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Convergence Results for Ant Routing Algorithms
via Stochastic Approximation and Optimization

Punyaslok Purkayastha and John S. Baras

Abstract—“Ant algorithms” have been proposed to solve a
variety of problems arising in optimization and distributed
control. They form a subset of the larger class of “Swarm
Intelligence” algorithms. The central idea is that a "swarm”
of relatively simple agents can interact through simple melga-
nisms and collectively solve complex problems. Instancesat
exemplify the above idea abound in nature. The abilities of at
colonies to collectively accomplish complex tasks have sed
as sources of inspiration for the design of “Ant algorithms”.
Examples of “Ant algorithms” are the set of “Ant Routing” al-
gorithms that have been proposed for communication network.
We analyze in this paper Ant Routing Algorithms for packet-
switched wireline networks. The algorithm retains most of he
salient and attractive features of Ant Routing Algorithms. The
scheme is a multiple path probabilistic routing scheme, thais
fully adaptive and distributed. Using methods from adaptive
algorithms and stochastic approximation, we show that the
evolution of the link delay estimates can be closely tracketly
a deterministic ODE system. A study of the equilibrium points
of the ODE gives us the equilibrium behavior of the routing
algorithm, in particular, the equilibrium routing probabi lities,
and mean delays in the links under equilibrium. We also show
that the fixed-point equations that the equilibrium routing
probabilities satisfy are actually the necessary and suffient
conditions of an appropriate optimization problem. Simulations
supporting the analytical results are provided.

. INTRODUCTION

nication networks. It has been observed in an experiment
conducted by biologists called the double bridge expertmen
[7], that a colony of ants, when presented with two paths
to a source of food, is able to collectively converge to the
shorter path. Every ant lays a trail of a chemical substance
called pheromoneas it walks along a path; subsequent ants
follow and reinforce this trail. This leads progressivetya
large accumulation of pheromone on the shorter path, which
is how ants discover the shorter path. Most of the Ant-
Based Routing Algorithms (called Ant Routing Algorithms,
for short) proposed in the literature are inspired by this
basic idea. These algorithms employ probe packets called
ant packets (analogues of ants) to explore the network
and measure various quantities related to network routing
performance like link and path delays. These measurements
are used to construct and update the routing tables at the
network nodes. The update algorithms tend to reinforceethos
outgoing links which lead to paths with lower delays.
Schoonderwoeret. al. [11], [5] tested an Ant Routing
Algorithm on the British Telecom telephone network, and
reported superior performance compared to other algosithm
including shortest paths based schemes. This generated in-
terest in the study of Ant Routing Algorithms for both
connection-oriented networks and for packet-switched net

“Ant algorithms” constitute a class of algorithms that haV?/vorks (both wired and wireless). Ant Routing Algorithms

been proposed to solve a variety of problems arising

'fbr wireless networks have been proposed and analyzed in

optimization and distributed control. They form a SUbseﬁapers by Baras and Mehta [1] and Gueesal. [9].

of the larger class of what are referred to as

“Swarm e consider in this paper packet-switched wired networks.

Intelligence” algorithms, a topic extensively discussedhie 5 Routing Algorithms for such networks have been pro-

book by B_onabeau,“Theral’J’Iez, and Dorigo [5]. The centra)oseq in the works of Di Caro and Dorigo [8] and Bean and
idea here is that a "swarm” of relatively simple agents cag,q(5 [2]. Though a large number of ant routing algorithms
interact through simple mechanisms and _collectlvely S(_)Ivﬁave been proposed, very few analytical studies are aailab
complex problems. Instances that exemplify the above idga e |iterature. Examples of such analytical studies can b
abound in nature. Bonabeau, Theraulez, and Dorigo [},nq in [12], [10], and [2]. Yoo, La, and Makowski [12] and
give examples of insect societies like those of ants, hongy, yianr [10] consider very simple network cases where the
bees, and wasps, which accomplish fairly complex tasks @fays in the links of the network are deterministic quésit
building intricate nests, finding food, responding to ex&r ,qenendent of the offered traffic loads. They show that
threats etc., even though the individual insects themselvg,: 5i5orithms converge to the shortest path solutions in
have limited capabilities. The abilities of ant colonies Qo network. Bean and Costa [2] propose a multiple-path
collectively accomplish complex tasks have served as 88UGouting scheme which tries to form estimates of the delays
of inspiration for the design of "Ant algorithms”. and use them to update routing tables. The link delays
Ex_am”ples of "Ant algorithms” are the set of "Ant-Based;,, pe stochastically varying. The authors employ a time-
Routing” algorithms that have been proposed for COMMUse4ie separation approximation whereby the delay estimate
are computed before the routing probabilities are updated.
They find that results from a numerical study based on their
model and those from simulations agree well. However, the
exact nature of the time-scale separation is not clear nor
is any convergence result provided. Borkar and Kumar [6]
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use stochastic approximation methods to prove convergenak routing an incoming packet at nodeand bound for
of their scheme called Wardrop routing. Their framework iglestinationk via the neighbor; € A(i,k). The matrix
similar to ours - they have a delay estimation scheme and/i) has the same dimensions&s:), and its(z, j)-th entry
probability update scheme which utilizes the delay es#siat contains various statistics pertaining to the rautg, . . ., k).
Their probability update scheme moves on a slower timég=xamples of such statistics could be mean delay and delay
scale than their delay estimation scheme. By two time-scal@riance estimates of the routg j, ..., k). These statistics
stochastic approximation methods they study convergehceare maintained and updated based on the information the ant
their algorithm. packets collect about the route. The matfi%) represents
We consider the algorithm proposed by Bean and Costhe characteristics of the network that are learned by the
[2] in this paper. The algorithm retains most of the attraeti nodes through the ant packets, based on which local deeision
features of Ant Routing Algorithms. The scheme is fullymaking, and the updating of the routing taii¢:), are done.
adaptive and distributed. We consider in this paper thelsimpThe iterative algorithms that are used to upd4i¢) and
routing scenario where data traffic entering a single sourd@(:) will be referred to as théearning algorithms
node has to be routed to a single destination node, and theraMe now describe the mechanism of operation of ant-
are N available parallel paths between them. We model thieased routing algorithms. For ease of exposition, we cstri
arrival processes and packet lengths of both the ant and th#ention to a particular fixed destination node, and carsid
data streams that arrive at the source node, and argue, usihg problem of routing from every other node to this node,
methods from adaptive algorithms and stochastic approxivhich we label asD.
mation, that the evolution of the link delay estimates can Forward ant generation and routing. At certain inter-
be closely tracked by a deterministic ODE system, whewals, forward ant (FA) packets are launched from a node
the step size of the estimation scheme is small. Then tawards the destination nodeto discover low delay paths to
study of the equilibrium points of the ODE gives us thet. The FA packets sample walks on the graph representing
equilibrium behavior of the routing algorithm; in partiem| the communication network, based on the current routing
the equilibrium routing probabilities, and mean delayshie t probabilities at the nodes. FA packets share the same queues
N paths under equilibrium can be obtained. We also shoas data packets and so experience similar delay characteris
that the fixed-point equations that the equilibrium routindics as data packets. Every FA packet maintains a stack of
probabilities satisfy are actually the necessary and sefffic data structures containing the IDs of nodes in its path aad th
conditions of a convex minimization problem. per hop delays (or other relevant information) encountered
Our paper is organized as follows. Section Il provides th&he per hop delay measurements are obtained through time
general framework of ant routing and the routing scheme wafamping of the packets as they pass from the various nodes.
consider. Section Ill provides a detailed description af &u Backward ant generation and routing. Upon arrival of
parallel paths model. Section IV contains an analysis of than FA at the destination node, a backward ant (BA) packet
routing scheme. Section V provides illustrative simulatio is generated. The FA packet transfers its stack to the BA. The
results, and in Section VI we provide a few conclusiveBA packet then retraces back to the source the path traversed
remarks. by the FA packet. BA packets travel back in high priority
gueues, so as to minimize the possibility of outdated oestal
Il. GENERAL FRAMEWORK OF ANT ROUTING measurements. At each node that the BA packet traverses
ALGORITHMS AND OUR SCHEME through, it transfers the information that was gatherechigy t
We provide, in this section, a brief description of the geneorresponding FA packet. This information is used to update
eral framework of ant routing for a (wired) communicationthe matrice<. andR at the respective nodes. Thus the arrival
network. The framework that we follow is the one describedf the BA packet at the nodes triggers the iterative learning
in Di Caro and Dorigo [7], [8]. Alongside, we describe thealgorithms. Of the various learning algorithms that haverbe
scheme due to Bean and Costa [2], that we analyse in thisoposed in the literature, we consider the one proposed by
paper. Bean and Costa [2]. In the following sections of this paper,
Every nodei in the network maintains two key datawe analyse this scheme for the simple problem involving
structures - a matrix of routing probabilities, the routingouting of incoming traffic between an origin-destinatiairp
tableR(7), and a matrix of various kinds of statistics, calledthrough N parallel paths.
the local network information table;(i). For a particular ~ Bean and Costa suggest the following scheme for the
nodei, let (i, k) denote the set of neighbors othrough learning algorithms. Suppose that an FA packet measures
which nodei routes packets towards destinatibn For a the deIaijD associated with a walki, j,..., D). When
communication network consisting dff nodes, the matrix the corresponding BA packet arrives at nodé¢he delay
of routing probabilities,R (i), has M — 1 columns, corre- information is used to update the estimate of the mean delay
sponding to thelM — 1 destinations towards which node X}D using the simple exponential estimator
could route packets, antl/ — 1 rows, corresponding to the iD iD i i
maximum number of neighbor nodes throu%h whi?:h node X=X+ n(AJ'D N XJD)’ (1)
could route packets to a particular destination. The entriavheren > 0 is a small constant. The mean delay estimates
of R(i) are the probabilitieg’*. ¢i* denotes the probability X/, corresponding to the other neighbersof nodei, are



left unchanged. acts as a probing stream in our system collecting samples
Simultaneously, the routing probabilities at the nodes amf delays while traversing through the queues along with the
updated using the scheme: data packets. Thus, the packets of this stream would be much
3 smaller in size compared to the data packets.
(<)

1
ZkGN(i,D) (X—kD)

where 5 is a constant positive integefi influences the

extent to which outgoing links with lower delay estimates ar

favored compared to the ones with higher delay estimates.
We can interpret the quantitg(};—D as analogous to the

pheromone content on the outgoi]ng lik ). Equation(2) ey

shows that the outgoing linki, j) is more desirable when Data Stream

X.;:D’ the delay in routing through, is smaller (i.e., when Fig. 1. The network withV parallel paths
the pheromone content is higher).

(b;D — 5 ] c N(a D)7 (2) Ant Stream Capacity G,

Source S Destination D

1. THE N PARALLEL PATHS MODEL

The model that we consider pertains to the routing scenario
where arriving traffic at a single source nodehas to be , ...
routed to a single destination node There areV available M
parallel paths between the source and the destination node
through which the traffic could be routed. The network and
its equivalent queueing theoretic model are shown in Figure
1 and2 respectively. The queues represent the output buffers .
(which we assume to be infinite) at the source and are Source . pestinaon
associated with theéV outgoing links. We assume in our ]
model that the queueing delays dominate the propagation
and the packet processing delays in tiiebranches. These _ .
additional delay components can be incorporated into our »
model with no additional complexity, but to keep the dis-
cussion simple, we assume they are negligible. Two traffic
streams, an ant and a data stream, arrive at the sourceSnode )
At node S, every packet of the combined stream is route% Let {Ai(m)} denote the sequence of delays experienced
with probabilitiesé,,. .., ¢x (the currentvalues) towards PY Successive ant packets traversijg Here delay refers
the queuesQ,...,Qn, respectively. These probabilities to the total waiting time in _the fsysten@i (waiting time in
are updated dynamically based on running estimates Eﬁe queue plus packet service t_|me)_. Also,{iétn)} denote
the means of the delays (waiting times) in the queues. the sequence of successive arrival tlmes of ant packetg at th
Samples of the delays in the¥ queues are collected by the destination nodeD. Then then-th arrival of an ant packet

ant packets (these are forward ant packets) as they travefdd”? Occurs ab(n). Suppose that this ant packet has arrived

through the queues. These samples are then used to constlifef2:- Ve denote the decision variable for routing jn);

the running estimates of the means of the delays inhe thhat is, fors z '1f’.H.7Nr’1 we say tl?at t::e eve_r{tR(n) :hi}
gueues. We now describe our model in detail. as occurred If then-th ant packet that arrives @ has

We model the arrival processes of ant and data strealﬁ‘?enbrom?d vid);. dl’(i(”) : thzl I‘{)R(’“:i}’ thl:js’ gives the
packets at the source nodeas independent Poisson pro-num er of ant packets that have been routedgjizamong

cesses of rates., and \,, packets/sec, respectively Thed total ofn ant arrivals at destinatio® (14 is the indicator

lengths of the packets of the combined stream constitu[gn_dom variable fofheveM). O?Ci thg allnt pscket;\rrives, the
an i.i.d. sequence, which is also statistically independén €StimateXi(n) of the mean of the delay through quege

the packet arrival processes. The capacity of linls C; is immediately updated using a simple exponential avetagin

bits/sec { = 1,..., N). We assume that the length of an an£Stimator

packet is generally distributed with medn, bits, and that PR o e

the length of a data packet is generally distributed withmea Xi(n) = Xi(n — 1) + € (Ai(¢i(n)) - Xi(n = 1)), (3)

Lp bits. If we denote the service times of an ant and a datp_ . 1, being a small constant.

packet in quUQi by the generic random variablés' and  he gelay estimates for the other queues are left un-
SP ., thenS# andSP are generally distributed (according 10 changed, i.e.

some c.d.f’s, sayG#* and GP) with meansE[S{] = LC_A T

and E[SP] = LC—D respectively. The ant stream essentially Xin)=X;n-1), je{l,...,N}, j#1i. (4

Fig. 2. N parallel paths : The queueing theoretic model



In general, thus, the evolution of the delay estimates in thmatters considerably. The key observation is that, when
N queues can be described by the following set of stochasi& small, the delay estimatek; evolve much more slowly
iterative equations compared to the waiting time (delay) procesges Also,

because the probabilities; are (memoryless) functions of

Xi(n) = Xi(n—1)+e€ I{rm)=i} (Ai@/’i(”)) - the delay estimated;, they, too, evolve at the same time-

, scale as the delay estimates. Consequently, with the vec-
Xi(n=1), i =1, N, ®) tor (X1(n), ..., Xx(n)) fixed at (21, - 2) (equivalently

along with a set of initial conditions\;(0) = z1,..., ¢i(n),i=1,...,N, fixed at¢; = %ﬂ
XN (0) = zN. i=1, ..., N), the delay processes;(.),i =1, ..., N,

At time 4(n), besides the delay estimates, the routingan be considered as converged to a stationary distribution
probabilities¢;(n),i = 1,..., N, are also updated simul- which depends offzi,..., zx). Also, whene is small, the
taneously according to the equations evolution of the delay estimates can be tracked by a system
(Xi(n))—ﬁ of ODEs. A heuristic analysis of the algorithm, as provided

¢i(n) = —x —5, i=1,.. ., N, (6) in the Appendix, shows that the ODE system for our case is

> =1 (Xj(n)) given by

[ being a constant positive integﬁer. The initial values of the ()

probabilities areg;(0) = %,z =1,...,N. We ;t = R ,

note thatg; (n) + --- + ¢N(n3 =1, for all n.
In the above model we consider only forward ants and do i=1

not incorporate the effects of backward ants. More pregisel :

we assume that the estimatés§(.) of the means of the _

delays and the probabilitie$i(.)(za)re updated as soon asdzy (1) (2n (1)) Q(DN(Zl(t)""’ZN(t)) B ZN(t))

the (forward) ant packets arrive at the destination and dt N _8

this information is available instantaneously thereaditethe 7; (21(1))

source nodeS. We do not consider thus the additional delay '

) . (7)

involved as the backward ant packets travel back carryiag th

delay information to the source. Because backward ants aMth the set of initial conditions:(0) = z1,...,2n(0) =

expected to travel back to the source through priority gaguer~n- Di(z1,...,2n),t = 1,..., N, are the mean waiting

the effects of delayed information might not be very signiffimes in the queues under stationarity (as seen by arriving

icant, except for large-sized networks. On the other han@nt packets) with the delay estimates considered fixed at

incorporating the effect of delays in our model introduces$i; - --,2N-

additional asynchrony, making the problem harder. Formally, the ODE approximation result can be stated as
Another important point to note is that our delay estifollows (see Benveniste, Metivier, and Priouret [3]). Faya

mation schemeg5) is a constant step size scheme. As idixed ¢ > 0 and fori = 1,..., N, consider the piecewise

well known in the literature on adaptive algorithms (see, foconstant interpolation of{;(n) given by the equations :

example [3]), this enables the scheme to adapt to (trackj(t) = Xi(n) for ¢ € [ne,(n + 1) ), n = 0,1,2,..,

long term changes in statistics of the delay processes.ighigWith the initial value z{(0) = X;(0). Then the processes

important for communication networks, because the siagist {{(¢),t > 0},i=1,..., N, converge to the solution of the

of arrival processes at the nodes as well as the netwofkDE system(7) in the following sense : as | 0, for any

characteristics typically change with time. 0<T < oo,

)

€ P
IV. ANALYSIS OF THE ALGORITHM sup |2;(t) — zi(t)] — 0, (8)

0<t<T
We view the routing algorithm, consisting of equations P . o
(5) and (6), as a set of discrete stochastic iterations oythere—— denotes convergence in probability.
the type usually considered in the literature on stochastjc In order to obtain _the evolution of the ODE, we -need
approximation methods [3]. We provide below the mairf® COMPUte the quantitie®;(zy, ..., zy), for our queueing

convergence result which states that, whémsmall enough, SYStem- we rfet<r:]all thz.itt.)i(zi.’ ey 2N),0 = 1b7 "tN’ relIetr o |
the discrete iterations are closely tracked by a system € means of the wailing imes as seen by ant packet arrivals

Ordinary Differential Equations (ODES). In the Appendix,to the queues_r\;]vhert'lhthe dilay estl;mg_tl_et_s arte E[:'(j)gadered fixed
we provide a heuristic analysis which enables us to arrive &t “1> -+ *N- en Ine routing probabilities to queues

) _ (z0)~" S i
the appropriate ODE. are ¢; = W,z _”1,...,N. We nOV\.I discuss
how to compute the quantitie®;(z1,...,2y) given our

A. The ODE Approximation assumptions on the statistics of the arrival processes and o
An analysis of the dynamics of the system, as givethe packet lengths of the arrival streams.

by equations(5) and (6), is fairly complicated. However,  Under such conditions, every incoming arrival at sousce

whene > 0 is small, a time-scale decomposition simplifiesfrom either of the Poisson streams (the ant or the data sjream



is routed (independent of other arrivals) with probability (ﬁv) 1Dz * ok 0 10
#; towards queu);. Thus the incoming arrival process in N N 2h) = 2y - (19
queueQ); (for eachi) is a superposition of two independent ; (25 )

Poisson processes with rates¢; and\pg;. Consequently, . - .

every incoming packet int@); is, with probability >\A+)\D :h&Steady stat((je rloutm%protbablhtlegi. 't'h’ O ﬁrti related

an ant packet, and with probablhtyL a data packet. 0 Ihe average de ay estima e?, -+ 2y, [hfough the equa-
ns, ¢f L = ,N. Because we have

Also, under our assumptions on the statistics of the pack@‘t’ LGP

lengths of the arrival streams and on the arrival processegssumed that our queues are in the stable region of operation

all of the queues evolve as independédt/G/1 queues. the steady state estimates of average delays must be finite,

The cumulative incoming stream intQ; is Poisson with and soz; must be finite for everyi = 1,...,N. Then

rate (A4 + Ap)¢;, and every incoming packet’s service timethe steady state routing probabilities; = Z}fﬁ%
is distributed according to the c.d@: with probability . N, are all strictly posmve Equatmrfsio) then
A b )
AAAJ;‘A and according to the c.d.f{7;” with probability reduce to 2f = Di(ef,...,2%),0 = 1,...,N. We also
x5, We further assume that the queues are within thggtice, from equatlor(9) that for eachz D (28,...,2%)
stability region of operation given by the inequalities s 3 function solely of¢:, and so, with a slight abuse of
(A + Ap)iE[Si] < 1,0 =1, ..., N, where E[Si], notation, we denote it byD;(¢*). Then, utilizing the fact
the mean packet service time @;, is given by B[S;] = that ¢} = Lﬁ, we find that the equilibrium routing
2aEISTHAREIST] e note that the average waiting time 25 () . . '
. Aa+Ap bpﬂrobamees qbl, ..., ¢%, must satisfy the following fixed-
in the system as experienced by successive ant arriv Sint svstem of equations
to queueq);, is the same as the average waiting time i Y g
Q; by the PASTA (Poisson Arrivals See Time Averages) . (D 1((;5*1‘))_5
property. Thus, using the Pollaczek-Khinchin formula for o= 5 ’
the average waiting time and assuming that the queues are Z: (D (¢*))
stable, we finally obtain the expression D% (21, ..., 2xN) =1
(t=1,...,N): :
* \\— B
Aa + Ap) b B[S2 .« _ _(Dn(en))

2(1 = (Aa +Ap)#iE[Si])
where E[S;] and E[S?] are given by E[ =

S (Ds(61)~"

J:
Notice that¢] + --- + ¢ = 1.

=

A B[S+ AD B[ST] 2 AAE[(SA) J+2p E[(SP)7]
AJ(rz 0 s andE[S7] = A+AD »and An important point to note is that the steady state proba-
¢i = W bilities, ¢7, ..., ¢4, must not only satisfy the above system
Once the expressions f@);(z1, . .., zy) are available, we Of equations, but must all be strictly positive and satisfy

can numerically solve the ODE systeff), starting with the following inequalities which are the stability condits
the initial conditionsz;(0),...,zx(0). We observe in our for the system(Aa + Ap)¢; E[S;] < 1,i =1,...,N. We
simulations that if we start the system with initial condits now show that the system of equatiofisl) are actually
such that we are inside the stability region, the systensstajhe necessary and sufficient optimality conditions for an

within the stability region thereafter. optimization problem involving the minimization of a comve
objective function of (¢1,...,¢n) subject to the above
B. Equilibrium behavior of the routing algorithm mentioned constraints. We show as a consequence that, if

there exists a solution to the set of equatidis) that

We now obtain the equilibrium points of the ODE system
also satisfies the above mentioned constraints, then such a
(7) which would, in turn, enable us to obtain the equilibrium Solution is unique.

routing behavior of the system. In particular, we can obtaln L
Consider the optimization problem
the equilibrium routing probabilities and the mean delays i

the system under steady state operation of the networke For ~ Minimize F'(¢1,...,¢6n5) =>4 fo ’ de
small, the steady state values of the estimates of the awverag subject tog; + - - -+ ¢ = 1

waiting times (delays) in théV queues are approximately 0< ¢1 < aq,
given by the components of the equilibrium point§, of :

the ODE system(7). The equilibrium points of the ODE, 0 < éy < an,

z*, must satisfy the set of equations given by
—p wherea; = EYEDYS = ,N.
(21) D (2 * ] I Let us denote b)Cl the set deflned by the constraints of
~ AD1(25, ..., 28) — 27| = 0, h
=B e above optimization problem — the feasible set. It is easy
Z (25) to see that” is a convex subset aR”. It is possible that

the setC' is empty (for a given set of values afs, Ap, and
E[S;],i =1,...,N), which means that there are no feasible



solutions to the above optimization problem in such a caseonditions. Then for every other vectgr € C, we have
We assume, in what follows, that there exists at least orﬁf\il(@ — ¢F) = 0. So, the quantity
feasible solution to the above optimization problem, i., oF N
IS non-empty. *) * ) £\
P . i) v W) — Y-
Before we attempt to solve the optimization problem, we Z: 3@ o) 091 (¢ );((b @)
make gertaln natural assumptions on the del_ay funcUonsThen’ becaus@ is convex overC, by Propositior2.1.2
D;(z),i = 1,...,N. We assume that the functiord3;(x) . g
. . : . of Bertsekas [4]¢* is a local minimum. [

are positive, real-valued, differentiable and monotalhjca . .

For our model, it is easy to check that the functidngz),
increasing on their domains of definition. This holds true in - : .

as given by(9), are positive, real-valued, differentiable and
most cases of interest, because when the routing prolgab|l|t

monotonically increasing on their domains of definition.
for an outgoing link increases, the amount of traffic flo

hus, there is a unique equilibrium probability vectot
into that link also increases, resulting in an increase ef th

which satisfies the fixed-point equatiofisl).
delay. The following proposition characterizes the opt|ma

solutions¢* of the above optimization problem. V. SIMULATION RESULTS AND DISCUSSION
Proposition 1: Given the above assumptions on Ihe delay \we describe in this section an illustrative example. The
functions D;(z),7 = 1,..., N, a probability vector)* is a  queueing system as described in Section Il has been im-

local minimum of I ovng if a”‘z only if ¢* satisfies the plemented using a discrete event simulator. We present here
set of fixed-point equationdl1). ¢* is then also the unique regyits for the case when the number of parallel paths is

global minimum of ' overC. o N = 3. The step size and the paramete? were set at the
Proof: The Hessian of" is a diagonal matrix given by \51ues0.002 and 1, respectively.

2 i Bl The ant and data traffic arrival processes are Poisson with
F@r,-.on) = dlag([DZ(@)] {Dile:) + rateshy = 1 and\p = 1, respectively. For the ant packets,
ﬁ(biDQ((bi)}), (12) the service times in the three queues are exponential with
o meansE[S{'] = 1/3.0, E[S3'] = 1/4.0 and E[S4'] = 1/5.0,
whereD;(.) denotes the derivative db;(.). Under the above yegpectively. For the data packets also, the service times i
assumptions on thé;(z)'s, V2F(¢1,...,¢n) is positive  the three queues are exponential with me&fsP] = 1/3.0,
definite overC, and soF is a strictly convex function on E[SP] = 1/4.0 and E[SP] = 1/5.0, respectively. The initial

C. Consequently, any local minimum df is also a global yalyes of the delay estimates in the three queues were set at
minimum of ¥ over C; furthermore, there is atmost one suchy, () = 0.8, X,(0) = 2.8, and X5(0) = 5.6. Then, the

global minimum [4]. o initial routing probabilities arep; (0) = 0.7, ¢2(0) = 0.2,
If ¢* = (¢7,...,¢%) is a local minimum ofF" over C,  and¢,(0) = 0.1, which ensures that, initially, we are inside
we must have (Proposition1.2 of Bertsekas [4]), the stability region of the queueing sytem. We observed in
our simulations that as the queueing system evolved over
Z (% —¢7) >0,V € C. (13) time, never did the system become unstable.
¢ Figures 3, 4 and 5 provide plots of the interpolated
Let us f|x a pair of indicesi,j,i # j. Then choose delay estimateszf(t),; = 1,2,3) in the three queues,
¢i = ¢; + 0 andp; = ¢; — 4, and letgy, = ¢;,Vk #i,j. averaged over ten sample paths, versus the ODE approxi-
Now, choosings > 0 small enough that the vectayr = mation, z;(t), 22(t), z3(¢), obtained by numerically solving
(¢1,...,6n) is also inC, the above condition becomes (7). We see that the theoretical ODE tracks the simulated
OF OF delay estimates fairly well. Figures, 7, and 8 provide
( 5 (0 - w(gb*))(S >0, plots of routing probabilitiess; (1), ¢o(n), and és(n). The
‘ J routing probabilities converge to the equilibrium valugs=
or, ¢:[Di(¢7)]" > gb;f[Dj(gzs;)]ﬁ. 3/12,¢5 = 4/12,¢3 = 5/12, which is actually the unique

o f solution to equationg11). These probabilities are in the
By a similar argument, we can show tha}[D;(¢7)]” >  reverse order as packet service times in the three queues,

¢¥[Di(¢7))”. Thus, the necessary conditions 6t to be a with link 3 having the highest equilibrium probability, and

local minimum are link 1 the lowest.
$1[D1(67))” = -+ = N [Dn(o3)]". VI. CONCLUSIONS
Combining this with the normalization conditiog} + - - - + We have provided convergence results for an Ant Routing
¢% = 1, gives us the system of equatiofis). Algorithm for a simple network consisting aV parallel
The necessary conditions above can also be written in tip@ths between a source-destination pair. We have explicitl
form modeled the link delays using a stochastic queueing model,
oF oF ; - :
— (") =--- = —(¢). and we have studied a routing scheme where the routing
2ol oy probabilities are updated based on estimates of path delays

We check that these conditions are also sufficient¢foto  We have also shown that the equilibrium routing probakditi
be a local minimum. Suppos¢* € C satisfies the above are solutions of a fixed-point system of equations, which in



turn, form the necessary and sufficient optimality condiio following approximate equations

for a convex optimization problem. We aim to extend the
analysis to the network case, where multiple traffic streams
with different destinations share a network of links.
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APPENDIX

D;(X1(n),...,Xn(n)) are the mean waiting times as seen
by ant packets. Employing the approximations as described
above, we notice fronfl5) that the evolution of the vector

The heuristic analysis provided below is largely inspire
by Benveniste, Metivier, and Priouret (Sectidre, Chapter
2) [3]. Let us consider the mean delay estimation scheme
given by equation5). We can write, for a positive integer

%Xl (n),...,Xn(n)) resembles that of a discrete-time ap-
roximation to the following ODE system whenis small
enough,

M,

Xn(n+ M)

M

Xl(n) +€ ZI{R(n+k):1}
k=1

(A1 + k) = Xi(n+ k= 1)),

M
Xn(n)+e > IRntr=N}
k=1

(AN(wN(n +k) - Xn(n+k— 1)).
(14)

If e > 0 is small enough, the vectdX;(n),..., Xn(n))
can be assumed to have not changed much in the discrete

interval {n,n + 1,...,n + M}, and we can write the

dz (t) (2 (t) " (Dl(zl(t), 2N (t) — = (t))

dt N _ ’

dzn(t) (2n(t) " (DN(zl(t), 2N (t) — zN(t))

dt N _ ’
Zl (z(8) ™"
)=
(16)
with the set of initial conditions;(0) = z1,...,2n5(0) =
IN.
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Fig. 7. The plot forgz(n)

Fig. 8. The plot forgs(n)



