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Abstract. Discretization and linearization of the incompressible Navier-Stokes equations leads
to linear algebraic systems in which the coefficient matrix has the form of a saddle point problem
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In this paper, we describe the development of efficient and general iterative solution algorithms for
this class of problems. We review the case where (0.1) arises from the steady-state Stokes equations
and show that solution methods such as the Uzawa algorithm lead naturally to a focus on the Schur
complement operator BF~!BT together with efficient strategies of applying the action of F~! to
a vector. We then discuss the advantages of explicitly working with the coupled form of the block
system (0.1). Using this point of view, we describe some new algorithms derived by developing
efficient methods for the Schur complement systems arising from the Navier-Stokes equations, and
we demonstrate their effectiveness for solving both steady-state and evolutionary problems.
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1. Introduction. The aim of this paper is to give an overview of
the development and utility of some new algorithms for computing the
numerical solution of the Navier-Stokes equations

au; —vAu+ (u-grad)u+gradp = f (1.1)
subject to incompressibility constraints
—divu = 0. (1.2)

The problem is posed on an open bounded domain 2 in R? or R?®, with
suitable boundary conditions specified on 0f2. The parameter o has the
value 0 for steady-state versions of (1.1) and 1 for evolutionary problems.

The methods under consideration are applicable to a broad collection
of discrete versions of (1.1)—(1.2), all of which treat the primitive variable
formulation directly and require the solution of a series of linear systems
of equations in which the coefficient matrix is of the form arising in saddle

point problems,
F BT
B 0 '

The philosophical points of view behind the algorithm development are:

1. The methods are derived using tools for simpler problems as build-

ing blocks. In particular, they depend on having efficient numeri-

cal algorithms for solving two subsidiary problems, the scalar Pois-

son equation and the scalar convection-diffusion equation. More-

over, it is possible to make use of approximate solutions of these
subsidiary problems obtained using iterative methods.

2. The solution strategies adapt in a straightforward manner to vari-
ants of the problem. In principle, the same code could be used to
handle evolutionary problems (with suitable time discretizations),
steady-state problems, or Stokes systems.

An overview of the paper is as follows. We will assume throughout
that the spatial discretization is div-stable; we have in mind low order
finite element discretizations that satisfy an inf-sup condition, or the
MAC finite difference discretization [15, 17, 21]. The solution methods
considered are generalizations of techniques developed originally for the
steady-state Stokes equations, and in Section 2 we outline the derivation
of our point of view as it evolved for this problem class. In Section 3,
we introduce the solution methodology for the steady-state Navier-Stokes
equations and discuss its properties. In Section 4, we discuss some strate-
gies for time discretization to which the methodology applies directly, and
we demonstrate its performance in this setting. A brief summary of the
results of these sections is that for the Stokes equations, it is possible to
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develop optimal algorithms whose convergence rates are independent of
the discretization mesh size used, provided methods with this property
(such as multigrid) are available for certain subproblems entailing the
Poisson equation. A similar statement applies to the steady-state Navier-
Stokes equations, although performance does depend to some extent on
Reynolds numbers. For transient problems, this dependence becomes
negligible especially for small time steps. In Section 5, we give a brief
discussion of the relative merits of the ideas considered here and multi-
grid strategies for (1.1)—(1.2), and in Section 6 we make some concluding
remarks.

2. Background: The steady-state Stokes equations. We begin
by reviewing some results for the Stokes equations

—Au+gradp = f
—diva = 0.

Discretization leads to a linear system

(3% )()=(1) 21

where, for problems in d dimensions, A is a block diagonal matrix con-
sisting of a set of d independent discrete Laplace operators. The classical
Uzawa algorithm [1] starts with an arbitrary initial value py and performs
the iteration

for £ = 0 until convergence do
ugyr = AHf - BTpk)
Pk+1 = Pk + B Bugqy

enddo

(2.2)

Here, [ is a scalar parameter that must be determined prior to the iter-
ation.

Substitution of ug,; from the first step of (2.2) into the second step
shows that this computation is equivalent to an iteration for the pressures,

Pri1 = pr + B BAT(f — B'py).
This is a Richardson iteration [36] for the Schur complement system
BA'BTp=BA'f. (2.3)
The errors satisfy

p—pr=(—BBATB")) (p— ),
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and in the Euclidean norm,

lp = pill2 < [ (1 = BBAT BN  [Ip = poll-

The optimal convergence rate is achieved with the choice of 8 for which
the algebraically smallest and largest eigenvalues of I — 3(BA™'BT) are
equal in absolute value, i.e.

6 = 2/()\mm + )\max); (24)

where i, and A, are the extreme eigenvalues of BA=!BY. For this
choice, the convergence factor is

p(I = B(BAT'BY)) = (k= 1)/(k +1),

where kK = A\jae/Amin 18 the condition number of BA™!B”.

That this iteration is rapidly convergent for the Stokes equations is
a consequence of the properties of the Schur complement BA~!BT. Let
M, denote the mass matrix associated with the pressure discretization.
It is well known that the Schur complement satisfies

5 _ (p,BA™'B"p)

7? < <17

(pa MPU) N
where v > 0 is the inf-sup constant for the discretization and I' < Vid
[37]. We are assuming that the spatial discretization is div-stable, so that
v does not depend on the discretization mesh size h. Consequently, the
Schur complement operator is spectrally equivalent to the pressure mass
matrix. This assertion also applies to the marker-and-cell (MAC) finite
difference scheme [21], for which the mass matrix on a uniform grid is
h®I. Moreover, the pressure mass matrix is itself spectrally equivalent
to its diagonal, which also essentially has the form h%l [40]. It follows
that x(BA*BT) is independent of h. This discussion also suggests that
preconditioning by the mass matrix or some spectrally equivalent ap-
proximation @)y, may be beneficial, which is indeed the case [11]. The
preconditioned Uzawa algorithm updates the pressures as

Prir = P+ 8 Q) Bugy.

If § is defined as in (2.4) where A.,;;, and Ay, nOW represent extrema of
(¢,BA"'B”q)

the Rayleigh quotient @@ty )

, then we have the convergence bound

lp = pillau, < 2" P = pollou,

where p = (k — 1)/(k + 1) with & = Apez/Amin-
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Thus, the convergence rate of the Uzawa algorithm for solving the
Stokes equations is independent of discretization mesh size. An imple-
mentation requires the application of the action of the inverse of A to a
vector. If fast methods such as multigrid are available for this computa-
tion, then the Uzawa method is also an optimal strategy with respect to
operation counts. Nevertheless, there are some potential drawbacks:

1. It requires the parameter 3. Bounds on the inf-sup parameter can
often be used to estimate this quantity, but the need to specify it
adds a difficulty to implementation.

2. In some sense it is slow. In the context of iterative methods for
symmetric positive-definite systems of equations, it is known that
Richardson iteration is slower to converge than the conjugate gra-
dient method (CG). The convergence factor for CG is bounded by
p=(VE—1)/(VE+1)[26]

3. The action of the inverse of A is potentially costly. This is clearly
the dominant cost of the algorithm. Although fast solvers for
the Poisson equation are available, it would be desirable to avoid
accurate solution of this problem at every step.

Application of CG to (2.3) resolves the first and second of these dif-
ficulties. However, a matrix-vector product by BA~'BT is required at
each iteration, and we know of no way of avoiding an accurate compu-
tation of this operation. This entails accurate solution of the Poisson
equation. By way of contrast, because the Uzawa algorithm derives from
the coupling between the pressure and velocity, its first step can be re-
placed by an approximate computation of the action of A=! to produce
an algorithm with similar convergence characteristics [4, 11, 41]. It is
not straightforward to automate this process, however, since the inner
iteration for the Poisson equation requires a stopping criterion.

Thus, neither of these strategies completely resolves the drawbacks
listed above, and we have come to prefer an alternative approach, de-
veloped independently by Rusten and Winther [25] and Silvester and
Wathen [29, 39], which treats the saddle point problem (2.1) directly.
The system (2.1) is symmetric indefinite, so that the MINRES Krylov
subspace method [22] is applicable. When this method is applied to a
system Ax = b, the residual r, = b — Az, of the kth iterate satisfies

< mi A : 2.5
Irell < min - mase |pe(A) [Iol (2:5)

where II; denotes the set of all real polynomials p; of degree at most k
for which p(0) = 1, and o(.A) is the set of eigenvalues of A. (We will be
more precise about the norm below.) If 0(A) is contained in two intervals

[—a, —b] U [c, d], a, b, ¢, d >0, (2.6)
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where a — b = d — ¢, then the convergence factor is bounded by

1/2
, (L= V/0/ad)
1+ +/(bc)/(ad) '
MINRES can be combined with a symmetric positive-definite precon-

ditioner with the aim of reducing the size of the intervals containing the
eigenvalues. The considerations above point to the choice

Q= < %“ Q(z)\@, ) : (2.7)

Here, as above, Dy, represents an approximation to the mass matrix,
which is therefore a good approximation to the Schur complement, and
Q4 represents an approximation to A. In particular, if 4 is spectrally
equivalent to A, i.e.,
o, < AV o
(Ua QAU)

for 0y, 6, independent of the mesh size, then so are the intervals of (2.6),
as well as the convergence factor for MINRES.

Detailed discussions of the effectiveness of this approach are given in
[10, 25, 29]. The key point is that it achieves optimal convergence rates
automatically, without a need for exact computation of the action of A1,
or estimates of any parameters, or stopping criteria associated with an
inner iteration. )4 can be defined using any operation available, such
as multigrid or domain decomposition. In practice, one step of V-cycle
multigrid is an effective choice.

We conclude this review with two additional observations. First,
when preconditioning is used, the norm appearing in the expression (2.5)
depends on the choice of preconditioner,

1/2
||7”k||Q—1 = [(A@k — BTdk, Qzl(Aek — BTdk)) + (B@k, Q];IlpBek) / s
(2.8)
where e, = u — ug and dy = p — pg. Although this might appear to be
a problem, it is common for the Stokes equations to seek convergence in
the energy norm, given in discrete form by

[(ex, Aex) + (di, Mydy)]'?.

But if Q4 and @y, are spectrally equivalent to the discrete Laplacian and

mass matrix, respectively, then the residual norm of (2.8) is spectrally

equivalent to the energy norm [30]. Consequently, the quantity mini-

mized by preconditioned MINRES is a natural choice which is quasi-

optimal with respect to the energy norm. Second, although we have
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considered only steady problems here, the same point of view can be
adapted to the evolutionary Stokes equations [3, 6]. In this case, the
matrix A consists of a linear combination of a velocity mass matrix and
a discrete Laplace operator. Good preconditioners for the Schur com-
plement operator require an approximate Poisson solve on the pressure
space. The same considerations hold for this problem as in the discussion
above, and approximations based on fast iterative solvers for the pressure
Poisson equation can be used in a similar way.

3. The steady-state Navier-Stokes equations. We next consider
the steady version of the Navier-Stokes equations, i.e., & = 0 in (1.1).
For solving the nonlinear system, we will restrict our attention to Picard
iteration

—vAul™t + (0™ . grad) u™*Y + gradp™m+H = f
—divu™tt) = 0,

where the convection coefficient is lagged. For each m, this system has
the form of the Oseen equations. Discretization leads to a linear system

of the form
(5 9)()=(5) 52

to be solved at each step. Our solution strategy for this is to use Krylov
subspace methods such as the GMRES [27], QMR [14] or BiCGSTAB(L)
[32] algorithms, in combination with preconditioning. The latter is the
critical component needed for rapid convergence.

The discussion of the previous section leads to the idea that a precon-
ditioner should be derived using approximations to (the actions of the
inverses of) F' and the Schur complement S = BF 'BT. Before consid-
ering this in more detail, we first observe that for the symmetric problem
discussed above, there is good reason to restrict attention to precondi-
tioners with block diagonal form (2.7) in order to retain symmetry and
take advantage of the short-term recurrences and optimality achieved by
MINRES. However, no Krylov subspace method has both these capabili-
ties for nonsymmetric systems, and for (3.2) we prefer a block-triangular

preconditioner
Qr Bt
= ) 3.3
Q ( - (3.3)

Iteration with this choice requires approximately half the steps needed
with a block-diagonal version [8]. Applying the preconditioner, i.e., com-

puting
( w ) < C\,)F B >_1 ( v )
S 0 —(:25 q

6
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for given v, ¢ entails solving the systems
Qgss = —q, Qrw =v— BTs. (3.4)

The only cost not incurred by the block diagonal preconditioner is that
of a (sparse) matrix-vector product B”'s, which is negligible.

A more significant difference from the Stokes equations concerns the
construction of good approximations QQp ~ F' and Qg ~ S. The role of
F in (3.2) is largely analogous to that of A above: F'is a block diagonal
matrix consisting of a set of d independent discrete convection-diffusion
operators. Although the convection-diffusion equation is a more difficult
problem than the Poisson equation (in particular, the analysis of solution
algorithms is far less well developed), there are effective solvers available
for it, see for example [2, 9, 24, 42]. The Schur complement system is
less straightforward. An operator (s that is spectrally equivalent to the
pressure mass matrix, as discussed above, is easy to implement and has
also been shown to lead to (essentially) mesh independent rates of con-
vergence for (3.1)—(3.2) [8, 19]. However, performance deteriorates if the
Reynolds number becomes large, i.e., if the viscosity v is small. To rem-
edy this difficulty, we consider an alternative approach for constructing
a preconditioner, which leads to a methodology that adapts in a natu-
ral way to both steady-state and evolutionary problems. This idea was
originally developed by Kay and Loghin [18] using the structure of the
Green’s function for the operator of (3.1). The approach presented here
follows Silvester et. al. [28].

We start with (3.1) and for fixed m let w = u(™~Y denote the lagged
convection coefficient and —vA +w -V the resulting convection-diffusion
operator. Let us suppose that there is an analogous operator (—vA +w -
V), defined on the pressure space, and furthermore, that the commutator
of the convection-diffusion operators with the gradient operator,

(—vA+w-V)V—-V(—vA+w-V),, (3.5)
is small in some sense. A discrete version of this relation is that
(M, 'F) (M, 'B") — (M, 'B") (M, F,)

is also small, where M, is the mass matrix associated with the veloc-
ity discretization and £}, is a discrete approximation to the convection-
diffusion operator. A straightforward manipulation then yields the rela-
tion

BF'B" ~ A,F,'M,, (3.6)

where A, = BM;'B" is a discrete Laplacian. That is, the matrix on the
right hand side of (3.6) can be viewed as an approximation to the Schur
complement operator, and this defines a preconditioning operator Q)s.
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A precise definition of ()5 also requires that boundary conditions be
specified for A, and F,. For an enclosed flow with Dirichlet bound-
ary conditions for the velocities, the discrete Schur complement operator
BF~'BT is conventionally associated with a Neumann operator for the
pressure field, see [28]. Therefore, A, and F}, should correspond to dis-
crete elliptic problems with Neumann boundary conditions. For a bound-
ary segment with outflow boundary conditions, the Schur complement S
(and its preconditioner ()g) must be defined with Dirichlet data on that
segment in order to ensure that the preconditioning operator is ellip-
tic on the pressure space. See [34, pp. 50-51], [7, pp. 36-43| for further
discussion of these points.

Note that we are not attributing any physical meaning to the con-
vection-diffusion operator on the pressure space, and in addition, the
notion of approximate commutativity is used only as motivation. The
formal commutator (3.5) is zero for constant w, but otherwise it may
not be small. In addition, irrespective of what happens in the continuous
case, there are examples where the discrete commutator is large, such
as for div-stable finite element discretizations defined on different grids
(for example, Q1 (h) —Q1(2h) consisting of bilinear velocities and bilinear
pressures on macroelements). In practice, however, the preconditioning
methodology is still valid, as long as the discrete operator F, can be
defined.

As shown in (3.4), use of this preconditioner requires application of
the action of QEI to a vector. This entails a Poisson solve (to apply the
action of A, 1), followed by a matrix-vector product by F,, followed then
by an application of the inverse of the mass matrix. The first and last of
these steps can be replaced by inexpensive approximations as described
in Section 2. That is, the action of A;l can be replaced by an iteration
such as multigrid (or one step of this process), and A, can be replaced
by its diagonal.

Our understanding of the convergence characteristics of solvers that
use this preconditioner is largely based on empirical evidence. We show
examples of performance for solving the lid driven cavity problem, in
which the steady version of (1.1) is posed on © = (0,1) x (0,1), and
Dirichlet boundary conditions for the velocity u = (uy, uy) are given by

up =uy =0 forx =0, xr=1o0ry =0,
up =1, us =0 fory=1.

We consider two discretizations, the MAC finite difference method, and
the P,-P; finite element method, which uses triangular elements with
piecewise quadratic bases for the velocity components and a piecewise
linear basis for the pressure. In all cases, the discretization is on a uniform
mesh of width h.



TABLE 3.1
Average inner iteration counts for Picard iteration, with outer iterations in parentheses.

MAC FINITE DIFFERENCES
v

1/40  1/80 1/160 1/320

h=1/16 | 83 (6) 10.5(3) 13.3(11) 17.9 (13)
1/32 | 85(6) 104 (8) 14.3(10) 19.3 (10)
1/64 | 8.6 (6) 11.0 (7) 14.3 (9) 20.9 (11)

1/128 | 8.6 (5) 105 (6) 145 (8) 20.3 (9)

P,-P, FINITE ELEMENTS
1740  1/80 1/160 1/320
h=1/16 | 88 (5) 11.2(6) 14.0(6) 23.8(9)
1/32 | 85(5) 10.7(6) 13.7(7) 204 (9)
1/64 | 83 (5) 104 (5) 134(6) 18.1(7)

We summarize the performance of preconditioned GMRES as follows:
1. Convergence rates are independent of discretization mesh size. Ta-
ble 3.1 shows the average number of iterations needed to solve the lin-
ear systems arising during the course of a Picard iteration (3.1) for the
driven cavity problem, for both discretizations. Numbers in parentheses

are the number of Picard steps needed to satisfy the stopping criterion
(m)
u .
| F(z(™))|l2 < 1075 f]|2, where x(™) = ( e > and F(x(™) is the non-

linear residual. Starting iterates were z(®) = 0 for the nonlinear system
and the most recent nonlinear iterate for the linear system. The stopping
criterion for the linear iteration was

Irillz < 10721 F (™= D)]|2.

It is clear that for any fixed value of v, the linear iteration counts are
independent of h.

2. Convergence depends mildly on the viscosity parameter v. Further
consideration of the data of Table 3.1 shows that there is a mild increase
in iteration counts as v is decreased (i.e., as the Reynolds number is in-
creased). The rate of increase is clearly less than linear in »~!. This issue
is explored further in Figure 3.1, which plots the convergence history of
the linear solvers applied to the system (3.2) that arises at the last step
of the Picard iteration, for the P,-P; discretization and h = 1/64. These
results show more clearly the dependence on v. For each v, convergence
is slow during the early stages of the iteration, and the number of steps
in which this poor performance is exhibited becomes larger as v is re-
duced. After these initial periods of latency, convergence becomes more
rapid, and the asymptotic convergence rates of the GMRES iteration
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Fic. 3.1. Conwvergence histories of preconditioned GMRES inner iteration for the last step of
Picard iteration for several values of v, P»-Py discretization, h = 1/64.

then appear to be independent of the value of the viscosity parameter.

These results are consistent with those of extensive experiments de-
scribed in [13, 18, 28]. It is also shown empirically in [13] that the eigen-
values of the preconditioned matrix AQ ! are clustered in a region that
does not depend on v, except for a small number of outliers. The number
of these outliers is on the order of ten, although it increases slightly as v
is decreased, and this is the cause of the latencies seen in Figure 3.1. To
see this, recall that the optimality of the GMRES iteration leads to the
bound on the residual norm [27]

< i a A , 3.7
Irelle < min [V ol 3:7)
where we have assumed that AQ~!' = VAV ! is diagonalizable. Let

{A1,..., Aa} denote the set of d outlying eigenvalues, and let k = d + [.
Then

min max A)| < max M| Ci(N)],
pe(0)€ll; Aea(AQ™Y) |pk( )| _)\EJ(AQ_I)|¢d( )|| l( )|

¢d()\):< _A%)‘>< _)\_lz)\)< _i)‘>

is the polynomial of degree d whose roots are the outliers. and Cj is any

polynomial of degree [ satistying C;(0) = 1. That is, convergence tends

to be slow until the roots of the residual polynomial include the outliers

(and the corresponding eigenvectors are deflated from the error), after
10
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which convergence will be dictated by the distribution of the remaining
clustered set of eigenvalues. This distribution is independent of v. How-
ever, since the number of outliers increases with v~!, so does the length
of the latency period. Although this analysis only establishes a bound
on convergence, results given in [13] demonstrate that performance is
consistent with these observations.

The experiments described here are for “exact” versions of the pre-
conditioners, i.e., no iterations or approximations have been used in place
of the action of F~', A" or M, '. Results in [18] indicate that there is
only a small increase in the numbers of iterations when such approxi-
mations are made. In addition, preliminary experiments performed for
three-dimensional examples display the same trends for both “exact” and
approximate versions of the preconditioner [12].

There has been a limited amount of analysis of this preconditioning
strategy that provides insight into convergence. Loghin [20] has shown
that the eigenvalues of the preconditioned linear systems are contained in
a set that is independent of the mesh size. This does not firmly establish
that convergence rates are also independent of h, since the bound (3.7)
on convergence of GMRES also depends on the condition number of the
matrix of eigenvectors, but it clearly agrees with performance. Loghin
has also established bounds on the relation of the eigenvalues to v: the
largest eigenvalues are bounded by ! and the smallest ones are bounded
below by 2. These are consistent with other analysis and experiments
described in [13], where it is shown that large eigenvalues have imaginary
parts that grow like v—!. However, there is no analysis establishing that
the majority of eigenvalues are clustered near 1 independent of both h
and v.

Finally, observe that in the special case of the Stokes equations, where
F = A, the preconditioner for the Schur complement as defined in (3.6)
reverts to Qs = M,, i.e., it is the same choice as that discussed in Sec-
tion 2. It would be straightforward to design a code that automatically
handles Stokes flow by switching to a MINRES strategy in this case.

4. The evolutionary Navier-Stokes equations. We now con-
sider how the preconditioning methodology described in Section 3 can
be adapted to handle evolutionary problems. Assume that the implicit
time discretization strategies entails the solution of systems of the form
(3.2) at each time step. Two such approaches for discretizing in time are
the backward Euler (BE) method

a1 g

A7 — vAu™t) 4 (u*+D . grad) u™ ) 4 grad ptt = f

—divu™™) =0,
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and the Crank-Nicolson (CN) method
u(n+]—) _ u(n)

A + 1 (—vAu) 4 (u"D - grad) u™ V) + grad p Y

=f— 1 (—vAu™ + (u™ . grad) u™)
—divu"*t) = 0.

Our emphasis is not on the relative merits of these alternatives, but we
note the well-known facts that BE is first order accurate in time and CN
is second order accurate [16, §3.16.1]. Lack of A-stability may inhibit
the utility of CN if large time steps are used [33], but it is effective
for computing time-accurate solutions. From the point of view of the
algorithms considered in this study, the two methods entail the same
type of computations at each time step. Other time-stepping strategies
that are amenable to our algorithmic approach are discussed in [34].

Both approaches as defined require the solution of a nonlinear equa-
tion at each time step, which, after spatial discretization, yields a nonlin-
ear algebraic system. This difficulty can be avoided by suitable treatment
of the coefficient u("*" of the convection term. In this study, we replace
this by the lagged value u™ for the backward Euler method, and by

((%u(n) — %u(n_l)) . grad) u(n+1)

for the Crank-Nicolson method. The latter approach retains second or-
der accuracy [31]. We will also refer to these linearized methods as BE
and CN, respectively, and the experiments described below are for these
strategies.

After spatial discretization, both time-stepping strategies lead to sys-
tems (3.2). F now has the form

F=06M,+A+N, (4.1)

where A and N are discrete diffusion and convection operators, respec-
tively, and 0 = Ait for BE and Alt for CN. The vector f in the right hand
side has boundary conditions and (where applicable) the explicit compo-
nent of CN incorporated into it. The preconditioning operator is defined
as in (3.3) and (3.6), where, by analogy with (4.1),

F,=0M,+ A, + N,.

We present here two sets of experimental results, both using MAC
finite differences for the spatial discretization. In Table 4.1, we show
results of integrating the driven cavity problem from ¢ = 0 to ¢ = 1 using

12



TABLE 4.1
Average number of GMRES iterations per linear solve, for integration of the driven cavity
problem from t =0 to t = 1, with MAC spatial discretization and h = 1/64 and 1/128.

14
1/40 1/80 1/160 1/320
3 At=1/8| 83 93 99 101
h=1/64 1/16 | 64 74 79 82
1/32| 47 55 61 6.3
1/64 | 34 38 42 45
1/40 1/80 1/160 1/320
3 At=1/8| 79 94 103 109
h=1/128 1/16 | 6.1 74 86 9.1
1/32 | 43 54 64 7.2
1/64 | 30 38 44 51

BE, for several choices of time steps, v, and h. The table presents the
average number of preconditioned GMRES iterations required during the
course of the integration. The stopping criterion for the linear solves was

7l < 107°(| ]2

where the initial guess at each time step was the solution at the previ-
ous step, and zero at the first step. Comparison with Table 3.1 shows
a dramatic reduction in dependence on the viscosity, especially as the
time step is reduced. There is also virtually no dependence on the dis-
cretization mesh size. These results are consistent with Loghin’s analysis
[20].

As in Section 4, we can explore these trends further by examining
the performance of the individual linear solves more closely. Figure 4.1
shows the detailed convergence behavior for examples of the inner pre-
conditioned iterations, at time ¢ = 1/4, 1/2 and 3/4, where At = 1/64
and h = 1/64. Here, we consider both the BE and CN time discretiza-
tions.! These results demonstrate that, in contrast to the steady-state
case, there is now no latency associated with the inner solves, and con-
vergence rates are insensitive to the value of the viscosity as well as the
point in time at which the systems arise. The number of iterations re-
quired for CN is slightly smaller than for BE, because the larger value of
¢ in (4.1) can be viewed as having the effect of using a smaller time step.

Note that for evolutionary problems, the subsidiary convection-diffu-
sion equations that must be solved at each step are time-dependent ones,
which are easier to handle than in the steady-state case. The decreased

IThe linearized CN method is not self-starting, and in these experiments the first three time
steps were performed using BE.
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Backward Euler, h=1/64, A t=1/64

10° — v=l/160 E

—————— v=1/320

Left to right: t=3/4, 1/2, 1/4

0 05 1 15 2 25 3 35 4 4.5 5

V=1/160 E
—————— v=1/320

Left to right: t=3/4, 1/2, 1/4

Fic. 4.1. Convergence histories of preconditioned GMRES inner iteration at various time steps,
for the MAC discretization with h =1/64 and v = 1/160 and 1/320.

dependence on v is largely due to the fact that M, and M, occupy in-
creasingly dominant places in F' and F), respectively, as the time step is
decreased.

5. Comparative remarks on multigrid methods. As we have
noted, an assumption underlying the utility of the preconditioning meth-
ods considered here is the potential for implementing them using building
blocks for subsidiary computations. One candidate for handling the sub-
sidiary jobs, although by no means the only one, is multigrid (MG). There
are also various examples of MG methods that can be applied directly to
saddle point problems, and it is natural to ask how direct application of
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MG compares with the ideas discussed above.

The most popular example of multigrid methods for saddle point
problems takes the form of so-called “distributive iterations,” in which
the MG smoothing iteration is applied to a system obtained from a change
of variables [5, 35, 43, 42]. This approach shares with (3.6) the use of a
discrete convection-diffusion operator Fj,. Consider the transformation

() EEE)-() ()-626)

The coefficient matrix of the transformed system is

i (F C
AZ(B BBT>

where C' = FB" — BTF, is a commutator. If C is small, then A is
nearly of block triangular form, where the diagonal blocks consist of a
convection-diffusion operator and a scaled discrete Laplacian. Smoothers
for (5.1) are derived from smoothers for these individual blocks: see the
references above for details. See also [23, 38] for other multigrid methods
derived from the squared system associated with (3.2).

Thus, we see that multigrid methods share many characteristics of the
preconditioning approach considered here. We have performed a compar-
ison of these two classes of methods for solving steady-state Stokes sys-
tems, using the preconditioned MINRES method described in Section 2
[10]. This study showed that the fastest variant of MG is somewhat more
efficient than preconditioned MINRES, but that there is no difference in
the asymptotic behavior with respect to mesh size of the two methodoli-
gies. We know of no direct comparison for more general Navier-Stokes
systems, although we would not expect significant differences. However,
in order to be useful, MG methods require the commutator to be small;
they are ineffective otherwise. The approach considered here has the
advantage of being more generally applicable, and it is also not explic-
itly dependent on use of multigrid in cases where a hierarchy of grids is
unavailable.

6. Concluding remarks. We conclude by reiterating the general
philosophy behind the development of the algorithms considered in this
study, and we then mention some open issues. The approach described
here is to derive solution algorithms for the Navier-Stokes equations by
taking advantage of the saddle point structure of the linear systems that
arise from standard discretizations, and to make use of algorithms for
subsidiary problems such as the convection-diffusion and Poisson equa-
tions. The resulting methods have been shown to be effective, and they
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automatically adapt to a variety of scenarios including both steady and
transient flows.

Issues that have not been fully explored include the effects of bound-
ary conditions and of pressure discretization. In particular, even when
commutativity of discrete operators “nearly” holds in the interior of €2, it
fails to hold near the boundaries, and this may have an effect on perfor-
mance. More generally, the effect of the choice of boundary conditions for
F, and A, is not understood. In addition, the preconditioning method-
ology depends explicitly on having the discrete operators F, and A, on
the pressure space. Our experience with finite element discretizations
has been limited to continuous pressures, where it is natural to define
such operators. The question of how to handle discontinuous pressures
is open.

REFERENCES

[1] K. Arrow, L. Hurwicz, and H. Uzawa. Studies in Nonlinear Programming. Stanford University
Press, Stanford, CA, 1958.

[2] J. Bey and G. Wittum. Downwind numbering: robust multigrid for convection-diffusion prob-
lems. Applied Numerical Mathematics, 23:177-192, 1997.

[3] J. H. Bramble and J. E. Pasciak. Iterative techniques for time dependent Stokes problems. In
W. Habashi, editor, Solution Techniques for Large-Scale CFD Problems, pages 201-216.
John Wiley, New York, 1995.

[4] J. H. Bramble, J. E. Pasciak, and A. T. Vassilev. Analysis of the inexact Uzawa algorithm for
saddle point problems. STAM J. Numer. Ansl, 34:1072-1092, 1997.

[5] A. Brandt and N. Dinar. Multigrid solutions to elliptic flow problems. In S. V. Parter, editor,
Numerical Methods for Partial Differential Equations, pages 53—-147. Academic Press,
New York, 1979.

[6] J. Cahouet and J.-P. Chabard. Some fast 3D finite element solvers for the generalized Stokes
problem. Int. J. Numer. Meth. Fluids, 8:869-895, 1988.

[7] E. Dean and R. Glowinski. On some finite element methods for the numerical simulation of
incompressible viscous flow. In M. D. Gunzburger and R. Y. Nicolaides, editors, Incom-
pressible Computational Fluid Dynamics, pages 17-65. Cambridge University Press, New
York, 1993.

H. Elman and D. Silvester. Fast nonsymmetric iterations and preconditioning for Navier-Stokes
equations. SIAM J. Sci. Comput., 17:33-46, 1996.

H. C. Elman. Relaxed and stabilized incomplete factorizations for non-self-adjoint linear sys-
tems. BIT, 29:890-915, 1989.

H. C. Elman. Multigrid and Krylov subspace methods for the discrete Stokes equations. Int.
J. Numer. Meth. Fluids, 227:755-770, 1996.

[11] H. C. Elman and G. H. Golub. Inexact and preconditioned Uzawa algorithms for saddle point

H
H

(8]
(9]

(10]

problems. SIAM J. Numer. Anal., 30:1645-1661, 1994.
. C. Elman, V. E. Howles, J. Shadid, and R. Tuminaro. In preparation, 2001.
. C. Elman, D. J. Silvester, and A. J. Wathen. Performance and Analysis of Saddle Point
Preconditioners for the Discrete Steady-State Navier-Stokes Equations. Technical Report
UMIACS-TR-2000-54, Institute for Advanced Computer Studies, University of Maryland,
2001. To appear in Numer. Math.
[14] R. Freund and N. M. Nachtigal. QMR: a quasi-minimal residual method for non-Hermitian
linear systems. Numer. Math., 60:315-339, 1991.

[15] V. Girault and P. A. Raviart. Finite Element Approzimation of the Navier-Stokes Equations.
Springer-Verlag, New York, 1986.

[16] P. M. Gresho and R. L. Sani. Incompressible Flow and the Finite Element Method. John
Wiley and Sons, New York, 1998.

[17] F. H. Harlow and J. E. Welch. Numerical calculation of time-dependent viscous incompressible
flow of fluid with free surface. The Physics of Fluids, 8:2182-2189, 1965.

16

[12]
(13]



(38]
39]
(40]
[41]

[42]

Kay and D. Loghin. A Green’s function preconditioner for the steady-state Navier-Stokes
equations. Technical Report 99/06, Oxford University Computing Laboratory, 1999.

. Klawonn and G. Starke. Block triangular preconditioners for nonsymmetric saddle point
problems: field-of-values analysis. Numer. Math., 81:577-594, 1999.

Loghin. Analysis of Preconditioned Picard Iterations for the Navier-Stokes Equations.
Technical Report 01/10, Oxford University Computing Laboratory, 2001.

A. Nicolaides. Analysis and convergence of the MAC scheme I. SIAM J. Numer. Anal.,
29:1579-1591, 1992.

C. Paige and M. A. Saunders. Solution of sparse indefinite systems of linear equations.
SIAM. J. Numer. Anal., 12:617-629, 1975.

. Pitkdranta and T. Saarinen. A multigrid version of a simple finite element method for the

Stokes problem. Math. Comp., 45:1-14, 1985.

Reusken. Convergence Analysis of a Multigrid Method for Convection-Diffusion Equations.
Technical Report IGPM Report 190, RWTH Aachen, 2000.

Rusten and R. Winther. A preconditioned iterative method for saddle point problems.
SIAM J. Matr. Anal. Appl., 13:887-904, 1992.

Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing, Boston, 1996.

Saad and M. H. Schultz. GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 7:856-869, 1986.

Silvester, H. Elman, D. Kay, and A. Wathen. Efficient preconditioning of the linearized
Navier-Stokes equations for incompressible flow. J. Comp. Appl. Math., 128:261-279,
2001.

Silvester and A. Wathen. Fast iterative solution of stabilized Stokes systems. Part II: Using
block preconditioners. SIAM J. Numer. Anal., 31:1352-1367, 1994.

. J. Silvester and A. J. Wathen. Fast and robust solvers for time-discretised incompressible
Navier-Stokes equations. In D. F. Griffiths and G. A. Watson, editors, Numerical Analysis:
Proceedings of the 1995 Dundee Biennial Conference. Longman, 1996. Pitman Research
Notes in Mathematics Series 344.

. C. Simo and F. Armero. Unconditional stability and long-term behavior of transient algo-

rithms for the incompressible Navier-Stokes equations. Comp. Meths. Appl. Mech. Engrg.,
111:111-154, 1994.
L. G. Sleijpen and D. R. Fokkema. BICGSTAB(L) for linear equations involving unsym-
metric matrices with complex spectrum. FElectr. Trans. Num. Anal., 6:162-181, 1997.
Smith and D. Silvester. Implicit algorithms and their linearisation for the transient incom-
pressible Navier-Stokes equations. IMA J. Numer. Anal., 17:527-545, 1997.

. Turek. Efficient Solvers for Incompressible Flow Problems. Springer-Verlag, Berlin, 1999.
. P. Vanka. Block-implicit multigrid solution of Navier-Stokes in primitive variables. J.

Comput. Phys., 65:138—158, 1986.
S. Varga. Matriz Iterative Analysis. Prentice-Hall, Englewood Cliffs, New Jersey, 1962.
Verfiirth. A combined conjugate gradient-multigrid algorithm for the numerical solution of
the Stokes problem. IMA J. Numer. Anal., 4:441-455, 1984.
Verfiirth. A multilevel algorithm for mixed problems. SIAM J. Numer. Anal., 21:264-271,
1984.
Wathen and D. Silvester. Fast iterative solution of stabilized Stokes systems. Part I: Using
simple diagonal preconditioners. SIAM J. Numer. Anal., 30:630-649, 1993.
. J. Wathen. Realistic eigenvalue bounds for the Galerkin mass matrix. IMA J. Numer.
Anal., 7:449-457, 1987.
. D. Welfert. Convergence of Inexact Uzawa Algorithms for Saddle Point Problems. Technical
report, Mathematics Department, University of Arizona, 1993.
Wesseling. An Introduction to Multigrid Methods. John Wiley & Sons, New York, 1992.

[43] G. Wittum. Multi-grid methods for the Stokes and Navier-Stokes equations. Numer. Math.,

54:543-564, 1989.

17



