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retization and linearization of the in
ompressible Navier-Stokes equations leadsto linear algebrai
 systems in whi
h the 
oeÆ
ient matrix has the form of a saddle point problem� F BTB 0 �� up � = � fg � : (0.1)In this paper, we des
ribe the development of eÆ
ient and general iterative solution algorithms forthis 
lass of problems. We review the 
ase where (0.1) arises from the steady-state Stokes equationsand show that solution methods su
h as the Uzawa algorithm lead naturally to a fo
us on the S
hur
omplement operator BF�1BT together with eÆ
ient strategies of applying the a
tion of F�1 toa ve
tor. We then dis
uss the advantages of expli
itly working with the 
oupled form of the blo
ksystem (0.1). Using this point of view, we des
ribe some new algorithms derived by developingeÆ
ient methods for the S
hur 
omplement systems arising from the Navier-Stokes equations, andwe demonstrate their e�e
tiveness for solving both steady-state and evolutionary problems.
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1. Introdu
tion. The aim of this paper is to give an overview ofthe development and utility of some new algorithms for 
omputing thenumeri
al solution of the Navier-Stokes equations�ut � ��u + (u � grad)u+ grad p = f (1.1)subje
t to in
ompressibility 
onstraints�divu = 0: (1.2)The problem is posed on an open bounded domain 
 in R2 or R3 , withsuitable boundary 
onditions spe
i�ed on �
. The parameter � has thevalue 0 for steady-state versions of (1.1) and 1 for evolutionary problems.The methods under 
onsideration are appli
able to a broad 
olle
tionof dis
rete versions of (1.1){(1.2), all of whi
h treat the primitive variableformulation dire
tly and require the solution of a series of linear systemsof equations in whi
h the 
oeÆ
ient matrix is of the form arising in saddlepoint problems, � F BTB 0 � :The philosophi
al points of view behind the algorithm development are:1. The methods are derived using tools for simpler problems as build-ing blo
ks. In parti
ular, they depend on having eÆ
ient numeri-
al algorithms for solving two subsidiary problems, the s
alar Pois-son equation and the s
alar 
onve
tion-di�usion equation. More-over, it is possible to make use of approximate solutions of thesesubsidiary problems obtained using iterative methods.2. The solution strategies adapt in a straightforward manner to vari-ants of the problem. In prin
iple, the same 
ode 
ould be used tohandle evolutionary problems (with suitable time dis
retizations),steady-state problems, or Stokes systems.An overview of the paper is as follows. We will assume throughoutthat the spatial dis
retization is div-stable; we have in mind low order�nite element dis
retizations that satisfy an inf-sup 
ondition, or theMAC �nite di�eren
e dis
retization [15, 17, 21℄. The solution methods
onsidered are generalizations of te
hniques developed originally for thesteady-state Stokes equations, and in Se
tion 2 we outline the derivationof our point of view as it evolved for this problem 
lass. In Se
tion 3,we introdu
e the solution methodology for the steady-state Navier-Stokesequations and dis
uss its properties. In Se
tion 4, we dis
uss some strate-gies for time dis
retization to whi
h the methodology applies dire
tly, andwe demonstrate its performan
e in this setting. A brief summary of theresults of these se
tions is that for the Stokes equations, it is possible to1



develop optimal algorithms whose 
onvergen
e rates are independent ofthe dis
retization mesh size used, provided methods with this property(su
h as multigrid) are available for 
ertain subproblems entailing thePoisson equation. A similar statement applies to the steady-state Navier-Stokes equations, although performan
e does depend to some extent onReynolds numbers. For transient problems, this dependen
e be
omesnegligible espe
ially for small time steps. In Se
tion 5, we give a briefdis
ussion of the relative merits of the ideas 
onsidered here and multi-grid strategies for (1.1){(1.2), and in Se
tion 6 we make some 
on
ludingremarks.2. Ba
kground: The steady-state Stokes equations. We beginby reviewing some results for the Stokes equations��u + grad p = f�div u = 0:Dis
retization leads to a linear system� A BTB 0 �� up � = � f0 � (2.1)where, for problems in d dimensions, A is a blo
k diagonal matrix 
on-sisting of a set of d independent dis
rete Lapla
e operators. The 
lassi
alUzawa algorithm [1℄ starts with an arbitrary initial value p0 and performsthe iteration for k = 0 until 
onvergen
e douk+1 = A�1(f �BTpk)pk+1 = pk + � Buk+1enddo (2.2)Here, � is a s
alar parameter that must be determined prior to the iter-ation.Substitution of uk+1 from the �rst step of (2.2) into the se
ond stepshows that this 
omputation is equivalent to an iteration for the pressures,pk+1 = pk + � BA�1(f � BTpk):This is a Ri
hardson iteration [36℄ for the S
hur 
omplement systemBA�1BTp = BA�1f: (2.3)The errors satisfyp� pk = (I � �(BA�1BT ))k(p� p0);2



and in the Eu
lidean norm,kp� pkk2 � �� �I � �(BA�1BT )��k kp� p0k2 :The optimal 
onvergen
e rate is a
hieved with the 
hoi
e of � for whi
hthe algebrai
ally smallest and largest eigenvalues of I � �(BA�1BT ) areequal in absolute value, i.e.� = 2=(�min + �max); (2.4)where �min and �max are the extreme eigenvalues of BA�1BT . For this
hoi
e, the 
onvergen
e fa
tor is�(I � �(BA�1BT )) = (�� 1)=(�+ 1);where � = �max=�min is the 
ondition number of BA�1BT .That this iteration is rapidly 
onvergent for the Stokes equations isa 
onsequen
e of the properties of the S
hur 
omplement BA�1BT . LetMp denote the mass matrix asso
iated with the pressure dis
retization.It is well known that the S
hur 
omplement satis�es
2 � (p; BA�1BT p)(p;Mpv) � �2;where 
 � 0 is the inf-sup 
onstant for the dis
retization and � � pd[37℄. We are assuming that the spatial dis
retization is div-stable, so that
 does not depend on the dis
retization mesh size h. Consequently, theS
hur 
omplement operator is spe
trally equivalent to the pressure massmatrix. This assertion also applies to the marker-and-
ell (MAC) �nitedi�eren
e s
heme [21℄, for whi
h the mass matrix on a uniform grid ishdI. Moreover, the pressure mass matrix is itself spe
trally equivalentto its diagonal, whi
h also essentially has the form hdI [40℄. It followsthat �(BA�1BT ) is independent of h. This dis
ussion also suggests thatpre
onditioning by the mass matrix or some spe
trally equivalent ap-proximation QMp may be bene�
ial, whi
h is indeed the 
ase [11℄. Thepre
onditioned Uzawa algorithm updates the pressures aspk+1 = pk + � Q�1MpBuk+1:If � is de�ned as in (2.4) where �min and �max now represent extrema ofthe Rayleigh quotient (q;BA�1BT q)(q;QMpq) , then we have the 
onvergen
e boundkp� pkkQMp � �k kp� p0kQMpwhere � = (�� 1)=(�+ 1) with � = �max=�min.3



Thus, the 
onvergen
e rate of the Uzawa algorithm for solving theStokes equations is independent of dis
retization mesh size. An imple-mentation requires the appli
ation of the a
tion of the inverse of A to ave
tor. If fast methods su
h as multigrid are available for this 
omputa-tion, then the Uzawa method is also an optimal strategy with respe
t tooperation 
ounts. Nevertheless, there are some potential drawba
ks:1. It requires the parameter �. Bounds on the inf-sup parameter 
anoften be used to estimate this quantity, but the need to spe
ify itadds a diÆ
ulty to implementation.2. In some sense it is slow. In the 
ontext of iterative methods forsymmetri
 positive-de�nite systems of equations, it is known thatRi
hardson iteration is slower to 
onverge than the 
onjugate gra-dient method (CG). The 
onvergen
e fa
tor for CG is bounded by� = (p�� 1)=(p�+ 1) [26℄.3. The a
tion of the inverse of A is potentially 
ostly. This is 
learlythe dominant 
ost of the algorithm. Although fast solvers forthe Poisson equation are available, it would be desirable to avoida

urate solution of this problem at every step.Appli
ation of CG to (2.3) resolves the �rst and se
ond of these dif-�
ulties. However, a matrix-ve
tor produ
t by BA�1BT is required atea
h iteration, and we know of no way of avoiding an a

urate 
ompu-tation of this operation. This entails a

urate solution of the Poissonequation. By way of 
ontrast, be
ause the Uzawa algorithm derives fromthe 
oupling between the pressure and velo
ity, its �rst step 
an be re-pla
ed by an approximate 
omputation of the a
tion of A�1 to produ
ean algorithm with similar 
onvergen
e 
hara
teristi
s [4, 11, 41℄. It isnot straightforward to automate this pro
ess, however, sin
e the inneriteration for the Poisson equation requires a stopping 
riterion.Thus, neither of these strategies 
ompletely resolves the drawba
kslisted above, and we have 
ome to prefer an alternative approa
h, de-veloped independently by Rusten and Winther [25℄ and Silvester andWathen [29, 39℄, whi
h treats the saddle point problem (2.1) dire
tly.The system (2.1) is symmetri
 inde�nite, so that the MINRES Krylovsubspa
e method [22℄ is appli
able. When this method is applied to asystem Ax = b, the residual rk = b�Axk of the kth iterate satis�eskrkk � minpk(0)2�k max�2�(A) jpk(�)j kr0k; (2.5)where �k denotes the set of all real polynomials pk of degree at most kfor whi
h pk(0) = 1, and �(A) is the set of eigenvalues of A. (We will bemore pre
ise about the norm below.) If �(A) is 
ontained in two intervals[�a;�b℄ [ [
; d℄; a; b; 
; d > 0; (2.6)4



where a� b = d� 
, then the 
onvergen
e fa
tor is bounded by2 1�p(b
)=(ad)1 +p(b
)=(ad)!1=2 :MINRES 
an be 
ombined with a symmetri
 positive-de�nite pre
on-ditioner with the aim of redu
ing the size of the intervals 
ontaining theeigenvalues. The 
onsiderations above point to the 
hoi
eQ = � QA 00 QMp � : (2.7)Here, as above, QMp represents an approximation to the mass matrix,whi
h is therefore a good approximation to the S
hur 
omplement, andQA represents an approximation to A. In parti
ular, if QA is spe
trallyequivalent to A, i.e., �1 � (v; Av)(v;QAv) � �2for �1, �2 independent of the mesh size, then so are the intervals of (2.6),as well as the 
onvergen
e fa
tor for MINRES.Detailed dis
ussions of the e�e
tiveness of this approa
h are given in[10, 25, 29℄. The key point is that it a
hieves optimal 
onvergen
e ratesautomati
ally, without a need for exa
t 
omputation of the a
tion of A�1,or estimates of any parameters, or stopping 
riteria asso
iated with aninner iteration. QA 
an be de�ned using any operation available, su
has multigrid or domain de
omposition. In pra
ti
e, one step of V-
y
lemultigrid is an e�e
tive 
hoi
e.We 
on
lude this review with two additional observations. First,when pre
onditioning is used, the norm appearing in the expression (2.5)depends on the 
hoi
e of pre
onditioner,krkkQ�1 = h�Aek � BTdk; Q�1A (Aek �BTdk)�+ (Bek; Q�1MpBek)i1=2 ;(2.8)where ek = u � uk and dk = p � pk. Although this might appear to bea problem, it is 
ommon for the Stokes equations to seek 
onvergen
e inthe energy norm, given in dis
rete form by[(ek; Aek) + (dk;Mpdk)℄1=2 :But ifQA and QMp are spe
trally equivalent to the dis
rete Lapla
ian andmass matrix, respe
tively, then the residual norm of (2.8) is spe
trallyequivalent to the energy norm [30℄. Consequently, the quantity mini-mized by pre
onditioned MINRES is a natural 
hoi
e whi
h is quasi-optimal with respe
t to the energy norm. Se
ond, although we have5




onsidered only steady problems here, the same point of view 
an beadapted to the evolutionary Stokes equations [3, 6℄. In this 
ase, thematrix A 
onsists of a linear 
ombination of a velo
ity mass matrix anda dis
rete Lapla
e operator. Good pre
onditioners for the S
hur 
om-plement operator require an approximate Poisson solve on the pressurespa
e. The same 
onsiderations hold for this problem as in the dis
ussionabove, and approximations based on fast iterative solvers for the pressurePoisson equation 
an be used in a similar way.3. The steady-state Navier-Stokes equations. We next 
onsiderthe steady version of the Navier-Stokes equations, i.e., � = 0 in (1.1).For solving the nonlinear system, we will restri
t our attention to Pi
arditeration���u(m+1) + (u(m) � grad)u(m+1) + grad p(m+1) = f�divu(m+1) = 0; (3.1)where the 
onve
tion 
oeÆ
ient is lagged. For ea
h m, this system hasthe form of the Oseen equations. Dis
retization leads to a linear systemof the form � F BTB 0 �� up � = � f0 � (3.2)to be solved at ea
h step. Our solution strategy for this is to use Krylovsubspa
e methods su
h as the GMRES [27℄, QMR [14℄ or BiCGSTAB(L)[32℄ algorithms, in 
ombination with pre
onditioning. The latter is the
riti
al 
omponent needed for rapid 
onvergen
e.The dis
ussion of the previous se
tion leads to the idea that a pre
on-ditioner should be derived using approximations to (the a
tions of theinverses of) F and the S
hur 
omplement S = BF�1BT . Before 
onsid-ering this in more detail, we �rst observe that for the symmetri
 problemdis
ussed above, there is good reason to restri
t attention to pre
ondi-tioners with blo
k diagonal form (2.7) in order to retain symmetry andtake advantage of the short-term re
urren
es and optimality a
hieved byMINRES. However, no Krylov subspa
e method has both these 
apabili-ties for nonsymmetri
 systems, and for (3.2) we prefer a blo
k-triangularpre
onditioner Q = � QF BT0 �QS � : (3.3)Iteration with this 
hoi
e requires approximately half the steps neededwith a blo
k-diagonal version [8℄. Applying the pre
onditioner, i.e., 
om-puting � ws � = � QF BT0 �QS ��1� vq �6



for given v, q entails solving the systemsQSs = �q; QFw = v � BT s: (3.4)The only 
ost not in
urred by the blo
k diagonal pre
onditioner is thatof a (sparse) matrix-ve
tor produ
t BT s, whi
h is negligible.A more signi�
ant di�eren
e from the Stokes equations 
on
erns the
onstru
tion of good approximations QF � F and QS � S. The role ofF in (3.2) is largely analogous to that of A above: F is a blo
k diagonalmatrix 
onsisting of a set of d independent dis
rete 
onve
tion-di�usionoperators. Although the 
onve
tion-di�usion equation is a more diÆ
ultproblem than the Poisson equation (in parti
ular, the analysis of solutionalgorithms is far less well developed), there are e�e
tive solvers availablefor it, see for example [2, 9, 24, 42℄. The S
hur 
omplement system isless straightforward. An operator QS that is spe
trally equivalent to thepressure mass matrix, as dis
ussed above, is easy to implement and hasalso been shown to lead to (essentially) mesh independent rates of 
on-vergen
e for (3.1){(3.2) [8, 19℄. However, performan
e deteriorates if theReynolds number be
omes large, i.e., if the vis
osity � is small. To rem-edy this diÆ
ulty, we 
onsider an alternative approa
h for 
onstru
tinga pre
onditioner, whi
h leads to a methodology that adapts in a natu-ral way to both steady-state and evolutionary problems. This idea wasoriginally developed by Kay and Loghin [18℄ using the stru
ture of theGreen's fun
tion for the operator of (3.1). The approa
h presented herefollows Silvester et. al. [28℄.We start with (3.1) and for �xed m let w = u(m�1) denote the lagged
onve
tion 
oeÆ
ient and ���+w �r the resulting 
onve
tion-di�usionoperator. Let us suppose that there is an analogous operator (���+w �r)p de�ned on the pressure spa
e, and furthermore, that the 
ommutatorof the 
onve
tion-di�usion operators with the gradient operator,(���+w � r)r�r(���+w � r)p ; (3.5)is small in some sense. A dis
rete version of this relation is that(M�1u F ) (M�1u BT )� (M�1u BT ) (M�1p Fp)is also small, where Mu is the mass matrix asso
iated with the velo
-ity dis
retization and Fp is a dis
rete approximation to the 
onve
tion-di�usion operator. A straightforward manipulation then yields the rela-tion BF�1BT � ApF�1p Mp ; (3.6)where Ap = BM�1u BT is a dis
rete Lapla
ian. That is, the matrix on theright hand side of (3.6) 
an be viewed as an approximation to the S
hur
omplement operator, and this de�nes a pre
onditioning operator QS.7



A pre
ise de�nition of QS also requires that boundary 
onditions bespe
i�ed for Ap and Fp. For an en
losed 
ow with Diri
hlet bound-ary 
onditions for the velo
ities, the dis
rete S
hur 
omplement operatorBF�1BT is 
onventionally asso
iated with a Neumann operator for thepressure �eld, see [28℄. Therefore, Ap and Fp should 
orrespond to dis-
rete ellipti
 problems with Neumann boundary 
onditions. For a bound-ary segment with out
ow boundary 
onditions, the S
hur 
omplement S(and its pre
onditioner QS) must be de�ned with Diri
hlet data on thatsegment in order to ensure that the pre
onditioning operator is ellip-ti
 on the pressure spa
e. See [34, pp. 50-51℄, [7, pp. 36-43℄ for furtherdis
ussion of these points.Note that we are not attributing any physi
al meaning to the 
on-ve
tion-di�usion operator on the pressure spa
e, and in addition, thenotion of approximate 
ommutativity is used only as motivation. Theformal 
ommutator (3.5) is zero for 
onstant w, but otherwise it maynot be small. In addition, irrespe
tive of what happens in the 
ontinuous
ase, there are examples where the dis
rete 
ommutator is large, su
has for div-stable �nite element dis
retizations de�ned on di�erent grids(for example, Q1(h)�Q1(2h) 
onsisting of bilinear velo
ities and bilinearpressures on ma
roelements). In pra
ti
e, however, the pre
onditioningmethodology is still valid, as long as the dis
rete operator Fp 
an bede�ned.As shown in (3.4), use of this pre
onditioner requires appli
ation ofthe a
tion of Q�1S to a ve
tor. This entails a Poisson solve (to apply thea
tion of A�1p ), followed by a matrix-ve
tor produ
t by Fp, followed thenby an appli
ation of the inverse of the mass matrix. The �rst and last ofthese steps 
an be repla
ed by inexpensive approximations as des
ribedin Se
tion 2. That is, the a
tion of A�1p 
an be repla
ed by an iterationsu
h as multigrid (or one step of this pro
ess), and Mp 
an be repla
edby its diagonal.Our understanding of the 
onvergen
e 
hara
teristi
s of solvers thatuse this pre
onditioner is largely based on empiri
al eviden
e. We showexamples of performan
e for solving the lid driven 
avity problem, inwhi
h the steady version of (1.1) is posed on 
 = (0; 1) � (0; 1), andDiri
hlet boundary 
onditions for the velo
ity u = (u1; u2) are given by� u1 = u2 = 0 for x = 0; x = 1 or y = 0;u1 = 1; u2 = 0 for y = 1:We 
onsider two dis
retizations, the MAC �nite di�eren
e method, andthe P2-P1 �nite element method, whi
h uses triangular elements withpie
ewise quadrati
 bases for the velo
ity 
omponents and a pie
ewiselinear basis for the pressure. In all 
ases, the dis
retization is on a uniformmesh of width h. 8



Table 3.1Average inner iteration 
ounts for Pi
ard iteration, with outer iterations in parentheses.MAC FINITE DIFFERENCES�1/40 1/80 1/160 1/320h = 1=16 8.3 (6) 10.5 (8) 13.3 (11) 17.9 (13)1=32 8.5 (6) 10.4 (8) 14.3 (10) 19.3 (10)1=64 8.6 (6) 11.0 (7) 14.3 (9) 20.9 (11)1=128 8.6 (5) 10.5 (6) 14.5 (8) 20.3 (9)P2-P1 FINITE ELEMENTS�1/40 1/80 1/160 1/320h = 1=16 8.8 (5) 11.2 (6) 14.0 (6) 23.8 (9)1=32 8.5 (5) 10.7 (6) 13.7 (7) 20.4 (9)1=64 8.3 (5) 10.4 (5) 13.4 (6) 18.1 (7)We summarize the performan
e of pre
onditioned GMRES as follows:1. Convergen
e rates are independent of dis
retization mesh size. Ta-ble 3.1 shows the average number of iterations needed to solve the lin-ear systems arising during the 
ourse of a Pi
ard iteration (3.1) for thedriven 
avity problem, for both dis
retizations. Numbers in parenthesesare the number of Pi
ard steps needed to satisfy the stopping 
riterionkF (x(m))k2 � 10�5kfk2, where x(m) = � u(m)p(m) � and F (x(m)) is the non-linear residual. Starting iterates were x(0) � 0 for the nonlinear systemand the most re
ent nonlinear iterate for the linear system. The stopping
riterion for the linear iteration waskrkk2 � 10�2kF (x(m�1))k2 :It is 
lear that for any �xed value of �, the linear iteration 
ounts areindependent of h.2. Convergen
e depends mildly on the vis
osity parameter �. Further
onsideration of the data of Table 3.1 shows that there is a mild in
reasein iteration 
ounts as � is de
reased (i.e., as the Reynolds number is in-
reased). The rate of in
rease is 
learly less than linear in ��1. This issueis explored further in Figure 3.1, whi
h plots the 
onvergen
e history ofthe linear solvers applied to the system (3.2) that arises at the last stepof the Pi
ard iteration, for the P2-P1 dis
retization and h = 1=64. Theseresults show more 
learly the dependen
e on �. For ea
h �, 
onvergen
eis slow during the early stages of the iteration, and the number of stepsin whi
h this poor performan
e is exhibited be
omes larger as � is re-du
ed. After these initial periods of laten
y, 
onvergen
e be
omes morerapid, and the asymptoti
 
onvergen
e rates of the GMRES iteration9
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1/320Fig. 3.1. Convergen
e histories of pre
onditioned GMRES inner iteration for the last step ofPi
ard iteration for several values of �, P2-P1 dis
retization, h = 1=64.then appear to be independent of the value of the vis
osity parameter.These results are 
onsistent with those of extensive experiments de-s
ribed in [13, 18, 28℄. It is also shown empiri
ally in [13℄ that the eigen-values of the pre
onditioned matrix AQ�1 are 
lustered in a region thatdoes not depend on �, ex
ept for a small number of outliers. The numberof these outliers is on the order of ten, although it in
reases slightly as �is de
reased, and this is the 
ause of the laten
ies seen in Figure 3.1. Tosee this, re
all that the optimality of the GMRES iteration leads to thebound on the residual norm [27℄krkk2 � minpk(0)2�k max�2�(AQ�1) jpk(�)j kr0k2; (3.7)where we have assumed that AQ�1 = V �V �1 is diagonalizable. Letf�1; : : : ; �dg denote the set of d outlying eigenvalues, and let k = d + l.Then minpk(0)2�k max�2�(AQ�1) jpk(�)j � max�2�(AQ�1) j�d(�)j jCl(�)j ;where �d(�) = �1� 1�1���1� 1�2�� � � ��1� 1�d��is the polynomial of degree d whose roots are the outliers. and Cl is anypolynomial of degree l satisfying Cl(0) = 1. That is, 
onvergen
e tendsto be slow until the roots of the residual polynomial in
lude the outliers(and the 
orresponding eigenve
tors are de
ated from the error), after10



whi
h 
onvergen
e will be di
tated by the distribution of the remaining
lustered set of eigenvalues. This distribution is independent of �. How-ever, sin
e the number of outliers in
reases with ��1, so does the lengthof the laten
y period. Although this analysis only establishes a boundon 
onvergen
e, results given in [13℄ demonstrate that performan
e is
onsistent with these observations.The experiments des
ribed here are for \exa
t" versions of the pre-
onditioners, i.e., no iterations or approximations have been used in pla
eof the a
tion of F�1, A�1p or M�1p . Results in [18℄ indi
ate that there isonly a small in
rease in the numbers of iterations when su
h approxi-mations are made. In addition, preliminary experiments performed forthree-dimensional examples display the same trends for both \exa
t" andapproximate versions of the pre
onditioner [12℄.There has been a limited amount of analysis of this pre
onditioningstrategy that provides insight into 
onvergen
e. Loghin [20℄ has shownthat the eigenvalues of the pre
onditioned linear systems are 
ontained ina set that is independent of the mesh size. This does not �rmly establishthat 
onvergen
e rates are also independent of h, sin
e the bound (3.7)on 
onvergen
e of GMRES also depends on the 
ondition number of thematrix of eigenve
tors, but it 
learly agrees with performan
e. Loghinhas also established bounds on the relation of the eigenvalues to �: thelargest eigenvalues are bounded by ��1 and the smallest ones are boundedbelow by �2. These are 
onsistent with other analysis and experimentsdes
ribed in [13℄, where it is shown that large eigenvalues have imaginaryparts that grow like ��1. However, there is no analysis establishing thatthe majority of eigenvalues are 
lustered near 1 independent of both hand �.Finally, observe that in the spe
ial 
ase of the Stokes equations, whereF = A, the pre
onditioner for the S
hur 
omplement as de�ned in (3.6)reverts to QS = Mp, i.e., it is the same 
hoi
e as that dis
ussed in Se
-tion 2. It would be straightforward to design a 
ode that automati
allyhandles Stokes 
ow by swit
hing to a MINRES strategy in this 
ase.4. The evolutionary Navier-Stokes equations. We now 
on-sider how the pre
onditioning methodology des
ribed in Se
tion 3 
anbe adapted to handle evolutionary problems. Assume that the impli
ittime dis
retization strategies entails the solution of systems of the form(3.2) at ea
h time step. Two su
h approa
hes for dis
retizing in time arethe ba
kward Euler (BE) methodu(n+1) � u(n)�t � ��u(n+1) + (u(n+1) � grad)u(n+1) + grad p(n+1) = f�divu(n+1) = 0;11



and the Crank-Ni
olson (CN) methodu(n+1) � u(n)�t + 12 ����u(n+1) + (u(n+1) � grad)u(n+1)�+ grad p(n+1)= f � 12 ����u(n) + (u(n) � grad)u(n)��divu(n+1) = 0:Our emphasis is not on the relative merits of these alternatives, but wenote the well-known fa
ts that BE is �rst order a

urate in time and CNis se
ond order a

urate [16, x3.16.1℄. La
k of A-stability may inhibitthe utility of CN if large time steps are used [33℄, but it is e�e
tivefor 
omputing time-a

urate solutions. From the point of view of thealgorithms 
onsidered in this study, the two methods entail the sametype of 
omputations at ea
h time step. Other time-stepping strategiesthat are amenable to our algorithmi
 approa
h are dis
ussed in [34℄.Both approa
hes as de�ned require the solution of a nonlinear equa-tion at ea
h time step, whi
h, after spatial dis
retization, yields a nonlin-ear algebrai
 system. This diÆ
ulty 
an be avoided by suitable treatmentof the 
oeÆ
ient u(n+1) of the 
onve
tion term. In this study, we repla
ethis by the lagged value u(n) for the ba
kward Euler method, and by��32u(n) � 12u(n�1)� � grad� u(n+1)for the Crank-Ni
olson method. The latter approa
h retains se
ond or-der a

ura
y [31℄. We will also refer to these linearized methods as BEand CN, respe
tively, and the experiments des
ribed below are for thesestrategies.After spatial dis
retization, both time-stepping strategies lead to sys-tems (3.2). F now has the formF = ÆMu + A+N; (4.1)where A and N are dis
rete di�usion and 
onve
tion operators, respe
-tively, and Æ = 1�t for BE and 2�t for CN. The ve
tor f in the right handside has boundary 
onditions and (where appli
able) the expli
it 
ompo-nent of CN in
orporated into it. The pre
onditioning operator is de�nedas in (3.3) and (3.6), where, by analogy with (4.1),Fp = ÆMp + Ap +Np :We present here two sets of experimental results, both using MAC�nite di�eren
es for the spatial dis
retization. In Table 4.1, we showresults of integrating the driven 
avity problem from t = 0 to t = 1 using12



Table 4.1Average number of GMRES iterations per linear solve, for integration of the driven 
avityproblem from t = 0 to t = 1, with MAC spatial dis
retization and h = 1=64 and 1=128.h=1/64 �1/40 1/80 1/160 1/320�t = 1=8 8.3 9.3 9.9 10.11=16 6.4 7.4 7.9 8.21=32 4.7 5.5 6.1 6.31=64 3.4 3.8 4.2 4.5h=1/128 1/40 1/80 1/160 1/320�t = 1=8 7.9 9.4 10.3 10.91=16 6.1 7.4 8.6 9.11=32 4.3 5.4 6.4 7.21=64 3.0 3.8 4.4 5.1BE, for several 
hoi
es of time steps, �, and h. The table presents theaverage number of pre
onditioned GMRES iterations required during the
ourse of the integration. The stopping 
riterion for the linear solves waskrkk2 � 10�6kfk2where the initial guess at ea
h time step was the solution at the previ-ous step, and zero at the �rst step. Comparison with Table 3.1 showsa dramati
 redu
tion in dependen
e on the vis
osity, espe
ially as thetime step is redu
ed. There is also virtually no dependen
e on the dis-
retization mesh size. These results are 
onsistent with Loghin's analysis[20℄.As in Se
tion 4, we 
an explore these trends further by examiningthe performan
e of the individual linear solves more 
losely. Figure 4.1shows the detailed 
onvergen
e behavior for examples of the inner pre-
onditioned iterations, at time t = 1=4, 1=2 and 3=4, where �t = 1=64and h = 1=64. Here, we 
onsider both the BE and CN time dis
retiza-tions.1 These results demonstrate that, in 
ontrast to the steady-state
ase, there is now no laten
y asso
iated with the inner solves, and 
on-vergen
e rates are insensitive to the value of the vis
osity as well as thepoint in time at whi
h the systems arise. The number of iterations re-quired for CN is slightly smaller than for BE, be
ause the larger value ofÆ in (4.1) 
an be viewed as having the e�e
t of using a smaller time step.Note that for evolutionary problems, the subsidiary 
onve
tion-di�u-sion equations that must be solved at ea
h step are time-dependent ones,whi
h are easier to handle than in the steady-state 
ase. The de
reased1The linearized CN method is not self-starting, and in these experiments the �rst three timesteps were performed using BE. 13
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Fig. 4.1. Convergen
e histories of pre
onditioned GMRES inner iteration at various time steps,for the MAC dis
retization with h = 1=64 and � = 1=160 and 1=320.dependen
e on � is largely due to the fa
t that Mu and Mp o

upy in-
reasingly dominant pla
es in F and Fp, respe
tively, as the time step isde
reased.5. Comparative remarks on multigrid methods. As we havenoted, an assumption underlying the utility of the pre
onditioning meth-ods 
onsidered here is the potential for implementing them using buildingblo
ks for subsidiary 
omputations. One 
andidate for handling the sub-sidiary jobs, although by no means the only one, is multigrid (MG). Thereare also various examples of MG methods that 
an be applied dire
tly tosaddle point problems, and it is natural to ask how dire
t appli
ation of14



MG 
ompares with the ideas dis
ussed above.The most popular example of multigrid methods for saddle pointproblems takes the form of so-
alled \distributive iterations," in whi
hthe MG smoothing iteration is applied to a system obtained from a 
hangeof variables [5, 35, 43, 42℄. This approa
h shares with (3.6) the use of adis
rete 
onve
tion-di�usion operator Fp. Consider the transformation�F BTB 0 �� I BT0 �Fp �� û̂p� = � f0 � ; � up� = � I BT0 �Fp �� û̂p� :(5.1)The 
oeÆ
ient matrix of the transformed system is~A = � F CB BBT �where C = FBT � BTFp is a 
ommutator. If C is small, then ~A isnearly of blo
k triangular form, where the diagonal blo
ks 
onsist of a
onve
tion-di�usion operator and a s
aled dis
rete Lapla
ian. Smoothersfor (5.1) are derived from smoothers for these individual blo
ks: see thereferen
es above for details. See also [23, 38℄ for other multigrid methodsderived from the squared system asso
iated with (3.2).Thus, we see that multigrid methods share many 
hara
teristi
s of thepre
onditioning approa
h 
onsidered here. We have performed a 
ompar-ison of these two 
lasses of methods for solving steady-state Stokes sys-tems, using the pre
onditioned MINRES method des
ribed in Se
tion 2[10℄. This study showed that the fastest variant of MG is somewhat moreeÆ
ient than pre
onditioned MINRES, but that there is no di�eren
e inthe asymptoti
 behavior with respe
t to mesh size of the two methodoli-gies. We know of no dire
t 
omparison for more general Navier-Stokessystems, although we would not expe
t signi�
ant di�eren
es. However,in order to be useful, MG methods require the 
ommutator to be small;they are ine�e
tive otherwise. The approa
h 
onsidered here has theadvantage of being more generally appli
able, and it is also not expli
-itly dependent on use of multigrid in 
ases where a hierar
hy of grids isunavailable.6. Con
luding remarks. We 
on
lude by reiterating the generalphilosophy behind the development of the algorithms 
onsidered in thisstudy, and we then mention some open issues. The approa
h des
ribedhere is to derive solution algorithms for the Navier-Stokes equations bytaking advantage of the saddle point stru
ture of the linear systems thatarise from standard dis
retizations, and to make use of algorithms forsubsidiary problems su
h as the 
onve
tion-di�usion and Poisson equa-tions. The resulting methods have been shown to be e�e
tive, and they15



automati
ally adapt to a variety of s
enarios in
luding both steady andtransient 
ows.Issues that have not been fully explored in
lude the e�e
ts of bound-ary 
onditions and of pressure dis
retization. In parti
ular, even when
ommutativity of dis
rete operators \nearly" holds in the interior of 
, itfails to hold near the boundaries, and this may have an e�e
t on perfor-man
e. More generally, the e�e
t of the 
hoi
e of boundary 
onditions forFp and Ap is not understood. In addition, the pre
onditioning method-ology depends expli
itly on having the dis
rete operators Fp and Ap onthe pressure spa
e. Our experien
e with �nite element dis
retizationshas been limited to 
ontinuous pressures, where it is natural to de�nesu
h operators. The question of how to handle dis
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