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Effective treatment of critically ill patients requires adequate administration of 

drugs to resuscitate and stabilize the patient by maintaining the volume of blood against 

bleeding and preserving the blood circulation to the body tissues.  In today’s clinical 

practice, drug dose is adjusted by human clinicians. Therefore, treatment is often 

subjective and ad-hoc depending on the style and experience of the clinician.  Thus, in 

theory, it is anticipated that well-designed automated critical care systems can help 

clinicians make superior adjustments to drug doses while they are always vigilant and 

never distracted by other obligations. Yet, automated critical care systems developed 

by researchers are ad-hoc, because they determine the control law, i.e., drug infusion 

rate, using input-output observations rather than the insights on the patient’s 

physiological states gained from rigorous data-based analysis of mathematical models.  

Thus, it is worth developing model-based automated systems relating the fluid and 



  

vasopressor dose input to the underlying physiological states. This necessitates dose-

response mathematical models capable of reproducing realistic physiological and dose-

mediated states with reasonable computational load. However, most of existing models 

are too simplistic to reflect physiological reality, while others are too complicated with 

thousands of parameters to tune. To address these challenges, we believe that a hybrid 

physiologic-phenomenological modeling paradigm is effective in developing 

mathematical models for automated systems: low-order phenomenological models 

with adaptive personalization capability are suited to develop control algorithms, while 

physiological models can provide high-fidelity patterns with physiological 

transparency suited to interpret the underlying physiological states.    

In this study, hybrid physiologic-phenomenological models of blood volume and 

cardiovascular responses to fluid and vasopressor infusion are successfully developed 

and validated using experimental data. It is shown that the models can adequately 

reproduce the underlying physiological states and endpoints to fluid and vasopressor 

infusion. The main contributions of this research are lined in the following three folds. 

First, the models are robust against inter-individual variability, in which they can be 

adapted to each patient with a small number of tunable parameters. Second, they are 

physiologically transparent where the underlying physiological states not measured in 

the standard clinical setting can be interpreted and streamlined during an intervention. 

And eventually the interpreted underlying states can be employed as direct endpoints 

to monitor the patient and guide the treatment in a closed-loop or decision-support 

platform. 
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Chapter 1: Introduction 

 

1.1.Background  

 

The tasks of medical science fall into three categories.  The first is to understand 

disease biology.  The second is to find effective therapies.  And the last is to ensure that 

those therapies are delivered effectively.  This third category, which is perhaps the most 

important for clinical outcomes, has been almost ignored by research funders, 

government, and academia.  For instance, in daily practice, clinicians are confronted 

by many critically ill patients who require major surgeries to stabilize their 

hemodynamic state.  For the aforementioned reason, however, standard therapeutic 

methods may lead to suboptimal treatments with the occurrence of one or more intra- 

and post-operative complications, resulting in significant morbidity and mortality. 

The delivery of effective treatment to critically ill patients requires adequate 

administration of drugs to resuscitate (e.g., by maintaining circulation against blood 

loss) and stabilize (e.g., by mitigating pain due to injury) a given patient.  In today’s 

clinical practice, a medication dose is iteratively and empirically adjusted by human 

clinicians.  A complicating factor is that medications typically have undesired side 

effects.  Therefore, they can be either beneficial or detrimental to the recovery since 

there is a relatively narrow range for safe drug administration and both an over-dose 

and under-dose of medication can adversely affect outcomes, i.e., they can lead to a 

longer length of hospital stay with more treatment costs (Classen et al., 1997).  In this 

regard, the standard practice suffers from two main limitations: (i) caregivers may fail 

to notice when a medication dose must be adjusted to meet resuscitation goals, and (ii) 
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caregivers may not always select optimal dose changes in case dose changes are 

required, leading to patients subjected to suboptimal therapy or pronounced side 

effects. 

Automated therapeutic systems, including closed-loop or decision support 

systems (Figure 1-1), can ensure the delivery of effective therapy by addressing the 

abovementioned challenges.  It is anticipated that automated systems may be superior 

to human clinicians particularly when clinicians are in short supply, pressed for time, 

or overwhelmed by many patients (Michard, 2013).  These systems are always vigilant 

and never distracted by other obligations.  Furthermore, they employ careful and 

exacting computations, whereas a clinician often resorts to subjective ad hoc 

estimations to make clinical decisions.  Studies have shown that the human brain has 

difficulties processing more than 5 to 7 variables simultaneously (Michard, 2013).  

Unfortunately, this is what a clinician’s brain is supposed to do when closely 

monitoring and treating patients, since most therapeutic decisions cannot be based on 

a limited number of clinical variables.  Thus, in theory, a well-designed automated 

medication control system could help clinicians make superior adjustments to 

medication doses, avoiding dangerous delays in noticing the need for adjustments, and 

avoiding dose adjustments that are far from being optimal.  

Automated control of medication administration has received attention during 

recent decades.  As such, a multitude of algorithms have been reported on insulin 

control in diabetes, control of anesthetics and opioids, and fluid treatment against blood 

loss, e.g., B. P. Kovatchev et al. 2009; S. Bibian, Dumont, and Black 2015. Despite this 

level of evidence, a survey published in 2011 showed that the footprint of 
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goal-directed automated therapy in the realm of critical patient care is negligible.  For 

example, goal-directed closed-loop therapy is used by only 5.4% of US 

anesthesiologists (Michard, 2013).  This indicates that there should be still a number of 

challenges that must be addressed by today’s technology.  It is anticipated that 

investigating key technical challenges and finding successful solutions to them may be 

a vital step towards the development and widespread deployment of automated 

therapeutic systems.  These technologies can ultimately be a benefit to patients, care 

providers, health systems, and researchers (Rinehart and Canales, 2015) by reducing 

medication errors and eventually morbidity and mortality in critical care, reducing 

provider’s workload and the number of manual interventions needed during treatment, 

delivering cost-effective treatments and portable expertise, and providing 

 
Figure 1-1: Schematic of automated drug administration. A clinician can close the loop to 

deliver the treatment in a closed-loop manner or take machine calculated dose of 

medication as a background to support his/her decisions. 
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new research studies to improve the efficacy of automated systems, respectively.  

Among the critical care disease, hypovolemia is recognized as the one may most 

benefit from automated critical care systems (ACCS).  Hypovolemia can be attributable 

to many injuries and pathophysiologic conditions, such as hemorrhage, burns, trauma 

and infections (e.g., sepsis) (Barrow et al., 2000; Bortolani et al., 1996; Chien, 1971; 

Guillamet et al., 2012; Hollenberg et al., 1999; Hunter and Doddi, 2010; Pruitt, 1978; 

Vatner, 1974) (Figure 1-2), either alone or in combination, and requires fluid 

resuscitation to restore venous return, cardiac output (CO), and ultimately blood 

pressure (BP) by optimizing the intravascular blood volume (BV).  In many 

hypovolemic scenarios, early and closely monitored resuscitation is crucial for 

survival. Previous investigations indicate that delayed and inadequate fluid 

resuscitation was shown to be responsible for increased mortality and morbidity 

(Michard, 2013; Varadhan and Lobo, 2010; Wolf et al., 1997).  Considering the lack 

of expert physicians and intensivists for fluid resuscitation, technologies for automated 

control of fluid resuscitation may reduce clinical workload by a large amount. The 

technology may especially find meaningful applications in low-resource settings, such 

as the treatment and management of BV in the care of combat and mass casualties.  

 
 
Figure 1-2: Examples of pathophysiologic conditions leading to hypovolemia. 

 

Hemorrhage

Sepsis

Trauma 
Excessive 

Urination

Burn
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To serve the needs of the body tissues, i.e., to transport nutrients to and waste 

products away of the body tissues, apart the adequate BV explained above, adequate 

perfusion pressure is required to force blood into the capillaries of all organs.  In 

particular, in patients with decreased cardiovascular (CV) reserve, fluid resuscitation 

alone is not sufficient to augment CV performance.  Therefore, vasoactive agents are 

utilized to supplement fluid infusion.  Vasoactive drugs are medications that act to 

elevate arterial BP in critically ill patients suffering from a body-wide reduction in 

blood circulation.  Vasoactive agents can act through one or more physiological 

mechanisms, including increasing resistance to blood exiting the arteries (total 

peripheral resistance, TPR) and increasing CO through increased heart rate (HR), 

cardiac contractility, and decreased venous capacitance.  The ultimate medical benefit 

of vasopressors is not increased BP per se, but increased blood flow to peripheral 

tissues driven by the increase in BP.  From here on in this research, the act of regulating 

BV and its perfusion pressure via fluid resuscitation and vasopressor infusion will be 

called hemodynamic management.  

 

1.2.Research Motivation  

 

Current ACCS capabilities to deliver adequate BV and perfusion pressure pose 

four unique, significant challenges in developing and validating the technology towards 

its maturation, which are explained below: 

First, the ACCS must be robust against individual variability in dose-response 

behaviors.  In many of the control systems reported in the literature, the robustness 

aspect is not considered rigorously, or even if it is considered, a simple approach of 
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sacrificing the system’s performance to achieve reasonable level of robustness is taken.  

The efforts to personalize control algorithm is relatively rare, which is due, at least in 

part, to the prevalent use of traditional pharmacological models as control design 

models, which do not offer an ideal platform for real-time adaptive personalization.  

Second, almost all available decision support systems are not physiologically 

transparent, at which they simply try to conjecture their endpoint of interest without 

even considering the underlying physiological mechanisms.  Despite this superficial 

conjecture might work in the favor of tuning the system using as little as possible data, 

two evident shortcomings of this approach are: (i) hemodynamic alerts are only 

produced based on the forecasted endpoint, while the real underlying factors 

responsible for a true alert are still dismissed.  For example, a normal BP, which is the 

most common endpoint for alerting critical care systems, can be reproduced by low 

blood flow but high vasculature resistance, that can hypo-perfuse and eventually 

damage peripheral tissues;  and (ii) even if a true alert is produced by a superficial 

endpoint, this may not assist a clinician in maintaining the patient within the therapeutic 

target with complying the best treatment protocol since the fundamental cause of 

hemodynamic failure remains ambiguous.  Third, sensor technologies are not fully 

mature yet, which limits the control system performance.  For example, subcutaneous 

glucose monitors exhibit significant time delay with respect to the blood glucose level; 

sensors applicable to analgesia control do not exist; all the endpoints currently used in 

automated fluid treatment suffer from critical drawbacks; that is, there is no sensor 

providing a measure of CV preload change due to fluid perturbation.  Even for the 

sensors used in current clinical care, the credibility of the measurement quality is still 
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an open challenge.  For instance, BP waveform measurements are commonly corrupted 

and distorted by signal artifacts and noises.  Using the measurements with unknown 

creditability can make a drastic impact on the performance of automated systems.  And 

fourth, the validation of technology is not trivial, if not impossible.  The closed-loop 

medication control systems are intended for human use.  However, the validation in 

humans is not practical due to ethical reasons.  It’s anticipated that a high-fidelity 

model-based simulation that can reproduce physiological responses to critical care 

medications may provide a viable platform to streamline translation and deployment of 

emerging ACCS capabilities. 

 

1.3.Objectives and Scientific Approach 

 

Within the scope of this research, we seek an answer to the question of how to 

construct a new modeling paradigm for ACCS, which relies on readily available data, 

and can be used in personalized closed-loop therapy.  As mentioned in Section 1.2, 

current available methods suffer from practical challenges they may have in employing 

hemodynamic measurements from low-resource setting to interpret the status of 

patient’s health condition and guide closed-loop therapies.  To address these practical 

challenges, this research develops hybrid physiologic-phenomenological mathematical 

models that can appropriately reproduce dose-response behaviors to critical care 

medications, including fluid resuscitation and vasopressor infusion.  The physiological 

models are built upon physical principles of underlying dose-mediated responses, and 

thus provide transparency and predictive accuracy, but are typically complex. The 

phenomenological models, on the other hand, are based upon empiric observations (i.e. 
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data), so they are typically simple and amenable to adaptation but lack physical 

implication.  Therefore, in this novel modeling paradigm, the desired balance between 

a model’s transparency and complexity is achieved by concurrent exploitation and 

integrations of physiological and phenomenological models.   

This research shows that the hybrid physiologic-phenomenological modeling 

paradigm is effective in developing mathematical models for ACCS, in which the 

objectives of modeling can be met in two fields.  First, this paradigm can provide low-

order models with adaptive personalization capability suited to develop ACCS control 

algorithms.  Second, this paradigm can provide high-fidelity models with physiological 

relevance and transparency suited to interpret the underlying physiological principals.  

In other words, the model’s transparency can make it possible to streamline the 

interpretation of the model during a closed-loop ACCS event.  In summary, the above 

mentioned challenges can be addressed by a hybrid modeling paradigm as below:  

Personalized closed-loop therapy (challenge 1) can be achieved via a desired balance 

between a model’s accuracy and complexity by concurrent exploitation and 

integrations of physiological and phenomenological models while the underlying 

physiological mechanisms in a treatment that may not be available due to sensor 

limitations or only having access to non-invasive measurements (challenges 2, 3) can 

be estimated and monitored via reasonably complex physiological models.  

Furthermore, pre-clinical validation of control algorithms can be done using dose-

response models capable of reproducing realistic physiological and dose-mediated 

responses with reasonable computational load.  It is noted that models currently 

available for use in validating ACCS and closed-loop control algorithms fail to achieve 
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the balance between fidelity and complexity: some models are too simplistic to reflect 

physiological reality (Westerhof et al., 2009), while others are too complicated with 

thousands of parameters to tune (which is impossible to do systematically with limited 

observations) (Guyton et al., 1972).   

 

1.4.Dissertation Contributions  

 

This section illustrates the statement of the main contributions of this study.  

Need for ACCS: 

 
(a) 

 
(b) 

Figure 1-3: Model of hemodynamic responses to (a) fluid and (b) vasopressor infusion. 

RBC: red blood cell, PK: pharmacokinetics, PD: pharmacodynamics, HR: heart rate, Es: 

ventricular elastance, EDV: end-diastolic volume, SV: stroke volume, TPR: total peripheral 

resistance, UO: urinary output, BP: blood pressure, CO: cardiac output. 
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- A comprehensive retrospective analysis was performed on critical care patients 

receiving vasopressor infusion by human clinicians. Hemodynamic data associated 

with 224 ICU patients were collected from a database and investigated for 

effectiveness of treatment. It was shown that treatment by human clinicians is not 

optimum and ACCS may lead us to better treatment scenarios (see Chapter 2).  

Model of BV and hemodynamic endpoints to fluid perturbation: 

- A control-oriented model of BV to fluid infusion was developed. The model was 

validated in three different situations via data collected from human subjects: (i) 

fluid resuscitation in different BV states, (ii) fluid resuscitation via different types 

of fluids, and (iii) fluid resuscitation in different CV states. It was shown that the 

model is accurate despite its simplicity. More importantly, the model is transparent 

so that the interpretation of the model can be streamlined during an intervention. 

Since the model was intended for use in case of only fluid infusion and could not 

be translated to hemorrhage, the model was also refined to be adapted to both 

hemorrhage and fluid infusion. The refined model was validated via data from 

animal subjects and it was shown that the model remained accurate and transparent 

(see Chapters 3 and 4). Then, the model of BV was expanded to the hemodynamic 

endpoints, including CO and BP, to fluid infusion and hemorrhage. The low-order 

hybrid physiologic-phenomenological models of CO and BP were validated via 

data from animal subjects. The models of BV, CO, and BP were integrated as a 

single model with as few as 10 parameters to fluid perturbation. A parametric 

sensitivity analysis showed that among all the parameters, 2 of the parameters are 

low sensitive and may be fixed at their nominal values. Akaike information 
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criterion showed a better trade-off between accuracy and complexity when the low 

sensitive parameters were fixed at their nominal values. This model was proposed 

to be employed for future ACCS design and evaluation when in vivo assessment is 

unlikely (see Chapter 4).   

Model of cardinal parameters and hemodynamic endpoints to vasopressor infusion: 

- A dose-dependent model of vasopressor infusion was developed to predict 

hemodynamic endpoints to new upcoming dosages using only existing non-

invasive BP measurements. The model includes two steps: (i) model 

personalization, where a model of a patient conceived by a physiological model of 

CV system and phenomenological models of underlying parameters were patient 

specifically trained to existing vasopressor dose and non-invasive BP data, and (ii) 

response prediction, where the trained model was interpolated or extrapolated to a 

new upcoming dose to predict hemodynamic endpoints to new vasopressor 

dosages. In this regard, first, low-order Phenomenological models of underlying 

parameters (or cardinal parameters) were developed. The two advantages of the 

developed models are: (i) they can be tuned using as few as two vasopressor dosage 

observations, and (ii) they can be trained via trend of cardinal parameters, and in 

fact non-invasive BP measurements. The models were validated using sparse 

steady-state data collected from human subjects as well as high resolution dynamic 

transient data collected from animal subjects (see Chapter 5). However, cardinal 

parameters often times are not available in standard clinical setting. Therefore, a 

mathematical tool was developed to (i) estimate the trend of cardinal parameters, 

and (ii) predict hemodynamic endpoints, and in particular BP, to upcoming 
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vasopressor doses using existing BP measurements to previous vasopressor dose 

levels. To this end, the well-received model of CV system, i.e., Windkessel model, 

was employed. The model was examined to predict hemodynamic endpoints in 

response to epinephrine, a common vasopressor agent for patients with heart 

failure, and it was shown that the model can capture the bi-phasic behavior of 

epinephrine pretty well, even if we only employ two existing vasopressor dosages. 

Using a mathematical analysis, it was shown that Windkessel model may fail when 

there is a wide variation of pulse pressure (PP) during fluid infusion (See Chapter 

6).  

Universal model of hemodynamic endpoints to combined BV perturbation and vasopressor 

infusion: 

- Although the models developed above could adequately reproduce the 

hemodynamic responses in separate scenarios of BV perturbation and vasopressor 

infusion, the feasibility of a systematic way to merge them as a single model to 

combined BV perturbation and vasopressor infusion is dubious, but not impractical.  

Therefore, for the first time, a universal model of hemodynamic endpoints to 

combined BV perturbation and vasopressor infusion was developed. This new 

model necessitates adding new complexities and parameters, including left 

ventricular preload, and its validation requires a unique set of data. A unique set of 

data including left ventricular pressure and volume measurement were collected 

from animal subjects. It was shown that the model could adequately reproduce the 

hemodynamic responses. The identifiability and parametric sensitivity analysis 
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indicated that there are two low sensitive parameters that may be fixed at their 

nominal values.  

 

1.5.Dissertation Organization  

 

This dissertation is arranged into the following chapters. Chapter 2 will review 

the existing works on closed-loop hemodynamic management as well as analytic 

models for BV and vasopressor agents. The need for ACCS will also be shown by 

illustrating the statistics for critical care patients receiving treatment by human 

clinicians. Chapter 3 will present a low-order physiological model of BV to estimate 

change in BV in response to fluid infusion (block A in Figure 1-3(a)). The BV model 

will be validated against different BV states, different types of fluids, and different CV 

states via experimental data from human subjects. In Chapter 4, a physiological model 

relating the change in BV to the hemodynamic endpoints will be proposed (block B 

and C in Figure 1-3(a)). This model will estimate the underlying CV states and 

hemodynamic endpoints in response to BV perturbation. The model validation will be 

performed via experimental data from sheep subjects under hemorrhage and fluid 

infusion. Chapter 5 will develop dose-response relationships for the underlying CV 

state and employ dose relationship to predict the hemodynamic endpoints to 

vasopressor infusion (block D in Figure 1-3(b)). The relationships will be validated 

using both human and animal subjects under vasopressor infusion. Chapter 6 will 

present a method based on the Windkessel model that relates the BP measurements to 

the underlying CV state in response to vasopressor infusion (block E in Figure 1-3(b)). 

In the later part of this chapter, it will be illustrated that this method cannot adequately 
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work for the fluid infusion. In order to define a universal framework to reproduce the 

underlying CV state and hemodynamic endpoints to consecutive (and perhaps 

concurrent) fluid and vasopressor infusion, Chapter 7 will propose a new paradigm 

built upon the left-ventricular (LV) pressure-volume (P-V) loop context. The model 

will be validated by the animal data collected by our group on the hemodynamic 

responses to BV perturbation and vasopressor infusion. Chapter 8 will summarize the 

contributions of this dissertation and propose directions for future research. 
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Chapter 2: Literature Review 

 

2.1.Need for Automated Critical Care Systems 

 

Hypovolemia is the state of decreased BV and can be due to either blood loss 

or loss of body fluids.  Hypovolemia can be attributable to many injuries and 

pathophysiologic conditions, such as hemorrhage, burns, trauma and infections (e.g., 

sepsis) (Barrow et al., 2000; Bortolani et al., 1996; Chien, 1971; Guillamet et al., 2012; 

Hollenberg et al., 1999; Hunter and Doddi, 2010; Pruitt, 1978; Vatner, 1974).  Initially, 

after a severe hypovolemia occurrence, the body compensates for the volume loss by 

increasing the HR, increasing the strength of heart contractions, and constricting blood 

vessels in the periphery while preserving blood flow to the brain, heart and kidneys. 

With continuing volume loss, the body loses its ability to compensate and CO and BP 

drops. At this point, the heart is unable to pump enough blood to vital organs to meet 

their needs, cells start to malfunction, and waste products build up, leading to further 

cell death and eventually tissue damage.   

Given that severe blood loss causes an impairment of the ability to self-regulate 

CO and BP, BV regulation and circulatory system must then be restored by means of 

carefully calculated external fluid and vasopressor infusion. The ultimate goal of fluid 

resuscitation and vasopressor infusion is to restore venous return, CO, and essentially 

BP, by optimizing the intravascular BV perfusion.  In many hypovolemic scenarios, 

early and closely hemodynamic management is crucial for survival. Previous 

investigations indicate that delayed and inappropriate doses of fluid and vasopressor 

were shown to be responsible for increased mortality and morbidity (Barrow et al., 
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2000; Michard, 2013; Varadhan and Lobo, 2010; Wolf et al., 1997). Fluid and 

vasopressor overdose can lead to rebleeding, pulmonary edema, congestive heart 

failure, hypertension and its consequences of heart attack and stroke, while inadequate 

fluid and vasopressor infusion results in acute renal failure, suboptimal perfusion to 

burned and vital organs and, eventually, death. Therefore, the level of fluid and 

vasopressor dose administration during hemodynamic management needs to be tightly 

controlled. 

However, the complexity and pressure of the clinical environment and the large 

degree of individual patient variability can limit the clinicians’ ability to provide strict 

standards of care and as a result, the performance of the human clinicians in 

hemodynamic management is suboptimal.  There is increasing evidence that 

suboptimal hemodynamic management by the clinicians can significantly influence 

longer-term outcomes (Komajda et al., 2009; Parmer et al., 2015).  A decrease in 

variation in clinical practice to improve the consistency and adequacy of individual 

treatment is a key factor in critical care quality improvement.  Therefore, development 

of ACCS is considered as a vital step that needs to be taken to achieve optimal 

treatment, specifically when human clinicians are in short supply, pressed for time and 

overwhelmed by many patients (Michard, 2013). 

 In a retrospective analysis (Bighamian et al., 2014b), we investigated the 

degree to which today’s intensive care unit (ICU) patients receive appropriate 

vasopressor therapy, in terms of how often the mean arterial pressure (MAP) was kept 

within a
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normative range.  Using a publically available database of ICU clinical data, the 

MIMIC II (Multi-Parameter Intelligent Monitoring in Intensive Care) database (Saeed 

et al., 2011), we studied patients with minute-by-minute MAP data, sourced from the 

bedside monitor, who were receiving vasopressor therapy. For each record, we 

identified MAP samples that were out-of-range, i.e., MAP < 60 mmHg or MAP > 100 

mmHg, and grouped these into out-of-range episodes.  Each out-of-range episode was 

categorized as either transient (< 15 min) or sustained (≥ 15 min) (e.g., see Figure 2-1).  

Out of the 224 ICU stays, we identified 152 ICU stays (68% of ICU stays) (see Table 

1) with at least one sustained MAP out-of-range episode.  In that subset, MAP was 

frequently out-of-range (out-of-range 18.4% of the time) due to a combination of 

sustained episodes of hypotension and hypertension (additional statistics are shown in 

Table 2).   

There was no evidence that these episodes tended to cluster in time.  Indeed, 

there was significant time between each episode (see Table 2; time between episodes 

= 87 min).  The median episode lasted over 27 min, and episodes longer than that were 

commonplace.  Compared with all ICU stays, those stays with sustained out-of-range 

events did not demonstrate an increased MAP variability per hour.  It is possible that 

the out-of-range events resulted from insufficient dose-adjustment. We anticipated that 

 
Figure 2-1: Example of in-range MAP vs. transient/sustained out-of-range MAP episodes. 
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technologies like ACCS that might continuously optimize vasopressor dosing 

throughout the patient’s stay and thereby minimize these abnormal CV states may be 

worthy of further study (Bighamian et al., 2014b).  

ACCS, including closed-loop or decision support systems, are medical systems 

capable of autonomous decision making based on feedback from physiological sensors. 

These medical devices have the potential to reduce the workload of clinicians and 

autonomously deliver accurate, consistent, and timely therapy (Dumont, 2014; Dumont 

and Ansermino, 2013; Michard, 2013). The nature of these devices can facilitate 

knowledge transfer from clinical research to patient bedside to improve consistency of 

use and speed adoption of clinical best practice; an automated system can be more 

powerful and accurate when compensating for dynamic interactions in a multivariable 

setting. One of the key advantages of these medical devices is that they are not 

distractible. This can reduce the incidence of human error and inattention by allowing 

the clinician to focus on higher level tasks (Dumont, 2014).  

 

Table 1: Statistics for patients with sustained out-of-range episodes 

Statistics for Patients with Sustained Out-of-Range Episodes 

Expression Number 

Total number of distinct subjects, n 127 

Total number of ICU stays, n 152 

Length on pressors per ICU stay, [min] 
Median = 1276 

IQR = 569 - 2980 

% of in-range MAP, [%] 
Median = 81.6 

IQR = 66.9 - 91.7 

% of MAP out-of-range during transient episodes, [%] 
Median = 3.7 

IQR = 1.9 - 6.2 

% of MAP sustained < 60 mmHg, [%] 
Median = 8.5 

IQR = 1.6 - 20.1 

% of MAP sustained > 100 mmHg, [%] 
Median = 0.0 

IQR = 0.0 - 3.9 

Variation of MAP per hour, [%] 
Median = 4.1 

IQR = 2.9 - 6.2 

Number of vasopressor dose changes per hour, (average for ICU stays ± std. dev., n) 0.5 ± 0.4 
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In ACCS, a key factor that needs to be controlled in a hypovolemic patient is 

the patient’s level of fluid perfusion to tissues and in this regard, the knowledge of the 

BV and CO is required. However, due to immature sensor technology, e.g., there is no 

sensor to measure the amount of BV during fluid resuscitation, or the absence of 

invasive hemodynamic measurements, e.g., stroke volume (SV) and CO; a tight control 

of hemodynamic management using standard practice is not fully achievable.  Due to 

these limitations, clinicians augment the fluid and vasopressor dose until a 

physiological endpoint reaches its target value specified by the clinician. The 

underlying assumption is that regulating that physiological endpoint to target is 

equivalent to optimizing the blood perfusion to tissues, i.e., minimizing the sensitivity 

of the blood perfusion to additional fluid and vasopressor dose augmentation. 

Unfortunately, the success of the above-mentioned efforts has been modest due to the 

limited quality of the endpoints used.  For example, central venous pressure (CVP) is 

invasive and is also a poor predictor of fluid responsiveness (Bendjelid and Romand, 

2003; Marik, 2009; Marik et al., 2008; Michard, 2005).  The monitoring technologies 

for gold-standard CO are highly invasive.  Urinary Output (UO) is a late detector of 

hypovolemia.  The use of pulse pressure (PP) variability (PPV) is limited to 

Table 2: Statistics for sustained out-of-range episodes 

Statistics for Sustained Out-of-Range Episodes 

Expression Number 

Number of episodes per ICU stay, n 

(among ICU stays with at least one episode) 

Median = 3 

IQR = 1 - 9 

Time between episodes, [min] 
Median = 86.5 

IQR = 60.8 - 487 

Duration of episodes, [min] 
Median = 27.0 

IQR = 22.0 - 37.5 

Longest episode per stay, [min] 

(among ICU stays with at least one episode) 

Median = 51.5 

IQR = 30.0 - 98.0 
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mechanically ventilated subjects (Rinehart et al., 2011).  HR and MAP are non-specific 

and affected by many common pharmacologic agents and compensatory mechanisms 

(Kramer et al., 2008).  Moreover, hypotension should not serve as an automatic trigger 

for fluid administration since not all hypotensive events are due to hypovolemia 

(Navarro et al., 2015).  Moreover, recent reports indicate that PP, a well-known and 

widely accepted surrogate of SV, underestimates SV (Convertino et al., 2006; Leonetti 

et al., 2004). It is, therefore, obvious that a major leap toward better control of 

hemodynamic management is required and must accompany a significant advancement 

in the monitoring technologies for fluid perfusion-responsive endpoints.  

 

2.2.Closed-Loop Systems 

 

Patients suffering from hypovolemia require carefully calculated external fluid 

resuscitation followed by vasopressor infusion, i.e., BV management, to restore their 

volume state. The goal of a closed-loop control system is thus to mimic the 

functionality of the BV circulatory system in providing automatic regulation of BV and 

CO level in patients.  Several researches have been conducted to design closed-loop 

systems that can determine how much fluid or vasopressor dose has to be given to 

patients over time until a physiological endpoint achieves its target value specified by 

the clinician.  In the reminder of this section, closed-loop algorithms of fluid and 

vasopressor administration proposed in the literature and their pros and cons will be 

introduced.  It is noted again that regardless of the employed control algorithms, a 

major drawback of many of these previous studies is that they still try to control the 

endpoints that are not good surrogates of BV perfusion in hypovolemic patients.   
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2.2.1. Empirical Closed-Loop Algorithms 

In practice, it’s difficult to completely understand how a body responds to 

severe hypovolemia since many underlying mechanisms get involved in this situation.  

Hence, the simplest way to design a controller would be to observe fluid and 

vasopressor dose and their corresponding target endpoints in real-time, and formulate 

a control rule based on the observed relationship between the variables of interest.  The 

majority of available closed-loop algorithms to treat hypovolemic patients relate the 

target endpoint to dose of fluid and vasopressor based on experimental data and not on 

a theory.  Although an empirical closed-loop algorithm is an easy approach to relate 

fluid and vasopressor dose to target endpoint in real-time with no need to tune the 

patient’s parameters in advance, this method suffers from few serious drawbacks.  It’s 

a black-box approach, offering no insight into the underlying physiological mechanism 

in a hypovolemic patient (an appropriate BP can be harmful without monitoring 

underlying mechanisms, i.e., SV and TPR).  Furthermore, its predictive capability is 

very limited; they may extrapolate the dose-response relationship to a huge dose of 

fluid or vasopressor in absence of enough dose-response samples that may risk a 

patient’s safety. In other words, the success of the algorithm relies on the human 

clinician’s experience in adjusting the level of perturbation in dose.  

In this respect, many existing works on closed-loop fluid resuscitation and 

vasoactive agent administration are designed based on empirical closed-loop 

algorithms. These works employ simple PID and/or rule-based controllers to mostly 

control superficial endpoints, e.g., UO, MAP, systolic BP (SBP), mean systemic 

pressure (MSP), in fluid resuscitation (see Table 3; Bowman and Westenskow 1981; 
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DeBey et al. 1987; Blankenship, Wallace, and Pacifico 1990; G. Parkin et al. 1994; 

Ying et al. 2002; Hoskins et al. 2006; Vaid et al. 2006; Salinas et al. 2008) and 

vasoactive infusion (see Table 4; Ying and Sheppard 1990; Mackenzie et al. 1993; 

Ngan Kee et al. 2007; Merouani et al. 2008; Sng, Tan, and Sia 2014; Wassar et al. 

2014).  Besides, there are some works employing measured CO and SV to control fluid 

resuscitation (Chaisson et al., 2003; Rinehart et al., 2011, 2012, 2013) and vasoactive 

infusion (Karar and El-Brawany, 2011; Uemura et al., 2006), which are not yet optimal 

since measurement technologies for CO and SV are highly invasive.  

 

2.2.2. Model-Based Closed-Loop Algorithms 

Table 3: Existing closed-loop systems for fluid resuscitation 

First author Year Controlled Parameter Control Approach Intervention 

Bowman 1981 UO Empiric (PID Control) Fluid Resuscitation 

Debey 1987 UO Empiric (P Control) Fluid Resuscitation 

Blankenship 
1990 Left Atrial Pressure 

(Measured) 
Empiric (P Control) 

Auto-Transfusion 

Parkin 1994 Mean Systemic Pressure Empiric (P Control) Fluid Resuscitation 

Ying 2002 MAP Empiric (Fuzzy-PID Control) Fluid Resuscitation 

Chaisson 
2003 CO, O2 Saturation 

(Measured) 
Empiric (Nonlinear P Control) 

Fluid Resuscitation 

Hoskins 2006 UO Empiric (PID Control) Fluid Resuscitation 

Vaid 2006 MAP Empiric (Nonlinear P Control) Fluid Resuscitation 

Salinas 2008 UO Empiric (PID Control) Fluid Resuscitation 

Rinehart 2011-3 SV (Measured) Empiric (Population-Based Model + Fuzzy Control) Fluid Resuscitation 

 

Table 4: Existing closed-loop systems for vasoactive infusion 

First author Year Controlled Parameter Control Approach Intervention 

Ying 1990 MAP Empiric (Fuzzy Control) Vasoactive Infusion 

Mackenzie 1993 SBP Empiric (PID Control) Vasoactive Infusion 

Uemura 2006 BP, CO, Left Atrial Pressure Empiric (PI/Nonlinear Control) Vasoactive Infusion 

Kee 2007 SBP Empiric (Rule-Based Control) Vasoactive Infusion 

Merouani 2008 MAP Empiric (Fuzzy Control) Vasoactive Weaning 

Karar 2011 MAP and CO Empiric (Fuzzy Neural Network Control) Vasoactive Infusion 

Sng 2014 BP Empiric (Rule-Based Control) Vasoactive Infusion 

Wassar 2014 MAP Empiric (PD Control) Vasoactive Infusion 

 



 

23 

 

Against empirical models, a model-based approach relates a target endpoint to 

the fluid and vasopressor dose input via a mathematical model.  Once the mathematical 

solution is obtained, depending on the extent of derivation of the model and its 

adequacy, the model can offer different helpful information that was not achievable 

using an empirical model.  The model can offer useful insight into the underlying 

physiological mechanism during a hemodynamic management scenario, e.g., trends of 

SV and TPR can be monitored when BP is chosen as the target endpoint. The model 

has great potential to do prediction, e.g., one step ahead and pure prediction, under a 

wide variety of dose perturbation, where the model’s prediction performance is limited 

by the extent to which the model is valid or accurate. It also allows testing of a control 

algorithm without involving real patients, in which a patient’s safety won’t be taken 

under risk.  Furthermore, mathematical models can be employed to derive virtual 

sensors; those hemodynamic variables that cannot be measured due to immature sensor 

technology in a standard clinical practice are estimated using derivation of 

mathematical-based virtual sensors.  These virtual sensors can help clinicians have 

access to those physiological variables that are direct and true surrogates of 

hemodynamic management.   

 

2.3.Mathematical Models for Hemodynamic Management  

 

As discussed in the previous section, a model-based algorithm is more helpful 

than empirical methods to control hemodynamic management and is of interest in this 

research.  In this section, we then examine the available models in the literature that 
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can be employed in a model-based control algorithm. We first briefly study the models 

developed for BV and then we investigate those of vasopressor.  

 

2.3.1. Blood Volume Models 

Fluid resuscitation is an essential component of treatment for critically ill 

patients.  By virtue of its capability to deliver BV states via the analysis of fluid 

infusion-hemodynamic response data, judicious use of a mathematical model may offer 

a unique opportunity in providing objective guidance to fluid resuscitation.  Ideally, 

such a model must be simple enough for real-time use while at the same time 

transparent enough to elucidate volume distribution in the body by revealing how the 

infused fluid is distributed in the blood and interstisium.  In this respect, many existing 

models are not best suited for the purpose of guiding fluid resuscitation for a few 

reasons.  Existing mechanistic models of BV dynamics can reproduce the volume 

changes in blood and interstitial fluid (ISF) volume (ISFV) (Arturson et al., 1989; 

Carlson et al., 1996; Cervera and Moss, 1974; Gyenge et al., 2003; Hedlund et al., 1988; 

Mazzoni et al., 1988; Pirkle and Gann, 1976; Tatara et al., 2007) and even intracellular 

fluid (Arturson et al., 1989; Carlson et al., 1996; Gyenge et al., 2003; Hedlund et al., 

1988; Mazzoni et al., 1988).  However, these models are prohibitively complex for 

real-time use.  On the other hand, existing simple models are governed by empiric 

equations (Champion et al., 1975; Hirshberg et al., 2006; Lewis, 1986; Mardel et al., 

1995; Simpson et al., 1996; Wears and Winton, 1990).  In some of these models, the 

blood flow from the interstitium to blood is not even considered (Champion et al., 1975; 

Lewis, 1986), while in some others this blood flow is crudely approximated via the 

population-averaged knowledge (Hirshberg et al., 2006; Mardel et al., 1995; Simpson 
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et al., 1996; Wears and Winton, 1990).  Thus, these simple models may have limited 

efficacy in transparently revealing volume states.  More recently developed volume 

kinetic models (Svensén and Hahn, 1997; Drobin and Hahn, 1999, 2002) may be 

superior in compromising simplicity and transparency.  However, these models 

determine the volume changes in blood versus ISF by their respective baseline 

volumes, which is not consistent with the real-world physiology and may thus hamper 

their physiological interpretation. This is proved below: 

For illustration purposes, a two-compartment volume kinetic model is considered.  

However, the finding applies to general volume kinetic models.  The governing 

equation is given by (Hahn, 2010): 

v: ; = R� − CL� − CLv; − v;�v;� − CL� ?v; − v;�v;� − v@ − v@�v@� A 
v: @ = CL� ?v; − v;�v;� − v@ − v@�v@� A 

(2-1) 

where v; and v;� are the BV and its baseline value, v@ and v@� are the ISFV and its 

baseline value, R� is fluid infusion rate, CL�, CL and CL� are the clearances associated 

with the baseline fluid loss, dilution-dependent elimination and inter-compartmental 

distribution, respectively.  Denoting the changes in BV and ISFV as state variables xC 

and xD, (2-1) is reformulated into the following: 

Ex: Cx: DF = E−
KC + KD� KHKD −KHF IxCxDJ + I10J u (2-2) 

where KC = �-'LM, KD = �-N'LM , KH = �-N'OM  and u = R� − CL�.  So, taking the Laplace 

transform and solving for xC and xD yields: 
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xC
s� = s + KHsD + 
KC + KD + KH�s + KCKH u
s�,   
xD
s� = KDsD + 
KC + KD + KH�s + KCKH u
s� 

(2-3) 

This results in the following: 

xD
s�xC
s� = KDs + KH (2-4) 

Thus, the steady-state ratio between xC and xD reduces to lim�→� UV
��UW
�� = XVXY = 'OM'LM, meaning 

that the ratio between the change in BV and the change in ISFV is determined by the 

ratio of their baseline values, which is not consistent with the known physiological 

principles (Guyton et al., 1975). 

 

2.3.2. Vasopressor Models 

The ultimate goal of vasopressor therapy is superior blood circulation and tissue 

perfusion, i.e., volumetric blood flow. Therefore, it is reasonable to presume that there 

would be additional benefit to analytic tools identifying dose-response relationships in 

terms of both circulatory flow as well as BP: CO would indicate the level of overall 

blood delivery to the body, while BP would indicate when perfusion pressures are so 

low that even the heart and brain are likely hypo-perfused or conversely, when 

excessive BP raises the risk of undue physiological stress on the heart. Such a tool 

could help clinicians to select an optimized vasopressor dose. In practice, such analytic 

tools for adjusting vasopressor dosages have not been widely adopted, and we theorize 

that this is, at least partially, related to their ongoing limitations. In the ideal, a tool 
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would infer the complete circulatory state of an individual patient on the basis of 

limited hemodynamic data, rather than the input of a multitude of parameters and a 

multitude of serial measurements (Chase et al., 2010; Gingrich and Roy, 1991). 

In this section, existing technologies for hemodynamic responses to 

vasopressors are summarized.  In essence, we found that none of the existing 

technologies is capable of the following (see Table 5): 

1- Existing technologies cannot predict patient-specific cardiac and vascular 

responses only based on non-invasive BP (NIBP). 

2- Existing technologies cannot predict patient-specific dose-response only with as 

few as two NIBP measurements observed at two infusion rates. 

3- Existing technologies cannot predict patient-specific dose-response by combining 

population-based parameters for one class of cell receptor effects while fitting a 

patient-specific dose-response for another class of cell receptor effects. 

For example, Chase et al. (Chase et al., 2010) reported a patient-specific response 

model to epinephrine. Prediction was done by a linear curve fitting of identified 

epinephrine-specific parameters defined in the paper. It does not involve a 

phenomenological model; instead, it depends on simple linear regression. These 

parameters accommodate both cardiac and vascular effects. Since the curves are linear, 

a prediction based on two observations is possible. This method is not a NIBP based 

approach (depending on measurements of LV end-systolic volume (ESV) and end-

diastolic volumes (EDV)). This method doesn’t work based on the receptor effects. 

Woodruff et al. (Woodruff et al., 1997) reported a pharmacokinetic-pharmacodynamic  
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(PK-PD) patient-specific response model to vasopressor drugs, including sodium 

nitroprusside, nitroglycerin, dobutamine and dopamine. Some of the phenomenological 

PD models include more than two parameters; therefore, the prediction cannot be done 

by using two measurements. These parameters accommodate both cardiac and vascular 

effects. This method is not a NIBP based approach (depending on measurements of 

TPR, venous unstressed volume and LV contractility). This method can accommodate 

the effects of alpha and beta receptors for case of dopamine, but the number of 

parameters has increased rather than using the population-wide parameters. Görges et 

al. (Görges et al., 2010) reported a patient-specific response model to epinephrine. The 

MAP prediction was done using empiric models and drug sensitivity identification. 

Prediction based on two observations is not possible since more than 2 parameters 

should be individualized. This method is a NIBP based approach and doesn’t work 

based on receptor effects.  Gingrich et al. (Gingrich and Roy, 1991) reported a patient-

specific response model to dopamine. Prediction based on two observations is not 

Table 5: Capabilities and limitations of existing vasopressor models; Y: Yes, N: No 

Markers Gingrich, 1991 Woodruff, 1997 Johnston, 2004 Chase, 2010 Görges, 2010 

Ability to predict 

patient-specific 

cardiac vs vascular 

response? 

Y Y Y Y N 

Ability to predict 

phenomenological 

dose responses? 

N Y Y N N 

Ability to predict 

patient-specific 

cardiac vs vascular 

response only with 

NIBP? 

N N N N N 

Ability to use as few 

as two observations 

from two infusion 

rates? 

N N N Y N 

Ability to use only 

NIBP observations? 
N N N N N 

Ability to 

accommodate alpha 

vs beta effects? 

N N N N N 
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possible since CO model involves more than 2 parameters to be individualized. This 

method is a NIBP based approach and doesn’t work based on the receptor effects.  

Johnston et al. (Johnston et al., 2004) did a regression analysis to show a quadratic 

relationship between the infusion rate of dopamine and the CO and TPR. They showed 

that the break-point in quadratic fitting is consistent with predominantly beta-

adrenergic stimulation at lower doses of dopamine and alpha-adrenergic stimulation at 

higher doses.  Note that other BP control approaches determine the drug dose level by 

directly analyzing the relationship between drug and BP (MAP) (e.g., (Görges et al., 

2010)), where the underlying physiology of the drug infusion is ignored, making it 

difficult to predict the interactions of multiple drug infusions and pathophysiology 

responses. 

 

2.4.Need for Physiological Models 

 

As discussed above, most of closed-loop efforts proposed for hemodynamic 

management are empiric (model-less) and use superficial endpoints that are not direct 

surrogates of BV and tissue perfusion.  Lack of low-order, precise and physiological 

models that can be adapted for each individual patient using routinely available 

measured endpoints and be employed in a closed-loop manner with low computational 

time and cost is one substantial reason that researches still try to design empiric control 

systems.  Therefore, it’s time to develop low-order and physiologic models with 

outstanding merits of prediction for ACCS.  The remaining chapters of this proposal 

will focus on developing such models that can be optimally employed for automated 

hemodynamic management.  
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Chapter 3: Development and Validation of a Model of Blood 

Volume Response to Fluid Administration 

 

This chapter presents a macroscopic mathematical model that reproduces the 

BV response to fluid infusion.  The model represents the fluid shift between the 

intravascular and ISF compartments as a feedback control system that regulates the 

ratio between the volume changes in the intravascular and ISF at a target value.  The 

resulting model is characterized by three summary parameters: target volume change 

ratio between the intravascular and ISF, feedback gain specifying the dynamics of fluid 

shift, and initial BV.  The novelty of this model is that it can obviate the need to 

incorporate complicated mechanisms involved in the fluid shift in reproducing the BV 

response to fluid infusion.  The validity of the model was examined by fitting it to a 

series of data on fractional BV responses to fluid infusion. 

 

3.1.Fluid Shift between Intravascular and Interstitial Compartments 

 

The fluid shift between the intravascular and ISF compartments is an essential 

mechanism of homeostasis, and a key determinant of the physiological response to 

circulatory pathology and medical therapy.  The net fluid shift is determined by the 

summary action occurring across the body’s massive network of microvasculature, and 

the determinants of flow for each microscopic segment are complex, including the 

permeability of the vessels and the local Starling forces (i.e., hydrostatic pressure and 

oncotic pressure gradients).  Each of these determinants can be, in turn, altered by a 

wide range of other factors, including the vasomotion of upstream and downstream 
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vessels, lymphatic flow, and a myriad of endocrine and exocrine signals that affect the 

preceding determinants. 

Given the undeniable complexity that underlies fluid shift between the 

intravascular and ISF compartments, it can be challenging to mathematically model an 

individual subject or patient.  Existing models of fluid shift dynamics can reproduce 

the volume changes in blood and ISF and even intracellular fluid.  However, there are 

so many disparate factors that, without exhaustive and impractical measurements, it is 

really not possible to characterize the fluid shift dynamics associated with an individual 

comprehensively.  A reasonable alternative is to use “typical” values for certain 

parameter values (i.e., values that represent average values in a population) but this is 

no longer an individualized model (e.g., (Mardel et al., 1995; Simpson et al., 1996; 

Wears and Winton, 1990)) (for more details see Section 2.3.1).  To overcome these 

challenges, a mathematical model that could reproduce the dynamic fluid shift between 

the intravascular and ISF compartments is developed in this chapter.  Specifically, the 

model is designed to be simple enough to be fitted to individual subjects with only a 

rudimentary set of measurements, and accurate enough to characterize that subject’s 

dynamic response to fluid infusion. 

 

3.2.Development of Blood Volume Model 

 

The proposed macroscopic model involves only three summary parameters to 

dynamically describe an individual’s fluid shift after fluid infusion: target volume 

change ratio between the intravascular and ISF, α&; feedback gain specifying the 

dynamics of fluid shift, K*; and initial BV, V	�. 
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The first summary parameter of the proposed model is the target volume change 

ratio between the intravascular and ISF, α&.  By way of background, the volume of 

fluid stored in the intravascular, ISF and intracellular compartments is determined by 

the hydraulic and osmotic pressure gradients at the capillary walls and cell membranes.  

From microscopic standpoint, the kinetics of a number of ions and proteins as well as 

the P-V relationships of the fluid compartments determine the hydraulic and osmotic 

pressure gradients, and therefore, the fluid volume stored in each compartment.  

However, from macroscopic standpoint, the interaction among these complex 

mechanisms is that the ratio between the volume changes associated with the 

intravascular and ISF may be summarized by a constant parameter value, denoted as 

α& (Guyton et al., 1975).  This physiologic summary parameter α& varies depending on 

the overall state of the subject.  Typically, ISF volume changes 2-3 times as much as 

intravascular volume changes (i.e., α& =2-3) up to a critical BV level.  Beyond this 

level, however, majority of the fluid infused to the body is not stored in the 

intravascular compartment but is transferred to the ISF compartment (i.e., α& ≫2-3), 

which is a mechanism that prevents pathophysiologic conditions such as pulmonary 

edema (Bajwa and Kulshrestha, 2012).  In sum, the way BV responds to an infusion of 

fluid may be summarized as that of a hypothetical feedback control system that 

regulates the volume changes associated with the intravascular and ISF at a target ratio 

1: α&, via the body’s physiologic processes to produce the fluid shift between the 

intravascular and ISF compartments. 

 The second summary parameter of the model is the phenomenological 

feedback gain, K*, which specifies the dynamics of fluid shift, i.e., the rate of fluid shift 
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between the intravascular and ISF compartments.  This summary parameter is 

predicated on a feedback control system analogy, in which the intravascular and ISF 

compartments can be represented as two connected buckets (Figure 3-1(a)).  The left 

and right buckets represent the intravascular and ISF compartments, respectively, while 

the valve represents a summary of all the physiologic processes that produce the fluid 

shift between the two compartments.  In this analogy, it is both fluid infusion (u) and 

loss (v; e.g., hemorrhage and UO) that act on the intravascular compartment to alter the 

BV (V	).  The valve opening is a function of the discrepancy between the target versus 

actual BV: there is an increased rate of fluid shift between the intravascular and ISF 

compartments (q) when the discrepancy between target versus actual BV grows larger. 

 The third summary parameter of the model is the physiologic initial BV, V	�.  

Its purpose is to normalize the change in BV to yield its fractional change from the 

initial value.  In this way, the proposed macroscopic model becomes compatible with 

the state-of-the-art techniques to measure BV (Drobin and Hahn, 1999, 2002).  

The representation in Figure 3-1(a) can be formalized into the mathematical 

model shown in Figure 3-1(b).  The fluid infusion (u) and loss (v; e.g., hemorrhage and 

UO) are the inputs to the model, while the change in BV (V	) is the output.  The 

objective of the control system is to retain the 
CC\]^ fraction of the inputted fluid volume 

in the intravascular compartment while shifting the remaining 
]^C\]^ fraction to the ISF 

compartment in the steady-state.  The fluid shift from the intravascular to ISF 

compartment (q) acts as feedback control to steer V	 to the target value (r	).  In this
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way, the steady-state volume changes in intravascular and ISF achieves the 1:α& ratio.   

The governing equation associated with this mathematical model is derived as 

follows.  The rate of change in BV is given by the following ordinary differential 

equation: 

ΔV	: 
t� = u
t� − v
t� − q
t� (3-1) 

where ΔV	
t� is change in BV from its initial state. The fluid shift q from the 

intravascular to ISF compartment is formulated so that the discrepancy between the 

target versus actual changes in BV converges to zero.  As described above, the target 

change in BV (r	) in response to the inputs u and v is the 
CC\]^ fraction of the 

accumulated resultant fluid intake u − v: 

r	
t� = 11 + α& _ `u
τ� − v
τ�adτ@
�  (3-2) 

To capture the macroscopic behavior of q with the simplest possible mathematical 

expression, q is modeled to be proportional to e	 = r	 − ΔV	
t�: 

q
t� = −K*e	
t� (3-3) 

 

 

(a) 

 

(b) 

Figure 3-1: Macroscopic BV dynamics model. 
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where K* is the proportionality gain.  This expression physically means that 1) fluid 

shifts from the intravascular to ISF compartment if the BV is larger than its target (r	 <
ΔV	
t�) while from ISF to intravascular compartment if the BV is smaller than its target 

(r	 > ΔV	
t�), and that 2) the rate of fluid shift increases as the discrepancy between 

r	 and ΔV	
t� increases.  Combining (3-1)-(3-3) yields the following ordinary 

differential equation as the macroscopic BV dynamics model that relates u − v to V	: 

∆Ve	
t� + K*ΔV	: 
t� = `u: 
t� − v: 
t�a + K*`u
t� − v
t�a
1 + α&�  (3-4) 

To rewrite (3-4) in terms of the fractional BV response, ΔV	 must be normalized by its 

initial value (V	�).  Dividing both sides of (3-4) by V	� yields:  

∆V����e 	
t� + K*∆V����	: 
t� = `u: 
t� − v: 
t�aV	� + K*`u
t� − v
t�aV	�
1 + α&�  (3-5) 

 

3.3.Validation of Blood Volume Model for Different Blood Volume States and Fluids 

 

The macroscopic model detailed above in Section 3.2 is intended to summarize 

the BV response to fluid infusion of an individual subject or patient using just three 

fixed summary parameter values.  However, it is possible that the underlying 

physiology is too complex to be adequately reproduced by such a simple model.  Thus, 

we sought to evaluate this macroscopic model, by fitting it to a multitude of different 

experimental datasets, to assess whether or not such a simple model is capable of 

accurately summarizing experimental data.  

A series of datasets available in the literature were used to analyze the model.  

All reported the fractional BV response through time, which was measured as 
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hemoglobin as tracer (Svensen et al., 2009).  Specifically, the datasets included 1) 

fractional BV response to fluid infusion under different BV states (Set 1) (Drobin and 

Hahn, 1999); 2) fractional BV response to the infusion of crystalloid fluids (Set 2) 

(Drobin and Hahn, 2002); and 3) fractional BV response to the infusion of colloid fluids 

(Set 3) (Hedin and Hahn, 2005).  

From the aforementioned reports, the quantity of fluid infused and the fractional 

BV response were extracted at 10 min intervals as the average of the maximum and 

minimum responses across all subjects.  The UO rate was estimated by dividing the 

total urine volume by the study duration (infusion time + post-infusion observation 

time) based on the simplifying assumption that it remained constant, because only the 

total urine volumes were reported.  

   Overall, we studied a total of seven distinct protocols summarized in Table 6:  

in Set 1, there were three protocols (with 0 ml, 450 ml and 900 ml pre-infusion 

hemorrhage); in Set 2, there were two protocols (with infusions of 0.9 % saline and 

Table 6:  Data sets used for model validation 

 
Set 1  

(Drobin & Hahn 1999) 

Set 2  

(Drobin & Hahn 2002) 

Set 3  

(Hedin and Hahn 2005) 

Number of 

Subjects 
10 10 15 

Age (min-max) 23-33 year 24-44 year 18-36 year 

Weight (min-

max) 
65-85 kg 72-95 kg 70-94 kg 

Fluid Infused 
Crystalloid 

(Ringer’s Acetate) 

Crystalloid 

(Saline & Ringer’s 

Lactate) 

Colloid 

(Albumin & Autologous 

Plasma) 

Infused Volume 25 ml/kg 25 ml/kg 10 ml/kg 

Infusion Time 30 min 30 min 30 min 

Observation 

Time 

(Post-Infusion) 

150 min 210 min 450 min 

Hemorrhage 

Volume 

(Pre-Infusion) 

0 ml / 450 ml / 900 ml 0 ml 0 ml 
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with ringer’s lactate); and in Set 3, there were two protocols (with infusions of 5 % 

albumin and with autologous plasma).  The fractional BV responses associated with all 

the datasets are shown in Figure 3-2.  

Now that the model (3-5) is developed, we fitted the model to each dataset, i.e., 

the values of the three summary parameters α&, K* and V	� associated with each dataset 

were identified.  In order to do this, three steps were required to be taken.  First, (3-5) 

was discretized into a difference equation using the Euler’s method (
��@ ≈ ghCij , where z 

is forward shift operator and T� is sampling interval) (Nise, 2010): 

∆V����	
k� = 2∆V����	
k − 1� − ∆V����	
k − 2� − K*T�`∆V����	
k − 1� −
∆V����	
k − 2�a + ij"5M n`u
k − 1� − u
k − 2�a − `v
k − 1� − v
k − 2�ao +

XpijV"5M
C\]^� `u
k − 2� − v
k − 2�a  
(3-6) 

 

Figure 3-2: Fractional BV responses to fluids.  Ringer’s AC: ringer’s acetate (Set 1 Drobin 

& Hahn 1999); Saline: 0.9 % saline (Set 2 Drobin & Hahn 2002); Ringer’s LA: ringer’s 

lactate (Set 2 Drobin & Hahn 2002); Albumin: 5 % albumin (Set 3 Hedin and Hahn 2005); 

Autologous Plasma: autologous plasma (Set 3 Hedin and Hahn 2005). 
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Second, an optimization problem was formulated to derive the set of summary 

parameters minimizing the error between the fractional BV data (∆V����	) and their model-

reproduced counterparts (∆V����q	): 

Θ∗ = nα&∗ , K8∗ , V	�∗ o = arg minw x J+
Θ�!
+zC

= arg minw x x I∆V����	,+
k� − ∆V����q	,+
k�JD{
|zC

!
+zC  

(3-7) 

where Θ is a vector of (unknown) summary parameters, Θ∗ is the optimal Θ, ∆V����q	,+
k� 

is model-reproduced ∆V����	,+
k� at a discrete time instant k (k = 1 ⋯ N) for the i-th pre-

infusion hemorrhage state, and M is the number of pre-infusion hemorrhage states (M =
3 for Set 1 and M = 1 for Sets 2 and 3).  For a given set of Θ, ∆V����q	,+ was computed by 

inputting the fluid infusion (u) and urine excretion rate (v) data to (3-6).  The 

optimization problem (3-7) was solved using MATLAB’s Optimization Toolbox 

(MathWorks, MA, USA). 

Eventually, the validity of the macroscopic BV dynamics model (3-5) derived 

from the model fitting (3-7) was tested by analyzing 1) its ability to reproduce the 

fractional BV data, 2) the model-reproduced changes in the intravascular and ISF 

volumes associated with different protocols, and 3) the behaviors of the summary 

parameters across different fluids and pre-infusion hemorrhage states.   

First, the ability of the model to reproduce the fractional BV data was assessed by 

analyzing the goodness of fit associated with each protocol, in terms of sample-by-

sample error and root-mean-squared error (RMSE) normalized by the average 

fractional BV: 
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e
k� = ∆V����	
k� − ∆V����q	
k, Θ∗�∆V����	
k���������� , k = 1, ⋯ , N 

RMSE = 1∆V����	
k���������� �∑ I∆V����	
k� − ∆V����q	
k, Θ∗�JD{|zC N  

(3-8) 

where ∆V����	
k���������� is the average fractional BV response over the study duration, and 

∆V����q	
k, Θ∗� is the fractional BV reproduced by inputting the fluid infusion and UO rate 

data to (3-6) characterized by Θ∗.  Second, the change in BV ∆Vq	
k, Θ∗� associated 

with each protocol was estimated by ∆Vq	
k, Θ∗� = V	�∗ ∙ ∆V����q	
k, Θ∗�, while the change 

in ISF volume ∆Vq���
k, Θ∗� was estimated by computing the numerical integration of 

the fluid shift q: 

∆Vq���
k, Θ∗� = x q
n, Θ∗�|
�zC = x K8∗ e	
n, Θ∗�|

�zC
= x K8∗ �r	
n� − ∆Vq	
n, Θ∗��|

�zC  

(3-9) 

Third, the following hypotheses on the summary parameters were generated to gauge 

if they were meaningfully derived by the model fitting:  1) V	�∗  decreases as pre-

infusion hemorrhage increases; 2) α& decreases as pre-infusion hemorrhage increases; 

and 3) α& is larger in crystalloids than in colloids.  These hypotheses were tested by 

examining the values of α&∗  and V	�∗  with respect to accepted typical values as well as 

their behaviors across different fluids and pre-infusion hemorrhage states. 

 

3.4. Fitting Results  
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Table 7 summarizes the results of data analysis, including the estimated 

summary parameters for each dataset and the associated error metrics.  Figure 3-3 - 

Figure 3-5 show the fractional BV responses reproduced by the model, together with 

the actual data, associated with Sets 1, 2 and 3, respectively, where the upper and lower 

panels present the actual versus model-reproduced fractional BV responses and the 

model-derived changes in the blood and ISF volumes, respectively.  Each column in 

Figure 3-3 shows the results associated with different pre-infusion hemorrhage states 

(1st: 0 ml; 2nd: 450 ml; 3rd: 900 ml).  Each column in Figure 3-4 - Figure 3-5 presents 

the results associated with crystalloids and colloids. 

Table 7, at the first glance, indicates that the macroscopic mathematical model 

can reproduce the BV response to fluid infusion.  To better understand the model 

effectiveness, the validity of the model and its strengths and limitations are further 

discussed in terms of the model’s parsimony, accuracy and physiologic transparency. 

1) Parsimony:  The macroscopic BV dynamics model presented in this chapter is 

essentially a minimal model (3-5) characterized by only three summary parameters: α& 

specifying the steady-state changes in the intravascular and ISF volumes due to fluid 

infusion, K* dictating the dynamics associated with the fluid shift between the 

intravascular and ISF compartments, and V	� reflecting the initial BV.  That this model 

can be fully characterized just by these summary parameters to reproduce BV response 

in a subject is its key benefit compared with the existing physiology-based BV 

dynamics models (e.g., (Hedlund et al., 1988; Mazzoni et al., 1988; Pirkle and Gann, 

1976)) whose complexity makes it very challenging to reproduce subject-specific BV 

responses to fluid infusion without exhaustive and impractical measurements.  
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2) Accuracy:  The results of data analysis (Table 7 and Figure 3-3 - Figure 3-5) support 

the ability of the model to accurately reproduce BV responses to fluid infusion.  The 

goodness of fit between the actual versus model-reproduced fractional BV responses 

in Figure 3-3 - Figure 3-5 is encouraging.  These results, derived from five different 

fluids one of which was also associated with three different pre-infusion hemorrhage 

states (Set 1), suggest that the model may be suitable for summarizing BV responses to 

a wide range of fluids over diverse volume states. 

3) Transparency:  The proposed macroscopic model is a highly simple and structured 

model constrained by the physiologic principle that the ratio between the changes in 

the intravascular and ISF volumes is regulated at a target value (Guyton et al., 1975).  

Thus, it is not obvious if the summary parameters estimated from the model fitting (3-

7) would retain the intended physiologic meanings.  The physiologic transparency of 

the proposed model is supported by a few observations from the data analysis (Table 

7), as detailed below. 

First, the optimal values of V	� and α& were comparable, at least in terms of the orders 

of magnitude, to the known nominal plasma volume (~3.3 l for an 80 kg male) and the 

Table 7: Data analysis results: estimated summary parameters and error metrics. 

  K8∗  V	�∗  [l] α&∗  Error [%] RMSE [%] 

Set 1 

Ringer’s AC (000 ml) 0.052 4.86 4.45 0.49+/-14.1 13.3 

Ringer’s AC (450 ml) 0.065 3.88 4.00 0.57+/-7.93 7.52 

Ringer’s AC (900 ml) 0.076 3.27 2.57 0.38+/-4.04 3.84 

Set 2 
Saline 0.047 5.56 2.35 0.46±10.0 9.62 

Ringer’s LA 0.069 5.03 2.39 1.81±17.6 16.9 

Set 3 
Albumin 0.028 3.94 0.45 0.05±9.09 8.73 

Autologous Plasma 0.147 3.11 0.34 0.62±6.49 6.25 
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ratio between the changes in blood and ISF volumes due to a perturbation in the body 

fluid (~2.3; (Hirshberg et al., 2006; Mardel et al., 1995; Simpson et al., 1996; Wears 

and Winton, 1990)): the values of V	� derived for the models (Sets 1-3) ranged between 

3.1 l and 5.6 l, while the values of α& derived for the models associated with isotonic 

crystalloids (Sets 1-2) ranged between 2.4 and 4.5.   

Second, the hypothesis made for V	� was validated: it exhibited a decreasing trend with 

an increase in the pre-infusion hemorrhage (Set 1), which accords with the expectation 

that pre-infusion hemorrhage would decrease the initial BV. 

Third, the hypotheses made for α& were also validated.  Specifically, the value of α& 

decreased with an increase in the pre-infusion hemorrhage volume (Set 1).  This is in 

fact consistent with the physiologic principle that more fluid is retained in blood as its 

volume decreases (Guyton et al., 1975).  In particular, a fluid infusion dose of ~2.0 l 

(according to Table 6, assuming an 80 kg male subject) to a normovolemic subject is 

likely to result in a state of volume overload, under which α& would assume a large 

value.  However, the same infusion dose is may not yield serious volume overload in a 

hypovolemic subject due to relatively small initial BV, under which α& is close to the 

nominal value.  The systems-level BV dynamics model associated with the data in Set 

1 could capture all these anticipated behaviors via model fitting: comparing the lower 

panels in Figure 3-3, the model estimated that the fluid flow from blood to ISF 

decreases as pre-infusion hemorrhage increases, which is due to a decrease in α&.  

Furthermore, the values of α& associated with colloids (Set 3) were largely smaller than 

those associated with crystalloids (Sets 1-2).  This accords with widely known 

knowledge on colloids: colloid molecules are too large to pass through the capillary 
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Figure 3-3: Fractional BV responses to 0.9 % saline (1st column) and ringer’s lactate (2nd 

column) reproduced by the macroscopic BV dynamics model.   

 

0 30 60 90 120 150 180
0

0.05

0.1

0.15

0.2

0.25

0.3

F
ra

c
ti

o
n

a
l 

B
lo

o
d

 V
o

lu
m

e
 [

%
]

0 ml Hemorrhage

 

 

Model

Data

0 30 60 90 120 150 180
0

0.3

0.6

0.9

1.2

1.5

E
s
ti

m
a
te

d
 V

o
lu

m
e
 C

h
a
n

g
e
 [

L
]

Time [min]

 

 

Blood

Interstitial Fluid

0 30 60 90 120 150 180
0

0.05

0.1

0.15

0.2

0.25

0.3

F
ra

c
ti

o
n

a
l 

B
lo

o
d

 V
o

lu
m

e
 [

%
]

450 ml Hemorrhage

 

 

Model

Data

0 30 60 90 120 150 180
0

0.3

0.6

0.9

1.2

1.5

E
s
ti

m
a
te

d
 V

o
lu

m
e
 C

h
a
n

g
e
 [

L
]

Time [min]

 

 

Blood

Interstitial Fluid

0 30 60 90 120 150 180
0

0.05

0.1

0.15

0.2

0.25

0.3

F
ra

c
ti

o
n

a
l 

B
lo

o
d

 V
o

lu
m

e
 [

%
]

900 ml Hemorrhage

 

 

Model

Data

0 30 60 90 120 150 180
0

0.3

0.6

0.9

1.2

1.5

E
s
ti

m
a
te

d
 V

o
lu

m
e
 C

h
a
n

g
e
 [

L
]

Time [min]

 

 

Blood

Interstitial Fluid

 

 

Figure 3-4: Fractional BV responses to 5 % albumin (1st column) and autologous plasma 

(2nd column) reproduced by the macroscopic BV dynamics model 
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membranes, thus slowing down the distribution of colloid from blood to ISF (Hahn, 

2013).  This in turn decreases α& associated with colloids, since more fluid tends to be 

retained in the blood than is distributed to the interstitium.  The systems-level BV 

dynamics model associated with the data in Sets 1-3 captured this behavior via model 

fitting: comparing the lower panels in Figure 3-3 - Figure 3-5, the model estimated that 

the fluid volume distributed from blood to interstitium relative to the change in BV is 

largely smaller for colloids than crystalloids, which originates from relatively small α& 

in colloids than crystalloids (note that the colloid infusion dose is only 40 % of the 

crystalloid infusion dose; Table 6). 

In summary, the systems-level model presented in this chapter is 1) simple in 

that it can be characterized by only three parameters; 2) able to reproduce real-world 

 

Figure 3-5: Fractional BV responses to 5 % albumin (1st column) and autologous plasma 

(2nd column) reproduced by the macroscopic BV dynamics model. 
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BV responses to fluid infusion; and 3) physiologically transparent in that the 

parameters behave as physiologically anticipated. 

 

3.5.Mechanism of Underlying Model Fitting 

 

The parametric sensitivity analysis was performed in the frequency domain.  

The sensitivity functions associated with the model (3-5) to V	� and α& were derived 

as the normalized partial derivatives of G
jω�, the frequency response function 

associated with (3-5), with respect to V	� and α&: 

S"5M
jω� = V	�G
jω� ∂G
jω�∂V	� �wzw∗ = −1 
S]^
jω� = α&G
jω� ∂G
jω�∂α& �wzw∗ = −α&∗
1 + α&∗ �H K8∗
1 + α&∗ �
jω� + K8∗  

(3-10) 

Then, the frequency responses of these sensitivity functions were examined to elucidate 

how V	� and α& are tuned to fit the model to the fluid infusion-plasma dilution response 

data. The optimal values of V	� and α& were comparable to the known nominal values 

(Section 3.4).  However, V	� was in general larger than what is regarded as nominal.  

The reason for this observation may be found by elucidating the mechanism underlying 

the model fitting via the parametric sensitivity analysis as detailed below. 

The value of α& was assumed to be constant in the data analysis.  However, α& may 

continuously vary in reality as BV varies (Guyton et al., 1975).  This discrepancy 

between the model and the reality may have modestly affected the way V	� was derived 

from the optimization (3-7) as follows.  First, the Bode magnitude plots of the 

sensitivity functions (3-10) to V	� and α& suggest that the model’s response is primarily 
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affected by V	� in the high frequency regime while comparably affected by V	� and α& 

in the low frequency regime (Figure 3-6(a)).  Physically, this implies that the model’s 

transient response is largely affected by V	� while its steady-state response is affected 

comparably by both V	� and α&.  Thus, in solving (3-7), the model tends to fit the 

transient portion of the response by primarily adjusting V	�, while it tends to fit the 

steady-state portion of the response by primarily adjusting α& once a value of V	� that 

best fits the transient response is determined (Figure 3-6(b)).  Second, in response to a 

fluid infusion, BV first peaks and then decreases as the infused fluid is distributed to 

the interstitium (Figure 3-3 - Figure 3-5).  Thus, the real α& may first peak and then 

decrease to a steady-state value as well.  However, the model assumes that the 

value of α& is fixed at its steady-state (i.e., the lowest) value.  The model (3-6) dictates 

that this α&, together with actual V	�, yields an increase in the model-reproduced 

fractional BV response.  To compensate for this discrepancy, V	� is adjusted to be 

larger than the actual initial volume to decrease the transient fractional BV response.  

This is presumably the mechanism underlying the large values of V	� derived for the 

 

  (a)  

 

(b) 

Figure 3-6: (a) The frequency responses of the model’s sensitivity functions (9) to V	� and α&.  (b) The mechanism of how V	� and α& are tuned to fitting the model to fractional BV 

response data. 
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data in Sets 1-2 (except for the data associated with for 900 ml hemorrhage in Set 1, in 

which the increase in α& during the transient response period may have been small).  

   Compared with crystalloid (Sets 1-2), the initial volumes derived for colloid 

(Set 3) were closer to physiologic values because the infusion dose of colloid was small  

(Table 6), resulting in less likelihood of volume overload.  It is noted that the 

assumption of constant α& was made primarily for the sake of parsimony in modeling 

and fitting, and drifted initial volume estimation was an artifact due to this assumption. 

Thus the constant α& assumption may easily be relaxed. For example, a monotonically 

increasing parametric function of BV as a model of α& may allow the model to 

incorporate transient changes in α&.  

Despite promising initial results obtained for the proposed macroscopic BV 

dynamics model, there are a few limitations that are mentioned in below.  

First, the response of the model only to constant rates of fluid infusion and UO was 

considered.  The model fitting (3-7) was conducted for a UO rate proportional to the 

fractional BV response (Drobin and Hahn, 1999) to examine the effect of time-varying 

UO.  The results showed no significant deviation from those shown in Table 7.  

Therefore, the assumption of constant UO rate was deemed quite adequate at least for 

the datasets examined in this chapter.  In any case, the model may readily be extended 

to reproduce BV responses to time-varying rates of fluid infusion and urine excretion, 

perhaps by employing more sophisticated expressions for the fluid shift q between the 

intravascular and ISF compartments. 
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Second, the amount of data employed to validate the model was rather small (seven 

datasets).  This study successfully demonstrated the initial validity of the model.  

However, more rigorous assessment of the model, using datasets associated with 

diverse group of subjects, is desired.  Further validation of the model for different CV 

states using individual subject’s BV data is performed in Section 3.6.  

 

3.6.Validation of Blood Volume Model for Different Cardiovascular States 

 

In Section 3.3, the BV model was validated for data collected from subjects 

with different BV states and different types of fluid.  In this section, we validated the 

model for subjects with different CV states (i.e., CV under control and intervention). 

To do this, we employed BV data published in the literature (Asmussen et al., 2014). 

Data were collected from nine human subjects (aged 21-50 years) underwent two 

randomly assigned protocols that were separated by at least 7 days. Subjects received 

either a continuous isoproterenol infusion (ISO: 0.05 μg/kg/min) or 0.9% saline 

(control) 30 min prior to a 25 ml/kg 0.9% saline fluid bolus, which was administered 

over 20 min. The resulting change in BV and UO were measured at the start of fluid 

bolus and every 2 min during the fluid bolus, every 5 min for the next 40 min, and then 

every 30 min for a period of 60 min.   

Inspecting the inter-individual variability in BV responses, in particular the data 

associated with ISO showed an oscillatory behavior that could not be well fitted using 

a proportional fluid transition mechanism between intravascular and ISF compartments 

(see K* in (3-3)).  Therefore, we replaced the proportional gain K* in (3-3) with a 

proportional-integral (PI) gain as follows: 
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q
t� = ?−K*e	
t� − K+ _ e	
t�dtA (3-11) 

It was speculated that the source of oscillatory response in ISO was due to the fact that 

ISO is a significant stimulator of aldosterone production. 

When aldosterone hormone is released, sodium is reabsorbed from urine to blood, 

leading to increase the osmolarity of extracellular fluid (i.e., BV and ISF). This increase 

in the extracellular osmolarity results in a fluid transfer from intracellular to 

extracellular, and a consequent oscillatory behavior in both BV and ISF. It is noted that 

(3-11) changes (3-5) as follows: 

∆V����	� 
t� + K*∆V����	e 
t� + K+∆V����	:
= `ue 
t� − ve 
t�aV	� + K*`u: 
t� − v: 
t�aV	�
1 + α&� + K+`u
t� − v
t�aV	�
1 + α&�  

(3-12) 

To validate the model in response to two different CV states, the fluid infusion 

and UO were inputted to the model and the model-reproduced BV responses via (3-6) 

and (3-11) were fitted to the true BV measurement in both ISO and control protocols. 

It is noted that since the absolute BV changes was measured in addition to the fractional 

BV response, two sets of data fitting were executed; first, as Section 3.3, the model of 

BV (3-6) with 4 tunable parameters including K*, K+, α& and V	� were fitted to the 

fractional data, while in another attempt the same model was fitted to absolute change 

in BV assuming V	� = 1.  

Eventually, the validity of the BV dynamics model derived from the model 

fitting (3-7) was tested by analyzing 1) its ability to reproduce the absolute and 

fractional BV data, 2) the behaviors of the summary parameters across different CV
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states. To gauge if the summary parameters were meaningfully derived by the model 

fitting, the following hypotheses on the summary parameters were generated: 1) α& is 

less in ISO than in control and 2) a larger K+ for ISO is expected.  The assumption of 

less α& for ISO is based on the fact that isoproterenol, as a beta-adrenergic agonist, 

would enhance the intravascular volume expansion during and after fluid infusion so 

 

(a) 

 

(b) 

Figure 3-7: A representative fitting result from one subject, (a) Control (b) ISO. 
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Table 8: Estimated summary parameters for absolute BV response data. 
Absolute K8∗  K�∗ V	�∗  [l] α&∗  Error [%] RMSE [%] 

Control 0.077+/-0.025 6e-4+/-8e-4 N/A 3.45+/-2.71 4.60+/-2.91 16.01+/-7.84 

Isoproterenol 0.068+/-0.013 3e-3+/-2e-3 N/A 1.40+/-0.68 3.73+/-2.83 13.5+/-6.29 

 

Table 9: Estimated summary parameters for fractional BV response data. 
Fractional K8∗  K�∗ V	�∗  [ml/kg] α&∗  Error [%] RMSE [%] 

Control 0.087+/-0.045 6e-4+/-9e-4 36.2+/-10.9 3.45+/-2.38 1.35+/-1.55 11.9+/-7.21 

Isoproterenol 0.099+/-0.033 3e-3+/-3e-3 36.7+/-9.91 1.89+/-0.52 1.15+/-0.34 10.2+/-3.12 
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that more fluid retains in the blood rather than moving to ISF (Asmussen et al., 2014; 

Stephens et al., 2011; Vane et al., 2004).  

Figure 3-7 shows a representative BV fitting result from one subject.  Figure 3-

7(a) and Figure 3-7(b) show the results for control and ISO protocols, respectively, 

where at each one, left, center and right panels show the fluid infusion protocol with 

UO, measured and model-reproduced BV response, and model-estimated volume 

changes in the intravascular and interstitial fluid.   

The goodness of fit between measured and model-reproduced BV responses 

was encouraging: the overall root-mean-squared errors associated with control and ISO 

scenarios were 16.0% and 13.5%; and 11.9% and 10.2% of the mean values of the 

underlying responses for absolute and fractional BV data, respectively.  In addition, the 

model could represent the enhanced BV expansion observed in the ISO scenario via its 

parameter α&, when averaged over the nine subjects, α&∗  was significantly smaller in the 

data associated with ISO (1.89+/-0.52) than those in control (3.45+/-2.38; mean+/-SD), 

where SD stands for standard deviation. It is also obvious that K+ in ISO is larger that 

that of control, which is consistent with oscilatory behaviour of BV response in ISO.  

 

3.7.Mathematical Analysis of the Blood Volume Model 

 

In this section, the developed model of BV was mathematically studied. We 

first transformed the model to the state space form. In doing this, we defined the 

variables considered as the system’s states. Then, the controllability and observability 

of the system were investigated. Next, we looked in to the transfer function between 



 

52 

 

BV response and fluid infusion and studied the stability of the system. Finally, the 

steady-state and transient responses of the BV model were elaborated.  

3.7.1. State Space Model of Blood Volume 

To further study the model of BV and employ this model for future design of 

closed-loop control of fluid resuscitation, the state space model of BV is desired. In 

this section the state space model of BV is developed. First, we define the variables we 

considered as the states of the system. Figure 3-8 shows the block diagram of model of 

BV. To achieve a minimal model, three states corresponding to the three integrators in 

the model have been considered and labeled as xC to xH, which refer to the BV response, 

accumulated error in the controller, and accumulated net fluid infusion, respectively. 

 

The three differential equations associated with the three state variables are 

shown in (3-13).  

x: C = u − v − K*e − K+xD = u − v − K+xD − K* ? xH1 + α& − xCA 

x: D = 11 + α& xH − xC 

x: H = u − v 

(3-13) 

By combining the above differential equations, and assuming x = `xC xD xHai and 

� is net fluid infusion, i.e., � = u − v, the following state space model is derived: 

 

Figure 3-8: The block diagram of model of blood volume 
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x: = Ax + B� 

y = Cx + D� 

A=

��
��K* −K+ hXpC\]^−1 0 CC\]^0 0 0 ��

�� ,   B = �101� ,   C = I1 0 00 0 1J ,   D =  I00J  

(3-14) 

where the input to the system (�) is net infusion and the model outputs (y) are rate of 

change in BV and rate of net infusion.  

3.7.2. Controllability and Observability of the Blood Volume Model  

Based on the model of state space model obtained above, the controllability and 

observability matrices of the model of BV were derived. By definition, the 

controllability matrix of the system is as follows: 

 � ≡ `B AB ADBa = �101
K*−10

K*D + K+−K*0 � (3-15) 

while, after removing the dependent rows, the observability matrix is derived as below: 

  ≡ � CCACAD� =
��
�� 10K*K*D + K+

00−K+−K*K+

01−K* 
1 + α&�⁄− K*D − K+ 
1 + α&�⁄ ��
�� (3-16) 

From (3-14) and (3-15), it is evident that for K+ = 0 the rank of controllability and 

observability matrices drops to two, making the system uncontrollable and 

unobservable. It is noted that since identified K* is large enough, having small values 

of K* is not of concern. In case of K+ ≈ 0, we propose to employ a proportional 

controller rather than proportional-integral controller, in which the order of the state 

space model becomes two, making the system fully controllable and observable.   
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3.7.3. Transfer Function of Blood Volume Response and Stability Analysis 

By computing the state transition matrix for (3-14) and using equation (3-11), 

the relationship between input � and BV response in frequency domain can be derived 

as below: 

ΔV	
s� = G
s��
s� = 1s sD + K*1 + α& s + K+1 + α&sD + K*s + K+ �
s� 
(3-17) 

where G
s� is the transfer function between the net infusion and BV response. If we 

divide (3-17) by initial BV, the fractional BV response can be represented as (3-18): 

∆V����	
s� = G�
s��
s� = 1V	�
1s sD + K*1 + α& s + K+1 + α&sD + K*s + K+ �
s� 

(3-18) 

In regard to the stability of the system, it is essential to verify that the eigenvalues of 

the system have negative real parts, i.e., real part of the roots of the polynomial sD +
K*s + K+ are in the left half plane. In other words, to ensure the system is 

asymptotically stable it necessitates that both controller coefficients satisfy K*, K+ > 0. 

In addition, to avoid singularity α& > −1.  

3.7.4. Transient and Steady-State Response of Blood Volume 

In this section, the steady-state and transient responses of BV are evaluated by 

employing the final and initial value theorems. For simplicity, it is assumed that the 

urine excretion is zero. Administering an initial step fluid infusion with rate U to a 

subject followed by a washout period, the BV response at steady-state during washout 

can be computed via final value theorem, as below: 
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lim@→£ ∆V����	
t� = lim�→�
1V	�

sD + K*1 + α& s + K+1 + α&sD + K*s + K+ E1s U
s�F
= 1V	�

11 + α& E1s U
s�F 

(3-19) 

where IC� U
s�J is accumulated fluid infusion. It’s obvious that the results are consistent 

with Figure 3-6, where steady-state response is impacted by both initial BV and α&. On 

the other hand, the transient response of BV during a step fluid infusion with rate U 

right after fluid resuscitation starts can be derived using initial value theorem. In the 

frequency domain, (3-18) can be shown as below: 

s∆V����	
s� = 1V	�
sD + K*1 + α& s + K+1 + α&sD + K*s + K+ �
s� 

(3-20) 

By applying initial value theorem on (3-20), the following relationship is achieved:  

lim@→� ∆V����	: 
t� = lim�→£
sV	�

sD + K*1 + α& s + K+1 + α&sD + K*s + K+
U
s�s = U
s�V	�  (3-21) 

which indicates the rate of change in fractional BV response once step infusion is 

initiated is impacted by the rate of infusion and initial BV. This is also consistent with 

Figure 3-6, where the transient response is mainly regulated by initial BV.   
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4. Modeling of Cardiovascular Endpoint Responses to Blood 

Volume Perturbation 

 

This chapter presents a systems-level lumped parameter model to reproduce 

hemodynamic responses to hemorrhage and fluid infusion.  The model consists of three 

sub-models. The first sub-model relates BV response to hemorrhage and fluid infusion.  

The BV model developed in Chapter 3 is employed and expanded to be adapted to the 

hemorrhage scenario in addition to the fluid infusion. The second sub-model relates 

BV to SV and CO; and the third sub-model relates CO to BP.  The validity of the model 

is examined using experimental data collected from 11 animals.  To this end, first, a 

fully individualized model (a model obtained for each animal by estimating all the 

parameters from the data) is studied.  Then, a parametric sensitivity analysis is 

performed to obtain a well-conditioned model by identifying low-sensitivity model 

parameters and fixing them at nominal values.  Finally, a partially individualized model 

(a model obtained by estimating only the parameters to be individualized from the data) 

is studied. It is anticipated that this systems-level model may serve as a viable basis for 

the design and evaluation of closed-loop decision-assist and control algorithms for fluid 

resuscitation in critically ill patients. 

 

4.1.Systems-Level Mathematical Model of Hemodynamic Cardiovascular Endpoints  

 

The model consists of three sub-models: (a) a control-theoretic model to relate 

hemorrhage and fluid infusion to BV; (b) a lumped-parameter physics-based model to 

relate BV to SV and CO; and (c) a phenomenological model to relate CO to BP 
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(Figure 4-1).  Compared to existing models available in the literature, a unique 

characteristic of this model is its balance for simplicity (via abstraction of microscopic 

physiological mechanisms into a systems-level model) and physiological transparency 

(via maximal use of established physiological knowledge).   

 

4.1.1. Modeling of Blood Volume Response to Hemorrhage and Fluid Infusion 

In previous chapter, a lumped parameter model of BV response to fluid infusion 

is developed. Given that the ratio between the intravascular and extravascular 

volumetric changes is in general different for hemorrhage and fluid infusion due to the 

compositional differences in the fluids involved in each process (blood lost consists of 

plasma and red blood cells (RBCs) while infused fluid may consist of electrolyte 

(crystalloid such as Lactated Ringer’s solution (LR)) and starch (colloid such as 

Hextend (Hex)), the original model of BV in Chapter 3 is not applicable to the scenarios 

in which a patient undergoes both hemorrhage and fluid infusion.  In this chapter, we 

extended the original model as follows to address this limitation.  By denoting the ratio 

between the intravascular and extravascular volumetric changes in the steady-state in 

 
Figure 4-1: A systems-level mathematical model of hemodynamic responses to hemorrhage 

and fluid infusion.   
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response to fluid gain (fluid infusion) and loss (hemorrhage and urine) as α& and α', 

respectively, the desired steady-state change in BV, r	
t�, can be written as follows: 

r	
t� = 11 + α& _ u
τ�@
� dτ − 11 + α' _ v
τ�@

� dτ (4-1) 

where u
t� and v
t� denote the rates of fluid gain (infusion) and loss (hemorrhage and 

UO) at time t.  Similar to previous chapter, at each time t, the inter-compartmental fluid 

shift is dictated by the discrepancy between the desired (r	
t�) versus actual (ΔV	
t�) 

changes in BV as follows: 

q
t� = q¤e	
t�¥ = q¤r	
t� − ΔV	
t�¥ (4-2) 

Hence, the rate of change in BV can be written as follows: 

ΔV:	
t� = u
t� − v
t� − q
t� (4-3) 

If the inter-compartmental fluid shift is abstracted into the action of a simple PI 

controller to drive e	
t� to zero in the steady-state: 

q
t� = −K*e	
t� − K+ _ e	
τ�dτ@
�  (4-4) 

Where, the same as before, K* and K+ are proportional and integral gains, the dynamics 

dictating the rate of change in BV can be written as follows by combining (4-1)-(4-4): 

∆V�	
t� + K*∆Ve	
t� + K+∆V:	
t�
= `ue 
t� − ve 
t�a + K*1 + α& u: 
t� − K*1 + α' v: 
t� + K+1 + α& u
t�
− K+1 + α' v
t� 

(4-5) 

This model is visualized in Figure 4-1(a) as a two-bucket system connected by a bi-

directional flow valve, where the buckets represent the intravascular and extravascular 
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compartments while the valve represents the collection of all the inter-compartmental 

fluid shift mechanisms. 

 

4.1.2. Modeling of Stroke Volume and Cardiac Output Responses to Blood Volume 

Changes 

A perturbation in BV entails the corresponding perturbations in SV and CO.  

The influence of BV on SV and CO can be viewed from 2 complementary standpoints: 

vascular and ventricular.  On one hand, Guyton’s CO-venous return (VR) theory 

dictates that a perturbation in BV results in perturbations in CO and VR by altering 

MSP (Beard and Feigl, 2011) (Figure 4-1(b)): 

VR
t� = CO
t� = P!�
t� − P�"
t�R"�  (4-6) 

where P�"
t� is CVP, R"� is the resistance to VR, P!� = 
"5h"5¦��j  is MSP, V	� is the 

unstressed BV, and C� is the systemic capacitance (Beard and Feigl, 2011; Young, 

2010).  Expanding P!� in (4-6) yields the following relationship between BV, SV δV, 

and CO: 

CO
t� = HR
t� ∙ δV
t� = 1R"� §V	
t� − V	�C� − P�"
t�¨
= 1C�R"� V	
t� − 1R"� P�"
t� − V	�C�R"� 

(4-7) 

Note that V	
t� = V	� + ΔV	
t� is the sum of baseline BV V	� and its change ΔV	
t� 

at time t given by (4-5).  On the other hand, the Frank-Starling mechanism together 

with the left ventricular (LV) pressure-volume loop theory dictates that a perturbation 

in BV results in perturbations in SV and CO by altering the LV preload: LV EDV 
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(Sagawa et al., 1988) (Figure 4-1(b)).  First, SV and CO are related to EDV V��
t� as 

follows: 

δV
t� = CO
t�HR
t� = E�E� + E/ 
V��
t� − V�� (4-8) 

where E� is the LV elastance, E/ is the arterial elastance (defined as the product of HR 

and TPR), and V� is a constant parameter.  Using the LV end-diastolic P-V relationship 

(Morley et al., 2007; Santamore and Burkhoff, 1991) evaluated at the end of diastole 

(V-"
t� = V��
t� and P0¤V-"
t�¥ = P��
t�, where P��
t� is LV end-diastolic pressure 

(EDP)): 

P0¤V-"
t�¥ = B�e/
"©ª
@�h"M� − 1� "©ª
@�z"«N
@�¬­­­­­­­­­® V��
t� − V�
= 1A log ?1B P��
t� + 1A 

(4-9) 

where A and B are constant parameters specifying the end-diastolic LV P-V 

relationship.  By assuming that P��
t� is proportional to P�"
t�, P��
t� ≈ γP�"
t� 

(Uemura et al., 2005), (4-8) reduces to the following: 

δV
t� = CO
t�HR
t� = E�E� + E/
1A log ±γB P�"
t� + 1² (4-10) 

To obtain a direct relationship between BV and SV, (4-7) and (4-10) can be combined 

to yield the following by canceling CVP: 

δV
t� = ³j³j\³´ 
V��
t� − V�� = θC log
θD ∙ HR
t� ∙ SV
t� + θHV	
t� + θ¶�  (4-11) 

where θC = ³j/
³j\³´�, θD = − ·�ª¸	 , θH = ·	�j, and θ¶ = − ·	 "5¦�j + 1 are the parameters 

that must be tuned to each individual based on the experimental data.  A direct 

relationship between BV and CO can then be obtained by multiplying HR to (4-11): 
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CO
t� = HR
t� ∙ δV
t� = HR
t� ∙ θC log
θD ∙ CO
t� + θHV	
t� + θ¶� (4-12) 

In this way, SV and CO responses to hemorrhage and fluid infusion can be reproduced.  

In addition, CVP response may also be reproduced from SV or CO either by (4-7) or 

(4-10).  This model is visualized in Figure 4-1(b). 

 

4.1.3. Modeling of Blood Pressure Response to Cardiac Output Changes 

A perturbation in CO entails the corresponding perturbations in BP and TPR.  

Specifically, a perturbation in CO first results in a proportional change in BP, which is 

compensated by a decrease in TPR via the arterial autonomic-cardiac regulation 

(Coleman and Guyton, 1969; Montani and Van Vliet, 2009).  Despite its complex first 

principles nature, it has been suggested that autonomic-cardiac regulation is 

approximated by a sigmoidal relationship reasonably well (Cheng et al., 2010; Kawada 

et al., 2001, 2004; Magosso et al., 2001; Pruett et al., 2013; Ursino et al., 1994).  Hence, 

we used the following phenomenological model to relate the influence of BP on TPR, 

i.e., R: 

R
t� = R� − ΔR2
sgn¤P 
t� − P ,�¥¹ºP 
t� − P ,�ºY

1 + ¹ºP 
t� − P ,�ºY  (4-13) 

where R� and P ,� are TPR and MAP at nominal state, respectively, and ΔR is the 

maximal possible change in TPR.  Then, the relationship between CO and MAP can be 

given by multiplying (4-13) to CO: 

P 
t� = CO
t� × R
t� = CO
t� × ¼R0 − ΔR2
sgn¤89
@�h89,M¥ ¹º89
@�h89,Mº3

1+ ¹º89
@�h89,Mº3 ½  (4-14) 
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This model is visualized in Figure 4-1(c). In sum, the mathematical model relating 

hemorrhage and fluid infusion to hemodynamic responses (including BV, SV, CO, and 

BP) consists of (4-5), (4-12), and (4-14). 

 

4.2.Experimental Data for Model Validation 

 

The experimental data used in this chapter were collected from 11 conscious 

sheep undergoing intravenous blood loss and fluid infusion.  The measurements 

included the rates of hemorrhage, infusion, and UO, as well as BV, CO, BP, and HR.  

The data collection protocol was approved by the Institutional Animal Care and Use 

Committee (IACUC) at the University of Texas Medical Branch and is described in 

detail elsewhere (Rafie et al., 2004). 

All 11 animals received LR.  5 of these animals also received Hex.  For the 5 animals 

which received both fluids, LR and Hex experiments were performed separately in a 

randomized order, with the experiments at least 5 days apart from each other.  The 

duration of study for each fluid in each animal was 180 min.  After the baseline data 

were recorded, an initial hemorrhage (25 mL/kg) was performed over 15 min.  Fluid 

infusion was started 30 min after the start of the hemorrhage and continued for 150 

min.  Second and third hemorrhage (5 mL/kg) were performed 50 and 70 min after the 

start of the initial hemorrhage, and each lasted for 5 min.  Fluid infusion was performed 

automatically with a closed-loop controller.  Baseline BV was measured via 

indocyanine green dye (ICG) (Henschen et al., 1993).  Hematocrit, the ratio between 

the red blood cell volume (RBCV) and BV, was measured before and throughout the 

experiment at 5 to 10 min intervals and was used to measure the fractional change in 
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BV (Henschen et al., 1993).  Other hemodynamic responses were measured at similar 

time instants. 

 

4.3.Individualized Model Evaluation Method 

 

We evaluated the ability of the proposed model to reproduce hemodynamic 

responses to hemorrhage and fluid infusion.  Our primary focus was to investigate if 

the model could be tuned to each individual animal and reproduce subject-specific 

hemodynamic responses.  First, we performed the fitting of the model to the 

experimental data of each animal (called fully individualized model identification).  

Second, we performed parametric sensitivity analysis of the fully individualized model 

in order to obtain a well-conditioned model by identifying low-sensitivity model 

parameters and fixing them at nominal values.  Third, we performed the fitting of the 

model to the experimental data of each animal while fixing low-sensitivity model 

parameters to their nominal values (called partially individualized model 

identification).  Fourth, we compared the performance of the fully and partially 

individualized models in terms of accuracy and accuracy-complexity trade-off. 

 

4.3.1. Individualized Model Identification and Analysis  

We performed fully individualized model identification via numerical 

optimization.  All sub-models combined, the model involves 10 tunable parameters: 4 

in (4-5) (α&, α', K*, K+); 4 in (4-12) (θ+, i = 1 ⋯ 4); and 2 in (4-14) (R� and MAP�) 

after fixing ΔR to cover experimentally observed maximal change in TPR in all animals 

(30 [mmHg·min/l]).  Given a set of initial parameter estimates, the model computed 

BV, CO, and BP responses from the inputted experimental hemorrhage, fluid infusion 
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UO, and HR data as follows.  First, the change in BV was computed from (4-5).  On 

the other hand, the change in RBCV was computed as follows: 

ΔV�	�
t� = − _ H
τ�v�
τ�dτ@
�  (4-15) 

where ΔV�	�
t� is RBCV at time t, while H
t� is hematocrit at time t, related to BV 

and RBCV as follows: 

H
t� = V	�H
0� + ΔV�	�
t�V	� + ΔV
t�  (4-16) 

where V	� is initial BV (measured).  Second, CO response was computed by inputting 

the computed BV and HR to (4-12) and employing a root finding algorithm to solve 

for CO that best satisfies (4-12) at each time t.  Third, MAP was computed by inputting 

the computed CO to (4-14).  The computed BV, CO, and MAP responses were 

compared with the respective experimental data, and the discrepancy between them 

was minimized by solving the following optimization problem to estimate the optimal 

set of model parameters: 

Ω∗ = Àα&∗ , α'∗ , K*∗ , K+∗, θC∗ , θD∗ , θH∗ , θ¶∗ , R�∗ , P ,�∗ Á
= arg minÂ Ã§Ä∆VÅ	
t� − ∆V	
t|Ω�∆VÅ	
t���������� Ç ÄCOÅ 
t� − CO
t|Ω�COÅ 
t�������� Ç ÄP Å
t� − P 
t|Ω�P Å
t�������� Ç¨ÃD 

(4-17) 

where ∆VÅ	
t�, COÅ 
t�, and P Å
t� are measured BV, CO, and MAP responses, while 

∆V	
t|Ω�, CO
t|Ω�, and P 
t|Ω� are the same hemodynamic variables predicted by the 

model.  ∆VÅ	
t����������, COÅ 
t��������, and P Å
t��������  are the same hemodynamic variables averaged over 

the entire study duration and were used to normalize the error magnitudes associated 

with each hemodynamic variables.  The optimization problem (4-17) was solved using 

the differential evolution (DE) algorithm (Storn and Price, 1997), a derivative-free 
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method suited to solve problems with multimodal and continuous-valued cost 

functions. 

We analyzed the identified fully individualized model for (i) its ability to 

reproduce hemodynamic responses in each animal, (ii) accuracy-complexity trade-off 

via Akaike Information Criterion (AIC) (Burnham and Anderson, 2003), and (iii) the 

relevance of its parameter estimates.  First, we assessed the models’ ability to reproduce 

experimental hemodynamic responses by computing the RMSEs between measured 

versus model-reproduced BV, hematocrit, SV, CO, and BP responses.  Second, we 

computed the AIC value associated with the model identified for each animal.  Third, 

we assessed the physiological relevance of the estimated model parameters in terms of 

the following: (i) α&∗  identified for crystalloid (LR) infusion versus colloid (Hex) 

infusion (colloid contains large molecules which allows it to be retained better than 

crystalloid, resulting in smaller α&∗  compared with crystalloid (Bighamian et al., 2016; 

Hedin and Hahn, 2005)); (ii) measured V	� versus V	� derived from the identified CO 

model parameters (V	�∗ = 
1 − θ¶∗ � θH∗⁄ ); (iii) correlation between measured V	� and 

R"� derived from the identified CO model parameters (C�∗R"�∗ = −θD∗ θH∗⁄ ; noting that 

inter-individual variability in systemic compliance C�∗ is not large (Oren et al., 1996) 

and that  V	� and R"� are known to exhibit positive correlation (Chirinos et al., 2009), 

model-derived C�∗R"�∗  may be positively correlated to V	�); and (iv) discrepancy 

between measured MAP and TPR in the steady-state versus P ,�∗  and R�∗  (noting from 

(4-13) that P ,�∗  and R�∗  indicate nominal MAP and TPR, they may be close to steady-

state experimental values). 
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4.3.2. Post-Hoc Parametric Sensitivity Analysis 

We conducted post-hoc parametric sensitivity analysis using the identified 

mathematical models in order to determine high-sensitivity parameters (those having a 

large influence on the model outputs) and low-sensitivity parameters (those having a 

small influence on the model outputs), and thereby to (a) understand the identifiability 

properties of the model as well as to (b) obtain a well-conditioned model (a model with 

low parametric variance) by fixing low-sensitivity parameters to their nominal values.  

Noting that BV, CO, and MAP were all used in identifying the model, we performed 

the parametric sensitivity analysis at the sub-model level. That is, we examined the 

sensitivity of the BV model (4-5) to Àα&∗ , α'∗ , K*∗ , K+∗Á; sensitivity of the CO model (4-

12) to nθC∗ , θD∗ , θH∗ , θ¶∗ o; and sensitivity of the MAP model (4-14) to ÀR�∗ , P ,�∗ Á, 

respectively.  Details follow. 

We constructed two nominal models: one nominal model to simulate crystalloid 

response, equipped with parameters averaged over all subjects and α&∗  averaged over 

11 crystalloid subjects, and another model to simulate colloid response, equipped with 

parameters averaged over all subjects and α&∗  averaged over 5 colloid subjects.  To 

elucidate the parametric sensitivity of the models to both fluid gain and loss, we 

simulated the model with a hemodynamic perturbation scenario consisting of (i) 30 min 

of 0.05 ml/kg/min hemorrhage and (ii) 30 min of 0.05 ml/kg/min LR infusion or 0.05/3 

ml/kg/min Hex, which were separated by 150 min zero-input period.  We used the data 

thus acquired to compute parametric sensitivity as follows.  First, we formulated the 

control-theoretic BV model (4-5) into the following state space model: 
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È:
t� = É¤È
t�, u
t�, v
t�, Ω"5¥ = ÊÈ
t� + Ë Eu
t�v
t�F 

=
��
��
��−K* K+ K*
1 + α&� −K*
1 + α'�

−1  0 1
1 + α&� −1
1 + α'�  0  0   0  0 00 00 ��
��
�� È
t� + �1 −10 010 01 � Eu
t�v
t�F ,

È
t�� = È� 
ΔV	
t� = ÌÈ
t� = `1 0 0 0aÈ
t� 

(4-18) 

Where 

 È
t� = `ΔV	
t� Í e	
τ�dτ Í u
τ�dτ Í v
τ�dτai,  

Ω"5 = `α& α' K* K+ai, and Ê and Ë are the system and input matrices.  Form 

(4-18), we constructed the following sensitivity function (Khalil, 2001): 

4:È
t� = Ê4È
t� + Î
t�, 4È
t�� = Ï¶×¶ 
4"5
t� = Ì4È
t� 

(4-19) 

where 4È
t� is the parametric sensitivity matrix associated with È
t�, 4"5
t� is the 

parametric sensitivity function associated with BV, and Î
t� is given by: 

Î
t� = ∂É¤È
t�, u
t�, v
t�, Ω"5¥∂Ω"5  

=
��
��
��
�−K* Í u
τ�dτ
1 + α&�D K* Í v
τ�dτ
1 + α'�D Í u
τ�dτ1 + α& − Í v
τ�dτ1 + α' − ΔV	
t� _ e	
τ�dτ

− Í u
τ�dτ
1 + α&�D    Í v
τ�dτ
1 + α'�D 0 0
 0 0               0   0 00 00 ��

��
��
�
 

(4- 20) 
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Second, we constructed the sensitivity functions associated with the lumped-parameter 

SV-CO model (4-12) and phenomenological MAP model (4-14) by computing their 

partial derivatives with respect to the respective model parameters: 

4�6
t� =

��
��
��
��
�∂CO
t�∂θC∂CO
t�∂θD∂CO
t�∂θH∂CO
t�∂θ¶ ��

��
��
��
�

=

��
��
��
��
�HR
t�
θDCO
t� + θHV	
t� + θ¶� log
θDCO
t� + θHV	
t� + θ¶�
θDCO
t� + θHV	
t� + θ¶� − θCθDHR
t�θCHR
t�CO
t�
θDCO
t� + θHV	
t� + θ¶� − θCθDHR
t�θCHR
t�V	
t�
θDCO
t� + θHV	
t� + θ¶� − θCθDHR
t�θCHR
t�
θDCO
t� + θHV	
t� + θ¶� − θCθDHR
t� ��

��
��
��
�
 

(4-21) 

489
t� =
���
��∂P 
t�∂R�∂P 
t�∂P ,� ���

��

=

��
��
��
��
�� CO
t� Ä1 + ¹ºP 
t� − P ,�ºY ÇD

Ä1 + ¹ºP 
t� − P ,�ºY ÇD + 5CO
t�¤ºP 
t� − P ,�º¥hD H⁄
5CO
t�¤ºP 
t� − P ,�º¥hD H⁄

Ä1 + ¹ºP 
t� − P ,�ºY ÇD + 5CO
t�¤ºP 
t� − P ,�º¥hD H⁄ ��
��
��
��
��
 

(4-22) 

We then numerically computed 4"5
t�, 4�6
t�, and 489
t� by solving (4-19), (4-21), 

and (4-22) simultaneously with (4-5), (4-12), and (4-14) subject to the hemodynamic 
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perturbation scenario described above.  Since the model parameter values exhibited 

diversity in terms of magnitude, we normalized the computed 4"5
t�, 4�6
t�, and 

489
t� using the respective nominal parameter values and time series sequence of 

ΔV	
t�, CO
t�, and P 
t�.  For each sub-model, we compared the magnitudes of the 

normalized parametric sensitivity functions and identified low-sensitivity parameter(s) 

as those whose sensitivity magnitudes are considerably small relative to the sensitivity 

functions associated with the remaining parameters.  Since these parameters do not 

exert a large influence on the model’s response compared with the remaining 

parameters, they may not be identified accurately, and therefore, may be fixed at 

nominal value(s) without making a large influence on the model’s ability to reproduce 

the experimental hemodynamic responses. 

 

4.3.3. Partially Individualized Model Identification and Analysis 

We performed partially individualized model identification via numerical 

optimization.  The parametric sensitivity analysis showed that K+ and θC could be 

classified as low-sensitivity parameters (see Section 4.4).  All sub-models combined, 

the model involves 8 tunable parameters: 3 in (4-5) (α&, α', K*); 3 in (4-12) (θ+, i =
2 ⋯ 4); and 2 in (4-14) (R� and P ,�) after fixing K+ and θC to their respective average 

values in all animals.  We solved the same optimization problem as previously 

described to estimate the optimal set of model parameters for the partially 

individualized model.  Then, we analyzed the identified partially individualized model 

in comparison with its fully individualized counterpart for (i) its ability to reproduce 

hemodynamic responses in each animal, (ii) accuracy-complexity trade-off via AIC, 

and (iii) the relevance of its parameter estimates. 
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4.4.Fitting Results and Model’s Performance 

 

Table 1 shows the RMSEs associated with the fully and partially individualized 

models in reproducing BV, hematocrit, SV, CO, and MAP (mean (SD)).  In terms of 

AIC, partially individualized model outperformed its fully individualized counterpart 

in 6 (out of 11) animals for LR and in 4 (out of 5) animals for Hex.  In sum, the former 

was superior to the latter, for either LR or Hex or both, in 8 animals.  Figure 4-2 shows 

a representative example of measured hemodynamic responses to (a) LR and (b) Hex, 

and the same responses reproduced by the partially individualized model (the results 

for fully individualized model were highly comparable and thus are not shown).  Table 

11 summarizes the model parameter values associated with the fully and partially 

individualized models.  Figure 4-3 shows the time evolution of normalized parametric 

sensitivity functions in response to hemorrhage and crystalloid infusion (the results for 

colloid infusion exhibited the same trend and thus are not shown).   

 

4.5.Model’s Interpretation, Sensitivity and Usability 

 

We developed a systems-level mathematical model that can reproduce 

hemodynamic responses to hemorrhage and fluid infusion, equipped with simplicity to 

facilitate the design of closed-loop algorithms and transparency to allow credible 

validation and interpretation.  Here we elaborate on the accuracy and physiological 

relevance properties of the proposed model. 

 

4.5.1. Fully versus Partially Individualized Models 

Once tuned to the data associated with individual animals, both fully and 

partially individualized models could reproduce hemodynamic responses to 
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hemorrhage as well as infusion of crystalloid (LR) and colloid (Hex) fluids accurately, 

including BV, hematocrit, SV, CO, and BP (Table 10).  When root-mean-squared, the 

RMSEs associated with BV, SV, CO, and BP were 1.9 ml/kg and 2.2 ml/kg, 0.12 ml/kg 

and 0.13 ml/kg, 0.42 lpm and 0.44 lpm, and 7.2 mmHg and 7.3 mmHg, respectively, 

which, when normalized by the respective average response, was consistently smaller 

than 14.4 % for crystalloid and 11.7 % for colloid on the average.  The goodness of fit 

observed for BV, ISFV, RBCV, and hematocrit suggests the validity of abstracting the 

inter-compartmental fluid shift (which involves many complex physiological 

mechanisms) into a simple closed-loop (PI) control action, while the goodness of fit 

observed for SV and CO illustrates the appropriateness of minimum-complexity 

physics-based expression for the relationship between BV versus SV and CO (Figure 

4-2).  Overall, the model exhibited remarkable performance in reproducing the 

experimental hemodynamic responses despite its simple architecture, indicating its 

potential to offer complementary value to the class of highly complex white-box 

models currently available in the field, e.g., (Abram et al., 2007; Kofránek and Rusz, 

2010). Close scrutiny of the fully individualized model showed that the model 

parameters are physiologically relevant.  First, the values of ÑÒ∗  associated with 

crystalloid (LR) infusion versus colloid (Hex) infusion were significantly different  

(p<0.05).  This observation is consistent with what is anticipated from physiology that 

colloid, compared with crystalloid, enhanced BV expansion via reduced fluid shift from 

BV to ISFV due to large molecules it contains (Bighamian et al., 2016; Hedin and 

Hahn, 2005).  This finding highlights the potential need for fluid-dependent models in 

the design and evaluation of closed-loop fluid resuscitation controllers.  Second, V	� 
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derived from the identified CO model parameters

 

(V	�∗ = 
1 − θ¶∗ � θH∗⁄ ) was closely correlated with measured V	� (r=0.87).  This 

observation is consistent with what is anticipated from physiology that individuals with 

small (large) V	� tend to have small (large) V	� (Peterson and Bronzino, 2007).  Third, 

R"� derived from the identified CO model parameters (C�∗R"�∗ = −θD∗ θH∗⁄ ) was 

correlated positively with measured V	� (r=0.59), which is consistent with an earlier 

finding that R"� has a tendency to be proportional to V	� (Chirinos et al., 2009).  

Finally, the agreement between P ,�∗  and R�∗  versus their steady-state experimental 

values was adequate with average discrepancy of 12.3 % for P ,�∗  and 29.3 % for R�∗ .  

Overall, these observations indicate that some, if not all, of the parameters in the 

proposed systems-level model are physically transparent and physiologically 

interpretable, rendering the model appropriate for the development of decision-assist 

and control algorithms as well as in-silico testing tools for investigational closed-loop 

Table 10: RMSEs associated with the fully and partially individualized models (mean 

(SD)).  Full: fully individualized model.  Partial: partially individualized model. 

 Model 
BV Error 

[l] 

Hematocrit Error 

[-] 

SV Error 

[ml] 

CO Error 

[lpm] 

BP Error 

[mmHg] 

Crystalloid 
Full 0.08 (0.05) 0.79 (0.28) 4.7 (3.4) 0.47 (0.21) 7.5 (2.2) 

Partial 0.09 (0.05) 0.87 (0.26) 5.1 (3.6) 0.50 (0.23) 7.8 (2.2) 

Colloid 
Full 0.05 (0.02) 0.49 (0.06) 3.5 (1.9) 0.30 (0.09) 6.8 (3.0) 

Partial 0.06 (0.02) 0.50 (0.04) 3.8 (1.9) 0.33 (0.08) 6.1 (2.6) 

 

Table 11: model parameter values associated with the fully and partially individualized 

models. 

 Model 
α&∗ † 

[·] 

α'∗  

[·] 

K*∗  

[min-1] 

K+∗ 

[min-2] 

θC∗  

[ml] 

θD∗  

[min/ml] 

θH∗  

[ml-1] 

θ¶∗  

[·] 

R�∗  

[mmHg·min/l] 
P ,�∗ [mmHg] 

Crystalloid 

Full 
2.3 

(2.0) 

1.1 

(0.9) 

0.1 

(0.1) 

17e-4 

(1e-3) 

12.2 

(5.4) 

-0.048 

(0.046) 

0.28 

(0.12) 

-422 

(231) 

16.5 

(6.12) 

82.9 

(7.14) 

Partial 
1.56 

(0.67) 

1.09 

(0.83) 

0.13 

(0.10) 

31e-4 

(0) 

13.0 

(0) 

-0.045 

(0.044) 

0.27 

(0.13) 

-421 

(246) 

17.4 

(6.66) 

82.2 

(7.59) 

Colloid 

Full 
-0.20 

(0.26) 

0.93 

(0.52) 

0.15 

(0.13) 

63e-4 

(41e-4) 

14.7 

(5.46) 

-0.063 

(0.041) 

0.31 

(0.12) 

-410 

(165) 

14.7 

(3.88) 

91.1 

(22.4) 

Partial 
-0.20 

(0.23) 

0.90 

(0.37) 

0.20 

(0.11) 

31e-4 

(0) 

13.0 

(0) 

-0.072 

(0.043) 

0.32 

(0.13) 

-442 

(228) 

17.0 

(7.56) 

94.5 

(31.2) 

†: significantly different between fully versus partially individualized models (p<0.05). 
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controllers. 

Comparing fully and partially individualized models, RMSE associated with the former 

was comparable to RMSE associated with the latter.  Specifically, RMSEs associated 

with BV (p=0.24), hematocrit (p=0.20), SV (p=0.26), CO (p=0.50), and MAP (p=0.29) 

responses were not significantly different.  In addition, AIC preferred partially

 
Figure 4-2: Measured versus model-reproduced hemodynamic responses to (a) crystalloid 

(Lactate Ringer’s) and (b) colloid (Hextend) infusion. 
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individualized model to its fully individualized counterpart (see Section 4.4).  The 

difference in the 8 tunable parameters was minimal and mostly insignificant (p>0.05 

for both LR and Hex, except K* associated with Hex (p=0.03)).  Further, the 

physiological relevance of parameters observed for the fully individualized model was 

preserved in the partially individualized model.  In sum, the impact of fixing K+ and θC 

to their nominal values on the validity and physiological relevance of the model was 

minimal.  Considering that the partially individualized model involves less number of 

tunable parameters, it may be claimed that it is equipped with superior accuracy-

complexity trade-off to fully individualized model. 

 

 
Figure 4-3: Time evolution of normalized parametric sensitivity functions (indicating 

percent change in the hemodynamic responses caused by unit percent perturbation in each 

parameter from the nominal value) in response to simulated hemorrhage and crystalloid 

infusion. 
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4.5.2. Parametric Sensitivity 

 

Examining the time evolution of the parametric sensitivity functions offered 

additional insights as to the relative importance and identifiability properties of the 

model parameters.  First, the time evolution of 4"5
t� indicates that BV response in the 

steady-state is primarily sensitive to α& and α' while the same response during 

transients is also influenced by K* and K+ (Figure 4-3(b)).  This is plausible in that α& 

and α' specify steady-state changes in BV and ISFV, whereas K* and K+ are parameters 

dictating dynamic inter-compartmental fluid shift.  In addition, the amplitudes of the 

sensitivity functions associated with K* and K+ are relatively smaller than those 

associated with α& and α', suggesting the relative importance of the latter parameters 

compared to the former parameters.  In particular, K+ appears to be the least important 

parameter in the control-theoretic BV model, suggesting that the inter-compartmental 

fluid shift may be adequately described by individualizing the proportional control 

action alone.  Second, the time evolution of 4�6
t� indicates that CO response is 

sensitive to θH and θ¶ relative to θC and θD (Figure 4-3(c)).  This observation is 

plausible in that θH and θ¶ are related to BV and unstressed BV, the changes in which 

directly influences SV and CO.  The amplitude of sensitivity functions was overall 

larger under hemorrhage than fluid infusion condition (except 
Ó�6
@�ÓÔW  which exhibited 

the opposite trend), which may be attributed to an increase in the denominator term 


θDCO
t� + θHV	
t� + θ¶� − θCθDHR
t� in 4�6
t� in response to BV expansion 

associated with fluid infusion.  In sum, θC appears to be the least important parameter 

in the lumped-parameter SV-CO model.  Third, the time evolution of 48M
t� indicates 
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that both R� and P ,� make a large influence on MAP response (Figure 4-3(d)).  In 

particular, noting that (4-13) is a saturating function in the MAP-TPR plane (Figure 4-

3(c)), perturbing R� and P ,� shifts the function (4-13) in vertical and horizontal 

directions, respectively.  Hence, the function, and thus MAP response as well, is more 

sensitive to R� than P ,� when BP is far away from P ,� (i.e., the saturating ends of the 

function) while it is more sensitive to P ,� than R� when MAP is near P ,�.  The 

sensitivity functions in Figure 4-3(d) clearly follow this anticipated behaviors: 
Ó89
@�Ó�M  

exhibited larger amplitude during hemorrhage (with which BV decreases away from 

its baseline value) than during fluid infusion (with which BV increases back towards 

its baseline value), while 
Ó89
@�Ó89,M  exhibited the opposite behaviors.  Though R� and P ,� 

influence MAP response in different regimes, their peak amplitudes were quite 

comparable.  Thus, both parameters were deemed important in reproducing MAP 

response accurately.  
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5. Development and Validation of a Dose-Response Model of 

Vasopressor Infusion 

 

This chapter presents a new analytic tool for automated control of vasopressor 

infusion, which uses measured changes in BP to infer changes in the underlying CV 

state and then estimate their dose-response relationships. Ultimately, BP as a function 

of vasopressor dose is predicted based on the estimated underlying CV state by 

extrapolating the dose-response relationship. This tool can adapt to individual subjects 

with a minimum of individualized training data.  The proof-of-principle is provided 

using experimental epinephrine dose-response data from four different sets of subjects.  

The proposed analytic tool may provide a meaningful step towards automated control 

of vasopressor therapy. 

 

5.1.Goal, Need and Mechanism of Vasopressor Therapy 

  

Vasopressors are medications that act to elevate arterial BP in critically ill 

patients suffering from a body-wide reduction in blood circulation. Vasopressors can 

act through one or more physiological mechanisms, including increasing resistance to 

blood exiting the arteries (i.e., TPR) and increasing CO through increased HR, cardiac 

contractility and decreased venous capacitance. The ultimate medical benefit of 

vasopressors is not increased BP per se, but increased blood flow to peripheral tissues 

driven by the increase in BP. In today’s clinical practice, the infusion rate of 

vasopressor medications is adjusted by human clinicians. A complicating factor is that 

vasopressors can either improve blood flow to hypo-perfused peripheral tissues via the 

increase in BP or, in some cases, can decrease blood flow via excessive increase in 
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blood vessel resistance, depending on which effect is predominant (Meier-Hellmann et 

al., 1997; Nevière et al., 1996; Ruokonen et al., 1993). The second complicating factor 

is that there is substantial individual variability in the physiological response to 

vasopressor therapy (Bockenstedt et al., 2012; Rech et al., 2011). Therefore, standard 

clinical practice is to iteratively, and empirically, adjust the infusion rate in a given 

patient, seeking to maximize the expected beneficial effects relative to deleterious 

effects. 

Control of BP as an endpoint has been the focus of clinical practice guidelines 

for vasopressor use, where current advice is to adjust infusion rates to achieve a 

minimal MAP of at least 65 mmHg [e.g., (Takala, 2010)]. In practice, clinicians 

empirically adjust vasopressor dose levels to achieve this target for MAP (see Chapter 

2); in theory, such a tool could help clinicians make superior adjustments to vasopressor 

doses, avoiding dose-adjustments that are too small or too large. However, an 

appropriate BP can be resulted from low CO and excessive TPR, which can lead to 

inadequate level of blood delivery to the tissues.  Therefore, developing a method of 

vasopressor therapy that works based on both underlying CV state and measurable 

hemodynamic endpoints would be of interest to biomedicine researchers.   

In this chapter, we describe an analytic tool that satisfies the following 

specifications: (i) as inputs, it requires nothing more than the basic vital signs of HR, 

SBP, MAP and diastolic BP (DBP); and (ii) it adapts to individual patients with 

minimal observations. The feasibility and validity of this physiologic- 

phenomenological methodology are demonstrated using the experimental epinephrine 

dose-response data collected from four different sets of subjects. Its performance, 
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potential usefulness, and limitations are explained in the subsequent sections. 

Potentially, this analytic methodology may offer a meaningful step towards automated 

control of vasopressor therapy. 

 

5.2.Development of the Vasopressor Model 

 

Three basic steps involved in the proposed analytic tool are explained in 

Sections 5.2.1-5.2.3. 

 

5.2.1. Estimation of the Complete Cardiovascular State. 

Clinicians typically titrate the vasopressor drug level based on BP, even though 

changes in BP actually reflect changes in underlying state of CV, i.e., CO and TPR; 

from hereafter we call CO and TPR parameters or their corresponding trends as cardinal 

parameters.  The proposed methodology is predicated on estimating a dose-response 

relationship for these underlying cardinal parameters.  If CO and TPR are not directly 

measured, then the effects of the vasopressor agent on the cardinal parameters must be 

inferred.  Therefore, a specific algorithm that uses non-continuous measurements of 

SBP, MAP, DBP, and HR will be developed and employed to infer cardinal parameters 

related to CO and TPR.  This methodology is based on the assumption that the 

relationships between vasopressor dose level and the cardinal parameters are more 

consistent than the relationship between vasopressor dose and BP. It is noted that since 

a model of CV to infer cardinal parameters using rudimentary BP and HR measurement 

will be presented in the next chapter, in this chapter cardinal parameters are assumed 

to be known; we assume that cardinal parameters R�C�∗ and 
7"���

∗
 are the optimal scaled 
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TPR index (TPRI) and SV index (SVI) associated with a particular vasopressor dose, 

which can be inferred from the physiologic CV model presented in Chapter 6.  

 

5.2.2. Estimating Phenomenological Dose-Response Relationships 

Here, we describe an approach to estimate a set of phenomenological models 

between the vasopressor dose level and the cardinal CV parameters. By design, this 

methodology permits the estimation of individualized dose-responses after 

observations from as few as two vasopressor dose levels. Of note, because different 

vasopressors affect the cardinal CV parameters differently, specific phenomenological 

models used to reproduce the phenomena are vasopressor-dependent, i.e., a different 

specific model must be employed for epinephrine versus norepinephrine, etc. As 

discussed later, it may also be appropriate to modify the methodology for low-dose 

epinephrine (where beta effects are more significant than alpha effects) versus high-

dose epinephrine (where alpha effects are more significant than beta effects).  

To demonstrate the general approach, we apply the analytic tool to a previously 

reported dataset describing low-to-moderate dose epinephrine’s hemodynamic dose-

response relationship ((Leenen et al., 2007; White and Leenen, 1997)). The 

aforementioned epinephrine dataset (Leenen et al., 2007; White and Leenen, 1997) 

reports hemodynamic responses of 14 normotensive young (NY; 30+/-2yr) and 18 

normotensive old (NO; 60+/-2yr) subjects as well as 10 hypertensive young (HY; 36+/-

1yr) and 17 hypertensive old (HO; 59+/-1yr) subjects. As per the original report, 

normotensive and hypertensive BP were defined as <130mmHg SBP/85mmHg DBP 

and >140mmHg SBP/95mmHg DBP, respectively.  
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The dataset provides BP data as a function of epinephrine dose (SBP, MAP and 

DBP), measured using an oscillometric arm BP cuff. The dataset also includes 

measurements of HR and SVI, measured using echocardiography (N.B., the SVI data 

are not inputs to the analytic tool, but rather, provide the gold-standard measurements 

against which the accuracy of the prediction of the analytic tool is evaluated). In the 

original experimental protocol, following a rest period of at least 60min, epinephrine 

was administered in consecutive 8 min intervals, at 20 ng/kg/min, 40 ng/kg/min, 80 

ng/kg/min, 120 ng/kg/min and 160 ng/kg/min. (Typically, epinephrine’s beta effects 

are dominant when the dose is less than 50 ng/kg/min, while its alpha effects do not 

dominate until doses of 100 ng/kg/min (Miller, 2010)). In this dataset, hemodynamic 

measurements were made at steady-state before epinephrine administration and then 

during the last 2-3min of each consecutive epinephrine dosing interval.  

Figure 5-1: True hemodynamic responses of four sets of subjects to epinephrine 

administration. 
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Figure 5-1 shows the pooled hemodynamic responses from the four sets of 

subjects to different epinephrine doses, including SBP, MAP and PP as well as TPRI, 

SVI and HR. Their ranges are summarized in Table 12. Note that detailed individual 

subject data were not reported, thus inter-individual variability was not considered in 

this study.  

The challenge of estimating an individualized dose-response relationship with 

only two observations is the complexity of epinephrine’s effects. Lower doses of 

epinephrine (e.g. < 50 ng/kg/min) decrease TPR over its baseline value (beta agonist 

effect), whereas higher doses (e.g., > 100 ng/kg/min) activate alpha receptors and 

increase TPR (Ellender and Skinner, 2008). HR and inotropy (affecting SV) are 

primarily increased by beta agonist action. To reproduce the anticipated responses of 

HR, TPRI and SVI accurately while minimizing the amount of a priori data required to 

train the models, we developed the following phenomenological models dictating the 

dose dependence of HR, R�C� and 
7"��� : 

HR = fC
d, θC� = 
kC�d + kD���.C, θC = nkC�, kD�o (5-1a) 

Table 12: Physiological range of epinephrine dose-dependent hemodynamic responses. 

 
HR 

[bpm] 

SBP 

[mmHg] 

MAP 

[mmHg] 

DBP 

[mmHg] 

SVI 

[ml/m2] 

Baseline Value 60-63 111-151 87-112 75-92 51-61 

Hemodynamic 

Responses 

020ng/kg/min 64-69 112-153 83-110 69-88 54-65 

040ng/kg/min 68-73 114-153 82-106 66-83 55-68 

080ng/kg/min 71-76 124-158 83-105 62-79 58-71 

120ng/kg/min 72-81 132-168 84-109 61-79 59-74 

160ng/kg/min 75-79 136-170 86-109 61-80 59-77 
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R�C� = fD
d, θD� = C|W¸�\|V¸ + `kH�d + k¶�aσ
d, d��, θD = nkC�, kD�o (5-1b) 

7"��� = fH
d, θH� = kC"d + kD" − `kH"d + k¶"aσ
d, d��, θH = nkC", kD"o (5-1c) 

where  δV� is SVI, and R� (in mmHg·min·m2/l) and C� (in ml/mmHg/m2) are defined as 

TPR index (TPRI, MAP divided by SVI and HR) and arterial compliance index (ACI), 

d is the drug dose level, kC�, kD�, kC�, kD�, kC" and kD" are empirical constants that 

quantify the beta agonist effects, whereas kH�, k¶�, kH" and k¶" are constants dictating 

the alpha agonist effects. The function σ
d, d�� in (5-1b) and (5-1c) is intended to 

activate the alpha agonist action in the high dose region and is defined as follows: 

σ
d, d�� = Ø0,   d < d�1,   d ≥ d� 
(5-1d) 

Overall, these phenomenological models are able to capture the following behaviors: 

• Increasing HR with increasing d, tapering off at higher dose levels 

• Increasing SVI with increasing d, tapering off at higher dose levels 

 

 
Figure 5-2: Training of phenomenological dose-response relationships using vasopressor 

dose and BP data. 
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• Decreasing TPRI with increasing d due to beta agonist effects, until alpha 

agonism becomes evident (e.g., note the increasing TPRI in NO and HY group at 160 

ng/kg/min; see Figure 5-1). 

This analytic tool was designed to provide subject-specific predictions using a 

minimum of observations (i.e., two). However, even these simplified dose-response 

models have too many unknowns to be estimated with just two observations. 

Accordingly, we employ the following strategy: solve the model parameters that drive 

the most inter-subject variability, and use population-based values for other model 

parameters, to reduce the number of unknowns. Examining this dataset, i.e., Figure 5-

1, it is apparent that the alpha agonist effects (i.e., vasoconstriction causing increased 

TPR) did not drive the subjects’ CV responses, and given this dosing regime (≤ 160 

ng/kg/min), most of the inter-subject CV variability was driven by the beta agonist 

effects (kC�, kD�, kC�, kD�, kC" and kD"). Our analytic tool estimated parameters for 

the beta agonist effects, while relying on population-averaged values for the alpha 

effects (i.e., kH�, k¶�, kH", k¶" and d�). Ultimately, each of the phenomenological 

models (5-1) was left with only two unknowns and could be solved given only two 

individualized observations.  

Quantitatively, the phenomenological models (5-1) (more specifically, the 

unknown beta agonist effect parameters therein) dictating the reliance of HR, R�C� and 

7"���  on vasopressor dose level can be fitted to the data obtained from Step I (see Section 

5.2.1). Given the pairs of data Úd, HR, R�C�∗, 7"���
∗Û+, i = 1, ⋯ N, the optimal θC, θD and 

θH in (5-1) are determined using the following least-squares optimization process:  
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θC∗ = arg minÔW x`HR − fC
d, θC�a+D
{

+zC  (5-2a) 

θD∗ = arg minÔV x`R�C�∗ − fD
d, θD�a+D
{

+zC  (5-2b) 

θH∗ = arg minÔY x §δV�C�
∗ − fH
d, θH�¨+

D{
+zC  (5-2c) 

where `∙a+ is the expression evaluated using Úd, HR, R�C� ∗, 7"���
∗Û+. The process of 

training the tool to individual subject (Steps I and II) is graphically demonstrated in 

Figure 5-2. The way the phenomenological dose-response models are determined is as 

follow: First, the beta agonist component of the phenomenological models (5-1b) and 

(5-1c) were modeled using the epinephrine dose and BP response data at 0 ng/kg/min 

and 20 ng/kg/min as follows: (i) dose and BP responses were used to calculate R�C�∗ and 

7"���
∗
 corresponding to 0 ng/kg/min and 20 ng/kg/min (see next chapter), and (ii) R�C� =
C|W¸�\|V¸ and 

7"��� = kC"d + kD" were fitted to R�C�∗ and 
7"���

∗
 at the two dose levels using 

(5-2b) and (5-2c), respectively (note that the alpha agonist components were not 

considered since their effects are negligible in low epinephrine dose levels). Second, 

R�C� and 
7"���  associated with high epinephrine dose levels (80 ng/kg/min, 120 ng/kg/min 

and 160 ng/kg/min) were predicted using the beta agonist model thus obtained. Third, 

the discrepancy between direct versus model-predicted R�C� and 
7"���  was calculated for 

all the subject groups, which was regarded as the contribution from the alpha agonist 

action. Finally, the alpha agonist components of (5-1b) and (5-1c), i.e., kH�, k¶�, kH" 
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and k¶", were optimized to minimize the discrepancy in R�C� and 
7"��� . Once the alpha 

agonist parameters were determined as described above, the phenomenological model 

was trained as follows. First, the alpha agonist parameters in (5-1b) and (5-1c) were 

fixed at the optimal population values. Second, R�C�∗ and 
7"���

∗
 obtained from CV model 

directly from measurable BP and HR together with HR measurements were used to 

train the phenomenological models (5-1) via the optimization (5-2). Third, the analytic 

tool with the CV model and the trained phenomenological dose-response models was 

used to predict the hemodynamic responses including SBP, MAP and DBP as well as 

trend of TPR, SVI and COI as described in Section 5.2.3.  

 

5.2.3. Prediction of Hemodynamic Responses 

Using the CV model with the phenomenological dose-response relationships 

(5-1) individualized with θ+∗, i = 1, ⋯ 3 obtained by (5-2), the hemodynamic responses 

for vasopressor dose levels not used in the training phase can be predicted solely based 

 

Figure 5-3: CV model with phenomenological relationship between vasopressor dose 

versus cardinal CV parameters HR, TPRI (R�C�) and SVI (
7"��� ). 
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on the vasopressor dose as follows (see Figure 5-3). HR, R�C� and 
7"���  are extrapolated 

using the trained (i.e., individualized) phenomenological models in (5-1) with the new 

vasopressor dose as input. Next, HR, R�C� and 
7"���  thus extrapolated are substituted in CV 

model (see next chapter) to predict SBP, MAP and PP associated with the vasopressor 

dose. Further, assuming that the short-term variability of arterial compliance (AC) is 

small and it can essentially be regarded as constant over short time window (Shoukas 

and Sagawa, 1971), R�C� and 
7"���  predicted from the phenomenological models in (5-1) 

can be regarded as predictions of TPRI and SVI (with unknown scale). Finally, the CO 

index (COI) can be predicted as the product of HR and 
7"���  predicted with the 

phenomenological models in (5-1). 

 

5.3.Validation of the Model 

 

In this section, we demonstrate the application of the analytic tool to predict the 

responses to epinephrine infusion. We employed discrete BP measurements (SBP, 

MAP, DBP) and HR from only two different epinephrine dose levels - 0 ng/kg/min and 

X ng/kg/min - to train the phenomenological dose-response models (5-1). Then these 

models were used to predict cardinal CV parameters TPRI, SVI and HR for dose levels 

not used in the training phase, with which BP was predicted using the CV model (see 

next chapter).  

We applied the analytic tool to each set of subjects described in Section 5.2.  

The hemodynamic responses predicted by the analytic tool were compared with in-vivo 

experimental data: MAP and HR were as reported in Leenen et al. (Leenen et al., 2007); 
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RC and SVI/C were estimated using a CV model (see next chapter) with the BP data 

reported in Leenen et al. 

For each set of subjects, we studied different ways of training the tool, as follows:   

• To explore performance for a patient requiring a vasopressor wean (i.e. 

prediction for a reduced dosage), we trained with BP and HR data from {0 ng/kg/min, 

160 ng/kg/min} to predict TPRI, SVI, HR and BP responses to 20, 40, 80 and 120 

ng/kg/min 

• To explore performance for a patient in flux (i.e. prediction required for both 

increasing and decreasing doses), we trained with BP and HR data from {0 ng/kg/min, 

80 ng/kg/min} to predict TPRI, SVI, HR and BP responses to 20, 40, 120 and 160 

ng/kg/min 

• To explore performance for a patient receiving an inadequate vasopressor dose, 

we trained with BP and HR data from {0 ng/kg/min, 20 ng/kg/min} to predict TPRI, 

SVI, HR and BP responses to 40, 80, 120 and 160 ng/kg/min. 

The validity of the analytic tool was assessed in terms of prediction errors on 

SBP, MAP and PP, as well as the goodness of fits between measured versus model-

predicted TPRI, SVI and COI in terms of the coefficient of determination (CoD; r2 

value) and the Bland-Altman statistics (i.e., the limits of agreement). It is noted that 

linear regression analysis was conducted on R�C� ∗ and 
7"���

∗
 to calibrate them against 

measured TPRI and SVI before quantifying the goodness of fits, thereby eliminating 

the effect of unknown AC. 
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Overall, the proposed analytic tool was able to accurately predict absolute 

responses of BP and HR (see Figure 5-4). Most remarkably, the phenomenological 

dose-response models could reproduce the biphasic behavior of MAP expected in 

response to epinephrine infusion, i.e. decrease MAP under low dose levels and increase 

under high dose levels. In terms of RMSE, the difference between actual versus model-

predicted SBP, MAP and PP, aggregated across the four sets of subjects, were less than 

6% of the respective underlying values when trained with {0 ng/kg/min, 20 ng/kg/min}, 

less than 4% when trained with {0 ng/kg/min, 80 ng/kg/min}, and less than 4% when 

trained with {0 ng/kg/min, 160 ng/kg/min}, respectively. 

We also compared the ability of the analytic tool to estimate cardinal CV 

parameters' responses to new doses (Figure 5-4). Overall, the performance was 

encouraging (there was one exception to the successful prediction of cardinal 

parameters as a function of epinephrine dose: SVI in the NO subject group, trained with 

{0 ng/kg/min, 20 ng/kg/min} (see Figure 5-4(b)).  The correlation between actual 

versus model-predicted cardinal CV parameters (TPRI, SVI, and CO index (COI) as 

calculated by the product of SVI and HR) were high: the r2 values aggregated across 

the four sets of subjects, were higher than 0.96 regardless of the training doses used in 

this study. These results also support our strategy to individualize beta agonist 

parameters while fixing alpha agonist parameters to population-averaged values. To 

confirm the dominance of subject-specific beta effects (and the relative acceptability 

of using population-averaged alpha coefficients), we tested a reversal of our 

methodology. Specifically, we individualized alpha agonist parameters in the 

phenomenological dose-response models, while we fixed the beta agonist parameters 
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using population-averaged values.  Consequently, the RMSE values associated with 

actual versus model-predicted SBP, MAP and PP were increased by 89%, 236% and 

314%, respectively, when trained with {0 ng/kg/min, 160 ng/kg/min}. 

Finally, the Bland-Altman analysis indicated that the model-predicted 

hemodynamic responses were in good agreement with their actual counterparts (see 

Figure 5-5). The biases were shown to be very small (see the solid horizontal lines 

Figure 5-5). In addition, the limits of agreement were also tight: the confidence 

intervals associated with SBP, MAP and PP as well as TPRI, SVI and COI were 

consistently less than 8% of the respective underlying values (calculated as the average 

between actual versus model-predicted values). 

 

5.4.Model’s Characteristics and Performance 

 

An analytic tool that can accurately predict how an individual patient will 

respond to different doses of vasopressor infusions would be valuable in today’s 

clinical practice and tomorrow’s automated closed-loop infusion systems. Moreover, 

the ideal method would predict the patient’s complete CV state rather than just a single 

parameter. Finally, the ideal method would require minimal observational data to adapt 

to the physiology of the individual patient.  

In this chapter, we developed a methodology to satisfy these specifications. The 

method did not generate a direct relationship between BP versus drug dose; rather, it 

yielded a relationship between cardinal CV parameters versus drug dose, which could 

be applied to estimate BP versus drug dose. This approach yielded promising 

experimental results in a preliminary proof-of-principle evaluation. 
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(a) Normotensive Young (NY) subject group 

 
(b) Normotensive Old (NO) subject group 
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(c) Hypertensive Young (HY) subject group 

 
(d) Hypertensive Old (HO) subject group 

Figure 5-4: Actual versus predicted hemodynamic responses for each set of subjects. The blue 

solid lines indicate actual responses. Markers indicate the dosage levels that were used in 

training the analytic tool; only BP and HR data were used as training inputs.  
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In the section, we address the following: (a) the potential clinical benefits of such a 

methodology; (b) the performance of our specific solution; and (c) what generalizable 

lessons can be drawn from the current work that are applicable to future work. 

 

5.4.1. Potential Clinical Benefits 

Today, vasopressor doses are titrated by clinicians to achieve rudimentary 

endpoints. For instance, today’s sepsis management guidelines suggest vasopressors 

should be infused until MAP ≥ 65 mmHg (Takala, 2010). At the same time, clinicians 

avoid excessive infusion rates because of possible deleterious effects, including 

excessive arterial pressures that strain the heart, excessive peripheral vasoconstriction 

that reduce peripheral perfusion, and possible cardiac tachyarrhythmias. In practice, 

today’s vasopressor dosing changes are made on an informal, ad hoc basis. 

 

Figure 5-5: Bland-Altman plots associated with actual versus model-predicted SBP, MAP, 

PP, TPRI, SVI and COI in four sets of subjects, aggregated across three different scenarios. 

The biases and the limits of agreement are marked as solid and dashed lines, respectively.  
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There are several potential benefits of the analytic tool described in this chapter. 

Current clinical practice involves ad hoc dosage adjustments for vasopressor infusion 

rates, and there are intervals, inevitably, when the dosage adjustment isn’t optimal and 

consequently the CV state of the patient is suboptimal. A good computational method 

should suggest dosage changes that can quickly move the patient to the optimal CV 

state, with minimal dosage changes that are either inadequate or excessive. Rapidly 

iterating to an optimal infusion rate should lead to superior outcomes for critically-ill 

patients, because their organs will be spared from intervals of hypo-perfusion (i.e., 

infusion rate too low), and of excessive vasoconstriction with reduced perfusion (i.e., 

infusion rate too high). The benefit of a computational algorithm, over the subjective 

judgment of the clinician, might be especially pronounced for patients being managed 

by clinicians without extensive critical care expertise (Hennings et al., 2010; Siegal et 

al., 2012). Lastly, if reliable, such a computational tool could also be installed into a 

closed-loop system for controlling infusion rates, and help enable a new generation of 

critical care delivered by “auto-pilot”. Having a robust tool for determining how to 

adjust infusion dosages will be an essential component of such a closed-loop system. 

Also, we conjecture that computational tools will enable a new generation of 

more sophisticated (and more effective) strategies for optimizing vasopressor dosages, 

as suggested by recent investigations (Parkin and Leaning, 2008; Uemura et al., 2006). 

Today’s guidelines for dose adjustment are quite vague. Consider that the Surviving 

Sepsis campaign advises that, for patients in septic shock, clinicians infuse 

vasopressors to a MAP of at least 65 mmHg. This broad hemodynamic target has the 

advantage that the typical clinician can readily comply. Yet consider the wide variety 
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of CV states that satisfy this rather general criterion. In a patient with shock, MAP 

could be elevated by organ vasoconstriction alone, which would improve essential 

perfusion to the brain and heart (these specific organs are relatively insensitive to 

vasopressors) but at the expense of perfusion to other vasoconstricted organs. In many 

cases, it might be preferable to optimize CO, and not just MAP, since improved CO 

could translate to improved blood flow to all the organs of the body. Moreover, 

excessive increases in MAP have a cost, causing strain on the heart, i.e., increased 

oxygen requirement for the cardiac muscle tissues and the risk of reduced pump 

function. Increasing doses of vasopressors can likewise raise HR, which also can strain 

the heart. In summary, there are theoretical reasons why a sophisticated strategy of 

adjusting vasopressor infusion rates would be superior to today’s coarse management 

strategies. More sophisticated therapeutic strategies can potentially balance the trade-

offs between perfusing the heart and brain (i.e., adequate MAP), perfusing other organs 

(i.e., adequate CO), and cardiac work (i.e., non-excessive MAP and HR). Yet today’s 

clinician simply lacks the capability to do much more than adjust, and re-adjust, to hit 

broad CV targets. An analytic tool that adapts to the individual patient and accurately 

predicts the proper vasopressor infusion rate to achieve tight optimized targets for MAP 

and CO will make it practical to employ more sophisticated therapeutic strategies. 

 

5.4.2. Performance of the Proposed Model 

We predicate that an ideal analytic tool to predict hemodynamic responses as a 

function of vasopressor dose should (i) infer the complete CV state rather than mere 

BP to allow for enhanced vasopressor dosing strategies, and (ii) adapt easily to the 
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physiology of each individual patient to effectively cope with large inter-individual 

variability.   

In this work, we did not directly develop a dose-response relationship between 

BP versus vasopressor dose, but rather, we inferred the dose-response relationship of 

unmeasured cardinal CV parameters and used the inferred relationship to predict the 

BP response to vasopressor doses.  This approach offers two potential advantages. First, 

the estimation of multiple CV parameters could, in theory, allow for more sophisticated 

dose adjustment (as discussed above). Second, this approach could, in theory, lead to 

more accurate predictive capability, especially if the relationship between vasopressor 

dose level and the unmeasured, cardinal parameters, e.g., SVI and TPRI, are in fact 

more consistent than the relationship between vasopressor dose and the measured 

parameters, e.g., BP.  

This chapter is not intended to answer whether or not the novel analytic tool is 

superior to alternative approaches. Rather, the intent is to report a novel methodology 

and provide a proof-of-principle (the generalizability of this methodology is discussed 

below). We find that indeed the analytic tool demonstrates reasonable preliminary 

performance: consider how the analytic tool was able to extrapolate reliably beyond its 

training region. Given training data during low-to-medium dose (beta-receptor agonist) 

infusion, this approach was still able to anticipate that medium-dose infusion would 

lead to further reduction in MAP (due to maximum beta agonist effect) whereas high-

dose infusion would then increase MAP (since alpha agonist effect becomes dominant). 

This effect was consistently seen for each of the three studies involving the NY, HO, 

and HY groups, and two of the studies involving the NO group. It was only in one of 
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sixteen trials that this anticipated trend of MAP was not seen (in the isolated NO group 

study with training data from {0ng/kg/min and 20 ng/kg/min} due to limited accuracy 

in SVI prediction for higher epinephrine doses). 

It must be emphasized that reproduction of this physiologically relevant dose-

dependent MAP behavior was not trivial, since our model was not fitted directly to the 

pair of epinephrine dose and MAP, and only two sets of observations were used to train 

the model. Specifically, MAP was inferred via the CV model (see next chapter) from 

HR, TPRI and SVI, which are predicted from the phenomenological models (5-1). This 

demonstrates how the combination of the CV model and phenomenological dose-

response relationships for cardinal CV parameters can yield advantageous 

performance. 

 

5.4.3. Generalizable Lessons 

This study describes a framework for individualized dose-response prediction, 

and should be interpreted as a (potentially meaningful) first step towards the 

development of an analytic tool for automated control of vasopressor infusion, rather 

than a study to report an actual tool for decision support. This method is predicated on 

extrapolation of dose-response relationships for the cardinal CV parameters, where we 

estimate some parameters by fitting the model using a limited number of observations, 

while constraining the model using population-averaged values for other parameters 

that do not drive as much inter-subject variability. In this section, we examine both the 

limitations and the generalizable lessons from this work. 

CV Model: Analyzing a dataset with non-continuous measurements of SBP, MAP, 

DBP, and HR, we sought to infer the complete CV state. Given these rudimentary 
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measurements, a rudimentary CV model was deemed reasonable; it provided a means 

to infer the underlying CV state in terms of the cardinal CV parameters related to CO 

and TPR. For more details, see next chapter.  

Here, a question may arise to the reader: is an analytic tool that relies on a CV 

model superior to a more empiric method? When cardinal CV parameters are 

unmeasured, a CV model provides a rational basis for estimation and can reproduce 

some complex phenomenon (e.g., consider how the simple models in (5-1) are able to 

predict the drop, then rise, in MAP as epinephrine dose is increased). Predicting the 

patient’s dose-response in terms of underlying cardinal parameters may yield reliable 

predictions, but whether this approach is better than a strictly empiric dose-response 

relationship remains an open question which should be examined in a larger dataset of 

clinical data. 

Phenomenological Dose-Response Relationships: We sought a methodology for 

individualized dose-response relationships, because there is significant variability 

between patients (Kellum and Pinsky, 2002). At the same time, we sought a method 

that could operate with a minimal number of individualized observations, so that the 

analytic tool would be useful even during the earliest stages of critical care. 

To determine dose-response relationships given just two observations, our 

phenomenological dose-response models could only contain two unknown parameters. 

Opportunistically, we decided to use the measurements to solve for parameters that 

were the biggest drivers of inter-subject variability, while relying on prior knowledge 

as a constraint that allowed for mathematical solution. This approach was optimized 

for this dataset: we decided to apply population-averaged values for the alpha agonist 
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effects, because they were less dominant than their beta counterparts. The result was 

encouraging performance as indicated by Figures 5-4 and 5-5.   

To apply this strategy more broadly, different phenomenological models would 

be necessary for different vasopressors. Moreover, the decision to solve for individual 

beta effects versus alpha effects is likely a function of the dosing regime. For patients 

receiving high-dose epinephrine, it is quite likely that inter-subject variability will be 

driven more by alpha effects, hence it may be preferable to individualize the alpha 

effect models and employ population-based coefficients for the beta effects (or to 

require additional observations, which would allow for solution of additional 

unknowns). New datasets will need to be examined to evaluate whether there are 

specific approaches, in terms of how to employ a priori knowledge, that are broadly 

generalizable. 

There is an important limitation of this work to consider. In this study, we 

reproduced group-averaged dose-response relationships, because the hemodynamic 

responses of each individual subjects were not available from the dataset. Given 

individual subjects, it is reasonable to anticipate additional variability. Will the models 

(5-1), and the use of population-averaged parameters therein, be efficacious to 

accommodate individual variability? This is another open question. Although we 

speculate that the basic (qualitative) relationships between the CV parameters versus 

vasopressors are unlikely to change, and two degrees of freedom should be adequate 

for reasonable predictions, whether or not the generic pattern of the hemodynamic 

responses assumed in the phenomenological models applies to all patient population 

(especially those exhibiting large inter-individual variability, e.g., diseases such as 
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heart failure (Lamba and Abraham, 2000) and septic shock (Price et al., 1999)) is an 

issue that needs to be further investigated in the follow-up study. 

 

5.5.Further Model Validation using Dynamic Transient Data 

 

As a follow up study to better assess the validity of the analytic tool proposed 

in this chapter, now we move to accommodate complex dynamic transients.  To cope 

with the complexity of the data, we extended the model (5-1) to derive a hybrid model 

called the “latency-dose-response-CV” (LDC) model. This hybrid model includes a 

low-order lumped latency model, as well as several other enhancements to reproduce 

dose-response behavior under diverse physiological states.  In this section, we conduct 

a rigorous investigation to test the capability of the LDC model to reproduce not only 

BP but also other CV parameter responses measured under diverse physiological states, 

and also examine the efficacy of the LDC model in predicting the hemodynamic 

response to epinephrine, and the relative importance of individualizing latency versus 

dose-response models in achieving a low-order but high-fidelity LDC model.  

The hybrid model “LDC” incorporates (i) a low-order lumped latency model to 

reproduce the delay associated with the transport of vasopressor-inotrope agent and the 

onset of physiological effect, (ii) extended phenomenological dose-response model (5-

1) to dictate the steady-state inotropic, chronotropic and vasoactive responses as a 

function of vasopressor-inotrope dose, and (iii) a physiological CV model to translate 

the agent’s actions into the ultimate response of BP which will be explained in the next 

chapter.  The validity of the LDC model to fit vasopressor-inotrope dose-response data 

is assessed using data collected from five piglet subjects during variable epinephrine 
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infusion rates. 

 

5.5.1. Hybrid Latency-Dose-Response-Cardiovascular Model Development 

The LDC model is an extended version of the preliminary model (5-1) (Figure 

5-6).  As before, a CV model relates cardinal parameters (SV, TPR and HR) to BP.  

However, to account for dynamic transients and widely changing physiological state, 

the preliminary model (which could analyze only the steady-state dose-response) was 

strengthened by incorporating (i) the dynamics associated with the transport of agents 

and their onset of physiological effects, and (ii) the improved phenomenological dose-

response models through pressure-dependent AC and the interaction among multiple 

receptor effects.   

 

Figure 5-6: Hybrid LDC model. 
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Lumped Latency Model: The lumped latency model we employed in the LDC model 

is distinct from classical pharmacological models in that it does not explicitly involve 

blood concentration of the agent. In the classical pharmacological models, multi-

compartmental models are used to relate the infusion dose of an agent to its blood 

concentration by describing the mixing and elimination of the agent in the blood in 

response to its infusion dose (Hill, 2004).  The blood concentration is then mapped to 

the concentration at the site of action via a first-order system (e.g., (Burnette, 1992)) 

often accompanied by a time delay (e.g., (Toutain and Bousquet-Mélou, 2004)).  In 

contrast, the lumped latency model employed in the LDC model relates the actual 

infusion dose directly to the hypothetical “steady-state-equivalent” infusion dose acting 

at the site of action (i.e., the “steady-state-equivalent” infusion dose is the steady-state 

dose that would yield the physiological effects that are observed at a given time t).  The 

lumped latency model incorporates simple first-order dynamics and a time delay. 

This lumped latency model is based on a low-order model that was developed 

in a previous study, which was shown to be a promising approach to individualized 

dose-response modeling (Hahn et al., 2012).  The model describes the dynamics 

associated with the transport of an agent and its elicitation of clinical effect as a lumped 

1-compartment model with delay: 

τÜθ: Ü
t� + θÜ
t� = u¤t − t0,Ü¥, (5-3) 

where θÜ ∈ nθi8�, θ7", θ��o are the hypothetical steady-state equivalent doses 

associated with vasoactive (TPR), inotropic (SV) and chronotropic (HR) effects, 

respectively, while τÜ and t0,Ü are the process time constant and the transport delay 

dictating the dynamics associated with the transport of the agent and physiological 
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onset latency, and u denotes the actual intravenous vasopressor-inotrope dose. 

Dose-Response Relationship: To predict hemodynamic responses from the 

hypothetical steady-state equivalent vasopressor-inotrope infusion doses necessitates 

dose-response models.  Vasopressor-inotropes alter BP by stimulating the CV 

adrenergic receptors (Ellender and Skinner, 2008; Fedida and Bouchard, 1992; 

Nagashima et al., 1996; Rudis et al., 1996) and ultimately modulating the CV 

parameters of TPR, SV and HR.  In this study, we modeled the dose-response 

relationship of epinephrine.  However, the computational methodology could be 

modified (using alternative dose-response models) for different agents.  

The dose-response model employed in the LDC model includes all the known 

clinical effects elicited by epinephrine: vasoactive (TPR), inotropic (SV) and 

chronotropic (HR) effects (see (5-4)).  Its effect on MAP is dependent on the 

administered infusion dose (Ellender and Skinner, 2008; Noori and Seri, 2012; Rudis 

et al., 1996).  Specifically, TPR response (R) consists of a baseline term (R�), a 

vasodilation term (ΔRC) elicited in the low dose, i.e., predominant beta-agonist, range 

and a vasoconstriction term (ΔRD) elicited in the high dose, i.e. predominant alpha-

agonist, range: 

R = R� + ΔRC
θ�� + ΔRD
θ�� = C|W,¸Ô¸\C �M⁄ÝÞÞßÞÞà�M\á�W
Ô¸�
+


kD,�θ� + kH,��|â,¸ ∙ Ô¸ãä,¸
±Ô¸ãä,¸\|å,¸²ÝÞÞÞÞÞÞÞÞÞßÞÞÞÞÞÞÞÞÞàá�V
Ô¸�

, 

(5-4a) 

where k+,� (i = 1, ⋯ ,6) are unknowns to be determined from dose-response data. 
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Also, SV response consists of a baseline term (δV�), a term representing the increase 

in SV due to inotropy and enhanced preload (ΔδVC) and a term representing the 

decrease in SV due to afterload (ΔδVD): 

δV = δV� + ΔδVC
θ7"� + ΔδVD
θ7"� = δV� + log¤kC,7"θ7" + 1¥ÝÞÞÞÞßÞÞÞÞàá7"W
+

ç−
kD,7"θ7" + kH,7"�|â,èª Ôèªãä,èª
±Ôèªãä,èª\|å,èª²éÝÞÞÞÞÞÞÞÞÞÞÞÞßÞÞÞÞÞÞÞÞÞÞÞÞàá7"V

, 

(5-4b) 

where δV� is the baseline values, while k+,7" (i = 1, ⋯ ,6) are unknowns to be 

determined from dose-response data.  Note that in (5-4a) and (5-4b), the Hill equation 

models (or the Emax models; see, e.g., (Dayneka et al., 1993)) were included to 

reproduce the recognition that vasoconstriction (ΔRD) and afterload (ΔδVD) effects are 

activated only at high dose region.  According to the Hill equation model, êkë,�ãä,¸
 and 

êkë,7"ãä,èª
 are epinephrine infusion doses corresponding to 50% clinical effects. 

Finally, HR response consists of a baseline term (HR�) and a chronotropic term 

(ΔHRC): 

HR = HR� + ΔHRC
θ��� = HR� + kC,�� Ôì¸ãV,ì¸
±Ôì¸ãV,ì¸\|Y,ì¸², (5-4c) 

where HR� is the baseline value, while k+,�� (i = 1, ⋯ ,3) are unknowns to be 

determined from dose-response data. 

The baseline values (R�, δV�, HR�) in the dose-response relationships above 

are regarded as known quantities, because they can be deduced from the baseline 
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physiological state and thus can be expressed via baseline BP and HR measurements 

and the remaining parameters in (5-4) (see Section 5.7 for details). 

Physiological CV Model: Once the responses of CV parameters (TPR, SV and HR) are 

determined from the phenomenological dose-response models (5-4), a CV model is 

used to compute the resulting BP response including SBP, MAP and PP.  For more 

details, see next chapter.  C is AC modeled as a function of SBP: 

C = C|W8í\|V, (5-5) 

To examine the validity of the LDC model, we conducted a secondary analysis 

of existing data collected from piglet subjects (Nachar et al., 2011). The data were 

collected from five neonatal Yorkshire Duroc piglets (age 10+/-3 d and weight 2.4+/-

0.6 kg).  For each piglet, after a baseline period, an escalating dose of epinephrine was 

administered, which ranged from low (0.25 mcg/kg/min), medium (0.5 and 0.75 

mcg/kg/min) and high doses (1, 1.5 and 2 mcg/kg/min).  Each dose was maintained for 

15min before new dose was applied.  BP and HR responses were collected in real time 

at a sampling rate of 0.2 Hz.  The full details of the experimental protocol can be found 

in Nachar et al. (Nachar et al., 2011). Before analyzing the data, we manually identified 

the artifacts in the measurement that manifested as isolated large, sudden increases in 

BP (> 30 mmHg).  In addition, we visually examined the data together with the event 

logs to identify the data associated with blood draws and seizure activity.  In sum, the 

data corresponding to the artifacts amounted to only 1.6 % of the data, and they were 

not included in the subsequent analysis. 
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5.5.2. Model Identification of Dynamic Transient Data  

The LDC model was adapted to data corresponding to an individual subject as 

follows.  First, cardinal parameters  TPR ∙ C and 
7"�  were computed from MAP and SBP 

data using a CV model presented in next chapter.  Second, the unknown parameters in 

the lumped latency models (5-3), the dose-response models (5-4) and the AC model (5-

5) were determined by minimizing the discrepancy between TPR ∙ C and 
7"�  predicted 

by the models versus those directly computed from MAP and SBP data.  Specifically, 

the models of TPR ∙ C and 
7"�  were implemented by combining (5-4a), (5-4b) and (5-

5): 

R ∙ C = § C|W,¸Ô¸\C �M⁄ + 
kD,�θ� + kH,��|â,¸ ∙ Ô¸ãä,¸
±Ô¸ãä,¸\|å,¸²¨ ∙ C
|W8í\|V�, (5-6a) 

7"� = §δV� + log¤kC,7"θ7" + 1¥ − 
kD,7"θ7" +
kH,7"�|â,èª Ôèªãä,èª

±Ôèªãä,èª\|å,èª²¨ ∙ 
kCP� + kD�, 

(5-6b) 

Then, the dose-response models (5-6) and (5-4c) together with the lumped latency 

models (5-3) were fitted to R ∙ C and 
7"�  computed from BP via the CV model and the 

measured HR through the optimization problem (5-7): 

Κ∗ = arg minï J
u, P�, P , HR, Κ�, (5-7) 

where Κ ≜ ÀτÜ, t0,Ü, k+,7", k+,�, kñ,��, kòÁ is the set of unknown parameters, Κ∗ is the 

optimal value of Κ as the solution to (5-7), i = 1, ⋯ ,6, j = 1, ⋯ ,3, l = 1, 2, J = J� +
J7" + J��, and 



 

107 

 

J�
u, P�, Κ� = w� ÃR ∙ C − § C|W,¸Ô¸\C �M⁄ + 
kD,�θ� + kH,��|â,¸ ∙
Ô¸ãä,¸

±Ô¸ãä,¸\|å,¸²¨ ∙ C
|W8í\|V�Ã, 

(5-8a) 

J7"
u, P�, Κ� = w7" Ã7"� − §δV� + log¤kC,7"θ7" + 1¥ − 
kD,7"θ7" +
kH,7"�|â,èª Ôèªãä,èª

±Ôèªãä,èª\|å,èª²¨ ∙ 
kCP� + kD�Ã, 

(5-8b) 

J��
u, Κ� = w�� ÃHR − HR� − kC,�� Ôì¸ãV,ì¸
±Ôì¸ãV,ì¸\|Y,ì¸²Ã, (5-8c) 

The optimization (5-7) was solved using the DE algorithm (Storn and Price, 1997).  

The weights w�, w7" and w�� were chosen so that the magnitudes of J�, J7" and J�� 

would be comparable.  In solving (5-7), HR� was set to the baseline HR measurement 

(i.e., at u = 0), while R� and δV� were expressed via Κ by (i) first deriving the baseline 

values of R ∙ C and 
7"�  from the baseline measurements of SBP, MAP and HR using the 

CV model, and then (ii) expressing R� and δV� by Κ and the baseline values of R ∙ C 

and 
7"�  using (5-6).  Further, constraints were imposed on a subset of the parameters in 

Κ for physiological relevance: (i) all the parameters were constrained to assume 

positive values; (ii) 0 < k¶,�, k¶,7" < 1 was assumed to prevent the unboundedness of 

vasoconstriction effects in TPR (ΔRD) and SV (ΔδVD) at high epinephrine doses.  Then, 

(5-7) was solved by employing multiple initial conditions (in terms of the population 

size and mutation characteristics in the DE algorithm) to derive a number of candidate 

solutions, and the one with the minimum J value was chosen as the optimal solution, 

Κ∗.  The data corresponding to artifacts were not used in solving (5-7). 



 

108 

 

Once adapted to a subject, the model was validated by applying it to predict the 

subject’s hemodynamic responses solely based on the epinephrine infusion dose as 

follows.  First, the lumped latency model (5-3) predicted the hypothetical steady-state 

equivalent vasopressor-inotrope infusion doses θÜ responsible for the onset of changes 

in TPR, SV and HR (Step 1 in Figure 5-6).  Second, the phenomenological dose-

response models (5-4) predicted the CV cardinal parameters (TPR, SV) and HR using 

the steady-state equivalent doses computed by the lumped latency models, while AC 

was computed by (5-5) (Step 2 in Figure 5-6).  Third, the CV model (see next chapter) 

predicted the resulting BP responses based on the CV parameter responses (Step 3 in 

Figure 5-6).  

Once individual-specific model parameters were obtained for all the subjects, 

the impact of inter-subject variability in lumped latency models and in dose-response

 

 

Figure 5-7: Measured and model-predicted MAP and HR in all piglets.  Black dashed: 

measured; blue solid: model-predicted using fully-individualized LDC model (IL-ID).  

Each instant at which the epinephrine dose was increased is shown by a vertical dashed line. 
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models on the predictive efficacy of the LDC model was examined as follows.  First, 

we predicted hemodynamics responses using (i) fully individualized LDC models 

(Individualized Latency and Individualized Dose-Reponse (IL-ID)), (ii) LDC model 

with average latency parameters (“Population-Based Latency and Individualized Dose-

Response (PL-ID)), and (iii) LDC model with average dose-response model for TPR, 

SV and HR (IL-PDX, X∈ nR, δV, HRo).  Then, we computed the r2 values between 

measured versus model-predicted CV parameter and BP responses.  Finally, we 

examined these r2 values to assess the benefit of individualizing the parameters in the 

LDC model (see Table 14). 

 

5.5.3. Generalizable Lessons  

Table 13 summarizes the physiological data obtained in the piglets, including 

SBP, MAP, DBP and HR (which were directly measured) as well as R ∙ C and 
7"�  (which 

were computed from the CV model (see next chapter)).  Figure 5-7 shows measured 

and model-predicted MAP and HR responses in all piglets1, in which the RMSEs in 

MAP prediction associated with the IL-ID, PL-ID and IL-PDHR models were 9.1+/-2.1 

mmHg, 10.6+/-3.2 mmHg and 17.0+/-5.7 mmHg, respectively, while the RMSEs in 

HR prediction associated with the same models were 10.4+/-3.6 bpm, 21.3+/-9.9 bpm 

and 63.6+/-26.1 bpm, respectively (mean+/-SD).  In addition, the limits of agreement 

between measured versus predicted MAP and HR were -19.9 mmHg to 15.2 mmHg 

and -19.3 bpm to 23.0 bpm (IL-ID), -24.1 mmHg to 16.3 mmHg and -50.0 bpm to 37.6 

bpm (PL-ID) and -32.0 mmHg to 37.1 mmHg and -93.8 bpm to 149 bpm (IL-PDHR), 

                                                 
1 It is noted that the jumps in BP and HR responses in Subject 3 at ~65min is a measurement artifact. 
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respectively.  Table 14 shows the r2 values between measured MAP and HR responses 

versus those predicted by the IL-ID, PL-ID and IL-PDX LDC models, and Figure 5-8 

shows measured and model-predicted MAP responses for these models.  Table 15 

summarizes the distributions of the parameters in the LDC model. 

One primary finding of this investigation was that the LDC model offered a 

reasonable prediction of the relationship between epinephrine dosage versus CV 

parameters including MAP and HR.  The LDC model exhibited the anticipated 

phenomena such as a biphasic TPR response, monotonic chronotropic effect, and the 

effect of afterload in the high infusion dose region.  

 

Figure 5-8:  Measured and model-predicted MAP in all piglet subjects based on IL-ID, PL-

ID and IL-PD LDC models.  Red dashed: measured; blue solid: model-predicted.   
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This encouraging performance is notable for two reasons.  First, the LDC 

models predicted each subject’s CV trends despite substantial individual variability.  

Consider that Subject #2 had a HR ranging between 252+/-72.6 bpm (mean+/-SD) 

while Subject #5 had a HR ranging between 334+/-100 bpm (see Table 13); the 

distributions of their HR values were quite distinct.  Despite such variability, HR 

prediction was quite accurate using the LDC models with r2 values > 0.90 for every 

subject.  The prediction of dynamic HR response to changing epinephrine dosage was 

also promising; compare the actual HR versus predicted HR for Subjects #1-#5 in 

Figure 5-7 (second column) where it is evident that the latency model captured the 

dynamics of the system properly.  

On the other hand, Figure 5-8 also reveals the limitation of these approaches. 

During the escalating doses of epinephrine infusions, measured MAP was a 

fundamentally oscillatory signal without a “true” steady-state. Importantly, such 

oscillations were not present in the pre-epinephrine (baseline) period, and the cause of 

this oscillatory response is unclear (Nachar et al., 2011).  During each interval of 

constant epinephrine infusion, there were 1-2 cycles of MAP oscillation that could not 

be modeled by the LDC model.  Further, when the epinephrine dose was changed, the

Table 13: Physiological conditions spanned by the piglets (mean+/-SD) 

Subject ID 
SBP 

[mmHg] 

MAP 

[mmHg] 

DBP 

[mmHg] 

HR 

[bpm] 

R·C 

[min] 

δV/C 

[mmHg] 

1 92.2+/-18.6 61.1+/-14.4 44.5+/-11.1 283+/-88.7 4.2e-3+/-1e-3 54.3+/-8.50 

2 105+/-28.1 84.6+/-26.0 70.8+/-24.1 252+/-72.6 9.2e-3+/-2e-3 38.4+/-8.07 

3 103+/-28.6 83.9+/-25.0 68.7+/-22.7 316+/-81.3 7.8e-3+/-2e-3 36.3+/-9.58 

4 97.6+/-23.9 78.0+/-23.3 62.1+/-21.7 336+/-97.1 6.8e-3+/-2e-3 36.1+/-7.85 

5 109+/-21.5 86.2+/-18.8 69.1+/-16.7 334+/-100 6.8e-3+/-2e-3 42.6+/-8.60 

All Subjects 102+/-25.1 78.7+/-23.8 63.1+/-22.3 295+/-105 7.0e-3+/-2e-3 41.5+/-10.9 
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dynamic response in the measured MAP was masked by these oscillations.  Overall, 

our analysis suggests that the benefit of an individualized latency model (IL-ID) seems 

modest, and to avoid the over-fitting of MAP response corrupted by un-modeled 

oscillations, it may be appropriate to use group-averaged terms for latency reflective of 

typical mixing times and physiological onset delays. 

While our findings don’t entirely support the usefulness of the individualized 

latency model (which is in part due to epinephrine-specific oscillations), the findings 

strongly support the need for individualized dose-response models.  When one 

examines the inter-subject inconsistencies in physiological response as a function of 

epinephrine dose (see Table 13), it is obvious that substantial individualization would 

be necessary to predict each subject’s dose-response.  Table 15 demonstrates that there 

was considerable variability between the model parameters fitted to different subjects.  

This trend was consistent for the parameters in the AC model (5-5): kC = 1.3 × 10hD 

Table 14: r2 values between measured and model-predicted MAP and HR.  IL-ID: LDC 

model with individualized latency and dose-response parameters; PL-ID: LDC model with 

average latency parameters; IL-PDX: LDC model with average dose-response model on X 

(X∈ nô, õö,÷ôo) 
Subject ID 1 2 3 4 5 

MAP 

IL-ID 0.80 0.86 0.84 0.73 0.79 

PL-ID 0.75 0.85 0.79 0.57 0.72 

IL-PD 

IL-PDHR 0.64 0.20 0.63 0.45 <0 

IL-PDR <0 <0 0.12 0.46 0.05 

IL-PDδV <0 <0 <0 <0 <0 

HR 

IL-ID 0.99 0.95 0.98 1.00 0.99 

PL-ID 0.98 0.95 0.97 0.91 0.93 

IL-PD 

IL-PDHR 0.92 0.42 0.41 0.28 0.17 

IL-PDR 0.99 0.95 0.98 1.00 0.99 

IL-PDδV 0.99 0.95 0.98 1.00 0.99 
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with 17% SD and	kD = 7.8 × 10hD with 227% SD, respectively.  Moreover, when HR 

dose-response parameters were group-averaged (see Figure 5-8), the MAP prediction 

efficacy unacceptably deteriorated.  Prediction efficacy was even worse when TPR and 

SV dose-response parameters were averaged (Table 15).  In particular, the group-

averaged SV dose-response model predicted a non-physiological (i.e., negative) SV in 

the high epinephrine dose region due to the exaggerated afterload effect, resulting in 

an unacceptable MAP response for all the subjects with r2 values lower than zero.  

Altogether, these findings indicate that the dose-response models must be 

individualized: it is evident that different subjects had different quantitative responses 

to epinephrine (Table 13) and that the LDC model, when using population-averaged 

parameter values, yielded non-physiological predictions (Table 15).  

In sum, these findings lead us to a generalizable lesson regarding the tradeoff 

between model complexity and individualization capability.  Complex subject-specific 

models can offer adequate individualization capability, but its large degrees of freedom 

may result in non-physiological and even unstable responses unless properly fitted to 

each individual.  Simple group-averaged models can provide physiologically 

acceptable responses, but they cannot be as accurate as complex subject-specific 

models.  Therefore, appropriate balance between individualized and group-averaged 

Table 15: Distribution of model parameters (mean+/-SD, SD in % of mean) for the IL-ID model 

û 
Latency Parameters Dose-Response Parameters 

üý þ�,ý [sec] û� �Cý �Dý �Hý �¶ý ��ý �ëý �� 329±52% 29.1±90% 33.4±21% 2.3e3±109% 0.64±250% 4.3e3±205% 0.49±57% 25.1±127% 14.3±245% 

� 264±70% 48.6±36% 76.4±74% 96.8±35% 
7.7e-

4±143% 
4.0e-3±78% 0.96±7.0% 31.1±116% 14.7±237% 

�� 511±52% 25.1±99% 155.±16% 239.±23% 4.05±91% 0.18±150% - - - 
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components is essential to achieve stable and accurate prediction of physiological 

responses to medication agents.  

There is a remaining question, which although outside the scope of the current 

investigation, is important to consider for future work:  is the LDC model suitable for 

predicting hemodynamic responses to epinephrine?  Due to the presence of BP 

oscillations associated with epinephrine administration, the LDC model could not 

perfectly predict BP response to epinephrine.  However, it is unknown how the LDC 

model would have performed in the absence of these oscillations. Future work on data 

not resulting in an oscillatory BP (such as dopamine and dobutamine (Nachar et al., 

2011)) will be able to answer this question.  Regardless, we can conceptually 

contemplate if this model is too simple, too complex, or generally appropriate for 

practical use.   

We do not think the model is too simple:  it includes terms to quantify most of 

the known effects of epinephrine, including a biphasic TPR response, pressure-

dependent AC, monotonic chronotropic effect, and the effect of afterload in the high 

infusion dose region.  We have found that a simpler version of this model (see Section 

5.2) and the current iteration (e.g., Figure 5-6) can yield favorable predictive capability 

(though, as noted above, the current model could not capture the oscillations in MAP 

specific to epinephrine, leading to the one shortcoming in MAP prediction). 

More likely, the current model may be too complicated to serve as a practical 

tool for dose selection.  The usefulness of the model will further be exacerbated if 

additional mechanisms to model the oscillatory MAP behavior (such as autonomic 

reflex mechanism) are being taken into account.  In theory, even highly complicated 
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models can be determined as long as persistently exciting dose-response data (e.g., 

having many dose changes) are available (Ljung, 1999).  However, multiple changes 

in infusion dose may not be commonly available in real clinical setting when 

epinephrine-dosing changes are made to treat the patient rather than to facilitate dose-

response modeling.  In the future, therefore, it will be appropriate to reduce model 

complexity allowing for individual predictive capability without extensive training data 

from each subject. 

Finally, the validity of the LDC model in vasopressor-inotropes other than 

epinephrine must be examined in the future.  Since vasopressor-inotropes commonly 

exhibit latency, dose-response and physiological (CV) mechanisms, the 

methodological framework presented in this study should be universally applicable to 

a range of vasopressor-inotropes.  However, due to the differences in the specific 

mechanisms of action associated with each vasopressor-inotrope, dose-response 

models specific to each vasopressor-inotrope must be derived and validated 

independently.  In this regard, future effort on dose-response modeling of a wide 

spectrum of vasopressor-inotropes will be necessary to facilitate the real-world 

application of the LDC model. 
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6. Modeling of Cardiovascular Endpoint Responses to 

Vasopressor Infusion 

 

Section 6.1 presents a method relating the changes in CV measurable endpoints 

to changes in cardinal parameters in response to vasopressor infusion. This method was 

utilized in Chapter 5 to infer cardinal CV parameters from measured hemodynamic 

responses, e.g., BP and HR, and also estimate BP via predicted cardinal parameters in 

response to different doses of vasopressor. In Section 6.2 it is shown that this method 

may not adequately work for fluid infusion.  

 

6.1. Estimation of Cardinal Parameters  

 

Clinicians typically titrate the BV and vasopressor dose level based on BP, even 

though changes in BP actually reflect changes in CO and TPR, the underlying cardinal 

parameters.  The methodology defined in Chapter 5 was based on estimating a dose-

response relationship for the underlying cardinal parameters.  If CO and TPR are not 

directly measured, then the effects of the vasopressor agent on the cardinal parameters 

must be inferred.  Here, we develop a specific algorithm based on Windkessel model 

that uses measurements of SBP, MAP, DBP, and HR to infer cardinal parameters 

related to CO and TPR.   

Approximating the aortic flow as a train of impulses (Parlikar et al., 2007), the 

Windkessel model equipped with a resistor and a capacitor, each representing TPR and 

AC, is mathematically expressed as follows: 

�8
@��@ = − C�.�P
t� + C� δV ∙ δ
t�, (6-1) 
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where 0 ≤ t ≤ T, P
t� is BP, R, C and δV represent TPR, AC and SV, respectively, 

δ
t� is the Dirac delta function, and T is the heart period. To use SVI, (which is 

available from the dataset used in previous chapter, Section 5.2) rather than SV in the 

CV model, (6-1) is re-written as follows: 

�8
@��@ = − C��.�� P
t� + C�� δV� ∙ δ
t�, (6-2) 

where δV� is SVI, and R� (in mmHg·min·m2/l) and C� (in ml/mmHg/m2) are TPRI, MAP 

divided by SVI and HR) and AC, respectively. Solving (6-2) for BP using the 

convolution integral (Chen, 1984) yields: 

P
t� = P�eh O̧�.	� + Í eh W̧�.	�
@h
� C�� δV� ∙ δ
τ�dτ@
z� = P�eh O̧�.	� + 7"��� eh O̧�.	�, (6-3) 

which is valid for each heart period (see Figure 6-1). From (6-3), the following 

relationships between BP versus TPRI and SVI (scaled by ACI) are obtained: 

P = R� ∙ HR ∙ δV� = R�. C� ∙ HR ∙ 7"��� , (6-4a) 

P� = ±1 − eh �̧�.	�²hC 7"��� , (6-4b) 

P8 = P� − P� = 7"��� , (6-4c) 

 
Figure 6-1: A two-parameter Windkessel model subject to aortic flow approximated as a 

train of impulses. 
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where P�, P  and P�	are SBP, MAP and DBP, respectively, and P8 is PP. Given 

measurements of SBP, MAP and PP as well as HR for a given vasopressor dose level, 

the corresponding values of R�. C� and 
7"���  can be determined by solving (6-4). For this 

purpose, the following multi-objective optimization problem is formulated based on 

the relationship between BP versus R�. C� and 
7"��� : 

ÚR�. C�∗, 7"��� ∗Û = arg	min J ±R�. C�, 7"��� ² = argmin�
�

���
��
��
�FC ±R�. C�, 7"��� ²FD ±R�. C�, 7"��� ²FH ±7"��� ² ��

��
�
��
£�
�

�

, (6-5) 

where R�C�∗ and 
7"���
∗
 are the optimal scaled TPRI and SVI associated with a particular 

dose response, and F+, i = 1,2,3 are specified as follows: 

FC ±R�. C�, 7"��� ² = IP − R�. C� ∙ HR ∙ 7"��� J P � , (6-6a) 

FD ±R�. C�, 7"��� ² = 	 §P� − ±1 − eh �̧�.	�²hC 7"��� ¨ P�� ,  (6-6b) 

FH ±7"��� ² = IP8 − 7"��� J P8� . (6-6c) 

which are derived from (6-4). Thus, we obtain ÚR�. C�∗, 7"��� ∗Û+ from nd, HR, P�, P ,
P�o+, i = 1,⋯N, where n∙o+ denotes dose (d) and CV responses (HR and BP as well as 

scaled TPRI and SVI) corresponding to the i-th dose, while N is the number of dose 

levels at which BP measurements are taken to train the model. 

Analyzing a dataset with non-continuous measurements of SBP, MAP, DBP, 

and HR in response to vasopressor infusion (see chapter 5, Section 5.2), a rudimentary 
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model, i.e. the Windkessel, was deemed reasonable; it provided a means to infer the 

underlying CV state in terms of the cardinal CV parameters related to CO and TPR. A 

model of additional complexity would have been fruitless without additional 

measurement data available for identification of more sophisticated model. For other 

datasets with more profound and richer data (such as BP and flow waveforms), more 

advanced models and methods to infer CV state could be appropriate. For instance, 

given a BP waveform, the current Windkessel model could be replaced by the long-

time interval analysis (Mukkamala et al., 2006) or the improved Windkessel-model-

based method (Fazeli and Hahn, 2012) to better estimate TPR and SV. For patients 

with a Swann-Ganz catheter, direct CO and TPR measurements could be used. 

In addition, the model was able to yield reasonable predictions of the dose-

response relationship of the cardinal CV parameters (i.e., related to CO and TPR) as 

well as BP and HR (see Sections 5.2 and 5.5). This provides the proof-of-principle for 

the general approach of this chapter. Is this specific approach generalizable to other 

populations and physiological states? This is an open question and will be answered in 

the next sections of this chapter.  

 

6.2. Pulse Pressure Underestimates Stroke Volume 

 

The CV model presented in Section 6.1 was based on the assumption that SV 

and PP are linearly proportional; see (6-4c) and also (Bataille et al., 2012; Ishihara et 

al., 2004; Mathews and Singh, 2008; Papaioannou et al., 2012). In fact, there are many 

existing evidences supporting this assumption (Fazeli and Hahn, 2012; Marquez et al., 

2008; Parlikar et al., 2007). Due to this reason, PP has been widely used as a convenient 
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surrogate of SV during diagnostic and therapeutic procedures, such as fluid therapy 

(Convertino et al., 2006), ventricular resynchronization therapy (Kass, 2002) and 

vasopressor/inotrope therapy (Bighamian et al., 2014a). However, some recent 

experimental investigations suggest that although SV and PP are proportionally 

correlated during BV perturbation, the relationship may not be strictly linear, and PP 

may underestimate SV in response to BV changes (Convertino et al., 2006; Monnet et 

al., 2011; Reisner et al., 2011). Since the mechanisms underlying the relation between 

the two have not been clearly understood, in this section we elucidate how arterial PP 

and SV respond to a perturbation in the LV BV based on a systematic mathematical 

analysis.  Our mathematical analysis showed that the relative change in arterial PP due 

to a LV BV perturbation was consistently smaller than the corresponding relative 

change in SV, due to the nonlinear LV pressure-volume (P-V) relation during diastole 

that reduces the sensitivity of arterial PP to perturbations in the LV BV.  Therefore, 

arterial PP must be used with care when used as surrogate of SV in guiding fluid 

therapy.  P-V loop framework employed as the basis of the mathematical analysis is 

presented in the next section.  

 

6.2.1. Left-Ventricular Pressure-Volume Framework  

We use the LV P-V loop framework (Sagawa et al., 1988) to mathematically 

analyze how changes in SV and PP are related during volume perturbation.  In the 

context of LV P-V loop, the so-called “maximum” LV pressure (Hay et al., 2005; 

Sagawa et al., 1988; Santamore and Burkhoff, 1991) is given by the weighted average 

of end-systolic pressure (ESP) and EDP: 
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P-" �U = ϕ
t�P�¤V
t�¥ + ¤1 − ϕ
t�¥P0¤V
t�¥ (6-7) 

where ϕ
t� is the activation function (Piene, 1984; Sagawa et al., 1988; Santamore and 

Burkhoff, 1991), and P� and P0 are the pressures corresponding to end-systolic and 

end-diastolic P-V relationships at a LV volume V
t� (Sagawa et al., 1988; Santamore 

and Burkhoff, 1991). P� and P0 are given by (see red and blue dashed lines in Figure 

6-2): 

P�¤V
t�¥ = E�
V
t� − V��	
P0¤V
t�¥ = B�e/
"
@�h"M� − 1� (6-8) 

where E� is the end-systolic LV elastance, A and B are constants specifying the end-

diastolic P-V relationship, and V� is the LV volume corresponding to zero LV pressure 

(Piene, 1984; Sagawa et al., 1988; Santamore and Burkhoff, 1991).  

 

 

Figure 6-2: Left ventricular pressure-volume loop for different end-diastolic volumes.  
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6.2.2. Stroke Volume Response to Volume Perturbation 

In the context of P-V loop, SV can be computed from EDV as follows.  By 

definition, SV is given by the difference between EDV and ESV: 

δV = V�� − V�� = 	V
t��� − V
t��� (6-9) 

where V�� = V
t��� and V�� = V
t��� are EDV and ESV, and t�� and t�� are the time 

instants corresponding to end-diastole and end-systole, respectively.  Alternatively, SV 

is given from mean MAP as follows:  

δV = P R T (6-10) 

where P  is MAP, R is TPR and T is heart period.  At end-systole (t = t��), the P-V 

loop intersects with the systolic P-V relationship P� = E�
V
t� − V�� (Sagawa et al., 

1988; Santamore and Burkhoff, 1991), where P� = P�� and V
t� = V
t��� = V��.  
Therefore, we have: 

P�� = E�
V�� − V�� (6-11) 

On the other hand, since ESP is typically very close in value to MAP (Kass and Beyar, 

1991; Maurer et al., 2009), we have, from (6-4): 

δV = V�� − V�� ≅ P��R T (6-12) 

Combining (6-11) and (6-12) yields the following expression for V��: 
V�� = E/E� + E/ V�� + E�E� + E/ V� (6-13) 
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where E/ = �i is called the arterial elastance (Maurer et al., 2009; Sagawa et al., 1988; 

Santamore and Burkhoff, 1991).  Therefore, SV can be computed from EDV as 

δV = V�� − V�� = E�E� + E/ 
V�� − V�� (6-14) 

Thus, SV is related to EDV by the proportionality constant	 ³j³j\³´, which depends on 

LV and arterial elastances.  Therefore, it can be concluded that a change in EDV caused 

by volume perturbation results in a change in SV whose magnitude is linearly 

proportional to that of EDV, if LV and arterial elastances remain constant during 

volume perturbation.  In Figure 6-2, this can be illustrated as the linear proportionality 

between the triangles defined by (Ved,j, 0), (V0, 0) and (Ves,j, Pes,j), j=0,1,2: as long as 

E� and E/ remain constant, SV (= V��,ñ − V��,ñ = P��,ñ cothC E/ = ³j³´³j\³´ ¤V��,ñ −
V�¥ cothC E/) is proportional to the EDV (= V��,ñ − V�). 
 

6.2.3. Pulse Pressure Response to Volume Perturbation 

To understand the PP response to volume perturbation, we first analyze the 

responses of ESP and DBP to changes in EDV, and then show the response of PP by 

formulating it to the difference between ESP response and DBP response.  The 

rationale for using ESP and DBP rather than SBP and DBP is because, in contrast to 

ESP and DBP which always occur at ESV and EDV (see Fig. 24), the value of volume 

on the P-V loop where SBP occurs is not straightforward to specify.  It will be 

demonstrated that PP can be, at least approximately, obtained from ESP and DBP by 

assuming that ESP is typically very close in value to MAP. 
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At diastole (t = t� where t� is the time instant corresponding to DBP), the 

maximum LV pressure is equal to DBP, and LV volume is equal to EDV (V��).  

Therefore, (1) reduces to: 

P�
V��� = ϕ
t��P�
V��� + ¤1 − ϕ
t��¥P0
V���	
= ϕ
t��E�
V�� − V�� + ¤1 − ϕ
t��¥B�e/
"«Nh"M� − 1� (6-15) 

For simplicity of analysis, assume that t� relative to T remains constant during volume 

perturbation (see Section 6.7 for what happens if this assumption is relaxed).  Then, it 

is obvious from (6-15) that, for a given value of EDV, DBP is determined as the 

weighted average of ESP and EDP corresponding to that EDV: 

P�
V��� = σP�
V��� + 
1 − σ�P0
V���
= σE�
V�� − V�� + 
1 − σ�B�e/
"«Nh"M� − 1� (6-16) 

where σ = ϕ
t�� is constant if t� relative to T remains constant.  Now, if we note that 

the end-systolic P-V relationship, E�
V�� − V��, is linear in V�� whereas the end-

diastolic P-V relationship, B�e/
"«Nh"M� − 1�, is exponential in V��, and also that 

P�
V��� is simply the weighted average between the two, it can be concluded that the 

rate of change in DBP increases as EDV increases (see Figure 6-2).  This is illustrated 

in Figure 6-2 by the brown dashed line connecting P�,ñ = P�¤V��,ñ¥, j=0,1,2, whose 

slope becomes steeper as EDV increases. 

The response of ESP to changes in EDV can be obtained by combining (6-11) 

and (6-13), which yields: 

P��
V��� = E�
V�� − V�� = E�E/E� + E/ 
V�� − V�� (6-17) 
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Thus, ESP is related to EDV by the proportionality constant	 ³j³´³j\³´, which depends on 

LV and arterial elastances.  Therefore, it can be concluded that ESP is linearly 

proportional to EDV if LV and arterial elastances remain constant during volume 

perturbation. 

To relate ESP and DBP to PP, we use a widely accepted relationship between 

SBP, MAP and DBP: P ≅ P� + CH 
P� − P��.  As for Section 6.2.2, if we assume that 

ESP is very close to MAP (P�� ≈ P ), we get the following relationship between PP, 

ESP and DBP: 

P�� ≅ P� + 13 
P� − P�� 	→ P* = P� − P� ≅ 3
P�� − P�� (6-18) 

which indicates that PP is linearly proportional to the difference between ESP and DBP. 

Finally, combining the conclusions drawn from (6-16)-(6-18), we can conclude that the 

rate of change in PP decreases as EDV increases, because the rate of change in DBP 

becomes steeper than that in ESP as EDV increases (see Figure 6-2).  This can be 

illustrated in Figure 6-2 as follows: as long as LV and arterial elastances as well as 

ϕ
t�� remain constant, the rate of change in P��,ñ − P�,ñ decreases with an increase in 

EDV (see the left vertical axis), since the difference between the slopes of red (P��) and 

brown (P0) lines decreases as EDV increases.  

 

6.2.4. Relation between Stroke Volume and Pulse Pressure  

The analyses performed in Sections 6.2.2 and 6.2.3 indicate that, under the 

assumption that 1) both LV and arterial elastances as well as t� relative to T remain 

constant during volume perturbation, and 2) ESP is close in value to MAP, SV shows 
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constant proportionality to EDV as indicated in (6-14) (i.e., it is a linear function of 

EDV).  In contrast, PP exhibits decreasing proportionality to EDV with an increase in 

EDV, thereby decreasing the rate of change in PP response to EDV as it increases (in 

other words, PP shows a gradually decreasing slope when it is plotted against EDV).  

Since SV and PP exhibit constant versus decreasing slopes against EDV, respectively, 

the relationship between SV and PP is concave towards SV.  Therefore, SV and PP are 

NOT linearly proportional to each other, and the rate of change in PP is not a good 

quantitative indicator of the rate of change in SV.  In fact, our analyses suggest that the 

rate of change in PP underestimates the rate of change in SV in the neighborhood of a 

given operating EDV (see Figure 6-3).  Indeed, Figure 6-3 illustrates that, the slope of 

SV with respect to EDV is steeper than that of PP around the vicinity of an operating 

EDV. 

 

Relaxation of Assumptions  

In our analysis, we made the following assumptions: during changes in EDV 

due to volume perturbation, (i) the time instant corresponding to DBP relative to the 

 
Figure 6-3: Relationship between SV and PP.  
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heart period (
@Ni ) is constant (A1); (ii) ESP is close in value to MAP (A2); and (iii) LV 

and arterial elastances remain constant (A3).  In this section, these assumptions are 

relaxed and their effects are incorporated to the conclusion drawn in Section 6.2.4. 

 

Relaxation of Assumption A1 

It has been suggested that the shape of the activation function ϕ
t� is highly 

consistent among different individuals, i.e., its inter-individual variability is small 

(Georgakopoulos et al., 1998; Kjørstad et al., 2002).  However, the timing values 

associated with cardiac events, e.g., diastole (t = t�) may be subject to change due to 

mechanisms such as baroreflex.  This may invalidate the assumption A1 above.  Thus, 

it is worthwhile to examine how the timing-related variability in ϕ
t� alters the 

relationship between SV and PP. 

It is obvious from (6-14) that SV is not influenced by ϕ
t�.  In addition, (6-16)-

(6-18) indicates that PP is related to ϕ
t� only via DBP but not via ESP.  So, uncertainty 

in ϕ
t� affects the relationship between SV and PP by altering DBP (which occurs at 

t = t�).  Consequently, variability in the time instant corresponding to diastole (t = t�) 

turns out to be the main parameter to be analyzed.  In this study, we perform sensitivity 

analysis to quantitatively assess how significantly the relationship between SV and PP 

is altered by the variability in	t�.  Using (6-16)-(6-18), PP can be rewritten as follows: 

P* = P� − P� ≅ 3
P�� − P��
= 3 Ø E�E/E� + E/ 
V�� − V�� − `σP�
V��� + 
1 − σ�P0
V���a� (6-19) 

Then, the sensitivity of PP with respect to 
@Ni  is given by: 
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∂P*∂
t� T⁄ � ≅ −3 ∂P�∂
t� T⁄ � = −3 ∂σ∂
t� T⁄ � `P�
V��� − P0
V���a (6-20) 

In (6-20), ̀ P�
V��� − P0
V���a does not depend on	t�; it is a function of V�� only.  Since 

the term 
Ó�Ó
@N i⁄ � (i.e., the sensitivity of the activation function with respect to 

@Ni ) is 

always positive (Hay et al., 2005), it can be concluded that PP decreases as 
@Ni  increases. 

   

Relaxation of Assumption A2 

The effect of discrepancy between MAP and ESP on the relationship between 

SV and PP can be examined as follows.  It is clear from (6-14) and (6-18) that only PP 

but not SV is affected.  The error in PP (P�*) due to the difference between MAP and 

ESP is given by:  

P�* = 3
P�� − P�� − 3
P − P�� = 3P �  (6-21) 

where P � = P�� − P .  Thus, an error in MAP (caused by approximating it to ESP) is 

propagated to the PP error with an amplification factor of 3 (e.g., 1% error in MAP

 

results in 3% error in PP), which can be deleterious if the MAP error is large.  However, 

the absolute magnitude of alteration in PP due to the discrepancy between MAP and 

ESP is not expected to be significant, since MAP is indeed close in value to ESP over 

a wide range of physiologic conditions (Kass and Beyar, 1991; Maurer et al., 2009). 

 

Relaxation of Assumption A3 

Table 16: Effect of arterial elastance on the responses of ESP, PP and SV 

 R T E/ 
E�E/E� + E/ 

E�E� + E/ P�� P* δV 

V�� 	 ↑ ↓ ↑ ↓ ↓ ↑ ↓ ↓ ↑ V�� 	 ↓ ↑ ↓ ↑ ↑ ↓ ↑ ↑ ↓ 
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First, the effect of arterial elastance on the responses of ESP, PP and SV 

anticipated due to the changes in EDV is summarized in Table 16.  In theory, TPR and 

the HR (the inverse of heart period) are altered by the autonomic baroreflex in response 

to alterations in V�� (Kumar et al., 2004; Reil et al., 2009).  Specifically, an increase in 

EDV results in a decrease in TPR and HR, whereas they increase to a decrease in EDV 

(Kumar et al., 2004; Reil et al., 2009).  Therefore, the arterial elastance decreases during 

an increase in EDV, which then yields a decrease in ESP (with respect to its value 

predicted under constant arterial elastance) via a decrease in	 ³j³´³j\³´.  This then results 

in a decrease in PP, since DBP is not affected by the arterial elastance.  On the other 

hand, a decrease in arterial elastance yields an increase in SV (again, with respect to its 

value predicted under constant arterial elastance) via an increase in	 ³j³j\³´.  Therefore, 

should there be any notable impact of EDV on arterial elastance, the underestimation 

of SV based on PP will be exacerbated during an increase in EDV, e.g., during fluid 

therapy.  In contrast, it can be deduced, based on the reasoning consistent with the 

above, that PP and SV will, respectively, increase and decrease from their values 

predicted under constant arterial elastance if EDV decreases.  

Thus, the underestimation of SV based on PP will be alleviated during a decrease in 

EDV, e.g., hemorrhage. 

Table 17: Effect of LV elastance on the responses of ESP, PP and SV 
 E� E�E/E� + E/ 

E�E� + E/ P�� P� P* δV 

V�� 	 ↑ ↓ ↓ ↓ ↓ ↓ ↑ ↓ V�� 	 ↓ ↑ ↑ ↑ ↑ ↑ ↓ ↑ 
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Second, the effect of LV elastance on the responses of ESP, PP and SV 

anticipated due to the changes in EDV is summarized in Table 17.  Similarly to TPR 

and HR, LV elastance is altered by the autonomic baroreflex in response to alterations 

in V�� (Klabunde, 2005).  In particular, LV elastance typically decreases if EDV 

increases, and it increases if EDV decreases (Klabunde, 2005).  It can then be shown 

that both 
³j³´³j\³´ and 

³j³j\³´ decrease in response to an increase in EDV.  Consequently, 

an increase in EDV will result in a decrease in ESP and SV (with respect to their values 

predicted under constant LV elastance), whereas a decrease in EDV will result in an 

increase in EDP and SV (again, with respect to their values predicted under constant 

LV elastance).  In addition, DBP is also affected by the LV elastance, because a change 

in LV elastance alters the value of P�
V��� (see Figure 6-2).  Therefore, the effect of 

LV elastance on PP can be elucidated by combining its impacts on ESP and DBP.  To 

quantify the effect of LV elastance on PP, consider the following equations for ESP 

and DBP in response to a perturbation on LV elastance: 


P�� + ΔP��� = 
E� + ΔE��E/
E� + ΔE�� + E/ 
V�� − V��	

P� + ΔP�� = σ
E� + ΔE��
V�� − V�� + 
1 − σ�B�e/
"«Nh"M� − 1� 

(6-22) 

Thus, alterations in ESP and DBP can be written as follows: 

ΔP�� = § 
E� + ΔE��E/
E� + ΔE�� + E/ − 
E��E/
E�� + E/¨ 
V�� − V��
≈ ? E/E� + E/A

D ΔE�
V�� − V��	
ΔP� = σΔE�
V�� − V�� 

(6-23) 
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where the expression for ΔP�� was simplified using the Taylor series expansion.  

Consequently, the alteration of PP due to a perturbation in LV elastance can be 

quantified as follows: 

∂P*∂E� = 3 §? E/E� + E/A
D − σ¨ 
V�� − V�� (6-24) 

So, whether PP increases or decreases depends on the sign of E± ³´³j\³´²D − σF.  Though 

not definitive, it can be shown numerically that E± ³´³j\³´²D − σF takes negative values 

over the space of physiologically nominal parameter values.   Therefore, should there 

be any notable impact of EDV on LV elastance, the underestimation of SV based on 

PP will be alleviated during an increase in EDV, e.g., during fluid therapy.  In contrast, 

the underestimation of SV based on PP will be exacerbated during a decrease in EDV, 

e.g., hemorrhage. 

 

6.2.5. Simulation Study 

To numerically examine the results of the analysis in this section, a simulation 

model developed by Ursino et al. (Ursino, 1998; Ursino and Magosso, 2000, 2003) was 

used to create SV and PP responses to a wide range of hypothetical volume 

perturbations.  The model includes a time-varying elastance model of the heart, arterial 

and venous vessels lumped into 12 compartments, and a nonlinear baroreflex feedback 

model.  In the simulation model, BV was varied from 3.5L to 6.5L (with nominal 

volume of 5.0L), and the corresponding BP and SV responses in the steady-state were 

obtained.  A representative result is shown in Figure 6-4, where PP has been scaled to 

SV so that their values at 3.5L match.  
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First of all, the simulation result shown in Figure 6-4 reassures that the change 

in PP underestimates that in SV.  For example, the change in SV as predicted by the 

change in PP in response to the added BV of 3.0L (from 3.5L to 6.5L) was only ~60% 

of the actual change in SV.  Therefore, PP must not be used as a linear predictor of SV.  

It is noted that the result shown in Figure 6-4 was obtained in the presence of realistic 

variability in	@Ni , E/ and E�.  Indeed, the baroreflex feedback responses in Figure 6-4 

indicate that these parameters were subject to non-negligible variability during BV 

perturbation.  In particular, 
@Ni  decreased by large amount in response to an increase in 

Figure 6-4: A representative result of SV, BP and baroreflex responses to a wide range of 

perturbation in blood volume (3.5L-6.5L). 

  

(a) SV (b) PP 

Figure 6-5: Sensitivity of SV and PP to 
 !" , #$ and #%. 
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BV, which was attributed to a large decrease in HR (thus a large increase in T).  Also, 

TPR as well as arterial and LV elastances decreased as BV increased, which was 

anticipated.  Compared with LV elastance, however, the variability in arterial elastance 

was significantly larger due to large changes in HR and TPR. 

To quantitatively examine the effect of variability in	@Ni , E/ and E� on our 

analysis, the sensitivity of SV and PP to these parameters were computed and 

scrutinized (see Figure 6-5).  Overall, the sensitivity of SV on E/ and E� was very small 

(see Fig. 27a).  Also, it does not explicitly depend on 
@Ni  as indicated by (6-14).  Thus, 

we predicted that the assumptions A1-A3 made in Section 6.2.1 would not affect SV.  

Indeed, simulated SV as shown in Figure 6-5 was very close in value to SV predicted 

from (6-14) under constant E/ and E� (not shown).  On the other hand, PP turned out 

to be largely affected by these parameters (see Figure 6-5(b)).  Considering that the 

absolute amount of change in E/ was much larger than that in E� (see Figure 6-4),it 

turned out that the effect of changes in 
@Ni  and E/ on PP was dominant in comparison 

with the effect of change in E�.  Now that the direction of changes in 
@Ni  and E/ is the 

same (i.e., both decrease for positive volume perturbation but increase for negative 

volume perturbation) but their impact on PP is opposite (as indicated by opposite signs 

in sensitivity; see Figure 6-5(b)), it was observed that their effects were approximately 

canceled by each other.  So, together with the observation that ESP was consistently 

higher than MAP (see Figure 6-4), PP was overestimated based on (6-21).  

Summarizing all these observations, relaxation of the assumptions A1-A3 appear to 

further pronounce PP’s underestimation of SV. 
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6.3. Need for General Model of Cardiovascular Responses to Combined Fluid and 

Vasopressor Infusion   

 

This chapter mathematically demonstrated that PP, a readily available NIBP 

measurement, may fail to guide a major fluid resuscitation. In the same way, the 

Windkessel model shown in Section 6.1 may fail in other populations than those used 

in Section 5.2. For instance, AC changes as a function of BP (Langewouters et al., 

1984; Stergiopulos et al., 1995). In the dataset used in Section 5.2, the range of BP was 

small, and so, presumably, was the range of AC. This may not be the case for patients 

with drastic BP changes as might be observed in circulatory shock, hemorrhage or fluid 

resuscitation events. If so, modifications of the methodology and/or CV model may 

need to be considered.  
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7. Modeling of Cardiovascular Endpoint Responses to Blood 

Volume Perturbation and Vasopressor Infusion 

 

This chapter presents a platform to reproduce hemodynamic responses to fluid 

and vasopressor infusion. Chapters 4 and 5 presented methodologies to estimate 

cardinal parameters and hemodynamic responses to fluid and vasopressor 

administration. Chapter 4 combined Guyton’s model of venous return and LV P-V 

relationship to achieve a transparent model of SV with 4 tunable parameters in which 

each parameter was lumped via a combination of physiological parameters (e.g., θC 
included	E� and E/). Chapter 5 employed receptor-based phenomenological models to 

replicate the behavior of cardinal parameters including SV. Although both methods led 

to adequate estimations of hemodynamic endpoints, systematic way of merging them 

as a single model to reproduce hemodynamic endpoints to both fluid and vasopressor 

infusion is not practical. In fact, the feasibility of considering the effects of vasopressors 

on the lumped physiological parameters of the SV model in Chapter 4 is dubious.  As 

demands for ACCS necessitate development of a single platform to replicate cardinal 

parameters in subjects under hemodynamic management, this chapter develops a 

universal platform for both fluid and vasopressor administration. Compared to the 

models of hemodynamic endpoints to BV and vasopressor, this universal platform 

necessitates (i) adding new model complexities and parameters, and (ii) a unique set of 

data from left-ventricle to validate it. To evaluate the platform, we recorded high 

resolution unique data from 4 pig animals. Although the order of fluid and vasopressor 

infusion in the pig subjects is consecutive, we speculate that this tool may be potentially 

employed in case of concurrent fluid and vasopressor infusion as well.  
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7.1. Modeling of Universal Platform to Fluid and Vasopressor Infusion 

 

The model proposed in this Chapter includes two sub-models: a) the model of LV 

preload response to the fluid and vasopressor infusion, and b) the model of SV and BP 

response to change in preload. The second sub-model is built based on LV P-V 

relationship framework. Since the model of BV is validated in Chapters 3 and 4, we 

assume BV measurements are given and only preload, SV and MAP are estimated in 

response to BV and vasopressor dose perturbation. 

 

7.1.1. Model of Preload Response to Fluid and Vasopressor Infusion 

Change in LV preload is known to be a proportional but delayed response to 

BV perturbation (see Figure 7-1(a)). An increase in BV increases CVP. Based on 

Guyton’s model of venous return, increase in CVP corresponds to increase in 

pulmonary venous blood flow to the left ventricle, thereby increasing LV 

EDV. Compared to the increase in LV preload, change in	V� (LV volume at zero LV 

pressure) is modest. We define the effective LV preload as	V-" = V�� − V�. The 

effective preload in response to BV is modeled as a linear function:  

`V-"
t�a	" = �V-",��	" + λ
θ	
t� − V	�� (7-1a) 

where `V-"
t�a	" and �V-",��	" are effective preload and its baseline when subject is 

under BV perturbation, θ	
t� is delayed BV perturbation, and V	� is baseline BV. The 

latency observed between the dynamics of preload and BV response is reproduced via 

a second-order mixing model that is shown below in the frequency domain: 

θ	
s� = K's + 11ωD sD + 2ζω s + 1V	
s� (7-1b) 
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Norepinephrine (NE) is a potent alpha-adrenergic receptor agonist with modest 

beta-agonist activity, which renders it a powerful vasoconstrictor with less potent direct 

inotropic properties. As far as the LV preload is concerned, when inotropy is increased 

SV increases, which reduces the ESV. This is accompanied by a secondary reduction 

in EDV because when SV is increased the ventricle contains less residual BV after 

ejection (decreased ESV), which can be added to the incoming venous return during 

filling. Therefore, ventricular filling (EDV) is slightly reduced due to inferior inotropic 

effects. On the other hand, NE results in increase in ESP via enhanced TPR (dominant), 

SV and HR (secondary) as well as slight increase in LV elastance E� due to inotropy. 

While ESV drops, the significant increase in ESP is compensated by slight increase in 

E� and large reduction of	V�. (see (6.11), P�� = E�
V�� − V��). In sum, effective preload 

shows increase in response to NE administration (see Figure 7-1):  

`V-"
t�a'��) = �V-",��'��) + E �U`θ-"
t�a�I��� + `θ-"
t�a� (7-2a) 

 
Figure 7-1: Schematic of the universal platform. CV: cardiovascular, ANS: autonomic 

nervous system 
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where I�� is NE infusion dose corresponding to 50% clinical effects and �V-",��'��) is 

baseline effective preload when subject Is under vasopressor infusion. θ-" is the 

hypothetical mixing NE dose and defined in the frequency domain as follow: 

θ-"
s� = 1τs + 1D
s� (7-2b) 

where D
s� is vasopressor dose (d) in frequency domain. If we combine (7-1a) and (7-

2a), the model of preload in response to both fluid and vasopressor infusion would be: 

V-"
t� = V-",� + λ
θ	
t� − V	�� + E �U`θ-"
t�a�©ªI��� + `θ-"
t�a�©ª (7-3) 

Suppose fluid and vasopressor infusion occur in a consecutive order and E �U is equal 

to the effective preload before vasopressor infusion starts, (7-3) is simplified to: 

V-"
t� = ±V-",� + λ
θ	
t� − V	��² Ä1 + `θ-"
t�a�©ªI��� + `θ-"
t�a�©ªÇ (7-4) 

 

7.1.2. Model of Stroke Volume and Blood Pressure Responses to Change in Preload 

Perturbation in LV preload leads to change in SV and BP. In this section, we 

build the models of SV and BP based on the LV P-V framework. Given that the 

effective preload can be estimated by (7-4), TPR and E� are the two essential 

parameters required to elucidate SV and BP in response to change in LV preload. In 

general, these two parameters are subject to two sources of perturbation, baroreflex and 

vasopressor-driven stimulation: 

Baroreflex regulation or autonomic nervous system (ANS), the rapid negative feedback 

mechanism to buffer endpoints against excessive rise or fall, primarily persuades the 

cardinal parameters in which SV and BP stay at their normal level when a subject is 

under hemorrhage and fluid infusion, i.e., BV perturbation. To this end, change in TPR 
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and E� are to ensure the negative feedback on SV and BP. It was shown in Chapter 4 

that TPR as a phenomenological model of BP could adequately reproduces the 

baroreflex regulation of MAP.  

In addition, NE, as a potent alpha-agonist activator with modest effects on beta 

receptors, actuates TPR, E� and HR to achieve superior SV and BP. These sets of 

actuation are alongside the baroreflex system when subjects are under vasopressor 

infusions and can elevate SV and BP to more than normal levels in a short time.  

Based on what is explained, we developed the models of TPR and E� as follows: 

R
t� = +R� − ∆R2 sgn¤P 
t� − P ,�¥ºP 
t� − P ,�º�¸1 + ºP 
t� − P ,�º�¸ ,+ K�θ�
t� (7-5) 

E�
t� = çE�� − ∆E�2 sgn
δV
t� − δV��|δV
t� − δV�|
�-j1 + |δV
t� − δV�|�-j é + K³jθ³
t� (7-6) 

where R�, E�,�, P ,� and δV� are baseline TPR, E�, MAP and SV, and  K� and K³j  
determine the extent to which NE stimulates TPR and E�. The first portion of the 

models shown in brackets indicates change in TPR and E� due to baroreflex while the 

second portion determines the influence of NE stimulant. For simplicity, the same 

mixing effects as V-" was considered for TPR and ES, i.e.,	θ�
s� = θ³
s� = C
�\CD
s�. 
Once LV preload, TPR and E� are available, SV and BP can be estimated via 

LV P-V framework (see (6-14) and (6-17)): 

δV
t� = V��
t� − V�� = E�E� + E/ 
V��
t� − V�� = E�E� + E/ V-"
t� (7-7) 

P 
t� ≅ P��
t� = E�
t�E/
t�E�
t� + E/
t� 
V��
t� − V�� = E�
t�E/
t�E�
t� + E/
t� V-"
t� = E/δV
t� (7-8) 
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where E/
t� = R
t�HR
t� is arterial elastance.  In (7-8) it was assumed that MAP≅ESP 

(see Section 7.2.2).  

 

7.2. Experimental Data  

 

To validate the proposed platform, we used experimental data collected from 4 

pig animals under the protocol approved by the Institutional Animal Care and Use 

Committee (IACUC) at the University of North Carolina. The measurements included 

the rates of hemorrhage, infusion, as well as BV (hematocrit), BP, HR and LV pressure 

and volume under general anesthesia and mechanical ventilation.   Each animal went 

under stepwise hemorrhage with the maximum total amount of 25% of the baseline 

BV. Blood withdrawn, ranging between 250 ml to 500 ml, was continued until either 

the maximum hemorrhage was achieved or MAP dropped to 40 mmHg. Colloid fluid 

resuscitation (6% Hetastarch) was administered shortly after the end of hemorrhage 

with the rate of 20 ml/min and was continued until MAP increased to ~75% of its 

baseline value.  Once the hemodynamic responses were stabilized, the subjects received 

NE vasopressor at 4-5 distinct infusion rates of 10 min duration.  The minimum and 

maximum infusion rates used ranged between 0.1 µg/kg/min and 0.3 mcg/kg/min.  

 

7.2.1. Pressure-Volume Loop Data Feature Extraction 

EDV, ESV and their difference SV, V� and E� were extracted from LV P-V 

loop data. The feature extraction was performed every 1-2 min during the transient 

responses to hemorrhage and fluid infusion and every 5 min once the responses were 

stabilized to hemorrhage, fluid resuscitation, and vasopressor infusion. To be 
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consistent, other hemodynamic variables including BV, BP, and HR were extracted at 

the same time instants.  

First, we automatically identified the corner points associated with the end of 

diastole (lower right corner), opening of aorta (upper right corner), end of systole 

(upper left corner) and lower left corner of each selected P-V loop. To this end, we 

defined two crossing points, one for the right corners and another one for the left 

corners. We specified the average pressure in the P-V loop as	P�' = 89./\8901D , where                                 

P �U and	P +� are the maximum and minimum pressure magnitudes among all the data 

points of the loop.  The value of maximum 
V �U�  and minimum 
V +�� volumes 

associated with the loop were also identified. Coordinates of the crossing points 

corresponding to the right and left corners were defined as (1.2V �U,	P�') and 

(0.5V +�,	P�'), respectively (see Figure 7-2). To find the corners, we drew slope-

varying lines through each crossing point toward their associated corners. The corners 

were identified as the intersections of the P-V loop and the crossing lines with the 

maximal slope (see Figure 7-2). Figure 7-2 shows that, for instance, the point of 

(0.5V +�,	P�') and the purple crossing lines were utilized to detect the ESP.  

Second, the derivative of the pressure measurements corresponding to the 

points located between the lower and upper right corners as well as the lower and upper 

left corners were calculated. The points with maximum pressure variation were 

indicated as Max
dP0� and Max
dP�� (see Figure 7-2). EDV and ESV were thus 

computed as the numerical average of all the volume measurements corresponding to 

the points with LV pressure of +/-40% of Max
dP0� and	Max
dP��, respectively (see
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Figure 7-2, shown as red and brown bars respectively).  

Third, V�  and E�were identified via least square solution of the relationship 

between ESPs and corresponding volume measurement P�� = E�
V
t = t��� − V��. At 

each instant of feature extraction, 2 to 3 consecutive respiratory cycles of P-V loop data 

(about 30-40 loops in total) were selected and identified for their end of systole. Given 

that both pressure and volume measurements are under sensor noise, a total least square 

approach was employed to identify V� and E� for that instant.  

 

7.2.2. Data Evaluation  

The hemodynamic responses employed to validate the platform were collected 

from different sensor measurements: LV pressure, volume and aortic pressure 

waveform measurements. Furthermore, LV measurement features were extracted via 

detached steps including P-V loop corner point identification, averaging volume 

measurements to obtain EDV, ESV and SV, and total least square estimation of V� and 

E�. Therefore, it was uncertain whether these data can be replicated by the LV P-V loop 

 
Figure 7-2: P-V loop feature extraction. EDV and ESV are averaged volume of data 

points within the red and brown bars.   



 

143 

 

framework. To check the adequacy of the data and model’s performance, a few initial 

steps were made. Details follow:  

First, we examined how close ESP and MAP measurements are. All 4 animal data 

showed that MAP slightly underestimates ESP, in which in all the subjects ESP can be 

adequately approximated by 1.15MAP. Second, we utilized measured effective 

preload,	E�, HR, MAP and SV measurements to examine the LV P-V model 

performance to replicate the extracted SV and MAP data via equations (7-7) and (7-8). 

Our analysis showed that the LV P-V loop framework can adequately reproduce the 

MAP and SV data.  

 

7.3. Model Evaluation and identification 

 

In this section, methods to examine model performance to reproduce 

hemodynamic responses to BV perturbation and vasopressor infusion are presented. In 

particular, we evaluate how adequately the model proposed above estimates the LV 

preload, SV and BP.  

 

7.3.1. Model Fitting 

A numerical optimization approach was employed to fit the model to the 

hemodynamic responses. In particular, effective preload	V-", SV and MAP were 

utilized as the endpoints to be gauged. In this work, we assumed BV is measured and 

available as the input to the model. All the parameters supposed to be identified were 

initiated by a random guess. Details follow.     

First, we inputted BV and NE dose to the model of effective preload (7-4) (also see 

Figure 7-1). Along with the models associated with the dynamics of BV and 
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vasopressor dose (7-1b) and (7-2b), the model of preload contains 8 parameters, 4 

corresponding to the PD model of effective preload	ÀV-",�, λ, n-", I��Á and the 

remaining 4 associated with the PK of BV and vasopressor infusion, i.e., nK', ζ, ω, τo. 
It was assumed that baseline BV V	� is known.  

Second, computed preload was inputted to the models of SV. SV is a function of TPR 

(see (7-7)) and TPR is a function of MAP (see (7-5)). Therefore, the models of SV (7-

7) and BP (7-8) are coupled and must be jointly solved alongside with the models of 

TPR and	E�. To this end, a numerical root finding approach was employed. After fixing 

ΔR and ∆E� to cover experimentally observed maximal change in TPR and E� in all 4 

animals (30 [mmHg·min/l] and 1.4 [mmHg/ml]), the models of TPR and 	E� include 8 

parameters to tune: ÀR�, P ,�, K�, n�Á and	ÀE��, δV�, K³j , n³jÁ corresponding to TPR 

and	E�, respectively. To count for the difference between ESP and MAP, (7-8) was 

scaled by a factor of 1.15 (see Section 7.2.2). The computed EDV, SV and MAP via 

the initial guess of the parameters were compared with their true measurements and the 

discrepancy between them was minimized by solving the following problem: 

Ω∗ = ÀVLV,0∗,λ∗, n-"∗, I��∗ ,τ∗, K'∗ , ζ∗, ω∗, R�∗ , P ,�∗ , K�∗ , n�, E��∗ ,δV�∗, K³j∗ , n³jÁ
= argminÂ 2�ÄVLV3 
t� − VLV
t|Ω�VLV3 
t��������� Ç 4δV3
t� − δV
t|Ω�δV3
t�������� 5 ÄP 3
t� − P 
t|Ω�P 3
t��������	 Ç�2

D
 

(7-9) 

where V-"3 
t�, δV3
t�, and P 3
t� are measured preload, SV, and MAP, while V-"
t|Ω�, 
δV
t|Ω�, and P 
t|Ω� are the same parameters estimated by the model. In addition, VLV3 
t���������, 
δV3
t��������

, and P 3
t�������� are the same variables averaged over the entire study and utilized to normalize 

the error magnitude corresponding to each variable. DE algorithm was utilized for the 
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optimization, where it perturbs the initial parameters guess under frequent mutation and 

crossover until the fitting error (7-9) is minimized.  

 

7.3.2. Model identification and Sensitivity 

The model was analyzed from two standpoints: fitting performance and 

physiological relevance of identified parameters. First, to assess the model performance 

in reproducing the hemodynamic variables, RMSEs between measured versus 

estimated variables were calculated and reported. Second, the physiological relevance 

of the identified parameters was investigated. In particular, the relevance of the 

identified	V-",�,	δV�,	P ,� to their true counterparts was studied. In addition, the 

contribution of the NE stimulant on TPR and	E� change, i.e., K� and	K³j 	was studied.  

From the perspective of variable identification, the physiological variables are 

all identifiable: First, both SV and MAP are given as the variables to be fitted. 

Therefore, the variable in between, i.e., TPR (see (7-8)), is identifiable. Second, given 

that TPR, and as a result	E/, is available, LV elastance E� is also identifiable since V-" 

and SV are both given as the reference variables (see (7-7)).  

A parametric sensitivity analysis is needed to understand the importance of the 

parameters in each sub-model. Since fluid and vasopressor infusion occur in a 

consecutive order, the sensitivity of variables in response to fluid and vasopressor 

infusion can be performed separately. In this regard, we first studied the sensitivity of 

V-" parameters to fluid infusion. As the model of V-" with respect to fluid infusion is 

linear, a linear regression analysis was employed to examine whether the parameters 

of the model can be separately characterized. If we combine (7-1a) and (7-1b), we have: 
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sDV-"
s� = E−sV-"
s� −V-"
s� sV	
s� V	
s� −1s −1F
��
��
��
� 2ζωωDλωDK'λωDωD¤λV	� − V-",�¥2ζω¤λV	� − V-",�¥���

��
��
 (7-10) 

Given that baseline BV V	� is known, all the parameters in the above linear regression 

are identifiable (meaning they can be uniquely determined provided the input data are 

informative).   

On the other hand, the model of V-" in response to vasopressor infusion as well as the 

baroreflex-driven portions of SV and MAP models include nonlinear components and 

a parametric sensitivity analysis is essential. To this end, we constructed an average 

subject at which the sensitivity of V-" to NE and baroreflex-oriented SV and MAP to 

BV and NE perturbation can be examined at its nominal operating condition. Since 

hemorrhage and fluid infusion scenario was consistent between 4 subjects, the average 

BV, as an input to the SV and MAP models, as well as V-" response under BV 

perturbation were defined as the average BV and V-" measurements among all four 

subjects. The order of vasopressor doses, however, was different between different 

subjects. Therefore, we defined the nominal vasopressor input as stepwise increase in 

NE dose ranging between 0 and 2 µg/kg/min with steps of 0.5 µg/kg/min increase, at 

which each dose lasted for 10 min. The nominal	V-", SV, MAP and E� responses at 

each NE dose were defined as the average of their corresponding measurement to that 

dose in all the subjects.  

Then, we constructed the sensitivity functions associated with V-" response to NE (7-

2) and also SV (7-7) and MAP (7-8) models when TPR and ES are only influenced by 

baroreflex mechanism. To this end, we computed partial derivative of models of NE-
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driven V-" as well as baroreflex-driven SV and BP with respect to their corresponding 

parameters. From (7-2) we have: 

±4"©ª
t�²"��) =
��
��
��
�∂V��
t�∂n-"∂V��
t�∂I��∂V��
t�∂τ ��

��
��
�
=
��
��
��
� I���©ªE �U
I���©ª + `θ-"
t�a�©ª�D log ?θ-"
t�I�� A `θ-"
t�a�©ª−n-"I���©ªhCE �U
I���©ª + `θ-"
t�a�©ª�D `θ-"
t�a�©ªn-"I���©ªE �U
I���©ª + `θ-"
t�a�©ª�D `θ-"
t�a�©ªhC ∂θ-"
t�∂τ ��

��
��
�
 (7-11a) 

where by taking the derivative of (7-2b) with respect to τ and then discretizing the 

outcome into a difference equation using the Euler’s method we have: 

∂θ-"
t�∂τ 
i� = ?2 − 2T�τ A ∂θ-"
t�∂τ 
i − 1� + Ä2T�τ − 1 − T�
D
τD Ç∂θ-"
t�∂τ 
i − 2�

− T�τD `d
i − 1� − d
i − 2�a 
(7-11b) 

where T� is sampling interval. From (7-5) to (7-8), sensitivity of baroreflex-driven SV 

can be computed as follows: 
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  (7-12) 

ΨC
þ� = E��`1 + 
|δV(t) − δV�|)�-ja − 0.7sgn(δV(t) − δV�)(|δV(t) − δV�|)�-j + E/(t)`1 + (|δV(t) −
δV�|)�-ja.  

In the same way, for sensitivity of baroreflex-driven BP is as follows: 
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  (7-13) 

ΨD(t) = E�(t)±1 + ¤ºP (t) − P ,�º¥�¸² + 1ehHHR
t�R�±1 + ¤ºP 
t� − P ,�º¥�¸² − 15ehHHR
t�sgn¤P 
t� −
P ,�¥¤ºP 
t� − P ,�º¥�¸.  

We then numerically computed	4"©ª
t� to NE infusion, and 47"
t� and 489
t� to BV 

and NE perturbation by solving (7-11), (7-12), and (7-13) simultaneously with (7-4) to 

(7-8).  Since the model parameter values exhibited diversity in terms of magnitude, we 

normalized the computed sensitivity variables using the respective nominal parameter 

values and time series sequence of V-"
t�, δV
t�, and P 
t�.  For each sub-model, we 

compared the magnitudes of the normalized parametric sensitivity functions and 

compared the level of sensitivity between different parameters. Lastly, sensitivity of 

NE-driven portion of SV and BP models were determined via a linear regression model. 

Assuming baseline ES and TPR at the start of NE infusion, i.e., `E��a'��) and	`R�a'��), 
are their measurements at the end of BV perturbation, from (7-5) to (7-7) and (7-2b) 

we obtain the following equation in discrete time: 

`E�� + E/�a'��)δV
i − 1� − `E��a'��)V-"
i − 1�
= �`E��a'��)¤V-"
i� − V-"
i − 1�¥ − `E�� + E/�a'��)¤δV
i� − δV
i − 1�¥d
i − 1�V-"
i − 1�−d
i − 1�δV
i − 1� �

i

��
��

τT�K³jK³j + K���
�� (7-14) 

where E/� = ehHHR�R�. Given that both `E��a'��) and	`E/�a'��) are known, from (7-

14) and (7-15) it is evident that	τ, K³j  and K� can be uniquely identified.  
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7.4. Model Fitting and Discussion 

 

Once tuned the parameters, the model could adequately reproduce the 

hemodynamic variables. The RMSEs associated with preload, SV, and BP were 5.4 ml, 

1.4 ml, and 4.2 mmHg, respectively, which, when normalized by their respective 

average response, were consistently smaller than 8.0%. Figure 7-3 shows the true and 

estimated hemodynamic variables for an individual subject, indicating the adequate 

goodness of fit. Table 18 shows the identified parameters averaged among 4 animal 

subjects.  

From the physiological relevance perspective, the identified baseline 

values	V-",�,	δV� and	P ,� were compared with their true counterpart. When 

Table 18: Identified parameters (mean (SD)) averaged between 4 animal subjects 
PK of Preload  PD of Preload TPR E� τ [min]  0.015 (0.017) V-",� [ml] 71.3 (11.8) R� [mmHg] 15.6 (9.8) E�� [mmHg/ml] 1.03 (0.30) K' [min]  144 (97) λ [-] 0.03 (0.04) P ,� [mmHg] 58.7 (23.3) SV� [ml] 25.8 (3.8) ω [1/min]  0.18 (0.09) n-" [-] 0.63 (0.44) K� [mmHg.min2.kg/mcg.l] 43 (48) K³j  [mmHg.min.kg/mcg.ml] 1.8 (1.5) 

ζ [-]  1.95 (0.96) I�� [µg/kg/min] 19.9 (31.1) n� [-] 0.78 (0.75) n�" [-] 0.81 (0.82) 
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Figure 7-3: True and estimated hemodynamic variables in response to consecutive fluid and 

norepinephrine infusion for an individual subject. True: blue circles, Estimated: red dashed-

line 
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normalized, the errors associated with the baseline values were consistently less than 

20% on the average, indicating a good relevance between the identified parameters to 

their corresponding true values.   

The importance of parameters associated with V-", SV and BP was also studied. 

First, the identified parameters associated with PK of V-" due to BV and NE 

perturbation showed large distribution for the parameter τ (see Table 18, SD of τ was 

113% of its nominal value) while less variation was seen in ω, ζ, and K' (SD were 

50%, 49%, and 67% of their nominal values, respectively). It’s speculated that among 

the parameters corresponding to PK of BV and vasopressor, the importance of the 

parameters	ω, ζ, and K' is substantial. Figure 7-4(a) presents the sensitivity of V-" 

model parameters under NE infusion. The normalized sensitivity of V-" in response to 

NE infusion suggests that V-" response is not sensitive to τ except at the time of 

changes in dose (see Figure 7-4(a)), while	ω, ζ, and K' were shown to be identifiable 

via the regression model (7-10). Furthermore, the zero in the second order filter  (7-

1b), 
hCX<, is close to zero, indicating its dominant impact on the BV distribution (see 
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Figure 7-4: Time evolution of normalized parametric sensitivity functions (indicating 

percent change in the hemodynamic responses caused by unit percent perturbation in each 

parameter from the nominal value). (a) Sensitivity of LV effective preload to 

norepinephrine (NE) infusion, (b) sensitivity of SV to baroreflex-driven parameters, (c) 

sensitivity of BP to baroreflex-driven parameters. 
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Table 18). Figure 7-4(a) also shows the large sensitivity of EDV response with respect 

to n-" and	I��. Figures 7-4(b) and 7-4(c) show the sensitivity of baroreflex-driven 

parameters in the models of TPR (7-5) and ES (7-6), respectively. It is palpable that 

among all the parameters, the sensitivity of n³j  and n� is minimal, meaning these two 

parameters may be fixed at their nominal values between different subjects. In fact, this 

is consistent with what was found in chapter 4. In Chapter 4 we found that n� as a low 

sensitive parameter could be fixed at its nominal value (0.33 in Chapter 4). It was also 

shown that vasopressor-driven parameters in TPR and ES, that are τ, K³j  and K�, can 

be uniquely identified (see (7-14)). 

The effects of NE on TPR and E� on the average were significant, where, 2 and 

3 subjects offered large contribution of NE on TPR and E� increase, respectively (see 

Table 18).  

It was shown that the proposed universal platform was adequate to reproduce 

hemodynamic endpoint responses to consecutive BV and NE. Regarding the 

generalizability of (7-3) as well as the P-V loop model, we hypothesize that this 

platform can be extended to concurrent BV and vasopressor perturbations. As the 

limitation of the work, our findings are preliminary results from only 4 pig animals and 

further investigation is needed using more experimental data.  
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8. Conclusions 

 

Fluid resuscitation followed by vasopressor infusion is the first-line therapy in 

patient with hemorrhage and hypovolemia. In patients with decreased CV reserve, fluid 

resuscitation alone is not sufficient to augment CV performance.  Therefore, 

vasopressor agents are utilized to supplement fluid infusion and force blood into the 

capillaries of all organs.  Therefore, as a need for critical care treatment, a model of BV 

and tools to predict hemodynamic endpoints to fluid and vasopressor infusion were 

successfully developed and validated using experimental data. This dissertation 

developed a hybrid physiologic-phenomenological modeling paradigm to develop 

mathematical models for ACCS. The objectives of this modeling paradigm was shown 

to be in two fields.  First, this paradigm can provide low-order models with adaptive 

personalization capability suited to develop ACCS control algorithms.  Second, this 

paradigm can provide high-fidelity models with physiological relevance and 

transparency suited to interpret the underlying physiological principals.  In other words, 

the model’s transparency can make it possible to streamline the interpretation of the 

model during an ACCS event. 

Mathematical model of physiological systems has potential to contribute to the 

design and evaluation of closed-loop hemodynamic management controllers.  In the 

design phase, it enables the control designer to easily acquire insights on system 

dynamics and influence of each physiological component on the performance of 

closed-loop controllers via analysis and simulation.  This in turn lends confidence to 

the efficacy of the model-based closed-loop controllers by conferring them sufficient 
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level of performance and robustness against conceivable physiological variability and 

challenging clinical scenarios, which are hard to achieve with empiric and rule-based 

controllers designed by iterative trial and error process.  In the evaluation phase, 

mathematical model can facilitate the evaluation of closed-loop hemodynamic 

management controllers in the forms of in-silico and hardware-in-the-loop test methods 

similar to other types of closed-loop controlled systems (Dassau et al., 2009; Kovatchev 

et al., 2009b; León-Vargas et al., 2011).  By leveraging such non-clinical test methods, 

it is possible to perform rigorous stress testing of closed-loop hemodynamic 

management controllers in a wide range of clinical scenarios, enabling the study of the 

behavior of the closed-loop controllers under worst-case clinical scenarios.  Therefore, 

computational simulations incorporating mathematical models with established 

validity and utility for pre-clinical evaluation may be used as complementary evidence 

for the evaluation of closed-loop hemodynamic management controllers, while 

obviating the time and cost required to conduct a large-scale animal study.  From these 

perspectives, the mathematical models developed in this dissertation may serve as a 

viable initial step towards model-based design and evaluation of closed-loop 

hemodynamic management controllers. 

 

8.1. Summary of Dissertation Contributions 

 

The contributions of this research can be summarized into the following folds: 

Need for ACCS: 

1) A retrospective analysis was performed on critical care patients receiving 

treatments by human clinicians. 224 ICU stays were extracted from MIMICII database 

and analyzed for the efficacy of the treatment they received. It was shown that treatment 



 

154 

 

by human clinicians was not optimum, in which 152 ICU stays included at least one 

episode of sustained hypotension. It was shown that ACCS is indeed required. 

Model development for BV response to fluid infusion: 

2) A control-oriented hybrid model of BV to fluid infusion was developed. This 

model was validated via human’s BV responses to fluid infusion for three different 

states: (i) different BV states, (ii) different types of fluids, and (iii) different CV states. 

It was shown that once the model is fitted to the non-invasive fractional BV 

measurements in response to fluid infusion, it’s accurate and interpretable in which the 

underlying physiological parameters of an individual patient could be adequately 

estimated. The model was also expanded to be adapted to hemorrhage scenario in 

addition to fluid infusion. The expanded model was validated via BV data obtained 

from 11 sheep subjects. The model was shown to be transparent and accurate.  

Model development for hemodynamic endpoint responses to fluid infusion: 

3) Physiologic-phenomenological hybrid models of hemodynamic endpoints, 

including CO and BP, to change in BV were developed. First, the Guyton’s venous 

return model and model of LV P-V relationship were combined to develop the models 

of SV and CO in response to change in BV. Furthermore, a model of BP response to 

change in CO was developed. This model was developed based on the concept of 

baroreflex-based variation in TPR to regulate BP. A set of data from sheep animals 

under hemorrhage and fluid infusion were employed to validate the models of CO and 

BP. The model performance was satisfactory in which the CO and BP normalized 

RMSE among all the subjects was consistently less than 14.4% of their averaged 

responses. The low sensitivity parameters were also identified and averaged to their 
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nominal values. AIC showed a batter accuracy-complexity trade-off when the low 

sensitive parameters were fixed at their nominal values than fully individualized model.   

Dose-dependent models of cardinal parameters in response to vasopressor infusion: 

4) Dose-dependent and low-order phenomenological models of underlying CV 

state to vasopressor infusion were developed. A uniqueness of these models was that 

they were derived so that they can be tuned via only two dosages. It was shown the 

results were not trivial since these models were developed based on the receptor effects 

and were not simply fitted to the measured BP. Two sets of data were used for 

validation: (i) a dataset with sparse steady-state measurements and (ii) a dataset with 

high resolution dynamic transient. These models were shown to adequately reproduce 

the bi-phasic behavior of BP response to epinephrine infusion for individual subjects.  

CV model derivation to estimate underlying CV state and predict endpoints 

5) The Windkessel CV model was employed to derive a methodology to (i) 

estimate underlying CV state via measured NIBP, and (ii) predict hemodynamic 

endpoints to upcoming vasopressor doses using existing BP measurements to previous 

vasopressor dose levels. It was shown that the model performance is satisfactory for 

individual subjects, where r2 values between true versus predicted endpoints were 

consistently higher than 0.96 regardless of the employed training doses. It was shown 

that the Windkessel model may fail when there is a wide variation of PP during fluid 

infusion.  

Derivation of a universal platform for vasopressor and fluid infusion 

6) A physiologic-phenomenological low-order platform was derived to reproduce 

the cardinal parameters and hemodynamic endpoints for consecutive fluid and 

vasopressor infusion. This model was built based on LV P-V relationship.  The model 
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was shown to be adequate and transparent. It was hypothesized that the model can be 

employed for concurrent fluid and vasopressor infusion to test control algorithms, 

without involving real patients to which a patient’s safety go under risk. The model was 

validated via 4 set of data from 4 pig subjects collected by our group.  

 

8.2. Recommendations for Future Directions 

 
The following areas are suggested for the future research: 

1) The model of BV in this dissertation was only employed in response to fluid 

infusion and hemorrhage. It is of interest to explore new areas of BV model application. 

Burn and blood transfusion are among those critical care situations that clinician are 

always looking for better ways of BV resuscitation.  

2) Hemorrhage inputted to the model of BV is assumed to be known and accurate. 

However, in reality, the amount of hemorrhage is often times unknown since it mostly 

occurs inside a human’s body. Therefore, developing a technique to estimate 

hemorrhage based on measured endpoints, e.g., hematocrit, is highly rewarded.  

3) Urine inputted to the model of BV is assumed to be known and accurate. This 

endpoint is commonly utilized to guide fluid resuscitation in burn patients. To develop 

an ACCS for BV management of burn patients the model of UO needs to be derived 

and validated. It’s speculated that urine is delayed response to change in BV. 

4) The controller used in BV model is linear PI controller. It’s speculated that 

nonlinear controllers may lead to better BV estimation, in particular when there is 

oscillation in BV responses, e.g., BV response to fluid infusion under ISO 

administration.  
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5) It was shown that the identified baseline BV was slightly larger than its true 

value. The constant fluid distribution ratio estimated via steady-state portion of BV 

response to fluid infusion was regarded as the main reason for this discrepancy. Since 

there is no method estimating accurate baseline BV via fractional BV measurements, 

improvement of baseline BV estimation in the model of BV is of main interest.  

6) The dose-dependent model of vasopressor infusion was only studied in subjects 

under epinephrine administration. The efficacy of this type of modeling should be 

further investigated in case of other vasopressors than epinephrine, including 

norepinephrine and dopamine as the most common medications in critical care.  

7) The prediction of hemodynamic endpoints to vasopressor infusion was 

performed using observations from as few as two existing vasopressor dosages. The 

performance of the model needs to be further investigated when more than two dosages 

are available. It’s anticipated that this step will enhance the accuracy of hemodynamic 

response prediction.  

8) A more comprehensive validation of the models developed in this dissertation, 

including the models of BV and vasopressor infusion, is required. In particular, the 

universal platform for fluid and vasopressor infusion is only tested for 4 subjects. 

Additional animal experiments are required to perform sensitivity analysis and model 

cross validation between animals.  

9) The ultimate goal of this research is to develop ACCSs that help clinician make 

better decision for dose adjustments (in case of decision support systems) and/or define 

the hemodynamic targets (in case of closed-loop systems). Therefore, the main 

upcoming research recommended for future work is to employ and refine the models 
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developed in this research as decision support systems and eventually design closed-

loop systems that can achieve better treatments outcome.  
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