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This thesis presents an assessment of the potential of the differenced Normalized Burn 

Ratio (dNBR) and other spectral indices for mapping fire severity in Alaskan black.  

Using simple linear regression, the dNBR derived from Landsat TM and ETM+ data was 

correlated with ground measures of fire severity including the Composite Burn Index 

(CBI), depth of the organic soil remaining after the fire, reduction in the depth of the 

organic layer, and Canopy Fire Severity Index; these being measures of fire severity used 

to assess the ecological effects of fire.  Regression analyses yielded weak correlations: 

the highest R2 for a comparison between the dNBR and CBI was 0.52, p<0.0001.  

However, the mid-infrared ratio showed higher potential than other spectral indices in 

many comparisons.  Overall, these results indicate 1) validation of the dNBR is needed 

and 2) burn severity mapping schemes which are more comprehensive than the dNBR 

should be developed. 
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Chapter 1: Introduction 

Black spruce (Picea mariana) forests are an important component of the boreal 

ecosystems of Alaska and Canada, representing some fifty percent of the forest cover in 

the region (Kasischke and Johnstone, 2005).  In Alaska alone, these forests cover 26 x 

106 ha and contain deep surface organic layers that store a substantial fraction of the 

terrestrial carbon present in this boreal region. 

Interior Alaska is the region which contains its boreal forest and experiences summer 

fires due to high temperatures and low precipitation (Kasischke et al., 2002; Sorbel and 

Allen, 2005).  Forest fires in the summer of 2004 burned over 2.7 x 106 ha of land, much 

due to natural causes (Sorbel and Allen, 2005).  Documenting these fires and accurately 

recording burned area and fire severity can be difficult due to their large areas and remote 

locations.  However, advances have been made in using satellite remote sensing data to 

monitor the fire regime.  Monitoring active fires and post-fire effects, such as burned area 

or perimeter mapping and methods used to assess surface changes have allowed 

researchers to better understand the fire regime and assess changes to this regime (Lentile 

et al., 2006).  

Motivating this study is the need to quantify fire severity, the direct effects of the 

combustion process, in terms of the levels of surface fuel consumption, i.e., the burning 

of dead organic matter lying on top of mineral soil (Harden et al., 2000; Jain 2004; 

Kasischke et al., 2005).  Studies show that black spruce forests make up > 70% of the 

area burned in Alaska and > 50% of burned area across Canada (Amiro et al., 2001).  

Quantifying carbon emissions for this region can be important considering the large 

amount of carbon which can be emitted due to fire.  The deep surface organic layers 

 1 
 



 

found in black spruce forests can release from 10, and up to 100, t ha-1 of carbon.  

Variations in depth of burning represent a major source of uncertainty in estimating 

emissions from boreal fires (French et al., 2004; Kasischke et al., 2005).  This study 

assesses multiple methods to determine the fire severity of the surface fuel consumption 

through comparison spectral indices derived from Landsat TM and ETM+ satellite data 

and ground measurements of fire severity. 

Numerous spectral indices have been derived from satellite remote sensing data to 

quantify and spatially map burn severity, the environmental characteristics following the 

fire, across the landscape (Jain 2004).  While some research has been carried out to 

correlate spectral indices with ground measurements to determine the potential of the 

spectral index to accurately quantify burn severity on the landscape, there is still a need 

for further study.  The approach used operationally by the fire management community in 

the in the United States is to empirically determine the relationship between the 

differenced or delta Normalized Burn Ration (dNBR) with a specific set of field 

measures of burn severity, known as the Composite Burn Index (CBI) using regression 

analysis (Key and Benson,2006).  The relationship between the dNBR and CBI is then 

extrapolated throughout the entire burned area.  However, what has yet to be 

demonstrated is: a) whether the dNBR is correlated to CBI over a single forest cover type 

and b) whether the dNBR or other spectral indices are correlated to other measures 

specifically designed to assess specific characteristics of fire severity.   

This research tests the sensitivity of different spectral indices to different metrics of 

fire severity.  The objectives of the study are to 1) evaluate the potential of the dNBR and 

CBI approach for mapping fire severity, 2) evaluate the potential of dNBR for mapping 
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other measures of fire severity, and 3) analyze the potential of different spectral indices 

designed to quantify forest change for assessing fire severity.  I present an assessment of 

thirteen single-date and fourteen two-date remotely sensed indices designed for mapping 

land surface characteristics, and potentially fire severity.  This study was carried out by 

correlating the indices to surface measures of fire severity, including the CBI and other 

fire severity measures that can be used to estimate fuel consumption during fires 

including the consumption of the forest canopy, consumption of the soil organic layer, 

and the depth of  remaining soil organic layer.   
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Chapter 2: Background 

2.1 Fire in the Boreal Forest 

On a global scale, the boreal region contains the world’s second largest store of soil 

organic carbon (30%), while it consists of only 17% of the Earth’s land surface (Kane et 

al., 2005; Kasischke 2000).  The boreal forest region of Alaska consists of six main tree 

species: two coniferous species – black spruce (Picea marianna) and white spruce (Picea 

glauca), as well as three deciduous species – trembling aspen (Populus tremuloides), 

balsam poplar (Populus balsamifera), paper birch (Betula neoalaskana) and one 

deciduous coniferous species – larch (Larix laricina) (Borgeau-Chavez et al., 2000; 

Kasischke et al., 2000).  These tree species occur either in pure or mixed forest stands, all 

of which are at risk from fire.  However, black spruce forests represent > 70% of the 

forested areas that burn in Alaska (Kasischke et al., 2005).  Black spruce forests are at an 

especially high risk of burning due to the vegetation structure of the individual trees – 

they retain dead lower branches and during periods of low precipitation, the needles of 

this species are highly flammable.  Also, ericaceous vegetation found in the understory of 

these forests contains a high content of volatile organic oils which increases 

flammability.  All these components result in a highly flammable fuel matrix that 

supports the rapid spread of surface and crown fires during dry conditions (Johnson 

1992). 

Fire is a natural occurrence in Alaskan forests and has serious consequences at local, 

regional, and global scales.  The release of carbon into the atmosphere following a fire 

can affect global climate, however the local ecosystems and the regional environment can 
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be altered in other ways as well.  For example erosion and mudslides can occur, 

potentially altering conditions for those living downstream of the burned area (Sorbel and 

Allen, 2005).  Also, it has been proposed that fire may permanently change the ecosystem 

by altering the succession of species post-fire (Johnston and Kasischke, 2005).  For 

example, what may have been a black spruce stand capable of storing vast quantities of 

carbon may grow back as a deciduous stand capable of storing less (Kasischke 2000).  

Understanding this ecosystem and its fire dynamics is becoming increasingly important 

as land managers use information regarding the severity of a fire to make policy decisions 

for the surrounding area (Epting et al., 2005; Sorbel and Allen, 2005).   

However, there is an overall lack of the detailed spatial information needed to reduce 

uncertainty in carbon consumption estimates due to wildfire (French et al., 2004).  An 

important process in the carbon cycle is the emission of carbon from the burning of the 

organic soil layer (SOL).  Deep burns in this SOL, which can occur due to drier climactic 

conditions in this region, can lead to increases in carbon emissions.  Conditions such as 

this are projected by various general circulation models that changes in the climate of the 

boreal region due to global warming could result in a longer fire season and an increased 

probability that severe fire weather will occur (Stocks and Kasischke, 2000; Flannigan et 

al., 2005; Chapin et al., 2006).  Over the last 30 years, it has been shown that annual 

surface temperatures in the Alaskan boreal and arctic regions, the Canadian boreal region, 

and in North America overall have increased by five degrees Celsius, although it is not 

yet clear that this temperature increase is responsible for changes in fire weather in 

Alaska (Chapin et al., 2006). 
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Many terms have been used over time to describe the effects and impacts of fire, fire 

severity and burn severity (Figure 1).  Generally, fire severity can be defined as the direct 

effect of the combustion process with respect to vegetation mortality, biomass 

consumption, the heating and physical transformation of soils, and the production of 

smoke (Jain 2004).  Burn severity can be defined as how the environment and ecosystems 

respond to the impacts of fire, such as changes in the erosion of soils into streams, the 

release seedlings from serotinous cones by coniferous trees, and the changes to nutrient 

cycles (DeBano et al., 1998; Bourgeau-Chavez et al., 2000), and the establishment of new 

plant species following the fire (Jain 2004).  Thus burn severity can actually be thought 

of as a function of fire severity.  It is for this reason that understanding fire severity is of 

such importance – without an understanding of the direct effects of the combustion 

process, it will be difficult to accurately assess post-fire responses of the environment. 

 

Figure 1: The fire disturbance continuum.  Fire severity is seen as a first-order fire effect, while 
burn-severity is a factor of the post-fire environment (Jain 2004). 

 
Black spruce forests experience three types of fire – ground, surface, and crown fires 

– and each can lead to different changes in the ecosystem.  A ground fire can result in the 

exposure of mineral soil and immediate erosion, while in a crown fire it may take more 

time for the effects of burning (such as the death of the tree and the drop of needles to the 
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ground) to become evident on the landscape (Jain 2004).  Ground measurements of these 

three types of fire were analyzed in this study to capture the full range of variability in 

this system.  To be consistent with the Key and Benson (2006) approach (described in the 

Landscape Assessment documentation produced by the FIREMON program), data to 

calculate the CBI measurement were collected.  However, while the CBI is intended to 

provide an assessment of fire and burn severity, it may not accurately assess fire severity 

in areas with deep organic soils, such as those in the Alaskan black spruce forests 

(Kasischke et al., in review).  Other ground measures considered to be of interest in this 

study included changes to the surface organic layer and canopy.  Fire severity can play an 

important role in the post-fire environment (Figure 2).  Severe ground fire severity can 

lead to consumption of the soil organic layer, as in the extreme fire severity site (Figure 

2c), and the downing of trees within the stand.  In low and moderate fire severity sites, 

varying degrees of surface and/or canopy fuels may remain (Figure 2a and 2b).  This type 

of response can have implications for the spectral signature of the site (discussed in 

further detail in section 2.2).  Also, as the spectral signature has been found to vary based 

on vegetation cover types and stand density, this was of particular interest in the study.   
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b. 

c. 

a. 

Figure 2: Variability within black spruce forests.  All three of the above images are from the 
Boundary fire sites analyzed in this study, although each has varying degrees of fire severity 
including low (a), moderate (b), and extreme (c).  Photographs courtesy of E.Kasischke. 
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2.2 Satellite Assessment of Fire Severity 

The large size of individual fires and their remote locations can lead to difficulties in 

quantifying the fuel consumption and carbon storage.  Satellite data have provided a 

much needed source of information to monitor the boreal region, and the availability of 

moderate- and coarse-resolution satellite data has greatly increased the ability to 

understand fire regimes in this ecosystem (Sukhinin et al., 2004; Lentile et al., 2006).  

The quantification of burned areas and burn severity is important globally to better assess 

impacts of biomass burning on the carbon cycle.  The application of satellite data to 

mapping burned areas and fire severity has increased in recent years.  Many burned area 

and fire severity mapping methods have been developed including band ratios, indices 

and linear transforms to both map burned area and assess and quantify f severity (Lentile 

et al., 2006). 

Techniques to remotely measure fire severity using satellite data contain various 

levels of complexity, but all attempt to analyze changes in the surface characteristics of 

the environment.  Fire-induced changes to the ecosystem detectable using satellite 

imagery include changes within the vegetation and soil structure, as well as changes to 

the moisture content of the vegetation and soil (Cocke et al., 2005; Miller and Thode, 

2007).  Fire can lead to various levels of char, white ash, bare mineral soil, and changes 

from healthy green vegetation to brown vegetation.  Soil composition and structure can 

be altered through deposits of white ash and could be important in analyzing the spectral 

response of burned areas, but the relatively small size of these deposits could mean that 

they are difficult to recognize with medium resolution satellite imagery (Smith et al., 

2005).  Fire can also down trees as it often consumes the organic soil and root layer of the 
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trees, thus the tree falls due to a lack of support.  This affects the spectral response 

through changing the degree of shadowing and the composition of surface reflections 

from the ground (Key and Benson, 2006). 

Burnt areas can also exhibit changes in hydrological patterns from the pre-fire 

environment.  Evapotranspiration can decrease due to the death of vegetation, and runoff 

can increase in areas of steeper slopes due to reduction in the presence of litter and duff 

(Miyanishi 2001).  Finally, increased hydrophobicity of some soils can occur following 

fire due to changes in soil chemistry.  As a result of these changes in hydrology, soil 

moisture conditions can vary in the extreme compared to the pre-fire site conditions, 

which can have impacts on the spectral signature of the site (Doerr et al., 2006).   

Of particular interest in mapping burned areas and fire severity have been the regions 

from the red (0.63 to 0.69 µm) through the short wave infrared (SWIR: 2.08 – 2.35 µm) 

portions of the EM spectrum (Table 1).  Traditionally, this range has yielded the highest 

degree of sensitivity to changes in vegetation structure and moisture levels, both of which 

are correlated to the impacts of fire (van Wangtendonk et al., 2004; Miller and Thode, 

2007).  These changes are due in part to the tendencies of the healthy green vegetation to 

generally have low reflectance in the red (0.63 to 0.69 µm) and SWIR (2.08 – 2.35 µm) 

wavelengths and high reflectance in the NIR wavelengths (0.76 – 0.90 µm in TM and 

0.78 – 0.90 µm in the ETM+ sensor’s respectively). 

Following fire, it has been found that the spectral response of the sites in the NIR 

wavelength reflectance decreases in direct relation to the fire intensity (Jakubauska et al., 

1990).  Reflectance in this region generally decreases following fire due to damage to, 

and possible removal of, the leaf tissue.  In contrast, reflectance in the SWIR (Landsat 
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TM Band 7) section of the spectrum generally increases due to decreasing moisture levels 

at the site and a difference in forest shadows (Epting et al., 2005; Key and Benson, 2006).  

For this reason, assessments of these two bands were included in the study.  Extreme fire 

severity (Figure 2c) could potentially be causing changes in forest shadows as the loss of 

the organic soil layer can lead to downed trees and changes in the spectral signatures of 

the forested areas. 

Graphs of the spectral reflectance of the two fire events studied in this project and 

measured using TM wavelength regions (Figure 3) show the different spectral signatures 

between the pre- and post-fire environment of forested areas.  It can be seen that for both 

Landsat TM and ETM+ Band 4 and Band 7, large shifts in the pre-burn and post-burn 

spectral response patterns are evident (Table 1).  While the wavelengths region 

characterized by Band 4 (the NIR Landsat Band) typically decrease following fire in 

forested areas, wavelengths in the region characterized by Band 7 typically increases 

following fire in these same environments (Table 1 and Figure 3) (Key and Benson, 

2006).  Landsat Band 5 (1.55 - 1.75 µm) can be affected by soil moisture levels as it too 

is a short wave infrared Band.  Two indices using Band 5 and one other infrared 

wavelength band are included in the study (TM 4/5 ratio and TM 7/5 ratio).  Band 1 (0.45 

- 0.52 µm) and Band 2 (TM: 0.52 - 0.60 µm. ETM+: 0.53 - 0.61 µm) are not included in 

this study as traditionally only slight changes in these spectral wavelengths have been 

observed from the pre-fire to post-fire environment (Figure 3) (Miller and Thode, 2007).  

Also, Band 6 (10.4 - 12.5 µm), due to its lower spatial resolution, is not analyzed in this 

study, although others have found measures of this band to be responsive to changes due 

to fire in forested environments (Epting et al., 2005; Holden et al., 2005). 
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Spectral Component Affected By Impact on Reflectance 
NIR 0.76 – 0.90 µm 

(TM Band 4) 
Leaf tissue damage and 
removal, crown shadowing Post-fire decrease 

SWIR 1.55 – 1.75 µm 
(TM Band 5)  

crown shadowing, soil 
moisture levels Post-fire decrease* 

SWIR 2.08 – 2.35 µm 
(TM Band 7) 

Crown shadowing,  
soil moisture levels Post-fire increase 

NIR minus SWIR 

Normalizes for brightness, 
removes within scene 
topographic effects,  
removes between scene 
solar illumination effects 

Differences due to fire 
isolated. 

Table 1: Impacts on reflectance due to fire or other types of forest disturbance. *: The impact of fire 
on Band 5 has been much less in magnitude than that of the other infrared Landsat bands, however, 
a small decrease in reflectance has been observed. 
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Figure 3: Variations in pre-fire and post-fire spectral signatures.  The average surface reflectance at 
each band of the Landsat TM/ETM+ data is shown, along with the associated standard error.  The 
post-fire effects in the NIR (Band 4) and SWIR (Band 7) are visible in measurements from both the 
Boundary and Porcupine fires. 
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The advantage in using the near-infrared wavelength band of Landsat TM and ETM+ 

data (0.76 – 0.90 µm, TM Band 4) and the short wave infrared Landsat band (2.08 – 2.35 

µm, TM Band 7) in mapping fire severity is due to the opposite nature of their changes in 

magnitude in the post-fire environment (Table 1, Figure 3).  Some have found that the 

NIR wavelengths are more strongly correlated with fire severity than the shortwave-IR 

regions of the spectrum (DeSantis and Chuvieco, 2007).  The red region of the EM 

spectrum (0.63 to 0.69 µm) can also be used to map fire severity; although, issues of 

atmospheric contamination due to dust and smoke can add error and noise to the analysis, 

thus limiting their potential to map fire severity immediately post-fire (Cocke et al., 

2005).  However, the prevalence of red bands on most satellite systems has lead to the 

continued use and analysis of this wavelength region, with some successful results, when 

used in combination with NIR and SWIR bands in mapping burned severity (Chuvieco et 

al., 2002). 

However, it should be noted also that multiple remote sensing platforms and data 

analysis techniques have been used to assess fire severity and post-fire changes to the 

environment.  van Wagtendonk et al., (2004) presented reflectance spectra using airborne 

hyperspectral data, while Smith et al. (2005) and DeSantis and Chuvieco (2007) 

presented reflectances derived using theoretical values and simulated data.  Trigg and 

Flasse (2001) used a handheld radiometer to collect data for analysis. 

2.2.1 Spectral Indices 

Spectral indices offer many advantages in mapping fire severity based on the opposite 

changes in post-fire spectral responses of the NIR and SWIR portions of the spectrum.  

As the pre-fire to post-fire changes in reflectance can be large in magnitude and in 
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opposite direction in the NIR (TM4) and SWIR (TM7) regions of the spectrum, many 

indices use these wavelength regions to isolate the changes to the landscape due to fire 

(Table 1, Figure 3).  These indices can be relatively quick and simple to implement as, in 

some cases, minimal processing is required to compute the index, leading to increased 

usability and quicker production of results for decision makers in a time of crisis.  For 

example, in the United States, burned area maps are created immediately post-fire to aid 

in remediation projects (Bobbe et al., 2002).  However, indices relying on only two bands 

of data can also provide selective information when mapping fire severity– only variation 

in specific regions of the EM spectrum is used, while variations in other portions of the 

EM spectrum may be missed. 

Some spectral indices have a normalized form, which has the advantage of 

accounting for some of the variations in brightness levels within a scene of data and 

within the two bands composing the index.  Normalization can also account for some of 

the noise not related to the burned area signal of interest on the earth’s surface, such as 

that due to topographic influences, although it would not fully eliminate this noise (Colby 

1991; Key and Benson, 2006). 

Many of the indices used to map wildland fire were originally developed for mapping 

other land disturbances.  However, the differences in the NIR and SWIR regions of the 

spectrum have been especially important in mapping fire severity related to vegetation 

structure and soil moisture has led to the development of some indices unique to fire 

monitoring (Trigg and Flasse, 2001; Key and Benson, 2006).   

When using Landsat TM and ETM+ imagery, spectral indices include simple ratios 

such as Band 7 divided by Band 5, 7 divided by 4, and Band 4 divided by Band 5.  
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Jakubauska et al. (1990) used the 7/5 ratio to analyze fire severity data to successfully 

detected differences in the intensity of the fire.  Other band combinations make use of the 

differences between the NIR and SWIR sections of the spectrum. 

One index that has been widely applied to land cover change due to the sensitivity it 

has shown to changes in vegetation is the normalized difference vegetation index 

(NDVI).  Changes in spectral reflectances between the pre- and post-disturbance 

environment can occur due to high levels of green vegetation in undisturbed areas to 

decreased levels of live vegetation in disturbed areas.  This index has been applied 

specifically to mapping fire severity (Garcia-Haro 2001; Chuvieco et al., 2002; Isaev et 

al., 2002; Diaz-Delgado et al., 2003).  However, since this index uses the red a portion of 

the spectrum, contamination from smoke can be a problem.  As the NDVI has been used 

in past studies and has been found to correlate with fire severity characteristics, it was 

included in this study. 

When spectral indices for mapping vegetation were first introduced, extraneous 

factors that had an undesired influence on index values were not always considered; 

however over time, researchers began to include such factors in their studies (Verstraete 

et al., 1996).  For example, some found that the NDVI can be affected by soil brightness, 

and attempts have been made to minimize this influence (Huete 1988; Qi et al., 1994).  

Huete (1988) experimented with adjusting vegetation indices for differences in light and 

dark colored soil substrates using the Soil Adjusted Vegetation Index (SAVI).  When 

performing optimally, this index was designed to have different soil substrates provide 

the same index value; optimality is achieved through the application of a constant to the 

red-NIR index in use.  This adjustment was designed for use in the red-NIR spectral 
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space and for use to distinguish vegetation differences and reduce soil noise in the case of 

cotton and range grass.  While this can be advantageous for some applications, it may 

provide mixed results in the boreal region where differences in the surface organic layer 

are of interest.  Also, it has been found that the use of the SAVI can decrease the 

magnitude of the vegetation response, requiring one to use caution when interpreting 

results (Qi et al., 1994).   

The Modified Soil Adjusted Vegetation Index (MSAVI) was derived from the SAVI 

to better account for variations in soil structure and moisture as captured in the red-NIR 

spectral space recorded by the sensor (Qi et al., 1994).  While the SAVI required 

knowledge of the vegetation cover type and amount to produce a correction, the MSAVI 

self-adjusts to reach an optimal performance of the index which would includes a large 

dynamic range for the vegetation response and a small amount of noise due to soil types 

(Qi et al., 1994).  As with the SAVI though, this index was developed using cotton fields 

as study sites and aircraft data, not satellite data.  Qi et al. (1994) suggest that this 

approach be extended to satellite imagery and its performance assessed based on 

additional factors such as sensor viewing angles, atmospheric conditions and solar 

illumination conditions.   

2.2.2 The Normalized Burn Index  

One index that is receiving great interest in the fire science and fire monitoring 

community is the Normalized Burn Ratio (NBR).  This spectral index is now used 

operationally by inter-agency Burned Area Emergency Response Teams (BAER) 

throughout the United States to both map burned areas and assess the burn severity of 

these areas (Bobbe et al., 2002).  The goal of BAER teams is to quickly provide burned 
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area and severity maps to local land managers following a fire such that decisions can be 

made regarding remediation and rehabilitation needs.   

While BAER provides maps as soon as possible following a fire, there is a new 

program in the United States designed to look at the long-term fire regimes across the 

country.  This program, the Monitoring Trends in Burn Severity mapping project 

(MTBS), overseen by the Wildland Fire Leadership Council, an inter-governmental 

group charged with management of the National Fire Plan and Federal Wildland Fire 

Management Policies, is also relying on the dNBR approach to provide 30 m resolution 

burn severity maps from Landsat imagery from 1984 to the present for various regions of 

the United States (Monitoring Trends in Burn Severity, 2006).   

The quick and simple nature of spectral indices and the advantage of a normalized 

index have helped the NBR gain support in mapping burn severity.  NBR is defined as 

(Eq. 1):  

( ) ( )[ ] 1000*/ SWIRNIRSWIRNIR +−   Eq. 1 

In the above equation, the NIR (Landsat TM or ETM+ Band 4: 0.76 – 0.90 µm) and 

SWIR (Landsat TM or ETM+ Band 7:2.08 – 2.35 µm) spectral reflectance can be shown 

as either top of atmosphere or surface reflectance, as long as there is consistency 

throughout the study (Key and Benson, 2006).  This formula is similar to the Normalized 

Difference Vegetation Index (NDVI) but differs in that Band 7, not Band 3, is used to 

generate the index.  The (NIR – SWIR) difference found in Eq. 1 is used to normalize 

images for overall brightness within and between bands through partially aiding in the 

removal of within-scene topographic effects and between-scene solar illumination effects, 
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thus ideally isolating reflectance differences due to fire (Table 1) (Key and Benson, 

2006).   

Additionally, greater accuracy in the NBR has been found through multi-temporal 

analysis (Key and Benson, 2006).  To calculate a differenced or delta Normalized Burn 

Ratio (dNBR), values for the NBR are calculated for both pre-fire and post-fire Landsat 

scenes: 

dNBR = NBRpre-fire - NBRpost-fire Eq. 2 

A new index, a relative version of the dNBR (RdNBR) has recently been developed 

by Miller and Thode (2007).  This formulation for this approach is: 

( ) 1000// fireprefirepostfirepre NBRNBRNBRRdNBR −−− −=  Eq. 3 

The RdNBR has been found to allow for better comparisons across spatial and temporal 

scales than that of the dNBR alone (Miller and Thode, 2007).  Also, this index has been 

shown to provide higher accuracy for high severity fires in heterogeneously burned 

landscapes.  The square root normalization is performed to account for a non-linear 

relationship CBI and dNBR, which has been seen to exist in higher fire severity sites (van 

Wagtendonk et al., 2004; Miller and Thode, 2007).  Miller and Thode (2007) have found 

this normalization technique to provide a sufficient first-order correction to establish a 

linear relationship with the CBI and dNBR.  While developed in the Sierra Nevada 

mountain range in California, it merits further examination in other ecosystems; thus I 

have included it in this study to compare it with other satellite measures of fire severity. 
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2.2.3 Linear Transformations 

While the study of burned areas using spectral indices can be quick and simple in 

many cases, linear transforms can offer additional information when applied to surface 

characterizations and change detection analysis.  Linear transformations, such as 

principal components analysis (PCA) and the tasseled cap (TC) transformation can be 

advantageous in mapping burned areas because, unlike spectral indices, they use 

information from a wider variety of spectral wavelengths, and are not limited to one or 

two bands.  While PCA is able to detect within scene variations, in order to apply this 

technique to burned areas a significant portion of a scene must contain the burned area as 

PCA can be biased based on the majority type of pixels in a scene, either unburned or 

burned (Garcia-Haro et al., 2001; Patterson and Yool, 1998).  Because of this, Garcia-

Haro et al. (2001) found PCA to be too dependant on scene effects to accurately quantify 

burned areas and instead found a bi-temporal NDVI approach to perform more 

effectively. 

The tasseled cap (TC) transformation is similar to principal components analysis as 

data is transformed from its original axes into other axes.  Originally developed to 

analyze changes in agricultural fields within the growing season using Landsat MSS data 

(Kauth and Thomas, 1976), it has been modified over the years for Landsat TM and 

Landsat ETM+ reflectance factor data (Crist and Cicone, 1984; Crist 1985; Crist and 

Cicerone, 1986).  Others have used these techniques in forest change detection studies 

over the years (Collins and Woodcock, 1996; Potere et al., 2004; Healey et al., 2005; Jin 

and Sader, 2005).  Also, numerous studies have used the tasseled cap to assess scene 

characteristics.  For example, Cohen and Spies (1992) used the tasseled cap to estimate 
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structural attributes of forested stands, and later used this transform for estimating tree 

canopy characteristics (Cohen et al., 2005).  The tasseled cap is included in this study as 

it has been found to account for shadowing within the scenes and has been shown to have 

axes which remain constant from one scene to the next, a distinct advantage over 

principal components analysis in using this transformation to map burn severity over 

multiple scenes of data and multiple dates (Crist and Cicone, 1984).  In addition, the 

tasseled cap does have some sensitivity to changes in soil, but this is still an area which 

requires further research. 

In the case of the tasseled cap transformation and Landsat Thematic Mapper (TM) 

and Enhanced Thematic Mapper Plus (ETM+) data, six bands of data (the thermal IR 

band is not used) are transformed into three major components: brightness, greenness and 

wetness.  It has been shown that these three components can explain over 97 percent of 

the variation within a scene of data (Huang et al., 2002).  The multi-temporal approach of 

the tasseled cap transformation, known as the Kauth Thomas transformation, was 

originally developed to detect forest canopy changes due to insect damage and drought, 

but its scope of use has been expanding (Rogan et al., 2002).  The TC transformation has 

previously yielded higher potential to accurately map burnt areas and fire severity than 

the PCA (Patterson and Yool, 1998).  In a comparison study of PCA and the TC, 

Patterson and Yool (1998) found that the TC transformation lead to classification 

accuracies 17% higher than those of the PCA.  This difference was attributed to 

variations in the first three components of the TC: brightness, greenness and wetness 

components; they found these components to be related to fire severity.  The changes in 

the spectral reflectance was determined to be due to the fire disturbance and not simply 

 20 
 



 

noise, however the components on the ground which lead to this conclusion were not 

isolated in the study.  Additionally, Epting et al. (2005) included both the TC and PCA in 

their analysis of boreal forests, although both yielded mixed results, although low R2 

values were found. 

2.2.4 Review of NBR verses CBI Studies 

Since its inception in 1991 by Lopez-Garcia and Caselles (1991), many studies have 

focused on the validation of the NBR method to assess fire severity.  Validation studies 

using the CBI have been performed in the western United States (van Wagtendonk et al., 

2004; Cocke et al., 2005).  Other studies have focused on validating the NBR in other 

ecosystems, such as African savanna ecosystems (Smith et al, 2005; Roy et al., 2006).  

Still others have focused on analyzing the NBR in the northern boreal regions (Sorbel and 

Allen, 2005; Epting et al., 2005; Roy et al., 2006). 

It has been hypothesized that the dNBR is directly correlated with changes to surface 

characteristics occurring on the ground at the site of the burn (Key and Benson 2006).  To 

characterize the appropriate relationship between the dNBR and actual burn severity, 

considered by Key and Benson (2006) to be the ecological impact of fire and the post-fire 

response, in-situ observation are used.  The ground measurement used with the dNBR 

approach, the Composite Burn Index (CBI), was developed, originally for the coniferous 

forests of the western United States (Key and Benson 2006).  The information contained 

on the CBI form is intended to provide a quick and simple, yet detailed look at the 

characteristics related to the burn severity of a site following fire.  This ground measure is 

determined through a visual examination of the study site.  Following site selection, the 

vertical structure of the ground and vegetation are observed and partitioned into five 
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strata: (a) substrate; (b) herbs and low shrubs, and trees; (c) tall shrubs and small trees ; 

(d) intermediate trees ; and (e) tall trees.  Damage to each of the five vertical levels of the 

site is then recorded on a scale of 0 to 3, with 3 being the highest fire severity.  This 

ground fire/burn severity measure can then be compared with the dNBR to properly 

calibrate classes of fire/burn severity when creating classification maps of a burnt area 

(Key and Benson, 2006). 

The use of the NBR has been driven partially due to its use operationally in the 

United States, although few validation attempts have been made to assess the optimality 

of the index (Roy et al., 2006).  Studies have been done to assess if there is any affect 

from the nearness to roads on burn severity (McHugh and Finney, 2003).  Others have 

used the dNBR to create maps of species habitats disrupted by fire (Kotliar et al., 2003).  

Others have studied the dNBR approach to determine if incorporate the thermal infrared 

wavelengths would lead to higher accuracy in mapping fire severity (Holden et al., 2004; 

Epting et al., 2005).  Holden et al. (2004) found that the successful use of such spectral 

methods can vary based on such biotic factors as the vegetation type, fire severity, 

vegetation mortality and vegetation recovery, while imagery acquisition can also play a 

factor in the effectiveness of the approach.  More recently, a governmental report was 

recently released detailing the successes and potential areas of improvement for the CBI 

and dNBR approach (Zhu et al., 2006). 

Smith et al. (2005) used the dNBR approach to examine fire severity in African 

savannahs.  While not in the same ecosystem as the focus of this study, Smith et al. 

(2005) compared the dNBR approach ground measures of biomass combusted and 

nitrogen volatilized at their study sites.  The study presented in this thesis also 
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incorporates additional ground measures (aside from CBI) related to losses to the soil 

organic layer.  Smith et al. (2005) found dNBR to be relatively poorly, although 

significantly, correlated with both biomass consumed and nitrogen volatilized in the 

environment (R2 = 0.39, n = 40, p < 0.001 and R2 = 0.23, n = 39, p < 0.005, respectively). 

In the boreal region, comparisons between the dNBR and CBI values using linear 

regression models performed by Sorbel and Allen (2005) resulted in R2 values of 

between 0.46 and 0.84 for different burned areas.  The closed and open needleleaf forest 

sites studied by Epting et al. (2005) yielded R2 values of 0.14 and 0.28 respectively; 

although comparisons across all burned forested types yielded R2 values between 0.37 

and 0.67.  Epting et al. (2005) found the dNBR to rank in the top three correlations for 

only three of the four study sites as compared with other satellite measures of fire 

severity (Epting et al. 2005).  The differences found within these studies lead to the need 

for further analysis of the dNBR and other potential methods to analyze fire severity in 

boreal regions.   
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Chapter 3: Approach 

This study was performed using satellite observations and field data from black 

spruce sites within two separate fire events that burned during the summer of 2004 in the 

Alaskan boreal forest.  The sites were sampled during the summers of 2005 and 2006.  

Data collected at each site included observations required to estimate the CBI, the depths 

of the remaining organic layer (consisting of litter, lichen, mosses, char and fibric, mesic 

and humic soil), measurements of the depth of the topmost adventitious root above 

mineral soil, and a visual estimate of the canopy fire severity.  Fire severity 

characteristics derived from the field observations were then correlated with spectral 

indices derived from Landsat TM and ETM+ data.   

Both a single-date and two-date approach was used to better assess the potential of 

the spectral indices.  In the single-date analysis, a single post-fire image of the fire event 

was examined and analyzed; while in the two-date analysis, both pre-fire and post-fire 

images were analyzed.  In the two-date approach, the post-fire index result was 

subtracted from the pre-fire index.  Such a procedure is performed to minimize 

differences between images due to factors other than disturbance (Key and Benson, 

2006).  In this thesis, satellite and field data from two fires were considered:  the 

Boundary (n = 28 sites) and the Porcupine (n = 29 sites) (Figure 4).   
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Figure 4: A subset of the fires studied in the summer of 2004.  This study focuses on two fires: the 
Boundary fire and the Porcupine fire.  Twenty-eight field sites in the Boundary fire and twenty-nine 
sites in the Porcupine fire are analyzed in this study. 
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3.1 Satellite Image Processing 

Landsat 5 Thematic Mapper and Landsat 7 Enhanced Thematic Mapper Plus data 

were used in this study (Table 2).  These data were initially processed for the inter-

agency Burned Area Emergency Response Team (BAER) for the Alaska region to Level 

1 Terrain (L1T), meaning that the data had previously been radiometrically (to top of 

atmosphere reflectance values), geometrically, and precision corrected (Key and Benson, 

2006; Landsat 7 Science Data Users Handbook, 2007).  Band 6, the thermal band, was 

not used in this analysis as it was not a part of the product provided by the BAER team 

and as it lacks the level of spatial resolution provided in the other bands; as such, no 

indices based on thermal IR emittance were used in this study. 

While the orthorectification process includes a correction for local topographic relief, 

it does not account for variable illumination angles and sun-sensor geometry differences 

due to slope angles and orientations (Colby 1991).  An additional step, a topographic 

normalization procedure, would be necessary to further calibrate the imagery for this 

affect.  However, on examination of the images, it was determined that no further 

georegistration procedures were possible that would improve the geometric correction of 

the images.  This determination was made through comparisons of the images with a 

highly accurate road dataset produced by the Alaska Highway Service which showed the 

images to be well registered.  The area of Alaska included in this study, at approximately 

63 degrees north latitude, was not included in the recent Shuttle Radar Topography 

Mission which mapped terrain across much of the United States at 30 meter resolution.  

Such a detailed level of digital elevation models (DEMs) could have potentially reduced 
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uncertainties in the orthorectification process by limiting errors due to local incidence 

angles; however they are currently unavailable in this region.   

Pre-Fire Post-Fire Fire Event 
(date burned) Image 

Date Path/Row Sensor Image Date Path Row Sensor 

Boundary 
(late June 2004) 07/18/2003 68/14 TM 08/04/2004 69/14 ETM+ 

Porcupine 
(late June –    

early July 2004) 
09/10/2001 64/16 ETM+ 09/08/2004 66/15 TM 

Table 2: Landsat image acquisition dates and sensor information for two fires that occurred in the 
summer of 2004 in interior Alaska. 

 
The images were then examined for evidence of atmospheric contamination.  At the 

time of data acquisition (late summer of 2004), some fires were still burning in the areas 

being imaged and smoke and other atmospheric contamination was a concern.  While the 

pre-fire images occurred on clear days, post-fire images free of smoke and cloud cover 

were not always available.  The visible bands (red, green and blue) were analyzed to 

determine if atmospheric contamination was present.  The visible portions of the 

spectrum are highly sensitive to heavy smoke and thick atmospheric conditions, making 

them ideal to determine the presence of contamination.  As variable smoke in an image 

cannot be effectively corrected for, sites affected by smoke or thick atmospheric 

conditions in the two post-fire images were not used in the study.  Fortunately, no sites in 

the Boundary fire region were affected by smoke, although in the Porcupine fire six plots 

were removed from the analysis due to atmospheric contamination.  One Boundary fire 

site did have to be removed from the analysis due to issues with the scan line corrector 

being off in the Landsat 7 ETM+ post-fire image used. 

A dark object subtraction procedure was performed to normalize the image pairs 

(e.g., pre- and post-fire) for possible atmospheric effects.  In this processing step, I found 
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three low-reflectance water bodies (large glacial lakes), visible in both the pre-fire and 

post-fire images.  I then extracted the values from the lakes for each Landsat band used in 

this study (1-5 and 7), and then averaged each band’s dark object values.  These values 

were assumed to represent atmospheric scattering and were subtracted from the 

respective channels to normalize each image (Chavez 1989). 

A further consideration when analyzing the imagery was the choice of images to use 

based on the acquisition dates of the imagery (Table 2).  When performing bi-temporal 

analysis, it is best to use images only one or two years apart collected on an anniversary 

date (Key and Benson, 2006).  For example, the imagery for the Porcupine fire is ideal 

from the standpoint of anniversary dates as the images are only two days apart from one 

another in the growing season (Table 2), although there are three years between the 

images, which could introduces errors in the analysis due to disturbance other than that 

caused by fire.  When choosing imagery for the Boundary fire, I attempted to use pre-fire 

and post-fire imagery from the same period of the growing season; however the best 

available match was two weeks apart due to the cloud cover and smoke in Alaska during 

the late summer months.  In these cases, the best available imagery was used (Table 2).  

Also, since I was interested in analyzing the immediate impacts of fire rather than an 

ecosystem’s response to fire, I focused this analysis on Landsat imagery collected the 

same year as the fire. 

Using the processed data, spectral indices were calculated (Table 3).  To estimate 

average reflectance in each band, bilinear resampling techniques (as suggested by Key 

and Benson (2006) to determine cell values based on a weighted distance of the four 

nearest input pixels) were used to extract the spectral values for each site.  In this study, 
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the SAVI was implemented in accordance with the approach specified by Huete (1988) 

(Table 3).  A value of 0.5 is used for the constant L as it is this value which is 

recommended for intermediate vegetation amounts and it is also believed to offer 

advantages across a large range of vegetation conditions (Huete 1988; Epting et al., 

2005).  In this study, the MSAVI2 is used as described in Qi et al. (1994) and used by 

Epting et al. (2005) (Table 3).   

The first of the linear transformed analyzed in this study, the tasseled cap (TC) 

transformation, was performed using the coefficients provided in Crist (1985) for Landsat 

TM reflectance factor data.  While the pre- and post-fire image comparisons used data 

from both TM and ETM+ data, this difference is not expected to cause error in the results 

as the wavelength bands for each sensors are similar (Huang et al., 2002).  The second 

transform, the principal components analysis (PCA) was performed using the function 

provided in the ENVI imaging software package.  A covariance matrix was created and 

band loadings are provided (Table 4).  Patterson and Yool (1998) have found TC1 and 

PCA1 to be related (brightness), as well as TC2 and PCA2 (greenness).  However, 

Patterson and Yool (1998) also found that TC3 and PCA3, generally wetness 

components, were not strongly correlated.  This discrepancy was believed to be in part to 

the tendency of the PCA to be highly impacted by the dominant pixel values in the scene, 

in this case, unburned pixels (Patterson and Yool, 1998).  The TC1 component, 

brightness, was not included in the study as it was not believed that it would show 

potential throughout the entire range of fire severity conditions present at a site.  Future 

work should include this measure to gain a better understanding of high severity fires in 
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which losses to the soil organic layer occur.  In these situations, it may be possible for 

brightness values to increase as mineral soil is exposed. 
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Table 3: Summary of spectral bands and indices analyzed in study. 
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Fire 
Event 

Image 
Path/Row  Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 

TM1 0.0405 0.1078 0.1100 0.7725 0.5385 0.2965 
TM2 -0.1397 -0.1448 -0.2371 0.6095 -0.4878 -0.5422 
TM3 -0.4518 -0.5312 -0.6057 -0.1000 0.3596 0.0871 
TM4 -0.0776 0.0355 0.2718 -0.1363 0.5603 -0.7657 
TM5 -0.8494 0.0980 0.4737 0.0163 -0.1545 0.1428 

Pre-fire 
68/14 

TM7 0.2174 -0.8212 0.5163 0.0547 -0.0702 0.0621 
TM1 0.0721 0.1307 0.1351 0.7528 0.5587 0.2838 
TM2 -0.2779 -0.2645 -0.3607 0.5717 -0.3063 -0.5496 
TM3 -0.4839 -0.4894 -0.4425 -0.2266 0.4428 0.2883 
TM4 -0.0044 0.1210 0.1341 -0.2298 0.6196 -0.7284 
TM5 0.6540 0.1311 -0.7354 -0.0341 0.1138 -0.0100 

Boundary 

Post-fire 
69/14 

TM7 0.5056 -0.8010 0.3114 0.0322 0.0340 -0.0600 
TM1 0.4384 0.4653 0.4928 0.5614 0.1559 0.0948 
TM2 0.3344 0.2545 0.2202 -0.4140 -0.6982 -0.3407 
TM3 0.2227 0.1281 0.2490 -0.6929 0.4134 0.4701 
TM4 -0.7354 0.1017 0.5905 0.0004 -0.2334 0.2137 
TM5 0.0486 0.2491 -0.4256 0.1321 -0.4541 0.7286 

Pre-fire 
64/16 

TM7 0.3212 -0.7937 0.3418 0.1261 -0.2382 0.2783 
TM1 0.1187 0.1731 0.2219 0.6124 0.6361 0.3566 
TM2 0.3929 0.3977 0.3841 0.3954 -0.4701 -0.4032 
TM3 0.4069 0.3473 0.3717 -0.6128 0.0401 0.4455 
TM4 0.0939 -0.0383 0.2303 -0.2946 0.5923 -0.7065 
TM5 0.5998 0.2069 -0.7584 0.0096 0.1289 -0.0747 

Porcupine 

Post-fire 
66/15 

TM7 -0.5453 0.8044 -0.1921 -0.0792 0.0733 -0.0842 

Table 4: Principal components analysis loadings for each image used in the study. 
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3.2 Field Methodology 

The aim was to estimate CBI and other field measurements of fire severity.  Initial 

reconnaissance of potential study sites was carried out in early June of 2005.  During this 

reconnaissance, a number of burned black spruce forest sites within the Boundary and 

Porcupine burns were identified that contained a suitably large tract of forest that was 

homogeneous in terms of tree diameter, density and fire severity.  From these candidate 

sites, a sub-set was selected for sampling; this subset was chosen to cover the range of 

topographic positions and fire severities that existed within perimeters of the fires that 

could be observed from the road network. 

Detailed site data was collected throughout the summer months of 2005 and in June 

of 2006.  The center of each site was marked using a handheld GPS unit.  At this time, 

the general site conditions (such as the slope, aspect and elevation of the site) were noted 

and four surface photographs of the site were collected.  Next, a 20 by 20 meter site was 

laid out for the collection of observation required to estimate the CBI, in accordance with 

the design of Key and Benson (2002).  Additionally, a set of sample transects were laid 

out for collection of the fire severity measures.  Data to estimate fire severity were then 

collected, as described in the following sections. 

3.2.1 The Composite Burn Index 

Data to calculate the CBI were collected from observations made within a 20x20 m 

site located within a relatively homogenous measure of fire severity using a standard data 

sheet developed by Key and Benson (2003, 2004).  The data required to fill in the CBI 

form were obtained by visually examining 5 strata: (a) substrate; (b) herbs and low 

shrubs, and trees (> 1 m); (c) tall shrubs and small trees (1-2 m); (d) intermediate trees (2 
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to 8 m); and (e) tall trees (> 8 m) and rating damage on a scale of 0 to 3 for a number of 

characteristics within each strata, with 3 being the highest fire severity.  There are three 

scores calculated for the CBI: the overall or average CBI (here referred to as Overall 

CBI), the Understory CBI [an average of components (a) through (c)] and the Overstory 

CBI [an average of components (d) and (e)].  For this study, data to estimate the CBI 

were primarily collected during the summer of 2005, the year following the fire, with 

data from one additional site collected in early June 2006. 

For assessing fire severity in Alaska, the CBI form was modified based on 

discussions between representatives of the research and fire management communities 

(see Kasischke et al., in review) to account for the presence of grass tussocks and for the 

shorter shrub and tree heights that are found in Alaska.  For example, the “big trees” 

category was very rarely rated as Alaskan Black Spruce trees do not reach the height 

requirement for this category (> 8m).  Even with the modifications to the CBI form for 

the Alaskan boreal forest ecosystem, the measures for the ground strata may still not fully 

capture the variability of this system (Kasischke et al., in review). 

3.2.2 Crown and Ground Layer Fire Severity 

The sampling for the ground and crown layer fire severity measurements was initiated 

by establishing a 40 meter long baseline oriented in a random direction through the center 

of each site.  Three 30 meter long sample transects were then established that bisected the 

baseline at right angles: one at the site center, and one on each side of the center located 

at a random distance between 5 and 20 m along the baseline.  Every overstory tree greater 

than one meter in height within ±1 meter of each transect was sampled by noting the level 

of consumption of foliage and branches based on a scale of 0 to 6 (see Table 5).  Every 
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five meters along each sample transect, a core of the remaining surface organic layer was 

extracted and the depths of the different layers (char, moss, lichen and fibric, mesic and 

humic soil) measured to within 0.5 cm.  An organic layer core was also extracted and 

measured every 10 m along the baseline.  Every five meters along the sample transects, 

the distance of the topmost adventitious root above mineral soil was measured on the 

nearest canopy tree above two meters in height.  This distance was used to estimate the 

pre-fire depth of the surface organic layer following Kasischke et al. (in review). 

From the surface organic layer measures, fire severity measures were calculated 

including: (a) the average depth of the remaining surface organic layer; and (b) the 

absolute depth reduction in the surface organic layer and (c) the relative reduction in 

depth of the surface organic layer.  The depth of organic soil remaining was measured 

based on the distance from the top of the organic soil layer remaining to the top of the A 

horizon.  This measure was considered to relate to fire severity as the more severely an 

area burned, the less soil organic layer one would expect to remain on the site.  The 

absolute depth reduction is a measure of the difference between the pre-fire depth of the 

surface organic layer and the post-fire surface organic layer.  When combined with the 

pre-fire organic layer depth, this measure can be used to estimate fuel consumption and 

carbon emissions.  Finally, the relative depth reduction is a measure of the percentage of 

the depth burned during the fire compared to the pre-fire soil organic layer. 
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Level Criteria 
0 No tree mortality 
1 Tree deceased, no branches/foliage consumption 
2 Needles and some small branches consumed 
3 Some secondary branches remain 
4 No secondary branches, >30% of primary branches remain 
5 Less than 30% primary branches remain 
6 No primary branches remaining, pole charring occurred 

Table 5: Criteria of the Canopy Fire Severity index.  This is an arbitrarily defined measure of fire 
severity which analyzes the degree of scorching occurring only within the dominant tree species of 
the site, thus it is only a measure of the severity of crown fires.  The criteria, developed for this study, 
are based predominantly upon the percentages of branches consumed by fire and the survivorship or 
mortality of individual overstory trees.   
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3.3 Analyses 

In this study, the satellite measures of fire severity (independent variables) were 

analyzed and correlated using the ground measures (dependant variables) described 

above.  Simple linear regression analysis using the least-squares approach was utilized to 

correlate the spectral indices and ground variables for both a single-date post-fire image 

approach and the two-date pre- and post-fire image approach.  Presented in this paper are 

adjusted R2 values and their level of statistical significance (p).  This methodology was 

chosen to be consistent with prior comparisons of the dNBR and CBI approach (Key and 

Benson, 2006; Epting et al., 2005).  Also, this study followed the same general approach 

as Epting et al. (2005), with additional (to CBI) ground measures used to determine the 

correlation of various spectral indices not only with the CBI, but to other measures of fire 

severity.  Finally, additional spectral indices were incorporated into this study, all three 

principle components were analyzed [not only PCA2 and PCA3 as in Epting et al. 

(2005)] and the RdNBR was also incorporated (Patterson and Yool, 1998; Miller and 

Thode, 2007).   
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Chapter 4: Results 

The potential of the different satellite indices is discussed below in relation to the 

various ground measures gathered at each site.  First, the traditional approach using the 

dNBR and CBI is considered; then, the alternate spectral indices are considered and 

compared with the various ground assessments of fire severity. 

4.1 CBI Comparisons 

4.1.1 Single-date Comparisons (Table 6) 

The single-date comparisons between the different spectral indices and the three 

components of the CBI analyzed generally produced weak correlations (Table 6; Figure 

5).  The R2 values for the Boundary fire and Porcupine fire show considerable variation 

when using the single-date approach.  Linear regression showed moderate to low R2 

values between the single-date post-fire NBR the Overall CBI and for data from the 

Boundary (adj. R2 = 0.59, p ≤ 0.0001) and the Porcupine fires (adj. R2 = 0.30, p = 0.0062) 

(Figure 5).  Generally, the post-fire single-date spectral indices showed higher sensitivity 

when compared with the Overall CBI measure than when with the Understory or 

Overstory components of the CBI (Table 6).  The index that showed the most sensitivity 

to the Overall CBI was not the post-fire NBR, but the TM 7/5 ratio (Boundary: adj. R2 = 

0.66, p < 0.0001; Porcupine: adj. R2 = 0.42, p = 0.0008).  The TM 7/5 ratio also showed 

higher potential than the NBR when compared with the Understory CBI component 

(Boundary: adj. R2 = 0.61, p ≤ 0.0001; Porcupine: adj. R2 = 0.40, p = 0.001) (Figure 5). 

The linear transforms also did not show sensitivity to the CBI ground measures 

analyzed in this study.  The wetness component of the tasseled cap (TC3) showed no 
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significant (p ≤ 0.05) relationship to any of the CBI components in either of the two fires 

studied (Table 6).  However, in the Porcupine fire only, PCA2 (Overall CBI: adj. R2 = 

0.18, p = 0.0305; Understory CBI: adj. R2 = 0.15, p = 0.0466; Overstory CBI: adj. R2 = 

0.17, p = 0.0368) and PCA3 (Overall CBI: adj. R2 = 0.29, p = 0.0071; Understory CBI: 

adj. R2 = 0.25, p = 0.0133; Overstory CBI: adj. R2 = 0.26, p = 0.0111) did show some 

significant correlations with the three measures of CBI studied, although these 

correlations were very low (Table 6).  PCA1 was correlated significantly (p ≤ 0.05) with 

ground measures of fire severity only in the case of the Boundary fire, again showing the 

variability between the two fire sites.  
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Spectral 
Index 

Overall 
CBI  

CBI 
Understory 

CBI 
Overstory 

Canopy 
Fire 

Severity 
Index 

Depth 
Remaining 

Absolute 
Depth 

Reduced 

Relative 
Depth 

Reduced 

Boundary 

NBR 0.59A 0.55A 0.42A 0.53A 0.37B 0.08 0.00 
Band4 0.39B 0.37B 0.24C 0.38B 0.29B 0.09 0.00 
Band5 0.11 0.10 0.04 0.10 0.16C 0.07 0.12C

Band7 0.06 0.04 0.08 0.02 0.00 0.00 0.00 
Ratio7/5 0.66A 0.61A 0.49A 0.52A 0.51A 0.12C 0.22C

Ratio7/4 0.49A 0.47A 0.31C 0.43A 0.31C 0.12C 0.30C

Ratio4/5 0.50A 0.48A 0.32B 0.47A 0.26C 0.06 0.24C

NDVI 0.53A 0.52A 0.29C 0.37B 0.36B 0.10 0.11C

SAVI 0.53A 0.53A 0.30B 0.38B 0.36B 0.10 0.23C

MSAVI 0.54A 0.53A 0.29C 0.38B 0.36B 0.11C 0.16C

TC2 0.54A 0.52A 0.34B 0.49A 0.40B 0.10 0.23C

TC3 0.00 0.00 0.00 0.00 0.00 0.00 0.21C

PCA1 0.14C 0.14C 0.06 0.14C 0.16C 0.06 0.22C

PCA2 0.17C 0.14C 0.14C 0.11C 0.04 0.00 0.00 
PCA3 0.00 0.00 0.04 0.00 0.00 0.00 0.18C

Porcupine 

NBR 0.30C 0.25C 0.28C 0.83A 0.28C 0.00 0.21C

Band4 0.27C 0.21C 0.28C 0.56A 0.14C 0.00 0.10 
Band5 0.00 0.00 0.00 0.07 0.02 0.00 0.01 
Band7 0.22C 0.20C 0.18C 0.59A 0.33C 0.00 0.25C

Ratio7/5 0.42B 0.40C 0.24C 0.55A 0.33B 0.00 0.24C

Ratio7/4 0.23C 0.23C 0.09 0.40C 0.24C 0.00 0.17C

Ratio4/5 0.20C 0.16C 0.21C 0.81A 0.26C 0.00 0.20C

NDVI 0.14 0.11 0.14 0.44B 0.24C 0.00 0.15C

SAVI 0.15C 0.12 0.15C 0.46B 0.24C 0.00 0.15C

MSAVI 0.15C 0.13 0.13 0.37C 0.22C 0.00 0.14C

TC2 0.33C 0.27C 0.35C 0.82A 0.31C 0.00 0.23C

TC3 0.11 0.09 0.10 0.46B 0.23C 0.00 0.18C

PCA1 0.00 0.00 0.00 0.06 0.03 0.00 0.02 
PCA2 0.18C 0.15C 0.17C 0.62A 0.28C 0.00 0.21C

PCA3 0.29C 0.25C 0.26C 0.73A 0.38B 0.00 0.29C

Table 6: Post-fire single-date adjusted r-squared values for correlations in the two study fires.  The 
following f significance values are shown: A= ≤0.0001 (in bold), B=≤0.001, and C=≤0.05.  For the 
boundary fire, n=28.  Samples sites varied slightly across ground measures in the Porcupine Fire: 
CBI and Canopy Fire Severity values are n=21 and depth values are n=27. 
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Spectral 

Index 
Overall 

CBI  
CBI 

Understory 
CBI 

Overstory 
Canopy Fire 

Severity 
Index 

Depth 
Remaining 

Absolute 
Depth 

Reduced 

Relative 
Depth 

Reduced 
Boundary 

dNBR 0.52A 0.48A 0.37B 0.48A 0.46A 0.13C 0.29C

RdNBR 0.58A 0.54A 0.43A 0.53A 0.37B 0.08 0.21C

Band4 0.01 0.00 0.05 0.00 0.26C 0.00 0.10 
Band5 0.00 0.00 0.00 0.00 0.15C 0.00 0.04 
Band7 0.26C 0.24C 0.21C 0.26C 0.12C 0.01 0.05 
Ratio7/5 0.55A 0.51A 0.42A 0.43A 0.58A 0.13C 0.35B

Ratio7/4 0.49A 0.47A 0.30C 0.43A 0.32B 0.12C 0.23B

Ratio4/5 0.00 0.00 0.00 0.00 0.02 0.00 0.00 
NDVI 0.45A 0.43A 0.29C 0.36B 0.42A 0.10 0.25C

SAVI 0.46A 0.44A 0.29C 0.36B 0.43A 0.10 0.25C

MSAVI 0.51A 0.49A 0.30C 0.38B 0.40B 0.11C 0.26C

TC2 0.02 0.00 0.06 0.00 0.29C 0.00 0.11C

TC3 0.11C 0.11C 0.06 0.16C 0.00 0.00 0.00 
PCA1 0.00 0.00 0.00 0.00 0.19C 0.00 0.06 
PCA2 0.18C 0.16C 0.17C 0.15C 0.29C 0.04 0.14C

PCA3 0.11C 0.09 0.10 0.11C 0.00 0.00 0.00 
Porcupine 

dNBR 0.34C 0.29C 0.31C 0.82A 0.29c 0.00 0.21c

RdNBR 0.30C 0.25C 0.28C 0.80A 0.26C 0.00 0.20C

Band4 0.18C 0.19C 0.06 0.64A 0.20C 0.00 0.12C

Band5 0.00 0.00 0.00 0.00 0.05 0.29C 0.09 
Band7 0.29C 0.23C 0.28C 0.57A 0.35B 0.00 0.27C

NDVI 0.15C 0.12 0.16C 0.42B 0.22C 0.00 0.14C

SAVI 0.16C 0.12 0.17C 0.44B 0.22C 0.00 0.14C

MSAVI 0.16C 0.13 0.14 0.36B 0.21C 0.00 0.13C

Ratio7/5 0.45B 0.41B 0.31C 0.61A 0.29C 0.00 0.19C

Ratio7/4 0.23C 0.23C 0.09 0.41C 0.25C 0.00 0.17C

Ratio4/5 0.00 0.00 0.02 0.00 0.00 0.00 0.00 
TC2 0.20C 0.19C 0.12 0.67A 0.22C 0.00 0.14C

TC3 0.19C 0.15C 0.17C 0.41C 0.36B 0.05 0.32C

PCA1 0.00 0.01 0.00 0.04 0.00 0.10 0.00 
PCA2 0.10 0.05 0.18C 0.06 0.21C 0.20C 0.22C

PCA3 0.29C 0.26C 0.21C 0.65A 0.39B 0.00 0.31C

Table 7: Two-date image adjusted r-squared values for correlations in the two study fires.  The 
following p significance values are shown: A= ≤0.0001 (in bold), B=≤0.001, and C=≤0.05.  For the 
boundary fire, n=28.  Samples sites varied slightly across ground measures in the Porcupine Fire: 
CBI and Canopy Fire Severity values are n=21 and depth values are n=27. 
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Figure 5: Single-date comparison of two spectral indices which showed higher potential than others 
overall, graphed with three different ground measures analyzed.  Presented are adjusted R2 values 
and p values for both the Boundary and Porcupine fires.   
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4.1.2 Two-date Comparisons (Table 7) 

The two-date approach did improve correlations between certain spectral indices and 

the CBI components as compared with the single-date approach, but not in all cases 

(Table 7; Figure 6).  In the Boundary fire, the linear correlation between the dNBR and 

the Overall CBI actually yielded an R2 value slightly lower than that for the single-date 

NBR comparison (adj. R2 = 0.52, p < 0.0001), although the two-date approach improved 

the R2 value for the same comparison in the Porcupine fire (adj. R2 = 0.34, p < 0.0001) 

(Table 7, Figure 6).  This again shows variability between the two fire events.  Generally, 

the spectral indices showed higher correlations for data from the Boundary fire as 

compared to the Porcupine fire for all three measures of CBI (e.g., Overall, Understory, 

and Overstory).   

Also, the spectral indices showed higher potential when assessed against the Overall 

CBI than when using the either the Understory or Overstory CBI components separately 

or the alternative indices.  The dNBR and Overall CBI comparison resulted in higher R2 

values than the RdNBR in the Porcupine fire, although this was not the case for the 

Boundary fire (Table 7, Figure 6).  As with the single-date analysis, the TM 7/5 Ratio, 

when regressed against the Overall CBI, yielded a higher R2 value in both fires as 

compared to the other spectral indices (Table 7, Figure 6).  
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Figure 6: Two-date comparison of three spectral indices which showed higher potential than others 
overall and three different ground measures analyzed.  Presented are adjusted R2 values and p 
values for both the Boundary and Porcupine fires
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4.2 Canopy Fire Severity Index Comparisons 

Significant correlations between the spectral indices and the Canopy Fire Severity 

Index (a ground measure quantifying the effect of fire on the canopy only) were, in many 

cases, similar to the results of the Overall CBI correlations.  Also, R2 values were 

generally higher when the spectral indices were compared with the CFSI than with the 

Overstory CBI, especially in the spectral indices analyzed for the Porcupine fire single-

date and two-date analyses (Tables 6 and 7, Figures 5, 6 and 9). 

In the single-date analysis, correlations of the Canopy Fire Severity Index and the 

NBR yielded the highest R2 value found in the study (adj. R2 = 0.83, p < 0.0001) (Table 

6, Figure 5).  Results for the same correlation from the Boundary fire (adj. R2 = 0.59, p < 

0.0001) showed lower correlations than those found in the Porcupine fire.  As with the 

CBI comparisons, correlations between the single-date TM 7/5 ratio and the Canopy Fire 

Severity Index were moderate (Boundary: adj. R2 = 0.52, p < 0.0001; Porcupine: adj. R2 

= 0.55, p < 0.0001).  Also, the single-date TM 4/5 ratio yielded high correlations when 

compared with the Canopy Fire Severity Index in the Porcupine fire, but not in the 

Boundary fire (Boundary: adj. R2 = 0.47, p = 0.0001; Porcupine: adj. R2 = 0.81, p < 

0.0001). 

The two-date analysis using the Canopy Fire Severity Index also showed some of the 

higher correlations of the study (Table 7, Figure 6).  The dNBR and RdNBR showed 

similar sensitivities to the ground measures in both fire events, although in the Boundary 

fire the RdNBR yielded higher R2 values than in the Porcupine fire (dNBR: adj. R2 = 

0.48, p < 0.0001; RdNBR: adj. R2 = 0.53, p < 0.0001); the reverse was true for the 

Porcupine fire (dNBR: adj. R2 = 0.82, p < 0.0001; RdNBR: adj. R2 = 0.80, p < 0.0001).  

And finally, while the single-date TM 4/5 ratio showed higher correlations with the 
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Canopy Fire Severity Index in the Porcupine fire only, no significant correlations in the 

two-date comparison for either of the two fires occurred when using this spectral index 

(Table 7).  

4.3 Soil Organic Layer Comparisons 

4.3.1 Soil Organic Layer Depth Remaining 

No spectral index which was tested was found to have a high potential for 

determining the soil organic layer (SOL) depth remaining on site following a fire.  The 

spectral indices did not predict the depth of the organic layer or the reduction in the 

organic layer (absolute or relative), as is seen by the low R2 values and non significant 

results for many of the single-date and two-date correlations between the spectral indices 

and SOL ground measures (Table 6).  In some cases, correlations between the variations 

in the depth of the remaining SOL and the NBR/dNBR were similar.  In many instances, 

in both the single-date and two-date comparisons using the Porcupine fire, the SOL depth 

remaining correlation was higher than any of the three CBI components (Tables 6 and 7).  

In only one instance though was the SOL depth remaining the ground measure most 

strongly correlated with a spectral index (Boundary single-date PCA1: adj. R2 = 0.16, p = 

0.0215) (Table 6).  In only a few correlations were results highly significant (p < 0.0001), 

and in these cases other ground measures showed higher correlations with the various 

spectral indices than the SOL depth remaining.  The highest correlations using the SOL 

depth remaining measure occurred when this measure was compared to the two-date TM 

7/5 ratio for the Boundary fire (Boundary: adj. R2 = 0.58, p < 0.0001).  However the 

correlation between the two-date TM7/5 ratio and SOL depth remaining was not the 

highest correlation for the Porcupine fire (adj. R2 = 0.29, p < 0.0022).  For the Porcupine 
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fire, the two-date correlations with Band 7 (adj. R2 = 0.35, p < 0.0007) and TC3 (adj. R2 

= 0.36, p < 0.0006) were the strongest in this category, although these results are low 

compared to that which would be needed to accurately map fire severity with confidence.   

4.3.2 Depth reduction 

No spectral index was sensitive to the reduction in the depth of the SOL (neither 

absolute nor relative depth reduction).  Neither the absolute nor the relative depth 

reduction measures correlated highly with the spectral measures of fire severity using 

either the single-date or two-date analyses (Tables 6 and 7).  In fact, the absolute depth 

reduction measurement showed no correlations with any indices in the single-date 

analysis of the Porcupine fire.  The two-date correlation analysis, again as applied to the 

Porcupine fire, produced somewhat significant (p < 0.05) results when compared with the 

PCA2 (adj. R2 = 0.20, p < 0.0122).  Correlations using data from the Boundary fire 

resulted in higher significance levels than those found in the Porcupine fire, although the 

R2 values in all correlations were low.  The highest single date R2 values between the 

various spectral indices and the depth reduction measures occurred when using the TM 

7/5 ratio and the TM 7/4 ratio, while the highest two-date R2 values occurred were the 

dNBR and the TM 7/5 ratio. 

The relative depth reduction also did not relate well to the spectral indices used, 

although they were more highly correlated to the spectral indices than the absolute depth 

reduction measures (Tables 6 and 7).  The single-date comparisons between the relative 

depth reduction and spectral indices resulted in correlations of only adj. R2 = 0.30 (p = 

0.0014) for the TM 7/4 ratio (Boundary fire) and adj. R2 = 0.29 (p < 0.0023) for PCA3 

(Porcupine fire).  Using the two-date techniques did not improve correlations across the 
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different spectral indices.  The highest correlations for the comparison between spectral 

indices and the relative depth burned was adj. R2 = 0.35 (p < 0.0005) for the correlation 

with the TM 7/5 ratio (Boundary) and adj. R2 = 0.31 (p < 0.0016) again with the PCA3 

spectral index (Porcupine).  Also, it should be noted that the highest correlation between 

the PCA2 two-date spectral index for the Porcupine occurred when correlated with the 

relative depth reduction ground measure (adj. R2 = 0.22, p = 0.0085). 
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Chapter 5: Discussion and Conclusions 

5.1 The dNBR vs. CBI approach 

Overall, the traditional approach using the NBR, dNBR and CBI was highly variable 

across the two fire events used for this study.  Comparisons which showed modest 

correlations in the Boundary fire showed low correlation in the Porcupine fire.  The non-

transferability of this traditional approach to assess fire or burn severity across multiple 

fire events in a region of similar ground conditions casts doubt on the use of dNBR as a 

portable measure of fire severity.  An approach which yields such variable results across 

study sites can lead to difficulties for operational remote sensing of fire severity.  While 

the dNBR was designed to be completed quickly for operational use, this approach could 

lead to inaccurate fire severity maps being distributed to local personnel.   

Proponents of the CBI and dNBR method have considered the versatility of the CBI 

to be an important feature of that ground measure, as it incorporates five vertical levels of 

the environmental site of interest to capture the variability of the site and relate to the 

NBR, and more importantly the dNBR.  Unfortunately, the dNBR approach does not 

appear sensitive enough to capture variations in fire severity in the Alaskan boreal region, 

even with the modifications to the CBI form for this area.  Traditionally, high and 

consistent correlations have been used as indicators between the dNBR and CBI have 

indicated that the dNBR can be used to reliably map fire/burn severity.  Although, in this 

study, the rather tepid performance of the CBI and dNBR approach calls to question this 

assumption, and the reliability of the approach in the Alaskan black spruce forests. 

One factor which may be influencing the results of the dNBR analysis is the small 

amount of variation in the Overall CBI scores recorded.  Many of the black spruce stands 
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analyzed in this study have high fire severity CBI values (Figures 7 and 8).  An analysis 

of the CBI values for the sites used in this study, graphed per each of the two fire areas, 

shows that many of the sites are from an Overall CBI value of 2.4 and above (Figure 7 

and Table 8).  Most importantly, the range in CBI values compared to other studies is 

extremely small and distribution of the Overall CBI scores from the sites studied appears 

to be skewed towards higher Overall CBI values, thus again indicating higher Overall 

CBI scores (Figure 8) (Epting et al., 2005; van Wagtendonk et al., 2005; Sorbel and 

Allen, 2005; Miller and Thode, 2007).   

van Wagtendonk et al. (2004) found that the correlation of the dNBR and CBI 

(Overall) is non-linear in higher burn or fire severity sites (Figure 8), although a linear 

correlation was found for lower severity fires.  Interestingly, CBI values peaked at a 

dNBR of about 750 and then, as the dNBR values continued to rise, the CBI values 

actually started to decline.  While van Wagtendonk et al.’s (2004) results could indicate 

that the current CBI protocol may not provide a good means for estimating fire severity 

(Kasischke et al., in review), the study also did not did not characterize the surface 

materials responsible for the changes in the dNBR.  A better characterization of these 

surface materials is needed to better understand the sensitivity of the dNBR and CBI 

when higher severity fires are occurring.  Overall, the spectral indices used in this thesis 

were not sensitive to the SOL measurements – the depth remaining and depth reduced 

(both absolute and relative).  A further investigation might include an assessment of the 

absolute rise in red reflectance proportional to the depth of the SOL lost due to burning.  

While the spectral indices studied in this thesis were not shown to be sensitive to the 

changes in the SOL, a better understanding of the red reflectance of a site may shed 
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insight into overall fire severity.  Additions of char to the site following fire and the 

exposure of mineral soil in high severity fires could lead to increases in red reflectance as 

the mineral soil is exposed on a site.   

Such a conclusion supports the need for further research in developing and evaluating 

alternate approaches for measuring fire severity, particularly in evaluating depth of 

burning in Alaska’s boreal region (Kasischke et al., in review).  Roy et al. (2006) have 

suggested that the dNBR is not an optimal method to measure fire severity as this index 

was designed to determine burned areas and not to determine the severity of the fire, thus 

it has not been tested for relevant theory of spectral index design.  They have advocated 

for a more comprehensive method to measure fire severity which would include the pre-

fire to post-fire displacement of vegetation samples in multi-spectral space.  Lentile et al. 

(2006) have also recommended further refining the satellite mapping of fire/burn severity 

approach to link fire processes with remotely sensed imagery.  As evident from this 

study, further refinement of methods to assess changes occurring to the soil organic layer, 

are needed – if even possible at all– as they are not currently well understood using a 

spectral index approach.  As the consumption of the soil organic layer during fire plays 

an important role in the carbon storage capacity of this ecosystem, a better understanding 

of how to analyze this variable remotely is still needed.   
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Figure 7: Variability of CBI within the study.  Many of the CBI sites gathered were in the moderate 
to severity range of Overall CBI, which could influence the results. 

 

Overall CBI Understory CBI Overstory CBI Fire Area 
Average SD Average SD Average SD 

Boundary 2.43 0.34 2.31 0.37 2.81 0.32 
Porcupine 2.45 0.38 2.31 0.41 2.86 0.39 

Table 8: Average CBI scores for each fire and associated standard deviations (SD). 

 

Figure 8: The non-linear relationship between dNBR and CBI (van Wagtendonk et al., 2004). 
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5.2 Canopy Fire Severity Index 

Many of the spectral indices showed high sensitivity to the Canopy Fire Severity 

Index, especially in the single- and two-date comparisons of the Porcupine fire.  

Interestingly, when comparing the CFSI and the Overstory component of the CBI – both 

of which are solely measuring the Overstory canopy of a site – the CFSI lead to much 

higher R2 values, especially when compared with the dNBR values (Figure 9).  It can be 

seen that the CFSI provides a greater range in values than the Overstory CBI measure, 

which in turn, has lead to higher correlations (Figures 5, 6, and 9).  The Overstory CBI 

measure appears to saturate at its highest value (3), while the CFSI, with a range from 0-

6, allows for development of a better linear relationship with the spectral indices.  Such 

an index may provide useful in further understanding the fire severity of black spruce 

forests when analyzing satellite imagery.  While the canopy component does not directly 

relate to the degree of SOL consumption during the fire, high CFSI values could indicate 

increased levels of SOL consumption.  A high CFSI value could also lead to the 

shadowing at a site to change, and it could be this factor that is influencing the results of 

the spectral indices as determined for a site. 
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Figure 9: Comparisons between the Canopy Fire Severity Index and the Overstory CBI measure for 
both fires.  The Overstory CBI appears saturated at the high end of its range (3) when compared 
with the canopy severity scale (range of 0-6). 
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5.3 Alternative Spectral Indices vs. Ground Measures  

The ratio of Landsat Band 7 divided by Landsat Band 5 (the SWIR/NIR) was the 

index most sensitive to variation in the ground based measures.  It was this index which 

co-varied most strongly with the various ground measures explored in this study – for 

both the single-date and two-date comparisons across both fire events.  The high 

correlation of the TM 7/5 ratio and the various ground measures observed for both fires 

and both the single-date and bi-temporal analysis show that this index should be further 

investigated in comparison with fire severity environmental effects.  These high 

correlation results may be due to the generally high severity fires (high Overall CBIs as 

reported in Table 8 and Figure 7) sampled in this study.  This would be consistent with 

result found by Jakubauska et al. (1990) when it was found that the intensity of the fire 

has a direct relation with the infrared wavelengths.  Thus, higher intensity fires – in terms 

of both ground and crown fire effects – would be more prone to respond to the TM 7/5 

ratio than low severity fires.  Also, it may be that the TM 7/5 ratio is able to remove non-

fire severity related factors causing the non-linearity exhibited in van Wagtendonk et al.’s 

(2004) study – such as crown shadowing.   

The tasseled cap transformation, which has traditionally worked well for previous 

studies of forest disturbance, did not show high correlation with any of the fire severity 

measures (Patterson and Yool, 1998).  Differences between burned and non-burned areas 

are very clear when using this transformation, thus it is possible to map burned areas, 

although not to estimate fire severity.  I had expected areas affected by fire to contain 

lower greenness and wetness than surrounding areas in component two (greenness) due to 

the loss of reflective needles (especially in the near-infrared band).  In component three 
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(wetness), which is affected by the soil moisture, I had expected to also see a decrease in 

the spectral signatures as more soil would be exposed.  The low responsiveness of the 

tasseled cap transformations to the ground measures may have occurred as more mineral 

soil is exposed in the more extensively burned sites thus the wetness component may 

actually increase in value for more severely burned ground fires.   

5.4 Variations in Spectral Indices 

It is hypothesized that some of the variability in R2 values between the Boundary fire 

and the Porcupine fire could be due to the differences in the acquisition dates of the 

imagery of the imagery as well as the local angle of incidence.  While the one year and 

three year differences between the pre- and post-fire images of the fire events studied are 

not believed to have played a role in the low R2 values (as spectral indices in both the 

single-date and two-date approach resulted in low R2 values), perhaps the differences 

between comparisons of September dates in the Porcupine fire and comparisons of July 

and August dates in the Boundary fire are impacting the differences observed between 

the fire events (i.e. – two-date dNBR comparisons with the CFSI in the Porcupine fire 

lead to an adj. R2 = 0.82 and p <0.0001, while in the Boundary fire this correlation 

resulted in an R2 value of only 0.53, p <0.0001).  The low solar angles in this region of 

high latitude throughout the year could cause differences in imaging dates of only a few 

weeks to be leading to extreme changes in the spectral response of a site.  Also, the 

stands studied in this thesis predominantly burned in late June (Boundary and Porcupine 

fires) and early July (Porcupine fire only) of 2004, thus the time since the fire and before 

the acquisition of the post-fire image would be slightly different between the two fire 

events (although this difference is considered to be minimal.   
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Aside from the differences in the acquisition dates, the use of single-date and bi-

temporal approaches could also be contributing to the variability of the results.  In some 

instances, two-date analysis lead to improvements in the correlation analysis (Canopy 

Fire Severity Index and some soil organic layer measurements), however this was not 

always the case (some CBI correlations).  These bi-temporal approaches can introduce 

additional errors such as those associated with sun-sensor geometry, calibration and 

preprocessing, atmospheric conditions, and vegetation phenology due to the different 

acquisition dates (Key and Benson, 2002; Chuvieco et al., 2002).   

Additionally, a source of variability in this study could be due to the rugged 

topography of this region.  Many of the study sites used were on north or south facing 

slopes, which can greatly affect both the true fire severity of a site, but also the level of 

shadowing present at a site (Kane et al., 2006).  In Figure 10, differences between pre-fire 

and post-fire spectral signatures based on aspect can be seen.  Also, while post-fire 

imagery was used from late summer 2004, immediately following the burn, ground 

severity measurements were collected in the summer of 2005 and June 2006, thus 

potentially impacting the correlation of the ground and satellite variables. 

Topographic issues such as those due to sites on both north and south facing slopes 

can further exacerbate the situation (Figures 10 – 12).  For example, when performing 

terrain corrections, reflectance values from north and south facing slopes should be 

normalized, however they cannot be completely accounted for.  For this study, sites were 

located in different topographic positions (e.g., flat regions, toe slopes and backslopes,) 

as well as in different aspects (e.g., north and south-facing slopes).  Higher sloped 

positions could lead to changes in the reflectance due to bi-directional effects.  Figure 10 
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shows averages of two types of sites (North- and South-facing sites) from each of the 

fires studied (Boundary and Porcupine).  While each pair of sites had similar pre-fire 

stand density values and post-fire fire/burn severity values, there are differences in 

reflectance between the pairs of sites (Figure 11).  In both the Boundary and Porcupine 

fires, south slope sites have higher reflectances in both unburned and burned stands 

(Figure 12).  Also, the Boundary images, taken earlier in the growing season, have 

overall higher reflectances than the Porcupine sites (Figure 11).  This indicates that 

variations in local angle of incidences result in variations in reflectance.  In turn, these 

variations can lead to changes in the NBR and dNBR that are not related to variations in 

fire severity (Figure 12).   

 
Figure 10: Variability of sites based on slope position for the Porcupine and Boundary Fires. 
Photographs courtesy of E.Kasischke. 
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Figure 11: Variation in reflectance values of the Boundary and Porcupine fires based on slope 
position and pre- and post-fire differences.  Averages for each slope position are shown (for 
Boundary – North Slope n = 6, South Slope n= 11; for Porcupine – North Slope n = 7, South Slope n 
= 10). 
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Figure 12: Comparisons between average pre-fire and post-fire NBR values for each fire based on 
slope position (for NBR values: Boundary – North Slope n = 6, South Slope n= 11; Porcupine – North 
Slope n = 7, South Slope n = 10).  Also shown are associated Overall CBI and dNBR values for each 
slope position. 
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Chapter 6:  Future Perspectives 
It is important to continue to explore satellite-based measures of fire severity as a 

means for large scale mapping of fire severity in boreal forests.  Throughout this study, it 

was shown that there are numerous problems with measuring the ground carbon in the 

boreal region.  Noise in the spectral response of a site due to shadowing from terrain and 

the forest canopy, as well as a potential inability to use current spectral indices to map 

changes in the SOL affect the accuracy of carbon emission estimates which can be 

derived from satellite data.  The infrared Landsat bands (4, 5, and 7) do show some 

potential to mapping fire severity in the boreal region.  If true assessments of fire severity 

are to be made in this region using satellite data, the spectral reflectance of these bands 

must be better understood.  As spectral indices using only one or two bands did not show 

high potential for mapping fire severity, perhaps a combination of all three infrared 

Landsat bands would be possible.  Such a combination could potentially lead to the 

cancellation of shadowing effects on the spectral reflectance.  Also, such an index may 

better measure the combination of factors causing high fire severity on a site (including 

the surface reflectance due to differing ground cover, soil moisture and the loss of 

vegetation).  

The dNBR and the CBI were developed in ecosystems far different from those found 

in the boreal region, and due to the importance of the boreal region to carbon storage, 

more must be known about the particular functioning of this ecosystem.  While the CBI 

was modified for the Alaskan ecosystem, the dNBR approach did not account for 

variations in surface reflectance due to variations in local topography and temporal 

variations in solar illumination.  Remote sensing of fire severity may require the use of 
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more wavelengths and individual bands in the construction of an index, or alternate 

mapping method, as well as incorporation of more detailed information regarding 

changes in vegetation and other surface characteristics due to fire (Roy et al., 2006). 

The fire science community must go beyond testing the potential of different spectral 

indices and move to the development of fire severity models which can be validated with 

additional site data.  It is recommended that the test sites be expanded to include more 

than the 53 ground truthing sites used in this study and that validation of the equations 

developed in this experiment be performed to make the analysis more statistically robust 

and to truly test the performance of the dNBR.  This could be done through integrating 

data collected by other researchers during 2004 and other years in Alaska.  Additionally, 

data from fires occurring in other years could be examined.  Programs such as the North 

American Carbon Program and the Joint Fire Science Research Program aid in bringing 

researchers together for this type of interdisciplinary research, which can significantly aid 

the science community.   

Also, improvements at the preprocessing stage could decrease the overall error rate of 

the study and potentially improve the significance of the results.  It is recommended that 

higher resolution DEMs for this area be developed and incorporated into the 

preprocessing.  SAR data, taken near Alaskan cities, has already been incorporated into 

some higher resolution DEMs used to increase the accuracy of the terrain correction 

process; however there is still a need for this detailed level of mapping in much of 

Alaska’s boreal regions.   

Additionally, micro-site differences could affect both the spectral reflectance of the 

sites, as well as any statistical analysis of the area.  For these reasons, analyzing the 
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spectral signature in relation to such site conditions as slope, aspect, drainage at the site, 

stand age and even the amount of shadowing at the site (due to the position of the trees 

following the fire) can be important when analyzing fire severity (Epting et al., 2005; 

Kane et al., 2006).  In conclusion, this analysis showed differences between burned and 

unburned areas well, but further analysis needs to be performed to determine the most 

appropriate method to map fire severity and the losses to the organic soil layer due to the 

severity of the fire. 
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