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Abstract— “Ant algorithms” have been proposed to solve a
variety of problems arising in optimization and distributed
control. They form a subset of the larger class of “Swarm
Intelligence” algorithms. The central idea is that a ”swarm”
of relatively simple agents can interact through simple mecha-
nisms and collectively solve complex problems. Instances that
exemplify the above idea abound in nature. The abilities of ant
colonies to collectively accomplish complex tasks have served
as sources of inspiration for the design of “Ant algorithms”.
Examples of “Ant algorithms” are the set of “Ant Routing” al-
gorithms that have been proposed for communication networks.
We analyze in this paper Ant Routing Algorithms for packet-
switched wireline networks. The algorithm retains most of the
salient and attractive features of Ant Routing Algorithms. The
scheme is a multiple path probabilistic routing scheme, that is
fully adaptive and distributed. Using methods from adaptive
algorithms and stochastic approximation, we show that the
evolution of the link delay estimates can be closely trackedby
a deterministic ODE system. A study of the equilibrium points
of the ODE gives us the equilibrium behavior of the routing
algorithm, in particular, the equilibrium routing probabi lities,
and mean delays in the links under equilibrium. We also show
that the fixed-point equations that the equilibrium routing
probabilities satisfy are actually the necessary and sufficient
conditions of an appropriate optimization problem. Simulations
supporting the analytical results are provided.

I. INTRODUCTION

“Ant algorithms” constitute a class of algorithms that have
been proposed to solve a variety of problems arising in
optimization and distributed control. They form a subset
of the larger class of what are referred to as “Swarm
Intelligence” algorithms, a topic extensively discussed in the
book by Bonabeau, Theraulez, and Dorigo [5]. The central
idea here is that a “swarm” of relatively simple agents can
interact through simple mechanisms and collectively solve
complex problems. Instances that exemplify the above idea
abound in nature. Bonabeau, Theraulez, and Dorigo [5]
give examples of insect societies like those of ants, honey
bees, and wasps, which accomplish fairly complex tasks of
building intricate nests, finding food, responding to external
threats etc., even though the individual insects themselves
have limited capabilities. The abilities of ant colonies to
collectively accomplish complex tasks have served as sources
of inspiration for the design of “Ant algorithms”.

Examples of “Ant algorithms” are the set of “Ant-Based
Routing” algorithms that have been proposed for commu-
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nication networks. It has been observed in an experiment
conducted by biologists called the double bridge experiment
[7], that a colony of ants, when presented with two paths
to a source of food, is able to collectively converge to the
shorter path. Every ant lays a trail of a chemical substance
calledpheromoneas it walks along a path; subsequent ants
follow and reinforce this trail. This leads progressively to a
large accumulation of pheromone on the shorter path, which
is how ants discover the shorter path. Most of the Ant-
Based Routing Algorithms (called Ant Routing Algorithms,
for short) proposed in the literature are inspired by this
basic idea. These algorithms employ probe packets called
ant packets (analogues of ants) to explore the network
and measure various quantities related to network routing
performance like link and path delays. These measurements
are used to construct and update the routing tables at the
network nodes. The update algorithms tend to reinforce those
outgoing links which lead to paths with lower delays.

Schoonderwoerdet. al. [11], [5] tested an Ant Routing
Algorithm on the British Telecom telephone network, and
reported superior performance compared to other algorithms
including shortest paths based schemes. This generated in-
terest in the study of Ant Routing Algorithms for both
connection-oriented networks and for packet-switched net-
works (both wired and wireless). Ant Routing Algorithms
for wireless networks have been proposed and analyzed in
papers by Baras and Mehta [1] and Guneset. al. [9].

We consider in this paper packet-switched wired networks.
Ant Routing Algorithms for such networks have been pro-
posed in the works of Di Caro and Dorigo [8] and Bean and
Costa [2]. Though a large number of ant routing algorithms
have been proposed, very few analytical studies are available
in the literature. Examples of such analytical studies can be
found in [12], [10], and [2]. Yoo, La, and Makowski [12] and
Gutjahr [10] consider very simple network cases where the
delays in the links of the network are deterministic quantities,
independent of the offered traffic loads. They show that
ant algorithms converge to the shortest path solutions in
the network. Bean and Costa [2] propose a multiple-path
routing scheme which tries to form estimates of the delays
and use them to update routing tables. The link delays
can be stochastically varying. The authors employ a time-
scale separation approximation whereby the delay estimates
are computed before the routing probabilities are updated.
They find that results from a numerical study based on their
model and those from simulations agree well. However, the
exact nature of the time-scale separation is not clear nor
is any convergence result provided. Borkar and Kumar [6]



use stochastic approximation methods to prove convergence
of their scheme called Wardrop routing. Their framework is
similar to ours - they have a delay estimation scheme and a
probability update scheme which utilizes the delay estimates.
Their probability update scheme moves on a slower time-
scale than their delay estimation scheme. By two time-scale
stochastic approximation methods they study convergence of
their algorithm.

We consider the algorithm proposed by Bean and Costa
[2] in this paper. The algorithm retains most of the attractive
features of Ant Routing Algorithms. The scheme is fully
adaptive and distributed. We consider in this paper the simple
routing scenario where data traffic entering a single source
node has to be routed to a single destination node, and there
areN available parallel paths between them. We model the
arrival processes and packet lengths of both the ant and the
data streams that arrive at the source node, and argue, using
methods from adaptive algorithms and stochastic approxi-
mation, that the evolution of the link delay estimates can
be closely tracked by a deterministic ODE system, when
the step size of the estimation scheme is small. Then a
study of the equilibrium points of the ODE gives us the
equilibrium behavior of the routing algorithm; in particular,
the equilibrium routing probabilities, and mean delays in the
N paths under equilibrium can be obtained. We also show
that the fixed-point equations that the equilibrium routing
probabilities satisfy are actually the necessary and sufficient
conditions of a convex minimization problem.

Our paper is organized as follows. Section II provides the
general framework of ant routing and the routing scheme we
consider. Section III provides a detailed description of our N
parallel paths model. Section IV contains an analysis of the
routing scheme. Section V provides illustrative simulation
results, and in Section VI we provide a few conclusive
remarks.

II. GENERAL FRAMEWORK OF ANT ROUTING
ALGORITHMS AND OUR SCHEME

We provide, in this section, a brief description of the gen-
eral framework of ant routing for a (wired) communication
network. The framework that we follow is the one described
in Di Caro and Dorigo [7], [8]. Alongside, we describe the
scheme due to Bean and Costa [2], that we analyse in this
paper.

Every node i in the network maintains two key data
structures - a matrix of routing probabilities, the routing
tableR(i), and a matrix of various kinds of statistics, called
the local network information table,L(i). For a particular
nodei, let N (i, k) denote the set of neighbors ofi through
which nodei routes packets towards destinationk. For a
communication network consisting ofM nodes, the matrix
of routing probabilities,R(i), hasM − 1 columns, corre-
sponding to theM − 1 destinations towards which nodei
could route packets, andM − 1 rows, corresponding to the
maximum number of neighbor nodes through which nodei
could route packets to a particular destination. The entries
of R(i) are the probabilitiesφikj . φikj denotes the probability

of routing an incoming packet at nodei and bound for
destinationk via the neighborj ∈ N (i, k). The matrix
L(i) has the same dimensions asR(i), and its(i, j)-th entry
contains various statistics pertaining to the route(i, j, . . . , k).
Examples of such statistics could be mean delay and delay
variance estimates of the route(i, j, . . . , k). These statistics
are maintained and updated based on the information the ant
packets collect about the route. The matrixL(i) represents
the characteristics of the network that are learned by the
nodes through the ant packets, based on which local decision-
making, and the updating of the routing tableR(i), are done.
The iterative algorithms that are used to updateL(i) and
R(i) will be referred to as thelearning algorithms.

We now describe the mechanism of operation of ant-
based routing algorithms. For ease of exposition, we restrict
attention to a particular fixed destination node, and consider
the problem of routing from every other node to this node,
which we label asD.

Forward ant generation and routing. At certain inter-
vals, forward ant (FA) packets are launched from a nodei
towards the destination nodeD to discover low delay paths to
it. The FA packets sample walks on the graph representing
the communication network, based on the current routing
probabilities at the nodes. FA packets share the same queues
as data packets and so experience similar delay characteris-
tics as data packets. Every FA packet maintains a stack of
data structures containing the IDs of nodes in its path and the
per hop delays (or other relevant information) encountered.
The per hop delay measurements are obtained through time
stamping of the packets as they pass from the various nodes.

Backward ant generation and routing. Upon arrival of
an FA at the destination nodeD, a backward ant (BA) packet
is generated. The FA packet transfers its stack to the BA. The
BA packet then retraces back to the source the path traversed
by the FA packet. BA packets travel back in high priority
queues, so as to minimize the possibility of outdated or stale
measurements. At each node that the BA packet traverses
through, it transfers the information that was gathered by the
corresponding FA packet. This information is used to update
the matricesL andR at the respective nodes. Thus the arrival
of the BA packet at the nodes triggers the iterative learning
algorithms. Of the various learning algorithms that have been
proposed in the literature, we consider the one proposed by
Bean and Costa [2]. In the following sections of this paper,
we analyse this scheme for the simple problem involving
routing of incoming traffic between an origin-destination pair
throughN parallel paths.

Bean and Costa suggest the following scheme for the
learning algorithms. Suppose that an FA packet measures
the delay∆iD

j associated with a walk(i, j, . . . , D). When
the corresponding BA packet arrives at nodei the delay
information is used to update the estimate of the mean delay
X iD
j using the simple exponential estimator

X iD
j := X iD

j + η(∆iD
j −X iD

j ), (1)

whereη > 0 is a small constant. The mean delay estimates
X iD
m , corresponding to the other neighborsm of nodei, are



left unchanged.
Simultaneously, the routing probabilities at the nodes are

updated using the scheme:

φiDj =

(

1
XiD

j

)β

∑

k∈N (i,D)

(

1
XiD

k

)β
, j ∈ N (i,D), (2)

where β is a constant positive integer.β influences the
extent to which outgoing links with lower delay estimates are
favored compared to the ones with higher delay estimates.

We can interpret the quantity 1
XiD

j

as analogous to the

pheromone content on the outgoing link(i, j). Equation(2)
shows that the outgoing link(i, j) is more desirable when
X iD
j , the delay in routing throughj, is smaller (i.e., when

the pheromone content is higher).

III. THE N PARALLEL PATHS MODEL

The model that we consider pertains to the routing scenario
where arriving traffic at a single source nodeS has to be
routed to a single destination nodeD. There areN available
parallel paths between the source and the destination node
through which the traffic could be routed. The network and
its equivalent queueing theoretic model are shown in Figures
1 and2 respectively. The queues represent the output buffers
(which we assume to be infinite) at the source and are
associated with theN outgoing links. We assume in our
model that the queueing delays dominate the propagation
and the packet processing delays in theN branches. These
additional delay components can be incorporated into our
model with no additional complexity, but to keep the dis-
cussion simple, we assume they are negligible. Two traffic
streams, an ant and a data stream, arrive at the source nodeS.
At nodeS, every packet of the combined stream is routed
with probabilitiesφ1, . . . , φN (the current values) towards
the queuesQ1, . . . , QN , respectively. These probabilities
are updated dynamically based on running estimates of
the means of the delays (waiting times) in theN queues.
Samples of the delays in theN queues are collected by the
ant packets (these are forward ant packets) as they traverse
through the queues. These samples are then used to construct
the running estimates of the means of the delays in theN
queues. We now describe our model in detail.

We model the arrival processes of ant and data stream
packets at the source nodeS as independent Poisson pro-
cesses of ratesλA and λD packets/sec, respectively. The
lengths of the packets of the combined stream constitute
an i.i.d. sequence, which is also statistically independent of
the packet arrival processes. The capacity of linki is Ci
bits/sec (i = 1, . . . , N ). We assume that the length of an ant
packet is generally distributed with meanLA bits, and that
the length of a data packet is generally distributed with mean
LD bits. If we denote the service times of an ant and a data
packet in queueQi by the generic random variablesSAi and
SDi , thenSAi andSDi are generally distributed (according to
some c.d.f.’s, sayGAi andGDi ) with meansE[SAi ] = LA

Ci

andE[SDi ] = LD

Ci
, respectively. The ant stream essentially

acts as a probing stream in our system collecting samples
of delays while traversing through the queues along with the
data packets. Thus, the packets of this stream would be much
smaller in size compared to the data packets.
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Fig. 2. N parallel paths : The queueing theoretic model

Let {∆i(m)} denote the sequence of delays experienced
by successive ant packets traversingQi. Here delay refers
to the total waiting time in the systemQi (waiting time in
the queue plus packet service time). Also, let{δ(n)} denote
the sequence of successive arrival times of ant packets at the
destination nodeD. Then then-th arrival of an ant packet
atD occurs atδ(n). Suppose that this ant packet has arrived
viaQi. We denote the decision variable for routing byR(n);
that is, fori = 1, . . . , N , we say that the event{R(n) = i}
has occurred if then-th ant packet that arrives atD has
been routed viaQi. ψi(n) =

∑n

k=1 I{R(k)=i}, thus, gives the
number of ant packets that have been routed viaQi among
a total ofn ant arrivals at destinationD (IA is the indicator
random variable of eventA). Once the ant packet arrives, the
estimateXi(n) of the mean of the delay through queueQi
is immediately updated using a simple exponential averaging
estimator

Xi(n) = Xi(n− 1) + ǫ (∆i(ψi(n)) −Xi(n− 1)), (3)

0 < ǫ < 1, being a small constant.
The delay estimates for the other queues are left un-

changed, i.e.,

Xj(n) = Xj(n− 1), j ∈ {1, . . . , N}, j 6= i. (4)



In general, thus, the evolution of the delay estimates in the
N queues can be described by the following set of stochastic
iterative equations

Xi(n) = Xi(n− 1) + ǫ I{R(n)=i}

(

∆i(ψi(n)) −

Xi(n− 1)
)

, i = 1, . . . , N, (5)

along with a set of initial conditionsX1(0) = x1, . . . ,
XN (0) = xN .

At time δ(n), besides the delay estimates, the routing
probabilitiesφi(n), i = 1, . . . , N , are also updated simul-
taneously according to the equations

φi(n) =
(Xi(n))−β

∑N
j=1 (Xj(n))−β

, i = 1, . . . , N, (6)

β being a constant positive integer. The initial values of the
probabilities areφi(0) = (xi)

−β

P

N
j=1 (xj)

−β , i = 1, . . . , N . We

note thatφ1(n) + · · · + φN (n) = 1, for all n.
In the above model we consider only forward ants and do

not incorporate the effects of backward ants. More precisely,
we assume that the estimatesXi(.) of the means of the
delays and the probabilitiesφi(.) are updated as soon as
the (forward) ant packets arrive at the destinationD, and
this information is available instantaneously thereafterat the
source nodeS. We do not consider thus the additional delay
involved as the backward ant packets travel back carrying the
delay information to the source. Because backward ants are
expected to travel back to the source through priority queues,
the effects of delayed information might not be very signif-
icant, except for large-sized networks. On the other hand,
incorporating the effect of delays in our model introduces
additional asynchrony, making the problem harder.

Another important point to note is that our delay esti-
mation scheme(5) is a constant step size scheme. As is
well known in the literature on adaptive algorithms (see, for
example [3]), this enables the scheme to adapt to (track)
long term changes in statistics of the delay processes. Thisis
important for communication networks, because the statistics
of arrival processes at the nodes as well as the network
characteristics typically change with time.

IV. ANALYSIS OF THE ALGORITHM

We view the routing algorithm, consisting of equations
(5) and (6), as a set of discrete stochastic iterations of
the type usually considered in the literature on stochastic
approximation methods [3]. We provide below the main
convergence result which states that, whenǫ is small enough,
the discrete iterations are closely tracked by a system of
Ordinary Differential Equations (ODEs). In the Appendix,
we provide a heuristic analysis which enables us to arrive at
the appropriate ODE.

A. The ODE Approximation

An analysis of the dynamics of the system, as given
by equations(5) and (6), is fairly complicated. However,
when ǫ > 0 is small, a time-scale decomposition simplifies

matters considerably. The key observation is that, whenǫ
is small, the delay estimatesXi evolve much more slowly
compared to the waiting time (delay) processes∆i. Also,
because the probabilitiesφi are (memoryless) functions of
the delay estimatesXi, they, too, evolve at the same time-
scale as the delay estimates. Consequently, with the vec-
tor (X1(n), . . . , XN (n)) fixed at (z1, ..., zN ) (equivalently,
φi(n), i = 1, . . . , N , fixed atφi = (zi)

−β

P

N
j=1 (zj)

−β ,

i = 1, . . . , N ), the delay processes∆i(.), i = 1, . . . , N,
can be considered as converged to a stationary distribution,
which depends on(z1, . . . , zN ). Also, whenǫ is small, the
evolution of the delay estimates can be tracked by a system
of ODEs. A heuristic analysis of the algorithm, as provided
in the Appendix, shows that the ODE system for our case is
given by

dz1(t)

dt
=

(z1(t))
−β

(

D1(z1(t), . . . , zN (t)) − z1(t)
)

N
∑

j=1

(zk(t))
−β

,

...
...

dzN (t)

dt
=

(zN (t))
−β

(

DN (z1(t), . . . , zN(t)) − zN(t)
)

N
∑

j=1

(zk(t))
−β

,

(7)

with the set of initial conditionsz1(0) = x1, . . . , zN (0) =
xN . Di(z1, . . . , zN ), i = 1, . . . , N , are the mean waiting
times in the queues under stationarity (as seen by arriving
ant packets) with the delay estimates considered fixed at
z1, . . . , zN .

Formally, the ODE approximation result can be stated as
follows (see Benveniste, Metivier, and Priouret [3]). For any
fixed ǫ > 0 and for i = 1, . . . , N , consider the piecewise
constant interpolation ofXi(n) given by the equations :
zǫi (t) = Xi(n) for t ∈ [nǫ, (n + 1)ǫ ), n = 0, 1, 2, . . .,
with the initial valuezǫi (0) = Xi(0). Then the processes
{zǫi (t), t ≥ 0}, i = 1, . . . , N , converge to the solution of the
ODE system(7) in the following sense : asǫ ↓ 0, for any
0 ≤ T <∞,

sup
0≤t≤T

|zǫi (t) − zi(t)|
P

−→ 0, (8)

where
P
−→ denotes convergence in probability.

In order to obtain the evolution of the ODE, we need
to compute the quantitiesDi(z1, . . . , zN), for our queueing
system. We recall thatDi(z1, . . . , zN), i = 1, . . . , N , refer to
the means of the waiting times as seen by ant packet arrivals
to the queues when the delay estimates are considered fixed
at z1, . . . , zN . Then the routing probabilities to theN queues
are φi = (zi)

−β

P

N
j=1 (zj)

−β , i = 1, . . . , N . We now discuss

how to compute the quantitiesDi(z1, . . . , zN) given our
assumptions on the statistics of the arrival processes and on
the packet lengths of the arrival streams.

Under such conditions, every incoming arrival at sourceS
from either of the Poisson streams (the ant or the data stream)



is routed (independent of other arrivals) with probability
φi towards queueQi. Thus the incoming arrival process in
queueQi (for eachi) is a superposition of two independent
Poisson processes with ratesλAφi andλDφi. Consequently,
every incoming packet intoQi is, with probability λA

λA+λD
,

an ant packet, and with probability λD

λA+λD
, a data packet.

Also, under our assumptions on the statistics of the packet
lengths of the arrival streams and on the arrival processes,
all of the queues evolve as independentM/G/1 queues.
The cumulative incoming stream intoQi is Poisson with
rate(λA+λD)φi, and every incoming packet’s service time
is distributed according to the c.d.fGAi with probability
λA

λA+λD
and according to the c.d.f.GDi with probability

λD

λA+λD
. We further assume that the queues are within the

stability region of operation given by the inequalities :
(λA + λD)φiE[Si] < 1, i = 1, . . . , N , whereE[Si],
the mean packet service time inQi, is given byE[Si] =
λAE[SA

i ]+λDE[SD
i ]

λA+λD
. We note that the average waiting time

in the system as experienced by successive ant arrivals
to queueQi, is the same as the average waiting time in
Qi by the PASTA (Poisson Arrivals See Time Averages)
property. Thus, using the Pollaczek-Khinchin formula for
the average waiting time and assuming that the queues are
stable, we finally obtain the expression forDi(z1, . . . , zN )
(i = 1, . . . , N ):

Di(z1, . . . , zN) = E[Si] +
(λA + λD)φiE[S2

i ]

2(1 − (λA + λD)φiE[Si])
, (9)

where E[Si] and E[S2
i ] are given by E[Si] =

λAE[SA
i ]+λDE[SD

i ]
λA+λD

andE[S2
i ] =

λAE[(SA
i )

2
]+λDE[(SD

i )
2
]

λA+λD
, and

φi = (zi)
−β

P

N
j=1 (zj)

−β .

Once the expressions forDi(z1, . . . , zN) are available, we
can numerically solve the ODE system(7), starting with
the initial conditionsz1(0), . . . , zN (0). We observe in our
simulations that if we start the system with initial conditions
such that we are inside the stability region, the system stays
within the stability region thereafter.

B. Equilibrium behavior of the routing algorithm

We now obtain the equilibrium points of the ODE system
(7) which would, in turn, enable us to obtain the equilibrium
routing behavior of the system. In particular, we can obtain
the equilibrium routing probabilities and the mean delays in
the system under steady state operation of the network. Forǫ
small, the steady state values of the estimates of the average
waiting times (delays) in theN queues are approximately
given by the components of the equilibrium points,z∗, of
the ODE system(7). The equilibrium points of the ODE,
z∗, must satisfy the set of equations given by

(z∗1)
−β

N
∑

j=1

(z∗j )
−β

.
[

D1(z
∗
1 , . . . , z

∗
N) − z∗1

]

= 0,

...
...

(z∗N )
−β

N
∑

j=1

(z∗j )
−β

.
[

DN (z∗1 , . . . , z
∗
N) − z∗N

]

= 0. (10)

The steady state routing probabilities,φ∗1, . . . , φ
∗
N , are related

to the average delay estimates,z∗1 , . . . , z
∗
N , through the equa-

tions, φ∗i =
(z∗i )−β

P

N
j=1 (z∗j )−β , i = 1, . . . , N . Because we have

assumed that our queues are in the stable region of operation,
the steady state estimates of average delays must be finite,
and so z∗i must be finite for everyi = 1, . . . , N . Then

the steady state routing probabilities,φ∗i =
(z∗i )−β

P

N
j=1 (z∗j )−β ,

i = 1, . . . , N , are all strictly positive. Equations(10) then
reduce to :z∗i = Di(z

∗
1 , . . . , z

∗
N ), i = 1, . . . , N . We also

notice, from equation(9), that for eachi, Di(z
∗
1 , . . . , z

∗
N )

is a function solely ofφ∗i , and so, with a slight abuse of
notation, we denote it byDi(φ

∗
i ). Then, utilizing the fact

that φ∗i =
(z∗i )−β

P

N
j=1 (z∗j )−β , we find that the equilibrium routing

probabilities,φ∗1, . . . , φ
∗
N , must satisfy the following fixed-

point system of equations

φ∗1 =
(D1(φ

∗
1))

−β

N
∑

j=1

(Dj(φ∗j ))
−β

,

...
...

φ∗N =
(DN (φ∗N ))

−β

N
∑

j=1

(Dj(φ∗j ))
−β

. (11)

Notice thatφ∗1 + · · · + φ∗N = 1.
An important point to note is that the steady state proba-

bilities, φ∗1, . . . , φ
∗
N , must not only satisfy the above system

of equations, but must all be strictly positive and satisfy
the following inequalities which are the stability conditions
for the system:(λA + λD)φ∗iE[Si] < 1, i = 1, . . . , N . We
now show that the system of equations(11) are actually
the necessary and sufficient optimality conditions for an
optimization problem involving the minimization of a convex
objective function of (φ1, . . . , φN ) subject to the above
mentioned constraints. We show as a consequence that, if
there exists a solution to the set of equations(11) that
also satisfies the above mentioned constraints, then such a
solution is unique.

Consider the optimization problem

Minimize F (φ1, . . . , φN ) =
∑N

i=1

∫ φi

0
x[Di(x)]

β
dx,

subject toφ1 + · · · + φN = 1,
0 < φ1 < a1,

...
0 < φN < aN ,

whereai = 1
(λA+λD)E[Si]

, i = 1, . . . , N .
Let us denote byC the set defined by the constraints of

the above optimization problem – the feasible set. It is easy
to see thatC is a convex subset ofRN . It is possible that
the setC is empty (for a given set of values ofλA, λD, and
E[Si], i = 1, . . . , N ), which means that there are no feasible



solutions to the above optimization problem in such a case.
We assume, in what follows, that there exists at least one
feasible solution to the above optimization problem, i.e.,C
is non-empty.

Before we attempt to solve the optimization problem, we
make certain natural assumptions on the delay functions
Di(x), i = 1, . . . , N . We assume that the functionsDi(x)
are positive, real-valued, differentiable and monotonically
increasing on their domains of definition. This holds true in
most cases of interest, because when the routing probability
for an outgoing link increases, the amount of traffic flow
into that link also increases, resulting in an increase of the
delay. The following proposition characterizes the optimal
solutionsφ∗ of the above optimization problem.

Proposition 1: Given the above assumptions on the delay
functionsDi(x), i = 1, . . . , N , a probability vectorφ∗ is a
local minimum ofF overC if and only if φ∗ satisfies the
set of fixed-point equations(11). φ∗ is then also the unique
global minimum ofF overC.

Proof: The Hessian ofF is a diagonal matrix given by

∇2F (φ1, . . . , φN ) = diag
(

[Di(φi)]
β−1{Di(φi) +

βφiD
′
i(φi)}

)

, (12)

whereD′
i(.) denotes the derivative ofDi(.). Under the above

assumptions on theDi(x)’s, ∇2F (φ1, . . . , φN ) is positive
definite overC, and soF is a strictly convex function on
C. Consequently, any local minimum ofF is also a global
minimum ofF overC; furthermore, there is atmost one such
global minimum [4].

If φ∗ = (φ∗1, . . . , φ
∗
N ) is a local minimum ofF overC,

we must have (Proposition2.1.2 of Bertsekas [4]),

N
∑

i=1

∂F

∂φi
(φ∗)(φi − φ∗i ) ≥ 0, ∀φ ∈ C. (13)

Let us fix a pair of indicesi, j, i 6= j. Then choose
φi = φ∗i + δ andφj = φ∗j − δ, and letφk = φ∗k, ∀k 6= i, j.
Now, choosingδ > 0 small enough that the vectorφ =
(φ1, . . . , φN ) is also inC, the above condition becomes

( ∂F

∂φi
(φ∗) −

∂F

∂φj
(φ∗)

)

δ ≥ 0,

or, φ∗i [Di(φ
∗
i )]

β ≥ φ∗j [Dj(φ
∗
j )]

β
.

By a similar argument, we can show thatφ∗j [Dj(φ
∗
j )]

β ≥

φ∗i [Di(φ
∗
i )]

β . Thus, the necessary conditions forφ∗ to be a
local minimum are

φ∗1[D1(φ
∗
1)]

β
= · · · = φ∗N [DN (φ∗N )]

β
.

Combining this with the normalization condition,φ∗1 + · · ·+
φ∗N = 1, gives us the system of equations(11).

The necessary conditions above can also be written in the
form

∂F

∂φ1
(φ∗) = · · · =

∂F

∂φN
(φ∗).

We check that these conditions are also sufficient forφ∗ to
be a local minimum. Supposeφ∗ ∈ C satisfies the above

conditions. Then for every other vectorφ ∈ C, we have
∑N

i=1(φi − φ∗i ) = 0. So, the quantity

N
∑

i=1

∂F

∂φi
(φ∗)(φi − φ∗i ) =

∂F

∂φ1
(φ∗)

N
∑

i=1

(φi − φ∗i ) = 0.

Then, becauseF is convex overC, by Proposition2.1.2
of Bertsekas [4],φ∗ is a local minimum. �

For our model, it is easy to check that the functionsDi(x),
as given by(9), are positive, real-valued, differentiable and
monotonically increasing on their domains of definition.
Thus, there is a unique equilibrium probability vectorφ∗

which satisfies the fixed-point equations(11).

V. SIMULATION RESULTS AND DISCUSSION

We describe in this section an illustrative example. The
queueing system as described in Section III has been im-
plemented using a discrete event simulator. We present here
results for the case when the number of parallel paths is
N = 3. The step sizeǫ and the parameterβ were set at the
values0.002 and1, respectively.

The ant and data traffic arrival processes are Poisson with
ratesλA = 1 andλD = 1, respectively. For the ant packets,
the service times in the three queues are exponential with
meansE[SA1 ] = 1/3.0, E[SA2 ] = 1/4.0 andE[SA3 ] = 1/5.0,
respectively. For the data packets also, the service times in
the three queues are exponential with meansE[SD1 ] = 1/3.0,
E[SD2 ] = 1/4.0 andE[SD3 ] = 1/5.0, respectively. The initial
values of the delay estimates in the three queues were set at
X1(0) = 0.8, X2(0) = 2.8, andX3(0) = 5.6. Then, the
initial routing probabilities areφ1(0) = 0.7, φ2(0) = 0.2,
andφ3(0) = 0.1, which ensures that, initially, we are inside
the stability region of the queueing sytem. We observed in
our simulations that as the queueing system evolved over
time, never did the system become unstable.

Figures 3, 4 and 5 provide plots of the interpolated
delay estimates (zǫi (t), i = 1, 2, 3) in the three queues,
averaged over ten sample paths, versus the ODE approxi-
mation, z1(t), z2(t), z3(t), obtained by numerically solving
(7). We see that the theoretical ODE tracks the simulated
delay estimates fairly well. Figures6, 7, and 8 provide
plots of routing probabilitiesφ1(n), φ2(n), andφ3(n). The
routing probabilities converge to the equilibrium valuesφ∗1 =
3/12, φ∗2 = 4/12, φ∗3 = 5/12, which is actually the unique
solution to equations(11). These probabilities are in the
reverse order as packet service times in the three queues,
with link 3 having the highest equilibrium probability, and
link 1 the lowest.

VI. CONCLUSIONS

We have provided convergence results for an Ant Routing
Algorithm for a simple network consisting ofN parallel
paths between a source-destination pair. We have explicitly
modeled the link delays using a stochastic queueing model,
and we have studied a routing scheme where the routing
probabilities are updated based on estimates of path delays.
We have also shown that the equilibrium routing probabilities
are solutions of a fixed-point system of equations, which in



turn, form the necessary and sufficient optimality conditions
for a convex optimization problem. We aim to extend the
analysis to the network case, where multiple traffic streams
with different destinations share a network of links.
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APPENDIX

The heuristic analysis provided below is largely inspired
by Benveniste, Metivier, and Priouret (Section2.2, Chapter
2) [3]. Let us consider the mean delay estimation scheme
given by equation(5). We can write, for a positive integer
M ,

X1(n+M) = X1(n) + ǫ

M
∑

k=1

I{R(n+k)=1}

(

∆1(ψ1(n+ k)) −X1(n+ k − 1)
)

,

...
...

XN (n+M) = XN (n) + ǫ
M
∑

k=1

I{R(n+k)=N}

(

∆N (ψN (n+ k)) −XN(n+ k − 1)
)

.

(14)

If ǫ > 0 is small enough, the vector(X1(n), . . . , XN(n))
can be assumed to have not changed much in the discrete
interval {n, n + 1, . . . , n + M}, and we can write the

following approximate equations

X1(n+M) ≈ X1(n) +Mǫ
(

P1(n,M) −

Q1(n,M)X1(n)
)

,

...
...

XN(n+M) ≈ XN (n) +Mǫ
(

PN (n,M) −

QN (n,M)XN (n)
)

. (15)

Now we try to find approximations to the quantities

Pi(n,M) =
PM

k=1 I{R(n+k)=i}∆i(ψi(n+k))

M
andQi(n,M) =

PM
k=1 I{R(n+k)=i}

M
for i = 1, . . . , N , when the values of

the mean delay estimatesX1(.), . . . , XN (.) are considered
fixed at X1(n), . . . , XN (n), and M is large. Then the
routing probability vector(φ1(.), . . . , φN (.)), too, can be
regarded as essentially constant in the interval{n, . . . , n +
M}, because the probabilities are continuous functions of
the mean delay estimates. The routing probabilities are
then approximately equal toφi(n) = (Xi(n))−β

P

N
j=1 (Xj(n))−β , i =

1, . . . , N . Now, assuming thatM is large enough that
a law of large numbers effect takes over, the average
PM

k=1 I{R(n+k)=i}

M
, which is the fraction of ant packets that

have arrived at destination viaQi when the routing prob-
abilities areφi(n), can be approximated byφi(n). With
the routing probabilities fixed, the delay processes∆i(.),
can converge to a stationary distribution, the mean un-
der stationarity being denoted byDi(X1(n), . . . , XN (n)).

The quantities
PM

k=1 I{R(n+k)=i}∆i(ψi(n+k))

M
can then be

approximated byφi(n).Di(X1(n), . . . , XN (n)). Note that
Di(X1(n), . . . , XN(n)) are the mean waiting times as seen
by ant packets. Employing the approximations as described
above, we notice from(15) that the evolution of the vector
(X1(n), . . . , XN (n)) resembles that of a discrete-time ap-
proximation to the following ODE system whenǫ is small
enough,

dz1(t)

dt
=

(z1(t))
−β

(

D1(z1(t), . . . , zN (t)) − z1(t)
)

N
∑

j=1

(zk(t))
−β

,

...
...

dzN (t)

dt
=

(zN (t))
−β

(

DN (z1(t), . . . , zN(t)) − zN(t)
)

N
∑

j=1

(zk(t))
−β

,

(16)

with the set of initial conditionsz1(0) = x1, . . . , zN (0) =
xN .
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Fig. 3. The ODE approximation forX1(n)
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Fig. 4. The ODE approximation forX2(n)
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Fig. 5. The ODE approximation forX3(n)
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Fig. 6. The plot forφ1(n)
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Fig. 7. The plot forφ2(n)
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Fig. 8. The plot forφ3(n)


