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ABSTRACT
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Hossam M. H. Shalaby, Doctor of Philosophy, 1991

Dissertation directed by: Dr. Adrian Papamarcou,
Assistant Professor,
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Systems Research Center

We evaluate the performance of several multiterminal detection systems,
each of which comprises a central detector and a network of remote sensors. The
function of the sensors is to collect data on a random signal source and process
this information for transmission to the central detector. Transmission is via
noiseless channels of limited capacity, hence data compression is necessary for
each sensor. Upon receipt of the transmitted information, the central detector
seeks to determine whether the true distribution governing the signal source
belongs to a null class II or an alternative class Z. System optimization is effected
under the classical criterion that stipulates minimization of the type II error
rate subject to an upper bound € on the type I error rate. We consider the
asymptotic performance—measured by an appropriate error exponents—of five
types of systems. The first type has a fixed number of sensors, and processes
spatially dependent but temporally independent data of growing sample size in
time. Data compression for this type is at rate that tends to zero, and distribution
classes Il and = each consist of a single element. The second type of system

is identical to the first, except for the classes II and =, which are composite.



The third type of system is a variant of the first which employs fixed-rate data
compression. The fourth type is altogether different, in that it employs a variable
number of sensors handling independent data of fixed sample size, and inter-
sensor communication is effected by two distinct feedback schemes. The fifth
type of system is yet another variant of the first in which data exhibit Markovian
dependence in time and are compressed by fixed-bit quantizers. In the majority
of cases we obtain concise characterizations of the associated error exponents

using information-theoretic tools.
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NOTATION AND CONVENTIONS

N set of natural numbers {1,2,...}
Z set of all integers {0,+1,...}

U, VvV W, X, y, 2 denote finite alphabets

v, v, w, XY, Z random variables ranging over above alphabets
D. & random vector (X1,...,X,)

X—-Y -7 X, Y, Z form a Markov chain in this order
xn" cartesian product of n copies of X

A° complement of set A

|A| number of elements (cardinality) of a set A

z" n-dimensional vector (zy,...,2Z,)

xf vector (z;,...,x;), where j > 2

P(X) space of all probability distributions on X’

Px, Py, PX, PX, PX probability distributions on A’

Qx, Qx

1y set of degenerate distributions in P(X)

|- 1] denotes sup norm

Px < Py Py is absolutely continuous w.r.t. Px

B,(Px) ball of distributions in P(X’) centered at Py and
having sup norm radius n

P% product of n copies of Px: P%(2") =[], Px(z;)

Px x Py product measure on X’ x ) with marginals
Px on X and Py on Y

Vi, Wi stochastic matrices on Z x ZF-1

Vi



W stationary distribution of Wy (if exists and is unique)
f’::ﬂulO‘W%

stationary (k — 1)th order Markov measure on the

Borel field of 2% with stationary distribution 7y

|r]
[

and transition matrix Wy (p. 95)
largest integer not exceeding r

smallest integer not less than r

aVb larger of numbers a and b

alhb smaller of numbers a and b

i () Hamming distance (p. 19)
T*(A) Hamming & neighborhood (p. 19)
exp, log understood to base 2

alog ¢ equals 0 if a =0

H(X) entropy functional

H(Y|X) conditional entropy

I(XAY) mutual information
I(XAY|Z) conditional mutual information
D(P||Q) informational divergence
D(V||W|P) conditional divergence

d(Px,Py||@Qxv)

min = py,. D(Pxy||Qxv)

Py=Py, Py =Py

Aon = A, type of a sequence z" (p. 15)

Pu(Z) set of all types of sequences in Z" (p. 15)
T3¢ =Ty set of sequences 2" of type Pz (p. 15)

Tgm = TZ,,, set of (ﬁ’z, n)-typical sequences in Z" (p. 16)
)\(z;) =AW kth order type of a sequence z" (p. 98)

vil



set of all kth order types of sequences in Z" (p. 98)
set of sequences z™ of kth order type P (p. 98)
equal by definition

end of proof
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CHAPTER 1

INTRODUCTION

In a signal detection problem one typically encounters two or more signal
categories or states of nature, and a set of random observations. Solving the
problem entails finding an optimum way of processing the observations so as to
decide on the true state of nature. The problem can be formulated as an M-
ary hypothesis testing problem: based on n data samples, one seeks a decision
rule for declaring which of the M competing hypotheses is true. There are many
useful ways of defining optimality, most notably the classical, Bayes, and minimax

formulations.

The signal detection problems considered in this thesis are binary hypothesis
testing problems (M = 2) with the classical optimality criterion. We thus have
two hypotheses Hy (the null hypothesis) and Hy (the alternative hypothesis),
and we assume that the distribution of the n data samples belongs to one of two
disjoint classes of distributions II (under Hy) and = (under H;). Acceptance of
H; when Hj is true is termed type I error or false alarm, while acceptance of H
when Hj is true is termed type II error or miss. In conformity with the classical
criterion, we seek a test (i.e., decision rule) which minimizes the probability of
type II error subject to a prescribed upper bound on the probability of type I
error. This upper bound is called the significance level, or simply level, of the test.
The optimum test in this case is well known and is given by the Neyman-Pearson

lemma [1].

In simple binary hypothesis testing, the classes II and = consist of single
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distributions P and ) respectively. For the case in which the n data samples
are independent and identically distributed according to marginal distributions
Px and Qyx, the exponential rate of decrease (in n) of the least type II error
probability achievable under the classical criterion is given by Stein’s lemma [8].
This rate of convergence, called the error ezponent, is shown by that lemma to be
equal to D(Px||Qx) for all nontrivial choices of significance level. Here D(:||-) is
the Kullback-Leibler informational divergence [2,3] defined for distributions on a

finite space X’ by

Px(x)
Qx(z)

D(Px||Qx) = > Px(x)log
zeX

Stein’s lemma illustrates a connection between statistics and information
theory in that it characterizes the asymptotics of classical hypothesis testing by
means of a functional that is firmly grounded in the information-theoretic lit-
erature. As it turns out, it is also possible to give proofs of that lemma using
arguments that are almost exclusively information-theoretic. This interface be-
tween the two disciplines has also been explored by Kullback and Leibler [2,3],
who extensively used the divergence functional to study hypothesis testing prob-
lems; and by Csiszéar [6], who applied some statistical techniques developed by

Sanov [4] and Hoeffding [5] to information theory.

Traditionally, in formulating signal detection problems one usually assumes
that the data are collected by sensors and communicated fully to the decision
maker or central detector. This assumption is not, however, always realistic. One
often encounters situations in which either the communication channel between

sensors and decision maker is of restricted capacity, or else system design dictates
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that the cost and burden of information processing is shared by sensors and
central detector alike. In this case the original observations are not communicated
fully to the central detector; instead, they are compressed by local encoders prior
to transmission to the central detector. This compression clearly results in loss of
information; no further loss is assumed, i.e., transmission to the central detector
is assumed error-free. Thus the central detector in effect observes the outputs
of the local encoders, and processes these into a binary decision as to the true
hypothesis. We note that in the case of a system comprising a central detector
and one sensor, it is possible for the sensor to transmit a single binary digit
without loss of optimality. This is because the encoder can perform the task of
the central detector in declaring which hypothesis is true, and thereafter transmit
the (binary) decision. The situation clearly changes if the system comprises
more than one sensor; such a system is commonly known as a distributed, or

decentralized detection system.

Tenney and Sandell were the first to address problems in distributed de-
tection. In their pioneering work [18], they considered a setup consisting of a
fusion center (i.e., decision maker) linked to two remote sensors. They assumed
independent observations across sensors, with each sensor transmitting a binary
local decision to the fusion center. Upon receipt of the local decisions, the fusion
center decides which hypothesis is true using a prescribed decision rule. The
contribution of that work was the optimal design, on the basis of a Bayesian cri-
terion, of the local decision rules for an a prior: fixed fusion rule. It was shown
that the local decision rule for each sensor is given by a likelihood ratio test with

an appropriate threshold.



In the same setup, Chair and Varshney [20] studied the optimum fusion rule
for prescribed local decision rules. They showed that the optimum fusion rule
can be evaluated using a weighted sum of the binary decisions of the sensors. The
weights are functions of the probability of miss and probability of false alarm of

the individual sensors.

A similar problem with N independent sensors was studied in [21], under a
classical criterion for the local and global (i.e., fusion) decisions. The optimum
fusion rule, for @ priori fixed local decision rules, was obtained. Moreover, a
variant of the above problem was studied in which each sensor transmits, in ad-
dition to its binary decision, quality information bits that indicate its confidence
on that decision. It was shown by examples that these quality bits can lead to

considerable improvement in the performance of the overall system.

In [28], Geraniotis and Chau considered a multi-sensor detection system with
observations characterized by incomplete knowledge of the underlying probability
distributions. The minimax robust fusion rules were derived for three different
fusion schemes, namely block, sequential, and serial fusion rules. The robust
decision rules were shown to utilize threshold tests based on likelihood ratios
at both the sensors and the fusion center. Moreover, under the assumption
of identical sensor statistics and large number of sensors, it was shown that
the optimality of the sequential fusion rule remains unaffected if the thresholds

employed by the local decision rules are constrained to be equal.

A plethora of interesting issues in distributed detection have been discussed
in the literature; selected references include [14,15,19,22-30,32,33]. It should be

noted that most known results assume that the observations are conditionally
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independent (given the hypotheses) across the sensors, which is not always true
in practice. Yet once the independence assumption is removed, decentralized
detection problems become quite difficult from an algorithmic viewpoint. This
was pointed out in a study by Tsitsiklis and Athans [22] of the complexity of
computation of optimal schemes for such problems, where it was also suggested
that in most practical applications one should seek heuristic or ad hoc designs that
achieve “good” results, and forgo the pursuit of absolute optimality. Instances of
studies involving dependence in time and/or across sensors include [27], where a
known weak signal in m-dependent or ¢-mixing noise is considered. Each sensor
employs (suboptimal) decision tests based on memoryless nonlincarities. Based

on minimizing an average cost function, the optimal nonlinearities are determined

for the case of two sensors.

The models encountered in the aforementioned studies employed local en-
coders that compressed their observations into messages having a fixed range of
values independent of sample size n. The information-theoretic approach to the
distributed detection problem pursued in [9-13] broadened the class of admis-
sible encoders by allowing codebooks (i.e., scts of messages) whose size varied
with n. It also yielded complete results on the asymptotic properties of optimal
distributed detection systems with spatially dependent observations. It is this

approach that we intend to follow in this thesis.

In its simplest form, our setup comprises a detector or decision maker linked
to two remote sensors Sx and Sy. The sensors Sy and Sy observe the respective
components of the random sequence {(-\';,Y;)}2_,, and encode their observations

using a maximum of nRy(n) and nRy(n) bits, respectively. Thus Rx(n) and
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Ry(n) are the rates of the local encoders. Upon receipt of the two codewords,
the detector accepts or rejects Hy in accordance with the classical criterion that
stipulates minimization of the type II error probability subject to a fixed upper

bound € on the type I error probability.

It is worth noting that one particular model, namely that for which the
observed sequence {(X;,Y;)} is temporally independent but spatially depen-
dent and Rx(n) = Ry(n) = oo, admits a rather simple analysis. In that case,
neither sensor needs to compress its data, and the detector knows the observed
sequence {(X;,Y;)}, precisely. The optimal decision rule is then specified by
the Neyman-Pearson lemma; and using Stein’s lemma, the resulting error expo-
nent is given by

D(Pxy|l@xy) ,

where Pxy (resp. Qxy) denotes the distribution of (X;,Y;) under Hy (resp. Hy).

In the case of arbitrary Rx(n) and Ry(n), the determination of the optimal
detector is a highly complex task that also involves the optimization of the data
encoders at Sx and Sy. For this reason, it is preferable to study tractable
compression/decision schemes which are asymptotically optimal, i.e., achieve the
same error exponents as their optimal counterparts. The investigations in [10-13]

are examples of such studies.

In [10], Ahlswede and Csiszar discussed the problem of one-sided fixed-rate
compression (i.e., Rx(n) = Rx and Ry(n) =o0). In the special case of hy-
pothesis testing against independence (i.e., @xy = Px X Py), they obtained
a single-letter characterization (i.e., computable characterization) of the error

exponent by recourse to entropy characterization techniques [17]. Also, in the
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general case where Qxy > 0, they showed that the error exponent is indepen-
dent of the value of the upper bound € on the probability of type I error. Yet
the problem of single-letter characterization of the error exponent in the case
Qxy # Px x Py remained unsolved; single-letter lower bounds to that exponent
were obtained in both [10] and [11] using compression/decision schemes whose

asymptotic optimality was not established.

Amari and Han [13] considered this problem from a differential geometric
viewpoint. They restricted their attention to classes of encoders which were
based on symmetric functions and emulated discrete memoryless channels. Their
results showed that the bounds given by Han [11] were indeed achievable by
use of the above types of encoders. In a somewhat different model involving
exponentially decaying bounds on the type I error rate, Han and IKobayashi
[12] developed good lower bounds on the error exponent for one- and two-sided

fixed-rate compression.

Han [11] studied also the case of one-bit compression, i.e., nRx(n) = 1
and/or nRy(n) = 1. In this case he was able to find an asymptotically optimal

compression scheme and evaluate the corresponding error exponent.

This thesis builds on the aforementioned contributions by applying infor-
mation theoretic tools to the asymptotic study of distributed detection systems
involving (i) variable sample sizes or numbers of sensors; (ii) spatial and/or tem-
poral data dependence; and (iii) fixed or variable-rate data compression. The

material is organized as follows.

In Chapter 2 we study the problem of simple hypothesis testing under one-

and two-sided compression at asymptotically zero rate, i.e., Rx(n) — 0 and/or

7



Ry(n) — 0. This is motivated by the one-bit compression problems studied in
[11]. Observations are assumed to be 1.i.d. under both hypotheses and corre-
lated across sensors. A complete characterization of the error exponent, under a
positivity constraint on the alternative distribution, is obtained. It is also shown
that this error exponent is independent of the upper bound € on the type I error
probability and is insensitive to variations in compression rate as long as the
asymptotic rate on at least one of the sensors is zero. Extensions to three or

more sensors under analogous assumptions are also obtained.

In Chapter 3 we study composite hypothesis testing under compression at
asymptotically zero rate. We obtain characterizations of the error exponents
associated with four different composite hypothesis problems. These characteri-
zations demonstrate that the conclusions of Chapter 1 do not hold in the more
general situation of hypotheses involving composite distribution classes, in that

the error exponent depends on both the level € and the actual compression rate.

Chapter 4 is devoted to one-sided compression at fixed rate. We find a
sequence of lower bounds on the error exponent and show that this sequence
converges to the true value. A complete (single-letterization) solution is given

for the special case of testing against a product alternative Qxy = Qx x Qy.

In Chapter 5 we consider decentralized detection systems with a large num-
ber N of sensors that collect spatially independent and identically distributed
data. Each sensor transmits a fixed number of bits to the fusion center. This
system was studied in [23] where it was shown that under a Bayesian criterion
the sensors can use the same decision rule without loss of asymptotic (N — oo)

optimality. In this chapter we investigate the effects of two types of feedback
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on the above system. One entails the transmission of sensor data to the fusion
center in two stages with broadcast of feedback information from the center to
the sensors after the first stage. The other involves information exchange be-
tween sensors prior to transmission to the fusion center. We show that under
the classical Neyman-Pearson criterion, only the latter type of feedback yields
an improvement on the asymptotic performance (in terms of the error exponent)

of the above system as N — oo.

In Chapter 6 we remove the memoryless (i.i.d.) assumption on the informa-
tion source and extend the results obtained in Chapter 2 to stationary ergodic
Markov sources. Specifically, we obtain the error exponent for siinple hypothesis

testing under compression with fixed codebook sizes.

Before proceeding to the main body of our results, we would like to give
a brief overview of the method of attack followed in this work. Most of our
results are characterizations of error exponents. In proving the main theorems,
we use the common technique of information theory whereby both a direct (or
positive) and a converse result are established. In the direct result, we construct
a sequence of encoding schemes that achieves the figure of merit (i.e., error expo-
nent) proposed in the statement of the theorem. In the converse part, we show
that we cannot find an encoding scheme that yields a better error exponent. The
main tools used in establishing direct results involve the concept of a typical se-
quence [17], which is discussed in Chapter 2. Most converse results in this thesis
depend on a pivotal theorem (also given in Chapter 2) whose proof is based on

the celebrated blowing-up lemma [17).



CHAPTER 2

MULTITERMINAL SIMPLE HYPOTHESIS TESTING WITH

ZERO-RATE DATA COMPRESSION

2.1. Introduction

We consider the problem of testing a simple null hypothesis Hy against
a simple alternative H; on the basis of compressed data from a discrete-time,
discrete-alphabet, memoryless multiple source. In its simplest form, our setup
comprises two remote sensors Sx and Sy which are linked to a central detec-
tor. The sensors Sx and Sy observe the respective components of the randomn
sequence {(X;,Y;)}",, and encode their observations into a maximum of A,
and N,, messages, respectively. Upon receipt of the two codewords, the central
detector accepts or rejects the null hypothesis in conformity with the classical
criterion that stipulates minimization of the probability of falsely accepting Hg

(type II error) subject to a fixed upper bound € on the probability of falsely

rejecting Hy (type I error).

Distributed detection systems of the above type have been widely studied
in the recent literature. The models most frequently encountered [18-30] employ
fixed codebook sizes M, = M and N, = N, where M and N are often equal to
2. In such cases, the central detector receives from each sensor what amounts to
a local decision, possibly accompanied by an assessment (on a fixed finite-valued

scale) of the sensor’s confidence in that decision. Of course, it is also possible
to design distributed detection systems employing varying codebook sizes A,

and N,, as 1s the case with certain models discussed in the information-theoretic
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literature [9-13,31] and in this thesis.

As we discussed in Chapter 1, the particular model in which M,, and N, are
large enough so that no compression is needed, the analysis is well known. In
that case the optimal decision rule for testing Hy : Pxy versus H; : Qxy at any
level € is specified by the Neyman-Pearson lemma. Furthermore, the resulting

minimum type II error probability 3,(e) satisfies the asymptotic identity

~lim Tlog fa(e) = D(PxyIQxv)

The quantity appearing on the left-hand side of the above equation (which is due

to Stein [8]) is termed the error ezponent for the hypothesis testing problem.

In this chapter we consider the hypothesis testing problem under data com-
pression at (asymptotically) zero-rate. In other words, we assume that the code-

book sizes satisfy constraints of the type
1 1
Rx(n) = —logM, — 0, Ry(n) = —logN, — 0.
n n

Our inquiry was motivated by the study in [11] of hypothesis testing under two-
sided one-bit (M, = 2, N, = 2), and one-sided one-bit (M, = 2, N, = o),
compression. For those systems, Han proposed a simple scheme that compressed
both Sx and Sy to one bit, was independent of the level €, and yielded a simply
characterized lower bound on the error exponent. He then proved by converse
theorems the tightness of the lower bound

(i) for all values of € in the case of two-sided one-bit compression;

(i1) for a range (0,€p) of values of €, where ¢y < 1, in the case of one-sided

one-bit compression.
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We complement and extend the above results as follows. For fixed-level sim-
ple hypothesis testing under the positivity constraint () xy > 0, we prove that
the two-sided one-bit compression/decision scheme proposed by Han in [11] is, for
all € € (0,1), asymptotically optimal in the broader class of one-sided zero-rate
compression/decision schemes. Thus an optimal distributed detection system
employing two sensors, of which one transmits data at a vanishing rate while the
other supplies complete information about its observations, is asymptotically no
better than optimal system in which each sensor transmits a single binary digit.
It also follows as a special case that opéimal systems for fixed codebook-size com-
pression (M, = M, N, = N) have the same asymptotic performance regardless
of the values M and N. In other words, no gain in asymptotic performance can
result by allowing each sensor to transmit a quantized, or soft, decision [19,21,30]

instead of a binary, or hard, decision.

The formulation of the general problem is given in Section 2.2, together with
pertinent notation. The converse theorem for simple hypothesis testing appears
in Section 2.3, followed in Section 2.4 by an extension to the multivariate case

(r sensors, where r > 2). Section 2.5 contains some concluding remarks.

2.2. Problem statement and preliminaries

(a) General notation. The observations of Sx and Sy are denoted by the
sequences X" = (Xy,...,X,) € X" and Y™ = (Y1,...,Y,) € V", respectively,
and the alphabets A’ and Y are assumed finite. Since the multiple source is
memoryless, the sequence of pairs ((X1,Y1),...,(Xn,Yn)) € (X X V)™ is 1i.d.
under both hypotheses. In what follows, it will be convenient to deal with the

product space X" x V" instead of (X x V)", and thus the observations will be
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collectively represented by the pair (X", Y™) €A™ x Y™

By virtue of the aforementioned i.i.d. assumption, all distributions of interest
can be specified through bivariate distributions on X x ). Under the null hy-
pothesis, the distribution of any pair (X;,Y;) is usually denoted by Pxy, and its
respective marginals by Px and Py. The distributions of X", ¥, and (X", Y")
under the same hypothesis are denoted by P%, Py and Pgy-, respectively. The

ii.d. assumption then implies that for all (",y") in X" x Y7,

Py (a™,y") = [[ Pxv(=i,u) -
i=1

Analogous notation is employed for the alternative hypothesis, with ¢} replacing
P. We will also have occasion to use distributions Pxy, Pxy and Pyy on X x Yy,

which will yield marginals and higher-order distributions in the same manner as

Pxy and Qxvy.

The spaces of all distributions on X', ), and X x ) will be denoted by P(X),

P(Y) and P(X x ), respectively.

The compression of X™ and Y™ is effected by encoders f,, and ¢,, respec-

tively, where
foni X" {1,... . M,}, and gn YY" = {1,... Ny} .
For one-sided zero-rate compression of X™ we assume that N, > |V|" and
!
M, > 2, lim —log M,, =0, (2.1)
n n
and similarly for one-sided zero-rate compression of Y, we have M,, > |X'|™ and

1
N, >2, lim=logN,=0. (2.2)
n n
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For two-sided zero-rate compression, both (2.1) and (2.2) are assumed.

The central detector is represented by the function
n:{1,..., Mp} x{1,...,Np} — {0,1} ,

where the output 0 signifies the acceptance of the null hypothesis Hy, and 1 its
rejection. This induces a partition of the original (i.e., non-compressed) sample

space X™ x Y™ into an acceptance region

ef n n n n n n
An E (2", y") € X" X Y b falz™), ga(y™)) = 0},
and a critical (or rejection) region AS.

By nature of the encoding process, the acceptance region can be decomposed
into M,, rectangles C; x F; in X™ x Y™ that possess disjoint projections C; on

X™. More precisely, if for every 1 <1 < M,, we define
Ci = {z" e X" : f,(a") =i} and Fi = {y" € Y" :¢n(2,9(y")) =0},
then we can write
My
An = [JCix F,  where (Vi#j) CinCj=0. (2.3)
=1

We can obtain an alternative representation for A, by partitioning Y" into Ny

sets:

Nn
A = |JDixGi, where (Vi#j) DinDj=0.  (2.4)
i=1

Note that conditions (2.3) and (2.4) jointly characterize all admissible acceptance
regions under two-sided compression with codebook sizes M,, (for X™) and N,
(for Y™). Taken separately, the above conditions characterize the admissible

acceptance regions under one-sided compression of X™ and Y, respectively.
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(b) Simple hypothesis testing. The optimal acceptance region for testing
Hy : P versus H; : Q at a given level € € (0,1) is one that minimizes Q% (Ay)
over all acceptance regions A4,, that
(C1) yield a value of P%y.(AS) less than or equal to ¢;

and

(C2) satisfy the appropriate compression constraints; namely
e (2.1) and (2.3) for one-sided compression of X";
e (2.2) and (2.4) for one-sided compression of Y;
e (2.1), (2.2), (2.3) and (2.4) for two-sided compression.
The resulting minimum probability of type II error is denoted by 8,,(My, Ny, €),

and the associated error exponent is given by
def .1
6(M,N,e) = —lim—log 3,(My,Ny,¢€),
n on
provided the limit on the right-hand side exists.

(¢) Typical sequences. OQur proofs rely on the concept of a typical sequence,

as developed in [17]. We cite some basic definitions and facts on typical sequences.

The type of a sequence z" € X" is the distribution A, on X defined by the
relationship

(Va € X) No(a) & % N(alz™),

where N(a|z") is the number of terms in 2" equal to a. The set of all types of

sequences in X, namely {)\; : " € X"}, will be denoted by P, (X).

Given a type Px € Pn(X), we will denote by T)’} the set of sequences
2" € X" of type Px:
Ay def n n »
T% = {2 € X" : A\, = Px} .
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Also, for an arbitrary distribution Px on X and a constant n > 0, we will denote
by Tx‘%,n the set of (Px,n)-typical sequences in X™. A sequence z” is (Px,n)-
typical if |A;(a) — Px(a)| < 5 for every letter a € X and, in addition, A,(a) =0
for every a such that Px(a) = 0. Thus, if || - || denotes the sup norm and <

denotes absolute continuity, we have

T, % fam e & ||\, — By|| <1, Ae < Py}

In the same manner, we will denote by T% , and T)Té,n the sets of (Px,n)- and
(Px,n)- (respectively) typical sequences in X™. We will have no need to consider

sequences with exact or approximate type Qx.

The proofs of the following lemmas appear in [17]. As usual, |4| denotes

the size of A.

LEMMA 2.1. The size of Pp(X) is at most (n+1)|*l. For any Px in P,(X)

and Qx in P(X),
(n+1)"lexpnH(Px)] < |T}] < exp[nH(Px)],
and

(n+1)7* exp[-nD(Px||Qx)] < Q%(T}) < exp[-nD(Px||Qx)] -

LEMMA 2.2. For any distribution Px on X andn > 0,

|¥]
4dnn? -~

P)?(T)?,n) 2 1 -
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One can easily modify the above exposition to accommodate pairs (z",y") €
AX™ x Y" by reverting to their representation in (X x Y)®. Thus the type of

(z™,y") is the distribution A,;, on X x Y such that

Ma(@,h) = Z[i + (i) = (@)}

and the class P, (X' x}), as well as the sets T)%Y CX"xY" and T)?Y,n C AmxYy",

are defined accordingly.

In this and the following sections, we will omit the superscript n from 77,

as n will be essentially constant.

2.3. A converse theorem for simple hypothesis testing.

In this section, we derive the error exponent for simple hypothesis testing
under the positivity condition @xy > 0. We show that the error exponent
8(M, N, ¢) is independent of € and the compression scheme used (one-sided or
two-sided), provided the asymptotic zero-rate constraints (2.1) and/or (2.2) are

met. Furthermore, its value is given by the minimum of the quantity

D(Pxy||Qxv)

over all bivariate distributions Pxy on X x Y whose marginals on X’ and V agree

with those of Pxy.

The positive result, namely the existence of a sequence of acceptance regions
that achieve the above value, was shown in [11]. The acceptance regions used in

that work had the simple rectangular form

11)(177 X Tyaﬂ ?
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and were thus admissible under the most stringent of two-sided compression
schemes, namely M, = N, = 2. Our result here is a strong converse for one-
sided compression of X", i.e., we show that for every value of € € (0,1) and every
sequence of acceptance regions A, satisfying (C1), (2.1) and (2.3), the following
is true:

. .1 . >
—liminf — log Q%y(A,) < min  D(Pxy||@xy) -
n n Pxy:

ISX =Px, f’y:PY

By symmetry, the same is true for one-sided compression of Y™, and a fortiors,

for two-sided compression.

THEOREM 2.1. Let Pxy be arbitrary, and Qxy > 0. For all e € (0,1) and
sequences M, and A, satisfying conditions (2.1) and (2.3), the following is true:
if for every n,

Piy(Ay) e,
then

o1 n . 5
—hmnmfglog Q% v (An) < min D(Pxy||@xy) .
Px =P.YA: );y =Py

PROOF. By (2.3), we have
M,
.An = U C,‘ X F,' y
1=1

where the C;’s are pairwise disjoint. Assume that P%,-(A°) < ¢, or equivalently,
P%y(A) > 1 — e. Then there exists an index 79 such that

1—¢
M,

P)Y}Y(Cio X Fio) 2
Letting C' = C;, and F = F;,, we can rewrite the above as

Py(C x F) > exp(—néy,), (3.1)
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where

6n = Sn(Mnye) = ——log(1 =€)+ ~log M, ,
n n

and é,, — 0 by condition (2.1). Equation (3.1) clearly implies that

PR(C) > exp(—nén) and  Pp(F) > exp(—néby) . (3.2)

Thus asymptotically, neither C nor F has “exponentially small” probability.
By the blowing-up lemma [17, Theorem 5.4], this fact implies that both sets
possess Hamming k,-neighborhoods which are asymptotically “as thin” as the
sets themselves (i.e., k,/n — 0), and whose probabilities approach unity as n
tends to infinity. Specifically, let dpy(-,-) denote Hamming distance; that is for
any u", 2" € X",
n
dp(u™,z™) e ZdH(ui,wi) ;
=1

where

def { 0, ifu;=u;;

du(ui,zi) = i
H(qul) 1, otherwise ;

and define the Hamming k-neighborhood I'*C' of C by

def

T°C £ {u"eA™ : (32" € C)dy(z",u") <k} .

The blowing-up lemma asserts that under condition (3.2), there exist sequences

ky, and v, satisfying
kn/n— 0 and Yn — 0,
and such that

PYIT*C) > 1—~, and PET*F) > 1—1,. (3.3)

19



Furthermore, k, and 7, depend only on |X|, || and é,, and not on Pxy.
In what follows, we will use k instead of &, in all superscripts.

Equation (3.3) clearly holds true if we replace P by P, where Pxy satisfies

the marginal constraints
Px = Px and Py = Py .
Using the elementary property Pr(AN B) > Pr(A) + Pr(B) — 1, we then obtain
PR (TFC x TFF) > PR(TFC) + PR(T*F) - 1,

and hence

Py (T*C xT*F) > 1-27,. (3.4)

Thus under the n-fold product of Pxy, the probability of the rectangle

I'*C x T*F approaches unity as n tends to infinity. By Lemma 2.2, the same is

true of the set of (Pxy,n)-typical elements in X™ x Y", where n = n,, = n=1/3,

Indeed,

XY X

P)?Y(TXY,W) 2 1- Ann? - 4nl/3 -

Hence, for all sufficiently large n, we obtain

PR ((TFC xT*FYN Txy,y) > (3.5)

N =

By definition of Ty, ,, we have the following decomposition:

TXY,n - U Txy .
IS‘YyE'pn(XXy):
IPxy-Pxyll<n,

Pxy<Pxy
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Thus, observing that the elements of a given Tyy are equiprobable under any

1.1.d. measure, we can rewrite (3.5) as

L TEC x T*FYNT 1
Z Piy(Txvy) I = ) 0 Txv| 2 5
Pxy€Pn(XXY): ‘TXY}
NPxy-Pxyll<n,
FPxy<Pxy

At least one of the fractions in the above sum must be greater than or equal to

1/2; hence there exists a type Pxy € Po(X x V) satisfying
IPxy = Pxyl| < n and  Pxy < Pxy,

and such that
(T*C x T*F)n Txy]| o1
Txy| -2

Since pairs (2",y") of the same type are also equiprobable under Q% -, we con-

clude that for the above type Pxy,
Q%y(TFC x T*F) > Q% (T¥C x T*FY N Txy)
)|(Fk0 x TFF)n Txy|

1Txy]

= Q%vy(Txy (3.6)

1.
2 §QXY(TXY) :
We have thus established that the probabilities of the sets T*C x T*F and
Ty are of the same exponential order under Q% .. We now show that the same

is true of the pair I'*C x T'*F and C x F. The argument is similar to that given

in [10], Section IV.

Consider an arbitrary element (u",v™) of T*C x ¥ F. By definition of T'*,
there exists at least one element (z",y") € C x F such that (z;,y;) differs from

(ui, vi) for at most 2k, values of i. We thus have

Qy (™ o™) = ] Qxv(uivi)
i=1

IA

p“Zk HQXY(J«%%) = p_‘QkQ?(Y(In’yn)a (37)
=1
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where

def .
= >0.
p e Qxv(z,y)
As (u™,v™) ranges over ['*C' x'*F, each element (z",y") of C' x F will be selected

at most |T*(2™)|-|T*(y™)| times. By virtue of this, (3.7) yields
Q%y(T*C xIT*F) < p?* M (@™)|IP*(y™)|Q%y (C x F) .
From [17] we have the upper bound
D) < exp[n(h(22) + E210g )]
where h(-) denotes the binary entropy function. Thus we may write
%y(P*C x TFF) < exp(nén)Q%y(C x F) | (3.8)

where

kn\  kn 2k,
= 2k () + =2 log(]. i} — 0.
€n h( - ) + —log(|X[|Y]) = —=logp — 0

As a final step, we combine equations (3.6) and (3.8) with the upper bound
on Q% (Txy) provided by Lemma (2.1). Thus

Qv (C x F) > 5 exp(-néa)@hy (Txy)
_ (nt 1)~
- 9

ps}

exp[—n(D(Pxvy||Qxy) + £,)]

> exp[—n(D(Pxy||@xy) + ()l

where
Cn - Cn(p’ea]\/ITHIA,I?IyI) — 0.

Over the range of pairs (ny,Qxy) such that and QXY > p, the divergence
functional D(nyl]Q xv) is convex and bounded, and thus also uniformly con-

tinuous. It follows that we can find a sequence

pn = palp, |X[,|Y]) — O
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such that

1Pxy — Pxy||<na=n""" = |D(Pxy||Q@xy) - D(Pxy||Qxvy)| < tin -

Hence
Qxy(C x F) > exp[-n(D(Pxyl|Qxy) + Cn+ pn)] , (3.9)

and consequently

... 1 5
——hrr%mf—n—logQ}y(An) < D(Pxvyl|lQ@xy) -

Since Pxy satisfies the appropriate marginal constraints, the proof is complete.

A

The above result, in conjunction with the positive part of Theorem 5 in [11],

yields

THEOREM 2.2. If Qxy > 0, the error exponent for Hy : Pxy versus

H, : Qxy under one-sided or two-sided zero-rate compression is given by

O(M,N,e) = min D(Pxy||Qxy) . A

PX =PXJ,{);5.y=Py
REMARK. In the proof of the converse theorem, the constants ¢, and j,
appearing on the right-hand side of equation (3.9) are independent of the distri-
butions Pxy, ]5Xy, and depend on Qxy only through the lower bound p. With

this in mind, we state without proof the following variant of Theorem 2.1, which

will be useful in establishing converse results in the chapters that follow.

THEOREM 2.3. Fix p > 0 and € € (0,1), and let M,, be a sequence of
integers satisfying (2.1). Then there exists a sequence
Vp = Vn(pa € Mp, |X|> |y|) — 0
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such that for every QXY € P(X x Y) that satisfies Q~XY > p, and every JSXy €

P(X x)Y),Ce X" F e Y that satisfy either

. . 1—c¢
(3Pxy: Px =Px, Py =Py) Pyy(CxF) > i
or, more generally,
. 1—c¢ - 1—¢€
n > - n > &
the following is true:
Qxy(Cx F) 2 expl-n(D(Pxv||@xy) + va] - A

2.4. Arbitrary number of sensors.

The results of the previous section can be extended to multiterminal de-
tection systems employing r sensors, where r > 2. Here the problem is that of
testing Hy : P versus Hy : (), where P and @ are r-variate distributions. As in
the case r = 2, we assume @) > 0 and that at least » — 1 source components are
compressed at asymptotically zero rate. It is then possible to prove an analog of
Theorem 2.2 stating that the error exponent is given by the minimum of D(P||Q)
over all r-variate distributions P whose univariate marginals agree with those of
P. We give a sketch of the proof for the case of three sensors Sx, Sy, and Sz,

at least the first two of which are compressed at asymptotically zero rate.

Direct part. Following the proof of Theorem 5 [11], we propose a sequence
of acceptance regions A, in X™ x Y* x Z" defined by
An = Ty X T¥y X Tz
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where n = n, = n~1/3. One can easily show that A4, D T)%YZ,( for suitable

(=, >0, (, — 0. Thus by Lemma 2.2.,
P;}YZ(An) >1-—e€

for all sufficiently large n. Also, by the type-counting argument given in [11], one

can establish the relationship

.1 . 5
—lim —log Q% ,(A,) = min D(Pxyz||Qxyz) -
non Fxvyz:
Py =Py, PY_PY
Py=Py

Converse part. Assuming that X" and Y™ are compressed to a maximum
of M, and N, bits, respectively, we can write any acceptance region A, in

AT x Yt x Z™ as
M, N,

An = UUCiXEjXFij'

1=17=1

Here the Fj;’s are subsets of Z", and the C;’s and Ej;’s form partitions of A"

and Y™, respectively. Thus there exists a subset C' x E x F' of A, such that

1—c¢

PR F) > ;
Yyz(C X EXF) > ML,

Using the asymptotic zero rate conditions (2.1) and (2.2), one obtains the coun-

terpart of (3.1), namely

P}\ZYZ(C' X E X F) 2 exp(—nén) .

and the proof proceeds as hefore. A
As in the bivariate case, the value of the exponent does not depend on the
level € and the codebook sizes. Thus in particular, systems employing one-bit

compression per source component can attain the same asymptotic performance
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as more complex systems employing zero-rate compression on r — 1 source com-

ponents, and no compression at all on the remaining component.

More generally, if ., out of r source components are compressed at asymp-
totically zero rate and the remaining r, = r — r, are not compressed, the error
exponent can be shown (by suitably modifying the arguments in the proofs of
Theorem 5, {11] and Theorem 2.1 above) to be given by the minimum of D(P||Q)
over all distributions P that agree with P on:

(1) the univariate marginals corresponding to the compressed source compo-
nents; and

(ii) the ry-variate marginal corresponding to the r, components which are not
compressed.

Thus the latter r, components are essentially treated as one. It also fol-
lows for r, > 2 that if we impose zero-rate compression on any one of these r,

components, then the error exponent will (in general) decrease.

2.5. Concluding remarks

The positivity assumption on the alternative hypothesis was essential for
the derivation of the converse results in this chapter. Without this assumption,
we could not have applied the blowing-up lemma in the proof of the pivotal
Theorems 2.1 and 2.3. The same difficulty was encountered in the proof of the
converse result in [10], Theorem 6, which also employed the blowing-up lemma.

We hope that this obstacle will eventually be removed.

In the meantime, we should note that in the case of simple hypothesis testing,
there are instances where @ # 0 and D(P]|Q) is trivially minimized by P = P.

In such cases, the resulting minimum is equal to the error exponent under no data
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compression (cf. Stein’s lemma [8]), and the converse result follows immediately.

We must also emphasize that Theorem 2.2 does not subsume its counterpart
in [11]. Although the converse theorem appearing in that work was valid for one-
bit compression of Sx and for € € (0,¢€) only, the hypothesis of that theorem

did not impose any constraints on @ xy other than D(Pxvy||Qxy) < co.

The technique used in the proof of Theorem 2.1 also yielded Theorem 2.3,
which is the basis for the converse results on systems involving composite hy-

pothesis testing and decision feedback, to be treated in subsequent chapters.

Finally, by considering the proof of Theorem 2.1 we observe that the i.i.d.
assumption on the joint process {(X;,Y;)} under the null hypothesis can be
relaxed. That is, our results still hold if the above process is such that:

(i) {X:} and {Y;} are individually 1.i.d. under Px and Py, respectively; and

(ii) {(X;,Y:)} is jointly 1.1.d. under the alternative hypothesis Q@ xy.



CHAPTER 3
MULTITERMINAL COMPOSITE HYPOTHESIS TESTING WITH

ZERO-RATE DATA COMPRESSION

3.1. Introduction

In this chapter we consider issues of optimal zero-rate compression for com-
posite hypothesis testing. In other words, for disjoint classes II and = of hivariate

distributions on X’ x ), we wish to test
Hy: Pxy €1l against Hi:Qxy €=
subject to the compression rate constraints:

lim l log M,, =0, and/or lim l log N,, = 0.
n n

n n

In the previous chapter, we studied the corresponding simple hypothesis

(1]

testing problem (|II| = |Z] = 1). Let us briefly recapitulate the conclusions of
that chapter. Under a positivity assumption on the alternative distribution, we
showed that the error exponent (M, N| ¢€) of the minimum type II error probabil-
ity exists and is independent of the sequences M, N and the level e. Furthermore,
1t 1s possible to specify a sequence of asymptotically optimal acceptance regions

solely in terms of the null distribution P, and thus the alternative distribution

enters the picture only in the computation of the error exponent §(IM, N, ¢).

In this chapter we ascertain that the above conclusions are of limited validity
in the case of composite hypothesis testing. That is, the error exponent for the

above composite hypothesis test depends in general on the sequences M, N, and
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the level e. Furthermore, the choice of optimal acceptance regions is influenced

by both II and =.

More specifically, assuming a uniform positivity constraint on the distribu-

tions in =, we show the following.

(a) If II and = are arbitrary classes, and the codebook sizes M,, N, are
allowed to grow without bound subject to the above zero-rate constraints, then
the error exponent has no further dependence on M, N, and ¢, and is achieved

by a sequence of acceptance regions specified solely in terms of II.

Assuming that the null class IT is finite, and that the codebook sizes M,

and N, are fized at M and N, respectively, we also have:

(b) If no two distributions in II share the same X or Y marginal, then the
optimal acceptance regions and the resulting error exponents depend on II, E,
M and N. There exist threshold values of M and N, above which we can specify

optimal acceptance regions in terms of the null class II alone.

(¢) If two or more distributions in II share the same X or Y marginal, then

the solution of the problem depends explicitly on the level € (in addition to II,

=, M and N).

In (a) above, we consider the problem in its full generality and derive a com-
pact expression for the error exponent. To illustrate (b), we produce a complete

solution for the setup in which

|HIZZv |E|:1a M:27

and the Sy encoder is nontrivial, i.e., N > 2. To illustrate (c), we consider the
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situation in which
I < oy, |2 =1, M =2,

and N is greater than a certain threshold. The results in (b) and (¢) admit
extensions to larger codebooks and classes of distributions, albeit at some expense
of compactness in the characterization of the error exponent. It seems to us that
the general problem of determining error exponents for arbitrary II, =, M and

N resists coherent treatment, and is thus placed outside the scope of this thesis.

The formulation of the general problem is given in Section 3.2, together with
pertinent notation. The main results (a), (b), and (¢) appear in Sections 3.3,

3.4, and 3.5, respectively.

3.2. Problem statement and notation

(a) Composite hypothesis testing. Let IT and Z be disjoint subsets of P(X X
Y). For testing Hy : Pxy € Il versus Hy : Qxy € E at a given level ¢, we employ
the uniformly most powerful (UMP) test. Thus for a given level € € (0,1), we

seek to minimize the quantity

sup Q?{Y(An)
Qe=

over all acceptance regions A, that meet the constraints
(C1) P}y (A°) < efor all Pxy in II;
and

(C2) satisfy the appropriate compression constraints; namely

e (2.1) and (2.3) of Chapter 2 for one-sided compression of X™;
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e (2.2) and (2.4) of Chapter 2 for one-sided compression of Y'";

e (2.1), (2.2), (2.3) and (2.4) of Chapter 2 for two-sided compression.

We use the definition

Bu(Mp, Nyye) = min sup Q%y (An) ,
Ap QEE

and define the associated error exponent as

def

8(M,N,¢e) = —lim%logﬂn(Mn,Nn,e),

provided the limit on the right-hand side exists.

(b) Notation. The following notation will be used in this chapter.

(i) For a class of distributions II on X x ), the corresponding classes of

marginals are denoted by
IIx = {PX c 73((1’): JdPxy € H}, and Iy = {Py € 73()7) dPxy € H}.

(i) In the space P(X'), we define a ball of radius n centered at Py by

def

B,(Px) = {Px € P(X): ||Px — Px|| <n, Px < Px},

and we extend the domain of definition to subsets of P(X) in the obvious way.

(iii) If Px, Py, Q@xy are distributions on X, Y, and &’ x ), respectively, we

let

AP, PrIQ)E  min  D(Pxr|Qxv)
XY

PX =Py, FY =Py

More generally, if A, A and = are classes of distributions on the same spaces

(respectively) as above, then

—~ def . ~
d(A,Al]Z) = ot D(Pxvll@xy).
Pyvy: 15XeA, Py ea
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(iv) Finally, if ® is a subset of P(X’), we will write
U Tx and U Tx
Pxed Pxeco

for

U Tx and U Tx ,

Pxeq)ﬁ’Pn(X) PXEBn(Q)nPn(X)

respectively.

3.3. Unboundedly growing codebook sizes.

We consider the composite hypothesis testing problem in which the null class
II is an arbitrary subset of P(X x ), and the alternative class = satisfies the

uniform positivity constraint

def .
inf = inf 1n xy(z,y) > 0. 3.1
Pinf 612%5 (z,yr)IEXnyYY( y) ( )

The above condition ensures that the convex function D(:||-) is bounded on
P(X x Y) x Z and is thus uniformly continuous. For the codebook sizes, we

assume

1 1
lim—logM, = lim—IlogN, = 0, and llmM, = limN, = co.

n n n

The above size constraint allows each of the two encoders to specify the type

of the observed sequence with arbitrary accuracy. Indeed, if we let
An = I_Mrlz/lX‘Ja

then by an elementary geometrical construction we can partition ’P(‘JC') into at

X . . .
most aln | < M, cells C! of maximum dimension (measured by sup norm) not
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exceeding a;!; clearly a;! — 0 since M, — oco. The same is true for P(Y) with

b, replacing a,:

b, = LN}/D"J.

We denote the P(Y)-counterpart of CI* by F}', and we write
cr= \J ox, rF= | 1v.
Pxecr Py S
Based on the above partition, we devise a compression/decision scheme as
follows. First, we require that each encoder transmit the cell index corresponding
to the observed type, i.e.,
fa(z™) = ¢ iff z" e Ol
gn(y") = iff y" € F}.
Next, we seek an acceptance region A, C X'™ x V" such that

Av D | TRy, (3.2)

Pxyell

for some fized n > 0. This is because the above set has Pgy -probability that
uniformly approaches unity for all Pyy € II (by Lemma 2.2), and this automat-
ically ensures that the type I error bound is met for every € € (0,1). We define

A, as the smallest union of rectangles C* x F' J” that contains

U TxexTve,
Pxy€ll

where ¢ is a multiple of 7 chosen so as to ensure that (3.2) holds.
Since ¢ is fixed and the dimension of each C}* and F}* shrinks to zero as n

approaches infinity, it is also true that for n sufficiently large,

A, C U TX,zg X Ty,zg .
Pxy€ll
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By a standard argument based on the definition of typicality, we also have

TX’QS X Ty,zg C U TXY,C )

i Pxy:
Px=Px, Py=Py

where ( is a fixed multiple of £ and . We conclude that

A, C U TXY,c .

Pxy:
(3Pxy €M) Px=Px, Py=Py

A union bound on Q™(A,,) for Q € E can now be established using Lemma

2.1 and the fact that D(-||-) is uniformly continuous on P(X x V) x E:

Q(An) < [Pa(X x Y)|exp[-n inf (D(Pxyl1Qxv) = #($)))

Ixy:
(3Pxy€ll) Px=Pyx, Py =Py

< exp[—n P,jgfeﬂ(d(PX’ PyllQxy)—u())] ,

where p(() goes to zero together with ¢ (and hence also ). We therefore have

Brn(My, Ny, e) < exp[—n PXyEHiflfCl?XYEE(d(PX’ Pyl||Qxy)— ()] -

Since p(¢) can be made arbitrarily small by choice of 1, we conclude that

6(M, N, > inf d(Px, P xXvy) .
( 6) - PXYEHI,HQXYEE ( X YHQYX)

To show the reverse inequality, we consider an admissible acceptance region
Ay,. By (C2), for every distribution Pxy in II, we can find a rectangle C' x F' C
A" x Y™ such that
PRAC X F) > (1- /M, .
Applying Theorem 2.3 with p = pj,1, we obtain a universal sequence v, — 0 with
the property that for every Qxy € =, Pxy € Il and Pxy € P(X x V) such that

Py = Px, Py = Py, the following is true:

Q%y(An) 2> exp[-n(D(Pxy||Q@xv) +va)] -
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We conclude that

ﬂn(MnaNnye) > eXP[—n B lnf 5 (D(PXYHQXY) + Vn)]
Pxy: 3Pxy€ll) Px=Py, Py=Py,
Qxy€E=E
and hence
O(M,N,¢) < inf  d(Px,Py||Oxy) .
( €) < peverth, s 4P% Prl|Qxy)

We thus have proved

THEOREM 3.1. If Il C P(X x Y) is arbitrary, 2 C P(X x Y) is such that

inf min x > 0,
Qex (z,y)EXnyXY( ’y)

and the sequences M, N satisfy
1 .1 . .
lim —log M,, = lim—log N, = 0, and limM, = limN, = oo,
nn n n n n

then

(M. N = inf d( Py, P ) AN
(M,N,¢) Prvelh, v ez (Px,Py||Qxy)

3.4. Fixed codebook sizes

In this and the following section we assume that the codebook sizes are fixed:
(Vn) M, =M, Nn=N.

Under the above constraint, it is no longer possible to encode the type of the
observed sequences with arbitrary accuracy, and the conclusion of Theorem 3.1
does not hold in general. As we shall see, the optimal system design depends
on the distribution classes T and Z, the actual codebook sizes M and N, and

(somewhat surprisingly) the value of the level .

35



Throughout the remainder of this chapter, we will assume for simplicity that
the class IT is finite. As we pointed out earlier, some of our proofs admit cum-
bersome but straightforward generalizations to situations in which II is infinite.
However, since our aim is to highlight salient differences from the simple hypoth-
esis testing problem, we choose to restrict our attention to the simplest possible

setups.

Our first observation is that given II finite and = satisfying the uniform
positivity constraint (3.1), there exist threshold values of M and N, above which

the error exponent of Theorem 3.1 obtains. Indeed, if
M > [Ix|+1, N > [Oy|+1,

then the Sx encoder can specify which one (if any) of the distributions Px € Il x
lies within distance n of the type of the observed sequence z™; similarly for Sy-.
This allows us to employ an acceptance region
Av = | TxpxTyy.
Pxy€ll
As in the proof of the positive part of Theorem 3.1, we obtain

6(M,N,¢) > inf d(Px, Py||Qxy) -
( )2 et e dPx PriiQxy)

The converse part of Theorem 3.1 clearly suffices for this problem. We thus

have

THEOREM 3.2. If II € P(X x Y) is finite, = C P(X x ) is such that

inf min xvi(z,y) > 0
ot (z,y)GXnyYY( ,Y) ,
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and

M >

IIx

+1, N > |lIy|+1,

then

6(M,N = inf Py, P . A
( ’ )6) nyel_},anyEEd( X Y”QXY)

We now consider the situation in which either one or both codebook sizes
M, N are smaller than the threshold values given in the hypothesis of Theorem
3.2. For simplicity, we will assume that IT consists of two distributions Pxy, Pxy
with distinct X, Y marginals, and that the alternative hypothesis is simple, i.e.,
= = {Qxy}. The threshold values are then both equal to 3, and it clearly suffices

to consider two cases: (i) (M,N) =(2,3) and (ii) (M, N) = (2,2).
We consider case (i) first.

THEOREM 3.3. Let II = {ny,ny}, where Px # PX and Py # Py. If

Qxy >0, then for 0 < e < 1,
6(2,3,¢) = 6 v g

where

o) d(lIx,IIy||Q)

and

def Pv P
6 = d(Px, Py||Q) A d(Px,Py||Q)

A min {d(Px,Py||Q) V d(Px,Py||Q)}.
PxepP(Xx)
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PROOF. Positive part. As before, we restrict our attention to encoders that
group sequences of the same type together. Since N = 3, a sensible choice for

the Sy encoder is one that specifies whether the sequence y™ lies in Ty,,, Ty, or

(TYJ] U TY,W)C'

The choice of the Sx encoder is less straightforward. At first sight it would
seem that since M = 2, the Sx encoder should specify whether or not the type
of the observed sequence z™ is close to either one or none of the distributions

Px, Px, i.e.,

With this choice of encoders, the smallest acceptance region that satisfies

the type I error constraint under both Pxy and Pxy is
“451.1) = (Tx,nU Txy) X (Ty,y U Ty,y) -

The Q"-probability of the above set can be upper-bounded in the standard fash-

ion (viz. proof of Theorem 3.1):

Q%y (An) < expl—n( _ _min  D(Pxyv||Qxv) — u(n))]
Px €{Px,Px},Py€{Py,Py}

where p(n) — 0 as n — 0. This yields, since 5 is arbitrary small,

9(2,3,¢) > 8 = d(Ilyx, My

Q) . (4.1)

Another (somewhat less prominent) candidate for the Sx encoder 1s one
that separates sequences of approximate type Px from ones of approximate type

Px. Since only two codewords are available, this separation entails grouping
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some types in P(X) together with Px, and the remaining types with Px. More

formally, if
d C 'P(X)—BU(P){)—B"(P)() and ¢ = 'P(X)-—B,,(Px)——lgn(p)()~—@ ,
then this encoder partitions X" into
C{ = TX,n U U TX and 'é = (C{)C = TXJ, U U TX . (4.2)
PX (=0 Pxed
With this choice of Sx encoder (together with the Sy encoder introduced in the

beginning of the proof), the smallest acceptance region that satisfies the type I

error constraint is

-’4512) = (C) X Ty,y) U(Cy x TY,n)

Note that unlike A$?, A% does not contain Tx yx Tyy or Tx nx Ty, It does,
however, contain pairs (z",y") whose marginal type A, is close to neither Px

nor Px.

To estimate Q"(Ag)), we decompose each of €| and C} into two sets as
in definition (4.2). We then treat AP as a union of four disjoint sets, and

upper-bound their QQ"-probabilities in the usual way:
Qxy(Txn X Ty,y) < exp[—n(d(Px, Py||Q) — u(n))] ,
Q%y(Tx x Ty,y) < exp[-n(d(Px, Py|lQ) — p(n)] ,

Qv (U T xTyw) < explon(inf d(Px, Py]IQ) — ()]
Px€d X

Qv (U Tx xTyw) < explon(inf d(Px, Py]IQ) — u(n))]
pxe(i) X

where p(n) — 0 as n — 0.
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Thus the error exponent associated with this choice of acceptance region is
greater than or equal to the minimum of the four exponents appearing in the

above bounds, namely the quantity

d(Px, Pyl|Q) A d(Px, Py

Q) A inf d(Px,Py||Q) A inf d(Px,Pyl|Q).
Pxed Pxed

At this point we should note that by letting 1 shrink to zero, we have expanded
the classes ® and ® in the vicinity of Px and Px so that DU® = PX)—{Px}—
{Px}. This is justified by continuity of d(-,-||@), which further allows us to treat

® and @ in the above expression as constituting a partition of P(X).

It remains to find that partition {®, ®} of P(X) which maximizes

D(Px) A ‘E(Px) A ~inf v(ﬁx) A ~ian 17(]5}(),
Pxcd Pxed

where v(+) L d(-, Py||Q) and o(-) < al, Py]|@). This is easily accomplished by
noting that
i%fv(]SX) A il%fﬁ(ﬁx) < igf[v(ﬁ’x) V 5(Px)] A il(%.f[v(ﬁx) \Y ’F(PX]‘]
= 1 f 15’ V v ﬁ
Anf [o(Px) v 3(Px)]
= inf  o(Px) A inf  ®(Px).
PXZU(Px)ZI_)(P,\') Px:v(Px)<1_J'(Px)

Thus an optimal partition consists of the sets
b = {]5\, : v(p\) > E(ﬁx)}, and @ = {pX co(Px) < 5(]5,\)} \
and the error exponent associated with the corresponding AP is given by

9 = d(Px,Py||Q) A d(Px,Py||Q)

A _min {d(Px,Py[|Q) V d(Px,Pr[|Q)} .
Px €P(X)
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We conclude that 6(2,3,¢) > 6, and in light of (4.1),

0(2,3,¢) > 6 ve®

Converse part. For fixed n, consider an admissible acceptance region A,.

By nature of the encoding, A, can be written as
An = (01 XFl) @] (Cz XFQ) y

where C; and C; form a partition of X", and at most one of Fy, F» may be

empty. From the type I error constraint
Pxy(An)>1—€¢ and  Pxy(An)>1-—c¢,

it follows that two cases may arise.

Case 1. For ¢ and j distinct, we have
P}}Y(C,‘ X Fl) > P;'y(Cj X Fj) and P)?Y(C, X Fz) > P}'}Y(CJ: X Fj).

This clearly implies that

1—c¢ ” _ 1—e¢

Pr(C;) >
PR(C) > —

for any Px € Ilx, Py € Iy. From Theorem 2.3, we obtain

1
——log Q%y(Ci x F) < d(IIx,TOy||Q) +vn = 6 + vy,

where v, — 0 as n — oo, and thus also

—%log Q" (An) < 6 +u, . (4.3)
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Case 2. For ¢ and j distinct, we have

Py (Ci x Fy) > P;}Y(Cj X Fj) and P}}y(C,‘ x F;) < P}Y(Cj x Fj) .

(4.4)
Using Theorem 2.3 once again, we obtain respectively
1
——log Q%xy(Ci x Fi) < d(Px, Py||Q) + va
and
1 _
——log Q%y(Cj x Fy) < d(Px,Py||Q)+ vn .
Hence
1 L
——logQ"(An) < d(Px, Py|lQ) A d(Px, Py[|Q) + v . (4.5)

Relationship (4.4) also implies that

1-— _ 1-—
26 and  PRF;) > —< .

Py(F) 2

By virtue of Theorem 2.3, the above inequalities can lead to a further upper
bound on Q™(A,) provided there exists a distribution Py € P(X) for which
either P2(C;) or P(C) exceeds a fixed value independent of n. But the last
disjunction is true for every Py, since C; and C; are complementary events. We

thus obtain the upper bound

1 _ 5 L
——logQ%y(Ar) < min {d(Px,Py||Q) V d(Px,Py||Q)} +v.,
n PxeP(X)

which, together with (4.5), yields

1
“;IOgQ?X’Y(An) < 6% 4,
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Finally, by combining the bound for case 1 (equation (4.3)) with the above bound

for case 2, we obtain the converse statement

0(2,3,¢) < 6D v A

For the system in which both encoders use two codewords, 1.e., M = N = 2,

we have the following result.

THEOREM 3.4. Let Il = {Pxy,Pxy}, where Px # Px and Py # Py. If

Qxy >0, then for 0 < e < 1,
8(2,2,¢) = 6 v §B)

where 8 is as defined in Theorem 3.3, and and 6® is the supremum, over all

partitions {®, ®} of P(X) and {¥, ¥} of P(}), of the quantity

d(@U{Px}, TU{Py}||Q) A d(®U{Px}, TU{Py}|Q). (4.6)

PROOF. Direct part. Since M = 2 as in the previous problem, we consider

the same two candidates for the Sx encoder:

f: 01 = TX,nUTX,na 02 - (TX,V]UTX,'I])C
and
fle € =Tx,u | Ix, €)= Tx,u |J Tx,
Pyecd Pxed

where (®, ®) form a partition of P(X)— B, (Px)— B,(Px) . Observe that in this

case N = 2 also, and thus it is no longer possible for the Sy encoder to specify
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whether y™ lies in Ty,,, Ty.y or (Ty,, UTy,,). Proceeding as for Sx, we propose

the following two encoders for Sy:

g: Fl = TY,?]UTYJ) 9 F2 = (TY,W UTY)U)C
and
g+ F| = Ty,U UTY7 Fy = Ty, U UTY7
Pyevw Py eV

where (¥, ¥) are defined in a similar manner.

Given the above possibilities for encoding Sx and Sy, there are only two

reasonable choices for the acceptance region A,:
AV = ¢ xF, and AP = (C! x F)YU(C} x F}) .

Note that the region AEB) is identical to the one used in the proof of the previous

theorem, whence we obtain

0(2,2,¢) > 6 = d(IIx,Iy||Q) .

To evaluate the error exponent associated with .,4513), we follow the corre-
sponding procedure for AE,Q) in the proof of Theorem 3.3. Since
.«4%3) = ( U TX X U Ty)U( U T\’ X U Ty) ,
$UB, (Px) VUB, (Py) ®UB, (Px) VUB,(Py)

we obtain
~lim = log Q"(AP) = d(®U{Px), PU{Py}]1Q) A d(@U{Px}, TU{Py}I|Q)

Once again, it is legitimate to assume that in the above equation, {®,®}, {¥, ¥}

constitute partitions of the entire spaces P(X') and P(}), respectively. The best
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error exponent attainable by a sequence of acceptance regions of the form .«4%3)

is therefore
63 = fpug {d(@ U{Px}, PU{Py}||IQ) A d(@U{Px}, TU{Py}||Q)} .

We conclude that

6(2,2,6) > 6 v 3,

Converse part. In this case every admissible acceptance region A, can be
written as

.An = (Cl XFl) U (CQ XFZ),

where Cy = Cf, while Fy, F, are constrained by F, € {0,Y", F}. As in the

proof of Theorem 3.3, two cases may arise.

Case 1. For ¢ and j distinct, we have
P}Y(C,‘ X Fl) > P;-Y(Cj X Fj) and Pﬁy(C, X Fl) > P)?},(CJ X Fj) .
This is same as Case 1 in the proof of Theorem 3.3, whence we obtain

1
—-ﬁlog Q"(A,) < o) 4y,

Note that this case subsumes the situation in which F; is empty.

Case 2. For ¢ and j distinct, we have
}\EY(C,‘ X F,) > P;Y(Cj X F]‘) and P}}Y(C’, X Fi) < P)?Y(C] X Fj) .

We easily deduce that

1—c¢ 1—c¢

P(\'(Ci) Z 2 ?
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and

= 1—6 =n 1——6
PR(C;) = 5 Py(F;) > .
Let us define the classes
N . 1 . - 1
®, = {Px: P(C:i) > -2-}, U, = {Py: Py(F;) > 5},
and
* D pn 1 * > Hn 1
¢, = {Px: Px(C;j) > 5}, v = Py Py(F) > 5}

Since C; and C; are complementary, &% = ®¢. For Fy and F), we have either
Fy = F{ or F; = Y™. In the former case we have again V) = U7, while in the

latter, either ¥, or ¥¥ is equal to P(}).

By the foregoing discussion, all marginal distributions Py € &, U {Px},

Py € ¥, U { Py}, satisfy

pPr(CH) > 1;6 and  PR(Fy) > 1;.
Applying Theorem 2.3, we obtain
—i—logQ}‘(y(CixFi) < d@nU{P}, TaU{PY Q) +vm . (47)
Similarly for C; x F; we have
2 logQly(Cy X Fy) £ (@, U{Pxl ThUP}IQ) +vn.  (48)

We must show that the smaller of the two bounds appearing in equations
(4.7) and (4.8) is less than or equal to ) as defined in the statement of the

theorem. This is certainly true if ¥} = ¥, since we can then take

{(I),(i)} = {(I)nvq);;} and {qj7®} = {\an\pz}
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in the definition of (). Otherwise, if w.l.o.g. ¥* = P(}), the same conclusion

can be reached by taking
{@,@} ={®,,®,} and {\Il,fI)} ={U,, U} .
Thus we have obtained

1
n
This, together with our result for Case 1, yields the converse statement

0(2,2,¢) < 6 ve® A

REMARKS. (a) It is shown in the Appendix A that #3) can also expressed

in the simpler form

6®) = {D(Pxl|Qx) A D(Py|IQy)} V {D(Px|lQx) A D(Py||Qy)} . (4.9)

This characterization also simplifies the determination of the maximizing classes

® and ¥ in the original definition of §®).

(b) The definition of the asymptotically optimal acceptance regions AP and
Aﬁf) in the proofs of Theorems 3.3 and 3.4 depends implicitly on the alternative

distribution @ xy through the choice of the optimal classes ® and ¥; this is not

the case with AS).

(¢c) Which of the alternative exponents is the dominant one depends on II

and ) xy. To show this, in what follows we let ) xy be a product distribution
on X X Y, ie., Qxy = Qx X Qy, where @x > 0, @y > 0. Then it is quite
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straightforward to show that

0" = {D(Px||Qx) A D(Pxl|Qx)} + {D(Pv||Qy) AD(Pr|IQy)} ;
6 = {(D(Px||Qx) + D(Py||Qv)) A D(Py||Qy)}
vV {D(Py||Qy) A (D(Px||Qx)+ D(Py||Qv))} ;

63 = {D(Px

Qx) A D(Pr|lQv)} v {D(Px[|@x) A D(Py||Qy)} -

Consider first the case in which Px = Qx and D(Py||Qy) > D(Px||Qx) +

D(Py||Qy). From the above we obtain
60 = D(Pyl|Qv), 67 = D(Px[lQx) + DPYIIQy), 0% = D(PxliQx) .

Thus provided all above divergences are positive and distinct, we obtain either

0 > ) 5 g1 o 9(2) 5 p(1) 5 (3

As another example, consider the situation in which all distributions are

distinct, and

D(Px||Qx) = D(Px|lQx),  D(Pr|lQv) = D(PyllQy).
Then
6" = D(Px||Qx) + D(Pr[lQv), 6% = D(Py||Qy),
0¥ = D(Px||Qx) A D(Pr||Qy).

We thus obtain either 81 > 6(2) > §03) or (1) > 9(2) = g3,

3.5. Dependence of the error exponent on e.

Theorems 3.3 and 3.4 were derived under the assumption that the distri-

butions Pxy and Pxy have distinct X and Y marginals. As it turns out, the
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conclusions of these theorems are true even if this assumption is not. Indeed, it
is easy to show that if Px = Px or Py = Py, then AY is optimal, and ()

dominates both 6(2) and 63,

If |II| > 2, and the codebook sizes M and N are fixed at levels below the
thresholds given in Theorem 3.2, then it is still possible to derive versions of The-
orems 3.3 and 3.4 in which the acceptance regions AE?’ and AE,B) are constructed
by first grouping distributions in IIx and IIy together, and then partitioning
P(X) and P()) appropriately. Our final result in this chapter illustrates this
procedure, and more importantly, it reveals a hitherto unseen aspect of this prob-
lem: specifically, if the marginals of some distributions in II coincide, the error
exponent may depend on the level e. This is certainly a surprising discovery,

considering the chain of strong converse theorems which have been derived in

[10-12], and in this work.
NOTATION. 1x denotes the set of degenerate distributions on P(.X).

THEOREM 3.5. Let Il < 0o, M =2, and N > |IIy| 4 1. Also, let {A,A}

denote a partition of II. If Qxy > 0, then fore € (0,1/2)U(1/2,1), the following

is true:
8(2,N,e) = 61 v 6W (),
where
6 = d(Iix,Ty||Q) ,
o) MAaXA A: A xnAx=0 T(A_,A), f0<e<i;
(e) = max A (A, A), if% <e<l,
AxNAxnily=¢

and
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T(A,A) = d(Ax, Av]|Q) A d(Ax,Av(|Q)

Aiiflf{d(ﬁx,AYllQ) V d(Px,Av||Q)} .

REMARK. We have been unable to evaluate (2, N,1/2).

PROOF. Direct part. Once again it is feasible to construct Aﬁf) as defined

in the proof of Theorem 3.3, whence we obtain 6(2, N, ) > §(1).

To construct Aﬁf) by analogy to Theorem 3.3, we partition the space Ilx

into A, A, and the space P(X) — B,(Ilx) into &, . We then have

AR =

( U xx U Ty,n)u( U oxx U TY,n)

Px €®UB,(A) Pxy€ll: PxeA Px €duB,(A) Pxy€ell: PyeA
which is readily seen to satisfy the type I error constraint for every e and every

distribution in II.

Note that instead of partitioning ITx into A and A, one can begin by par-
titioning II itself into A and A such that Ax N Ax = 0. Then one can write

equivalently
A2 = (U fex U Sju( U Tox U ).
PxeduB,(Ax) PyeAy PxeduB,(Ax) PyelAy
and by the argument given in the proof of Theorem 3.3,
8(2,N,e) > 1(A,A8) = d(Ax, Av|lQ) A d(Ax, Av||Q)

Ninf{d(Px, Ar|[Q) V d(Px, Av[Q))
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Taking the maximum over all partitions {A, A} of Il satisfying AxNAx = §,
we obtain for all € € (0,1),

6(2,N,e) > _ max_ (A, A) .
AA: AxﬂAx=0

The constraint Ax N Ax = 0 is essential in the above construction of ,453);

i1ts removal would allow

C = U Tx and Cy, = U Tx
Px €dUB,(Ax) Px edUB,(Ax)
to have nonempty intersection and hence be inadmissible under the given com-
pression scheme. If, however, 1/2 < € < 1, then it is possible to relax the said

constraint to

Ax N Ax N1y =0

in the following manner. For every Px that lies in B,(Ax N Ax) (and hence not
in 1x if n is properly chosen), we can partition Tx into two sets T;; and T; of
sizes that differ by at most 1, and redefine C] and C} by
¢ = J v T
PXE@UB"(Ax-—Ax) PxeBn(Axﬂlgx)

and

Cé = U TXU U T)_; .

Pxeé UBU(A‘Y—Ax) ﬁxEBn(Axr]Ax)

We can then complete the construction of A? in the usual manner.

It is easily seen that for every Pxy € II such that Px ¢ Ax N Ay, and
every € € (07 1)7
P)?Y(Ag)) > 1l—ce
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for n sufficiently large. The same is true for for every Pyy € II such that

Px € AxNAx, if e € (1/2,1). To see this, let w.l.o.g. Pxy € A. Then

PRy (AD) > PRy( U T% x Tyy)

> Py |J TH+PTv,) -1
Px €B,(Px)
1 IV
> — — An — -1
-2 An+1 4dnn?

where A, — 0 since B,(Px) contains no degenerate distributions. We conclude

that for n sufficiently large,

PRy(AD) 2 1-c.

By computing the error exponent as before, we obtain for 1/2 < e < 1,

6(2,N,e) > max (A, A) .
AxnAxnix=s

This concludes the proof of the positive part.

Converse part. As in the proof of the converse part of Theorem 3.3, we
express A, as

An = (Cl XFl) U (CQ XFZ),

where C; and C3 form a partition of A", and at most one of Fy, Fy may be

empty. Once again, two cases may arise.

Case 1. For 7 and j distinct, we have
(VPxy € II) P3y(Ci x F;) > Piy(Cj x Fy) .

This implies that
_llogQ"(An) < 0 4o, .
n
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Case 2. The sets A and A defined below form a nontrivial partition of II
A= {PXY € II: P)Téy(Cl X Fl) Z P;Y(CQ X FQ)} y

A= {ny e II: P}}Y(Cl X Fl) < ng(CQ X Fz)} .

We claim further that Ax N Ax N1x = 0. Indeed, if there exist Pxy € A and

PXY € A such that Px = ﬁx, then

1—¢

1—¢
2’ )

Px(C1) 2 5

PR(C2) = PR(Cy) >

Since 7 and C3 are complementary and have positive probability under P%, Px

cannot be degenerate.

As in Case 2 in the proof of the converse of Theorem 3.3, we obtain for all
e €(0,1),
1 _
- logQ"(An) < 7(AA)+ v, .
It remains to show that if € € (0,1/2), the above bound is also valid for a partition

{Q,Q} of II such that Qx N Qx = 0. To construct such a partition, we argue as

follows.

For Px € Ilx, we consider the set H(Px) of distributions in II that have

Px as X-marginal:

def

H(Px) = {PXY € H:ﬁx = Px} .

We let A > 0 be independent of n, and we assume for the moment that for every

Px € IIx, we can find ¢ € {1,2} such that

(VPXY € 'H(Px)) ﬁ;Y(C,‘ x F;)> A (5.1)
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If so, then we can partition Iy into A; and Ay by placing each of the members
Px of Iy in A; iff 7 is the smallest index for which the above relationship holds.

This in turn yields a partition Q,$Q of I through

Q= [|J HPx) ad Q= |[] H(Px).

Px el Px €A,y
Clearly Qx = Ay, Qx = Ay, and from the definition of A; and relationship (5.1),

we obtain the desired bound

~%log Q"(A,) < (2, Q)+ v .

Thus the issue is to prove that for suitable A > 0, every Px € Ilx is such
that (5.1) holds for ¢ = 1 or 7 = 2. By definition of the classes A and A, this is
true for Py € Ax — Ay and Px € Ay — Ax. To show that it is also true for
Px € Ax N Ay, assume the contrary, namely that there exists Pxy € A and

PXY € A with PX = Py and
PRy(Coax Fy) <X,  PRy(CixF)<\.
This implies that

P)’}(C]) > P/Zéy(CIXFl) > 1—e— A

?

PR(Cy) > PRy(Cox Fy)) > 1—e— X\,

and hence

P}}(C’l)+P}}(Cg) > 2—-2¢—2).

Thus if € < 1/2, we can set A = (1—2¢)/3 > 0 to obtain the desired contradiction:

PL(Cy)+PR(Cy) > 1+A. A
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It should be emphasized that the dependence of (2, N, €) on € is nontrivial.
If we consider the simple setup in which IT = {Pxy, Pxy, Pxy} with Px = Py
and Py = Py, then it is possible to choose the above distributions so that the
error exponent for 0 < e < 1/2 is strictly less than for 1/2 < € < 1. This is
demonstrated in the following example:

EXAMPLE 3.1. We define for simplicity

def ~ =
dzy = d(Px,Py||Q).

Let X =Y = {0,1}; II = {ny,PX}/,ﬁxy}, where
Px = Px = (0.4, 0.6)7,

Px =(0.54, 0.46)T,
Py =(0.35, 0.65)7,
Py = Py =(0.01, 0.99)7;
and
Qxy = (0().615 0().;145) '
We thus have Ilx = {Px, Px} and Ily = {Py, Py}. Using the above Theorem,

we have

1 .
9 = A min dgy
Px€llx, Pr€lly
= dxy/\dxy/\d)-(y/\d)‘{y
= 0.235 A0.194 A 0.176 A 0.192
= 0.176
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The only nontrivial partition {A, A} of II such that Ax N Ax = @ is given by
A = {PXY7ﬁXY}; A = {PXY} ThlS ylelds AX = {PX}, A‘Y = {P/Y} and
Ay = {Py, Py}, Ay = {Py}. Hence, for 0 < e < 0.5,

8 = dxy Adxg Adgy Amin{(dgy Adgy)Vdgy}

Px

= dxy ANdxy ANdgxy Amindygy
Px

= dxy A D(Py||Qy)

= 0.235A0.179

= 0.179

This implies that 8(2, N,e) = 0.179 if 0 < € < 0.5. The other two nontrivial
partitions of II are {{PXy,PXy}, {f’Xy}} and {{ny}, {ny,p)(y}} with
corresponding projections {{Px,Px}, {Px}}, {{Py,Pr}, {Py}} for the first
partition, and {{Px}, {Px,Px}}, {{Pr}, {Pyr}} for the second. The corre-

sponding error exponents are

Tl(A,A) = dxy/\dxy/\dj(y/\dj(y Arr}in{(dXYAdxy)Vd}gy]>
X
= dxy ANdgy A D(Py||Qy)
= 0.235 A0.176 A 0.179

= 0.176

Px

= 0.235 A0.194 A 0.192 A 0.181

= 0.181
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This implies that 6(2, N,e) = 0.181 if 0.5 < € < 1. Hence

_ {0179, if0<e<i;
6(2,N,€) = {0.181, iflce<t,

3.6. Concluding remarks

We have been unable to evaluate §(2, N,1/2) in Theorem 3.5. However from
the proof of that theorem, we can bound 6(2, N,1/2) as follows:
YV max  7(AA) < 02,N,1/2) < DV max  1(AA).

AA: AxNAx=0 aA:
’ X X AxnNAxnly=p

If Px # Px for all Pxy,Pxy € II, then 6(2, N, ¢) is independent of € and the
above inequalities become equalities. This shows that Theorem 3.3 is actually

subsumed under Theorem 3.5.

Theorem 3.5 can also be extended in a straightforward manner to the case

in which 2 < M < |IIx|, for values of € in the range (0, 47) U (41, 1).
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CHAPTER 4

MULTITERMINAL HYPOTHESIS TESTING WITH

FIXED-RATE DATA COMPRESSION

4.1. Introduction.

In the previous two chapters, we obtained closed-form characterizations of
optimal error exponents for multiterminal hypothesis testing under asymptoti-
cally zero-rate compression. In this chapter we discuss the problem of finding
similar characterizations in the framework of multiterminal hypothesis testing

under fized-rate compression.

This problem was first studied by Ahlswede and Csiszar [10], where an
achievable lower bound on the error exponent for hypothesis testing with one-
sided compression was obtained. In the same work, it was shown by an example
that this bound was not tight. Han [11] was able to derive better lower hounds
but the question of their tightness remained open. In this chapter we show by
example that one of the two bounds derived by Han is not tight. We also propose
a sequence of lower bounds on the error exponent that is asymptotically tight,
but do not succeed in providing a single-letter characterization for that exponent
(single-letter characterizations, such as those given in Chapters 2 and 3, are ex-

pressible in terms of finitely many random variables taking values in finite sets
7))
4.2. Problem statement and preliminaries.

(a) General notation. The same notation and problem definition introduced

in Section 2.2.(a) will also be used here except for the code rate constraints,
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which should be modified to

1
~ log My, < Rx (2.1)

and

1
~log N, < Ry , (2.2)
n

where Ry, Ry > 0 are the rate constraints on Sx and Sy encoders, respectively.

(b) Simple hypothesis testing with fixed rate. The optimal acceptance region
for testing Hy : P versus H; : @ at a given level € € (0,1) is one that minimizes
Q% v (Ay) over all acceptance regions A, that:

(C1) yield a value of P%y(Ag) less than or equal to ¢
and
(C2) satisfy the appropriate compression constraints:
e (2.1) and ((2.3) of Chapter 2) for one-sided compression of X™;
e (2.2) and ((2.4) of Chapter 2) for one-sided compression of ¥'";
e (2.1), (2.2), and ((2.3) and (2.4) of Chapter 2) for two-sided compres-
sionm.
The resulting minimum probability of type II error for two-sided compression is

denoted by 8,(Rx, Ry, ¢), and the associated error exponent is given by
def . 1
O(Rx,Ry,e) = - lim—logpfn(Rx,Ry,¢),
non

provided the limit on the right-hand side exists.

For one-sided compression of X" the corresponding minimum type II error

rate is denoted by B,(Rx,€), and the error exponent is given by

of .. 1
O(Rx,e) ¥ — lim ~ log fa(Rx, €) -
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Similar notation is used for one-sided compression of ¥,

In this chapter we will restrict ourselves to one-sided compression of X and

hence use R instead of Rx.

(c) Conditional typical sequences. We summarize here some of the basic

definitions and relationships on conditional typical sequences.

The conditional type of a sequence y™ € V" given 2" € A’ is the distribution

Ayle on X x ) defined by the relationship

M@, b) € X x Y)Y Ape(bla) € Agy(a,b)/Aala),  if Afa) > 0.
For any 2™ € X", let Pn(Y|a™) denote the set of all conditional types given a™:
Pa(Vle") = {Pyix 1 Pyixhe € Pa(X x V)} .

Given z™ € X™ and ﬁy‘X € Pp(Y|z™), the set of sequences in V" that have

conditional type PY{X given 2" is defined by
Trx(a™) E {y" e Y (Vae X, beY) Auyla,b) = Pyix(bla)ha(a)} .

For arbitrary stochastic matrices Py|x, Qy|x on X X YV and a distribution Px
on X, the conditional entropy and conditional divergence functionals are defined

by

def

HY|X) = —ZPXY(%yﬁO?; Py x(ylz) ,

T,y
PY[X(?/Ix)

D(Py (xIPx) 2 Y Pxv(e,y)log b
(Pyix|IQyixIPx) = D Pxv(e,y) ng|X(y\x)

Moreover, for 5 > 0, we will denote by Ty|x ,(2") the sct of sequences

z,3

y" € Y" that are (Pyx,n)-typical under z™:

Ty ixn(2™) = {y™ € V™1 [ Aay — Prixdell <0, Az < Prix}
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7 n
py|x€7’n(y|fn)’
||py|xf\m—Py|X>\x||Sﬂy py|X<Py|X

LEMMA 4.1. For any Px € Pn(X), 2™ € Tx, and Py|X € Pn(Yl|z™),

T P E L] < B )] < el HPIO)]

1

)] PP PrinllQyinl Pl < @ x (Brix(ale")

< eXP[*nD(ﬁY|XHQY|X|pX)] :

In addition, if Py x is any stochastic matrix, then

Rdivd
4nn?

P?|X(TY|X,W($n)|$n) > 1-

PROOF. See Csiszar and Korner [17]. A

LEMMA 4.2. For Px € P,(X), 2" € Tx, and Py € P,()),

A S n
Ty = U Ty x(z") .
P‘er‘Pn(Xxy):
Px=Py, Py=Py

PROOF. Pick y" € Ty. Then (z™,y") € Txy for some Pyy € Pn(X xY)
with Px = Px and Py = Py. This implies that y" € Ty|X(:1:”). On the other

hand, if y™ € Ty,x(:v”) for some ]U’XY € Pn(X x)) with Py = Py and Py = Py,

then y™ € TY = Ty. A

LEMMA 4.3. If 2" € Ty and Py is any distribution, then

. I n
Ty, = U Ty x (") -
Pyy€Pr(XXY):
By=Pyx, ||Py —Py||<n, Py(”y
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PROOF. From Lemma 4.2, we have

_ o n
TY - U Tylx(l ) .
Py yEPn(¥XY):
Px =Py, Py=Py

Since
TY)" = U TY 7
[|1Py —Py|I<n, Py <Py

we obtain

Ty’n = U Tylx(l’n) . VAN

B R Pyy€Pn(XXY):
Px=Px, ||Py —Py||<n, Py «Py

In a similar way we can prove the following two lemmas:

LEMMA 4.4, For Pyx € Po(UxX), (u”,2") € Tux, and Py € Pa(V]u™),

TY[U(Un) = U Ty|Ux(un,.L’n) .
PyuxyEPn(UIXAXY):
Pyx=Pyx, Puy=Pyy
Furthermore, if Pyy is a stochastic matrix on U X ), then
T}’I(]m(un) fuuns U TleX(’U,n,iUn> . A

PuxyE€PnUXXXY):Pyxy=Pyx,
Pyy —Pyy Pullsn, Py|p<PyiU

LEMMA 4.5. For u™ € Ty, Pxjp € Pu(X|u™), and Py |y € Pu(V]u"),

T (u®) X Typ(u®) = U Txy(u™) . A
Pyxy€PnUXXXY):
Byx=Pyx, Buy=Pyuy
(d) The coding technique. The following lemma is the bagig for the coding

procedure used in the proof of Theorem 4.1.
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LEMMA 4.6. Let k be an integer, and U be a simple random variable which
is jointly distributed with X* and Y*, and is such that the joint distribution
Py xuyn satisfies the Markov condition Pyrvjyxr = Pyrxx. Givenn >0, A > 0,

and 6 > 0, then for sufficiently large integers | and n = ki there exists an integer

1 M,
iJi=1’

M., a sequence {u and disjoint sets {C; f‘i’i C X" such that

M, < expll(I(U A X*)+6)] (2.3)
{uitily C Ty, , (2.4)
Ci C Ty, (ui) (2.5)
and
M,
D Priys(Ci X Tyupy(u)) = 1=\, (2.6)
=1

where 1] is a fixed multiple of n. Here, I(U A X*) denotes the mutual information

between U and X* under the distribution Py xx, i.e.,

I(UAX") = D(Pyx:||Py % Pxi) .

PROOF. See Han [11], Lemma 4. A
4.3. The main results.

In Theorem 4.1 we derive a lower bound on the error exponent 8(R,e) in
terms of auxiliary distributions Py xsy+ and Py ey, where
(1) Pyxwryw satisfies the Markov condition Pyx|yxr = Py# x+ and the inequal-
ity constraint +D(Pyx:||Pu x Pyr) < R; and

(ii) Pyxryr satisfies the marginal constraints Py x» = Pyxk, Pyyr = Py,

63



With slight abuse of notation, we rewrite (i) and (ii) above as

(i") U € S(R, X*Y*), where
S(R, X*Y*) & (17U o X* o vE, %I(U AX*) <R} ; (3.1)

and

(lll) Pkayk € £k(U), where

def

»Ck(U) == {pkaykIﬁka == Pka, pUyk - PUyk} . (32)

Finally, we define

0:(R) &' D(Py

1 , . s
+ Z,"- sup . min D(Pyklka ”kalxk |Puxk) . (33)
UES(R,X*Y*) Py xryk €ELCr(U)

|@x)

The statement of the theorem is as follows:

THEOREM 4.1. If R > 0, e € (0,1), and Qxy > 0, then

6(R,€) > supb(R) .
k

PROOF. Fix k > 1 and let U € S(R, X*Y*). Take [ be sufficiently large
for the statement of Lemma 4.6 to hold, and let n = kI. Hence, there exist M,,

{ul}¥n T(lj,n, and disjoint sets {C;}M» satisfying equations (2.3)-(2.6). Define

1=1

the acceptance region 4, C X™ x Y" as

Mp
An = Ci x Ty, (ul) .

=1
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Thus our encoding procedure entails transmiting the index i, where z" € C;.
Lemma 4.6 asserts that the code rate and the probability of correctly accepting

the null hypothesis satisfy
1 1 k )
“logM, < Z(IUAX*)+8) <R+ —
n k k
and
PRy(A)>1-A>1—¢,

respectively. The last inequality holds because A > 0 can be chosen arbitrarily.

To estimate the type II error rate, we can write

M,
Qky(An) = ) Q%uys(Ci x Tyayy,(w)))

i=1

My
<O Qe (T (ud) X Tywja(ul) -

=1

It follows from Lemma 4.5 that

M,
Qxy(An) < ZQleYk( U T)lckykw(“i')%

i=1 Pkayqu)

where, for ( being a suitable multiple of 7,

d déf {pkayk € Pn(UXX’” X yk)Z

|1Pyxr — Pyxr|| < ¢ WPuys — Puyr|| < (3.

Next we note that if Qy xry« o Py x Qxryr, then

Qirys (T)l‘f"Y’“IU(“g)) = QIX’“YHU(T)I(kYk]U(uz)iué)

and by Lemma 4.1,

Sryr (Txeyuu(ud) < exp[~ID(Pxryrul|Qxeve [Pu)] -
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As usual, it follows from continuity of the divergence functional that

Qky(An) < ) exp[-l  min  (D(PxryryllQxry|Pv) — v(n))],
Py skyr €Lx(U)

where v(n) — 0 as n — 0. Hence

1
— = 108Q% v (4n)
1 ) - ~ .
> E{ ~ min D(Pxiyrp||Qxryr |[Pu) — I(U A X*) = v(n) — 6}
kaykeﬁk(U)

= D(Px||@x)

1 . . . v é
+ - mm D(Pyrjuxsl|Qyr xx|Pyxr) — (77) -7

k Py xryr €L (U) k k

The above inequality is true for n integer multiple of %, and can be modified for
arbitrary n by using a multiplicative factor equal to [n/k|/[n/k]. For every k,

this factor clearly tends to unity as n — oo, and hence
.. 1
6(R,e) > liminf(—=log Bn(R,€))
n n

> limninf(—% log Q% y(Ar))

1 , . i
> D(Px||Qx) + T, min D(Pyruxe||Qyrx+|Puxs) -
PU‘kalc Eﬁk(U)

Since the above is true for any U € S(R, X*Y'*), we obtain (R, ¢) > 6,(R). A

To show that the above lower bound is tight, we prove the following converse

result.

THEOREM 4.2. If R > 0, € € (0,1), and Qxy > 0, then

O(R,¢e) < limkinf Ox(R) .
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PROOF. 8x(R) defined in (3.3) can be lower bounded using the log-sum

inequality as follows:

0x(R) = D(Px||Qx)

1 . ~ 5
+ 5 osup o omin o D(Pyrpyxe||Qyrxs | Poxe)
UES(R,X*Y*) Py ykyk €L (U)

sup _min Z PUXkyk(u,:ck,yk)
UES(R,X*Yk) FPyxkykr:
P~UX’°=PUX’“’

Puyr=Pyyk

ol W

u,zk yk

PUXkYk(U,iEk,yk)
Qxryr (2%, y*) Py xe(ulzk)
Pyye(u,y*)

1
> - sup Pyyr(u,y®) 1o - -
k UES(R,XkYk)uZyk ve(wy)log 2ok Qxry (¥, y%) Py xor (ulok)

x log

If U = f(X*), where f is any function such that H(f(X*)) < kR, then f(X*) —

X* > YE I(f(X*) A X*) = H(f(X*)), and hence U € S(R, X*Y*). Therefore

0x(R) > T sup Z Py xryye(u,y*)x
fH(f(X ))SkRyk,uef(Xk)

Prixryye(u,y*)
Doz @xryr (xkyyk)Pf(xk”Xk(u z*)

log

Noting that Py xuy xe(u|z®) = Iis-1¢uyy(=*), where I4(-) denotes the indicator

function, we obtain

6x(R)
1 ' P L y*
=5 Sup > Prxnye(u,y*)log socore (s, v )k R
FH(FXR)SER o ) 2rkef-i(uy @xrye(eh, yb)
1 ' Pyixryyr(u,y*)
= Z Su}j? Z Pf(Xk)Yk(U,yk)IOg Qf( k) k(u k‘)
FHFX)SER e S TH ey FxXRYr (8, Y
1
=7 sup D(Ppxeyyr [|Qpcxryys)
FH(f(X*)<kR
1
Z Z sup D(Pf(Xk)kaQf(Xk)yk) . (34)

filog |f(X*)|<kR
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It was shown in [10], Theorem 6 that the error exponent (R, €) is given by

.1
O(R,e) = lim 7 sup D(Ppxreyy+ Q@ p(xtyyr) -
koo B flog |F(X*)|<kR

We conclude that liminfy 6x(R) > 0(R, €). A

THEOREM 4.3. If R > 0, € € (0,1), and Qxy > 0, then

H(R,e) = squk(R) = llingk(R) . A
k

Theorem 4.4 asserts that if the alternative distribution is a product measure,
then the error exponent given in Theorem 4.3 above is completely characterized
by 61(R), i.e., 8(R,€) = 6;(R). Example 4.1, however, demonstrates that this is
not true in general. Since 6;(R) is also equal to the lower bound 8;,(R) derived

by Han [11], Example 4.1 also shows that the said bound is not tight.

THEOREM 4.4. If R > 0, € € (0,1), and Qxy = Qx x Qy with Qx > 0

and Qy > 0, then

6(R,¢) = 6:(R) = D(Px[IQx) + D(Py||Qv)+ max  I(UAY).
IUAX)SR, [U|L|X[+1

PROOF. We generalize the result obtained in [10] for Qx = Px and Qy =

Py | i.e., for testing a bivariate hypothesis against independence of marginals.

Setting Qyr)x+ = Q% in equation (3.3), we obtain

fx(R) = D(Px||Qx)

1 , ) 3
+ sup _min D(Py ey x+||Qyr|Pyxe) -

k UU—~Xk_ vk, Puxkyk:
-k 5 — 5 =
HUAXRYSRR P n =Py vier Pryk =Pk
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It is easy to check that Pyxrys = Py X Pxwjy X Pywjy achieves the above

minimum. Hence

i i . . pvr Pyeu(yFlu)
D(PYHUX’“HQY’”“PUXk) = Z PUX’“Y"’(uaxkayk)log L‘

u,zk yk QYk (yk)
, Py (y*) Pywu(y*|u)

= Y Pyye(u,y*)log : o

jL’; vy Pyi(y*)Qy e (y*)
= D(Py+||Qy+) + I(U AYF).

9(R,¢€) is thus equal to
, ~ 1 :
D(Px||Qx)+ D(Py||Qy) +sup  sup —ZZI(U/\Yk) -
k UU—-Xkovk,

I(UAXFk)<KR
Making use of the results of the entropy characterization problem [17, Chapter

3, Theorem 3.20], we obtain

8(R,e) = D(Px||Qx)+ D(Py||Qy) + JSup HUAY) = 6i(R) .

U X —

I(UAX)ER
Finally, the range constraint on || in 6;(R) can be derived by means of a stan-

dard convexity argument [17, Chapter 3, Lemmas 3.4 and 3.5]. A

EXAMPLE 4.1. Let the null and alternative distributions be given by

0 1 0 1
0 D= 0f 3/8 1/8
Pxy : 05-7p P ) Qxy : / / ;
1 p 05—p 1\1/8 3/8

where p < 1/2. We take R = 0.5 and note that H(X) = 1.
Our computation of 6;(R) for selected values of p yields

0.208, ifp=20;
0.206, if p = 0.0001 ;
0.199, if p =0.001 ;
0.153, if p=0.01.

gl(R) -
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Next we find lower bounds on 6;2(R) for the same selected values of p. We can

write
00 01 10 11
00 [ (0.5-p)* p(0.5—-p) p(0.5—p) p?
Pyays = 01| P05 —p) (05— p)? p* p(0.5 - p)
10 | p(0.5 - p) p? (0.5~p)*> p(0.5—p)
11 p’ p(0.5—p) p(0.5—p) (0.5 p)’

Let U = f(X?) = X; & Xy (mod-2 sum of X; and X;). Then Py(0) =
Px»(00) + Px2(11) = 0.5, which implies that H(U) = 1 and I(U A X?) =
H{U)-H(U|X*)=H(U)=1=2R. Thus U € §(0.5,X?Y?). We also have

PUYZ = (p2 + (05 - p)2 2])(05 - p) 2]7(05 —-p> PQ + (05 - ]3')2
2p(0.5—p) pP+(05-p)* p +(05-p)3* 2p(05—-p) /)’

and similarly,

Ouys — 5/32 3/32 3/32 5/32
UY* T\ 3/32 5/32 5/32 3/32

It follows from equation (3.4) that

0.339, ifp=0;
0.337, if p =0.0001 ;
0.322, if p =0.001;
0.234, ifp=0.01.

82(R) > %D(PUY2||QUY2) =

This shows that 6(0.5,€) > 65(0.5) > 6,(0.5) for the above selected values of p.
4.4. Concluding remarks.

Example 4.1 indicates that our characterization of the error exponent ob-
tained in terms of a sequence of single-letter formulas does not in general reduce
to one single-letterized formula, i.e., (R, €) # 61(R). There are, however, special

cases (cf. Theorem 4.4) where the error exponent is indeed given by 61(R).
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The problem of finding a single-letter formula of 8(R, €) was termed a diver-
gence characterization problem in [10]. Our results demonstrate that this prob-
lem is a special case of the single-letter characterization of the two-dimensional
convex closure of | Jiw, Hx, where

def [ /1 ok . 1 = -

Hk - {<—H(A ]Zj), min —D(PY’”'IUX’”'HQYHX}"'|PUX’°)>:
k . Pyxkyk: k

Puxe=Pyxk:
Puyk=Pyyr

U— X% Y’”’} .

This problem remains open to date.
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CHAPTER 5

DISTRIBUTED DETECTION WITH FEEDBACK

5.1. Introduction.

In the previous chapters we studied the asymptotics of distributed detection
systems with fixed numbers of sensors and growing sample sizes. In this chapter
we consider the case where the size of the sample obtained by each sensor is held

fixed, and the number of sensors approaches infinity.

Systems with a large number of sensors have been studied in [23,28,33]. Our
work is thematically related to [23], in which a Bayesian multiple hypothesis
testing problem with N sensors making independent observations was consid-
ered. Both sensors and fusion center used deterministic rules, and the optimiza-
tion aimed at minimizing the overall probability of error. For binary hypothesis
testing, under the assumption of identical statistics across sensors, it was shown
that the sensors could use the same decision rule without loss of asymptotic

optimality. Similar results were obtained in [28] for sequential data fusion.

We consider in this chapter two variations on this setup. One entails the
transmission of sensor data to the fusion center in two stages, with broadcast of
feedback information from the center to the sensors after the first stage. The
other variation involves information exchange between sensors prior to transmis-
sion to the fusion center; this exchange is effected through a feedback center,
which processes binary data from the sensors and thereafter broadcasts a single
feedback bit back to the sensors. The latter variation is of relevance to situations

where the channels between sensors and fusion center are of restricted capacity
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and transmission across those channels entails considerable cost. We show that
under the Neyman-Pearson criterion, only the latter type of feedback yields an
improvement on the asymptotic performance of the system (as N — 0o), and we

derive the associated error exponents.

5.2. Problem definition and preliminaries.

We have two hypotheses Hy and Hy, and N sensors {S;}Y,. Each sensor
S observes a random variable X; that takes values in a finite set X'. We assume
that the sequence XV = (Xy,...,Xy) is identically distributed and independent
under both hypotheses. Thus if Py and @Qx are the distributions of X; under

Hy and Hy, respectively, we have for all 2™ € XN

Pyn(e") = PY(aV) = [] Px.(=i) ,

=1
N
Qxn(z") = Q¥ (=") = [T @xi(=i) -
i=1
We study four different systems for processing the data collected by the

SEIISOrs:

System 1. No feedback is employed in this system. Each sensor transmits
a random message U; € U, where U is a finite set of cardinality at most |X|.
U; is generated by means of a behavioral rule [34] or simply a random encoder,
which can be represented by a conditional distribution Ay, x; on U x X. As soon
as the fusion center C' collects the local messages of each sensor (Uy,...,Un), it
declares hypothesis Hy to be true if UV lies in some acceptance region Ay C UV,

The optimal encoders {Ay,|x,} and acceptance region minimize the type I error
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Qun~ (An) subject to the constraint
PU}V (A?V) S €

on the type I error, where € € (0,1). The joint distribution Py~ of the messages
is given by

N

PUN(uN) = HPU.'(UI') )

1=1

where
Py, (ui) =Y Ay, x,(uilz)Px() .
T

We will also represent the above by the vector-matrix product Py, = PxAy;x;,
where Py, is a |U|-dimensional row vector, Px is a |X|-dimensional row vector,
and Ay, |x, is a [U| x |X| matrix. Qu~(u’) is defined in a similar manner. We

denote the minimum probability of type II error by ﬁ](;)(W], €), i.e.,

(= {Qun(AN): Pyn(An) 21— ¢} .

inf
{Au;x; }, AnCUN
We are interested in the asymptotic behavior of ﬂg\})(|l/{|,e) as N — oo. The

resulting error exponent is given by
def . 1 (1)
O (), €) i 1o B (U, €)
provided the limit exists.

In investigating the effect of feedback on the above system, we study two
patterns of information flow within the system:
(i) The first pattern entails two-stage transmission of a two-bit message using
a one-bit feedback packet from the fusion center.
(ii) The second pattern involves partial information transmission to the feedback

center which then provides a one-bit message to all sensors. Based on this
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feedback information, the sensors re-encode their observations into one-bit
messages and communicate them to the fusion center.

System 2 described below follows the first information flow pattern, whereas

Systems 3 and 4 follow the second pattern.

System 2. Here we assume that the ith sensor transmits binary messages
in two stages: message U; in the first stage, followed by message W; in the
second. After the first stage, and based on the received sequence Uy,...,Up,
the fusion center produces a binary feedback message V, and communicates it to
the sensors. This bit is 0 if U¥ lies in some region Cy C UN called the feedback
acceptance region, and 1 otherwise. Each sensor S; then generates two binary
messages Y; and Z; (that take values in the same binary alphabet W) according
to distributions Ay; |y, x, and Az, v, x,, respectively, and uses the feedback bit to
decide which of Y;, Z; to transmit to the fusion center as the second information

bit W;. Thus

Wi € Yilyy—g + Ziljy=1] (2.1)

where I, denotes the indicator function of the event 4. Since V' depends on the
observations of all sensors, the W;’s are in general dependent. The fusion center
C' collects these messages W and uses these along with U™ to declare that Hy
is true if UNWY lies in an acceptance region Ay which is a subset of N x WV,
The optimal encoders {Ay,y;|x;, Av;iz:|x;}, feedback acceptance region Cy, and
acceptance region Ay are those that minimize the type II error, Qu~ywr (An),

subject to the constraint

Punwn (AY) < €
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on the type I error. By (2.1), for all (uvV,w") € UN x WV we can write

N wN) _ {PUNyN(UN,’LUN), if u € Cn;

Posyn (w7, Pyn zn (u¥,w?), otherwise, (2.2)

where

N
PUNyN(’U,N,’U)N) - HPU.'Y.'(uiawi)a PU.'Y.' = PXAU;Y;fX; ’
=1

and

N
Pywgw (u”,w™) =[] Puizi(ui,wi),  Puiz; = PxAu,z,x, -
i=1

Hence, by (2.2)
Pyvwn(AN) = Pynyn(An N (Cn % WN)) + Py~ zv (AN N (CR % WN)) .

Qunrwn is evaluated in a similar way. The optimal type II error is defined as
follows
B S . inf  {Queww(An): Puvwa(An) 21— €} .

vyl xp Aupzgixgh
cyculN, AycuNxwhN

The corresponding error exponent is given by

090 '~ lim < og SP(e)

System 3. This system differs from System 2 in that here we have two
distinct centers: the feedback center C and the fusion center C. The sensors
transmit the first messages UV to C, which broadcasts a binary feedback message
V (generated in exactly the same manner as in System 2) to all sensors and to

C. The sensors then transmit the second messages W (generated as in System
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2) to C. C uses WY along with V to declare the final decision. Therefore, the

acceptance region Ay C UN x WN can be written as the disjoint union
Anv = (Cn X FN)U(Cx x EN)
where Cy C UV and Fy,En C WV, With the aid of (2.2), we can write
Pynwn(ANn) = Pynyn(Cn X Fn) + Pyngn (Cly X En) -
The corresponding optimal type II error is thus

3 def .
B (e) = inf {Qunws (An):
Ay, v 1x; Au;zx; b
cyculN, rn, eExyCcwWN

An = (Cn X FN)U(CYy X EN), Pynwn(An) 21— €}
and the error exponent is given by

63 (e) & — lim % log B (€) .

System 4. This system differs slightly from System 3 in that the two centers
C, C do not communicate. Thus C uses W¥ only to determine the true hypoth-
esis. The statement of the problem is summarized as follows. The acceptance
region used by C is Ay, which is a subset of WY, not 4"V as in System 1. The

type I and type II errors are given by
PWN (.AN) = PUNyN(CN X .AN) + PUNzN(CZCV X AN)

and
Qwr (An) = Quvy~(CN X An) + Qurv zv (Cy X AN)
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respectively. The optimal type II error is thus

def .
(e inf {Qwn (AN): Pn (An) > 1— €}
By vi1x;0 Avizix: b
cycuN, aycwhN

and the error exponent is given by

o (e) & lim %,- log 8 (e) .

To investigate the effect of the first kind of feedback, we compare the error
exponent in System 1 (when |I{| = 4) with that in System 2. The effect of the
second kind of feedback is illustrated by comparing the error exponents in System

1 (when |U| = 2) with that in Systems 3 and 4.

It turns out that System 2 performs similarly to System 1 (with |i/]| = 4).
This implies that the first kind of feedback does not improve the error exponent
in System 1, but it is certainly useful in reducing the complexity of the setup.
On the other hand Systems 3 and 4 outperform System 1 (with || = 2) in
general, hence the second kind of feedback is useful. We will see also that the
error exponent in System 3 is equal to that in System 4, i.e., C' does not need to

know the feedback bit transmitted by C.

In Section 5.3 we evaluate the error exponents of the above systems under
the assumption that all sensors use the same encoder, and show that the sensors
can employ only deterministic encoders (i.e., encoders described by deterministic
behavioral rules) without loss of asymptotic optimality. In Section 5.4 we cval-
uate the error exponents in Systems 1 and 2 assuming that the sensors are not

restricted to use the same encoder.

(c) Typical sequences. The basic definitions and properties of typical se-

quences cited in Section 2.2 will be used here with N replacing n.
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For convenience we restate here Lemmas 2.1 and 2.2 with slight modifica-

tions.

LEMMA 5.1. For any Px in Pn(X), and Qx In P(X)

(N +1) WexpNH(Px)) < TR < exp[NH(Px)]

and

(N + 1)~ exp[-ND(Px|l@Qx)] < QN(TY) < exp[-ND(Px[1Qx)] -

LEMMA 5.2. For any two distributions Px, Qx on X, andn >0,

X

QN(TY ) < exp[-N(D(Px|Qx) = éx —v(m)]

where 6N = B_ll-:sNﬁ_\’jl_) — 0, and v(n) = 0 asn — 0.

We will need the following lemma.

LEMMA 5.3. Let X and ) be any binary sets. Fix p > 0,6 € (0,1). Then

there exists a sequence
vy = vn(p, 61X 1Y) — 0

such that for every Pxy, Qxy € P(X x V), C € xN, F e YV satistying

min xyl\z > P,
Z,y!QXY(x,y)>0Q ( ,y> P

D(Pxv|lQxy) < oo,
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and

PYL(CxF)>6,

the following is true:

QXy(C x F) > exp[-N(d(Px, Py ||Qxy) + vn)] ,

where

APy, PrliQxv)E  min  D(Pxy||Qxv) .
Py =Py, Py =Py

PROOF. Case 1. Qxy > 0. The statement follows immediately from The-
orem 2.3 and is also true for arbitrary X, ).

Case 2. (Qxy has zeros. The binary assumption on the sets X and Y is criti-
cal here. If the distribution ]3Xy achieves the minimum in d(Px, Py||Qxy ), then
Pxy < Qxy (otherwise the divergence equals infinity). The constraints Py =
Px, Py = Py force Pxy to be identical to Pxy, i.e., here d(Px,Py||Qxy) =
D(Pxvy||@xvy). Stein’s lemma [8] ensures the existence of a sequence Ay — 0

such that

Ny(C x F) > exp[-N(D(Pxy||Qxy) + )] - A

In the following sections we will omit the superscript N from 7', as N will

be essentially constant.

5.3. The main results.

The first theorem is a straightforward adaptation of Stein’s lemma for which
we have been unable to find a reference in the literature; hence we give a full

proof.
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THEOREM 5.1. The error exponent for System 1, assuming all sensors use

the same encoder and [U| < |X

, 1s given by

6D (|, e) = sup D(Py||Qu)
AUIX:
Py=PxAp|x, Qu=QxAy|x

for all e € (0,1).

PROOF. Direct part. If |U] = |X|, then the error exponent is given by
Stein’s lemma. Let ¢ be a set of cardinality not greater than |X'|. We assume all
sensors use the same encoder, i.e., Ay, x; = Ay|x, for all 1 <i < N. We thus

have

Py, = Py = PxAyx, Qu; = Qu = QxAyx .

Set the acceptance region

Ay =Ty, ,
where 1 > 0 is arbitrary small. Then from Lemma 5.2,

]

Pyn(An) = PY(AN) > 1~ Ny

which is greater than 1 — ¢ if N is large enough. The type II error is upper
bounded by exp[-N(D(Py||Qu) — én — v(n))], where 65 — 0 and v(n) — 0 as
n — 0 (cf. Lemma 5.2). Since the conditional distribution Ayx is arbitrary, we

have

S (1, 0) £ jnf exp[=N(D(PullQu) = én —v(n)]

By definition of the error exponent,

691U, e) = sup D(PullQu) —v(n) -

Ulx
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Since n > 0 is arbitrary, the proof of the direct part is complete.

Converse part. Assume that all sensors use the same encoder Ayx. Let

An C UN be any acceptance region satisfying the constraint
Pyn(An)21—c¢€.

Hence from Stein’s lemma, for N large enough there exists a sequence An — 0,

depending only on || and €, such that

Qu~(Ax) = expl-N(D(PullQu) + An)]

> expl=N( sup D(PullQu) + )] -

Ay|x
Since Ay|x was arbitrary, and Ay was any set satisfying the constraint on type
I error, we obtain
BO(u],€) > exp[~N( sup D(PullQu) +An)] -
Ay|x
Thus

6 (||, €) < sup D(PullQu) - A

UlX

THEOREM 5.2. The error exponent for System 2, assuming all sensors use
the same pair of encoders, is given by
6% (e) = sup D(Puy||Quy)

Apy|x:
Pyy=PxApy|x» Quy=ex4UY|X

for all e € (0,1).

REMARK. One can sec that if [(f/| = 4 in Theorem 5.1, then the crror

exponents in System 1 and 2 are exactly the same, thus in asymptotic terms,
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the feedback bit used by the fusion center does not convey essential information
to the sensors. As a matter of fact, one can show that the same error exponent

prevails for any fized number of feedback bits.

PROQOF. Direct part. It is obvious that this system will do at least as well

as the one with no feedback, hence §(3)(e) > 8(1)(e).

Converse part. Assume that all sensors use a pair of encoders Avuy|x, Duzix

Let Cy CUN, Ay cUYN x WY be any regions satisfying the constraint
y reg ying

Pyny~(An) = Pyvyn(AnN(Cn X WN)) + Py~ zn (An N(CR X VVN))

> 1—c€.

Hence, either Pyny~ (ANN(Cn xWN)) > (1—€)/2 or Py~ zn (ANN(CE xWN)) >
(1—¢€)/2. Using the same method as in the proof of the converse part of Theorem

5.1, we obtain

6®)(e) < { sup D(Puy||Quy)} V{ sup D(Puz||Quz)}

Ayy|x Ayz|x

= sup D(PUy||QUy) . A

UY|X

THEOREM 5.3. The error exponents for Systems 3 and 4, assuming all
sensors use the same pair of encoders and D(Px||Qx) < oo, are given by
9(3)(6) = 9(4)(6) = sup d(Py, Py||Quy)

Ayy)x:
Pyy=PxApyix, Quvy=QxApy|x

for all e € (0,1).

PROOF. Direct part. By the problem statement, we have 8(3(¢) > 0(9)(e),

Hence it is enough to show the direct part for System 4 only. Pick an arbitrary
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pair of conditional distributions Ayy|x, Ayz|x as fixed encoders for all sensors.
Set Cy = Ty, An = Ty, where 7 > 0 is arbitrary. For the type I error in

System 4, we can write

PVVN ('A?\/') = PUNyN(CN X A']:\f) + PUNzN (C]CV X A?\/)

< Pyw(A¥) + Py~ (CR)

V| |
<
S aNp? TaNgE S€

if N is large enough. The Type II error in System 4 is upper bounded as follows:

Qwn~ (An) = Qury~n(Cn X An) + Qur zn (Cx X An)
< Quvyn(Tug X Tyy) + Qv (Ty,y)

< exp[-N(d(Py, PY”QUY) —6én —v(n)] + Qzv (Ty,y) -

By a suitable choice of Az x the last term in the above inequality can be made
equal to zero. Indeed, for any fixed yo with Py(yo) > 0 we can always choose
a trivial encoder Az x such that Az x(yolz) = 0 for all z € A. It follows
that Qz(yo) = 0. Since Py(yo) > 0, there exists an 1 > i(y™) > N such that
Yiyv) = Yo for each sequence yV in Ty,,. Thus @z~ (Ty,;) = 0. This, together
with the fact that the encoders were arbitrarily chosen, yields

6" (e) = sup d(Py,Pyl|Quy)—v(n) .

UY|X

Converse part. It is enough to show the converse part for System 3 only, since
9(3)(6) > 9(4)(6). Assume that all sensors use a pair of encoders Ayy|x, Ayz|x-
Note that D(Pyy||Quy) < o0 and D(Pyz||Quz) < oo since D(Px||@x) < oo.
Let Cn CUN, Fn,En CWN, Ay =Cn x Fn UCS % En be satisfying the type
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I error constraint

Punwn(An) = Pynyn(Cn X FN)+ Pywgn (Cj x En) 21—
Hence, either Pyny~(Cn X Fn) > (1 — €)/2 or Pynzn (C4 x En) > (1 — €)/2.
Using Lemma 5.3, we have either

Quyy~(Cy X Fn) 2 exp[-N(d(Py, Py||Quy) + vn)]

> exp[—N( sup d(Py,Py||Quy)+vn)|,

UY[X

or

Qun zn (Cy X En) 2 exp[=N(d(Py, Pz||Quz) + vn)]

v

exp[-N( sup d(Py, Py||Quy)+vn)] .

Ayy|x

This yields

Qurvwr(An) = Qunyn(Cn X Fn)+ Qunzn (Ci X EN)
> QUNyN(CN X fN) \ QUNzN(C]cV X SN)

2 exp[=N( sup d(Py, Py||Quy)+An)],

Avyix

and therefore also

#¥(e) < sup d(Py, Pr||Quy) . A

UY|X
REMARK. In general, the error exponent in Systems 3 and 4 is better than

that in System 1 (with |2/| = 2). This is because d(Py, Py ||Quy) > D(Pul|Qu).

In what follows we will see that it is sufficient for all sensors to employ

deterministic encoders in order to achieve the above error exponents. We first

need to define ®(Ay|x) and ¥(Ayy|x) as follows.

&(Ayjx) € D(Pul|Qu) (3.1)
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where

Py = PXAU|X and QU = QXAUIX , (32)
and
U(Ayyix) € d(Py, Py||Quy) , (3.3)
where
Py = PxAypy|x, Pv =PxAypyix, and Quy = QxAyyx . (3.4)

The following lemma asserts the convexity of ®(-) and ¥(-).

LEMMA 5.4. ®(Ay|x) defined in (3.1) is a convex function in Ay|x, and

U(Ayy|x) defined in (3.3) is a convex function in Ayy|x-

PROOF. For a € (0,1) and any two conditional distributions Ay)x, AU[Xy
let Py,Qu be defined as in (3.2), and Py, Qu be defined similarly with ZXU|X
replacing Ay|x. Then

®(alyx + (1 - )Apx) = D(aPy + (1 - a)Py||laQu + (1 — a)Qu)

< aD(Pyl|Qu) + (1 — @) D(Py||Qv)

= a®(Ayx) + (1 - a)2(Ayx) ,
where we have made use of the convexity of the divergence. This proves that
B(Ayyx) is a convex function in Ayix.

Now let a € (0,1) and Ayy|x, Ayy|x be two conditional distributions. We
define Py, Py, Quy asin (3.4), and JBU, sz, @UY similarly with AUY[X replacing
Ayy|x- Then
a¥(Apyix) + (1 = a)¥(Apy|x) = ad(Py, Py[|Quy) + (1 — a)d(Py, Py ||Quy)

= aD(PS}1Quy) + (1 — ) D(PF | Quy)
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for some P[(Jls), and P((fil, where P((Jlx), has marginals Py and Py, and R(UQ; has

marginals Py and Py. By convexity of the divergence functional and the defini-

tion of d(-,-||-), we obtain

a\I/(Apr() +(1 - CV)\I’(AUYIX)
> D(aPly +(1—a)PPaQuy + (1 - a)Quy)
> d(aPy + (1 —a)Py,aPy + (1 — a)Py||aQuy + (1 — &)Quy)

= ¥(aApyyx + (1 — 9)Apyix) -

This proves that ¥(Ayyx) is a convex function in Ayy|x- A

In what follows we assume that II and A are partitions of X'. We denote by
I V A the coarsest common refinement of II and A. We use P|p to denote the

restriction of Px on II.
THEOREM 5.4. Assume all sensors use the same encoder.

(i) For all e € (0,1), || < |X|, if I is a partition of X, then

6 (U], €) = max D(Py||Qu) -

Py=Plg, Qu=RIn

(ii)) If U, Y are binary sets and II, A are partitions of X, then for all € € (0,1)

0D (e) = max D(Pyy||Quy)

)
Pyy=Plnva» Quy=Qluva

(iii) If, in addition to (ii), D(Px||Qx) < co, then for all e € (0,1)

83 (&) = 6 (e) = max d(Py, Py||Quy) -

,
Pyy=Plonva» Quy=2lnva
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PROOF. From Theorem 5.1 and the definition of ®(-) we have
6 (U|,€) = sup ®(Ayx) - (3.5)
UIx
Observe, however, that any distribution Ay x can be written as a convex com-
bination of at most |I/|!*! extremal distributions {Ay,|x;}, which are such that

Ay, x;(ulz) =0or 1. Thusif M = |11, we can write

M
AU|X = ZaiAUiIXi 5
=1

where o > 0 and Zf‘il a; = 1. Substituting in (3.5) and making use of the

convexity of ®(-), we obtain

M
6V(Ul,e) = sup B(Ayx) = sup B> aily,x,)

Aulx i}, =1
M
<  su a;P(Ap.v.) < max ®(Apx.) .
< {a..}?;; (Aux) S max (Avx,)

The reverse inequality is obviously true. This proves the first statment of the

theorem. The remaining statments can be proven in a similar way. A

5.4. Extensions and concluding remarks.

In the previous section we considered the situation in which all sensors usc
the same encoder, and showed that no loss of optimality resulted from using
deterministic encoders. In this section we consider a more general situation, in
which the sensors are allowed to use different encoders. We show that in this case
the error exponents of Systems 1 and 2 will still be given by the corresponding
expressions in Theorem 5.4, and thus the sensors can use the same deterministic
encoder without loss of optimality. We have not yet succeeded in proving an

analogous result for Systems 3 and 4. Our main result is thus:
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THEOREM 5.5. If the uniformity constraint on the local encoders are re-
moved, then the error exponents for Systems 1 and 2 are still given by the

corresponding expressions in Theorem 5.4.

PROOF. We give the proof for System 1. Let U be a set of cardinality
not greater than |X|. If D(Px||@x) = oo, then there exists Z € A" such that
Px(z) >0 and Qx(z) = 0. Let U be a message on U = {uy,...,u)y |} generated

by X via the encoder Ay|x, where

1, fu=u;
Butula) = { 57 Hr

, otherwise ;

and for any z # T

1, fu=uy;
0, otherwise .

Buix(ule) = {

Set the acceptance region Ay = Ty,,. This yields
Pj(An)21—¢, QU (An)=0.

Thus 8 (|i4], ) = oo. Hence it suffices to prove the theorem under the assump-

tion that D(Px||@x) < oo.

Direct part. Fix any conditional distribution Ayx and let all sensors use
the same encoder, i.e., Ay, x; = Ay|x for all 1 <7 < N. We obtain the same
lower bound as in Theorem 5.1, namely

6 (1Ul,e) > sup D(PyllQu) > max D(PyllQu) -

Ulx Py=Plm, Qu=Qln

Converse part. In System 1 assume that each sensor S; uses an arbitrary

encoder Ay, x;. For all u; €U, i € {1,..., N}, define

def def
Py, = PxAy,;x; and Qu, = OxAyx, -
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It is clear that the U;’s are independent under both hypotheses. Let Ay c UV

be any acceptance region satisfying the constraint
PUN(.AN)E].—E.

Define, for n > 0 arbitrary, the set

Ty el N EUN:“Og% ZD(PMHQU)’ < Nnp}.

If Ep(-) and Varp(-) respectively denote expectation and variance under F, then

PUN(UN) _ ZE lng_"(gi_)_

Epl =
PR Qun (UT) T TP QuT)

and
Py~ (UN) Py, ( U)
Varp log ———-= = Varp lo
T Qua () Z 77 Qu()
Py(U) 2
< N sup Varplo = No* |,
Ayx & QU(U)
where 0% = SUPA 5, x Varp log QU((?), and 0% < oo by the result of Appendix B.

We have from Chebyshev’s inequality that

Py~ (UM)
Py (T¢) = Pyn{|log =l —
0 Qo (UN) ~ £+
1 PUN(UN) 0'2
< ~ <
S Fagp MPlE G TR S Ny

This yields
1—ce¢
PUN(AN N T77) 2 p
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for N sufficiently large. We can estimate the type II error rate as follows:

Qun(An) 2 Quv(ANNT,) = Z Quw (u™)
uNE.ANﬂTTJIV
N
> ) Pyn(uM)exp[-Y_ D(Pyl|Qu;) — N
uNeANNTN i=1
1—ce€
>

N
s—exp [~ ) D(Py;11Qu;) — N1 .
=1

It follows that

N
ol e) < =3 D(PullQu) +n S sup DPUlIQu) +1 .

i=1 Avix

Combining the direct and converse parts we obtain the desired conclusion for

System 1. For System 2, the proof is similar and is omitted. A

The last result of Theorem 5.5 bears some resemblance to that obtained by
Tsitsiklis in [23] with the following important differences:
(i) The decision rules in [23] were restricted to be deterministic, whereas we
consider the wider class of behavioral rules.
(ii) The optimization in [23] was based on minimizing the overall probability of
error, whereas we employ the classical Neyman-Pearson criterion.
(iii) The space of observations in [23] was infinite, whereas here only finite spaces

are treated.

We should emphasize that the results of this chapter will still be valid if we
assume that the space of observations X’ is infinite, but restrict the local encoders

to be deterministic and the message alphabets to be finite.

We have been unable to extend Theorem 5.5 so as to include Systems 3 and
4. This is because of the apparent necessity of the positivity assumption on the

alternative distribution in Theorem 2.3.
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As a final remark, in studying System 2, we assumed that the fusion center
transmits a binary feedback message V € V (]V| = 2) to all sensors and showed
that this system does not offer any improvement over System 1. This is actually

true for any finite alphabet V, provided |V| is fixed in N.
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CHAPTER 6
MULTITERMINAL HYPOTHESIS TESTING WITH

TIME DEPENDENT OBSERVATIONS

6.1. Introduction

So far the observations have been assumed to be the output of a memoryless
multiple source. This assumption is not always justified in practice, since most
information sources possess memory. In this chapter we relax this assumption
by assuming that the data are available from the simplest example of memory

sources, the Markov source.

Once more we are given two hypotheses Hy and Hy, one of which is true.
The system consists of two sensors Sx and Sy linked to a fusion center (or
detector) which decides on the true hypothesis. The sensors Sx and Sy observe
the respective components of the random sequence {(X;, Y}, (X; € X, Y, €
Y, where A’ and Y are finite sets) and encode their observations using a maximum
of nRx(n) and nRy(n) bits, respectively. The detector accepts Hy if the received
sequence lies in an acceptance region A, € (X x Y)". This acceptance region is
chosen so as to minimize the type II error rate subject to a fixed upper bound €

on the type I error rate.

We assume that the X-data are compressed into a fixed number of code-
words and the Y-data are transmited uncompressed, i.e., nRx(n) = constant
and Ry(n) = oo. An asymptotically optimal acceptance region for the corre-

sponding memoryless system has been determined in Chapter 2, and the error
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exponent was shown to be equal to
min  D(Pxyl|Qxy) ,

where Pxy (resp. Qxy) denotes the distribution of (X, Y;) under Hy (resp. H;).

If, under both hypotheses, the random process {(X;,Y;) forms a 1st

1= —00
order Markov chain whose transition matrix is irreducible, and there is no com-
pression on either X or Y-data (i.e., Rx(n) = Ry(n) = o), then the prob-
lem is considerably simplified because the detector knows the observed sequence

{(X5,Y3)}L, precisely. In this case the optimal acceptance region can be found

in [35,36] and the resulting minimum type II error rate is given by
DW(|Vlrw) ,

where D(-|| - |-) denotes informational divergence rate, W (resp. V) the transi-
tion matrix of the Markov process {(X;,Y;)} under Hy (resp. Hy), and myy the

stationary distribution of the Markov process under the null hypothesis.

6.2. Problem statement and preliminaries

(a) General notation. We assume that we have a double-sided process
{(X,,Y3), ¢ € Z}, and X;, Y; take values in the finite alphabets X and Y,

def

respectively. We also let Z EL U Yand Z; = (X;,Y;). The sensors Sx and Sy

observe the finite random sequences (X1,...,X,) and (Y7,...,Y5), respectively.

If i <3, then ZJ = (XY)! will denote the random sequence (Z;,...,Z;) =
(X3, Y0),...,(X;,Y;) on 29~ and 2! = (zy)! will denote the corresponding
nonrandom element (z;,...,2;) = ((2:,¥:),...,(z;,y;)). Similar notation will

3

also be adopted using Xij, ’cf, Y/, and yi
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We will use the symbols Wy and V; to denote transition matrices for (finite
order) Markov processes. The subscript k in W;, and V;, indicates that the order
of the process equals & — 1. Thus W(-|") is a stochastic matrix on Z x Z¥~1,

and T/Vk(zklzf ~!) is the probability that the corresponding process produces the

symbol z; following a given sequence zf”l = (21,...,2k-1)-

Given a stochastic matrix Wy (resp. Vi) on ZF which induces a unique
stationary distribution 7y (resp. my) on Z¥~1, we define a stationary (& — 1)th
order Markov measure P = my o Wy (resp. Q = wy o Vi) on the Borel field of
ZZ by means of the following finite-dimensional distributions:

'I’lg—k+1
P(zp2) = mw(zmt ™) T Wilzigr—tlziT72),
i=nl
ng— Iv+1

Qzp2) = 7v(z, nl“ ) H Vizipro1 |22y

zn1

for all ny < ng and 222 € Zn2—mitl . The entropy rate of the corresponding

(k — 1)th order Markov process (7w, Wy) is defined by

def

HWilmw) = — Y P(zf)log Wi(zkl2t™")

2ezk

where P = mw o Wy. If V] is a stochastic matrix on Z! with { < k, we define the

divergence rate D(Wg||Vi|mw ) by

, def E I/Vlc(2k|2f_1)
D(We|[Vilrw) = ) P(2f)log % .
ez Vl<zklzk—l+1)

The compression of X7 is effected by the encoder f,,, where

fo: X" = {1,..., M},
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and the codebook size M is constrained by M > 2.
The corresponding detector is represented by the function
bn {1, M} x V" {0,1},

where the output 0 signifies the acceptance of the null hypothesis Hy, and 1 its
rejection. This induces a partition of the original (i.e., non-compressed) sample

space (X x V)™ into an acceptance region

An E {(@y)? € (X x V)™ b fulal),y) = 0}

and a rejection region AY. By nature of the encoding process, the acceptance
region can be decomposed into M rectangles C; x F; in (X x V)" that possess

disjoint projections C; on X™, where
Ci x Fi © {(ay)? € (X x Y)™:a? € Ci, yP € Fy} .
More precisely, if for every 1 < ¢ < M we define
C; = {27 € X" : fp(af) =i} and  F; = {yy € V" :¢.(2,97) =0},
then we can write

M
A, = U C; x F; , where Vi#£3) C;inC;=0, (2.1)
i=1

(b) The hypothesis testing problem. In the above framework, the problem
of testing Ho : W = W; versus Hy : V = V3 can be formulated as follows: for a
given level e € (0,1), minimize Q(A,) (the probability of type II error) over all

acceptance regions A, that:
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o yield a value of P(AY) (probability of type I error) less than or equal to ¢;
and

e satisfy condition (2.1).

The resulting minimum probability of type II error is denoted by £,(,¢), and

the associated error exponent is given by

6(M, &) < —lim 2B, (M, e) ,
n n

provided the limit on the right-hand side exists.

We restrict ourselves to the study of the asymptotic behavior of 3,(M,¢€) as

n approaches infinity.

Under the conditions:
(C1) the process {(X;,Y7), ¢ € Z} is stationary ergodic (1st order) Markov under
both hypotheses;
(C2) W is irreducible and aperiodic; and
(C3) V>0,
we show that for every M > 2, € € (0, 1), the error exponent §(M,¢€) is given by

the infimum of the quantity

P{XY )ol(XY)L,)
B8 XY ol (XY )1 )

over all stationary distributions P on the Borel field of (X x V)% that satisfy for

all n > 0 the conditions P(z°,) = P(2%,,) and P(3°,) = P(y",).

(c) Typical sequences. Our proofs in this chapter rely on a broader concept

of a typicality than the one employed in the previous chapters.
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The kth order type of a sequence z* € Z™ is the distribution /\(Z?;), or simply

A ,on ZF defined by the relationship
: . : 1. i .
(Va¥ € 2%) )\(z]‘)(alf) aef - Hl €{l,...,n} it = a’l‘}\ ,

where the circular convention z,4; = z;, 7 € {1,...,k—1}, is adopted. Thus the
1st order type is the ordinary type encountered earlier, while the 2nd order type
is the “Markov type” introduced by Davisson et al. [37]. The circular convention
used in the above definition ensures that
S OAB(b a1, ak1) = >0 AP (ar, e, b) = AU (2.2)
beZ bez
for all a*~! € ZF~1. As a consequence of the above identity, the marginals of
AP are “stationary,” i.e., translation invariant within the index set {1,...,k}.

The set of all kth order types is denoted by 77,2"‘)(3 ). It is easy to sece that

the cardinality of this set is at most (n + 1)|Z|k.

If P, € ”P,(,k)(Z), we define Tg") C Z™ to be the set of sequences 2z € Z"
that have kth order type /\(zk) = Pk. Let the distribution 7w and the stochastic

matrix W, be defined by
(VA e 251 (AT =Y Beh) (2.3)
2p
and

NI [ N k=11 <
k k 37 (o =1y def Pe(z®) 7w (z07h), H aw(zi ) >0
(Ve € 27) Wizl {1/|Z|, otherwise .
(2.4)

It is easy to see that 71y defined previously is a stationary distribution for W

The circular convention of kth order type guarantees that Wi defined in (2.4) is
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irreducible, and hence 7y is the unique stationary distribution. We also have

pk = 7A1'W <& ﬁfk.
LEMMA 6.1. Let P, € ’PT(zk)(Z) and #y, Wi, be as above. Then

n~ 12 (1)1 expn H(Wilaw)] < 1T5] < |21F exp[nH (W |7w)] -

PROOF. Davisson et al. [37] have proved the above lemma for k& = 2.

Following the same procedure we can show that the lemma is also true for £ > 2.

A

LEMMA 6.2. Let By, € P8(2) and #w, Wi be as in (2.3), (2.4). For any

I <k,ifV; >0, then

a2 (4 1)1 expl-nD(Wi|Viliw)] < QUIYY) <
|2 [k

S
l

exp[—nD(Wi|[Vi| 7w )],
P

: - : -1
where p; = min.: ¢ z: Vl(zllzi Y and a; = Min -1 g1 (20 ).
-lez

PROOF. Let 2 € Ték). From the convention z,; = z;, j € {1,...,k—1},
and the fact that a (I — 1)th order Markov chain is also kth order Markov for

[ <k, we obtain

n—k+1

QD) = Q) [ Vi(zier—lzi?)
=1

= o(z, ) [ VilzirralT572)

1=1
P (£
= o(z1,0) [] ViCealef ™00
Fezk
-~ > (2F
= c(z7,1) H Vl(zk|z’l§_ll+1)nﬂ( 0

zhezh
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where

n
o0, 0) = Q™ T Vilzigr-alzi™ %)
i=n—k+2
n .
= mv(zi)) ] Vilzipialz7?)
t=n—I[+2

Using the fact that ¢(2], 1) is neither less than «; nor greater than pl_(l_l) together

with Lemma 6.1 completes the proof. A

Given a process {Z;, 1 € Z} with probability measure P, we define, for any

n > 0, the set of kth order (P, n)-typical sequences Tg‘r)) C 2™ as

k) def n n . A A
Ty = (a1 € 2™ sup X (al) = Plar)| <} .

Gy

LEMMA 6.3. If {Z;, 1 € Z} is a stationary ergodic process with distribution

P, then for any k > 1 and n > 0, there exists a sequence {£,}5%, with £, — 0

such that

P(TY)) > 1-¢€ .

PROOF. The pointwise ergodic theorem [38] implies that for any &k > 1,
P{z=_ e Z%: (Vaf € 2*) lim )\(Zlil)(all‘) =P} = 1.
n

Since convergence almost everywhere implies convergence in probability, we ob-

tain for arbitrary n > 0,

lim P{=} € £": (Vaf € 2%) \(a}) - P(a})l <n} = 1. A
n

6.3. The main results
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Let W = W, be irreducible and aperiodic (so that mw > 0), and P =
mw o W. For all £ > 2 we define the following linear subspaces of distributions

on 2%,

ck {P stationary on Z%:

P(2%411) = P(alyy), P(y(lku) = P(ylp41)} - (3.1)
It is obvious that £¥' € £* and £* \ £, where

LY {P stationary on ZZ:

(Vn20) Pi2,)=Pi,), Pu2,)=Pul)}. (32)

Our aim in this section is to show that the error exponent (M, €) for the

hypothesis testing problem formulated in Section 6.2.(b) is given by

. PXY)ol(XY) L)
rec P VIR oIV ) 1}

The positive result is as follows.

THEOREM 6.1. If we define for all k > 2

P{(XY)o|(XY) 34y}

L def .
= B3l ,
DE = R PO R ) (X))

then for all e € (0,1) and M > 2, the error exponent for the hypothesis testing

problem formulated in Section 6.2.(b) satisfies

P{(XY)o|(XY) "5}
VXY ) l(XY)-1}

0(M,€) > sup D* > inf Eplog
k PeL

101



PROOF. Fix k > 2 and n > 0. Since W is irreducible and aperiodic, the
distribution P on Z7Z is strongly mixing. This implies that the marginals of P on
X% and Y% are strongly mixing as well, and therefore ergodic. Let T(M C xn,

Tg”,; C Y™ be the corresponding sets of kth order typical sequences. Consider

the following acceptance region:
k (k)
Ap = T)((z] x Ty, .
By Lemma 6.3, there exists a sequence {£,} with £, — 0 such that
P(A) > P(TY)+P(TF) -1 > 126,

Hence, for n large enough,

P(A) > 1—¢.

We can write

(k)
QA o U Ty
Pk ch*

where

o = {P c PF(X x V). sup |P(af) — P(2¥)] <, sup|P(y¥) — P(yf

Ty )

Using Lemma 6.2 we obtain

Brn(M,e) < Q(An)

< exp[—n (mm D(WLHV]WW)"é )l
PLc®

Here Py = #y o Wy, where #y and Wy, are given by (2.3) and (2.4), respectively,

and
2/~

6n:|ZI P

— 0,

gt 1) 1y,
n
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where p = min,o _ez2 V{z0|2-1}. Continuity of the divergence functional enables
us to approximate the above minimum over ®* by one over §¥, where S* is the
class of all stationary distributions on (X x y)k that agree with P on both X%
and Y*. Indeed, ®* C S, and any distribution P € S* can be approximated
by a positive type P, € ®F with irreducible transition matrix Wi. Thus for

sufficiently small 1 > 0, we have

y .
Bn(M,€e) < exp[—n(min Z ﬁ{(xy)'f}log ‘];{WU)H(WJL '}

best £, (z)rl(ey)e}
1

on — 7/(77))} ’
where v(n) — 0 as n — 0. Thus,
8(M,e) > liminf(——%logﬂn(M, €))

> min Z P{(wy)’f}log p{(xy)“(,cy)iw-l}

Pesk =, V{l=y)rl(zy)e—1}
1
i B 1o PAIXY)T )
pecr PO VXY )o|(XY) 1}

where £* is the infinite-dimensional counterpart of S* defined in (3.1). Thus we

have shown that 8(M,€) > sup, D*.

Next we show that D¥ is monotone increasing in k. Using the log-sum
inequality, we can write

Mk+1{(f'3y)0_k}
pret1{(xy) T3} V(2o l(2y) -1 }

DM = 3 g {(2y)2 }H og

(z)%,

Z #k+1{(f“./)0—k+1 }log

()2 4y

Hk+1{(~"”y)0—k+1}
prr{(zy) 23 YV {(ey)ol(zy) -1 }

| e {(XY ) |(XY) D5y )
Hit O T Y ) [(XY ) 1 )

v

= F

With the aid of the above inequality, the fact that pzy1 € £¥T C LF) and the
definition of D¥ we obtain
D1 > pk |
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Thus D* is monotone increasing in & and we conclude that sup, D = lim; DF.

In order to complete the proof we need to show that

limD* > inf Eplog ﬁ{(X,mOI(XY):}’O} .
k Pec V{(AY)OI(XY)—I}

We begin by noting that we have an infinite sequence {p, k¥ € N} of mea-
sures on (X' X y)z with the constraints Mk(ﬂc()_k+1) = P(:UO_,CH) and ,uk(y(lk“) =
P(yo_k+1) for every :CO_L,H € X% and y0_k+1 € Y*. Since Z is finite, the infi-
nite product Z7% is compact under the product topology induced by the discrete
topology on Z. The class of cylinder sets constitutes a countable base for the
product topology, and it is easily verified that 2% is Hausdorff. By the Urysohn
metrization theorem, ZZ is metrizable. Thus {u;} is a sequence of measures
on the Borel o-field of a compact metric space. Invoking Prohorov’s theorem
[45, p. 315], we conclude that {u;} contains a subsequence {ug;, i € N} which
converges weakly to a measure fi. In particular, since every cylinder G C ZZ is

both open and closed, we have
lim p (G) = UG) -

This implies that 7 lies in the class £ defined in (3.2). Thus to conclude the

proof of the theorem it suffices to show that

limD* > D,
where
- de (XY |(XY) 2
I def Ejlog ,U{( )0|( ) oo}

V(XY )ol(XY)a}
We do so in four steps:
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Step 1. We approximate D by D,,, where

= def i(Zo|Z-1)
D, = F;log —————2C |
RO (ZolZ1)

This can be written as

~ -1
D, = ~01_“_(f‘3|_z—_nZ:E~nZ—1
Z‘U(Z_n) Og V(20|Z_1) He ( —oo) 9

22

n

where
iz012=,)

(Z7Ly def (20121 ) log En201%=n/

Lévy’s martingale convergence theorem for conditional probabilities [45, p. 478]

ensures that for all zg € Z,
iz0|1225) — i(201222.) a.e. () .

Hence e;,, — eoo almost everywhere, where

~ Z_] )
eoo(Z 1 def i(z1Z"2 V1o ——————H(ZO‘ —Z
Since V' > 0, we have |e,| < log |Z|+log % for all n, and the bounded convergence

theorem implies that

D, = /endﬂﬁ/emdﬁ =D.

Actually, D, Ve D because the difference Dn+1 — D, equals the conditional

W(ZolZZ)_ )

divergence Ej log S ZelZoT)
0 —-n

which is nonnegative.

Step 2. We approximate D,, by Dk where

 de {(Z0122,) pr(z0l275)
D”:fEklo-’-‘i(—’L: (2 )log 0 onl
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Indeed, since ,uk(zo_n)-l»ﬂ(zo_n) for all 2%, € Z"*+! we have for all n > 0

DkALD.

n

Step 3. We show that D* > DF for all k > n 4 1. This is immediate from

D* — DF = E,, log plZ0l2 )

> 0.
u(Zol27,)

Step 4. Combining the results of steps 2 and 3 yields
(Vn>0) limDF > limDN = D, .
Taking the limit as n — oo and making use of the result of Step 1, we obtain

limD*¥ > D . A

REMARK 1. The stationary measure p; € L£* that achieves D* can be
taken to be (k — 1)th order Markov. Its ergodicity follows from the fact that it
is the Markov I-projection of V on LF (cf. Csiszar et al. [39]). By virtue of this

property, for any n > k — 1, for all nth Markov measures P € £*,

P(Zo|271)
Eslog =20%on/
PO Y (Z012-1)

P(Zy|Z271)
Hk(ZOIZ:i+1)

= D* + Eplog

or

-1
=0 i 0 GM =
02 (P(Z_k+1) ;Lk(z_k+1))1oo V(zolz—1) =0
k41

In particular if P = P, then uk(zolz:,{,+1) > 0 whenever P(zo!z:,lﬁl) > 0, and

pr is irreducible and aperiodic.
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REMARK 2. We have shown in the proof of the theorem that D¥+! > D¥.
We will demonstrate by an example that D**! may be strictly greater than D*

for all k. Indeed, since ppg1 € LF,

log e {(XY )| (XY) 71}

DY =D*4+ E, . - — .
P (XY ol (XY )T )

(3.3)

In the example, take the alternative stochastic matrix V{(zy)o|(zy)-1} to be
equal to V(zg|e—1)x V(yoly—1). We show that in this case the sequence {ug, k €

N} is given by

/J/k{(”ﬂy) 1) = (mo—kﬂ) X P(?Jo—k+1) )

and thus
. P(Xo|XZp,1) P(Yo|Y50q)
D* = Eplog 12+ BEplog ———rtll
PRV X)) TP R TV L)
Indeed, we can write
: P(Xo|XZ5p) P(Yo|Y )
D* — Epl 1 4 Eplog ————F+17
PRV EIXL) T VWD)
P{UXY)o|(XY) 41} P(Xo|XZp,4)
= Fslo - —Fzlo
gin [Belos < e ()} 2P V(XX )
P(Yo|Y 1)
T BRI, )
= min Ep[lo P{(XY)o|(XY)Z [y ~log P(Xo| X2y, ,) x P(Yo|Y. kH‘J
T peo PR TVIRY ) I(XY) 1} V(XX 1) x V(¥[V)
= min E;log P{(XY)OI(XY):}C—H}
pPeck P(XOIX:i+1) X P(YOIY——L}+1)

The value of the last minimum is zero, and is achieved when P{(%y) p1) =

P(aco_k+1) X P(y0_k+1). Substituting in (3.3) yields

DR = Db [(Xo A X_p|XZE )+ IV AYZR]Y T ),
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where I(- A -|-) is the conditional mutual information under P. This implies that
D**1 s strictly greater than D¥ if either the process {X;} or {¥;} is not (k—1)th

order Markov under P.

The following theorem asserts the tightness of the error exponent given in

the above theorem.

THEOREM 6.2. For all ¢ € (0,1) and M > 2, the error exponent for the

hypothesis testing problem formulated in Section 6.2.(b) satisfies

P{(XY)o|(XV) L.}
V(XY )o|(XY)-1}

0(M,e) < inf Eplog
PeL

PROOF. Let i € £ yield a divergence D which is close in value to the above

infimum. Let

M . .
An = U Ccl x F
=1

be the optimal acceptance region, where, ¢ c x" and FY ¢ Y*. Since

P(A,) > 1—¢, there exists a j € {1,...,M} such that

1—¢

(J) Gy >
PCY x F§) 2 1

def

Let C,, = def

C,(@j), F, = F,gj), and G, def Cp X Fy. Thus, we have for A € (0, %{,—6)

P(Cpx Fu)> A

Since {Z;, i € Z} is a strongly mixing Markov process, it is also weakly Bernoulli
and thus finitely determined (cf. Ornstein [40]). For such a process, Lemma 1 in
[41] implies the following: if the probability that ZT lies in G, C Z" is bounded

away from zero for all values of n, 1.e.,

PrZr € G,) > A,
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and if Z7 is a random vector distributed on G according to the conditional dis-
tribution induced by the distribution of ZI*, then a joint distribution dist(Z7, Z{‘)
exists such that

1 A
—Edy(Z, 27 < X .
n

Here dp(-,-) denotes Hamming distance (as before), and the expectation is with

respect to dist(Zl”,ZAi’z). Following the same procedure as in Marton [16], we

obtain

P(T*G,) > 1- 7—23 :

where

T*G, € {20 e 2™ (30 € Gp)  du(2l,70) < k) .

If &, = [nV/A], the last inequality becomes
P(I*G,) > 1-VX.
As usual, P(T*(C,, x F,)) > 1 — /) implies that
P(T*C, xTFF,) > 1 - VA
which in turn yields
P(r*c,)>1-vA and PI*E)>1-v)\.
By virtue of the marginal constraints on i, we have
p(T*C, xT*F,) > P(P*C,) + P(I*F,) -1 > 1-2V) .
For the sake of simplicity we write

o0 — O
z =22 and =04 .
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Let
E, € (T*C, x TFF,) N {zP: fi(21) > 0} .

Q(E,) can be estimated as follows

QE.) = Y Q)

:{‘EEn
= Y exp[-nin(2)]ji(2])
Z?EEn
where
def 1. fi(z1)
= —l .
(%) QGH)

Making use of Jensen’s inequality, we obtain

Q(E,) = W(E,) Z /’lj( exp[—nin(z)]
2T E€EE,
[l exp | — ﬂ(:{l)z z
(3.4)

> (1-2V\)exp [—nﬁ(En)

where
def ./ TN . .
(=7 )in(2) :/E in(2)dfi(z) .

n

Since V' > 0, it follows from a version of the Shannon-McMillam-Breiman
theorem [42, 43] that 1,(Z) — #(Z) in the L'(f1) norm, and [idii = D. More
precisely,

[lint2) ~ 2 )ldiz) 0.

Next, we will show that «, can be approximated by D. Indeed, we can write

jan — D = |/ indﬁ—/zdm
E,
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= | indﬁ—/ idﬁ~/ idjil
En E, E

c
k23

< [ lin-ilai+ [l
B, Be

< [lin—ilan+ [ pldn.
By

Given ¢ > 0, the first integral will be less than £/2 for n sufficiently large by
virtue of L!(fi) convergence. To upper bound the second integral, we use Prop.
13 in [44] which states that given an integrable nonnegative function f(2) and
¢ > 0 there exists a 6 > 0 such that if u(A) < ¢, then [, fdu < /2. Thus if we

choose \ < §%(£)/4, we obtain |, — D| < €.

Substituting in (3.4), we obtain

Q) 2 (1-2/Mesp [-n57]
> (1—2'\/X)exp[—n D+¢ ] (3.5)

1—2V\

On the other hand we have E,, C T*C,, x T*¥F, c T?*(C,, x F,) = I'**G,,. Thus

if 20 € I'?*@,,, we can find a 2P € Gy, such that dy(z7, 27) < 2k, and

Q) = wv(z) [ Vilaa)

< P_LLkWV(zl)ﬁV(Zilzi—l) = Q(z1)p™*F,
§=2
where
) def Zo_“fie%z V(zolz=1) A :]._I}ienz my(z—1) > 0.
This implies that
Q(E,) < exp[nv(k,/nm)]Q(Cr x Fr) , (3.6)
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where

v(u )dEf h(2u )+2ulogl§’;—l

It is obvious that v(u) — 0 as u — 0. Since
by =[nVX] <nVA+1  and  h(u+v) < h(u)+ h(v),
we have for sufficiently small A\ and sufficiently large n,
v(kn/n) < v(VA+ -) < v(VA) +v(1/n) .
Combining equations (3.5) and (3.6), we obtain

Pn(M,€) = Q(An) 2 Q(Cn X Fy)

> Q(En)exp[—nv(kn/n)]

D+¢

2(1——9\/_exp[——n( \/;\_

+ (V) + v(1/n))] .
This yields
oM, €) < Timsup(— log fu(M,©)

< DEE L

=~ 1-2V
= 2DV +¢
= D+=—""" = el +u(VX) |

The last expression can be made arbitrarily close to D by choice of € and A <
§*(€)/4. A

The above two theorems yield the final result on the error exponent:

THEOREM 6.3. For all ¢ € (0,1) and M > 2, the error exponent for the
hypothesis testing problem formulated in Section 6.2.(b) is given by

P{(XY)o|(XY) 5,
V(XY )o|(XY )}

(M, e) = ;rét;Eplog
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where £ is defined in equation (3.2). Moreover, for any null hypothesis W, there

is a universal asymptotically optimal acceptance region that is independent of

the alternative hypothesis V.

6.4. Extensions and concluding remarks

We obtained our results in the previous section under the following assump-
tions:

(1) the X-data are compressed into a fixed number of codewords and the Y-data
are not compressed; and

(2) the process {(X;,Y;), ¢ € Z} is stationary ergodic (1st order) Markov under
both hypotheses, such that W = W; is irreducible aperiodic under the null
hypothesis and V = V5 > 0 under the alternative.

These assumptions can be somewhat relaxed to yield similar results. In
particular:

(a) If the X-data are compressed into a fixed number of codewords and the
Y-data are compressed at any rate (with at least two codewords), then the
error exponent remains unchanged.

(b) For all k,1 € {2,3,...}, let the observations be (k — 1)th order Markov
under the null hypothesis and (I — 1)th order Markov under the alternative.
If the transition matrix of the process under Hy is denoted by W = 1V
(with P = mw o Wy, strongly mixing), and the transition matrix under H; is

V = V; > 0, then the error exponent is given by the infimum of the quantity
1og DAV DIXY)ZE )
PR VXY ) l(XY) )

over all stationary distributions P on (X x V)% that satisfy for all n > 0 the

conditions P(2%,,) = P(2° ) and P(y%,) = P(y%,).
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Finally we would like to emphasize that in the case of memoryless sources
(viz. Chapter 2), the corresponding results were obtained under the wider as-
sumption of asymptotically zero rate. In this chapter we have been unable to
obtain results under this broader assumption because the version of the blowing-
up lemma used for strongly mixing Markov sources was somewhat weaker than

that used for memoryless sources.
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APPENDIX A

Let 8' be defined by

0 < {D(Px|IQx) A D(PyllQv)} V {D(Px|lQx) A D(Py||Qy)} -

For any ® C P(X), ¥ C P()), define a(®, ¥) by

a(CI>7\I/) « o inf d(ﬁ)/\,ﬁyHQ)
(Px ,Py)E(®XT)U(PexTe)

Referring to Theorem 3.4, we show that if

g sup a(®,7), (A1)

P, ¥:
(Px Py )E®x T, (Px,Py)ledex¥e

then 3 = ¢'.
(i) To show that 83) > @' let ® = {Px} and ¥ = {Py }¢. Then

6°) > a(®,¥) = d(Px,{Pr}9Q) Ad({Px}", Pr|lQ)

= D(Px||@x) A D(Py||Qy) , (A.2)

where the last equality follows by continuity of divergence. Similarly, if ¢ =

{Px}¢ and ¥ = {Py}, we have

6 > D(Py||Qv) AD(Px||Qx) . (A.3)

Combining (A.2) with (A.3) we obtain §() > ¢

(i1) To show the reverse inequality §3) < @', let

A=¢cd A =cd°, B = cl¥, B = cl¥°,

Y
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where cl denotes closure under sup norm. Then by continuity of divergence,

o(®,¥) = min d(Px,Fy]|Q).
(Px,Py)E(AxBYU(AXB)

We must show that a(®, ) < 6’ for every ® and ¥. This is trivially true if

(Qx,Qy) € (A x B)U(A x B), in which case we have

a(®,¥) = d(Qx,Qv||Q) = 0.

Hence we may assume that

(Qx,Qv) ¢ (Ax BYU(Ax B). (A.4)

We provide an upper bound a(®, ¥) as follows. First we note that

(ANA)yxP(Y) Cc (AxB)U(AxB),

so that -
a(®,0) <  min d(Px, Py|1Q)
(Px,Py)e(AnA)xP(Y)
= min _D(f)XYHQXY) :

(Px,Py): PxeAnA

Using the log-sum inequality, we can show that above minimum is equal to

~min D(Px
Px€eANA

|@x) -
By symmetry we conclude that

o(®,¥)< min D(Px||Qx) A min D(Py||Qy) . (A.5)
Px€AnA PyeBnB

Two cases may arise, according to whether @ x lies in A or A (note that it

cannot lie in 4 N 4 by (A.4)).
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Case 1. Qx € A: Since Px € A, there exists A € (0,1] such that
Px = Px +(1-M)Q@Qx cANA.
This yields

“min D(Px||Qx) < D(Px||Qx)
PreAnd

< AD(Px||@x)+ (1 - M)D(Qx||Qx)

IN

D(Px|@Qx) ,

where we used the convexity of divergence.

From (A.4), we also have that Qy € B. An analogous argument for Qy € B

and Py € B yields

_min _D(Py|lQy) < D(PrllQy) .
PycBnB

From (A.5), we conclude that

o(®,¥) < D(Px||Qx) A D(Py||Qy) . (A.6)

Case 2. Qx € A: Again (A.4) implies that Qy € B. As in Case 1 above,
we obtain

a(®,¥) < D(Px||Qx) A D(Py||Qy) . (A.T)

From (A.6) and (A.7) we conclude that o(®,¥) < ¢, and hence also 3 < §'.

JAN
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APPENDIX B

Let Py < Qx. Define for any stochastic matrix Ay x onlf X X the following

two distributions:

Py() = Y AuxCle)Px(@)= Y. Ayx(le)Px(z),

z:Qx (z)>0

Qui) = Y Aux()@x(2) .

2:Qx (2)>0
Referring to the proof of Theorem 5.5, we show that if

e Py (U
o2 sup Varp log u(U)

Avyx Qul)’

then ¢? < co.

We define for any stochastic matrix Ay x the functional

Apry) & P uloQPU(u): PUIOQM. B.1
f(Auix) z;u u(u)log Do) uzp(%)w u(u)log Gole) (B.1)

We have, for all u € U with Py(u) > 0,

Py(u) < Py(u) < Zz.Qx(z)>o U[X(Ul:L) _1_

QU(u) - pzz:QX(z)>0 AUI‘Y(UI‘T) B P

7

where P déf 1ninz:QX(z)>0 QX(IE)' ConsequentIYa

Py(u) 5 1
Qula) =%

log Py(u) < log

and hence,

2 Pu(u)

Qu(u)

Substituting in (B.1), we obtain

< log? = Vlog® Py(u) .

log L
p

f(AUL\') < Z (PU(U)logz l) Vv (PU(u)log2 Pu(w)) .
u:Py(u)>0 P

118



Using the fact that 0 < tlog®t < log? €2/¢ for all 0 < t < 1, it follows that

fAyix) < Z log? Ly log? */¢
w: Py (u)>0

< |U|log? (% % ez/e) .

Hence

2 g 2PU(U)__ ] Pu(u) 2
T A (Bplog Qu(w) (Erlog Qu(U)) }
< sup f(Apx) < |U|10g2(%\/62/e) :

Ulx
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