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Gibbs measure which are also called Sinai-Ruelle-Bowen Measure describe

asymptotic behavior and statistical properties of typical trajectories in many phys-

ical systems. In this work we review several methods of studying Gibbs measures

by Ya.G. Sinai, D. Ruelle, R. Bowen [4], and P. Walters [18]. First, using symbolic

dynamics we show for subshifts of finite type that the invariant measure obtained in

the Ruelle-Perron-Frobenius (R-P-F)Theorem is an ergodic Gibbs measure. Second,

the proof of the R-P-F theorem is given following Walters approach, where he con-

siders maps with infinitely many branches. In both cases, the idea is to find a fixed

point ρ ∈ C(X) of the transfer operator which will allow us to define the measure

µ = ρ · m where m is the Lebesgue measure. Ergodic properties of µ are studied.

In particular results are valid for expanding maps. These ideas are illustrated in

the example of an expanding map with two branches where we show explicitly the

existence of an invariant measure as well as we prove ergodicity, exactness, and the

Rochlin Entropy formula.
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Chapter 1: Preliminaries

Let T : X → X be a continuous map of a compact metric space and let

M(X) be the set of all Borel probability measures on X where B is the family

of the Borel sets. One of the main important topics in Dynamical systems is to

study the behavior of the orbits {T n : n ∈ Z}. The existence of an absolutely

continuous invariant measures gives an important information about the system.

In this chapter, we will introduce some concepts and properties of Ergodic Theory

and the well known transfer operator which is also called Ruelle-Perron-Frobenius

operator.

Definition 1.1. Let µ be a measure in M(X). We say that µ is invariant under T

or T - invariant if for every Borel set B,

T∗µ(B) = µ(B).

where T∗µ(B) = µ(T−1B).

Definition 1.2. Let (T, µ) be measure preserving . We say that µ is ergodic if for

every Borel sets B ∈ B such that T−1B = B, µ(B) = 0 or µ(B) = 1.

Let C(X) be the set of all continuous function on the set X. Recall that C(X)

is a Banach space with the supreme norm || · ||.
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Definition 1.3. Let φ ∈ C(X), K̄ ∈ R, and let T : X → X be a continuous map

such that cardinality of the set {T−1x} does not exceed K̄, for each x ∈ X. The

transfer operator Lφ is defined formally on functions f : X → C by

Lφf(x) =
∑

y∈T−1x

eφ(y)f(y).

Proposition 1.1. Let X be a compact metric space and T : X → X be as in the

previous definition. The transfer operator has the following properties.

1. Lφ : C(X) → C(X) is linear and bounded.

2. If f ∈ C(X) is a positive function, then Lφf is also positive.

3. For all f, g ∈ C(X),

(Lφf) · g = Lφ(f · (g ◦ T )). (1.1)

4. If n is a positive integer number,

Ln
φf(x) =

∑
y∈T−nx

eSnφ(y)f(y) (1.2)

where Snφ(y) =
n−1∑
k=0

φ(T ky).

Proof. 1. It is clear that Lφ is linear. To prove that Lφ is bounded we must show

there is a constant K > 0 such that ||Lφf || ≤ K||f || for all f ∈ C(X). Thus,

|Lφf(x)| =

∣∣∣∣∣∣
∑

y∈T−1x

eφ(y)f(y)

∣∣∣∣∣∣
≤

∑
y∈T−1x

|eφ(y)| |f(y)|

≤ ||f ||
∑

y∈T−1x

|eφ(y)|

2



≤ (K̄e||φ||)||f ||.

Define K = K̄e||φ||, then

||Lφf || ≤ K||f ||.

2. If f is positive, then it is immediately that Lφf(x) =
∑

y∈T−1x e
φ(y)f(y) > 0

3. Let f, g ∈ C(X),

((Lφf) · g)(x) =
∑

y∈T−1x

eφ(y)f(y) · g(x)

=
∑

y∈T−1x

eφ(y)f(y) · g(T (y))

= Lφ(f · (g ◦ T ))(x).

4. We see that (1.2) holds for n = 1. Suppose (1.2) holds for n, then we want to

prove that it also holds for n+ 1. In fact,

Ln+1
φ f(x) = Lφ(Ln

φf)(x)

=
∑

y∈T−1x

eφ(y)(Ln
φf)(y)

=
∑

y∈T−1x

eφ(y)

 ∑
z∈T−n(y)

eSnφ(z)f(z)


=

∑
z∈T−n(y)

eφ(T
n+1(z))eSnφ(z)f(z)

=
∑

z∈T−(n+1)(y)

eSn+1φ(z)f(z).
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Example 1.1. Let T : C → C be defined by T (z) = z2. We can note that every

w ∈ C, w ̸= 0 has two pre-images z1 and z2, i.e z2i = w where i = 1, 2. Let φ : C → R

define by φ(z) = ln(|z|2 + 1). Then,

Lφf(w) = (|z1|2 + 1)f(z1) + (|z2|2 + 1)f(z2)

= (|w|+ 1)f(z1) + (|w|+ 1)f(z2)

= (|w|+ 1)(f(z1) + f(z2))

Note that if w = 0, then Lφf(0) = 2f(0).

Definition 1.4. The dual B∗ of a Banach space B is the set of continuous linear

functionals µ : B → C endowed with the weak* topology.

For every µ ∈ B∗, let us also define the dual T ∗ : B∗ → B∗ of a linear operator

T : B → B by

T ∗µ(f) = µ(T (f)) (1.3)

for every f ∈ B.

Remark 1.1. A sequence µn in the space B∗ converges to µ ∈ B∗ if and only if

µn(f) converge to µ(f) for each f ∈ B.

The following Theorem from Functional analysis identifies the space of prob-

ability measures with the dual space of continuous function on X.

Theorem 1.1 (Riesz Representation Theorem). For each µ ∈ M(X) define αµ ∈

C(X)∗ by

αµ(f) =

∫
fdµ.
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Then there is a bijection between the space of Borel probability measures, M(X) and

the set

{α ∈ C(X)∗ : α(1) = 1 and α(f) ≥ 0}

A proof of this theorem can be found in [13]. The importance of this theorem

is that we can identify the functional αµ with the measure µ. Note that if µ is a

probability measure α(1) =
∫
X
dµ = µ(X) = 1. On the other hand, if α(1) = 1,

then µ(X) =

∫
X

dµ = α(1) = 1.

Proposition 1.2. As a consequence of the identification given in the Riesz Repre-

sentation Theorem we can see that µ ∈ M(X) is invariant if and only if µ(f) =

µ(f ◦ T ) for all f ∈ C(X).

Proof.

µ = T∗µ ⇐⇒ µ(A) = µ(T−1A)

⇐⇒
∫

fdµ =

∫
f dT∗µ for all f ∈ C(X)

⇐⇒
∫

fdµ =

∫
f ◦ T dµ

⇐⇒ µ(f) = µ(f ◦ T )

In Measure theory we define the absolute continuity of two measures. Let µ

and ν be in M(X), we say that ν is absolutely continuous with respect to µ, and

it is denoted by ν ≪ µ, if ν(B) = 0 for every set B ∈ B such that µ(B) = 0.
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The major result that characterized the absolute continuity is the Radon Nikodyn

Theorem which was proved for a special case by Johann Radon in 1913 and then

generalized by Otto Nikodym in 1930.

Theorem 1.2 (Radon Nikodyn Theorem). Let m and µ be two probability measures

on M(X). Then, µ is absolutely continuous with respect to m if and only if there

exist f ∈ L(m), f ≥ 0 and
∫
fdm = 1, such that µ(A) =

∫
A
fdm for all Borel set

A. The function f is unique almost everywhere.

The details of the proof can be found in [14].

The function f in the above theorem is called the Radon- Nikodym derivative

of µ with respect to m, and it is denoted by
dµ

dm
.

The Birkhoff Ergodic Theorem was proved by David Birkhoff in 1931 in his

work: Proof of the ergodic theorem [2]. It is considered one of the most important

theorems in Ergodic Theory. There are many different proof of this theorem, however

we suggest to see Walters [18].

Theorem 1.3 (Birkhoff Ergodic Theorem for Measure Preserving Transformations).

Let (X,B, µ) be a finite measurable space. Let T : X → X be a measure preserving

transformation. For any f ∈ L1(µ), the limits

lim
n→∞

1

n

n−1∑
k=0

f(T k(x))

converges almost everywhere to a function f̄ ∈ L1(µ). The function f̄ satisfy that

f̄ ◦ T = f̄ a.e, and
∫
f̄ dµ =

∫
f dµ.

The second version of this theorem gives a more explicit result for the physical

average we want to study in the particular case when T is ergodic.
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Theorem 1.4 (Birkhoff Ergodic Theorem for Ergodic transformations). Let (X,B, µ)

be a finite measurable space. Let T : X → X be an ergodic measure preserving trans-

formation. For any f ∈ L1(µ), the limits

lim
n→∞

1

n

n−1∑
k=0

f(T k(x)) =

∫
f dµ

for µ - almost every x ∈ X.

Proof. Since T is ergodic, every function that is invariant almost everywhere is

constant almost everywhere (See [18] pag.28). Suppose f̄ = c, where c ∈ R, then

∫
f̄ dµ = c · µ(X) = c,

but
∫
f̄ dµ =

∫
f dµ, so

c =

∫
f dµ.

Thus by Birkhoff ergodic theorem for measure preserving transformations.

lim
n→∞

1

n

n−1∑
k=0

f(T k(x)) = c =

∫
f dµ
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Chapter 2: Shift Spaces

2.1 R-P-F Theorem for a shift space

Symbolic dynamics study the structure of the orbits in a dynamical system

using an infinite sequence of symbols. Usually it is used as an important tool to

study dynamical systems by partitioning the space. The first person who introduce

shift spaces, in 1898, was Hadamard [6] with the study of the geodesics on surfaces

of negative curvature. In 1938, M. Morse and G. Hedlund presented the first sys-

tematic work named: Symbolic Dynamics [9]. Since then symbolic dynamics has

been an important tool in different areas like Ergodic Theory, Topological Dynamics,

Hyperbolic Dynamics, Information Theory, and Complex Dynamics.

In this section we will introduced the concept of one sided shift spaces and then

we will state the famous Ruelle-Perron-Frobenius Theorem which will be crucial to

obtain an absolutely continuous invariant measure.

The one-sided shift space is defined by

∑+

A
= {x ∈

∞∏
i=0

{1, · · · , n} : Axi,xi+1
= 1 for all i ≥ 0}

where A = (aij) is a n× n matrix whose entries are zero and ones. Let

FA = {ϕ :
∑+

A
→ R continuous : var

k
ϕ ≤ b · αk some b, α ∈ (0, 1), for all k ≥ 0}
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where vark ϕ = sup{|ϕ(x) − ϕ(y)| : xi = yi for all i ≤ k}. Thus FA is the space of

continuous Hölder functions.

Example 2.1. Define σ :
∑+

A →
∑+

A by σ(x)i = xi+1. Note that σ is a surjective

continuous map. Suppose φ ∈
∑+

A ∩FA. Then, definition 1.3 can be written as:

Lφf(x) =
∑

y∈σ−1x

eφ(y)f(y)

where for each x ∈
∑+

A, the set σ−1(x) has no more than n pre-images.

Definition 2.1. We say that σ : Σ+
A → Σ+

A is topologically mixing if for every U

and V, non-empty open subsets of Σ+
A, there exist N such that σmU ∩ V ̸= ∅ for all

m ≥ N.

Theorem 2.1 (Ruelle-Perron-Frobenius). Let ΣA be topologically mixing. Let φ ∈

FA ∩ C(Σ+
A). There exist λ > 0, h ∈ C(Σ+

A) with h > 0 and ν ∈ M(Σ+
A) such that

1. Lh = λh,

2. L∗ν = λν,

3. ν(h) = 1,

4. limn→∞ ||λ−mLmg − ν(g)h|| = 0 for all g ∈ C(Σ+
A).

This theorem will be proved in Chapter 4 in a more general context. However,

for this particular case of one-sided shift we refer to [4].

The R-P-F Theorem give us the existence of the measure ν, the eigenvalue λ,

and h. Define µ = h · ν by

µ(f) = ν(hf).
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Using Theorem 1.1, we can see that µ is a probability measure. In fact,

µ(1) = ν(h) = 1 and µ(f) = ν(hf) ≥ 0 since h > 0 by R-P-F Theorem.

Proposition 2.1. The measure µ is σ-invariant on Σ+
A.

Proof. By Proposition 1.2 we are going to prove that µ(f) = µ(f ◦ σ) for all f ∈

C(Σ+
A) In fact,

µ(f) = ν(hf)

= ν((λ−1Lh) · f)

= λ−1ν(L(h · (f ◦ σ))) (by 1.1)

= λ−1λν(h · (f ◦ σ))

= µ(f ◦ σ)

Definition 2.2. Let µ be a measure in M(Σ+
A). We say that µ is mixing if

lim
n→∞

µ(E ∩ σ−nF ) = µ(E)µ(F )

for all Borel sets E and F.

Proposition 2.2. Let the measure µ be σ-invariant. If µ is mixing, then µ is

ergodic.

Proof. Let E be any Borel set and suppose the measure µ is mixing. Then by the

definition above lim
n→∞

µ(E ∩ σ−nE) = µ(E)µ(E). Now suppose T−1(E) = E, then

lim
n→∞

µ(E ∩ σ−nE) = µ(E) and so µ(E) = (µ(E))2. Thus, µ(E) = 1 or µ(E) = 0.
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Lemma 2.1. Let f ∈ C(Σ+
A) be such that varr f = 0 and let h be as in R-P-F

Theorem, then for n ≥ s there exist a constant A > 0 and β ∈ (0, 1) such that

||λ−nLn(fh)− ν(fh)h|| ≤ Aν(fh)βn−s. (2.1)

The proof of this lemma can be found in [4].

Proposition 2.3. Let µ be the measure obtained in the R-P-F Theorem. Then µ is

mixing for σ : Σ+
A → Σ+

A.

Proof. First note that

(Lmf · g)(x) =
∑

y∈φ−mx

eSmφ(y)f(y)g(x)

=
∑

y∈φ−mx

eSmφ(y)f(y)g(σmy)

= Lm(f · (g ◦ σm))(x)

Now let E = {y ∈ ΣA : yi = ai, r ≤ i ≤ s} F = {y ∈ ΣA : yi = bi, u ≤ i ≤ v}

but since µ is σ−invariant, we can assume r = u = 0. Then,

µ(E ∩ σ−nF ) = µ(χE · χσ−nF )

= µ(χE · (χF ◦ σn))

= ν(hχE · (χF ◦ σn))

= λ−nL∗nν(hχE · (χF ◦ σn))

= ν(λ−nLn(hχE · (χF ◦ σn)))

= ν(λ−n(Ln(hχE)) · χF ))
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On the other hand,

|µ(E ∩ σ−nF )− µ(E)µ(F )| = |µ(E ∩ σ−nF )− ν(hχE)ν(hχF )|

= |ν(λ−nLn(hχE) · χF )− ν(hχE)ν(hχF )|

= |ν[λ−nLn(hχE) · χF − ν(hχE)hχF ]|

= |ν([λ−nLn(hχE)− ν(hχE)h]χF )|

= |ν(λ−nLn(hχE)− ν(hχE)h)||ν(χF )|

Since χE ∈ C(Σ+
A) and vars(χE) = 0, applying Lemma 2.1 we have:

|ν(λ−nLn(hχE)− ν(hχE)h)||ν(χF )| ≤ Aµ(E)βn−sν(F )

≤ Aµ(E)βn−s

where β ∈ (0, 1). As the last expression tend to zero as n approaches to infinity. We

get,

µ(E ∩ σ−nF ) → µ(E)µ(F )

2.2 Gibbs Measures

Lemma 2.2. Let A =
∞∑
k=0

var
k

φ < ∞. If x, y ∈
∑+

A with xi = yi for i ∈ [0,m).

Then,

|Smφ(x)− Smφ(y)| ≤ A.
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Proof. Let φ ∈ C(Σ+
A),

|Smφ(x)− Smφ(y)| = |
m−1∑
k=0

φ(σkx)−
m−1∑
k=0

φ(σky)|

≤
m−1∑
k=0

|φ(σkx)− φ(σky)|

≤ var
m−1−k

φ

≤ A.

In the following theorem we will use the following inequalities which are im-

mediately consequences of the previous lemma;

Smφ(y)− Smφ(x) ≤ |Smφ(x)− Smφ(y)| ≤ A (2.2)

Smφ(y) ≤ Smφ(x) + A (2.3)

Theorem 2.2. Suppose
∑+

A is topologically mixing and φ ∈ C(Σ+
A) is a Holder

Function. Then, there exist µ ∈
∑+

A an invariant probability measure and a number

P such that:

c1 ≤
µ{y : yi = xi for all i ∈ [0,m)}

e−PmeSmφ(x)
≤ c2 (2.4)

for every x ∈
∑+

A, m ≥ 0.

Proof. Define the set

E = {y : yi = xi for all i ∈ [0,m)}. (2.5)
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For any z ∈
∑+

A there exist only one ȳ ∈ σ−mz with ȳ ∈ E. For example, if

z = (z0, z1, . . .) we can take ȳ = (x0, x1, · · · , xm−1, z0, z1, . . .). Now, by (2.3)

Lm(hχE)(z) =
∑

y∈σ−mz

eSmφ(y)h(y)χE(y).

= eSmφ(ȳ)h(ȳ)

≤ eSmφ(ȳ)||h||

≤ eSmφ(x)eA||h||,

thus

Lm(hχE)(z) ≤ eSmφ(x)eA||h||. (2.6)

Using inequality (2.6),

µ(E) = µ(χE)

= λ−mν(Lm(hχE))

≤ λ−m

∫
Lm(hχE)dν

≤ λ−meSmφ(x)eA||h||

.

Taking c2 = eA||h|| we have,

µ(E)

λ−meSmφ(x)
≤ c2.

Moreover, let P = log λ, then

µ(E)

e−PmeSmφ(x)
≤ c2. (2.7)
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On the other hand, let M > 0 which exist since
∑+

A is topologically mixing,

then for every z ∈
∑+

A there exist at least one ȳ ∈ σ−m−Mz where ȳ ∈ E.

Then,

Lm+M(hχE)(z) =
∑

y∈σ−m−Mz

eSm+Mφ(y)h(y)χE(y)

≥ eSm+Mφ(ȳ)h(ȳ),

but,

Sm+Mφ(ȳ) = Smφ(ȳ) +
M+m−1∑
k=m

φ(σk(ȳ)),

so

|
M+m−1∑
k=m

φ(σk(ȳ))| ≤
M+m−1∑
k=m

|φ(σk(ȳ))|

≤ (M − 1)||φ|| ≤ M ||φ||

Hence,

−M ||φ|| ≤
M+m−1∑
k=m

φ(σk(ȳ)).

This together with inequality (2.3) gives:

eSm+Mφ(ȳ)h(¯̄y) ≥ eSmφ(y)e−M ||φ||h(ȳ)

≥ eSmφ(x)−Ae−M ||φ|| minh

Note that minh is positive since h > 0.

Finally,
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µ(E) = λ−m−Mν(Lm+M(hχE))

≥ λ−m−Me−M ||φ||−A(minh)eSmφ(x)

= λ−M(minh)e−M ||φ||−Aλ−meSmφ(x).

Taking c1 = λ−M(inf h)e−M ||φ||−A,

µ(E)

λ−meSmφ(x)
≥ c1. (2.8)

This last result together with (2.7) give us:

c1 ≤
µ(E)

e−PmeSmφ(x)
≤ c2.

where P = log λ.

A measure µ that satisfy (2.4) is called a Gibbs measure of φ and it is denoted

by µφ.

Theorem 2.3. Suppose
∑+

A is topologically mixing and φ ∈ C(Σ+
A) is a Hölder

function. The measure µ ∈ M(
∑+

A) and the constant P obtained in the previous

theorem are unique.

Proof. Let E be the set defined in the previous theorem, equation (2.5). Suppose

there exist µ̄ ∈ M(
∑+

A), and real constant c̄1, c̄2 and P which satisfies 2.4, i.e,

c̄1 ≤
µ̄(E)

e−P̄meSmφ(x)
≤ c̄2. (2.9)
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Let x be in
∑+

A, and define the set

Em(x) = {y ∈
+∑
A

: yi = xi for all i ∈ [0,m)}.

Let Tm be a subset of
∑+

A such that:

1. The cardinality of Tm is finite.

2.
∑+

A =
⊔

x∈Tm

Em(x).

Re-writing (2.9), we have

c̄1e
−P̄meSmφ(x) ≤ µ̄(Em) ≤ c̄2e

−P̄meSmφ(x) (2.10)

so,

c̄1e
−P̄m

∑
x∈Tm

eSmφ(x) ≤
∑
x∈Tm

µ̄(Em) = 1 ≤ c̄2e
−P̄m

∑
x∈Tm

eSmφ(x).

Then,

log c̄1
m

+
−P̄m

m
+

log
∑

x∈Tm
eSmφ(x)

m
≤ 0.

Similarly,

0 ≤ log c̄2
m

+
−P̄m

m
+

log
∑

x∈Tm
eSmφ(x)

m
.

Taking limit when m → ∞,

P̄ ≤ lim
m→∞

1

m
log

∑
x∈Tm

eSmφ(x)

and

lim
m→∞

1

m
log

∑
x∈Tm

eSmφ(x) ≤ P̄
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respectively.

Therefore,

P̄ = lim
m→∞

1

m
log

∑
x∈Tm

eSmφ(x).

Applying the same argument to the measure µ, we get P = P̄ . Now we will prove

that µ is unique. In fact, from (2.10) we have

(c̄2)
−1µ̄(Em) ≤ e−P̄meSmφ(x)

and similarly for the measure µ,

e−PmeSmφ(x) ≤ (c1)
−1µ(Em)

but since P = P̄ ,

(c̄2)
−1µ̄(Em) ≤ (c1)

−1µ(Em)

µ̄(Em) ≤ (c1)
−1c̄2µ(Em)

Let K = (c1)
−1c̄2 then,

µ̄(E) ≤ Kµ(E)

for all Borel sets E. Thus, µ̄ is absolutely continuous with respect to µ. By the Radon

Nikodyn Theorem, theorem 1.2 there exist a function f which is µ- measurable such

that µ̄ = fµ.

Then,

µ̄ = σ∗µ̄

18



= (f ◦ σ)σ∗µ

= (f ◦ σ)µ

= (f ◦ σ)

i.e f = f ◦ σ µ-almost everywhere. and so f = c.

Now since 1 = µ̄(σ+
A) =

∫
c dµ = c, we conclude:

µ̄ = µ.
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Chapter 3: Expanding maps with finitely many branches

3.1 Existence of an invariant measure

In the previous Chapter, we introduced subshifts of finite type which are a

powerful tool to study hyperbolic systems. Indeed, it is often used to prove ergodic

properties without any advance knowledge of measure theory. In the 1970’s, Sinai,

Ruelle, and Bowen introduced the invariant measures which nowadays are called

SRB measures. In their works, they constructed Markov partitions and they studied

SRB measures for subshifts of finite type. However, the study of non-hyperbolic

systems often requires countable Markov partitions. In the particular case of the

quadratic family fλ(x) = λx(1−x), which was studied by Jakobson [7], there exists

a set of positive measure where the respective power maps have infinitely many

expanding branches and satisfy conditions of the Folklore Theorem which gives the

existence of an absolutely continuous invariant measure.

Theorem 3.1 (Folklore Theorem). Let X = [0, 1] and let {Ii} be a countable disjoint

collection of open subsets of [0,1] such that ∪Ii has full measure in [0,1]. Suppose

fi : Ii → [0, 1] are C2-expanding maps,suppose there is a constant K such that:

sup
x∈Ii

|D2fi(x)|
|Dfi(x)|

|Ii| ≤ K
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for all i. Let T be a map defined a.e on [0,1] by T | Ii = fi. Then T has a unique

invariant probability measure which is equivalent to the Lebesgue Measure on [0,1].

The proof of the theorem, as stated above, can be found in the work of Jakob-

son [7]. An earlier proof of a similar result can be found in Adler [1]. Adler refers

to earlier similar results by Renyi and Sinai, so it is traditionally called “Folklore

Theorem”. In the following chapter we will generalize the Folklore Theorem using

Waters [18] approach, but first we would like to present a simple example which will

connect the two ideas between Chapter 2 and Chapter 3.

In order to start getting familiar with our general problem of finding absolutely

continuous invariant measures, we will consider the case of an expanding map with

two branches.

Let us consider the following example. Let T : [0, 1] → [0, 1] be an C2-

expanding map with two branches. We say that T is expanding if there exist K0 > 1

such that

|DT | ≥ K0.

Let us consider φ = log (|DT (x)|)−1 according to notation in Chapter 1. We want

to find an absolutely continuous invariant measure for T which is invariant with

respect to the Lebesgue measure. We say that a measure is absolutely continuous

when it is absolutely continuous with respect to the Lebesgue measure. Thus, for

this particular φ, the transfer operator becomes:

Lφf(x) =
∑

y∈T−1x

f(y)

|DT (y)|
.

Note that the function DT is just the Jacobian of T with respect to the
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Lebesgue measure and more explicitly, since we are considering two branches, if

{x1, x2} is the set of pre-images of x ∈ [0, 1], we have:

Lφf(x) =
f(x1)

|DT (x1)|
+

f(x2)

|DT (x2)|
.

Let m be the Lebesgue measure on [0, 1]. Then by a simple change of variable

we have that L satisfy the following equation:

∫
(f ◦ T ) · g dm =

∫
(Lφg) · f dm (3.1)

Thus, the Lebesgue measure m is a fixed point for the dual operator L∗
φ. In

fact, let f be in C([0, 1]),

m(f) =

∫
f dm

=

∫
(1 ◦ T ) · f dm

=

∫
(Lφf) · 1 dm (by equation 3.1)

=

∫
(Lφf) dm

= m(Lφf)

= L∗
φm(f)

Now, we will show the existence of a fixed point for the operator Lφ. To do

this we need to state the following famous theorem which will be a very important

tool for the proof of existence, not only in this case but also in the more general

case that we consider in Chapter 4.
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Theorem 3.2 (Schauder-Tychonoff Fixed Point Theorem). Let K be a compact

convex subset of a locally convex space V, and let F : K → F (K) be a continuous

map of K into itself. Then there exists a point k ∈ K such that F (k) = k.

This Theorem is a generalization of the Schauder Fixed Point Theorem which

was proved for Banach spaces by Juliusz Schauder in 1930. Four years latter, Ty-

chonoff generalized the proof for a compact convex subset of a locally convex space.

The proof can be found in Royden [14].

Proposition 3.1. The operator Lφ has a fixed point.

Proof. Let us fix some K > 0 and let

Λ = {f :
f(x1)

f(x2)
≤ eKd(x1,x2) for all x1, x2 ∈ [0, 1], and

∫
fdm = 1}.

Note that the set Λ is convex and compact. Let f be in Λ we want to show that if

K is sufficiently large, then Lφf ∈ Λ. Consider any x, y ∈ [0, 1] and let {x1, x2} and

{y1, y2} be the set of pre-images under T for x and y respectively.

Lφf(x) =
f(x1)

|DT (x1)|
+

f(x2)

|DT (x2)|
,

Lφf(y) =
f(y1)

|DT (y1)|
+

f(y2)

|DT (y2)|
.

Also for any x, y ∈ [0, 1] we have d(x, y) ≥ K0 · d(x1, y1). In fact,

d(x, y) =

∫ y

x

DT (x) dx

≥
∫ y1

x1

DT (x) dx

≥ K0 · d(x1, y1)
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so, since f ∈ Λ,

f(x1)

f(y1)
≤ eKd(x1,y1) ≤ e

K
K0

d(x,y)
. (3.2)

On the other hand, by Mean Value Theorem, there exist θ ∈ [0, 1] such that if

g(x) = log |DT (x)| we have:

log

(
DT (y1)

DT (x1)

)
= logDT (y1)− logDT (x1)

≤ g′(θ)d(x1, y1)

=

∣∣∣∣D2T (θ)

DT (θ)

∣∣∣∣ d(x1, y1).

Let K1 = max
x∈[0,1]

∣∣∣∣D2T (θ)

DT (θ)

∣∣∣∣ . Since T is C2, K1 exist and then

DT (y1)

DT (x1)
≤ eK1d(x1,y1) ≤ e

K1 d(x,y)
K0 (3.3)

Thus, by equations (3.2) and (3.3),

Lf(x)
Lf(y)

≤ max{f(x1)DT (y1)

f(y1)DT (x1)
,
f(x2)DT (y2)

f(y2)DT (x2)
}

≤ exp(
K d(x, y)

K0

) · exp(K1 d(x, y)

K0

)

≤ exp

{(
K +K1

K0

)
d(x, y)

}

As K1 is fixed and K0 > 1 we get that for a sufficiently large K, K+K1

K0
< K.

Then,

Lf(x)
Lf(y)

≤ exp {K · d(x, y)}
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and we have proved that

Lφ(Λ) ⊂ Λ.

Then, by Schauder-Tychonoff fixed point Theorem, Theorem 3.2, there exist a fixed

point, ρ, for the operator Lφ, i.e Lφρ = ρ.

Define

µ = ρ ·m

where ρ is given in the previous proposition. Note that from the definition of Λ it

follows that there exists a constant C0 such that ρ ≥ C0 > 0. Now, we can prove

that µ is a T -invariant measure. In fact, using Proposition 1.2,

µ(f ◦ T ) = ρ ·m(f ◦ T )

=

∫
(f ◦ T ) · ρ dm

=

∫
(Lφρ)f dm, ( by 3.1)

=

∫
ρ · f dm, (since ρ is a fixed point of L )

=

∫
f · ρ dm

= ρ ·m(f)

= µ(f).

Hence, µ is T -invariant and it is clear that it is absolutely continuous with

respect to the Lebesgue measure m.

The next goal is to prove Bounded Distortion for T n. The idea is very similar

to the one we did in Proposition 3.1. Since we are considering T : [0, 1] → [0, 1]

an expanding map with with two branches. Let us define the partition ξn = ξw0 ∩
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T−1ξw1 ∩ . . . ∩ T−(n−1)ξwn−1 where wi are either 0 or 1 and its elements are denoted

by Iw0,...,wn−1 . Note that the map T n maps Iw0,...,wn−1 onto [0, 1].

Proposition 3.2. Let T be a C2 expanding map with two branches, then Bounded

Distortion Property holds for T n, i.e there exist C > 0 such that

C−1 <
(T n)′(x)

(T n)′(y)
< C (3.4)

whenever x, y lie in the same partition element Iw0,...,wk−1
.

Proof. Let x, y ∈ [0, 1]. Note that if x, y ∈ Iw0,...,wk−1
, then T ix and T iy belong to

the same partition element I0 or I1 for all i = 0, . . . , n− 1. Then by the Mean Value

Theorem,

∣∣∣∣log (T n)′(x)

(T n)′(y)

∣∣∣∣ =

∣∣∣∣∣log
∏n−1

i=1 T ′(T i(x))∏n−1
i=1 T ′(T i(y))

∣∣∣∣∣
≤

n−1∑
i=1

∣∣log(T ′(T i(x)))− log(T ′(T i(y)))
∣∣

≤ max
θ∈[0,1]

∣∣∣∣T ′′(T i(θ))

T ′(T i(θ))

∣∣∣∣ n−1∑
i=0

d(T i(x), T i(y))

but since d(T ix, T iy) ≤ 1

Kn−i
0

, i = 1, 2, . . . , n− 1, we have:

n−1∑
i=0

d(T i(x), T i(y)) ≤ lim
n→∞

n−1∑
i=0

d(T i(x), T i(y))

≤ lim
n→∞

n−1∑
i=1

1

Kn−i
0

= lim
n→∞

1
Kn

0
− 1

1−K0

=
1

K0 − 1
.
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Taking C1 = ( 1
K0−1

)
(
maxθ∈[0,1]

∣∣∣T ′′(T i(θ))
T ′(T i(θ))

∣∣∣) we have,

∣∣∣∣log((T n)′(x)

(T n)′(y)

)∣∣∣∣ < C1,

↔ −C1 < log

(
(T n)′(x)

(T n)′(y)

)
< C1

Let C = eC1

C−1 <
(T n)′(x)

(T n)′(y)
< C

3.2 Ergodic properties of T

In this section we will prove two important ergodic properties for our system

(T, µ). First, we will start by showing that (T, µ) is ergodic and we will conclude

with the proof of exactness.

Lemma 3.1. Let T be a C2 expanding map with two branches, then

m(T n(A))

m(T n(B))
< C

m(A)

m(B)

for any A,B ⊂ [0, 1] which belong to the same partition element, where C is the

constant obtained from the Bounded Distortion Property.

Proof. Using Bounded distortion property, by 3.4, there exist C > 0 such that for

any x, y in the same element of the partition,

(T n)′(x) ≤ C · (T n)′(y)
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Let A,B be subsets which belong to the same partition element. Integrating the

last expression with respect to the Lebesgue measure m over the set A, we get for

y in that element, ∫
A

(T n)′(x)dm(x) ≤ C

∫
A

(T n)′(y) dm(x)

≤ C · ((T n)′(y)) ·m(A).

Then integrating over the set B with respect to y we get(∫
A

(T n)′(x) dm(x)

)
·m(B) ≤ C ·m(A)

(∫
B

(T n)′(y) dm(y)

)

Thus,

m(T n)(A)

m(T n)(B)
=

∫
A
(T n)′(x) dm(x)∫

B
(T n)′(y) dm(y)

≤ C · m(A)

m(B)

Therefore we have proved:

m(T n)(A)

m(T n)(B)
≤ C · m(A)

m(B)

We recall the well known Lebesgue’s Density Point Theorem, the proof can be

found in [5].

Theorem 3.3 (Lebesgue’s Density Point). Let A be a Lebesgue measurable subset

of [0, 1] and let Bϵ(x) be a ϵ- neighborhood of a point x ∈ R. Then for almost all

x ∈ A the limit

lim
ϵ→0

m(A ∩Bϵ(x))

m(Bϵ(x))
(3.5)
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exist and equals 1.

The points for which 3.5 hold are called density points of the set A.

Theorem 3.4. (T, µ) is ergodic.

Proof. Suppose by contradiction that T is not ergodic. Let A be a Borel set such

that T−1A = A and 0 < µ(A) < 1. Let x be a density point of A, then by the above

result we know that for the Lebesgue measure m,

lim
ϵ→0

m(A ∩Bϵ(x))

m(Bϵ(x))
= 1.

Re-writing this,

↔ lim
ϵ→0

m(A ∩Bϵ(x))

m(Bϵ(x))
= 1

↔ lim
ϵ→0

m(Bϵ(x))

m(Bϵ(x))
− m(Bϵ(x) \ A)

m(Bϵ(x))
= 1

↔ lim
ϵ→0

1− m(Bϵ(x) \ A)
m(Bϵ(x))

= 1

↔ lim
ϵ→0

m(Bϵ(x) \ A)
m(Bϵ(x))

= 0

↔ lim
ϵ→0

m(Bϵ(x) ∩ Ac)

m(Bϵ(x))
= 0

Thus, given δ there exist ϵ0 such that

m(Bϵ(x) ∩ Ac)

m(Bϵ(x))
≤ δ (3.6)

for any ϵ < ϵ0.

Now consider an interval of size ϵ around x which is the union of intervals

Iw0,w1,...,wn up to a set of Lebesgue measure zero. Then, 3.6 holds for at least one
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Iw0,w1,...,wn , i,e

m(Iw0,...,wn ∩ Ac)

m(Iw0,...,wn)
≤ δ

On the other hand, note that since A is T invariant, then Ac is also T - invariant

and since T n : Iw0,w1,...,wn → [0, 1] is one to one, we get that T n(Iw0,...,wn ∩ Ac) = Ac

up to a set of Lebesgue measure zero.

Then from Theorem 3.1 we get

m(Ac) =
m(Ac)

m([0, 1])

=
m(T n(Iw0,...,wn ∩ Ac))

m(T n(Iw0,...,wn))

≤ C · m(Iw0,...,wn ∩ Ac)

m(Iw0,...,wn)

≤ C · δ

Thus if we choose δ small enough we get m(Ac) = 0, but we showed that µ

is absolutely continuous with respect to the Lebesgue measure m, then µ(Ac) = 0,

and so µ(A) = 1 which is a contradiction since we suppose 0 < µ(A) < 1. Hence,

(T, µ) is ergodic.

Our next goal is to prove that (T, µ) is an exact endomorphism. To do this

we will start defining exactness which will be used again in the next Chapter where

will prove exactness for a more general system.

Definition 3.1. We say that T is and exact endomorphism if

∞∩
n=0

T−nB = N
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where B is the given σ−algebra and N is the σ−algebra of sets of measure 0 or 1.

In other words, (T,X) is exact if there is no set A such that 0 < µ(A) < 1

and for every n there exists a set Bn ∈ B which satisfies A = T−nBn.

Theorem 3.5. (T, µ) is exact.

Proof. Suppose by contradiction that there exist A such that 0 < µ(A) < 1 and for

each n there exists Bn ∈ B such that A = T−n(Bn). Let x be a density point of A.

Then by Lebesgue’s Density theorem

lim
ϵ→0

m(A ∩Bϵ(x))

m(Bϵ(x))
= 1,

where Bϵ is a ϵ-neighborhood of the point x. Then,

lim
ϵ→0

m(Ac ∩Bϵ(x))

m(Bϵ(x))
= 0

where Ac is the complement of the set A. Thus, for all δ > 0 there exist ϵ0 > 0 such

that if ϵ < ϵ0,

m(Ac ∩Bϵ(x))

m(Bϵ(x))
≤ δ. (3.7)

Now consider an interval of size ϵ around x which is the union of intervals

Iw0,w1,...,wn up to a set of Lebesgue measure zero. Then, (3.7) holds for at least one

Iw0,w1,...,wn , i.e

m(Ac ∩ Iw0,...,wn)

m(Iw0,...,wn)
≤ δ.

Let Dn be the complement of Bn, then Ac = T−nDn. Considering this, the

fact that T n : Iw0,...,wn → [0, 1] is injective, and lemma 3.1 we get:
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m(Dn) =
m(Dn)

m([0, 1])

=
m(T n(Ac ∩ Iw0,...,wn))

m(T n(Iw0,...,wn))

≤ C · m(Ac ∩ Iw0,...,wn)

m(Iw0,...,wn)

≤ C · δ.

Choosing δ small enough, we have that lim
n→∞

m(Dn) = 0, but µ is absolutely con-

tinuous with respect to the Lebesgue measure, then lim
n→∞

µ(Dn) = 0. On the other

hand, since T is µ-invariant and Ac = T−nDn we have

µ(Dn) = µ(T−n(Dn))

= µ(Ac)

but we proved lim
n→∞

µ(Dn) = 0, then µ(Ac) = 0. Therefore, µ(A) = 1 which contra-

dicts our assumption that 0 < µ(A) < 1. Hence, (T, µ) is exact.

3.3 Rochlin Entropy Formula

Entropy theory was developed essentially by Rochlin, Sinai ,and Kolmogorov

in the late 1950’s. Here we will introduce the concept of the entropy of a measure

preserving transformation.

Let ξ = {Ai}ki=1 be a finite partition of (X,B, µ). Let

H(ξ) = −
k∑

i=1

µ(Ai) log µ(Ai).
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We define the Entropy with respect to the partition ξ by

h(T, ξ) = lim
n→∞

1

n
H(

n−1∨
i=0

T−iξ)

and the Entropy with respect to the measure µ is define by

hµ(T ) = sup
ξ

h(T, ξ).

A partition ξ ofX is called a generator for a measure preserving transformation

T if
∞∨
0

T−nξ = B,

in other words, every measurable set can be arbitrary well approximated by elements

of
∞∨
0

T−nξ.

Theorem 3.6 (Kolmogorov-Sinai Theorem). If ξ is a generator, then

hµ(T ) = h(T, ξ)

Kolmogorov proved this theorem for Bernoulli partitions and Sinai [16] gener-

alized the proof in 1959. We now introduce Shannon-McMillan-Breiman Theorem

which will be an essential tool to prove Rochlin Entropy formula.

Theorem 3.7 (Shannon-McMillan-Breiman). Let T be an ergodic measure preserv-

ing transformation of (X,B, µ). Let ξ be a finite partition of X and let Bn(x) denote

the member of the partition
∨n−1

i=0 T−iξ to which x belongs. Then,

lim
n→∞

−1

n
log µ(Bn(x)) = h(T, ξ) a.e.

For details about this theorem we suggest Parry [11] and Walters [19].

33



Theorem 3.8. Let T be a C2 expanding map with two branches. Then, the absolutely

continuous invariant measure µ satisfies Rochlin entropy formula, i.e,

hµ(T ) =

∫
log(

dT

dx
) dµ.

Proof. Consider the partition ξn = ξ0 ∨ T−1ξw0 ∨ . . . T−(n−1)ξwn−1 with elements

Ew0,...,wn−1 .

Note that by the Mean Value Theorem, there exist θ ∈ Ew0,...,wn−1 such that

m(T n(Ew0,...,wn−1)) = DT n(θ)m(Ew0,...,wn−1)

where m denotes the Lebesgue measure. As T n maps Ew0,...,wn−1 onto [0, 1],

1 = DT n(θ) m(Ew0,...,wn−1). (3.8)

and since µ = ρ ·m and ρ ∈ C([0, 1]) there exist K1, K2 positive constants such that

K2 ·m(Ew0,...,wn) ≤ µ(Ew0,...,wn) =

∫
Ew0,...,wn

ρ dµ ≤ K1 ·m(Ew0,...,wn).

So, by 3.8 we get that for every x ∈ Ew0,w1,...,wn−1 ,

K2(DT n(x))−1 ≤ µ(Ew0,...,wn) ≤ K1(DT n(x))−1.

Then,

log µ(Ew0,...,wn) ≤ logK1 + log(DT n(x))−1

− 1

n
log µ(Ew0,...,wn) ≥ − 1

n
logK1 −

1

n
log(DT n(x))−1.
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Taking limits in this last expression when n tend to infinity we have that the left

terms on the right side go to zero so:

lim
n→∞

− 1

n
log(DT n(x))−1 = lim

n→∞
− 1

n
log µ(Ew0,...,wn).

But by Shannon-McMillan-Breiman Theorem (3.7),

lim
n→∞

−1

n
log µ(Ew0,...,wn−1(x)) = hµ(T )

for µ-almost all x, which implies that

lim
n→∞

− 1

n
log(DT n(x))−1 = hµ(T ).

Now, let fix such an x, then

lim
n→∞

− 1

n
log(DT n(x))−1 = lim

n→∞

−1

n
log

(
dT n(x)

dx

)−1

= lim
n→∞

1

n
log

(
dT n(x)

dx

)
= lim

n→

1

n

n∑
i=1

log

(
dT (T i(x))

dx

)

so

lim
n→∞

1

n

n∑
i=1

log

(
dT (T i(x))

dx

)
= hµ(T ).

On the other hand by Birkhoff Ergodic Theorem, theorem 1.4, for µ- almost

all x,

lim
n→

1

n

n∑
i=1

log

(
dT (T i(x))

dx

)
=

∫
log

dT

dx
dµ.
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Hence choosing the same x from Shannon-McMillan-Breiman Theorem and from

Birkhoff Ergodic Theorem we get,

hµ(T ) =

∫
log

dT

dx
dµ.
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Chapter 4: Expanding maps with infinitely many branches

4.1 Existence and ergodic properties of Gibbs measures

The problem of showing the existence of invariant measure has been approach-

ing from different points of view in the previous chapters. Here we present a gen-

eralization of this problem following Walter’s paper [18]. In particular, expanding

maps are treated as a particular case. The proof of the Ruelle’s Perron Frobenius

Theorem will allow us to study the existence of absolutely invariant measures and

their ergodic properties.

Let X̄ be a compact metric space and let X and X0 be open dense subsets of

X̄ such that X0 ⊂ X ⊂ X̄. Let us also consider T : X0 → X a continuous map with

the following conditions:

(iT ) There exist ϵ0 > 0 such that for every x ∈ X,

T−1(B2ϵ0(x) ∩X) =
⊔
i

Ai(x)

where the union can be countable. Here Ai(x) are open subsets of X0 and

T |Ai : Ai → B2ϵ0(x) ∩X is an homeomorphism non-decreasing distances, i.e,

if two element belong to the same set Ai(x), then their distance under T is

grater or equal to the distance between them.
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(iiT ) For every ϵ there exists M > 0 such that for each x ∈ X, T−Mx is ϵ-dense in

X.

Now, let φ be a continuous function on X0, and let ϵ > 0. Suppose there exists

K such that:

(i)φ
∑

y∈T−1x

eφ(y) ≤ K for all x ∈ X, and

(ii)φ if d(x, x′) < ϵ0, then

Cφ(x, x
′) = sup

n>1
sup

y∈T−nx

n−1∑
i=0

[φ(T iy)− φ(T iy′)]

exist and it is bounded from above by a constant Cφ.

Proposition 4.1. Let G(X0) = {g ∈ C(X)| g > 0 and
∑

y∈T−1x g(y) = 1 ∀x ∈

X}. If g ∈ G(X0), then for φ = log g condition (i)φ is satisfied.

Proof. Note that

∑
y∈T−1x

eφ(y) =
∑

y∈T−1x

g(y) = 1 for all x ∈ X. (4.1)

and so condition (i)φ is satisfied with K = 1.

Let g ∈ G(X0) and φ = log g as in the the above proposition. Note that if φ

satisfies condition (iiφ), then

If d(x, x′) < ϵ0, then Cφ(x, x
′) = sup

n>1
sup

y∈T−nx

n−1∏
i=0

g(T iy)

g(T iy′)
(4.2)

exist and it is bounded. In fact,

sup
n>1

sup
y∈T−nx

n−1∑
i=0

[φ(T iy)− φ(T iy′)] = sup
n>1

sup
y∈T−nx

n−1∑
i=0

[log g(T iy)− log g(T iy′)]
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= sup
n>1

sup
y∈T−nx

[log
n−1∏
i=0

g(T iy)− log
n−1∏
i=0

g(T iy′)]

= sup
n>1

sup
y∈T−nx

[log
n−1∏
i=0

g(T iy)

g(T iy′)
].

Thus, condition (iiφ) is equivalent to condition (4.2).

Now, we will state the following lemma which will be used in the next theorem

where we prove the existence of a fixed point for the Dual operator L∗
log g

Lemma 4.1. Let T : X0 → X be as above and let φ satisfy conditions (iφ) and (iiφ).

Then, for any ϵ > 0 there exist a positive natural number N and a real constant a

such that for any x,w ∈ X there exist y ∈ T−Nx ∩Bϵ(w) which satisfy

N−1∑
i=1

φ(T iy) ≥ a.

The proof can be found in [18].

Theorem 4.1. Let T be as above and let g ∈ G(X0) satisfying (4.2). Then, there

exists µ ∈ M(X̄) such that:

1. For all f ∈ C(X̄)

lim
n→∞

|Ln
log gf − µ(f)| → 0.

2. µ is the only fixed point of L∗
log g.

Proof. In this case our function φ = log g. Let f be in C(X̄), we will show the

existence of the measure µ by using Arzela Ascoli Theorem (See [12]). Define the

set

Ln = {Lnf : n ≥ 0}.
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We want to prove that Ln is equicontinuous. In fact, let x, x′ be in X such that

d(x, x′) < ϵ < ϵ0. Then,

∣∣Ln
φf(x)− Ln

φf(x
′)
∣∣ =

∣∣∣∣∣∣
∑

y∈T−nx

n−1∏
i=1

g(T i−1(y))f(y)−
∑

y∈T−nx

n−1∏
i=1

g(T i−1(y′))f(y′)

∣∣∣∣∣∣
= |

∑
y∈T−nx

n−1∏
i=1

g(T i−1(y))f(y)−
∑

y∈T−nx

n−1∏
i=1

g(T i−1(y))f(y′)

+
∑

y∈T−nx

n−1∏
i=1

g(T i−1(y))f(y′)−
∑

y∈T−nx

n−1∏
i=1

g(T i−1(y′))f(y′)|

≤

∣∣∣∣∣∣
∑

y∈T−nx

n−1∏
i=1

g(T i−1(y))f(y)−
∑

y∈T−nx

n−1∏
i=1

g(T i−1(y))f(y′)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

y∈T−nx

n−1∏
i=1

g(T i−1(y))f(y′)−
∑

y∈T−nx

n−1∏
i=1

g(T i−1(y′))f(y′)

∣∣∣∣∣∣
≤ sup{f(u)− f(v) : d(u, v) < ϵ}

+ ||f ||
∑

y∈T−n

(
n−1∏
i=1

g(T i−1(y′))

)(∏n−1
i=1 g(T i−1(y))∏n−1
i=1 g(T i−1(y′))

− 1

)
≤ sup{f(u)− f(v) : d(u, v) < ϵ}+ ||f ||Cφ(x, x

′)

where the last inequality is because g satisfy (4.2). Thus, we have proved that

Ln is equicontinuous. Also, we can easily see that the set L̄n is compact since

||Ln
φf || ≤ ||f || for all f ∈ C(X̄), so by Arzela-Ascoli Theorem there exist a sequence

{ni} and a continuous function f̄ such that Lni
φ f → f̄ .

On the other hand we have that:

min(f) ≤ min(Lφf) ≤ . . . ≤ min(f̄) ≤ max(f̄) ≤ . . .

≤ max(Lφf) ≤ max f

Clearly

min(Lk
φf̄) = min(f̄) for all k > 0. (4.3)
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That implies (see Walters [18]),

min(f̄) = f̄ . (4.4)

Then f̄ is constant and so we can define µ(f) = f̄ . Thus, µ is a measure in X̄,

µ : C(X̄) → R. Now we claim that L∗
φµ = µ. In fact,

L∗
φµ(f) = µ(Lφf)

= (Lφf) by 4.4

= min (Lφf), by 4.3

= minLφ(f̄),

= min(f̄)

= f̄

= µ(f)

Hence, we have proved that µ is a fixed point of L∗
φ and that

Ln
φf → µ(f). (4.5)

Now to prove uniqueness, suppose there exist m ∈ M(X) such that L∗
φm = m, then

integrating 4.5 with respect to m we have:∫
Ln

φf dm → µ(f).

On the other hand, ∫
Ln

φf dm = m(Ln
φf)

= (Ln
φ)

∗m(f)

= m(f).
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This implies that m(f) = µ(f) for all f ∈ C(X̄).

Theorem 4.2 (Ruelle-Perron-Frobenius Theorem). Let T : X0 → X be as before

and let φ ∈ C(X0) satisfy (i)φ and (ii)φ. Then, there exist ν ∈ M(X̄), h ∈ C(X̄),

h > 0 and a positive real number λ such that:

1. L∗
φν = λν.

2. Lφh = λh

3. ν(h) = 1

4. 1
λnLn

φ → h · ν(f) for all f ∈ C(X)

Proof. 1. First note that

Lφ1(x) =
∑

y∈T−1x

eφ(y) > 0

Now consider the function

F : M(X̄) → M(X̄)

ν 7→
L∗

φν

(L∗
φν)(1)

In order to use Theorem 3.2 , we need to prove that F (ν) ∈ M(X̄). However,

by Theorem 1.1 we only need to prove that F (ν) belongs to the set

{α ∈ C(X)∗ : α(1) = 1 and α(f) ≥ 0}.

In fact,

•
L∗

φν(1)

(L∗
φν)(1)

= 1, and
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•
L∗

φν(f)

(L∗
φν)(1)

> 0 for all f ∈ C(X).

Thus by Shauder-Tychonoff Fixed Point Theorem, there exist ν ∈ M(X̄) such that

F (ν) = ν, i.e

L∗
φν =

[
L∗

φν(1)
]
ν.

Taking λ = L∗
φν(1) > 0, we have L∗

φν = λν.

2. Consider the set

Γ = {f ∈ C(X̄) : f > 0, ν(f) = 1, f(x) < eC(x,x′)f(x′) if x, x′ ∈ X with d(x, x′) < ϵ0}.

Note that Γ is not empty. In fact we can check that λ−1L1 ∈ Γ since:

• λ−1L1 > 0 since λ > 0 and L1 > 0.

•

ν(λ−1L1) = λ−1ν(L1)

= λ−1L∗ν(1)

= λ−1λν(1)

= ν(1) = 1.

• Let x and x′ be in X such that d(x, x′) < ϵ0, then

L1(x) =
∑
yT

x

eφ(y)
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≤
∑

y∈T−1x

eφ(y)(
∑

y′∈T−1x′

eφ(y
′) − eφ(y

′))

=
∑

y∈T−1x

eφ(y)−φ(y′)
∑

y′∈T−1x′

eφ(y
′)

≤ exp{ sup
y∈T−1x

φ(y)− φ(y′)}
∑

y′∈T−1x′

eφ(y
′)

≤ exp{C(x, x′)}L1(x′).

Now we will prove Γ is bounded and equicontinuous. To prove Γ is bounded, let ϵ

be such that ϵ < ϵ0. Note that by Lemma 4.1, there exist N and a constant a. Let

x,w be in X, then choose y0 ∈ T−Nx ∩Bϵ(w) such that

N−1∑
i=1

φ(T iy0) ≥ a.

Thus,

LNf(x) =
∑

y∈T−Nx

eSNφ(y)f(y)

≥ eSNφ(y0)f(y0)

≥ eaf(y0)

≥ ea−Cf(w).

Hence, f(w) ≤ eC−aLNf(x) for all w, x ∈ X, so we have that f(w) ≤ eC−aν(LNf) =

eC−aλN . Let K = eC−aλN , then f(w) ≤ K for all w ∈ X and so Γ is bounded.

In order to prove that Γ is equicontinuous, let f be in Γ and let x, x′ ∈ X such

that d(x, x′) < ϵ0. Note that since f ∈ Γ, f(x) < eC(x,x′)f(x′), writing C = C(x, x′)

we have,

|f(x)− f(x′)| = max(f(x)− f(x′), f(x′)− f(x))
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≤ max(eCf(x′)− f(x′), eCf(x)− f(x))

= max(f(x′)(eC − 1), f(x)(eC − 1))

= Kmax(eC − 1, eC − 1)

Now, by condition (ii)φ, if d(x, x
′) < ϵ, C is bounded above by Cφ, then

|f(x)− f(x′)| < ϵ1,

where, ϵ1 = Kmax(eCφ − 1, eCφ − 1), and so Γ is equicontinuous.

Since Γ is clearly convex and closed it only remain to prove that λ−1L(Γ) ∈ Γ.

In fact, let f be in Γ. Clearly λ−1Lf > 0 and by definition of the dual, definition

1.4,

ν(λ−1Lf) = λ−1L∗ν(f) = ν(f) = 1.

It is only left to prove the last condition in our set Γ. Let x, x′ ∈ X such that

d(x, x′) < ϵ0. Since f ∈ Γ, in particular satisfies that f(x) ≤ eC(x,x′)f(x′). Then,

λ−1Lf(x) = λ−1
∑

y∈T−1x

eφ(y)f(y)

≤ λ−1
∑

y∈T−1x

eφ(y)eC(x,x′)f(y′)eφ(y
′)−φ(y′)

= λ−1
∑

y∈T−1x

eφ(y′)f(y′)[eφ(y)−φ(y′)]eC(x,x′)

≤ λ−1Lf(x′)eC(x,x′)

Applying Schauder-Tychonoff Theorem there exist a fixed point h ∈ Γ such

that λ−1Lh = h, i.e

Lh = λh.
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Since h ∈ Γ, it follows that ν(h) = 1 and h > 0 as we wanted. So we have proved

(2) and (3).

Now, let g = eφh/(λh ◦ T ). Note that g ∈ G(X0) and moreover, g satisfies

equation (4.2). In fact, let x and x′ be in X and d(x, x′) < ϵ0. If y ∈ T−nx then

n−1∏
i=0

g(T iy)

g(T iy′)
= exp (Snφ(y)− Snφ(y

′))
h(y)

h(y′)

h(T ny′)

h(T ny)

= exp (Snφ(y)− Snφ(y
′))

h(y)

h(y′)

h(x′)

h(x)
.

Since

Cφ(y
′, y) = sup

n≤1
sup

y∈T−nx

Snφ(y
′)− Snφ(y),

then,

exp (Snφ(y)− Snφ(y
′)− C(y′, y)− C(x, x′)) ≤

n−1∏
i=0

g(T iy)

g(T iy′)

≤ exp (Snφ(y)− Snφ(y
′) + C(y′, y) + C(x, x′))

and so,

exp (−C(x, x′)− C(x′, x)) ≤
n−1∏
i=0

g(T iy)

g(T iy′)
≤ exp (C(x, x′) + C(x′, x))

which proved that (iii)G is verified.

Now, by Theorem 4.1 there exist µ ∈ M(X̄) such that Ln
log gf converges uni-

formly to µ(f) for all f ∈ C(X̄) where µ ∈ M(X̄) satisfy L∗
log gµ = µ.
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Since g = eφh
λ·h◦T , then Ln

φf(x) = λnh(x)(Llog gf/h)(x). Thus, Ln
φf converges to

λnhµ(f/h). Now we want to prove that

µ(f/h) = ν(f), (4.6)

which will implies that Ln
φf → λnhν(f) as we want. In fact, define m(f) = ν(hf).

Then,

m(Llog gf) = ν(h · Llog gf)

=
1

λ
ν(Lφ(f · h))

= ν(f · h)

= m(f),

Note that proving 4.6 we actually prove that µ(f) = ν(hf), i.e the measure

that was obtained in Theorem 4.1 is equivalent to the measure ν. Thus µ = hν is

the absolutely continuous invariant measure for T.

Corollary 4.1. The measure µ and the scalar λ are uniquely determine by the

conditions: λ > 0, ν ∈ M(X̄), and L∗
φν = λν.

Proof. We showed in the previous theorem that

lim
n→∞

1

λn
Lφ

n(f) = hν(f)

for all f ∈ CX̄. In particular, for f = 1,

lim
n→∞

1

λn
Lφ

n(1) = h · ν(1)
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= ν(h · 1)

= ν(h) = 1

Applying logarithm,

lim
n→∞

log
Ln

φ(1)

λn
= 0

lim
n→∞

[logLφ
n(1)− n log λ] = 0

log λ = lim
n→∞

1

n
logLn

φ(1)

On the other hand, by R-P-F Theorem we have that Ln
φh = λnh which implies

that we can write h = 1
λnLφ

nh. Replacing this in part 4 of R-P-F Theorem, we get

lim
n→∞

Ln
φf =

1

λn
(Ln

φh)ν(f).

Hence,

ν(f) = lim
n→∞

Ln
φf

Ln
φh

Proposition 4.2. Let T : X0 → X satisfy (i)T and (ii)T . Then T is a measure

preserving transformation and µ(X0) = ν(X0) = 1.

Proof. Let f > 0 be in C(X) with compact support inside X ∩B2ϵ0(x) for some ϵ0.

Then by Proposition1.2 we want to show:

µ(f ◦ T ) = µ(f).
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Let {Ai}∞i=1 be the component of T−1(X ∩B2ϵ(x)) and define Ti = T | Ai.

Thus, f ◦ Ti has compact support inside Ai and we can extend it over the

whole space by defining f ◦ Ti = 0 on X̄ \ Ai. Then,

(f ◦ T )(x) =
∑
i

f(Ti(x))

and by Theorem 4.1.

µ(f ◦ Ti) = L∗
log gµ(f ◦ Ti) (4.7)

=

∫
Llog g(f ◦ Ti)dµ (4.8)

=

∫
X∩B2ϵ0 (x)

g(T−1
i (x))f(x)dµ(x) (4.9)

(4.10)

Now summing this last expression, we get µ(f ◦ Ti) = µ(f).

To prove that µ is concentrate in X0 see [18].

Definition 4.1. A measure µ is said to have no atoms if for any measurable set A

of positive measure there exist B ⊂ A such that

µ(A) > µ(B) > 0.

Corollary 4.2. Let T : X0 → X as before and let φ ∈ C(X0) satisfy (i)φ and (ii)φ.

Consider λ, ν, h, µ, and g as in Theorem 4.2. Then

1. µ is positive on non-empy open sets and has no atoms.

2. ν ◦ T−n converges to µ in M(X̄).
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Proof. Let ϵ > 0. By Lemma4.1 there exist N > 0 and b > 0 such that if x,w ∈ X

there exist y ∈ T−Nx ∪Bϵ with

N−1∏
i=0

g(T iy) ≥ b.

Thus using Theorem 4.1

µ(Bϵ) = µ(χBϵ(w))

= µ(LN
log g(χBϵ(w)))

=

∫
LNχBϵ(w)(x)dµ(x)

=

∫ ∑
y∈T−Nx∩Bϵ

N−1∏
i=0

g(T iy)dµ(x)

where the last expression is grater or equal than b. Therefore, µ is positive on

nonempty open sets. Now let x0 be a point with the largest mass among all atoms.

Then,

µ(x0) = L∗
log gµ(χx0)

= µ(Llog gχx0)

=

∫
Llog gχx0(x)dµ(x)

=

∫ ∑
y∈T−1x

g(y)χx0(x)dµ(x)

=

∫
g(x0)dµ(Tx0)

= g(x0)µ(Tx0)
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but since g(x0) ≤ 1 and by the choice of x0 we must have g(x0) = 1 which contradicts

that g > 0 and ∑
z∈T−1(T (x0))

g(z) = 1

To prove part 2, first note that

Ln
φ(f ◦ T n) =

∑
y∈T−nx

eSnφ(y)(f ◦ T n)(y)

=
∑

y∈T−nx

eSnφ(y)f(x))

= f ◦ Ln
φ1

Thus by Theorem 4.2,

∫
fd(ν ◦ T−n) =

∫
f ◦ T ndν

=
1

λn

∫
Ln

φ(f ◦ T n)dν

=
1

λn

∫
f ◦ Ln

φ1dν

=

∫
f · hdν

= ν(f · h)

= µ(f)

Hence, f ◦ T n converge to µ in M(X̄)

Definition 4.2 (Conditional Expectation). Let (X,B, µ) be a measure space and

let C be a sub σ-algebra of B. We define the conditional expectation operator

E(· | C) :  L1(X,B, µ) → L1(X, C, µ).

51



Let f be in L1(X,B, µ), f ≥ 0 and define

µf (C) = k

∫
C

fdµ,

where k = (
∫
X
fdµ)−1. Clearly, µf is a probability measure which is absolutely con-

tinuous with respect to µ. Then, by Radon- Nikodym Theorem there exist a function

E(f | C) ≥ 0 in L1(X, C, µ) such that:

∫
C

E(f | C) dµ =

∫
C

f dµ

If f is a real valued function on L1(X,B, µ), we define the conditional expec-

tation linearly by considering the positive and negative parts of f.

Definition 4.3. A transformation T : X̄ → X̄ is said to be an exact endomorphism

if
∞∩
n=0

T−nB = N

where B is the given σ−algebra and N is the σ−algebra of sets of measure 0 or 1.

To prove that (T, µ) is an exact endomorphism is the same as to prove

E(f |
∞∩
n=0

T−nB) = µ(f)

almost everywhere for all f ∈ L1(µ).

Lemma 4.2. Let T satisfy condition (iφ), and let g ∈ G(X) satisfy (4.2). Let µ be

as in the Theorem 4.1. Then,

Eµ(f | T−1B)(x) = Lf ◦ T (x)

µ-almost everywhere. Note that Lf ◦ T (x) =
∑

y∈T−1(Tx) g(y)f(y)
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Proof. Let f be in C(X̄).

∫
X̄

Llog gfdµ =

∫
X

Llog gfdµ

=

∫
X

Llog gfdµ

=

∫
X

Llog gfdT∗µ

=

∫
X

Llog gf ◦ Tdµ

=

∫
X

∑
y∈T−1x

g(y)f(y) ◦ Tdµ

=

∫
X

∑
y∈T−1(Tx)

g(y)f(y)dµ

Then, by definition 4.2,

E(f | T−1B)(x) =
∑

y∈T−1(Tx)

g(y)f(y)

Applying Lemma 4.2 consecutively we get the following corollary.

Corollary 4.3. Let T satisfy condition (iφ), and let g ∈ G(X) satisfy (4.2). Let µ

be as in the Theorem 4.1. Then,

Eµ(f | T−NB)(x) = L−Nf ◦ TN(x).

µ-almost everywhere.

Theorem 4.3. Let T : X0 → X as before and let φ ∈ C(X0) satisfy (i)φ and (ii)φ.

Consider λ, ν, h, µ, and g as in Theorem 4.2. Then (T, µ) is an exact endomor-

phism.
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Proof. Let ϵ > 0, we can choose l ∈ C(X̄) with
∫
|f − l| < ϵ

3
. This implies the

following observation:

|µ(f)− µ(l)| ≤
∫

|f − l|dµ ≤ ϵ

3
. (4.11)

Now, since by Theorem 4.1, Ln
log gf → µ(f) for all f ∈ C(X̄) :

∫
|Ln

log gf − µ(f)|dµ =

∫
|Ln

log gf − Ln
log gl + Ln

log gl − µ(l) + µ(l)− µ(f)|dµ

≤
∫

|Ln
log gf − Ln

log gl|dµ+

∫
|Ln

log gl − µ(l)|dµ+

∫
|µ(l)− µ(f)|dµ

<
ϵ

3
+

ϵ

3
+

ϵ

3
= ϵ

Thus Ln
log gf converge to µ(f) in L1(µ). Next, we estimate:

∫
|E(f | ∩∞

n=0T
−nB)− µ(f)| dµ =

∫
|E(f | ∩∞

n=0T
−nB)− E(f | T−NB) + E(f | T−NB)

−µ(f)| dµ

≤
∫

|E(f | ∩∞
n=0T

−nB)− E(f | T−NB)|+∫
|E(f | T−NB)− µ(f)| dµ

For large N the first term is small by the Martingale Theorem, and for the second

term we use Corollary 4.3 and get

∫
|E(f | T−NB)− µ(f)| dµ =

∫
|LNf ◦ TN − µ(f)|dµ

=

∫
|LNf − µ(f)|dµ
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which is small as we proved above. Thus the result follows when n tends to infinity.

4.2 Expanding Maps

In this section we will apply the results obtained in Section 4.1 for the case

when T is an expanding map where all conditions stated before are satisfied. Let

X be a compact connected manifold, in this case, X = X̄ = X0. Let ν be a smooth

probability measure on X, we would like to find a T -invariant probability measure

µ ∈ M(X) which is equivalent to ν. The result will be an immediate consequence

from the results proved in the previous section.

Definition 4.4. Let T : X → X be a C1 map, n ≥ 0. We say that T is expanding

if there exist constants γ > 1 and K > 0 such that

||DT nv|| ≥ Kγn||v||

for all tangent vectors v, where DT is the tangent map of T.

This constants depends on the choice of the Riemannian metric and then an

appropriate metric can be chosen so that we can consider K = 1. Also, if d is the

metric on X which is determined by the Riemannian metric, there exist δ > 0 such

that if d(x, x′) < δ, then

d(Tx, Tx′) ≥ γd(x, x′).

Lemma 4.3. Let T : X → X be expanding, then T satisfies conditions (iT ) and

(iiT .)

55



Since T is an expanding map, then T is a covering map. In fact, the set

T−1B2ϵ(x) =
⊔k

i=1 Ai(x) and T : Ai → B2ϵ(x) is a homeomorphism. A good ref-

erence for more details is the well known lectures notes from Viana [17]. To prove

that (iiT ) holds, we refer to [18] and [15].

Lemma 4.4. Let T : X → X be an expanding C2-map. If φ(x) = − log |T ′(x)|,

then φ satisfies condition (i)φ and (ii)φ.

Proof. Since we showed that the set {T−1x} is bounded, there exist a constant

K̄ > 0 such that ∑
y∈T−1x

eφ(y)f(y) ≤ K̄.

To prove (ii)φ, let y ∈ T−n(x), and ϵ > 0. Suppose that d(x, x′) < ϵ for x, x′ ∈ X.

Then, for n > s we prove,

d(x, x′) = d(T (T−1x), T (T−1x′))

≥ γd(T−1x, T−1x′).

Then inductively we get that

d(T−jx, T−jx′) ≤ γ−jd(x, x′) for j > 0.

Then, as − log |T ′(x)| is a C2-map we get,

|
n−1∑
i=0

φ(T iy)− φ(T iy′)| ≤ C
n−1∑
i=0

d(T iy, T iy′)

≤ C

n−1∑
i=0

d(T i−n(T ny), T i−n(T ny′))
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≤ C

n−1∑
i=0

d(T i−n(x), T i−n(x′))

≤ C
n−1∑
i=0

γi−nd(x, x′)

≤ C
d(x, x′)

(1− γ)

≤ C
ϵ

(1− γ)

Therefore Cφ(x, x
′) = sup

n>1
sup

y∈T−nx

n−1∑
i=0

[φ(T iy)− φ(T iy′)] is bounded.

Since we have verified the conditions over T and φ. We can apply the results

obtained in the previous section which give the following important Theorem for

expanding maps.

Theorem 4.4. Let T : X → X be expanding and let ν ∈ M(X) be a smooth

measure. Then, there exist µ a T -invariant measure which is equivalent to ν and

h ∈ C(X), h > 0 such that:

1. Ln
φf → h · ν(f) for all f ∈ C(X). Note that in this case

Ln
φf =

∑
y∈T−nx

f(y)

|(T−n)′(y)|
.

2. The measure µ = h · ν is T -invariant.

3. ν ◦ T−n → µ in M(X).

4. (T,X) is an exact endomorphism.

5. The measure ν is T -invariant if and only if
∑

y∈T−1(x)

1

|T ′(y)|
= 1, for all x ∈ X.
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The proof is an immediately consequence of the Theorems 4.2, 4.3, and Corol-

lary 4.2. To prove the last statement, we can se that ν is invariant if and only if

h ≡ 1. In this case, Lφ1 = 1, so ν is T - invariant if and only if
∑

y∈T−1x

1

|T ′(y)|
= 1.

Example 4.1. Consider T : z 7→ z2 on |z| = 1 or equivalently T : x 7→ 2x (mod 1).

In this case, T ′ ≡ 2, and ν is the Lebesgue measure.
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