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Abstract

The deeper investigation of problems of feedback stabilization and constructive control-
lability has drawn increased attention to the question of structuring control systems.
Thus, for instance, it is interesting to know how to combine periodic open loop con-
trols with intermittent feedback corrections to achieve prescribed behavior in robotic
motion planning systems. As a first step towards understanding this type of question, it
would be useful to obtain some insight into the average behavior of a periodically forced
system. In the present paper we are primarily interested in periodic forcing of left-
invariant systems on Lie groups such as would arise in spacecraft attitude control. We
prove averaging theorems applicable to systems evolving on general matrix Lie groups
with particular focus on the attitude control problem. The results of this paper also
yield useful formulae for motion planning of a variety of other systems such as an un-

derwater vehicle which can be modelled as a control system evolving on the Lie group

SE(3).
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1 Introduction

Recent work in nonlinear control has drawn attention to drift-free systems with fewer
controls than state variables. These arise in problems of motion planning for wheeled
robots subject to nonholonomic constraints [1], models of kinematic drift (or geometric
phase) effects in space systems subject to appendage vibrations or articulations [2, 3],
and models of self-propulsion of paramecia at low Reynolds numbers [4]. The basic

state-space model takes the form,
g=Y F(z)u;, z€R", w,ieR, n>m. (1)
=1

It is well known that if the vector fields F; satisfy a Lie algebra rank condition, then
there exists a control u = (uy,...,us) that drives the system to the origin from any
initial state. However, unlike the linear setting where the controllability Grammian
yields constructive controls, here the rank condition does not lead immediately to an
explicit procedure for constructing controls. As a result, recent research has focused on
constructing controls to achieve complete controllability [5, 6, 1, 7, 8]. The success of
constructive procedures based on periodically time-varying controls [1, 7, 8] motivates

our investigation of periodic forcing on a general family of systems.

In the present paper we are interested in drift-free systems of the form
X=XU (2)

evolving on matrix Lie groups. Here X(¢) is a curve in a matrix Lie group G, U(t)
is a curve in the Lie algebra G of G. (For an introduction to matrix Lie groups and
Lie algebras see [9]). Equation (2) describes rigid-body kinematics if we interpret U(%)
as the time-dependent skew symmetric matrix of body angular velocity such that X

evolves on G = SO(3) where
SO(3) & {A € R¥3|ATA = I, det(A) = 1}.

In this case the system is nonholonomic where conservation of (zero) angular momentum

is interpreted as the nonholonomic constraint. Alternatively, equation (2) describes the



kinematics of a body underwater for G = SE(3), the special Euclidean group, where

A b
SE(3) £ { € R**1|A € SO(3),b € %}
0 1

In this case U(t) describes body angular and translational velocity.

Our objective is to prescribe means to completely control these types of systems
using small-amplitude periodic controls. One strategy is to use periodic controls to
provide open loop control of the system and apply intermittent feedback corrections to
make finer adjustments in system behavior. This strategy allows us to take advantage
of a priori knowledge of the system and prescribe efficient open loop controls to drive
the system as desired without sacrificing accuracy and sensitivity reduction associated
with feedback control. (For related ideas see [10]). As part of developing this strategy,
we investigate using averaging theory for systems of the form (2) as a means to specify
open loop periodic control. The goal of averaging theory in this context is to describe
an approximate solution to (2) that remains close to the actual solution to (2), but gives

rise to straightforward procedures for achieving complete constructive controllability.

To better identify the systems of interest as control systems with small-amplitude

periodic input, we rewrite system (2) as

X =eXU, U(t)=Y Awi(t), (3)
1=1

where again X (t) is a curve in a matrix Lie group G, and U(t) is a curve in the Lie

algebra G of G. The u;(+) are assumed to be periodic functions of common period T with

n = dim(G) and € > 0 a small parameter. A,,..., A, form a basis for G. The eu,(-) are

interpreted as the small-amplitude periodic controls, although some of the u;(-) may be

identically zero.

Returning to the example of a rigid spacecraft (G = SO(3)), it is appropriate to
consider angular velocity as our control if we assume that (zero) angular momentum of

the spacecraft is conserved, i.e., there is no external torque applied to the spacecraft.



Periodic angular velocities can be achieved in practice, for instance, by means of momen-
tum wheels or by means of oscillating appendages. This latter method is motivated by
recent results in the study of geometric phase [2, 3, 4] which show that periodic changes
in the “shape” of a partially rigid body lead to attitude drift as if the kinematic model

were being driven by periodic controls.

Developing attitude control designs using small-amplitude periodic controls is prac-
tically motivated in part by the new focus in the space industry on miniaturization
and control of small planetary spacecraft. To maintain the low weight and small size
of this new generation of spacecraft, small actuators will be needed for control. How-
ever, since scaling down of conventional motors has inherent problems and limitations,
new means of actuation and control need to be considered. Small-amplitude periodic
control is a promising new alternative. Periodic controls are also motivated by recent
technological advances in the area of micro-actuation and sensing. For example, new
kinds of micro-actuators and micro-sensors such as piezoelectric vibratory actuators
and rotation-sensing vibratory sensors work on the principle of oscillation-induced mo-
tion, i.e., operate by means of periodic signals. In [11], Brockett examines these types
of actuators using nonlinear control concepts and illustrates the role of averaging and
holonomy. Additionally, periodic controls can play an important role in stabilization
problems. Coron has shown that while systems of the form (1) cannot be stabilized us-
ing a smooth feedback law, they can be stabilized with time-varying (periodic) feedback
laws [12].

As a second example, for G = SE(3) system (3) captures the kinematics of an
underwater vehicle control problem if we interpret the vehicle angular velocities and
translational velocities as the periodic controls. A stabilizing control law for an under-
water vehicle was developed in [13] using a kinematic model on SE(3). Alternatively, it

is important to note that models of the form (3) also arise in treating systems such as



spacecraft or underwater vehicles which experience small-amplitude oscillatory distur-
bances. As a result, our formulae which indicate how to achieve controllability with peri-
odic controls also reveal how to compute drifts in system behavior caused by undesirable
vibrations and oscillations. Kinematic drift of a spacecraft caused by thermo-elastically

induced vibrations in flexible attachments on the spacecraft is an example.

One of the major difficulties in working with systems of the form (2) (or (3)) is that,
in general, there are no explicit global representations of solutions to (2). However,
much is known about local representations and certain recursive forms [14, 15, 16]. For
example, Wei and Norman show that for any G, there exists the product of exponential

representation

X(t) — ﬁ gt A A e91 (D41 g2(t)A2 ||| ogn(t)An , (4)
=1

where Ay, ..., An is a basis for G and ¢;(t),...,gn(t) are given for |t| < ¢y by solving a
system of ordinary differential equations (called the Wei-Norman equations). Alterna-

tively, Magnus shows how to express X(¢) as a single exponential
X(t) = e (5)

where Z(t) € G is given as an infinite series of iterated integrals. Classical averaging
theory is equipped to handle systems which evolve on R". As a result, to provide
an averaging theory on the group level for systems of the form (3), we make use of

representations (4) and (5).

Our goal is to approximate the solution X(t) of (3) by its “average” solution X(t)
such that X(t) provides a “good” approximation to X (t) over a “sufficiently long”
time interval. The average solution X must be defined so that it makes sense in two
important ways. First, for X(¢) to be a meaningful approximation of X(t), it must be
a curve in the matrix Lie group G. Secondly, we must be able to define some notion of
the error between the average and actual solutions so that we can give an estimate on

the magnitude of this error over the sufficiently long time interval.

The advantage in approximating X (t) by its average X (¢) is that X (¢) will satisfy an



ordinary differential equation with significantly reduced complexity as compared to (3).
Thus, the problem of controlling the system described by (3) is reduced to the problem
of controlling a much simpler system. Further, as will be shown most dramatically in
Section 3, the averaged system admits a clear geometric interpretation. This geometric
interpretation can be used to advantage in the design of open loop and feedback controls

for systems of the form (3).

To illustrate the theoretical inspiration for our results, consider a system described
by (1) such that m = 2, n =3 and rank([Fi(z) Fi(z) [Fi, F))(z)]) =3, Vz € ®°. For
Fy(+) and Fy(-) smooth vector fields on R", [F}, F3](-) is a new vector field on R called

the Lie bracket and defined by

[P, Bl(e) = 22 (a)Fi(s) - S @) o).

The kinematic motion planning problem for a unicycle with velocity and steering control
is an example of a system of this form satisfying the above rank condition [17]. The
rank condition in this special case implies that the system is completely controllable
since (1) has no drift vector field [17]. Specifically, one can reach any point in R* by
flowing along the vector fields Fy, F; and [F}, F3] which span %2 at every point in R3.

It is well known that one can generate flow in the direction of [Fy, F3] using the

controls u; and u, specified in Figure 1(a). These controls yield
z(T) — z(0) = €[F, F3)((0)) + h.o.t.,

i.e., after T = 4 units of time the state of the system has changed in magnitude by ¢? in
the direction of [F}, F}] evaluated at the initial condition z(0). Figure 1(b) shows a plot
of iy = fé uy(7)dT versus iy = fg uz(7)dr during T units of time. It is clear that the
magnitude of the resulting flow can be expressed as ¢ = Area of i, versus 4, during one
period. As Brockett argues in [11], one would expect a similar result if the two controls

were some other pair of small-amplitude periodic functions. For example, the controls

as dePicted in Figure l(c) would Produce

z(T) — z(0) = ArealF}, F3)(z(0))
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Figure 1: Periodic Controls.

where Area is the shaded area of Figure 1(d). Then in some average sense one would

predict that
_ Area-t

z(t) — z(0) = T

[F1, F2)((0)).

Our results generalize this result to the class of systems described by (3). In the
present paper we examine both first-order and second-order average terms of the solution
to (3). Our results show that the first-order average solution exhibits the contribution
of the dc component of the periodic input signal, while the second-order average terms
arise from the group level version of depth-one Lie brackets of vector fields. For other

recent developments in averaging techniques for systems with highly oscillatory controls,

see [7, 8].

In Section 2 we summarize results from our work on first-order averaging [18]. In

Section 3 we prove a second-order averaging theorem for general matrix Lie groups. Our



main result is an “area rule” for systems on groups. We further examine these results
for the Lie group SO(3) in the context of attitude control. The results of Sections 2 and
3 make use of the Wei-Norman product of exponential representation (4) of solutions
to (2). We develop analogous first and second-order averaging results using the single
exponential representation (5) in Section 4. In Section 5 we describe the geometric
interpretation of the results and the consequences for control illustrating how to use
the averaging results to achieve constructive controllability. An example is given for
achieving complete constructive controllability for the spacecraft attitude control prob-
lem when only two controls are available. In Section 6 we explore the spacecraft attitude
control problem in terms of practical means of actuation, i.e., via momentum wheels and
appended point-mass oscillators, and derive the average approximation formulae in these

special cases.

2 First-Order Averaging

We begin by considering the first-order average X of the solution X to (3). Since there
are no explicit global representations of the solution to (3), we use a local representation.
In particular, we work with the local representation given by Wei and Norman [15]
for solutions X (t) of (3). In Section 4 we give analogous results based on the single
exponential representation of Magnus [14]. However, we choose to develop the Wei-
Norman representation first because it has the advantage over the single exponential
representation of providing a global representation when the Lie algebra G is solvable

(see comments by Wei and Norman in this connection).

Suppose that X(0) = I, then Wei and Norman show that for any G, 3ts > 0 such

that for |t| < to there exists the product of exponential representation

X(t) = 91 (A1 go2()da | pon()An ®)

where Ay,..., A, is a basis for G and g,(2),...,ga(t) are given for |t| < to by solving a



system of ordinary differential equations (called the Wei-Norman equations). It follows
from their work in [15], that the form of the Wei-Norman equations is as in the following

lemma.

Lemma 1. For solutions to (3) of the form (6) with initial condition X(0) = I, the

Wei-Norman equations take the form
g=ecM(g)u, for|t|<to, (7)

where u = (u1,...,u.)T, g = (91,---,9:)T, g(0) = 0 and M(g) is a real analytic matrix-
valued function of g. If G is solvable then there exists a basis of G and an ordering of

this basis for which (7) holds globally, i.e., for all ¢. O

It 1s customary to refer to components of g as the canonical coordinates of the second

kind for G. Let W be the open neighborhood of 0 € R" such that Vg € W, M(g) is
well-defined. Let ® : R" — G define the mapping

@(g) — eglAl engz .. cgnAn (8)

and define V = ®(W) C G. Then, the Wei-Norman formulation provides a local
representation of the solution to (3) for initial condition X(0) € V C G. Now let S
be the largest neighborhood of 0 € R" contained in W such that ¥ = ¢, : S —» G
is one-to-one. Let Q = ¥(S) C V. Then ¥ : § — @ is a diffeomorphism and we can
define a metricd: Q x Q — R, by

d(Y, 2) = d(¥7'(v),¥7(2)) (9)
where d : " x R — R, is given by

der,B) = o — Bl = 3 las — Bil. (10)
=1

Our approach to a first-order averaging theory for systems of the form (3) is to

apply classical averaging theory to the system (7), obtain estimates for approximations



of solutions to (7) over O(1/e€) time intervals and then transfer such estimates to the

group level for solutions to (3). The averaged system associated with (7) is defined as

j = M@ [ u(r)dr)
L M@, §(0) = 3o (11)

where we assume that M(go) is well-defined.

Now we define the average solution X (t) associated with the solution X (t) of (3) as

the solution to

X = XUz, Uy = Z Aitlay; (12)
i=1
where gy = (Ugu1, - - - » Yawn ) - Thus,
X(t) = X(0)eUt (13)

and X(#) is a curve in the matrix Lie group G as long as X(0) € G.
Then from [18] we have the following local representation of X.

Theorem 1. Consider the solution X (¢) to (12) with X(0) € V. Then 3f > 0 such that
for t € [0,1],

X(t) = N1 (A1 02(DA2 | eﬁn(t)An’ (14)

where § = (g1,...,3n)" is the solution to (11) with g(0) = go such that ®(g,) = X(0).
O

Theorem 1 provides the means to transfer classical averaging theory results on the
local level back to the group level. We can now state the first order averaging theorem

and corollary from [18], which are applications of standard averaging theory (c.f. [19]).

Theorem 2. Let ¢ > 0. Let D = {g € ®" | ||g|| < r} C S. Assume that u(t) € "
is periodic in ¢ with period T' > 0 and has continuous derivatives up to second order
for t € [0,00). Let X(t) be the solution to (3) represented by (6) where g(¢,¢€) is the
solution to (7) with ¥(g(0,¢€)) = X(0) and g(0,¢) € D. Let X(¢) be the solution to (12)
represented by (14) where §(t, €) is the solution to (11) with

10



¥(g(0,¢)) = X(0).
If g(t,e) € D, Vte[0,b/¢] and ||g(0,€) — g(0,¢€)]| = O(e)
then |lg(t,¢) — g(¢,€)|l = O(¢) on [0,b/¢],

ie., llg(t,e) = 3(t, Ol < ke, Ve€[0,e1), Vi€ [0,b/d

for some k > 0 and ¢ > 0. Further,

d(X(t),X(t) < ke, Vee[0,e), Vte[0,b/e. O

In the next corollary (c.f. [18]), we give a version of Theorem 2 for G = SO(3). In
studying the case of G = SO(3), we have in mind applications to rigid-body kinematics
and the spacecraft attitude control problem. Instead of using the metric d on SO(3)
we use a metric ¢ on SO(3) and the norm ||X~1X — I||;, both of which give a mea-
sure of rotational error. Specifically, following [20] we define R = X !X, which may
be interpreted as the rotation taking the actual trajectory to the average trajectory.
Then we let R define system attitude error with ¢(R) = cos™'[o,-j(1/2(tr(R) — 1)) the
magnitude of attitude error (where tr is the trace operator). Then by [20], ¢, where
#(A, B) = ¢(ABT), is a metric on SO(3) and can be interpreted as the minimal angular
distance between the body coordinates of the actual system and the body coordinates
of the average system. We also note that in the corollary since we do not use the metric

d, we only need to restrict D C W and not D C S C W (see [18] for details).

Corollary 1. Let € > 0. Let D = {g € ®* | ||g|| < r and |g2| < £ — 6, 6§ > 0}. Suppose
u(t) € R3 is periodic with period T' > 0 and has continuous derivatives up to second

order for t € [0,00). Let g(t,€) be the solution to the Wei-Norman equations for SO(3),

01 cosgs —S$ings 0 Uy
€
g2 = C0Sg2SINgs  COSGyCOSY3 0 up, | = eM(g)u  (15)
COS8(gy
Js —8ING, 0803 8INYL8INGs CO8Y, Us

with ¢(0,¢) € D.

11



Let g(t,€) be the solution to these equations for the case in which u(t) is replaced

by its average u,, over period T
If g(t,e)e D Vie[0,b/e] and |g(0,¢) —gG(0,¢€)| = O(e),
then lg(t,¢) — 31,9l = O(e) on [0,b/d],

e, lg(t,e) —g(t el <ke, Ve<e, Vee[o,b/d

for some k > 0 and ¢; > 0.

Further, the corresponding solution X to (3) in the group SO(3) with X(0) =
®(g(0,¢)) admits the estimate X defined by (12) with X(0) = ®(g(0,€)) such that
Ve € [0,€3), €2 < €1, VE€[0,b/¢]

ST (OX(D) < ke,

and || X(8)7'X () = I||; < 9|cos(ke) — 1] + 7|sin(ke)| + |sin(ke)|*. O

The choice of basis for G used in the corollary is A; = €; where e; is the ¢th standard

Euclidean basis vector and “: R — s0(3) is defined for = = (21, 22, 23)T by

0 —XI3 T
I = I3 0 —
—T3 I 0

It was noted in [18] that the time interval [0,b/¢] for which X provides an O(e)
approximation of X depends on how long the solution g to (11) stays on D. In general,
b will depend on u,,. This dependence for G = SO(3) is explored further in [18].

In addition to providing an approximate solution to the system of differential equa-
tions (7), classical averaging theory can also be used to determine the stability of system
equilibria. Since the system of equations (7) is only a valid system of Wei-Norman equa-

tions when M(g) is nonsingular, the right hand side of equation (7) is zero only when

12



v = 0. Thus, a nontrivial discussion of equilibria of (7) requires that we introduce

feedback into our system.

Consider equation (3) and suppose that v = u(t,X), where u is periodic in t of
period T. Then (3) becomes

X = XU(t, X). (16)

Assuming that X(t) € @ during the time interval of interest, then g(t) = ¥~1(X(¢)) is

well-defined. So we can write u = u(t, ¥(g)) = u(t, 9), and equation (7) becomes

g = eM(g)u(t, ). (17)

The average equation associated with (17) is

j= M@ [ ulr g (13)

So, for example, if ¢* € S and u(t,¢*) = 0, Vt > 0, then ¢g* is an equilibrium point
of both (17) and (18) V¢ > 0. As shown in the proposition that follows, we can use
averaging theory to draw conclusions about the local stability properties of (17) based
on the stability properties of (18). Additionally, the existence of an exponentially stable
equilibrium point for the averaged system (18) makes it possible to extend the approx-

imations of Theorem 2 from an O(1/¢) time interval to an infinite time interval.

Proposition 1. Let € > 0. Let D = {g € ®" | ||g|| < r} C S. Assume that u(t,g) is
periodic in ¢ with period T' > 0 and suppose that M(g)u(t, g) is continuous and bounded
with continuous and bounded derivatives up to second order with respect to both its
arguments for (¢,g) € [0,00) x D. Let X(t) be the solution to (16) represented by (6)
where g(t,€) is the solution to (17) with ¥(g(0,¢)) = X(0) and g(0,¢) € D. Let X(t)
be defined by (14) where g(¢, €) is the solution to (18) with ¥(g(0,¢)) = X(0).

If g* € D is an exponentially stable equilibrium point for (18) then Jp > 0 such that

if 11g(0,€) — g"[| < p and ||g(0, €) — §(0, €)|| = OC(e)

then [lg(t,€) — §(t,e)]| < ke, Ve € [0,e1), Vi€ [0,00)

13



for some k > 0 and ¢ > 0, and

d(X(t),X(t) < ke, Ve€[0,e1), Vte€]0,00).

Further, Je* such that for all 0 < € < ¢*, (17) has a unique exponentially stable periodic
solution of period T in an O(e) neighborhood of g*. Similarly, (16) has a unique exponen-

tially stable periodic solution of period T in an O(e) neighborhood of X* = ¥(g*) € Q.
Proof. The proposition follows from Theorem 7.4 of [19] and the definition of d. 0

As an example consider the case G = SO(3) for the attitude control problem. We
note that (gi,g2,93) correspond to a type of Euler angles [18], so suppose that we can
measure g. Choose u;(t,g) = —2k;g;sin*t, k; > 0 for i = 1,2,3. Since u(¢,0) = 0, Vt,
then ¢g* = 0 is an equilibrium point of (17) and (18). From (15) and (18) we see that

§1 esecga(—k1§1c0sgs + k2g25ings)
g2 | = e(—k1g151ngs — kzg2c0sGs) = f(9)
s e((tangs)(k1g1cosgs — k2g2sings) — ksgs)
and
—ek; 0 0
g—;lgzo =| 0 —ek 0
0 0 —¢ks

Thus, by Lyapunov’s indirect method since k; > 0, Vi, ¢* = 0 is an exponentially
stable equilibrium point for (18). From Proposition 1, we can conclude that (17) has
a unique exponentially stable periodic solution in an O(¢) neighborhood of ¢* = 0 and
so (16) has a unique exponentially stable periodic solution in an O(¢) neighborhood of
X* = ¥(0) = I. However, since g* = 0 is itself an equilibrium point for (17), the unique
exponentially stable periodic solution about g* = 0 must be the trivial solution ¢* = 0.
Thus, g* = 0 is an exponentially stable equilibrium point for (17) and similarly X* =1

is an exponentially stable equilibrium point for (16).

14



3 Second-Order Averaging

In this section we show the form of the second-order average approximation X (t) to the
solution of X(t) of (3). To isolate the second-order averaging effect, we assume that
g, = 0. Thus, by (13) the first-order approximation X(¢) from Section 2 is constant,
i.e., X(t) = X(0), Vt > 0. We prove that ):((t) is an O(€?) approximation over an O(1/e)

time interval.

As in the case of first-order averaging, we use the Wei-Norman local representation
(6) of solutions to (3) with associated Wei-Norman equations (7) as a means to do
second-order averaging on the group level. Accordingly, we let § = (g,,...,9,)7 be
the second-order average approximation of the solution g(t) to (7). Then we define the

second-order approximation X on the group level as
X(t) = ehWA18(042 . 5n)An (19)
which is well-defined for g(¢) well-defined.

First we make several definitions which will be used in the second-order averaging
to follow. We assume that u(t) = (uy(t),...,us(t))7 is periodic in ¢ with common
period T and that wa,; = (1/T) fi ui(r)dr = 0 for all i = 1,...,n. Now we define
i = (fig,...,Un)T by

)= | “wi(r)dr. (20)
So u = 1 and @ is periodic in t with common period T'. Next we define Area;;(T) to be
the area bounded by the closed curve described by @; and @; over one period, i.e., from

=0tot=T. By Green’s Theorem we can express this area as

Area,-]-(T) = —;—/OT({L‘(U)'&J'(G) - ﬂj(O’)l;l,,'(O'))dO'. (21)

This area can be interpreted as the projection onto the -5 plane of the area enclosed by

the curve (i,,...,%,) in one period.

15



Associated to the basis {Aj,...,A,} for the Lie algebra G of G, let the structure
constants be I'¥;. Then I'}; are defined by

[Ai, Aj] =Y TH A, 4,5=1,...,n (22)
k=1
where [+, -] is the Lie bracket on G defined by [A, B] = AB — BA.

As shown in the work of Wei and Norman, one can express M(g) of (7) in terms of
the structure constants above. Specifically, by differentiating (6) with respect to time,

equating the result with (3) and pre-multiplying by X! we get

n j+1
Zgj Eém JAi = Eg] H e A A) = CZA u;
= k=n =1

where ad : G — end(G) is defined by adxY = [X,Y]. So the ijth element of M(g)™! is
§ij(9) and

j+1

ifii(Q)Ai = H e~IkAk A £ emnadan ... g=9541%94;4 Aj
i=1 k=n
= (I—gnada, +0(9:%) - (I — gjp1ada,,, + O(gj+1°))A4;
S (I——gnadAn — ...—gj+1adA]+l)Aj—|—O(g2)
= Aj—gulAn, 4] — ... — gin[Aj11, Aj] + O(g%)
= Aj—gny ThiAi— ... —ginn Y TiiAi + 0(6%)
=1 i=1

=1

= A4-3(S Gl A+ 0(g?).

1=1 k=j41
Let O(g;%) indicate terms of the form O(¢;"), r > 2. Then O(¢?) indicates terms of
the form O(¢"), for r > 2 where O(g"), r = 1,2,..., are linear in terms of the form
9i19i " " Girs il/ € {1a--'an}’ v = 1,...,’!‘. So
— k=i 96Tk +0(g%), i # 7]
£ii(g) = . . o
1 =i ey +0(g%), 1=
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Thus, M(g)™! = I — £(g) + O(g?) where the ijth element of ¢ is
&i= Y ol (23)
k=j+1

As a consequence we have that (for ||g|| small)

M(g) =1 +£(g) + O(¢°), (24)
and in particular M is analytic in g.

In the following lemma we show the special form of the second-order average equation
associated with the Wei-Norman equations (7) and prove second-order averaging results

for the Wei-Norman parameters using classical averaging theory.

Lemma 2. Let ¢ > 0. Let D = {g € R" | |lg|l < r} C W. Assume that u(t) € "
is periodic in ¢ with period T' > 0 and has continuous derivatives up to third order for
t € [0,00). Suppose that u,, = 0. Let g(t, €) be the solution to (7) with ¢(0,¢) = go € D
such that ||go|| = O(€). Let Z(t, €) be the solution to the equations

3" Area;(T)TE, z(0,€)=0, k=1,...,n. (25)
4,j=1;4<j

Z =

Define g(t, €) by
g=2Zz+e€t+ g (26)

Then g(0,¢) = go and if (2(t,€) + go) € D, Vi € [0,b/¢] and |lg(0,¢) — g(0, )
llgo — Goll = O(e?) then

llg(t, €) — 3(t, )|l = O(€”) on [0, /¢,
ie., |lg(t,e) —g(t,e)|l < ke*, Vee€[0,e), Vie[0,b/e

for some k > 0 and ¢ > 0.

Proof. Following classical averaging theory we define

h(t,y) = M(y)u(t),
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o(t,y)= [ Wrw)dr = [ Myu(r)dr = M)

and note that v(¢,y) is periodic in ¢ with period T. Consider the change of variables
g=y+ev(t,y) (27)

and note that y(0) = go = O(e). Differentiating (27) with respect to time and substi-
tuting (7) for ¢ and (27) for g gives

Ov, .
eM(y + ev)u=(I+ e%)y + eM(y)u.
But by (24) and linearity of M(g) in terms O(g") we see that

M(y+ew) = I+E(@y)+0H*) + e(v) + €O(yv) + €0(v* + yv? +y™0%) + hoot
= M(y) +ef(v) + O(yv) + *p(t, 3, €)

where O(yv) is linear in terms of the form y;v; with ¢,5 € {1,...,n} and higher order
terms are defined similarly. pi(t,y,¢€) is periodic in t with period T and continuous
with continuous derivatives up to third order with respect to all its arguments for all
(t,y,€) € [0,00) x D x [0, €], €0 > 0. Now

dv t Oh
_a—:‘;(t’y)_ o 'a—;(Tay)dT’

so 0v/dy is periodic since dh/dy is periodic in t of period T with zero average. Thus,
dv/dy is bounded for all (¢,y) € [0,00) x D. So for small enough € > 0, (I + edv/0dy) is

nonsingular and we can write

:‘) = (I - sz(t, Y, 6))(625('0)“ + Czo(yv)u + 63p1(t7 Y, 6)u)
= €€(v)u+ E0(yv)u + Eps(t, y, €)

where p;(t,y,€) and ps(t,y,€) are periodic in ¢ with period T and continuous with
continuous derivatives up to third order with respect to all their arguments on [0, c0) X

D x [0, 60].

Now let s = ¢t, then

dy _
ds

e€(v)u + eO(yv)u + €ps(=,, €). (28)

’
€
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Thus, by standard perturbation theory (c.f. Theorem 7.1 of [19]), the nominal solution
to (28) is yo(s) = 0 € D, Vs > 0 and so Je* > 0 > Vl]e| < € (28) has the unique
solution y(s, €) defined on [0, b] such that

ly(s, €) — eya (s, €)|| = O(€?)

where b can be chosen arbitrarily large. Here y;(s, €) is the solution to

d -
% = f(v(t, y))u|y=yo=0

= {(M(0)i)u
= (@), eyi(0,¢) = go.
Thus, ||y(t, €) — ey (t, €)|| = O(€?) on [0, b/€] and yy(t, €) satisfies
i = c€(@)u, er(0,¢) = go.
Now let z £ eyy then ||y(t, €) — z(¢, €)|| = O(?) on [0, b/¢] and

2= e*(W)u, 2(0,€) = go.

Let z(t, €) be the solution to

= ; / " E(i(o))u(o)do £ 0, 2(0,6) = Go. (29)
So by classical averaging (Theorem 7.4 [19]), if Z € D, Vt € [0,b/€] and € is small
enough then ||z(t,€) — Z(¢,€)|| = O(€®) on [0,b/¢]. Then by the triangle inequality,
lly(¢,€) — 2(2, €)]| = O(e?) on [0,b/e].

Again let s = €t. Since
dz _ -
ds =Ce, 2(0,€) =gy

Z(s) = Ces + §, and so for small enough € if 2(s) € D, Vs € [0,8], |ly(s) — (Ces + o)l =
O(€?) on [0, b]. This, (23), (24) and the fact that §, = O(¢) imply that Vs € [0, 5],
ev(s,y(s)) = eM(y(s))i(s)
= eI +£&(y(s)) + O(y"))a(s)
= e(I+&(Ces +0(e)) + O(¢*))ia(s)
= cii(s) + O(é?).
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So |lev(t, y) —ei(t)|| = O(e?), Vt € [0,b/€]. Thus, if € is small enough and 2(t) € D, Vt €
[0, /€] then by (27) and the triangle inequality

llg() = (2(2) + ea(t)l

ly(8) + ev(t, y) — (2(8) + €a(?))||
ly(®) = 2Dl + llev(t, y) — ea(t))l|
O(é?)

IN

The proof is complete if we let § = Z + €ii and show that z defined by (29) is equivalent
to (25).

To do solet f = [fy fa -+ fa]T = é(it)u. Then from (23),
fo=3 &i(@)ui =" > Thijui.
i=1 i=1 j=i+1

If we define foy = [favy fava =+ faun)T = (1/T) T é(ii(o))u(o)do then by (29) zp =
€ favr and using integration by parts and (21) we get

favk - Ti Z /()Trfiﬂj(a)z:l,'(a)dd

E Z FfiAreaj,-(T)

=1 j=i41

which completes the proof. a

The form of (25) shows that % is a linear function of time where the proportionality
constant depends only on ¢, the period T, the projected areas Area;;(T) bounded by the
closed curves described by @; and @; over one period, and the structure constants Ff-‘j.
We show further in the next lemma that the structure constants are directly related to

the Lie brackets of the vector fields defined by the columns of M(g) evaluated at g = 0.
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Lemma 3. Suppose that z(t) is the solution to (25). Let [f; f2 -+ f.] = M(g). Then

-7 > Areas(D)fs Sl 20,0=0 (30)
J=1;t

Proof. By (23) and (24) we have that
EZ::'H gkr}ci + 0(92)
Zk“t-{-l gkrkt b + 0(92)

1+ Thei 9Tk + O(¢%)
Sheir T+ 0(g%)

fi

ZZ=i+1 g l% + 0(92)

So fi 40 = ¢i where e; is the ith standard basis vector for " and

- -

0 --- 0 F%i+1)i [‘}“.
af;
?iq;lgzo =
0 - 0 TPy -+ Iy
So for : < 7,
af; of
[fl’fJ] = JI _Ofllg—o ag |g'—0f]|g"0
I I3
N R

which by (25) completes the proof. o

Using Lemma 2 we can now state the main theorem for second-order averaging on

the group level.
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Theorem 3 (Area Rule). Let ¢ > 0. Let D = {g € ®" | ||g|| < r} C S. Assume that
u(t) € R™ is periodic in ¢ with period T' > 0 and has continuous derivatives up to third
order for t € [0, 00). Suppose that u,, = 0. Let X(t) be the solution to (3) represented
by (6) where g(t, €) is the solution to (7) with g(0,€) = go € D such that ¥(go) = X(0)
and ||go]| = O(e). Define

2t n
Zk(t, ) = = Y Areai (T)I%, k=1,...,n, (31)
i,j=1i<y
g=72+ci+go, (32)
):((t) — 51415042 eﬁn(t)An’ (33)

where Area;;(T) and T'}; are as in (21) and (22), respectively, and |[go — go|l = O(¢?). If
(2(t,€) + go) € D, Vt € [0,b/¢] then

d(X (1), X(t)) = O(¢*), on [0,b/d],

-~

ie., d(X(t),X(t)) < ké®, Vee[0,&), Vie[0,b/d

for some k£ > 0 and ¢; > 0.

Proof. The theorem follows from Lemma 2 and the definition of d. a

Remark 1. Theorem 3 gives the formula for the second-order approximation ):((t) to
the solution X (%) of (3) assuming that the initial condition X (0) is close to the identity.
However, because system (3) is left-invariant, the approximation can be generalized
for any other initial condition. Let Xj(¢) and ):(I(t) correspond to the actual and
approximate solutions, respectively, of (3) with X;(0) = I. Now suppose we wish to
find the second-order approximation X (t) to the solution X (t) of (3) with X(0) € G.
Then by left invariance of system (3), X(¢) = X(0)X(t). It is then easily observed that
X(t) = X(O))—Zl(t) is an O(€?) approximation of X(¢) on an O(1/¢) time interval since
X)X = X7 0)X10t).

Thus, the formula of Theorem 3 is useful for specifying open loop controls to get from

any initial condition X (0) to any final condition X (¢;), since this reduces to the problem
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of specifying controls to get from X;(0) = I to X;(t;) = X~'(0)X(ts). Nonetheless,
the fact that the formula of Theorem 3 is valid not just for X(0) = I but for X(0) in a
neighborhood of the identity has significant practical advantages. For example, it may
be necessary or desired to get from X (0) to X (¢s) in steps, i.e., by specifying different
controls during different time intervals of [0,%s] to reach intermediate goal points. In
general, after each interval the control algorithm would have to be restarted, i.e., the next
goal point would have to be recomputed relative to the new initial condition. However,
if X(ts) is close enough to the identity then according to Theorem 3 the restarts can be
avoided and the control specified according to the original goal point computation. An
example of an algorithm for specification of open loop controls in steps without restarts
is given in Section 5.2. It should be noted that the analogous area rule of Section 4 for
the single exponential representation of X(t) is only valid for X(0) = I. In this case,

when controls are specified in steps, restart computations will be unavoidable. 0

Remark 2. Since z(t) is linear in time, it is straightforward to choose controls u(t) such

that (2(t) + g,) € D, Vt € [0,b/€]. One simply ensures that ||Z(b/€) + gol| < r where

Zr(b/e€) = ETQ Y Areai;(T)TE, k=1,...,n.
1,7=1;i<3

Further, this justifies calling Theorem 3 an “Area Rule” (c.f. [11] for the area rule on

flat spaces that inspired the present result). ]

Remark 3. The general solution to system (3) with X(0) = I is given by the Peano-

Baker series as

i t o
X(t)=TI+e /O U(o)do + € / / " U(on)U(on)dosdo + . ...
o Jo
If we truncate the series and define

t t o1
Y(t)=T+e / U(o)do + € / / U(oy)U(o1)doyday,
0 0 Jo
then Y'(¢) is not necessarily a curve in the matrix Lie group G. Instead we consider Y ()

. 2 .
as a curve in ™ and the solution to

V(t)= U+ | V(o) (t)do, Y(0) = 1.

0
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If we treat both X(t) and Y (t) as curves in ®" then it can be shown that Y () is an
O(€?) estimate of X(t) on an O(1/€) time interval. Additionally, since Y evolves in
Euclidean space we can find an average solution Y that approximates Y using classical
averaging theory. If we define Uy, = 3%, Ajugyi(t) and U(t) = T2, Asiis(t) then for
the assumptions of Theorem 3, U,, = 0 and Y(¢) can be defined as the solution to

Y = ; OTU(a)U(a)da
_ f; OTU(a)ﬁ(a)da
_ % OT(ﬁ(a)U(a)-fJ(a)l”f(a))da
_ 2_6;_ 0, 0)(0)do, V(0) =1,

%/{)T[U,ﬁ](d)dﬂ = %‘/ [Zuz Ai)i&j(a)Aj]da

=1 7=1

1 n n

= = a;(o u o)[Ai, Ajldo
2 / ;;:1 J
1 = -

= 5 /0 Z ~ di;)(0)[As, Aj]do

J=1;

= Z Area;;[Ai, Aj]
1,7=1;1<y

= Z( Z Areaijrfj)Ak, (34)
k=1 1,7=1;1<3

then
2t n n
YO) =T+ — Z Y Area;TH)A; (35)

k=1 ¢,5=1;<J

It can then be shown using classical averaging theory that Y(t) 4+ ¢U(t) is an O(¢?)
approximation of X(t) on an O(1/¢) time interval. It is interesting to check that if we
consider X (t) with X(0) = I as a series expansion, its truncation to first-order in the

Ay’s is identical to Y (t) 4 €U(t). That is,

i

(t) = 6(514-6111)/11 c(fn'{”iﬁn)An

= (I+ (A +eu)A+...) - (I+(Zn+€in)An+...)
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Q

I+ Z ZL A + z et Ay
k=1 k=1

2t n n .
% SIS AreaiTh) Ay + €li(1), (36)

k=1 ij=1;i<3

This confirms that the answer given by the area rule is basis independent. 0O

Corollary 2. Let ¢ > 0. Let D = {g € ®* | ||g|| < r and |gz|] < § — ¢, 6 > 0}. Suppose
u(t) € R? is periodic in ¢ with period T > 0 with continuous derivatives up to third
order Vt € [0,00) and let u,, = 0. Let G = SO(3) and let X(t) be the solution to (3)
represented by (6) where g(, ¢) is the solution to the Wei-Norman equations for SO(3)
as given by (15) with ¢(0, €) = go such that ®(go) = X(0) and ||go|| = O(e). Let z(t,¢)
be defined by

Areaqs(T)

_ et

Z(t’ E) = ? ATCCl,gl(T) 9
Areayo(T)

and define

i(t) — 6(51+€ﬁ1 +§01)A1 6(524-61-42-*-5‘02),42 6(23+E&3+§03)A3

where Ay = é1, Ay = &, Az = &3 and Gy = (Jo1, ogs Joz)” 15 such that ||go— g, |l = O(e?).
If |(eb/T)Areas1(T) + ol < 7/2 — & then Ve € [0,€;) and Vi € [0,b/¢],

B(X (DX(1)) < ke
and H):((t)"lX(t) — I||; £ 9)cos(ke?) — 1| + T|sin(ke)| + |sin(ke?)|?
for some k£ > 0 and ¢ > 0.

Proof. The structure constants for G = s0(3) can be computed as I'1,? = T'y3! = '3 =
1, since [Ay, A] = As, [Az, A3] = Ay, [As, A1) = A;. Thus, the bounds follow from
Theorem 3 and the computations of Corollary 1 (see [18] for details). 0

Remark 4. It is clear that if we choose u(t) such that Areas; = 0 then b can be chosen

arbitrarily large. 0
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Remark 5. In their work [4], Wilczek and Shapere use a formula analogous to (35) to
estimate the displacement achieved by a paramecium through shape changes in a low
Reynolds number limit. The present paper provides a justification via averaging theory

for their formula. 0

4 Averaging Using Single Exponential Represen-

tation

As an alternative to using the Wei-Norman representation of solutions to (3), we con-
sider defining first and second-order averages of solutions to (3) using Magnus’ single
exponential representation [14]. By Theorem III of [14] under an unspecified condition

of convergence, the solution to (3) with X(0) = I can be expressed as
X(t) = #® (37)
where Z(t) € G is given by the infinite series (we show terms up to O(€?®)):
t € rt .
Z(t) = e/ UTdT+—/[UT ), U(7)]dr
- / [ [0(0), Ulo)ldo, U(r)ldr + 5 / [0(r), [0(r), U(r)]}dr + ... (38)
While the convergence criterion for (38) is not given explicitly in [14], two different

sufficient conditions are provided in [21] and [16], respectively. Karasev and Mosolova

[21] show that (38) converges if

t
/0 ladey(n|ldr < In2. (39)

For G a finite-dimensional Lie group, the convergence condition (39) is equivalent to
t
[ IAeu(n)lldr < n2, (40)
0

where A(-) is an n X n matrix with ¢jth element A;;(-) defined by

n
U) = Z 'Ukr;cj.
k=1
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In the case that G = SO(3) and A; = é; is the basis for G = s0(3), it is easy to compute
that A(eu) = €U and so (40) is equivalent to

/ “leU(n)|ldr < in2. (41)

The convergence criterion given by Fomenko and Chakon [16] takes the form

[ eve)ar < - (42)

where M > 1 is defined such that ||[A, B]|| £ M||A||||B|| for all A,B € G and b is the
constant radius of a disk over which a scalar differential equation, defined in [16], is

analytic.

Satisfying the convergence criterion in any one of the above forms means limiting the
length of time of validity of the single exponential representation (37). In this section
as in others we express our results over time intervals that depend on the constant b,
e.g., approximations are given over O(1/€) time intervals of the form [0, b/¢]. Thus, it

is the constant b that we limit to meet the convergence condition.

Now assuming the convergence requirement is met, suppose we differentiate Z as
defined by (38) with respect to ¢, then Z(t) is the solution to

2 3

Z=cU+ 5’2—[U, U+ 7l /0 t[("](r), U(r)dr, U] + —%[U, [O,U)]+..., Z(0)=0. (43)

Now since G is an n-dimensional vector space, we can identify it with ®" and then use
classical averaging theory to derive an average approximation of the solution Z(t) to

(43).

Lemma 4. Let € > 0. Let D = {Z € G|||Z]| < r}. Assume that u(t) € R" is periodic
in ¢ with period T > 0 and has continuous derivatives up to third order for ¢ € [0, c0).
Let b > 0 be such that the convergence requirement for (38) is met Vt € [0,5/¢]. Let
Z(t,€) € G be the solution to (43). Let Z(t,€) be the solution to

Z = €Uy, Z(0,€) =0, (44)
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and let Z (t,€) be the solution to

> 52 T . =
Z=eUo+ 5 /0 [0(r),U(r)]dr, Z(0,¢) = 0. (45)

Define

Ny

= Z+ (U — Uyt)
et (T . .
= = [0, v + 0. (46)

If Z(t,e) € D, Vt € [0,b/e] then
1Z(t,€) = Z(t,€)|| = O(e) on [0,b/€],
and if Z(t,€) € D, Vt € [0,b/¢] then

1 Z(t,€) — Z(t, )] = O(?) on [0, b/].

Proof. Let s = ¢t. Then

dz €, ~ € [ - € . .
55 = U +3lU, U]+ '4—[/0 [0 (), U(r)ldr, U]+ U, [U, Ul + ... (47)
Let Zy(s, €) be the solution to

dZy

‘?d—.'s— = U(S), Z()(O, 6) =0 (48)

and Z;(s, €) the solution to

dz; 1

= =30,0(s), Z:(0,¢) =0. (49)

By standard perturbation theory (c.f. Theorem 7.1 of [19]), if Zo(s,€) € D, Vs € [0, 8],
then de* > 0 3 V|e| < €* (47) has the unique solution Z(s, €) defined on [0, b] such that

| Z(s,€) — Zo(s,¢€)|| = O(¢), Vs € [0,

|Z(s,€) — (Zo(s,€) + €Zi1(s,€))|| = O(€*), Vs € [0,8].

This implies that
1Z(t,€) ~ ZO(t’ e)|l = O(e), Vtel0,b/d,
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I1Z(t,€) - Zi(t, )l = O(€*), V¥t € [0,b/e].

where

.
~

Zo=€U, Zo(0,€) =0, (50)
x 2 ~ ~
7,=eU + %[U, Ul, Z(0,¢) = 0. (51)

The average equations associated with (50) and (51) are equations (44) and (45), re-
spectively. So using classical averaging theory, if Z(t,¢) € D, Vt € [0,b/€] then
| Zo(t, €) — Z(t,€)|| = O(e) on [0,b/€] (c.f. Theorem 7.4 [19]) and if Z(t,€) € D,Vt €
[0,8/€] then || Zy(t, €) — Z(t, €)|| = O(e?) (following the steps of the proof for Lemma 2).

The lemma follows from the triangle inequality. 0O
Let ® : ¢ — G define the mapping
(Z) = €2, (52)

Let S be the largest neighborhood of 0 € G such that ¥ = <i>|5 : § = @G is one-to-one.
Let Q = \il(S') C G. Then ¥ : § — Q is a diffeomorphism and we can define a metric
d:QxQ— R, by

A

d(X,Y) = d(¥71(X), 71 (Y)) (53)

where d is given by (10). We can now state the area rule using the single exponential

representation (analogous to Theorem 3).

Theorem 4 (Single Exponential Area Rule). Let ¢ > 0. Let D = {Z € ||| Z|| <} C §.
Assume that u(t) € R is periodic in t with period 7' > 0 and has continuous derivatives
up to third order for ¢ € [0,00). Let b > 0 be such that the convergence requirement for
(38) is met V¢ € [0, b/€]. Let X(t) be the solution to (3), with X(0) = I, represented by
the single exponential (37) where Z(t,¢€) € G is the solution to (43). Define

Z(t,€) = eU,ut, (54)

Xs(t) = 20 = eVt (55)
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If Z(t,€) € D, Vt € [0,b/€] then
d(X (1), X5(t)) = O(e) on [0,b/¢].
Now suppose additionally that u,, = 0. Define

Z(t,¢) = C—T—zzj S Areai(T)TE) Ay, (56)

1,i=1;i<j

Xs(t) = e2+0, (57)

d(X(t), X s(t)) = O(e?) on [0, b/€].

Proof. The theorem follows from (34), Lemma 4, and the definition of d. a

Remark 6. The first-order approximations derived using the single exponential repre-
sentation above and the product of exponential representation (Section 2) are identical,
i.e., Xs(t) = X(t) = eU=!, A comparison in the second-order case (for X(0) = I) shows
that X g(t) is equal to X (¢) collapsed into a single exponential, i.e.,

Xs(t) = eXok=r B4

where §,(t) are defined by (32). In other words, if we consider X (¢) and X s(t) as series
expansions then they agree to first order in the Ay’s as defined in Remark 3 by (36).

Remark 7. The formulae in Theorem 4 are clearly basis independent.

5 Geometric Interpretation and Control

5.1 First-Order Averaging

The first-order average approximation X (t) = X(0)e“*** of the solution X (t) to (3)

exhibits the contribution of the dc component of the periodic control input. This is clear
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by noting that X (t) is the solution to (12) which is identical to (3) except that U(2) is
replaced with U, = (1/T) fF U(r)dr. As a consequence, the first-order approximation
alone will not capture the complete controllability picture when the number of controls,
m, is less than the dimension of the system, n. Nonetheless, the first-order average
result can still be useful for open loop control, particularly if m = n. For instance,
suppose we are given the problem of specifying periodic open loop controls to drive the
solution X(t) of system (3) from a point ¥; € G at t = 0 to a point Yy € G at t = #;
with O(e) accuracy. Specifically, let G = SO(3) and consider the rigid spacecraft control
problem. Then Y;, Y; € SO(3) are some specified initial and final orientations of the
spacecraft, respectively. From the form of X (t) we see that X(t) is a trajectory about
a fixed axis. So by Euler’s theorem it is easy to see that any attitude Y} can be reached
from any attitude Y; in one step, i.e., with a single choice of U,, such that X(0) = Y;
and X(t;) = X(0)eU+s = Y;. For instance suppose Y; = I and Y} is given such that

yi; is the 25th element of Y. Then we can find the Euler parametrization of Y;:
Yy = e7% = eflavls (58)

where
¢ = cos™o.m(1/2(tr(Y;) — 1)),

tr is the trace operator and

&1 Y23 — Y32
C=l1c | = m Y31 — Y13
C3 Y12 — Y21
From this it is clear that we want cu,, = —¢c/ts. Thus, we could choose our periodic

control eu(t) such that its average is euq,. To ensure O(e) accuracy of the resulting
trajectory X(t), however, it may be important to consider reaching Yy in steps, i.e., by
choosing intermediate points as goals along the way. In such a scheme, intermittent

feedback control could be used to provide corrections to the open loop control.
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5.2 Second-Order Averaging

From Theorem 3 we see that X provides an O(€?) approximation to the solution X of
(3) on an O(1/¢) time interval. Further, X is defined as a product of exponentials where
each exponent has a secular term (linear in t) and an O(e) periodic term. The propor-
tionality constant of the secular term depends only on ¢, the period T, the projected
areas Area;;(T) bounded by the closed curves described by the pairs of components ;
and @; over one period, and the structure constants I'f; associated with the choice of

basis in the Lie algebra G.

This second-order average approximation, in providing more information about the
actual solution than the first-order approximation, captures the effect of the group level
version of depth-one Lie brackets of vector fields. This means that if the appropriate
Lie algebra rank condition is satisfied for a system of the form (3) using only depth-
one Lie brackets, then the second-order approximation provides a formula for achieving
complete constructive controllability using periodic controls. For example, consider
again the spacecraft attitude control problem where G = SO(3). In this case n = 3 and

suppose there are only m = 2 controls available. System (3) becomes

.

X = X Ayug + X Aguz 2 cFy(X)uy + eFy(X)uz, X(0) =1, (59)

where A; = é; and A; = é; as in previous sections and F; and F;, are left-invariant
vector fields on G. Now, the Lie bracket of left-invariant vector fields on a matrix Lie
group can be expressed in terms of the Lie bracket on the associated Lie algebra as
[Fi(X), F2(X)] = [X A1, X A;] = X[Ay, Ag]. Since [Ay, A2] = Az = é; and {A,, Az, A3}
forms a basis for G = s0(3), then this system is completely controllable with the Lie
algebra rank condition only requiring one depth-one Lie bracket. Thus, the second-
order approximation should reveal how to constructively achieve complete control of the
spacecraft attitude with only two controls. This is illustrated by the formula for the

second-order approximation X of the solution X to (59) (from Corollary 2)

):((t) = I141,0242,9343
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- L= 2 -
= elc@h1+301)A1 (ci2+T02) Az o (F Arear2(T)+Gos) A (60)

which has three nonzero rotational components. That is, oscillations %; and i, about
their respective two axes produce drift about the third axis, proportional to the area

defined by the closed curve described by #; and i, over one period.

The second-order approximation formula, e.g., equation (60) in the above example,
can then be used to specify open loop control. For the spacecraft attitude control
problem, we note again that the Wei-Norman parameters (g1, g2,93) correspond to a
type of Euler angles (c.f. [18]). As a result, given a desired spacecraft orientation
Yy € SO(3) at time t = ¢y, we can compute the corresponding desired Euler angles g4 =
(941, 9da> 9a3)T - Additionally, we suppose that it is desired to reach the new spacecraft
orientation Yy and stay there, i.e., we would like ¢ = 0 at ¢ = ;. For the above example,
assuming that X (0) = Y; = I, it is clear that we want to choose eu; and €uy, meeting the
constraints of Corollary 2, such that g(ts) = g4 and euy(t5) = euq(ty) = 0. By Corollary
2, we could then conclude that g(t;) will be O(e?) close to gg with g(¢;) = 0.

One approach to meeting these requirements is to select controls eu; and eu; in steps.
Specifically, we divide the time period [0, ¢;] into four intervals [0,#,], (¢1,%2], (f2,s] and
(t3, 1], choose controls on each of these intervals and apply Corollary 2 separately to the
system over each interval. We assume that ||g4|| = O(€) which makes it easy to ensure
that the initial condition of g for each of the intervals (i.e., g(0), g(t1), g(t;) and g(t3))
will be O(€) as required in Corollary 2 (i.e., we avoid restart computations as discussed
in Remark 1). We also let g(0) = ¢(0). Then after application of Corollary 2 to the first
interval, we get that ||g(t1) — g(t1)|| = O(€?). But this is the necessary initial condition
on g for the second interval. So we can apply Corollary 2 to the second interval which
will yield ||g(¢2) — g(2)]| = O(€?). Similarly we apply Corollary 2 to the third and fourth
intervals to yield ||g(t;) — g(ts)|| = O(€?). Also for practical reasons we choose eu; and

eu, to be continuous throughout, i.e., Vt € [0,1,].

The basic idea for choosing the controls on each of the four intervals comes directly
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from the geometric interpretation of (60). In the first interval, we select eu; and eu; to
meet the requirements of the first and second rotational components only, i.e., such that
g1(t1) = €tr(t1) = gaq, go(t1) = €iia(t1) = gay and Area1o(T) = 0. This last requirement
can be satisfied simply by choosing eu; and euy in phase over the first interval. Next
during the second interval we choose eu; and eu; so that the third rotational component
requirement is met without a net effect on the first two components. That is, we choose

eu; and eu; out of phase such that Area;s(T) satisfies
2
= €
gs(t2) = ‘T'(tz —t1)Areaia(T) = g4s.

To avoid a net effect on g, and g,, the length of this second time interval should cor-
respond to an integral number ¢ of periods T, i.e., t; —t; = ¢T. (Note that there is
flexibility, subject to the above constraints, in the choice of #4,%,,%3 and T as well as the

phase difference between eu; and eu; which determines Area,2(T)).

At the end of the second time interval we will have g(t2) = g4. However, ¢ will not
necessarily be zero since eu;(t3) and eug(t;) will not necessarily be zero. Thus, in the
third and fourth intervals we bring eu; and eu, to zero with zero net change to g. It is
easy to avoid affecting g5; this is done by choosing eu; and €uy in phase over the third
and fourth intervals, i.e., so that Areaq2(T) = 0. To avoid zero net change to g, and g,,

we select eu; and euy so that

13 t
e/ ’ u;(7)dr + e/ ! u(r)dr =0, 1=1,2. (61)

t2 t3

In particular, in the third interval we bring eu; and eu; to zero and in the fourth interval

we bring eu; and eu, again to zero while satisfying (61).

The following control sequence employs the above strategy for the system described

by (59) with corresponding second-order approximation (60):

¢

gaqwstnwt 0<t<ti=L= %
weos(w(t —1 tih<t<ty=1t;+4qT
eur(t) = { 74 (Wt—t)) & 2=tit+g (62)

gnweos(w(t —t3))  ta<t<tz=1t3+ %—

~Mysin(w(t —13)) ta<t<t;y=1t3+ z
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gdawsinwt 0<t<ty

a2 ycos(w(t — 1) — h<t<t
6u2(t) = { cos(qp) ( ( 1) ,(?b) 1 = b2

gagweos(w(t — t2)) ta <t <t

—g—g-lwsin(w(t - tg)) ta<t< tf

.

where 0 < ¢ < 7/2 is selected such that ¢ is a positive integer and

q= 9d3
Tgd19aztan(y)

The period of oscillation T' and frequency w can be computed as
_ b
q+ 1
ool
T
The corresponding integrals of these controls are

4

941(1 — coswt) 0<t<t
. gdl(l + szn(w(t - tl))) t] <t S tg
eul(t) =K
g (1 + sin(w(t —13))) ta<t <t
| 941 (3 + Seos(w(t — t3))) 3 <t <t
[ ga2(1 — coswt) 0<t<th

eiip(t) = ¢ W)

\

=292 (cos(1) + sin(¢) + sin(w(t — t1) — ) t1 <t <ty
9az(1 + sin(w(t — t2))) l, <t <t
gdz(g + %cos(w(t —13))) ts <t <ty

(64)

(65)

Areay2(T) is only nonzero during the second time interval, i.e., for t € (¢1,%,]. During

this time,

1

Let the parameters be selected as € = 0.1, g4y = 0.1, gq = 0.05, g43 = 7/40, ¢ =

7/4, ty = 24 and, consequently, ¢ =5, T =4, w =7/2, t; =1, t, = 21 and 13 = 22.

Figure 2 shows plots of the corresponding controls eu; and eu, as a function of time.

Note that these controls are continuous and eu;(t;) = euz(ty) = eus(0) = eua(0) = 0.
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Figure 2: Control Input Signals for Attitude Control Example.

Figures 3(a) and 3(b) show the corresponding plots of §, and §,, respectively (solid
lines). Figure 3(c) is a plot of @, versus i, and the area enclosed by the curve is
equivalent to Areai3(T) for t € (t1,t2). Note that for t € [0,¢] U (t2,¢4], % and iy
are in phase so no area is traced out over this time interval. The trajectory of g, is
shown in Figure 3(d). It can be seen that g, changes only during the second interval,
i.e., for t € (t1,%2] when Areaio(T) # 0. Since (g,,9,,73) reach (gaq, gaq, gas) at t = 5,
)_Z'(tf) = Y}. By Corollary 2 this means that the controls defined by (62) and (63) should
drive the actual solution X (t) of (59) to an O(e?) neighborhood of Y;. To verify this for
the above example we have superimposed plots of g1, g2 and g3 (computed by simulation
for the controls defined by (62) and (63)) on the plots of g,,9, and g, in Figures 3(a),
3(b) and 3(d), respectively. These plots are the dashed lines in these figures; however,
they are difficult to see in Figures 3(a) and 3(b) because of the high accuracy of the
second-order approximation. Certainly, the average solution can be observed to be an

O(€*) approximation of the actual solution.

As an alternative to using the product of exponential second-order approximation X
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Figure 3: Average (solid lines) and Actual (dashed lines) Wei-Norman Parameters for
Attitude Control Example.

to specify open loop controls, we could use the single exponential second-order approx-
imation X s from Section 4 which for the two-input spacecraft attitude control example

of this section takes the form

= > - - P 52
Xs(t) — 6Z+eU — eeulAl+cu2A2+TtArea12(T)A3 (66)

Like equation (60) this formula illustrates how to achieve complete controllability since
the coefficients of Ay, A; and Aj are all nonzero. In this case, however, instead of trying
to match desired Wei-Norman parameters (g4;, gaq, 943) for a given desired orientation
Y}, we would need to compute and match desired Euler parameters. (Recall the Euler

parametrization (58) of Section 5.1.)

In either case to ensure a high order of accuracy we may want to consider reaching Y;
in steps and incorporating feedback corrections as suggested in Section 5.1 for first-order

averaging.
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6 Approximation Formulae for Example Actuators

System (3) with G = SO(3) describes the kinematics of a spacecraft in the case that
zero angular momentum of the spacecraft is conserved, i.e., there is no external torque
applied to the spacecraft. Consider the sketch of Figure 4 which represents the spacecraft
(assumed to be a rigid body). Let (ry,rs,73) be coordinates fixed on the body and let
(e1, €2, €3) be inertial coordinates (not shown). Then we define X(t) € SO(3) such that
e; = X (t)r;, i.e., X(t) describes the attitude of the spacecraft at time . X(t) satisfies
: Ao 3
X =XQ, Ut)=> Qut)A (67)
i=1
where = (Qy,8,,03)7 is the angular velocity of the spacecraft in body-fixed coordi-
nates and {A;, A3, A3} is the basis for G = so(3) as defined in Section 2.

Equation (67) is in the form of (3) assuming that we can interpret §)(t) as the control
input, i.e., that we can identify eu(t) = €(t). This will be the case if zero angular

momentum of the spacecraft is conserved. Under this condition there are a variety of
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practical means of actuation, i.e., a variety of ways of effecting the body angular velocity
of the spacecraft as desired. We explore two cases, the first using momentum wheels and
the second using a point mass oscillator appended to the spacecraft. Momentum wheels
are a typical means of controlling spacecraft attitude. An appended oscillator, on the
other hand, would be a novel approach. However, such an approach could potentially
provide a lighter weight and less expensive control alternative as would be required,
for example, in the case of small planetary spacecraft control described in Section 1.
Additionally, by investigating how to control a spacecraft with appended oscillators,
we are illustrating as well how to determine the effect of undesirable oscillations or

vibrations, e.g., as caused by flexible attachments on the spacecraft.

In this section we derive the O(e?) approximation to X(¢) explicitly for the momen-

tum wheel case and for the appended point mass oscillator case.

6.1 Momentum Wheels

The spacecraft with a maximum of three momentum wheels is illustrated in Figure 4.
Let p < 3 be the number of wheels. We make the following assumptions about the

wheels and the spacecraft:

1. The sth wheel spins about the axis b; (unit vector) which is fixed in the spacecraft
such that the center of mass of the ith wheel lies on the b; axis. Further, b; is a

principal axis for the ith wheel, and the ith wheel is symmetric about ;.

2. Let pu be the angular momentum of the spacecraft measured in inertial coordinates.

Then g = 0 is conserved.
We next make the following definitions:

J* 2 the inertia matrix of the spacecraft without wheels measured in body-fixed coor-

dinates.
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Ji £ moment of inertia of ith wheel about b; axis.

k; £ moment of inertia of ith wheel about any axis orthogonal to b;.
R 2 [w g b € SO(3).

J; £ inertia matrix of ith wheel measured in body-fixed coordinates,
ie., J; = R; diag(k:, ki, j;)RY, where diag(a, b, c) is a diagonal matrix with diagonal

elements (a, b, c).
v; = 0:b; = angular velocity of :th wheel in body-fixed coordinates.

e = angular momentum of body in body-fixed coordinates.

Then by [20, 22]
p —_
Mo = XT/t = ZJl(Q + 1/1') + J*Q

1=1

which implies that
P

— p — .
B = X((J* + Z J,)Q + Z J,-b,-b’,-).
Then by assumption 2, u = 0, so
p — .
Q=—-J"1) " Jbo;,
1=1

where J £ J* + Y%, Ji is assumed to be nonsingular (which it will be in general).
If we let k 2 P 1k and [ 2 Ji— ki, 1 = 1,...,p, then it is easy to show that
J=J"+kI+3, 1;b;bF. Now since

kk 0 0 0
Jbi=R |0 k 0 |RTR |0 |=jb
0 0 y 1
then
p . A .
Q=-J7"Y " jbb: = Co. (68)

=1
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Equation (68) allows us to exactly compute body angular velocity as a function of
the angular speeds of the momentum wheels. Assuming that the é,-, 1 =1,...,p are
small-amplitude, zero-mean periodic functions of time then we can rewrite equation (68)

as

eu = e = CO (69)
where we have redefined 2 and § by €0 and €6, respectively. Then, from Corollary
2, the O(€?) approximation (on an O(1/¢) time interval) X (t) to the solution X(t) of
X = eX(), with X(0) close to the identity is given by

X(t) = oSt Areazs(T) i +301) A1 o Gt Areass (T) ez +50y) Az (5 Arears(T) +eiia+iga) As
where Area;; are functions of the @;(t), i = 1,2,3, as given by (21). We can then

express X (t) explicitly in terms of our physical controls 8(t). Let 6(t) 2 JE0(r)dr then
€ii(t) = eCO(t). Now, define

areas(T) = 3 [ (0(6)05(0) = 0,(0)0i(0))dor

which is the area bounded by the closed curve described by 6; and 6; over one period.
Let c;; be the ijth element of C (if necessary, add extra columns of zeros to make C a

3 x 3 matrix). Then

Ci1 (12 €12 13 ‘i1 G3
Areay(T) = areays(T) + areags(T) — areaz (T),
Ca1 C22 C22 C23 C21 €23
Cy1 C Cy2 C Cy1 C
Arean(T) = a areao(T) + 2 areay(T) — a s areaz (T),
C31 €32 C32 C33 €31 C33
¢;1 € c12 € c1 €
Arean(T) = — o area2(T) — 12 areay(T) + s areas (T),
C31 C32 C3z C33 C31 Ca3
where | - | indicates determinant.

In the special case when the wheel axes correspond to the body-fixed coordinate

axes, then b; is the ith standard Euclidean basis vector. Additionally, suppose that the
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body-fixed coordinates have been defined to be the principal axes of the spacecraft. Let

J* = diag(s1, ?3,43). Then

uy 0 (G1/(1 + J1 + ka2 + k3))b;
ug | = | Qo | =~ | (a2f(iz+ 72 + ka1 + k3))b;
u3 Q3 (j3/ (i3 + js + k1 + k3))03

In this case if there are only two momentum wheels then the control strategy of Section

5.2 can be used directly to specify 8; and 6, for attitude control.

6.2 Appended Point Mass Oscillator

The spacecraft with an appended point mass oscillator is illustrated in Figure 5. The
point mass can oscillate in three dimensions. We make the following assumptions about

the body plus oscillator:

1. Assume that the point mass has no associated inertia.
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2. Let p be the angular momentum of the spacecraft plus oscillator measured in

inertial coordinates. Then u = 0 is conserved.

3. Let y be the distance of the point mass from the spacecraft center of mass in body-
fixed coordinates. For simplicity assume that y(0) = 0, i.e., initially the oscillator

is located at the center of mass of the spacecraft.
We next make the following definitions:

mo 2 Imass of the spacecraft.
my £ mass of the point mass oscillator.
A
am = momy/(mo + my).
A 2 inertia matrix of the spacecraft without the oscillator.

Liock = instantaneous local locked inertia of body plus oscillator, i.e., the inertia of the
system frozen at y in body coordinates. Zjoex = Zo + am(||y||2] — yyT) where I is
the 3 x 3 identity matrix.

s = angular momentum of body in body-fixed coordinates.
Yy £ velocity of point mass in body-fixed coordinates (assumed available as control in-

put).

Then by [3]
He = XT,U' = (Ilockﬂ + any X y)
By assumption 2, p = 0, we get that

0= -T L (y)am(y x 9), (70)

assuming that Zj,x(y) is nonsingular (which it will be in general). Suppose that y has

small amplitude € and is periodic in ¢ of period T and has zero mean. Define & by y = ez
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and so y = ex where z(t) = fj (7)dr, and r and & are periodic in t of period 7. Then

Tock = To+ Ean(|z|*] - :ca:T)
= (I+ ezam(llzuzl — w:vT)Io_l)Io

So for small enough e,

;Y = I3+ Eam(||=)*T — z2T)I3")™
= I;'(I - Ean(||z|*T — z2T)I3" + O(€*))

= I;' — €, T3 (||z|P T — z2T) Iyt + O(eY). (71)
Also
y x y = ez x ) = €. (72)
Substituting (71) and (72) into (70) gives
Q = —an(Zy! — CanZy (|2)] — 225" + O(eh))(€? i)
= —an,Iyldd + O(eY). (73)

Now let € 2 €2 and suppose we identify €éu as the truncation of 1 as follows
fu = —ean Iy 21, (74)
Then it is easy to show that the solution to

Y =evd (75)

X = XQ. (76)

Thus, the O(€) average approximation to the solution Y(t) of (75) will be an O(€)
approximation to the solution X (t) of (76) by the triangle inequality. From Corollary 1,
the O(€) average approximation to the solution Y'(¢) of (75) on an O(1/€) time interval
is given by

Y(t) = Y(0)et = Y(0)e P, (77)
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Thus, Y(¢) is an O(€?) approximation of X () on an O(1/€®) time interval. We then
can express Y (t) explicitly in terms of our physical controls & by computing u,, and

substituting into (77). By (74)
T3T3 — T3T2
eu=—€a,Iy' 22 = —€an Iy | zai, — 2123

xli'2 - -7:2-1."1

Define
1 /T . .
areaz;(T) = 5 /0 (z:(0)i;(0) — ;(0)d:(0))do.

Then

areazq3(T)

200, 4
Ugy = _TIO areazs(T)
areaz12(T)

Thus, the approximation to the solution of the kinematic equation for the spacecraft
plus point mass oscillator is a single exponential with elements proportional to the areas

bounded by the closed curves described by z; and z; over one period.
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