot of Fig. 3.10(b). Thus, moderate delay heterogeneity

can be beneficial to the working of our method. This study confirms that our formalism can

be applied to realistic networks with distributed link delay time, broadening the scope of our

methodology. Further investigations in which we include the delay heterogeneity in the reservoir

computer formalism itself are reserved for the future.

3.6 Discussion

In this work, we developed a reservoir-computer-based technique for the general problem of

link inference of noisy delay-coupled networks from their nodal time series data and demonstrated
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Figure 3.10: Tests on networks with heterogeneous link delays. (a) Average number of false
positives, and (b) the corresponding synchronization error for different networks listed in Fig. 3.4,
with ϵ = 0.6 and κ = 10−6, and different amounts of link delay heterogeneity, presented as the
ratio of link delay variation range 2∆τ and mean link delay τ0. The results are based on simulated
data with different network configurations, and different random link delays along the network
links. In each case, the averaging is done over 100 different random realizations of reservoir
connections, initial conditions and assignments of interaction delays to different links.
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the success of our method on simulated and experimental data from opto-electronic oscillator

networks with identical and distributed link delay times. Our main findings are as follows:

• Testing on experimental and simulated time-series datasets from networks, we found that, in

the absence of dynamical noise, our method yields extremely good results, as long as there

is no synchrony in the system.

• We found that dynamical noise and/or a moderate amount of link time delay heterogeneity

can greatly enhance the performance of our method when synchrony is present provided

that the noise amplitude or link time delay heterogeneity is large enough to perturb the

synchrony.

• Since dynamical noise is ubiquitous in natural and experimental situations, we anticipate that

this technique may be useful in network inference tasks relevant to fields like biochemistry,

neuroscience, ecology, and economics.

Among the important issues for future investigation, our work in this chapter could be

extended to cases when the dynamics of the network nodal states are partially synchronized (e.g.,

cluster synchronization of nodes [144]) or display generalized synchronization [86, 87, 145, 146].

Effects of network symmetries [144,147], non-uniform coupling [148], and non-identical nodes

[149] —all of which can affect the synchrony of nodal states —would also be very interesting to

study. Another important issue that awaits study is the effects of incomplete [150], or erroneous

nodal state data [151, 152] on link inference , e.g., a case of particular interest is that where

measured nodal time series is only available from a subset of N ′ < N of the N network nodes,

and the value of N itself is unknown.
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3.8 Appendices

3.8.1 Determination of the time-delay from cross-correlation

In this Appendix, we demonstrate that the duration of the delay along a link in our network

can be accurately estimated from the cross-correlation between the measured time series of the

two nodes connected by that link. In particular, we show that the location of the peak of the

cross-correlation between the two nodes provides a good estimate of the delay time. We also show

that the cross-correlation cannot determine causality, because it cannot determine the direction of

a given putative link, or if the link even exists at all.

Consider the network depicted in Fig. 3.11a, where each node is an opto-electronic oscillator

as described in Sec. 3.4. The delay in each link is τ = 1.44ms. We define the cross-correlation

between the sampled time series of two nodes i and j as

ρij(lag) =
1

σiσj

∑
k

xi[k + lag]xj[k], (3.14)

where xi[k] is the measured time series of node i at discrete time k and σi is the RMS value of

xi. The time series should be mean-subtracted so that ⟨xi⟩ = 0. The time series used here were
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Figure 3.11: Time delay determination by cross-correlation of measured time series. In all cases,
the coupling delay time is 1.44ms. (a) The network to be inferred from time series measurements.
(b) The cross-correlation between the time series of nodes 1 and 2. A strong peak is observed near
-1.44ms. (c) The cross-correlation between the time series of nodes 2 and 3. A strong negative
peak is observed near 1.44ms and a strong positive peak near -1.44ms. (d) The cross-correlation
between the time series of nodes 2 and 4. A strong peak is observed near 1.44ms. (e) The
cross-correlation between the time series of nodes 1 and 4. Peaks are observed at 1.44ms and
-1.44ms, even though there is no link from node 1 to node 4.

obtained from experimental measurements of our opto-electronic oscillator network.

First, we compute ρ12, the cross-correlation between node 1 and node 2, shown in Fig.

75



3.11b. A peak is located at -1.44ms. This corresponds to the delay in the link from node 1 to node

2. This suggests that the dynamics of node 2 lag behind the dynamics of node 1, as one might

expect since the delayed link is from node 1 to node 2.

Next, we compute ρ23, the cross-correlation between node 2 and node 3, shown in Fig.

3.11c. The largest (negative, in this case) peak is located at 1.44ms, correctly identifying the

absolute value of the delay time of the link from node 2 to node 3. However, in contrast to ρ12, the

peak location in ρ23 shows that node 3 leads node 2. There is no peak at a lag of -1.44ms. This

shows that the cross-correlation can identify the delay time, but not the link direction.

We now consider ρ24. Nodes 2 and 4 have a bidirectional link; however, the cross-correlation

ρ24 shown in Fig. 3.11d has a prominent peak at 1.44ms but not at -1.44ms. There is no indication

that the link is bidirectional.

Finally, we consider ρ14. There is no direct link between nodes 1 and 4. Still, the cross-

correlation ρ24 shown in Fig. 3.11e has peaks at both 1.44ms but at -1.44ms.

This example demonstrates that the cross-correlation can provide an accurate estimate of

the duration of the delay in the coupling between two nodes, but that it does not provide sufficient

information to determine the existence or directionality of a link. We find similar results in all the

networks of opto-electronic oscillators we tested.

3.8.2 Derivation of the discrete-time equation for simulating the opto-electronic

system

In this appendix, we derive the discrete-time equations implemented by the DSP board in

our experimental setup and used in our simulations. These discrete-time equations are derived
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using standard techniques for approximating an analog filter as a digital filter and are essentially a

trapezoid rule approximation to Eqs. (3.10) and (3.11).

The derivation here closely follows that presented in Ref. [136]. The missing details from

Ref. [136] are filled in here, drawing from Ref. [153] for the details of the z-transform and bilinear

transform.

The continuous-time filter equations that describe a two-pole bandpass filter are

du(t)

dt
= Eu(t)− Fr(t) (3.15)

x(t) = Gu(t) (3.16)

where

E =

−(ωL + ωH) −ωL

ωL 0

 , F =

ωL

0

 , and G =

[
1 0

]
. (3.17)

Here, u(t) is a 2-vector that describes the state of the filter, r(t) is the filter input, and x(t) is

the filter output. In the case of one of our opto-electronic oscillators r(t) = β cos2(x(t− τ) + ϕ0).

In order to implement this filter digitally, one derives the digital filter equations by computing

the transfer function of the analog filter, then applying the bilinear transform with frequency

pre-warping to the continuous-time transfer function to obtain the discrete-time transfer function.

From there, the discrete-time digital filter equations can be written down.

The transfer function H(s) of the analog filter can be found by H(s) ≡ X(s)/R(s), where

the capital letters X and R indicate the Laplace transform of x and r, respectively. We compute

the Laplace transform of Eq. (3.15):

sU(s) = EU(s) + FR(s) (3.18)
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Then, performing the Laplace transform of Eq. (3.16) and inserting Eq. (3.18), we have:

H(s) ≡ X(s)

R(s)
= G(sI− E)−1F =

sτH
(1 + τLs)(1 + τHs)

, (3.19)

where τH = 1/ωH and τL = 1/ωL. Equation (3.19) is the continuous time filter transfer function

for the filter described by Eqs. (3.15)-(3.17).

Two standard tools used in the design and analysis of digital filters are the z-transform and

the bilinear transform. The z-transform is the discrete time analog of the Laplace transform. The

bilinear transform is a tool used to turn a continuous-time filter into a discrete-time filter. It can

be shown that the result obtained by the bilinear transform method we use here is equivalent to

applying the trapezoidal integration rule to Eqs. (3.15)-(3.17) [153].

The z-transform is defined as

Z{x[n]} ≡
∞∑

n=−∞

x[n]z−n, (3.20)

where z is a continuous complex variable, and n is discrete time. One important z-transform

relations is that a delay by m time steps in the discrete-time domain is equivalent to multiplication

by z−m in the z-domain.

The bilinear transform is used to convert our continuous-time filter transfer function (Eq.

(3.19)) into a discrete-time filter transfer function. An exact conversion is done by discretizing

with a time-step of T and equating z = esT . Since T is small, we can approximate

s =
1

T
ln(z) =

2

T

1− z−1

1 + z−1
. (3.21)

Equation (3.21) is the bilinear transform. This approximation is equivalent to applying the

trapezoid rule to the continuous-time filter equations [153]. When Eq. (3.21) is substituted into

78



Eq. (3.19), we obtain the transfer function for a discrete-time filter with similar characteristics to

the desired analog filter:

H(z) =
1

4
(1− zL)(1 + zH)

1− z−2

(1− zLz−1)(1− zHz−1)
. (3.22)

This change of variables is a nonlinear mapping, so frequency warping occurs. This effect

is minimal when the frequencies are significantly less than the Nyquist frequency (in this case

fL = 2.5kHz and the Nyquist frequency is 12kHz) and can be further mitigated by pre-warping the

frequencies of the continuous-time filter by Ω = 2
T
tan(ω

2
), where Ω is the discrete-time frequency

and ω is the continuous-time frequency [153]. Therefore, we find that

zH =
1− tan(T/2τH)

1 + tan(T/2τH)

and

zL =
1− tan(T/2τL)

1 + tan(T/2τL)
.

Now, one can use the definition of the transfer function H(z) ≡ X(z)/R(z) to find

(1− (zL + zH)z
−1 + zLzHz

−2)X(z) =
1

4
(1− zL)(1 + zH)(1− z−2)R(z). (3.23)

We arrive at the discrete-time filter equation by performing the inverse z-transform on Eq.

(3.23):

x[n] = (zL + zH)x[n− 1]− zLzHx[n− 2] +
1

4
(1− zL)(1 + zH) (r[n]− r[n− 2]) . (3.24)

For the filter used in this work, zL + zH=1.4845, zLzH=0.4968, and 1
4
(1− zL)(1 + zH)=0.242.
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Chapter 4: Network inference application for C. elegans neuronal calcium

fluorescence dynamics

This chapter is based on the work “Network inference from short, noisy, low time

resolution, partial state measurement time series: with application to C. elegans neuronal calcium

fluorescence dynamics” by Amitava Banerjee, Sarthak Chandra, and Edward Ott, submitted for

publication.

4.1 Overview

In the previous chapters, we saw that reservoir computer (RC) models of experimental and

simulated time-series data can be used to infer both short term and time-delayed interactions in

complex systems. In typical cases, however, such time-series data may be subject to limitations,

including limited duration, low sampling rate, observational noise, and partial nodal state

measurement. While previous chapters showed that network inference benefits from dynamical

noise and suffers from observational noise, it is generally unknown how the performance of

link inference techniques on such datasets depend on different experimental limitations of data

acquisition. In this chapter, we utilize both synthetic data generated from coupled chaotic systems,

as well as experimental data obtained from C. elegans neural activity to assess the influence of

data limitations on the effectiveness of three network inference techniques: Granger causality,
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transfer entropy, and, RC-based method.

Network inference techniques typically assign scores to each potential link in a network.

Under ideal circumstances these scores directly lead to clear discrimination between linked and

unlinked nodes in the network (for example, as was the case in Fig. 3.8b). However, the measured

data generally available from non-ideal, real-world systems typically consists of short noisy time-

series with poor temporal resolution and may have other limitations, all of which may be expected

to lead to poor link discriminability (for example, as was the case in Fig. 3.8c, where the score

distributions corresponding to linked node pairs and non-linked node pairs overlapped). Focusing

on Granger causality, transfer entropy, and the newly developed RC-based link inference technique,

we characterize scenarios that lead to poor link discrimination through tests on synthetic data

generated from coupled chaotic systems, as well as experimental neuronal activity data obtained

from C. elegans for which the ground truth neuronal synaptic connectivity network is known.

Furthermore, in cases when score distributions corresponding to linked node pairs and

non-linked node pairs overlap, we demonstrate that appropriate surrogate data can be generated to

ascertain statistical confidence levels associated with the results of link inference techniques, thus,

potentially allowing impactful application of these techniques on real-world datasets.

4.2 Introduction

The task of reconstructing complex networks solely from observations of their nodal state

time-series dynamics has applications in a wide range of problems. Examples include inferring

neuronal networks from neural recordings (Fig. 4.1(a-c)) [19, 156], predator-prey interaction

networks from population data of different species in an ecosystem [23], gene and protein
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Figure 4.1: Schematic of the network inference task from calcium fluorescence dynamics of
individual C. elegans neurons showing (a) identified neurons in a live worm (b) representative
full time series available from three identified neurons from [154] (c) The 8-neuron ground truth
synaptic network of C. elegans from [155].

interaction networks from protein concentration and gene expression data of biochemical systems

[157], climatic interaction networks from global temperature and ocean circulation data [158,159],

etc. A number of computational techniques have been proposed for this purpose, e.g., Granger

causality [35, 36, 160], transfer entropy [31, 161–163], Bayesian techniques [39, 164], machine-

learning-based techniques [59, 60, 75, 165, 166], among others [21, 167, 168]. Typically these

techniques take the time-series of the nodal states of the unknown network as input, and use it to

assign to each potential directed link between a pair of nodes (i, j) of the network a link score Si→j

that is supposedly reflective of the probability of existence of an actual network connection from

node i to node j. Ideally these network inference techniques would yield a bimodal distribution

of the link scores Si→j , with linked node pairs having relatively larger scores, and unlinked node

pairs having relatively smaller scores, with a clear gap in between these two types of scores

(Fig. 4.2(a)), so that linked and unlinked node pairs are easy to separate based solely on their

respective link scores. We refer to the distribution of scores between linked node pairs as the

link-score distribution, and the distribution of scores between unlinked node pairs as the non-

link-score distribution. In practice, however, it is often the case that the link-score distribution
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and the non-link-score distributions overlap (Fig. 4.2(b)). In such cases, it becomes useful to (i)

understand the relationships between experimental factors characterizing the measurements of the

network nodal state time-series, link inference techniques, and the distribution of link scores, and

(ii) to make better inference from the results of network inference link scoring. To these ends we

conduct tests on a newly-developed machine learning link inference technique [59], the Granger

causality technique [35,36], and an information theoretic technique, Transfer Entropy [31,163].

The first method, developed in Refs. [59,60], involves training an artificial neural network called a

“reservoir computer” with the measured time-series and then using the trained reservoir as an in

silico model of the experimental system to evaluate the network structure between the nodes of

the experimental system. For more details on these three methods, see the Methods Section 4.8.

Link score
Non-link score
All scores

Link score
Non-link score
All scores

Link score
Non-link score
All scores

Lorenz oscillator network: 
3 variables sampled

C. Elegans

(b)

(a)

Figure 4.2: For the 8-neuron network in Fig. 4.1(c), two examples of link score distributions with
(a) separated scores from Lorenz oscillator time-series with with T = 3000, σobs = 0.01,∆t =
0.02, δt = 0.02 and complete nodal states and full network sampled and (b) non-separated scores
from C. elegans calcium fluorescence dynamics from [154].
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To test the validity and efficacy of these techniques it is essential to apply them in a scenario

where the ground truth of the underlying network is known. Thus, we focus our attention on two

types of network dynamical system. One is the neural system of the C. elegans worm, a model

organism that we choose due to the availability of its complete neural connectome as obtained from

previous microscopy studies [155, 169], in addition to whole-brain calcium fluorescence imaging

of individual neurons [154,170, 171]. The other dataset is obtained by numerical simulations in

which we take each node to be a Lorenz oscillator [92]. For the Lorenz oscillator case we simulate

and compare results from two different kinds of nodal state time series measurements data: (i) the

entire three-component vector state of each node is assumed to be measured, and (ii) we take as

the nodal observations a single composite variable per node (representative of the case of partial

state measurements of nodal states).

As we will show, the overlap between the link-score distribution and the non-link-score

distribution can have various causes, including: (1) low temporal resolution of sampling (e.g., ∼3

samples/second for the C. elegans time-series that we use, examples shown in Fig. 4.1(b)); (2)

the presence of observational noise; (3) short length of the available time series data (e.g., ∼ 0.3

second × 3000 time points for the C. elegans time-series in [154], Fig. 4.1(b)); (4) availability

of only partial, indirect measurements (e.g., instead of accessing the full biophysical state of

each neuron, we might only have measurements of the fluorescence intensity of the Calcium

ions involved in the neural activity); among others (e.g., the presence of strong synchrony or

correlations among the activities of different neurons, making connectivity inference prone to

spurious false positive connections between neurons with correlated activities [59, 60]). In Sec.

4.4, we illustrate the effect of such factors on the separability of the distribution function of link

and non-link scores in the network Lorenz model with chaotic dynamics when examined using the

84



example of the machine learning network inference method of Ref. [59]. In Sec. 4.5, we consider a

method of generating surrogate time-series data, in which causal relationships in the experimental

data between a given pair of nodes are destroyed, and we demonstrate that such surrogate data

can be used to estimate null-hypothesis score distributions, which mimic the distributions of the

non-link scores of the original time-series data [172–179]. We find that (Sec. 4.6), in the situation

where the link-score and non-link-score distributions overlap, the surrogate data is able to give an

estimate of the p-value associated with any particular node pair being linked in the underlying

network. Choosing an appropriate p-value as a link-score cutoff can then be used to partially

reconstruct an estimate of the unknown network at a confidence level corresponding to the chosen

p-value cutoff.

The main results/contributions of this chapter are as follows:

1. We show that network link inference techniques can give useful prediction with statistical

confidence estimates based on appropriately constructed surrogate data, when they are applied on

short, low sampling resolution, noisy time-series data from partial nodal state measurements.

2. We systematically study the effects of training time length, observational noise variance,

sampling resolution, and incomplete nodal state measurements on the performance of network

inference.

3. A key feature enabling use of C. elegans data for our study is the availability of its known

ground-truth synaptic network.
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4.3 Physical systems and datasets used

4.3.1 Calcium imaging time-series data from C. elegans

To test the performance of techniques for inferring neural connectomes from neural

recordings, we apply them to the publicly available [154] dataset of whole-brain calcium-imaging

time-series of individual neurons of a freely-moving C. elegans worm. We then compare

our inferred connectivity among the identified neurons to the well-established ground-truth

connectome for C. elegans available from [155, 169]. While data is available for all neurons, a

large fraction of the neurons have low magnitudes of activity over the duration of neural recording.

Thus, we focus on the subnetwork consisting of the 16 most active motor neurons and the synaptic

connections between them. Furthermore, due to the left-right symmetry of the C. elegans worm,

the network of neuronal connections of these 16 neurons is left-right symmetric [155, 169]. Thus,

we consider a “folded-over” network of connections between the corresponding 8 left-right neuron

pairs. These pairs are conventionally labled AIB, AVA, AVB, RIB, RIM, RIV, SMDD, and SMDV.

We take the link score of each potential connection in the folded network to be the average over

the corresponding left and right connections in the original 16 node network. Considering the

folded-over network, our ground-truth network has 8 nodes, with 30 directed pairs of linked nodes

and 26 pairs of unlinked nodes (Fig. 4.1(c)). We henceforth refer to this 8-node network as the

Folded C. elegans network.
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4.3.2 Coupled Lorenz oscillator network simulations

In order to test the effect of different experimental and sampling conditions, such as sampling

frequency, observational noise, etc., we also generate time-series data from a set of 8 Lorenz

oscillators, coupled using the same network topology as the Folded C. elegans network. The

equations describing our example network of Lorenz oscillators reads:

dxi

dt
= −αx+ (α/2)

∑
j

Aijyj + σDynξ
x
i (t), (4.1)

dyi
dt

= xi(ρi − zi)− yi + σDynξ
y
i (t), (4.2)

dzi
dt

= xiyi − βzi + σDynξ
z
i (t), (4.3)

for i = 1, 2, ..., 8, where (xi, yi, zi) constitute the nodal state of the i-th node, and, Aij is a

binary adjacency matrix corresponding to the Folded C. elegans network (network in Fig. 4.1(c)).

The coupling, represented by the second term on the right side of Eq. (4.1), is from the y variable

of node j to the x variable of node i. The parameters α and β are chosen to have the same value

used by Lorenz, α = 10 and β = 8/3, and for each node i, the parameter ρi is sampled uniformly

from the range [30,70] to increase heterogeneity across nodes. The dynamical noise strength

parameter is σDyn = 10−3, and the noise is assumed to be white, ⟨ξpi (t)ξ
q
j (t

′)⟩ = 2δpqδijδ(t− t′).

Thus, in this setup, the y-variable of node j directly affects the x-variable of node i if Aij = 1.

Starting from a random initial condition, we integrate the system using a 4-th order Runge-Kutta

method with step size δt = 0.02 and discard the initial transients. In addition, to mimic realistic

sampling, we add white Gaussian observational noise of mean zero and standard deviation σObs

independently at each sampled data point, and sample the time-series of the system with a time-step

∆t (which is chosen to be a multiple of the Runge-Kutta simulation time-step δt). We consider
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two modes of measurements of the dynamics: (i) the case of full nodal state measurements, where

the full state (xi, yi, zi) is sampled from each of the nodes. In this case, we calculate link scores

from yi to xj as the relevant quantity of interest that measures the strength of the connection

from node i to node j. (ii) A single composite variable, si = x2
i /⟨x2

i ⟩t + y2i /⟨y2i ⟩t + z2i /⟨z2i ⟩t, is

measured, where ⟨.⟩t denotes the time average of the respective variable.

4.4 Link-score distributions for the coupled Lorenz Oscillator Network

As shown in Fig. 4.2(b) and the next section, the C. elegans data that we use yields link-score

distributions that strongly differ from what we call the ideal case, shown in Fig. 4.2(a), and instead

are more like Fig. 4.2(b). Thus we were motivated to ask why this happens. This section addresses

this question through an investigation of the Lorenz network model system of Sec. 4.3.2.

We assume that the states of the dynamical systems are sampled at a time interval ∆t at

times n∆t with n = 1, 2, . . . , T . In particular, we investigate the effects of sampling time ∆t,

length of time series T∆t, and number of sampled variables on the distribution of link inference

scores. (For C. elegans analogous parameters are fixed by the dataset we considered, and are

largely determined by the experimental setup used for measuring the calcium fluorescence data).

Our main results are summarized in Figs. 4.3(a-o) which plot histograms of scores obtained using

the machine learning technique. In each panel of Fig. 4.3, the histogram plotted in black is for the

scores of all directed node pairs, the histogram plotted in red is for the scores of directed node

pairs that are linked, and the histogram plotted in blue is for directed node pairs that are not linked.

(The histograms plotted in green will not be discussed in this section, but will be discussed in Sec.

4.5).
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Figure 4.3: Number of directed network node pairs vs their scores for all such pairs (plotted
in black), for pairs corresponding to actual links (plotted in red), for pairs not corresponding
to links (plotted in blue), and for the surrogate data (plotted in green) from the coupled Lorenz
oscillators on the network shown in Fig. 4.1(c), with (a-c) 3 variables and (d-f) 1 variable per
node sampled, with T = 3000, δt = 0.02, σobs = 0.01; and 3 variables per node sampled, with
(g-i) ∆t = 0.02, δt = 0.02, σobs = 0.01, (j-l)∆t = 0.02, δt = 0.02, T = 3000, and (m-o)
∆t = 0.02, δt = 0.02, T = 3000, σobs = 0.01.
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We start with the parameters T = 3000, σObs = 0.01,with the data sampling time interval

∆t initially chosen to be the same as the numerical time-step δt = 0.02 and with all the 3 variables

of each Lorenz oscillator are assumed to be measured. Figure 4.3(a) shows a typical histogram

approximation of the link-score distribution for this example network obtained by the application

of the machine learning technique described in the Methods section [59]. In constructing the

histogram, we used 10 random realizations of the reservoir computer (see Methods Sec. 4.8). We

observe from Fig. 4.3(a) that we get an effectively “perfect” separation between the link-score and

non-link score distributions (i.e., a distribution with a clear gap between the low-score component

and the high-score component), which yields perfect network inference. We will henceforth refer

to this case as the ‘canonical parameter case’.

To see how the network inference performance varies with change of parameters away from

our canonical parameter case, we first decrease the sampling rate by increasing the sampling time

∆t for the system, keeping the number of sampled points T fixed. We find that with increasing

sampling times, the magnitude of the scores diminish, and the separation between the link-

score and non-link-score distributions is reduced, resulting in progressive deterioration of the

performance of the link inference technique (Figs. 4.3(b) and 4.3(c)). We interpret this reduction

in performance with increasing ∆t to arise due to the causal effect of state changes at a node

spreading to other nodes to which it is not directly connected by a single link. That is, with larger

∆t the causal effect of a state change at one node can propagate to another node via multiple-link

paths. This effectively yields a larger-than-expected score for disconnected node-pairs, leading

to a merger of the non-link-score distribution with the link-score distribution. In contrast at the

lower ∆t value (Fig. 4.3(a)), we postulate that such a causal effect only has time to travel one link,

and, thus, a causal effect of a state change at time t at node i on the state of node j at time t+∆t
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implies a network link i → j.

We next study the case where we sample only a single variable (as described in Sec. 4.3.2)

from each Lorenz oscillator. In this case, we do not find any parameter regime where we obtain

a score distribution (black curves in Fig. 4.3(d-f)) where the distribution is bimodal. Since, in

applications, the black curve is all that is observed (the link-score [red] and non-link-score [blue]

distributions are unknown to an experimenter), based on only the black curve of Fig. 4.3(d-f), link

inference is not possible. On the other hand, from Fig. 4.3(d), taking into account the red and blue

plots, we see that the scores in the large-score tail of the black-plotted distribution predominantly

correspond to actual links. However, as ∆t is increased (Figs. 4.3(e) and 4.3(f)), this feature

becomes weaker. This behavior suggests that, as we will soon discuss, there may be potential for

extracting useful information from measurements like those resulting in Fig. 4.3(d).

We also vary the length T of the training time series, and the standard deviation of

observational noise σObs for the case where all 3 variables are sampled. As might be intuitively

expected, the link inference performance progressively improves with increase of T (Figs. 4.3(g-

i)); and deteriorates with increasing σObs (Figs. 4.3(j-l)) due to increased spurious features in the

training data arising form the observational noise.

Our previous results [59, 60], as well as results of others [66, 71, 141–143], show that

the strength of dynamical noise (σDyn) present in the system is another important factor in

determining the nature of the link score distribution. A main result of the previous work is this

previous work is that, in contrast to observational noise, dynamical noise can have a positive effect

on network inference. This happens because the dynamical noise itself generates perturbations

of the nodal states of the system which propagate to other linked nodes to aid link inference

(e.g., see Refs. [66, 143]). Because the effect of varying dynamical noise has been previously
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considered [59], we will not investigate dependence of our score distributions on σDyn.

Finally, we test the performance of our link inference technique in cases where we sample

only a subset of the nodes in the full 8-node network of Fig. 4.1(c). To do this, for the canonical

parameter case, we consider two cases, one in which we consider a subnetwork where we sample

N ′ = 4 nodes and one in which we sample N ′ = 6 nodes. The sampled subnetworks in these two

cases have L = 5, and L = 16 links respectively. In both these cases, we see from Fig. 4.3(m-o)

that we get a perfect separation between link scores and non-link scores, showing that the method

may be used even when we do not have a complete sampling of all the nodes as is often the case.

To summarize this section, we note that, in general, time series data available for use in link

inference will typically be subject to limitations. In many such cases, application of a link scoring

technique may confront us with score distributions, which, by themselves, cannot be used to infer

links. However, as our examples from this section show, even in cases where score distributions

are not bimodally separated (e.g., Fig. 4.2(b)), there may be valuable information in the score

distribution that could help us obtain useful partial information about the network structure. This is

because, in many cases where the score distributions of links and non-links are not well-separated,

the tail of the total distribution may contain scores predominantly from actually linked nodes (e.g.,

Figs. 4.2(b), 4.3(d), 4.3(l)). Although, in practice, we only have access to the total distribution

(black curves in Fig. 4.3), if we knew that the true links were concentrated sufficiently far into

the tail of the distribution, we could use that to identify some fraction of the true links that occur

in the tail. However, if the only information we have is the score histogram (black), we do not

know that this is in fact the case. We thus desire some method of obtaining information regarding

the true link score distribution, which would then determine how large a score cutoff one should

choose before judging that a score in the tail most likely indicates a true link. In the next section,
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we address this crucial issue by use of surrogate data.

4.5 Statistical analysis of candidate link scores for link inference

4.5.1 Brief review of surrogate data generation techniques for network link

inference

In order to estimate the statistical significance of inferred network links, a common method

is to generate a surrogate time-series data. Surrogate time-series data is data that is synthetically

generated to have, as much as possible, the same statistical properties as the original data but with

any causal dependence of the truly linked directed node pair whose score is to be determined

removed. Ideally, the surrogate data would then yield a set of scores whose distribution is similar

to the distribution of the scores of non-linked variables in the original time-series data. Without

prior knowledge of the underlying ground-truth network we cannot reconstruct the distribution of

non-link scores directly from the original data; however, the distribution of scores calculated from

an appropriate “Causality-destroyed surrogate data” (CDSD) can serve as a proxy for the non-link

score distribution. Using this proxy distribution, statistical tools can then be applied to obtain the

statistical significance of inferred network links. In particular, we can estimate a true-link p-value

for any particular score s found from the causal time-series data, by calculating the fraction of the

CDSD scores that are larger than s.

There exist several distinct methods for generating CDSD. A key early paper on surrogate

data methods applied to analysis of time-series from dynamical systems is that of Theiler et

al. [180], while (to our knowledge) the first application to neuronal systems was in the paper

of Kamiński et al. [35]. Refs. [172–179] provide reviews on several such CDSD generation
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methods, and Refs. [173,174,179] compare their performances on causality detection and network

inference in different settings involving multivariate time-series data. Some common techniques

for generating CDSDs involve performing one of the following operations on time-series of

individual variables: (i) time-shifting the time series of individual variables so as to destroy

their causal relationships with time-series from other variables [173, 181], (ii) randomizing

phases and amplitudes of the Fourier transform of the original time-series and then inverse

Fourier transforming to generate surrogate data that preserves the individual variables’ power

spectra [180,182], and (iii) drawing segments of the original time-series, each starting at a random

time-point and having a random length, and joining them contiguously [173, 174, 183]. Some

examples using surrogate data for inferring causal interaction and network connectivity from multi-

variate neural time-series data, are Refs. [184–189]. Refs. [161, 162, 172, 179, 190] use surrogate

data to estimate statistical significance of their link scores and also evaluate the performance of

their network inference technique using a ground truth network and simulated and experimental

data from large-scale networks. In what follows we use the time-shifting method.

4.5.2 Method of surrogate time-series generation and statistical significance

analysis of inferred connections

In order to generate the surrogate time series data for links incoming to a given node, we shift

the time-series of that node, by an amount equal to half the total length of the time-series, and keep

the time-series from all the other nodes in the network intact. That is, for an original time-series

of length 2T from the selected node, {X1,X2,X3, ...,X2T}, with Xi denoting the nodal state

vector X at the i-th time-point (e.g., X = [x, y, z] for a Lorenz oscillator node), the corresponding
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surrogate time-series will be {Y1,Y2,Y3, ...,Y2T}, where Yi = X(i+T )mod2T for i ̸= T and

YT = X2T . We then use the reservoir computer with the same setup and hyperparameters as used

for analysis of the original time-series to calculate, from the surrogate data, scores corresponding

to all candidate links incoming to the shifted node. We repeat this procedure for all nodes in the

network. (Additionally, when using the machine learning technique (see Sec. 4.8.1), we also

repeat this procedure ten times for each parameter value using different random reservoir computer

initializations). Through this procedure of shifting the nodal time-series, the distribution of all

scores generated from the surrogate data is expected to be a useful proxy for the non-link-score

distribution from the original, unshifted time-series data. Fig. 4.3 show comparisons of the

histograms of the two distributions.

4.6 Tests on Example Systems

4.6.1 Application to Lorenz network model

In this subsection we apply the above surrogate data procedure to the Lorenz model. The

histograms plotted in green in Fig. 4.3 correspond to the distributions of surrogate scores for the

various cases (panels (a-o)) of Fig. 4.3. (Note that in a real network inference situation, the ground

truth network is unknown and the blue and red plotted curves are consequently also unknown.)

These figures demonstrate that in cases where there is a partial overlap between the link-score and

non-link-score distribution calculated from the causal data, the surrogate score distribution is in

reasonable agreement with the non-link score distribution calculated from the causal time-series

data.

We note however that this agreement between the non-link-score distribution and the
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surrogate score distribution appears to depend strongly on the choice of the regularization

parameter of the reservoir computing technique. In the methods section, we describe a heuristic

to choose an appropriate regularization parameter in a fashion that is agnostic to the underlying

ground truth network.

In Fig. 4.3(b-c), we see that for the Lorenz case with all three variables sampled, for larger

sampling time ∆t, the scores calculated from the causal time-series and the surrogate scores

decrease. In fact, the distributions of the surrogate data scores match the distribution of the

non-link scores better as we increase ∆t, and the link and non-link scores overlap. This shows that

the surrogate scores are able to give a proxy of the non-link score distribution in situations where,

due to lack of clear separation between the link and non-link scores, such proxies are needed

the most. In each case, a significant fraction of scores in the tail of the total score distribution

(black histograms in Fig. 4.3(a-d)) correspond to true links in the network, and appropriate score

thresholds based on the surrogate data distribution can successfully identify a large fraction of

them. For the case of ∆t = 0.02 in Fig. 4.3(a), where there is a clear separation, the exact

distributions of the surrogate scores and the non-link scores do not match very well. However, the

link and non-link scores are already well-separated, diminishing the requirement for surrogate

data in this case. Despite this, a score threshold based on the surrogate score distribution is indeed

smaller than link scores and falls within the range of scores separating the link and non-link score

distributions. Thus, in practice, the surrogate data continues to perform their intended function

well.

Similar results are seen in Figs. 4.3(g-i) and 4.3(j-l), where we vary the observational noise

strength (σObs) and the training length (T ) for the Lorenz network with three variables sampled.

In Figs. 4.3(g) and 4.3(l), we observe overlapping link-score and non-link-score distributions.
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However, in both cases, there is an enrichment of the density of link scores at the tails of the total

score distributions (black histograms in Figs. 4.3(g), 4.3(l)). In both of these cases, comparisons

between the surrogate and non-link score distributions show that the surrogate scores are able to

generate a good proxy for the non-link score distribution. Thus score thresholds based on the

surrogate distributions in each of these cases are able to identify link scores in the tail of the full

distribution. Furthermore, as Figs. 4.3(h-i) and 4.3(j-k) show, in situations with relatively smaller

observational noise, and relatively larger training length, when the scores separate, a cutoff based

on the surrogate data falls within the separation range. Thus, a cutoff based on the surrogate

data works well in all such cases as well. The same behavior occurs in Figs. 4.3(m-o), where

the surrogate score distribution is shown to give a cutoff within the range separating the link and

non-link scores.

For the cases where only one variable is sampled per Lorenz oscillator node (Figs. 4.3(d-f)),

we again observe (See Fig. 4.3(d) with ∆t = 0.02) that in the case where link and non-link score

distributions overlap, the surrogate distribution matches well with the non-link score distribution,

and the surrogate distribution can be used to choose a score threshold that will allow the link

scores at the tail of the score distribution to be identified. For the cases with larger ∆t, the link

inference procedure itself is unable to give us any information about the network since the tail of

the score distribution does not contain scores predominantly from links. However, the surrogate

score distribution may nonetheless be a good proxy of the non-link score distribution, as is evident

from the plots of Figs. 4.3(e-f).
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4.6.2 Applications to C. elegans data

Next, we test the performance of our surrogate data for the time-series of C. elegans neurons

that we described in Section 4.3.1. For the cases where we use our reservoir computing technique

as the network link inference method, we also consider two cases: (i) where a large number of

neurons (127 in the example we used, which is the total number of neurons from which time-series

data was available in the dataset in [154]) are measured for the data used for training the reservoir

computer (Figs. 4.4(a-b)), and (ii) when only the 8 neuron pairs (listed in Fig 4.1(c)) are assumed

to be measured in the data to be used for training the reservoir computer (Figs. 4.4(c-d)).

The score results (black) are plotted in Fig. 4.4 where we simultaneously plot the link-score

(red), non-link-score (blue) distributions obtained from the original data, and the surrogate score

(green) distribution obtained from the corresponding CDSD. The surrogate score distribution can

be used to estimate the p-value associated with each score s obtained from the original data, which

would be the fraction of surrogate scores large than s. This is useful in practical scenarios where

users of a link inference technique might have a pre-defined statistical confidence threshold for

accepting inferred links, which could be quantified in terms of a p-value cutoff (e.g., selecting

only those inferred links for which p < 0.02). In such cases, the correspondence between link

scores and estimated p-values could be used to convert a p-value cutoff to a link score threshold,

and a desired confidence level (e.g., p < 0.02) can be achieved by selecting only the inferred links

whose link scores lie above that threshold. Following this procedure, for each such confidence

level represented by a p-value cutoff, we get a set of acceptable inferred links having link scores

lying above the score threshold corresponding to the p-value cutoff. For each such set of accepted

links, we use the ground truth connectome data of C. elegans, shown in Fig. 4.1(c), to calculate
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Figure 4.4: Distributions of scores for links, non-links, and surrogate data and the corresponding
average number of true and false links at different p-value cut-offs for the network shown in
Fig. 4.1(c), as inferred from the C. elegans calcium fluorescence time series of [154] with
(a-b) all sampled neurons used and (c-h) with only 8 pair of neurons used, for different link
inference techniques. In (b) and (d), the shaded region indicates the region between first and third
quartiles for the distribution of average number of inferred true and false links for different random
configurations of the reservoir computer.

the number of true positive link inferences and false positive link inferences. We plot these two

numbers with the corresponding cutoff p-values (Figs. 4.4(b), 4.4(d)) for the two cases introduced

earlier in this subsection.

From both Figs. 4.4(a) and 4.4(c), we see that actual links predominate in the tail of the
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high-score distribution. We also note, that surrogate score distributions, in both cases, provide us

with a good estimate of the non-link score distribution obtained from the causal data. Furthermore,

score cut-offs based on the surrogate data distribution successfully yield a significant number of

true links and relatively few false positives (Fig. 4.4(b) and 4.4(d)). For example, Figs. 4.4(b) and

4.4(d) show that at the threshold p-value of 0.05, in the first case, we obtain 5 true links and less

than one false link on average, while, in the second case, we obtain the same number of true links

with no false links. As we increase the p-value cutoff threshold, both of Figs. 4.4(b) and 4.4(d)

show that the number of correctly inferred links increases rapidly, while the number of false links

increases at a slower rate. For example, even at a cut-off at p = 0.2, we obtain 14 true links and

4 false links in the first case, and 15 true link and 4 false links in the second case. Note that, in

both the cases, the ratio of the number of true positives to the number of false positives (TP/FP),

which is about 4 in both cases, is significantly higher than what would have been obtained through

random assignment of links and non-links to candidate links: Given that the subnetwork of Fig.

4.1(c) has 30 links, and 26 non-links, such random assignments would correspond to the ratio

(TP/FP) being approximately 1 on average. Furthermore, we note that, in both cases (Figs. 4.4(b)

and 4.4(d)), the ratio of the number of false positives to the total number of links above the chosen

score threshold is approximately equal to the estimated p-value. This is yet another consequence

of the fact that the surrogate score distribution matches well with the non-link score distribution.

4.6.3 Transfer entropy and Granger causality

Next, we test the performance of transfer entropy and Granger causality as link inference

techniques for the C. elegans time-series. In both cases, we use the same surrogate data generation
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technique as described in Section 4.5.2. The results are plotted in Figs. 4.4(e-h). Unlike the

reservoir computing technique which yields an ensemble of scores for each candidate link with

each score in the ensemble predicted by a different realization of the random reservoir connectivity

matrix and input-to-reservoir coupling matrix, transfer entropy and Granger causality predict

unique scores for each candidate link. Figs. 4.4(e) and 4.4(g) show that, in the case of transfer

entropy and Granger causality, the surrogate distribution is narrower than the distribution of the

scores for non-links. This is also reflected in Figs. 4.4(f) and 4.4(h), where we see that at a very

small p-value cutoff, we obtain a large number of false positive links in both cases (9 for transfer

entropy, and 4 for Granger causality). This suggests that the surrogate data generation technique

that we used for the reservoir computer link inference may not be universally applicable to other

link inference techniques.

4.6.4 Another Surrogate Data Generation Technique

Finally, we test a different surrogate data generation technique with all three of the link

inference techniques considered in this chapter, namely, reservoir computing, transfer entropy, and

Granger causality. The tests are done on the same C. elegans dataset as the one we used in our

previous results and on the Lorenz network with one variable per node sampled with δt = 0.02

(same parameter regime as Figs. 4.3(d)). This surrogate data generation technique, known as

amplitude adjusted Fourier transform (AAFT), was introduced in [180] and improved in [182],

and involves Fourier transforms of the original time series data, followed by phase randomization,

and finally an inverse Fourier transform. In our case, we apply AAFT to the time-series of one

Lorenz network node (or one pair of neurons for C. elegans) at a time, keeping the time-series
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of other nodes intact. We then apply the link inference techniques, and, for each technique,

we collect the link scores corresponding to links incoming to the node on which we applied

the AAFT to generate our pool of surrogate scores. For the reservoir computing method, we

chose the value of the regularization parameter according to our methodology described in the

Methods section (Sec. 4.8.1). The results plotted in Fig. 4.5 show that, for the case of both

Lorenz and C. elegans networks, the AAFT surrogate score distribution is able to give a good

estimate of the non-link score distribution for the reservoir computer technique. In these cases, a

cutoff based on the extent of the surrogate data is able to pick up the scores in the tail of the score

distribution which are predominantly seen to come from true links. For the other two link inference

techniques, the surrogate score distribution is also able to approximately match the non-link score

distribution. However, unlike the reservoir computer results, for both transfer entropy and Granger

causality, there appear to be a few non-link scores extended beyond the score value where the

AAFT surrogate score distribution ends. Thus, a score cut-off based on the AAFT surrogate score

distribution will give a larger number of false positives than the reservoir computer technique.

Compared with Fig. 4.3(d) and Fig. 4.4(a), this example shows that our reservoir computer link

inference technique is suitable to be used robustly with multiple surrogate time-series generation

methods, and it is possible to obtain consistent performance across multiple methods of generating

surrogate time-series, on different networked systems.

4.7 Discussion

In this work, we tested the performance of three network inference techniques - Granger

causality, transfer entropy, and a reservoir-computer-based method, on time-series data from
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Figure 4.5: Distributions of scores for links, non-links, and amplitude-adjusted Fourier transform
(AAFT) surrogate data with three different link inference techniques (reservoir computer, transfer
entropy and Granger causality) from (a-c) data from Lorenz oscillator network with one variable
sampled per node and (d-f) C. elegans neuronal fluorescence time-series.

calcium fluorescence images of C. elegans neurons, and the Lorenz model, with the ground truth

networks known in all cases. Focusing on the important common situation in which the available

time-series data is short, noisy, has low sampling time resolution, and is limited to partial state

measurements, we show that, by use of a surrogate data technique, it is possible to obtain useful

estimates of the statistical confidence of the potential existence of a significant fraction of the

network links for all methods.

Since the RC method is a new technique that we have developed and used, we were more

comfortable in confirming that we were working with the most optimized set of hyperparameters

known to the best of our knowledge. However, the two other conventional network inference

techniques (Granger causality, and transfer entropy) are much more widely used, and, as such,

there exist numerous modifications to suite them for specialized types of time-series data, e.g.,
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neural data of the kind used in this work. There are also a wide range of surrogate data generation

techniques available for them as well. Since it is beyond the scope of this work to test all the

different versions of Granger causality, transfer entropy, and surrogate data generation techniques,

we decided to use the most basic versions of these techniques, as proposed and implemented by

authors who first introduced the methods and the associated software packages. Furthermore,

there are differences between the amount of input data that each method takes: RC and Granger

causality techniques use the time-series data from all variables simultaneously, while transfer

entropy is calculated pairwise between different variables. For the case of statistical analysis,

RC method has a large number of fixed parameters (the elements of the input-to-reservoir and

reservoir coupling matrices) which can be randomized to obtain an ensemble of RCs working

on the same time-series data. This generates many samples for score distributions for statistical

analysis of results for the RC, but this is absent for the other two methods, which do not usually

have such random parameters. As such, we have avoided strong claims of comparison among the

performance of different techniques in our work.

We also showed that the relatively new reservoir computer link inference techniques

developed recently works better if the sampling time is shorter keeping the number of training time

steps fixed, and there are only moderate amounts of observational noise. The network inference

tests done on experimental data from C. elegans neurons with known ground truth connectivity

show the importance and validity of network inference techniques on real-world neuronal calcium

fluorescence datasets. As such, we hope that the results of this chapter provide information that

will be useful for assessing the effectiveness of network inference techniques to time-series data

from unknown networks with similar time-series data limitations.
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4.8 Methods

4.8.1 Reservoir-computer-based connection inference technique

In this section, we summarize the reservoir-computer-based link inference technique [59],

that we employ in our results.

Consider a system of Dn nodes connected by a directed network that we wish to infer. We

assume that the full state of the ith node in the network is given by a time-dependent vector Xi[t]

of dimension Ds, with i = 1, 2, 3, ..., Dn. Denoting the components of this vector by Xµ
i with

µ = 1, 2, 3, ..., Ds, we suppose that the dynamics of the full system is governed by a general

differential equation of the form,

dXµ
i (t)

dt
= F µ

i [X1(t),X2(t), ...,XDn(t)] . (4.4)

Here, F µ
i is the function dictating how the dynamics of the µth component of the state vector of

the ith node is governed by the states of all other nodes. A network link is said to exist from node i

to node j if and only if F µ
i is a function of Xj for some µ. Moreover, we define a network link to

exist from the µth component of node i to the ν th component of node j if F µ
i is a function of Xν

j .

Thus, the presence (absence) of such a link implies ∂F µ
i /∂X

ν
j is nonzero (zero). If we knew the

function F µ
i , then we could calculate these derivatives. However, as we consider situations in the

absence of such knowledge, we are therefore tasked with estimating the derivative solely from the

observed time-series data.

We assume that observations of the dynamical system Eq. (4.4) are sampled at a time

interval ∆t at times n∆t for n = {1 . . . T}. We further assume that these observations are carried
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out via some measurement apparatus that measures Yi = M(Xi) for each node i. In cases where

the full nodal state is available at each time, Y is identical to X; however in general this may not

be the case, and Y may be a vector with dimensionality D′
s ≤ Ds.

We concatenate the sampled input measurements of the time-dependent node state vectors

{Yi[t]} and place them in a single time-dependent column vector X [t] of length DX = D′
sDn,

X [t] =
(
Y 1
1 [t], Y

2
1 [t], ..., Y

D′
s

1 [t], Y 1
2 [t], Y

2
2 [t], . . . , Y

D′
s

2 [t], . . . , Y
D′

s
Dn

[t]
)T

. (4.5)

Considering the case where full state measurements are taken, we now briefly describe

the machine learning technique for link inference developed in Refs. [59], which the reader can

consult for a more detailed derivation. We train an artificial neural network called a reservoir

computer (RC) to predict the time evolution of the nodal states one sampling time step ∆t

into the future. While RCs can be in general constructed through arbitrary high-dimensional

dynamical systems [41], we implement the RC in silico as a dynamical system on a network of

nodes (Fig. 4.6). (Note that this network of nodes is unrelated of the underlying network of the

dynamical system being measured). We assume that the number of nodes Dr is large (such that

Dr ≫ Dn × D′
s ≡ DX ). The nodal states are stored in a vector R of length Dr. The sampled

time-series vector is fed into the reservoir via a Dr-by-DX input-to-reservoir coupling matrix Win

(Fig. 4.6). Furthermore, the reservoir nodes affect the dynamics of each other according to a

Dr-by-Dr asymmetric adjacency matrix H. The time evolution of the reservoir node states R are

given by the equation,

R [n∆t] = σ (HR [(n− 1)∆t] +WinX [n∆t]) , (4.6)

where n is a positive integer, and σ is a sigmoidal activation function acting componentwise on its
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vector argument (which has the same dimension, Dr, as R).

𝐑(nΔt)

𝐖in 𝐖out

𝛘[nΔt] 𝛘[ n + 1 Δt]
𝐇

Figure 4.6: Schematic of the reservoir computer.

The goal of the reservoir computer training is to predict the one-time-step future values of

the sampled components of {Yi [(n+ 1)∆t]} in the concatenated form X [(n+ 1)∆t] (Eq. (4.5))

from their current values X [n∆t] using the reservoir state vector R [n∆t]. In our case, this is done

with a regularized linear regression determining a DX -by-Dr reservoir-to-output coupling matrix

Wout by best-fitting WoutR [n∆t] to the data for X one time-step ∆t in the future X [(n+ 1)∆t],

i.e., minimizing the cost function C given by

C =

{
1

T

T∑
n=1

∥X [(n+ 1)∆t]−WoutR [n∆t]∥2
}

+ λ ∥Wout∥2 (4.7)

where T is the number of training steps and the last term (λ ∥Wout∥2) is a “ridge” regularization

term used to prevent overfitting to the training data and λ is typically a small number.

The input matrix Win is chosen such that each of the DX components of the input vector

goes to R/DX distinct nodes of the reservoir. The non-zero elements of the input matrix Win

are chosen randomly from a uniform distribution in the interval [−w,w]. H is a sparse random
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matrix, corresponding to an average in-degree dav of the reservoir nodes. The non-zero elements

of H are chosen randomly from a uniform distribution such that the spectral radius of H is

equal to some predefined value ρ, which we choose to be equal to 0.9. The hyperparameters w

and dav are chosen using a Nelder-Mead optimization procedure [191]. In our work, we used,

dav = 2.7, w = 0.105 for the Lorenz networks, and dav = 5, w = 0.42 for the C. elegans network.

In all network inference works with the Lorenz (C. elegans) model, we typically use values

λT = 103(10−3), unless stated otherwise, a choice that we shall examine in the next section. The

sigmoidal activation function σ is taken to be the hyperbolic tangent function. The reservoirs we

used typically had Dr = 3000 nodes.

As derived in [59] and chapter 2, we estimate the Jacobian matrix of partial derivatives

Mij(t) = ∂Xi[(n+ 1)∆t]/∂Xj[n∆t] by

∂Xi[(n+ 1)∆t]

∂Xj[n∆t]
=

DR∑
k=1

(Wout)ik σ
′ ((Win +HW−1

out

)
X [n∆t]

)
k

(
Win +HW−1

out

)
kj

(4.8)

, and construct link scores as Sij = ⟨|Mij|⟩t where ⟨⟩t denotes time-averaging over a sufficiently

long time so that the averages do not change significantly after doubling the averaging time.

Finally, we comment of the choice of the regularization parameter λ for the reservoir

computer. When considering which λ value to choose, we first, for several different λ values,

examine versions of our comparison of the score PDF distribution for all scores (e.g., plotted in

black in Fig. 4.3) with the score distribution from the acausal surrogate (e.g., plotted in green

in Fig. 4.2). We then select λ values so that, according to our comparison, there is a large-score

threshold such that there are a substantial number of scores in the black distribution of Fig. 4.3 that

are larger than that threshold score and no, or very few, surrogate distribution (green curve in Fig.

4.3) scores lie beyond that score. We then choose, from among these, the smallest λ value. Once a
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λ value is chosen, we have a surrogate score distribution that we use further to assign a p-value to

a given score and thus, obtain a score cut-off corresponding to a pre-defined p-value cut-off. This

gave us λT = 103 in all of the results that we show in figures 4.3-4.4. For the reservoir computer,

we used λT = 103 for the Lorenz data, and λT = 100 for the C. elegans data in Fig. 4.5.

4.8.2 Transfer Entropy

For time series from two processes I and J , the transfer entropy from J to I is defined

by [31]

TJ→I =
∑
n

p(in+1, i
(k)
n , j(l)n ) log

p(in+1|i(k)n , j
(l)
n )

p(in+1|i(k)n )
(4.9)

where p denotes joint or conditional probability, in is the element of the time-series of I

sampled at the n-th time-point and i
(k)
n = (in, . . . , in−k+1) is the delay-embedding vector. In this

equation, k and l are two time series “block-length” parameters which are chosen accordingly.

There are multiple computational techniques [192] to obtain an estimate of transfer entropy

expressed with this equation. Among them, in this work, we used the MATLAB code [192] for the

rank-based technique to estimate transfer entropy, with block length and time-delay parameters

set to 1 for both variables, and the number of quantization levels set to 3. For more details of

the method and the definition of these parameters, please see the MATLAB code associated

with [192].

4.8.3 Granger Causality

For two time series from processes I and J , we say that J does not Granger cause I if and

only if I , conditional on its own past, is independent of the past of J [34–36]. In other words, if
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we can have information on the past of I from the past of J , then J would Granger cause I . The

typical way to test this dependency of two time-series involves fitting a vector autoregressive model

for I , and measuring whether inclusion of J in that model makes the fitting error significantly

lower. For network link inference scoring purposes, we use the logarithm of the ratio of the two

fitting errors as the network link score. For more details, as well as for the MATLAB toolbox that

we have used in this work, please see [34].
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Chapter 5: Summary

In this final chapter, we summarize the material presented in this thesis. In this work, we

wished to have a data-driven framework that could extract causal interactions among different

agents in a dynamical system, solely from their observed time-series data. Such a framework

is essential in integrating causal processes into numerical modeling of a multi-agent dynamical

system. In seeking for causal inference, we took inspiration from standard experimental

methodologies for obtaining causal networks, namely, the process of controlled interventions into

the system and tracking the downstream effects of such interventions on different parts of the

system over time. However, our method, in its nature, was purely computational and non-invasive.

So, in a sense, we were able to build machine-learning-based computational models of observed

complex dynamics which were not only able to predict and generalize the recorded time-series

data, but were also able to reproduce the effects of small, controlled interventions that a human

experimentalist might have performed on the system.

To demonstrate that our methodology could indeed detect both short-term and time-delayed

causal interaction networks correctly, we tested the methodology on simulated time-series datasets

from coupled Lorenz models and optoelectronic oscillator networks, as well as experimental

time-series datasets from the optoelectronic oscillator networks and the C. elegans neural system.

Since the ground truth causal connectome was completely known in all cases, we were able to
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quantify the performance of our method in network inference tasks, and identify situations and

conditions which aided or limited causal inference.

Comparing our results in different systems we studied, we saw that presence of strong

correlation and synchronization among the different time-series was detrimental to network link

inference, as was observational noise, finite sampling time, and limited nodal state measurements.

On the other hand, presence of dynamical noise, heterogeneity of parameters of individual

dynamical agents, and large coupling strengths helped network inference by breaking strong

synchrony or creating perturbations in the system.

We were not able to perfectly capture the complete causal network structure correctly in

all cases, particularly when the above-mentioned limiting factors were present. Even in those

cases, we were able to assign statistical confidence in the inferred causal links, by using properly

constructed surrogate time-series data.

The results present in this thesis inspire one to use machine-learning-based techniques for

data-driven study, modeling, prediction, and control of complex, nonlinear, networked dynamical

systems.
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Behavior-dependent short-term assembly dynamics in the medial prefrontal cortex. Nature
neuroscience, 11(7):823–833, 2008.

126



[186] Joseph T Lizier, Jakob Heinzle, Annette Horstmann, John-Dylan Haynes, and Mikhail
Prokopenko. Multivariate information-theoretic measures reveal directed information
structure and task relevant changes in fmri connectivity. Journal of computational
neuroscience, 30(1):85–107, 2011.

[187] Masanori Shimono and John M Beggs. Functional clusters, hubs, and communities in the
cortical microconnectome. Cerebral Cortex, 25(10):3743–3757, 2015.

[188] Stavros I Dimitriadis, George Zouridakis, Roozbeh Rezaie, Abbas Babajani-Feremi,
and Andrew C Papanicolaou. Functional connectivity changes detected with
magnetoencephalography after mild traumatic brain injury. NeuroImage: Clinical, 9:519–
531, 2015.

[189] Elzbieta Olejarczyk, Laura Marzetti, Vittorio Pizzella, and Filippo Zappasodi. Comparison
of connectivity analyses for resting state eeg data. Journal of neural engineering,
14(3):036017, 2017.
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