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Recent advances in the field of optical microscopy have enabled scientists to

observe and image complex biological processes across a wide range of spatial and

temporal resolution, resulting in an exponential increase in optical microscopy data.

Manual analysis of such large volumes of data is extremely time consuming and often

impossible if the changes cannot be detected by the human eye. Naturally it is essen-

tial to design robust, accurate and high performance image processing and analysis

tools to extract biologically significant results. Furthermore, the presentation of the

results to the end-user, post analysis, is also an equally challenging issue, especially

when the data (and/or the hypothesis) involves several spatial/hierarchical scales

(e.g., tissues, cells, (sub)-nuclear components). This dissertation concentrates on

a subset of such problems such as robust edge detection, automatic nuclear seg-

mentation and selection in multi-dimensional tissue images, spatial analysis of gene

localization within the cell nucleus, information visualization and the development

of a computational framework for efficient and high-throughput processing of large

datasets.



Initially, we have developed 2D nuclear segmentation and selection algorithms

which help in the development of an integrated approach for determining the pref-

erential spatial localization of certain genes within the cell nuclei which is emerging

as a promising technique for the diagnosis of breast cancer. Quantification requires

accurate segmentation of 100 to 200 cell nuclei in each patient tissue sample in order

to draw a statistically significant result. Thus, for large scale analysis involving hun-

dreds of patients, manual processing is too time consuming and subjective. We have

developed an integrated workflow that selects, following 2D automatic segmentation,

a sub-population of accurately delineated nuclei for positioning of fluorescence in

situ hybridization labeled genes of interest in tissue samples. Application of the

method was demonstrated for discriminating normal and cancerous breast tissue

sections based on the differential positioning of the HES5 gene. Automatic results

agreed with manual analysis in 11 out of 14 cancers, all 4 normal cases and all 5

non-cancerous breast disease cases, thus showing the accuracy and robustness of the

proposed approach.

As a natural progression from the 2D analysis algorithms to 3D, we first de-

veloped a robust and accurate probabilistic edge detection method for 3D tissue

samples since several down stream analysis procedures such as segmentation and

tracking rely on the performance of edge detection. The method based on multi-

scale and multi-orientation steps surpasses several other conventional edge detectors

in terms of its performance. Subsequently, given an appropriate edge measure, we

developed an optimal graphcut-based 3D nuclear segmentation technique for sam-

ples where the cell nuclei are volume or surface labeled. It poses the problem as



one of finding minimal closure in a directed graph and solves it efficiently using the

maxflow-mincut algorithm. Both interactive and automatic versions of the algo-

rithm are developed. The algorithm outperforms, in terms of three metrics that are

commonly used to evaluate segmentation algorithms, a recently reported geodesic

distance transform-based 3D nuclear segmentation method which in turns was re-

ported to outperform several other popular tools that segment 3D nuclei in tissue

samples.

Finally, to apply some of the aforementioned methods to large microscopic

datasets, we have developed a user friendly computing environment called MiP-

ipeline which supports high throughput data analysis, data and process provenance,

visual programming and seamlessly integrated information visualization of hierar-

chical biological data. The computational part of the environment is based on LONI

Pipeline distributed computing server and the interactive information visualization

makes use of several javascript based libraries to visualize an XML-based backbone

file populated with essential meta-data and results.
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Chapter 1: Introduction

Optical microscopy or light microscopy is a technology that uses visible light

and a system of lenses to magnify, image and visualize micron and submicron level

objects. Although the field has existed from the 17th century, the past few decades

have seen impressive developments with applications in disciplines such as biology,

material science, nanophysics, pharmaceuticals etc. Especially in cell and molec-

ular biology, the development of a wide variety of fluorescent labels which can be

used to visualize and image cellular and subcellular structures and proteins have

accelerated the growth to an extent that such techniques are being routinely used

now a days in laboratory, research and industrial applications. On the other hand,

the development of digital imaging and video technologies was also a propelling

force which resulted in rapid developments in optical microscopy-based imaging of a

wider variety of biological samples including living and tissue samples. More recent

advancements such as the development of super-resolution microscopy has enabled

scientists to go beyond the diffraction limit of light and image nano-scale subcellular

structures.
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Figure 1.1: (a) Schematic showing working principle of a confocal microscope imag-

ing a fluorescent sample. Image Source: http://microscopy.duke.edu/ (b) Il-

lustrative excitation and emission spectra of a fluorescent tag. Image Source:

http://www.olympusmicro.com/ (c) A 2D sample fluorescence image acquired on

Zeiss confocal 510 microscope where 4′, 6 − diamidino − 2 − phenylindole (DAPI)

stained cell nuclei are displayed in the red channel, FITC tagged actin fibers in the

green channel and Alexa Flour 594 tagged mitochondria in the blue channel.
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1.1 Fluorescence and Confocal Microscopy

Biological objects of interest such as cells and sub-cellular objects are in general

transparent or translucent and the amount of light transmitted or absorbed by them

varies depending on their physical characteristics. Conventional optical microscopy

visualizes biological samples of interest by placing them between a source of light

and the image capturing device or observer and the objects are visualized as light

is variably transmitted or absorbed by various internal components of the sample

being imaged.

On the other hand in fluorescence microscopy the cells or sub-cellular objects

of interest are tagged with fluorescent molecules with high degree of specificity which

when illuminated with light of a certain wavelength emit light in a longer wavelength

due to a spectral shift of the fluorescent molecules separating the intense excitation

light from the dim emitted light (Fig. 1.1(b)). The use of a dichroic mirror prevents

the excitation light to travel to the photon capturing device such as photo multiplier

tubes or charge-coupled device(CCD) cameras while allowing the emitted light to

reach the detectors (Fig. 1.1(a)). Multiple objects of interest such as cell membrane

proteins, DNA, specific genes, mitochondria etc can be stained and imaged with

multiple fluorophores simultaneously (Fig. 1.1(c)). When imaged with high resolu-

tion microscopes, the images provide a wealth of quantitative information such as

spatial organization, protein localization, shape and morphological information not

only in space but also in time when the microscopes have provisions for long term

unsupervised automated motorized imaging of live samples. Characteristics of fluo-
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rescence and associated tagging process such as linearity, high molecular specificity,

extremely good single molecule sensitivity and ability to simultaneously detect mul-

tiple molecular species along with the fact that it allows 3D imaging of biological

samples are some of the major advantages of fluorescent optical microscopy over

conventional optical microscopy.

For 3D imaging of fluorescently-labeled samples, a technique called confocal

microscopy (Fig. 1.1(a)) is used. Compared to a conventional wide-field microscope

which captures light coming from the entire depth of a biological sample, including

the out-of-focus light from outside the focal plane of the lens, a confocal microscope

uses a spatial pin hole to reject all out-of-focus light. In essence, a confocal micro-

scope in a single scan produces high resolution and sharp image of the sample across

the focal plane of the imaging lens and a faithful 3D image of the sample can be

acquired by moving the imaged focal plane across the depth of the sample. Hence,

fluorescence and confocal microscopy in combination is a very powerful tool which

is widely used in several biological applications.

1.2 Challenges in Microscopic Image Analysis and Role of Computers

For the past several decades researchers have developed methods for analyz-

ing optical microscopy images. Studies involving cell culture models use images of

cells in-vitro i.e. outside their natural biological tissue context. Images resulting

from such studies are reasonably easier to analyze as the spatial density of cells can

be controlled in most cases. However, analysis of tissue sample images is still a
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Figure 1.2: 3D image of DAPI stained cell nuclei in a MCF10A acinus with single

X-Y, X-Z and Z-Y slices displaying significant spatial clustering.

challenge, especially in 3D. The practical issues in 3D include anisotropic voxel di-

mension due to low resolution of a confocal microscope in the depth or Z dimension,

poor signal to noise ratio and blurring introduced by the inherent wave properties of

light and the imaging components of the microscope. The biological tissue sample

itself complicates the analysis due to issues such as non-uniform and improper stain-

ing of the sample, tight packing of the cells (Fig. 1.2) and photo-bleaching of the

fluorescent molecules. Due to such issues, the object boundaries are often ill-defined

and pose a formidable problem when the applications demand robust and accurate

delineation of closely packed objects.

Additional challenges stem from the spectacular advances in optical microscopy

in recent times which have enabled scientists to image biological samples across a
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very wide range of spatial and temporal scales. A by-product of all these develop-

ments in the field is the creation of gigabyte or terrabyte size datasets. Also, the

field of microscopy, for biological applications, is becoming increasingly quantita-

tive where instead of making qualitative assessments, the multi-dimensional digital

image datasets are being processed to extract, quantify and analyze biologically

relevant information emphasizing the increasing need for fast, accurate, intelligent

and robust automatic image analysis systems [1, 2]. However, manual processing

and organization of such large volumes of data is time consuming, laborious and al-

most impossible in some applications where subtle feature variations are statistically

significant, but visually undetectable (subvisual) [3, 4]. Also, manual processing is

often subjective and introduces human bias resulting in inter and even intra ob-

server variabilities. Hence, current state of the art applications almost always use

computers or even clusters of computers to process and organize such large volumes

of microscopic image data.

In general, several disciplines in computer science such as image analysis, com-

puter vision, information and data visualization, human computer interaction and

parallel and distributed computing have made significant contributions in the de-

velopment of optical microscopy-based biological applications. Especially, image

analysis and computer vision methods are extremely relevant since they enable us

to quantify phenotypic modifications and signaling events in the spatial and tempo-

ral context. Some of the most common tasks for such an analysis are segmentation,

screening and tracking of various objects of interest in 2D, 3D and 4D datasets.

The objects of interest vary from cells, nuclei to subcellular structures in both cell
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culture models and tissue samples.

1.3 The Problem Statement

This dissertation attempts to address the problem of accurate understand-

ing of individual cells in tissue context. The problem is relevant and important

because it studies cells in their natural tissue environment, the way they thrive in

multicellular organisms. Understanding their coordination and interaction in such

an environment is essential to understanding high level complex biological processes

pertaining to cell behavior, developmental biology, disease progression, tumorigen-

esis and complex chemical pathways to name a few. In turn a good understanding

of the aforementioned processes will help in developing effective methods for disease

prognosis, diagnosis and treatment procedures. In a way it is the ultimate goal of all

biological applications and optical microscopy in conjunction with rigorous quanti-

tative analysis plays a vital role in studying such problems by enabling us to gather

and understand visual information starting from the cellular to the molecular level

without significantly disturbing the tissue environment.

However, the problem statement is very broad and from an image analysis per-

spective can be subdivided into several sub-problems such as segmentation, tracking

and time resolved analysis, visualization of data and information etc. Developing

the entire spectrum of methods for understanding individual cell coordination in

tissue is beyond the scope of a single dissertation. Hence, in this dissertation we

primarily concentrate on the sub-problem of segmenting objects of interest such
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as cells, nuclei and individual genes in 2D and 3D microscopic images along with

development of methods to seamlessly process, visualize and explore the wealth of

information that can be extracted from large microscopic datasets. Development

of reliable segmentation methods is one of the most important problems, the per-

formance of which often dictates the performance of subsequent analysis methods

such as tracking and spatial localization analysis. Also, as mentioned previously,

extracting and exploring biologically relevant information and results from large mi-

croscopic datasets is a challenge and the development of effective, efficient and user

friendly tools to address the issue helps in better understanding of cell behavior in

terms of underlying data trends and patterns.

1.4 Contributions

The contributions of the dissertation are as follows:

• Probabilistic Edge Detection: Robust and accurate edge detection is a

prerequisite for several image analysis and computer vision algorithms such as

segmentation and tracking. We have developed a robust and accurate multi-

scale, multi-orientation probabilistic edge detection method for both 2D and

3D tissue samples. To the best of our knowledge, this is the first such edge

detector developed for microscopic images of tissue samples.

• Robust 2D segmentation of cell nuclei: We present a number of robust

and accurate segmentation methods for segmenting cell nuclei in 2D tissue

samples using methods such as dynamic programming, watershed and graph-
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cuts. The segmentation results obtained using such algorithms were further

utilized to develop a prospective human breast cancer diagnostic method by

analyzing the spatial organization of specific genes within the cell nucleus. The

developed diagnostic method mimics the manual processing of such datasets

to detect cancer and shows that automation is possible for larger datasets

obtained from real patient samples.

• Identifying ’Well Segmented’ Nuclei: Since automatic segmentation re-

sults for tissue samples using even the best possible state-of-the-art algorithm

are not 100% accurate, we introduce and implement the idea of using pattern

analysis and machine learning tools to automatically identify and/or rank seg-

mented cell nuclei in terms of the goodness of segmentation. Such information

helps in improving the quality of results down stream as we can only process

the subset of objects for which our confidence on the accuracy of segmentation

is high.

• Optimal 3D segmentation of cell nuclei: Lack of effective tools to seg-

ment cell nuclei in 3D tissue samples has motivated us to develop an optimal

graphcut-based segmentation algorithm for 3D microscopic images. Both au-

tomatic and interactive versions of the algorithms have been developed and

experiments show the superior performance of the method when compared to

a recently reported segmentation method for similar datasets.

• MiPipeline for high throughput computing and informatics: We have

developed an user friendly environment called MiPipeline to process large mi-
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croscopic datasets using distributed computing resources along with a seamless

web based information visualization and informatics interface. It addresses the

need for computing and visualization environments guaranteeing high through-

put processing, data and process provenance, access to a wide variety of al-

gorithms relevant for analyzing microscopic images, an environment for visual

programming, workflow management and intuitive information visualization

and mining capabilities.

1.5 Organization

The dissertation is organized as follows. Chapter 2 presents watershed algorithm-

based segmentation methods for 2D tissue sample images along with the develop-

ment of a supervised framework to identify or rank the segmented objects in terms

of their goodness of segmentation. We also present a method for detecting human

breast cancer by analyzing spatial organization of certain genes in the cell nucleus.

Chapter 3 presents the development of a 2D and 3D probabilistic edge detection

method for tissue samples. A graphcut-based 2D and 3D nuclear segmentation

method is presented in chapter 4. Chapter 5 illustrates MiPipeline, an environment

for high throughput computation and information visualization for large microscopic

datasets. Concluding remarks and future research directions are included in chapter

6.
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Chapter 2: Segmentation and Selection of Cell Nuclei in 2D Tissue

Images for Breast Cancer Detection

2.1 Introduction

In this chapter, we present nuclear segmentation and selection algorithms in

2D images of human breast tissue tissue samples which helped in the development

of an automatic breast cancer detection methodology based on spatial localization

analysis of certain genes in the cell nucleus. Due to large morphological and textural

variations in sample images, standard segmentation algorithms (e.g., graph cuts,

watershed on gradient-magnitude) failed to accurately segment a significant number

of nuclei in each dataset. The nuclear segmentation algorithms presented here could

handle the significant nuclear variations among datasets in a robust way, resulting

in a satisfactory yield of well-segmented nuclei for analyzing the spatial positioning

of the genes. In chapter 5 methods for applying this cancer detection technique to

large microscopic image datasets will be illustrated.

Breast cancer is the second most common cancer in women. It is estimated that

approximately 1 in 8 women in the US will be diagnosed with breast cancer and it is

the primary reason behind the death of approximately 40,000 women, annually [5].
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Nevertheless, there have been major improvements in the past decade which have

caused these numbers to decline, largely, due to: (i) increased awareness, (ii) early

detection/screening, and (iii) treatment advances. Early detection has been the

focus of extensive research and there is accumulating evidence that if breast cancer

is diagnosed early, the average survival rate can be extended to 98%, from only 23%

if the cancer has already metastasized before being diagnosed [5].

Recently, it has been shown that genetic alterations to normal cells play a

significant role in causing cancer [6]. Concurrently, due to improvements in optical

microscopy and fluorescent labeling, it has been shown that the cell nucleus is com-

partmentalized into well-defined subregions and that the spatial position of genes

in the nucleus correlates with their expression and cellular activities [7–9]. Further-

more, the positioning of certain genes, such as HES5 and FRA2, has been shown

to differ between normal and cancer cells in a cell culture model of cancer [10] and

in patient tissue sections [11]. This discovery could emerge as a diagnostic and/or

prognostic tool for breast cancer.

Determining gene positioning begins with fluorescent tagging of specific genes

in the chromosome using a technique called fluorescence in situ hybridization (FISH)

and subsequent multichannel optical microscopic imaging of DNA counterstained

nuclei, where the FISH signals appear as punctate spots in a separate channel from

the nuclei. Since discerning preferential gene positioning is virtually impossible

by visual examination, as evident from the sample images displayed in Fig. 2.1,

quantitative analysis of the images is required. This involves : (i) accurate nuclear

segmentation, (ii) detection of FISH signals, and (iii) spatial localization of the FISH
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Figure 2.1: Sample human breast tissue images used for cancer detection. The

DAPI stained cell nuclei are shown in the blue channel while the red and the green

channels show the FISH tagged genes HES5 and FRA2 respectively as bright spots.

signals with respect to the nuclear center and boundary. Meaburn et al., showed

using manual image analysis of 100 to 200 nuclei per sample that this method

reliably detected breast cancer across a panel of 11 normal and 14 cancer samples
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[11], using the non-parametric Kolmogorov-Smirnov (KS) test to distinguish spatial

gene localization between samples. Scaling up this approach for high-throughput

clinical studies involves analysis of hundreds of thousands of nuclei across hundreds

of normal and cancerous patient tissue samples. Analysis of this nature would

be too time consuming, subjective and tedious if done manually, thus warranting

automation. Hence the goal of this study was to automate the procedure of Meaburn

et al. The method mimicked, as closely as possible, the manual analysis procedure

presented in [11] in the form of an integrated workflow to automatically segment

nuclei in tissue-section images followed by a supervised pattern recognition engine

(PRE) to screen out well segmented nuclei, with a high degree of confidence.

Cell and nuclear segmentation in histopathology and fluorescence microscopy

is an active area of research, resulting in the development of several automatic

[12, 13] and semi-automatic [14, 15] strategies. The majority of these methods, in

general, employ a pre-processing step for noise reduction and intensity/gradient-

based thresholding for foreground identification. This is followed by independent or

combined application of segmentation algorithms (e.g. gradient based methods [16,

17], active contours, watershed and dynamic programming [14,18]) for delineation of

individual objects within the foreground. Watershed-based algorithms [19,20], which

split thresholded objects into fragments, are often refered as ”universal segmenters”,

but oversegmentation is a common problem requiring subsequent merging strategies

[21]. Active contours are generally considered to be the state-of-the-art due to

high accuracy, adaptability to image topology and ability to incorporate regularity

features [22, 23]. However, computational load, precise initialization and numerical
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instability are major concerns with this approach.

Most of the aforementioned segmentation techniques yield desirable results for

specific cell culture images, but their extension to complex tissue sections have been

less promising, especially for cancer tissue where there is considerable variation in the

morphological and textural properties of nuclei along with severe nuclear clustering.

However, the nuclear segmentation requirements for our application are different,

because thousands of nuclei are available for imaging in each tissue section of which

less than 10% (100 to 200 per sample) are needed for detecting cancer based on gene

positioning. Thus our requirement is highly accurate segmentation of only a subset

of nuclei rather than attempting to segment as many nuclei as possible. Therefore,

we built a computational framework that uses a supervised pattern recognition

engine (PRE) to perform the task of selecting accurately delineated nuclei from the

segmentation algorithm.

Pattern recognition and machine-learning principles have been proven to be

useful in several quantitative imaging applications related to cell biology [1,24] and

more specifically in breast cancer (e.g., Wisconsin Breast Cancer Database [25,26]).

Some of the relevant biological applications of PREs at the cellular and subcellular

levels include classification of cells and nuclei based on their morphological, textural

and appearance features [27, 28] and interpreting and analyzing localization of pro-

teins, antibodies and sub-cellular structures within the cell [29–32]. For instance,

Hill et. al. [33] assessed the impact of imperfect segmentation on the quality of high

content screening (HCS) data using a support vector machine (SVM)-based PRE

to identify accurately delineated nuclei. In a similar line, to make the segmenta-
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tion algorithm itself intelligent and data driven, Gudla et. al. [34] used classifiers

interleaved with the segmentation algorithm to identify optimal parameters for seg-

menting and selecting accurately delineated nuclei in cell culture images.

The rest of the chapter is organized as follows. Section 2.2 provides a descrip-

tion of the samples and images followed by an explanation of the pre-processing steps

in section 2.3. Section 2.4 outlines a hybrid algorithm for nuclear segmentation and

a stacked classifier based PRE for identification of a subset of ’well-segmented’ nu-

clei. Section 2.5 will describe a multi-stage watershed-based nuclear segmentation

and artificial neural network based PRE which improves the nuclear yield for cancer

detection purposes followed by the performance results of the reported PRE’s and

the boundary accuracy assessment in comparison to a 2D dynamic programming

(DP)-based segmentation algorithm [18] that serves as a reference. The gene local-

ization based breast cancer detection methodology using the nuclear segmentation

and screening methods is described in section 2.6 along with associated performance

results. Finally, section 2.7 provides discussion, draws conclusions and comments

on the future directions for the work.

2.2 Samples and Images

Sample preparation and labeling was described in reference [11]. 4-5 µm thick

formalin fixed, paraffin embedded human breast tissue sections were imaged using

an Olympus IX70 microscope controlled by a Deltavision System (Applied Precision,

Issaquah, WA, USA) with SoftWORX 3.5.1 (Applied Precision) and fitted with a
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Figure 2.2: (a) Original blue DAPI channel (b) Wavelet-based preprocessing output

charge-coupled device camera (CoolSnap; Photometrics, Tucson, AZ, USA), using

a 60X, 1.4 oil objective lens and an auxiliary magnification of 1.5. Non-confocal

3-D Z-stacks were acquired with a step size of 0.2 or 0.5 µm. The image size was

1024×1024, with a pixel size of 0.074 µm in both X and Y directions. For this study,

the fields of view to be acquired were manually selected and focused. Large regions

of inter-connective tissue were not imaged, to increase the number of epithelial nuclei

acquired. Beyond this, the fields of view were randomly selected over the tissue to

reduce bias based on FISH signals or tissue morphology/heterogeneity.

The red and green FISH channels encoding the spatial localization of the

genes were deconvolved using SoftWORX 3.5.1 which reduced background noise.

Deconvolved version of the nuclear channel, though available, was not used due to

increased texture that negatively impacted the segmentation algorithm. All three

channels were reduced from 3D to 2D using maximum intensity projection (MIP).

By manual analysis and inspection of the resulting MIPs, the increased step size of

0.5 µm gave identical results to 0.2 µm. Although 3D analysis would provide more
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Figure 2.3: System Block Diagram

accurate gene position measurements the image acquisition method adopted here

had been shown to produce accurate results from manual analysis [11].

Experiments involving the hybrid segmentation and stacked classifier-based

PRE used 9 datasets (D1-D9) consisting of normal and cancerous breast tissue

sections. For experiments involving the multistage watershed nuclear segmentation

and ANN-based PRE, 23 datasets (500 images) were used of which 4 contained

normal (N1-N4), 14 contained cancer (C1-C14) and the rest contained non-cancerous

breast disease (fibroadenoma and hyperplasia) tissue section images (B1-B5).

2.3 Image Preprocessing

To improve nuclear segmentation accuracy, boundaries of foreground objects

(e.g., cell nuclei) were enhanced using a modified version of Mallat-Zhong’s extrema

algorithm [34, 35]. This wavelet preprocessing step involved: (i) using a bicubic
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spline wavelet to decompose and identify the extrema in the DAPI-channel up to 5

scales; (ii) multiplying the chain-coded extremas (edges) in scales 2 to 4 by a factor

of 3; (iii) and using the enhanced extrema in the wavelet reconstruction step. Since

this processing was isotropic, noise and structures orthogonal to nuclear boundaries

were also enhanced. This undesirable effect was ameliorated by smoothing with an

edge preserving adaptive Gaussian filter [36] of standard deviation of 2 pixels and 0

pixels along the direction of edges and in the direction perpendicular to the edges,

respectively. Fig. 2.2(a) shows an original nuclei channel image and Fig. 2.2(b)

shows the same after preprocessing.

2.4 A Hybrid Algorithm for Nuclear Segmentation and Selection

The initial analysis method used a hybrid data-driven segmentation algorithm

to accurately segment a subset of nuclei. The pattern analysis system was a stacked

classifier which combined the output of multiple classifiers [37] to select the accu-

rately segmented nuclei. The individual nuclei thus obtained were then used for

automatic FISH segmentation and spatial statistical analysis to detect breast can-

cer.

Fig. 2.3 shows the block diagram of the proposed image analysis framework.

The contrast enhanced images were binarized using a combination of the isodata

and triangle thresholding algorithms available in DIPImage [38]. Morphological

operations of binary closing and opening along with a size based screening removed

small objects resulting from noisy background and texture within the nuclei.
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Labeling the foreground objects in the processed thresholded image provided

a good indication of the regions containing the nuclei in the image. However, the

boundaries of the nuclei in the thresholded image were inaccurate and were not

satisfactorily close to the actual object boundaries. To further improve the boundary

accuracy a level set-based algorithm [39] was used in which each individual boundary

from the thresholding operation evolved tightly around the visually perceived object

boundaries. This method was a variational formulation for geometric active contours

that forced the level set to be close to a signed distance function. The formulation

consisted of an internal energy term that penalized the deviation of the level set

function from a signed distance function and an external energy term in the form

of the image gradient magnitude that drove the motion of the zero level set towards

desired image features. Considering φ as a signed distance function plus a constant

P(φ) =
∫

Ω

1

2
(|∆φ| − 1)2dxdy, (2.1)

is a metric to measure how close φ is to a signed distance function in Ω ⊂ ℜ2. The

variational formulation is

E(φ) = µP(φ) + Em(φ), (2.2)

where µ > 0 controls the effect of penalizing the deviation of φ from a signed distance

transform. Em(φ) is the energy term that drives the motion of the zero level curve

of φ. The evolution equation
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Figure 2.4: (a) Original DAPI channel after preprocessing (b) Thresholded image

(c) Labeled image after morphological operations showing the input seeds for the

level set segmentation algorithm with a single seed highlighted in red box A (d)

Initial contour for level set algorithm for A (e) Level set evolved contour overlayed

on the DAPI channel for A (f) Binary version of the evolved level set contour for

A (g) Output image after applying watershed segmentation algorithm on the level

set output region for A (h) Labeled version of the watershed output for A (i) Final

segmentation on the entire image using the hybrid segmentation algorithm
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Figure 2.5: Pattern recognition module showing the stacked classifier for identifying

nuclei that can be used for the FISH analysis

∂φ

∂t
= −∂E

∂φ
, (2.3)

is the gradient flow that minimizes the overall energy functional E .

Until this point no effort was made to separate clustered nuclei and in a number

of cases, the level set boundaries surrounded clusters of nuclei. A subsequent step

attempted to break up the nuclei clusters into individual nuclei using the watershed

algorithm [40]. As a post processing step the fragments of the watershed output

were merged using a preset size value of nuclei. Fig. 2.4 shows the intermediate

results for the segmentation procedure.
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2.4.1 Stacked Classifier-based Pattern Recognition Engine

The pattern recognition engine selected the subset of accurately segmented

nuclei. Fig. 2.5 shows the steps involved in the approach. We used a supervised

classifier and the training was done on a subset of 5 segmented images from each of

the 9 tissue section datasets. This was about 25% of the entire dataset. The training

set was further partitioned such that 80% was to be used as training set and the

remaining 20% as validation set. The segmented objects in the training and vali-

dation set were manually classified into 3 classes: ’Good Nuclei’ (nuclei segmented

almost perfectly), ’Medium Nuclei’ (nuclei having small boundary inaccuracies) and

the ’Remainder’ (objects never used for subsequent analysis).

For any pattern recognition engine to work well, the feature space used for rep-

resenting the object features has a vital role to play. In this case shape (perimeter to

area ratio, Feret diameters), texture (mean intensity, intensity standard deviation),

size (size, perimeter) and other morphological cues were used as the feature set to

identify a well segmented nuclei. The dimensionality of the feature space was 24.

Fig. 2.5 shows the stacked classifier structure combining: (i) linear discrimi-

nant classifier based on the principal component analysis reduced space capturing

95% of the variance space (klm-ldc); (ii) linear discriminant classifier on the best 3

features selected by 1 nearest neighbor leave-one-out error (NN-FFS-ldc) method;

(iii) linear discriminant classifier on the best 3 features selected by linear discrimi-

nant classifier leave-one-out error (LDC-FFS-ldc); (iv) linear discriminant classifier

(Ldc); and (v) 1-Nearest neighbor classifier(1-NN). The stacked classifier was used
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Figure 2.6: Flow diagram showing the computational framework

to harness the feature extraction power of all the classifiers which often show a

complementary discriminating behavior. The classifier was trained on the manu-

ally classified training set and then validated on the validation set to identify the

combiner to be used for the stacked classifier. Product, mean, median, maximum,

minimum and voting combiners [37] were tested. Mean combiner performed the best

among the 6 providing 93% correct classification on the validation set.

Our simulations with the training and validation set showed that the stacked

classifier performed better than the individual classifiers. One major aim of this

work was to design the pattern recognition engine so that it can identify the well

segmented nuclei with a high degree of accuracy and confidence, since the immense

variation in nuclear features makes it practically impossible to accurately segment

every nucleus in an image.
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2.5 Multistage Watershed Based Segmentation and Artificial Neural

Network based PRE

As a more robust and accurate alternative to the hybrid levelset-watershed

algorithm and stacked classifier workflow, a multistage watershed-based segmenta-

tion algorithm was subsequently developed along with an artificial neural network

(ANN) based PRE. Fig. 2.6 illustrates in block diagram form the computational

steps for nuclear segmentation and the associated PRE for the identification of

”well-segmented” nuclei used in spatial FISH analysis. The general framework is

very similar to the previously presented hybrid segmentation scheme. The nuclei

channel of the original images (Fig. 2.6 - 1) were first wavelet preprocessed (Fig. 2.6

- 2) and segmented (Fig. 2.6 - 3). A small portion of the dataset was manually

processed and used as the training set (Fig. 2.6 - 4) for the PRE (Fig. 2.6 - 5). The

set of accurately segmented nuclei was then used for spatial analysis of the gene

(Fig. 2.6 - 6).

2.5.1 Segmentation of nuclei

The multistage watershed nuclear segmentation algorithm is outlined in Fig.

2.7. It first identifies nuclear foreground regions to be used for watershed in sub-

sequent steps, by performing an entropy-based texture filtering step followed by

iterative isodata thresholding [41].

A seeded watershed algorithm [42] was used on the thresholded preprocessed
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Figure 2.7: Multistage watershed segmentation algorithm

intensity image to split the nuclear foreground regions into individual objects. Al-

though the intensity-based watershed technique found object boundaries accurately,

it over-segmented most of the objects. The seeds were identified from the same im-

age using an extended-maxima transform, which was the regional maxima of the

morphological reconstruction based H-maxima transform [43]. Intensity variations

within nuclei made it very difficult to identify unique local maxima for each in-

dividual nuclei, resulting in over or under segmentation. Hence for more reliable

segmentation, we performed maxima identification using multiple values of H fol-

lowed by seeded watershed. Watershed boundaries, that appeared at all H values

were retained as the prospective edges (Fig. 2.8(iii)). To remove spurious fragments
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(v)

(ii) (iii)

(iv) (vi)

(i)

Figure 2.8: Representative image and the corresponding outputs at different segmen-

tation steps. (i) Original DAPI channel nuclei image (ii) Preprocessed nuclei channel

(iii) Seeded intensity watershed output on image foreground (iv) Gray weighted dis-

tance transform (GDT) output (v) Merged output of intensity and GDT watershed

(vi) Final segmentation output after the cluster breaking watershed and tree based

merging

in the background a k-means intensity based clustering [44] with 5 cluster centers

was performed on the watershed output and the cluster having the lowest intensity

average per pixel was rejected.

In order to merge nuclei fragments from the first watershed, we took advantage

27



of the known morphology of nuclei through the use of the gray weighted distance

transform (GDT) [45]. After applying the GDT (Fig. 2.8(iv)), the aforementioned

seeded watershed was repeated to identify high intensity GDT-transformed nuclei

regions. However, in this case edges that appeared for more than 40% of the H values

were retained as prominent edges. Although this method identified the general lo-

cation and extent of the high intensity objects, boundary accuracy of the segmented

objects was low since the method was not performed directly on the preprocessed

image. Hence the output of the GDT and intensity watershed were combined as

follows. Each intensity-based watershed fragment was associated with the GDT-

based watershed fragment to which it had highest overlap. Then intensity-based

watershed fragments associated with the same GDT-based fragment were merged

into a single object. The resulting segmentation (Fig. 2.8(v)) was more accurate

compared to the segmentation results from either the intensity or GDT watershed,

which was visually verified for a large subset of the data.

The previous steps often failed to segment nuclei in large clusters. Thus, the

next step identified such clusters using size and shape factor (normalized perimeter

squared-to-area-ratio (P2A) which is 1.0 for a perfect circle) values. It was observed

that the average size of a nucleus across datasets was around 10,000 pixels with

considerable variation among datasets, and the average P2A value was 1.2 for well

segmented nuclei and ranged between 1 and 1.4. A large and irregular cluster was

hence defined as one having size ≥ 10,000 pixels and P2A > 1.4. Clusters were split

by application of the non-seeded watershed to the cluster ROI of the preprocessed

image.
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Figure 2.9: (a) Process of building up the merge tree for a node (b) Merged fragment

and optimal ellipse fit (c) Non-overlaping (XOR) area

Due to nuclear size variations across datasets, the watershed algorithms, which

partially depend on size criteria, over-segmented potentially good nuclei. Therefore

a tree-based hierarchical merging strategy coupled with nuclear shape modeling [46]

was used to merge oversegmented fragments. Briefly, the procedure built a re-

gion adjacency graph (RAG) of neighboring fragments from which a merging tree

was created, for a given node (Fig. 2.9(a)). From the merge tree each combina-

tion of fragments were merged and an optimal ellipse fitting was performed (Fig.

2.9(b)). If the overlap of the object and the optimal ellipse (1-[Non Overlapping

Area (XOR)(Fig. 2.9(c))/Area of Merged Object (Fig. 2.9(b))]) was more than

80%, the objects were merged. The final output of the segmentation module after

merging is shown in Fig. 2.8(vi).
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2.5.2 ANN based Pattern Recognition Engine: Feature Measurement

and Selection

As an enhancement to the previously reported stacked classifier, an artificial

neural network(ANN) based supervised PRE was developed to select well segmented

nuclei. The problem was posed as a two-class classification problem with class-1 and

class-2 representing accurately segmented nuclei and remaining segmented objects,

respectively. The workflow for the PRE is shown in Fig. 2.10.

In order for the PRE to perform well, the feature set must capture perti-

nent characteristics of accurately segmented nuclei, which was done using a 64-

dimensional feature set (refer appendix A.1 for the full list). The features comprised

of 3 groups: shape-based (e.g. Feret diameters, P2A, PodczeckShapes [47], size, ratio

of object area to convex hull area), intensity-based (e.g gray inertia, mean intensity,

intensity standard deviation) and texture-based (e.g. Haralick texture features) [48].

Since ANNs require feature normalization to ensure numerical stability and

to overcome problems such as neural network saturation while training with the

backpropagation algorithm [44,49], features were processed in the following 3 steps

(Fig. 2.10(b)). In step one, five normalization techniques [50] were tested, namely (i)

linear scaling to unit range, (ii) Z-Score scaling, (iii) linear scaling to unit variance,

(iv) transformation to uniform distribution and (v) rank normalization. In step two,

dependency ranking [51] was used to select features that to some extent correlated

with the output classification. Dependency ranking was calculated using :
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where D(i) is the dependency ranking score, xi is the value of the ith feature

and y is the vector of output labels. The ranking provided a correlation score

(dependency values) for each feature relative to the output classes which is based

on the mutual information between the feature vectors and the output label vector.

The third step reduced the number of features selected from dependency ranking

using principal component analysis (PCA). This step removed redundancies caused

by strong correlation between features.

2.5.3 Object Classification using an Artificial Neural Network

We had observed in 3D space considerable overlap of the three most significant

features from PCA between correctly and incorrectly segmented nuclei, which in
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turn meant that a nonlinear discriminant function was required to discriminate

between the two object classes. Hence, we used an ANN that comprised 3 layers

: input layer, single hidden layer containing neurons with tansigmoidal transfer-

function and an output layer with a linear transfer-function. ANN training used 45

images (10% of the entire data), where correctly segmented nuclei had been manually

identified. Training was performed by the Levenberg-Marquardt back-propagation

training algorithm [52], the Conjugate gradient backpropagation with Powell-Beale

restarts [53] or Resilient backpropagation [54] from the Neural Network Toolbox in

MATLAB 2008a [55].

2.5.4 Performance Assessment of Nuclear Segmentation and PRE

Performance of the processing pipeline was assessed in 2 ways. The first mea-

sured the accuracy of identifying well segmented nuclei in a validation set of images

using precision recall plots for all 1620 configurations of the PRE by varying the

number of neurons in the hidden layer of the ANN (9 settings), the normalization

method (5 normalizations and no-normalization), number of PCA dimensions (5

settings) and number of features selected using dependency ranking (6 settings).

Precision and recall were defined as TP/(TP + FP ) and TP/(TP + FN) respec-

tively where TP = True Positive, FP = False Positive and FN = False Negative.

Since ideally both precision and recall should equal 1, the PRE configuration closest

(in terms of Euclidean distance) to the point (1, 1) was selected as the best possible

configuration. This implicitly decided the cut off for the features used from the
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feature selection procedure.

The second way measured the boundary delineation accuracy of automatically

segmented nuclei by comparison to control segmentations generated by human in-

teraction. However, given the notorious tedium in precisely delineating nuclei by

hand, an efficient 2D DP based semi-automatic algorithm (SAA) [18] was used to

generate control segmentations. Thus, the initial task was to validate the accuracy

of SAA using synthetic control images of nuclei. Images of 20 synthetic nuclei were

created by starting with 20 manually segmented nuclei from tissue sections, in or-

der to capture the typical morphology of actual nuclei. Then known distortions

of the image acquisition process, such as blurring and noise were estimated from

the actual tissue images and were used to distort the idealized nuclei images. Back-

ground and nuclear intensities were set to 16 and 90 respectively. Next these bi-level

images were Gaussian blurred by the lateral resolution of the microscope given by

0.51λ/NA where λ is the emission wavelength of the DAPI channel (450 nm) and

NA (1.4) is the numerical aperture of the objective lens. Taking into consideration a

pixel resolution of 74 nm, the standard deviation of the Gaussian was 0.9407 pixels.

The noise level in tissue images was estimated by subtracting a Gaussian blurred

version of the images from original images and calculating the variance, resulting in

a standard deviation of 3.3 that was added to the synthetic images as Poisson noise.

Three parameters were used to measure boundary delineation accuracy. The

first measured the overlap between test and control segmentations using area simi-

larity (AS) [56–59] defined as (2×A[T ∩C])/(A[T ]+A[C]) where A[·] is the area of
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Figure 2.11: (a) Example nucleus for boundary accuracy assessment (b) Example

nucleus with control (C) (Green) and test (T) (Red) segmentation (c) The overlap

area (purple) used to measure area similarity (d) Distance transform-based boundary

accuracy calculation. The distance transform was calculated with respect to control

segmentation (e) Normalized EDT calculation on control segmentation mask used

to measure difference in relative distance measure. Control segmentation boundary

is shown in white (f) The difference in normalized EDT based relative distance

measure

an object, ∩ is the intersection of two objects, T is the test segmentation mask and

C is the control segmentation mask. Thus, AS ranged from 1 for perfect agreement

between test and control segmentations, down to 0 for no overlap between test and

control and for cases where either the test or control segmentation did not exist.
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This metric provided a combined accuracy from all the automatically selected nu-

clei including the false positives. Consequently, it was the true accuracy measure

for the automatic analysis procedure. Fig. 2.11(a) shows a sample nucleus and Fig.

2.11(b) the two boundaries (control and test) overlaid on it. Fig. 2.11(c) shows the

overlap area used to calculate AS. The second parameter was an Euclidean distance

transform (EDT) based boundary metric explicitly designed to measure error at the

nuclear boundary. For each nucleus the EDT was performed on the control segmen-

tation with progressively higher values assigned to pixels farther from the control

boundary. Pixel values in the EDT image at the position of the test segmentation

boundary were averaged to calculate boundary error. Fig. 2.11(d) shows boundaries

superimposed on the EDT image calculated with respect to the control segmentation

boundary. The third parameter measured the normalized mean spatial deviation of

all pixels in the overlapping area of the control and test segmentations of a nu-

cleus. It was used to assess the effects of nuclear segmentation inaccuracies on the

gene localization measurement. The EDT assigned a value of 0 to the boundary

locations of the nucleus and increasing values to points further within the nucleus

(Fig. 2.11(e)). The parameter was the mean of the absolute differences between

the EDT images of the control and test segmentations where the two segmentations

overlapped. Fig. 2.11(f) shows a heat map of the differences. Correlation analy-

sis was performed between the 3 parameters to determine whether the parameters

measured independent features of segmentation errors or alternatively whether one

parameter would suffice.
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2.5.5 Segmentation and Classification Results

The proposed image analysis steps were implemented in MATLAB (Release

2008a, Mathworks, Inc., Natick, MA, USA), except for wavelet-edge enhancement

which was implemented in LastWave [35]. All the necessary code is available online

(http://ncifrederick.cancer.gov/atp/omal/flo/Ann.aspx) through a license agreement

with National Cancer Institute. Raw datasets (2-D MIP, R-G-B images only) and

the output from the proposed workflow are also available through a material transfer

agreement with National Cancer Institute.

2.5.5.1 ANN Classification Performance

We assessed the accuracy of identifying well segmented nuclei from precision

recall plots (Fig. 2.12) for 1620 different configurations of the PRE using a man-

ually annotated verification set of 133 images which were acquired from the same

patient samples as the training set. The three ANN training algorithms mentioned

earlier provided similar results in terms of performance and training time. The

back-propagation algorithm was used for training the neural network. Prior to se-

lection by the PRE, segmentation output had a precision of only 17% of segmented

objects accurately representing individual nuclei based on visual inspection. The

best PRE configuration used the 15 top features from dependency ranking, all 15

dimensions from PCA, rank normalization and 15 neurons in the hidden layer result-

ing in a precision = 71.5% and recall = 73.6%. Some false positive errors (debris,

nuclear clusters etc.) closely resembled well segmented nuclei in shape, size and
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Figure 2.12: PRE precision-recall plot for 1620 configurations and the best configu-

ration (closest to (1,1)). Configurations with high precision and low recall are shown

by the red box.

other morphological features.

The classification results from the stacked classifier were also compared to

those obtained from the ANN based PRE and they clearly displayed the superior

performance of the latter in identifying a subset of ’well-segmented’ nuclei in terms

of the precision and recall. Table 2.1 shows the comparison between the stacked

classifier and various configurations of the ANN classifier.

2.5.5.2 Segmentation Accuracy of Selected Nuclei using ANN

The first step in assessing segmentation accuracy of automatically selected

nuclei was to ensure that the SAA was at least as accurate as hand delineation of
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Table 2.1: Performance comparison of stacked classifier and ANN classifier systems

Performance Stacked Classifier ANN Classifier (6 Configurations)

Recall 63.89% 5.4% 20.9% 24.63% 53.09% 59.76% 73.6%

Precision 67.11% 98.2% 94.3% 85.96% 79.21% 77.68% 71.5%

Table 2.2: Mean and standard deviation of accuracy parameters

Mean / Standard
Deviation

Area Similarity
per nuclei

Mean EDT based
Boundary Error

(in pixels)

EDT based
Relative Distance
Error per pixel

(I) By Hand Vs
Control
Boundary

0.9804 / 0.0036 1.2050 / 0.2407 0.0171 / 0.0031

(II) SAA Vs
Control
Boundary

0.9843 / 0.0034 1.042 / 0.0580 0.0137 / 0.0033

(III) Automatic
Vs SAA

0.913 / 0.12 3.639 / 2.084 0.073 / 0.081

nuclei using synthetic control images. Measurements over 20 nuclei showed this was

the case for all three segmentation accuracy parameters (Table 2.2). Therefore the

SAA was used as the control for subsequent assessments of automatic segmentation

accuracy.

For assessing the segmentation accuracy of the proposed workflow, AS was

measured for all automatically selected nuclei, setting the value 0 for false positive

nuclei. The mean value was 76% which as expected is lower than other reported

accuracies that were measured over only true positive objects. When we evaluated

AS for true positive objects only, to be consistent with other reported results, we

obtained 91.3% (Table 2.2), which is equivalent to the accuracy we have achieved

38



for nuclei in cell culture [34] and significantly improved over reported accuracy in

cancer tissue of 80% [60].

We calculated the mean error at the boundary and the mean normalized in-

ternal error for only true positive objects (Table 2.2) since these metrics are inde-

terminate for false positive objects. Both the mean boundary and internal errors of

3.6 pixels and 7.3% are approximately equivalent to the optical resolution limit.

Comparison between the segmentation accuracy metrics showed correlations

of 96% between AS and internal pixel difference, 33% between AS and boundary

parameter and 33% between internal pixel difference and boundary parameter. This

shows that only one of the parameters AS or internal pixel difference is needed, while

the boundary parameter does provide extra information not provided by either AS

or internal pixel difference. However, depending on the application either AS or

internal pixel difference may be more useful than the other.

2.6 Application to Gene Localization for Breast Cancer Detection

The set of nuclei identified as well segmented by the PRE were used for dis-

criminating normal and cancer tissue sections using spatial analysis of the gene

signals. In this study, we only analyzed HES5, a gene in the NOTCH pathway [61],

which occupies different nuclear positions in normal and cancer tissues [11].

2.6.1 Segmentation and Spatial Analysis of FISH labeled Gene sig-

nals

Fluorescence in situ hybridization (FISH) is a technique for labeling specific

gene sequences in the chromosome with a fluorescent tag which can be subsequently
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Figure 2.13: (a) Flow diagram showing steps for spatial gene localization analysis
(b) Original image of segmented nucleus showing red and green FISH spots marked
by arrows (c) Nucleus ROI showing segmented FISH spots (d) Euclidean distance
transformed nucleus ROI showing normalized distance transform metric for each
FISH spot (e) Histogram of FISH signal positions binned by normalized EDT values
for aggregate cancers, aggregate normals and cancer samples C1, C10 and C12 (f)
Cumulative distribution of FISH spots against normalized EDT values for aggregate
cancers, aggregate normals and cancer samples C1, C10 and C12

imaged using an optical microscope to identify spatial localization of the tagged

gene sequence which appear as bright spots (Fig. 2.13(b)). Fig. 2.13(a) shows

the procedure for spatial analysis of FISH signals in segmented nuclei. The spot-

like FISH signals (Fig. 2.13(b)) were segmented (Fig. 2.13(c)) using a derivative

scale-space method [62].

First, the FISH signal channel F , was convolved with Gaussian profiles of

different widths to generate a Gaussian scale-space. Mathematically, this can be
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described as:

F̃i = F ⊗G(σi)2D with i = 0, . . . , (l − 1) (2.4)

where l is the number of scales and ⊗ is the convolution operator. G(·)2D is the 2D

Gaussian profile with width σi in the lateral direction. The Gaussian scale-space

was generated by varying σi as a function of scale i using the following relation,

σi = σb ∗
√
2i (2.5)

where σb is the standard deviation of the Gaussian function at scale 0. To enhance

the FISH signals, the difference between consecutive scale-spaces were multiplied as:

F̃product = (F − F̃0)(F̃0 − F̃1) . . . (F̃l−2 − F̃l−1) (2.6)

To suppress noisy background from being detected as a FISH signals, F̃product

was convolved with a small Gaussian profile to create F̂product which was subse-

quently thresholded to detect the FISH signals.

The position of the spots with respect to the nuclear center and periphery

were calculated using a shape independent Euclidean distance transform (EDT)

based metric [63] and were normalized relative to the highest EDT value in the

nucleus (Fig. 2.13(d)). The Kolmogorov-Smirnov (K-S) test was used to compare

the distributions of gene positions in the nuclei of normal versus cancer specimens.

Two samples were considered significantly different if the probability of them being

from the same distribution obtained via the K-S test was less than or equal to 1%.
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Table 2.3: Probability that the spatial FISH signals for NMFM and NAFA are
similar using 1-D K-S test

Dataset D1 D2 D3 D4 D5 D6 D7 D8 D9
G-Edt 0.43 0.56 0.81 0.87 0.88 0.16 0.98 0.05 0.67
G-EdtP 0.42 0.65 0.79 0.70 0.79 0.42 0.31 0.06 0.61
R-Edt 0.94 0.48 0.33 0.17 0.57 0.29 0.96 0.18 0.96
R-EdtP 0.98 0.66 0.29 0.16 0.47 0.11 0.76 0.80 0.74

2.6.2 Manual Analysis

For manual analysis, individual cell nuclei were manually delineated using the

lasso tool in Photoshop 7.0 (Adobe Systems Incorporated, San Jose, CA, USA) and

saved as separate image files. The red and green channels (FISH channels) of each

nucleus were adjusted to reduce the background. After 130 nuclei were segmented

no further tissue images were processed for a dataset. Spatial FISH analysis was

performed using the same procedure as for the automated analysis. Data from the

manual analysis of these tissues has previously been reported [11].

2.6.3 Results for Gene Localization using Hybrid Segmentation and

Stacked Classifier

Experiments for evaluating the performance of the hybrid segmentation method

were done in three stages resulting in 3 sets of outputs which differ in their degree of

automation. The sets were the following : NMFM (Nuclei selection manual, FISH

screening manual), NMFA (Nuclei selection manual, FISH screening automatic) and

NAFA (Nuclei selection automatic, FISH screening automatic), where nuclei selec-

tion was done on the output of the automatic nuclei segmentation module and FISH

screening was done from the automatic FISH segmentation module output.
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Table 2.4: Probability that the spatial FISH signals for NMFM and NMFA are
similar using 1-D K-S test

Dataset D1 D2 D3 D4 D5 D6 D7 D8 D9
G-Edt 0.79 0.99 1.00 1.00 1.00 0.98 0.72 0.98 0.58
G-EdtP 0.64 0.72 0.99 0.99 0.88 0.83 0.20 0.80 0.63
R-Edt 0.51 0.43 0.27 1.00 1.00 1.00 0.99 0.82 1.00
R-EdtP 0.50 0.41 0.21 1.00 0.98 0.99 0.99 0.65 1.00

The degree of spatial similarity of the spots among the 3 output sets was used

as the metric to evaluate the efficacy of the automation process. Table 2.3 shows the

probability that the FISH distribution between NMFM and NAFA are similar. In

the majority of cases the probability that the two methods calculated gave similar

results was more than 50% and in only one instance was there a significant difference

of 5% (D8 for green) level. This justifies the use of the hybrid segmentation and

nuclei selection procedure for high throughput tissue screening.

As an intermediate step the automation efficacy of the FISH segmentation

procedure was tested. Table 2.4 shows the probability of similarity of the FISH

distribution between NMFM and NMFA. Most of the signal distributions were sta-

tistically very similar enabling us to use the existing automatic FISH segmentation

procedure.

2.6.4 Results for Gene Localization using Multistage Watershed Seg-

mentation and ANN

23 tissues were analyzed consisting of 4 normal (N1-N4), 5 non-cancerous

breast disease (NCBD) (B1-B5) and 14 cancer samples (C1-C14). The set of nu-

clei selected by human experts and the PRE did not have a 100% correspondence.
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Table 2.5: Manual and well segmented automatic nuclei count

Dataset
Number
of Images

Manual
Nuclei
Count

Automatic
Nuclei
Count

N1-N4 114 536 676

C1-C14 257 1965 2588

B1-B5 129 699 736

Total 500 3200 4000

Table 2.5 shows the number of well-segmented nuclei selected both manually and

automatically.

As expected, the copy number distribution of detected FISH signal per nucleus

showed that the cancer samples had significantly more than 2 copies per nucleus.

However, since it was rare for nuclei to have more than 10 FISH spots, such nuclei

were rejected as potentially having spuriously detected spots.

Performance of the proposed processing pipeline was assessed by its ability to

discriminate between normal, NCBD and cancer, and its agreement to manual anal-

ysis. Fig. 2.13(e) shows the automatically-calculated distribution of gene positions

aggregated for all cancers, aggregated for all normal and for 3 individual cancers

(C1, C10 and C12) and Fig. 2.13(f) shows the equivalent cumulative distributions.

From Fig. 2.13(e) we observe that cancer samples have significantly more nuclei

where the HES5 gene is closer to the periphery (normalized EDT ∼ 0.2) than in

normal samples. This is consistant with findings of the manual analysis of these

tissues [11].

Comparison of normals with each other and with NCBD showed no significant

differences when analyzed automatically. Manual analysis reported similar results

except one pair of normal samples (N2 Vs N3) were significantly different and one
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Table 2.6: Probability of similarity of FISH signal distribution between normal, cancer and non-
cancerous breast disease tissue sections using manual and automatic processing

N1 N2 N3 N4 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 B1 B2 B3 B4 B5
Manual Analysis

N1 1 0.46 0.1 0.66 0 0 0.7 0 0 0 0 0 0 0.01 0 0.01 0 0.4 0.29 0.2 0.05 0.44 0.13
N2 * 1 0 0.51 0 0 0.12 0 0 0 0 0 0 0 0 0 0 0.13 0.4 0.51 0.01 0.87 0.56
N3 * * 1 0.18 0 0 0.47 0 0 0 0 0 0 0.15 0 0.39 0.05 0.15 0 0.02 0.78 0.01 0
N4 * * * 1 0 0 0.83 0 0 0 0 0 0 0 0 0.01 0 0.5 0.17 0.24 0.06 0.26 0.18

Automatic Analysis

N1 1 0.41 0.67 0.12 0.00 0.00 0.81 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.96 0.00 0.02 0.17 0.43 0.64 0.49 0.30
N2 * 1 0.12 0.20 0.00 0.01 0.41 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.40 0.00 0.03 0.25 0.80 0.12 0.55 0.96

N3 * * 1 0.06 0.00 0.00 0.92 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.78 0.00 0.00 0.02 0.13 0.22 0.12 0.11

N4 * * * 1 0.04 0.10 0.29 0.10 0.00 0.00 0.00 0.01 0.00 0.00 0.08 0.34 0.01 0.00 0.01 0.21 0.19 0.04 0.16

a Two samples were considered significantly different if the probability from the K-S test was less than or equal to 1%.
b Green cells denote cases where normal or NCBD samples were not similar to normal samples. c Red cells denote cases where cancer
samples were similar to normal samples.
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normal sample (N3) was significantly different from two (B1 and B5) out of five

NCBDs (green cells in Table 2.6). The red cells in Table 2.6 denote the cases where

cancer samples were not significantly different from the normal samples. Among

56 cancer versus normal comparisons, the results of the manual and the proposed

method are in accord for more than 80% of cases. When the majority vote of normal

specimens versus a cancer specimen was used, manual and automatic analysis concur

for 11 out of 14 cancers. In the remaining 3 cases (C2, C10 and C14), either

manual or automatic analysis gave an uncertain result and there were no outright

contradictions.

2.7 Discussion and Conclusion

We have demonstrated integrated workflows featuring automatic nuclei seg-

mentation methods and supervised pattern recognition engines for nuclei screening

which, along with a statistical analysis of spatial localization of HES5 gene in cell

nuclei, has the potential to detect breast cancer from tissue sections. Since manual

analysis of tissue sections is subjective and time consuming, our supervised method

is essential and opens up the possibility of a future procedure for diagnosis and/or

prognosis of breast cancer through reliable and robust automation.

Aspects of the analysis strategy adopted in this study warrant further discus-

sion. Although, the use of 2D MIPs of the original 3D DAPI channel showed that

the segmentation algorithm could be potentially used for segmenting non-confocal

2D images acquired on conventional fluorescence microscopes, a future, separate

study will answer which is the best acquisition mode. Confocal, non-confocal 3D
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followed by deconvolution (done in this case) and non-confocal 2D are all techni-

cally feasible. We would want to first determine which is the most accurate and

then determine how much performance degrades by using conventional fluorescence

microscopy. Given the fact that the method works successfully in a 2D setting, as

shown by the reported experiments, a full 3D analysis, which is more accurate, will

be considered next.

We compared methods to assess the boundary accuracy of nuclei screened by

the PRE in terms of the unique requirements for gene localization analysis. The

assessment was aided by a dynamic programming-based semi-automatic segmenta-

tion to rapidly and accurately generate validation data. Several methods have been

devised previously to assess boundary accuracy of segmented objects, of which man-

ual identification of over, under and correctly segmented nuclei [14, 15] is the most

common. However, as reported earlier, utilization of simulated objects [14] enables

quantitative identification of the performance limits of a segmentation algorithm.

For our work, we used three accuracy parameters: area intersection between control

and test segmentation, mean EDT-based boundary deviation of the test segmen-

tation from the control segmentation [34] and a novel EDT-based relative distance

error per pixel to assess the impact of boundary inaccuracies on FISH localization

measurements. As is evident from Table 2.2, the average error of 0.073 per pixel

corresponds to area similarity of 91.3% and mean boundary error of 3.639 pixels.

A close examination of Fig. 2.13(e) reveals that cancer detection results are not

adversely affected by an error of 0.073 per pixel. This is further justified by the fact

that a left shifted normal cumulative plot or a right shifted cancer cumulative plot
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(Fig. 2.13(f)), by normalized EDT value of 0.073, does not affect the statistically

significant difference between the normals and the cancers obtained by K-S test.

Sensitivity analysis was qualitative at this stage. Many iterations of the nu-

clear segmentation algorithm were tested during development and in particular the

multistage watershed method described herein out performed the hybrid levelset-

watershed based algorithm [64]. In general, it was observed that the multistage

watershed segmentation algorithm satisfactorily handled significant intensity varia-

tions in the DAPI channel which included cases of inter-image intensity variation

across datasets and also inter-nucleus intensity variation within a single image. Al-

though we considered that all our samples were of the same quality because they had

been labeled and imaged under the same protocol, the quality of segmentation did

depend on certain sample characteristics. As an example, the segmentation results

for normal datasets were not as good as cancer datasets, because normals showed

significantly more nuclear clustering compared to cancer samples. Although, the

robustness of the multistage watershed algorithm to morphological, textural and

size variations of the nuclei was further verified by the consistent results in a much

larger tissue micro-array dataset containing approximately 1,700 images (results not

shown), we envision additional opportunities for improvements by merging results

from multiple segmentation algorithms. Often different algorithms successfully seg-

ment different subsets of nuclei, thus merging the output from different algorithms

should increase yield of well segmented nuclei. As mentioned above, the ease of

segmentation did correlate to some extent to the disease progression. However, we

have no evidence that the automated analysis is biasing the data by using only easily
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segmentable nuclei. Future studies with the system will address such issues further.

In the case of the PRE the future improvement would involve the use of online

learning systems [65] to enable the system to learn from its mistakes. Similarly,

visual inspection of automatically selected nuclei in order to admit only true positives

would further improve performance. A small subset of new data can be provided to

a user and the manual decisions made on that subset can be used to further improve

the discriminating power of the PRE. Although the supervised PRE was trained on

breast cancer tissue images that had a range of nuclear morphologies, we expect,

it would successfully screen other tissue images as long as the dominant features

identifying well-segmented nuclei remain the same. On the other hand, cancers from

different organ sites likely have a different set of distinctive features and therefore

the PRE would need to be retrained. In this study, an ANN was used to identify

the well segmented set of nuclei. However, other pattern classification methods (e.g.

support vector machines, random forests) could provide improved precision-recall

performance. Furthermore, to enhance the accuracy and effectiveness of this cancer

diagnostic system, spatial analysis of multiple genes could be combined [11].

One of the strengths of the workflow is that it is modular. That is, each step

(e.g., nuclear segmentation, pattern analysis) can be substituted by an improved

algorithm providing scope for continuous improvement of the processing pipeline.

The same workflow can be applied to a broader spectrum of cell biology applications

(e.g., cancer malignancy classification and grading from histopathology sections [66],

DNA ploidy analysis [67]) where the quality of nuclei segmentation is paramount and

where a larger pool of nuclei are acquired than are required for drawing a statistically
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significant conclusion. In this context, we point out that the segmentation algorithm

required no manual intervention for segmenting nuclei in the reported tissue section

datasets. The robustness of the algorithm was achieved by the use of multiple stages

of watershed-based segmentation and pattern classification which can be viewed as

the merger of a bottom-up (intensity watershed followed by GDT based and tree

based merging) and a top-down (cluster identification and further nuclear segmen-

tation within the clusters) method. For users having minimal experience in image

analysis and pattern recognition, a user friendly software tool is being developed

which can be used to perform all the analysis steps illustrated in the framework

with minimal manual intervention. We have made the software for the reported

work available at: (http://ncifrederick.cancer.gov/atp/omal/flo/Ann.aspx), which

will enable image analysis experts to further advance the method. However, the

value of the work does not lie solely in the utility of the software. A key value is the

discovery that automatically selecting cell nuclei is not only feasible, but can lead

to valuable biomedical results. Also, another goal of this study was to show that a

successful manual method can be automated. Further characterization such as qual-

ity of nuclei selected/rejected, quality of FISH signal selected/rejected, sensitivity

analysis is for a future study.

The results from our workflow, both in terms of cancer detection and nuclei

screening, are very encouraging. Comparison of spatial distribution of FISH spots

for the HES5 gene obtained by manual and automatic procedure show very good

correspondence justifying the effectiveness of the automation. We have also shown

that the system selects almost 70% of the well segmented nuclei and the screened
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nuclei have high boundary accuracy when compared to a validated semi-automatic

nuclear segmentation. In summary, these very promising results show for the first

time the potential of a supervised learning based high-throughput and objective test

for breast cancer using localization statistics of certain genes within the cell nucleus.

With further validation across large numbers of samples, it could have a subsidiary

role in diagnosis, prognosis or further understanding of the mechanisms of cancer

development.
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Chapter 3: Probabilistic Edge Detection in 2D and 3D Optical Mi-

croscopy Images

3.1 Introduction

This chapter discusses the design of an automatic probabilistic edge detection

method trained by a supervised learning framework for both 2D and 3D optical mi-

croscopy images of tissue samples. Experiments involving 2D tissue sample images

presented in the previous chapter incorporated a wavelet based boundary enhance-

ment step which inadvertently enhanced the internal structures of the cell nuclei

causing degradation of the final segmentation output. Hence we developed the

probabilistic edge detection method using supervised training framework to target

application specific edges of interest and avoid enhancing structures irrelevant to the

application. The impact on the segmentation results for using such an edge detector

will be illustrated in chapter 4. The method is inspired by one of the most accurate

and robust 2D edge detection methods developed for images of natural scenes re-

ported in [68]. To the best of our knowledge, the method proposed in this chapter is

the first such probabilistic edge detector developed for 3D optical microscope images

of tissue samples. Although in this work we specifically target the computation of

reliable edge maps for volume labeled cell nuclei in tissue samples, with appropriate

training the method can be applied for detecting edges of a wider variety of target
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objects such as cells and sub-cellular or sub-nuclear organelles.

Edges are known to be some of the most significant information encoding

elements in images and decades of multi-disciplinary research activities have been

focused towards the design of robust and accurate edge detectors. Object boundaries

or contours, which unlike edges convey pixel ownership information, can be defined

in terms of the detected edges and the success of several computer vision procedures

such as object detection, segmentation, recognition and tracking depend on the

performance of edge and contour detection procedures. There exists a large body

of work targeted towards edge and contour detection in natural images of which

early methods mostly concentrated on the use of local derivative filters in order

to detect edges. However, in recent times, several supervised learning-based edge

detection methods have been proposed which can be trained to handle edge and

contour detection requirements for images which are not from natural scenes. The

ideas proposed in these recent methods are particularly attractive for detecting edges

in optical microscopy images.

Analysis of optical microscopy images, which exhibit some unique characteris-

tics in brightness, color and texture channels and are distinct from natural images,

is a particularly challenging area of research where accurate edge detection plays

a vital role. Most optical microscopy image analysis-based biological applications

involve detection and/or segmentation of cellular or sub-cellular bodies as prelimi-

nary steps and their success depends substantially on accurate identification of edges

and contours of objects of interest. On the other hand, some applications such as

drug screening require accurate quantification of protein localization on the cell or
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nuclear membrane (boundary or edge) for which a probabilistic measure of edge

strength is particularly attractive. Accurate and reliable edge detection is especially

important for 3D tissue samples for which object identification and segmentation is

significantly more difficult compared to its 2D counterpart of cell culture samples,

due to tight packing of cells in the tissue environment, poor signal to noise ratio

and poor resolution in the depth direction. Also a supervised framework is partic-

ularly attractive for edge detection in microscopic images due to wide variations in

brightness, color and textural properties of objects of interest for which several dif-

ferent staining and imaging protocols produce considerable variations in the images

acquired using optical microscopes.

The chapter is organized as follows. Section 3.2 provides a literature survey

of related works. Subsequent sections outline the details of the developed meth-

ods followed by a description of the experimental protocols and datasets used for

quantitative evaluation of the accuracy and robustness of the proposed method. In

the results section, we demonstrate the superior quality of the edge maps obtained

by the proposed method compared to those obtained from other conventional and

advanced edge detectors.

3.2 Related Work

Early classical edge detection techniques such as Sobel [44], Prewitt [69],

Roberts [70] and Frei-Chen [71] operators use derivative filters to identify local

grayscale changes to identify step edges. However, due to the lack of any smoothing

step they are sensitive to noise. Marr and Hidreth [72] identify edges by detect-
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ing zero crossings of the Laplacian of Gaussian function. The Canny edge detec-

tor [73] which also uses a gradient operator along with non-maximal suppression

and hysteresis thresholding to identify edges is one of the most popular edge de-

tection techniques. Several methods based on statistical approaches have also been

developed for edge detection [74] [75] [76]. Konishi et al [76] pose the edge detec-

tion problem as a statistical inference problem and design a data driven method.

They learn probability distributions on filter responses from a set of pre-segmented

training images and detect edges as a discrimination task using the likelihood ratio

test. Santis and Sinisgalli [75] use a linear stochastic model for edge detection for

which Bayesian methods are used for parameter estimation. The edge detection

task was framed as a hypothesis test based on the likelihood ratio. Several machine

learning-based techniques [77] [78] [79] [80] use tools like fuzzy logic, neural networks,

support vector machines and genetic algorithms for performing edge detection. Sev-

eral multi-orientation, multi-resolution methods [81] [82] [83] [84] [85] [86] [87] [88]

have also been developed for performing robust edge detection by combining edge

detection results across an appropriate range of scales. Lindeberg [89] proposed a

filter-based method with an automatic scale selection step.

Among several other advanced techniques currently available, those reported

in [90], [91] and [68] for natural images are most relevant to the method presented

here. Dollar et al. [90] attempt to learn an edge classifier in the form of a probabilis-

tic boosting tree from thousands of wide aperture multiscale features computed on

image patches and term the method as Boosted Edge Learning (BEL). On the other

hand, Martin et al. [91] combine carefully designed multi-orientation edge measure-
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ments from brightness, color and texture channels using a logistic regression in a

supervised learning framework. [68] extends the edge detection method presented

by Martin et al. by using multiscale versions of the multi-channel edge features and

introducing a spectral decomposition-based edge globalization technique.

In the context of optical microscopy, Geback and Koumoutsakos [92] report a

discrete curvelet transform-based method for edge detection. They extract a direc-

tional field for edges which is subsequently processed by non-maximal suppression

and thresholding. [93] reports an algorithm fusion method using multiscale Gabor

wavelet filters to locate edges of various sizes and under varying noise and contrast

conditions.

3.3 Probabilistic Edge Detection for Microscopy Images

The probabilistic edge detection algorithm for optical microscopy images is

inspired by previous works of Martin et al. [91] and Arbelaez et al. [68] in 2D nat-

ural images, who compute a posterior probability of edge strength at each image

location. In our work we define a similar oriented edge strength probability function

MiPb(S, ϑ), specifically designed for 2D and 3D optical microscopy images. S de-

notes a spatial location in terms of a pixel (xy location) or a voxel (xyz location) in

2D or 3D space respectively and ϑ denotes a 2D orientation in terms of a rotation θ

with respect to the x-axis (in our case, θ ∈ {0, π/4, π/2, 3π/4, π, 5π/4, 3π/2, 7π/4}

resulting in 8 2D orientations) or a particular 3D orientation in terms of a combi-

nation of Euler angles [94] α, β and γ (in our case, α, β, γ ∈ {0, π/4, π/2, 3π/4}

resulting in 64 3D orientations). In short, MiPb(S, ϑ) was calculated by measuring
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local image brightness, color (optional since optical microscopy images often require

segmentation of target objects in a single color channel) and texture in multiple

scales followed by a global edge measurement using the spectral decomposition of

the data. It also incorporates edge features that intentionally target certain edge

properties that are unique for microscopy images and hence improve edge detec-

tion performance in such images compared to the previously reported probabilistic

edge measures developed for natural images. The following subsections present the

MiPb(S, ϑ) measurement framework for 3D volumes. The 2D counterpart is a sim-

plification of the 3D case and although it closely resembles the work reported in [68],

the uniqueness in adapting the method for microscopy images will be highlighted as

appropriate.

(a) (b) (c) (d)

(i)

(ii)

Figure 3.1: (a) Texture filter 1 (b) Texture filter 2 (c) Texture filter 3 (d(i))
Schematic of portions of nuclei N1 and N2 with oriented cuboidal regions for cu-
mulative histogram computation of B and T channels. Cuboids are exaggerated for
illustrative purposes (d(ii)) Pre-rotated nuclei N1 and N2 with axis aligned cuboidal
regions.
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3.3.1 Multiscale Brightness, Color and Texture Based Edge Measure-
ments

Multi-scale and multi-orientation brightness, color and texture-based edge

measurements were computed from separate volumes created before the actual mea-

surement computation. The original 3D volume was transformed to the CIE Lab

color space, designed to approximate the human visual system, resulting in the

brightness(L), color a and color b volumes which were used for edge measure com-

putation. In optical microscopy, often individual objects of interest such as cell

nuclei are imaged in one separate red, green or blue channel. Hence, for nuclear

segmentation it was often sufficient to use a single channel volume which when con-

verted to the CIE Lab color space resulted in the L channel only, while the a and

b channels were empty. In such cases, only the brightness volume was used and

the color channels were ignored for edge measurement purposes. In the following

description, the color channels are ignored.

The texture channel was created by using volume specific textons [68] ex-

tracted from the L channel. Texton computation was initiated by first filtering the

volume using 64 orientations of 3D filters shown in Figure 3.1. Texture Filter 1 was

created by taking a first order derivative of a Gaussian (odd-symmetric) while Filter

2 was created by taking a second order derivative (even-symmetric). Filter 3 is the

difference of Gaussian (DoG) filter. For each voxel P (x, y, z), responses from 64 ori-

entations of filters 1 and 2 and a single response of filter 3 created a 129-dimensional

vector of responses, which were subsequently clustered using K-means [44] clustering

with K cluster centers (a value of K = 32 was used in our implementation since tex-
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tural properties of microscopy images can be reasonably captured using 32 cluster

centers). The K cluster centers created the volume specific textons and each volume

location P (x, y, z) was assigned a texton id (the closest cluster center) ranging from

1 to K, thus creating the texture volume (T) used for edge measure computation.

For a particular image location, P (x, y, z) in Figure 3.1(d), the edge measure-

ments for each individual channel (L, a, b and T) were obtained by calculating the

distance between histograms of voxel values within ϑ oriented cuboidal regions on

either side of the location shown in colors red and yellow in Fig Figure 3.1(d(i)).

Multiscale measurements were obtained by using three (D/2, D, 2D) sizes of the

cuboidal regions used to calculate the histograms, where D was the length of a side

of the cuboid. For the brightness and texture volumes the D values were 5 and

10 respectively. The distance between the two histograms was measured by the χ2

distance which is defined as

χ2(r, y) =
1

2

B
∑

n=1

(r(n)− y(n))2

(r(n) + y(n))
(3.1)

where B is the number of bins (8 in our case) and r and y are the histograms

of the red and yellow colored regions respectively. This results in a set of edge mea-

surement volumes Vs,c(x, y, z, ϑ) corresponding to scales s ∈ [D/2, D, 2D], channels

c ∈ [L, T ] and orientations ϑ of the measurement cuboid. We subsequently used the

Savitzky-Golay [95] filter to enhance the local maxima of edge measurements in a

direction orthogonal to ϑ.

For microscopic images, an additional channel was created in order to identify
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edges between touching objects which had similar brightness and textural proper-

ties. Such touching objects are encountered quite frequently in microscopic images,

especially in tissue samples where the cells are arranged in a tight packing. As can

be easily seen, such edges which are very typical of microscopic images cannot be

detected reliably using brightness and texture based measurements outlined above.

In order to identify such edges an additional channel was created by filtering the

original volume with a symmetric Gaussian double derivative filter as shown in Fig

3.1(b) (texture filter 2) in 64 ϑ orientations resulting in a set of filtered volumes

G(x, y, z, ϑ). Such a filter can specifically target edges between touching objects

having similar brightness and textural properties.

The multi-scale multi-orientation and multi-channel edge measurements were

then combined as,

mMiPb(x, y, z, ϑ) =
∑

s

∑

c

ηs,c · Vs,c(x, y, z, ϑ) + ν ·G(x, y, z, ϑ) (3.2)

where mMiPb(x, y, z, ϑ) denotes an initial multi-scale edge measurement and

ηs,c and ν are coefficients used to combine the measurements. The coefficients ηs,c

and ν were learned from a edge delineated training set of 3D volumes using lo-

gistic regression which was demonstrated [91] to be as effective as any other more

sophisticated classifier such as support vector machines.

The final edge measurement was obtained for each volume location (x, y, z) by

taking the maximum edge response from mMiPb(x, y, z, ϑ) over all orientations ϑ,

as
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mMiPb(x, y, z) = max
ϑ

mMiPb(x, y, z, ϑ) (3.3)

3.3.2 Spectral Edge Measurements

Measuring spectral edges is a strategy for the globalization of edge measure-

ments by capturing the dominant edges of global structures in a volume. For com-

puting the eigen decomposition-based spectral edge measurements, a sparse sym-

metric affinity matrix W was computed first. The affinity between two locations (i

and j) in the 3D volume was measured in terms of the maximum mMiPb(x, y, z)

value on the line segment connecting the two locations, which is termed as the in-

tervening contour cue. In our case all locations within a maximum radius (r̄max)

of 5 voxels was used to construct the affinity matrix. W (i, j), the ijth entry of the

affinity matrix was then defined as,

W (i, j) = exp



−
maxr̄

{

mMiPb(x, y, z)
}

ρ



 (3.4)

where r̄ ≤ r̄max was the line segment connecting locations i and j in the 3D

volume and ρ was a constant (with value 0.1). Subsequently, the generalized eigen

value decomposition was performed for the following system,

(D −W )v = λDv (3.5)

where D(i, i) =
∑

j W (i, j), λ were the eigen values and v were the correspond-

ing eigen vectors (volumes). n (16 in our case) eigen vectors (volumes) v1 to vn corre-

sponding to the smallest eigen values λ1 to λn, leaving out the smallest one λ0 (which
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is 0) were used to compute the spectral edge measurements sMiPb(x, y, z, ϑ). The

global edge information contained in the eigen volumes were identified by performing

a Gaussian derivative (∇ϑ) in 64 ϑ orientations. The derivatives were subsequently

combined as

sMiPb(x, y, z, ϑ) =
n
∑

i=1

1√
λi

∇ϑvi(x, y, z) (3.6)

to obtain the complete set of spectral edge measurements.

Finally, the multiscale brightness, color and texture-based measurements and

the spectral measurements were combined to obtain the multi-oriented global 3D

edge information :

MiPb(x, y, z, ϑ) =
∑

s

∑

c

εs,c · Vs,c(x, y, z, ϑ) + µ ·G(x, y, z, ϑ) + κ · sMiPb(x, y, z, ϑ)

(3.7)

where coefficients εs,c, µ and κ were learned from a edge delineated training

set of 3D volumes using logistic regression. As in the case of multiscale brightness,

color and texture-based measurements, the final edge measurement was obtained by

taking the maximum over all orientations

MiPb(x, y, z) = max
ϑ

MiPb(x, y, z, ϑ) (3.8)

3.3.3 Efficient Computation For 3D

In spite of the fact that conceptually and theoretically the computation of

2D and 3D edge detectors look very similar to each other, the 3rd dimension adds
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significantly to the computational complexity of the edge detection method when

compared to its 2D counterpart. Hence, some modifications were made to improve

the computational efficiency of the 3D edge detector.

• Cumulative Histogram Computation: Martin et al. [91] in their original

development of the 2D edge detector for natural images used semi-circular

regions (centered at each pixel location) on either sides of a θ oriented line to

calculate the cumulative histograms used for L,a,b and T based measurements.

This operation is computationally expensive and takes O(Nr2) time for an

N pixel image and a semi-circle radius of r. However, Arbelaez et al. [68]

developed a computationally more efficient 2D algorithm which takes O(N)

time by pre-rotating the image and using integral images.

Along similar lines, for 3D volumes, we took advantage of volume pre-

rotation and 3D integral volumes to compute the cumulative histograms effi-

ciently. Instead of rotating the cuboids for histogram computation, the volume

was first rotated to ϑ orientation (Fig. 3.1 (d(ii))). For a particular histogram

bin b an indicator volume was created from the rotated volume where a voxel

was set to 1 if the intensity value was within bin b and 0 otherwise. An in-

tegral volume was created from the indicator volume by summing the voxel

values along the 3 dimensions. A linear combination of the voxel values at

the 8 corners of the axis aligned 3D cuboid on the integral image provided the

count of voxels within bin b. This computation was repeated for each of the

B bins to compute the complete edge measurements. Such a computation is
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very efficient and took O(N) time where N was the total number of voxels

and was independent of the size (D) of the cuboidal region.

• Volume Filtering: Computations such as the texton calculation and Gaus-

sian derivative calculation of the eigen volumes involved filtering of 3D vol-

umes. Fast fourier transform was used to efficiently perform all such opera-

tions. Also, instead of rotating the filters in 3D, the volumes to be filtered

were pre-rotated to ϑ orientation before the filtering operation, as was done

for the cumulative histogram computation.

• Spectral Decomposition: Computation of the eigen vectors of the gener-

alized eigen system (D −W )v = λDv becomes extremely memory and com-

putation intensive for 3D volumes. A small 100 × 100 × 100 voxel volume

results in an affinity matrix W which is of size 106 × 106 and understandably

such eigen computation soon becomes impractical for progressively larger vol-

umes. Hence to reduce the computational load, each individual slice of the

mMiPb(x, y, z) volume was first segmented into 2D superpixels using a sim-

ple watershed algorithm [43]. The ijth entry (corresponding to the ith and

jth superpixel) W (i, j) of the affinity matrix was then defined as in (3.4),

where r̄ was the line segment connecting the centroids of the two superpix-

els. To impose the local constraint as imposed by r̄max in (3.4), a superpixel

was morphologically dilated r̄max times in 3D and the affinity calculation was

performed for all superpixels that overlapped atleast 1 voxel with the original

dilated superpixel.
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• Multiprocessor Computation: Multiprocessor computation was performed

to further improve the efficiency of the algorithm. The computational paral-

lelism was implemented on the 3D orientation ϑ since computations at each

orientation was independent of computations for any other orientation.

3.4 Experimental Datasets and Methods

Experiments were performed to quantify the performance of edge detection

algorithm. For both 2D and 3D algorithms, three kinds of datasets were used for

the experiments, (i) synthetic images, (ii) simulated images created using nuclei

in original microscopic datasets and (iii) original microscopic images. The first 2

datasets helped in accurate quantification of the strengths and weaknesses of the

algorithms as original object boundaries used as ground truth were available for

quantitative comparison. For original microscopic images, the object boundaries

were subjective since they depended on the perception of the human annotator who

manually or semi-automatically identified the object boundaries.

3.4.1 Experimental Datasets

3.4.1.1 Synthetic Datasets

Dataset of synthetic images were created by forming bright synthetic elliptical

(in 2D) or ellipsoidal (in 3D) objects on a dark background as often observed in

microscopic images of biological samples with volume stained cell nuclei. The objects

were of comparable dimensions to cell nuclei in real reference sample microscopic

images with a particular pixel (in 2D) or voxel (in 3D) size. The brightness of

the objects and the background were also estimated from the reference images. The
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objects were spatially positioned such that there was a mix of isolated objects as well

as closely packed nuclear objects, simulating their packing in a real tissue sample.

Subsequently, two kinds of distortions were introduced, the blurring and the noise

generated by the optical imaging and image capturing system of the microscope.

The blurring kernel was simulated as a 2D or 3D Gaussian function (which is a

reasonable assumption) for which the width was calculated using the theoretical

expressions of the point spread function (PSF) of a confocal microscope.

The x-y resolution (Rx−y) of a confocal microscope is often defined in terms of

the Full Width Half Maximum (FWHM) of the central disc of the Airy pattern [96]

created by the microscope for a point source of light and for a confocal microscope

Rx−y = 0.4 λex/(NA), where λex is the wavelength of the excitation light and

NA is the numerical aperture of the imaging lens. To find the width of a Gaussian

function of standard deviation σXY which closely simulated the 2D PSF of a confocal

microscope, the FWHM of the Gaussian approximated by 2
√
2 ln 2 σXY was equated

with Rx−y. The z-resolution of a confocal microscope is much worse compared to

its x-y resolution and as a reasonable assumption, for simulating the 3D PSF, the

standard deviation of the Gaussian in z-direction (σZ) was taken to be 3 times that

of the sigma in x-y direction.

Although in reality the noise introduced by a confocal microscope is a combi-

nation of Poisson and Gaussian noise, for simulation purposes the noise was assumed

to be additive Gaussian. When the signal to noise ratio (SNR) is defined as
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SNR =
|µ(F)− µ(B)|

√

σ2(NF) + σ2(NB)
(3.9)

where F is the foreground region, B is the background region, µ(F) is the

mean foreground intensity, µ(B) is the mean background intensity, σ(NF) is the

foreground noise standard deviation and σ(NB) is the background noise standard

deviation, the SNR of a standard confocal image is around 3.

For 2D images, human breast tissue sample images acquired on a Zeiss 710

confocal microscope from a tissue micro-array was used as the reference images. The

pixel resolution of the reference images was 0.08µm per pixel in the x and y directions

and typical nuclear diameter varied from 6µm to 14µm. The mean foreground and

background intensities measured were 90 and 23 respectively. Nuclear objects were

simulated by ellipses with intensity 90 on a background of intensity 23. σXY of the

blurring Gaussian function was calculated to be 0.7 considering the information that

the wavelength of the excitation light for imaging the reference sample was 405nm

and the NA of the imaging lens was 1.4. Subsequently Gaussian noise was added

to the blurred images in order to create a final synthetic image. In order to test the

robustness of the algorithms with respect to blurring and noise, σXY was varied as

{0.4, 0.7, 1.0} and the SNR was varied as {2, 3, 4} to create the complete synthetic

dataset.

For 3D synthetic images, the simulated objects were ellipsoids with dimensions

comparable to that of real cell nuclei assuming voxel size of 0.08µm in the x and y

directions. Due to reduced resolution in the z direction, real confocal volumes have
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anisotropic voxel size with the z dimension of the voxel size being around 3 times that

of the x and y dimensions. To measure the effects of voxel anisotropy, both isotropic

and anisotropic volumes were created. The isotropic volumes (voxel size of 0.08µm

for all 3 dimensions) initially created using ellipsoids were subsampled by a factor

of 3 to create an anisotropic volume (voxel size of 0.08µm for x and y dimensions

and 0.24µm for z dimension). To introduce the blurring of the imaging system, for

isotropic volumes σZ was equal to σXY . However, for anisotopic volumes, σZ was 3

times σXY . Subsequently, Gaussian noise was added to both blurred isotropic and

anisotropic volumes. For 3D too, σXY was varied as {0.4, 0.7, 1.0} (σZ was varied

accordingly as mentioned) and the SNR was varied as {2, 3, 4} to create the two sets

of synthetic datasets. Fig. 3.2(a-e) shows sample synthetic 2D and Fig. 3.3(a-e)

shows single slice of sample synthetic 3D images with different SNR and blur values.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3.2: Synthetic 2D image with (a) SNR 2 Blur 0.4 (b) SNR 3 Blur 0.4 (c)
SNR 3 Blur 0.7 (d) SNR 3 Blur 1.0 (e) SNR 4 Blur 0.7. Simulated 2D image with
(a) SNR 2 Blur 0.4 (b) SNR 3 Blur 0.4 (c) SNR 3 Blur 0.7 (d) SNR 3 Blur 1.0 (e)
SNR 4 Blur 0.7.
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(a) (b) (c) (d) (e)

(f) (g) (h) (j)(i)

Figure 3.3: Single slice of synthetic 3D image with (a) SNR 2 Blur 0.4 (b) SNR 3
Blur 0.4 (c) SNR 3 Blur 0.7 (d) SNR 3 Blur 1.0 (e) SNR 4 Blur 0.7. Single slice of
simulated 3D image with (a) SNR 2 Blur 0.4 (b) SNR 3 Blur 0.4 (c) SNR 3 Blur
0.7 (d) SNR 3 Blur 1.0 (e) SNR 4 Blur 0.7.

3.4.1.2 Simulated Datasets

Objects simulating the cell nuclei in synthetic images were of constant inten-

sity and hence lacked the low frequency texture present within the cell nuclei in real

microscopic images. Hence, simulated images were created from cell nuclei in real

microscopic images to quantify the effects of the low frequency texture on the ac-

curacy of the algorithms. 2D and 3D nuclei segmented interactively from Gaussian

smoothed versions of the reference images using the semi-automatic graph cut-based

segmentation interface were spatially positioned on a background of intensity 23 to

simulate isolated as well as tightly packed cell nuclei. Subsequently, multiple lev-

els of blurring (σXY ∈ {0.4, 0.7, 1.0} and σZ was 3 times σXY ) and noise (SNR

∈ {2, 3, 4}) distortions were introduced as discussed in the previous section. Fig.

3.2(f-j) shows sample synthetic 2D and Fig. 3.3(f-j) shows single slice of sample
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synthetic 3D images with varied SNR and blur values.

3.4.1.3 Original Microscopic Datasets

(a) (b) (c)

Figure 3.4: (a) Sample 2D image from human breast tissue dataset (b) Sample 2D
image from MCF-10A dataset (c) Sample 2D image from mouse embryo dataset.

(a) (b) (c)

Figure 3.5: (a) Single slice of sample subvolume of 3D image from human breast
tissue dataset (b) Single slice of sample subvolume of 3D image from MCF-10A
dataset (c) Single slice of sample subvolume of 3D image from mouse embryo dataset.

Original microscope datasets consisted of images from three kinds of samples.

The sample information are as follows,
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• Human Breast Tissue Micro-array: The tissue micro-array sample con-

sisted of 150 cores including 75 cases of normal, reactive, premalignant and

various grades of malignant tissues of the human breast. The cores were 4µm

thick and 1.1mm in diameter and labeled with the DNA dye, 4-in, 6-diamidino-

2-phenylindole (DAPI). A Zeiss LSM 710 (Carl Zeiss, Inc.) was used to image

10 such cores at multiple locations with a 63X, 1.4 NA oil objective lens and

a pinhole of 1 airy unit. The original voxel size was 0.08µm in the x and y

dimensions and 0.32µm in the z dimension. For experimentation, the original

stacks were subsampled by a factor of 3.4 resulting in a voxel size of 0.27µm in

x and y dimensions and 1.00µm in the z dimension. Fig. 3.4(a) shows a single

slice of a human breast tissue sample which was used for 2D edge detection

experiments and Fig. 3.5(a) shows a single slice of a subvolume of a human

breast tissue sample which was used for 3D edge detection experiments.

• MCF-10A Acini: Mature acini were grown for 14 days from single MCF-

10A cells on Basement Membrane Extract (Trevigen Inc., Gaithersburg, MD),

fixed in 4% paraformaldehyde in PBS for 10 min at RT and labeled with the

DNA dye, 4-in, 6-diamidino-2-phenylindole (DAPI). Samples were mounted

in Vectashield. Images were acquired using a 63X, 1.4 NA oil objective lens,

and pinhole of 1 airy unit on an LSM 510 confocal microscope (Carl Zeiss,

Inc.). Excitation was with 405nm laser light and emitted light between 420

and 480nm was acquired. Voxel size was 0.14µm in the x and y dimensions

and 0.50µm in the z dimension, resulting in 10-20 z slices per nucleus. For
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experimentation, three such acini image stacks were used and the original

stacks were subsampled by a factor of 2 resulting in a voxel size of 0.28µm in

x and y dimensions and 1.00µm in the z dimension. Fig. 3.4(b) shows a single

slice of a MCF-10A acinus which was used for 2D edge detection experiments

and Fig. 3.5(b) shows a single slice of a subvolume of a MCF-10A acinus which

was used for 3D edge detection experiments.

• Mouse Embryo: Mouse embryos at E5.5 were dissected in ice-cold PBS with

0.02% BSA (PBS-BSA), fixed for 20 min in 2% PFA, washed and permeabi-

lized in 0.1% Triton, 100 mM glycine in PBS for 10 min at room temperature.

Following primary antibodies were used; anti-Oct4 (C-10; SC-5279; Santa

Cruz Biotechnology, CA); anti-Cdx2 (Cdx2-88; AM392; Biogenex, CA); anti-

histone H3 (tri methyl K27; ab108245, Abcam, MA). Embryos were incubated

with secondary antibodies conjugated with Alexa Fluor 488 and Alexa Fluor

633-conjugated Phalloidin (both 1:400 dilution; Molecular Probes). Images

were acquired using a Zeiss LSM510 confocal microscope with Plan-Neofluor

40x/1.3 oil objective. Two volumes of MCF-10A and human breast tissue sam-

ples and a single volume of mouse embryo tissue were used for experiments.

3.4.2 Experimental Methods

The edge detection accuracy for both 2D and 3D algorithms was tested using

the precision-recall (PR) curve framework reported in [91]. For synthetic and sim-

ulated datasets, the actual object boundaries were available and they were used as

the true ground truth edge map of the cell nuclei. However, for original microscopic
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images, a true ground truth is not available for testing the algorithms. Hence, for

both 2D and 3D datasets semi-automatic human segmentations using the interactive

graph cut-based segmentation interface (reported in section 4.3.4 of the thesis) were

used as the ground truth segmentation. However, such a ground truth is not com-

pletely accurate and depends on the the human annotator’s subjective perception

of an object edge.

For generating the PR curve, the output edge map was thresholded at progres-

sively increasing values, generating a binary edge map at each individual threshold.

This binary map was compared to the ground truth segmentation voxel by voxel in

order to calculate the precision P = TP/(TP+FP ) and recall R = TP/(TP+FN),

where TP is the number of true positive voxels, FP is the number of false positive

voxels and FN is the number of false negative voxels. As a comprehensive measure,

the F-score defined as PR/(αP + (1 − α)R) is also reported at α = 0.5. For a

particular application, α can be used as a trade-off between true signal requirement

(precision) and noise tolerance (recall) and the highest F-score at that α can pro-

vide the best possible operating point on the PR curve. However, this particular

framework is very stringent and heavily penalizes even minor edge localization inac-

curacies from algorithms which otherwise produce reasonably accurate object edge

maps. As a more practical approach for quantifying edge accuracy, we allow a 2

voxel wide region of trust on either side of the ground truth boundaries where an

edge voxel identification is granted as correct. In practice, the ground truth object

boundaries are dilated twice before the calculation of the PR curve. This method

also attempts to mitigate accuracy measurement issues due to the ground truth
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inaccuracies present in a human annotated real microscopic image dataset.

Specific experiments performed to test the algorithms were as follows,

• Comparison with conventional edge detectors Results from the reported

2D and 3D edge detection algorithms were compared with that of conventional

edge detectors namely, Sobel [44], Prewitt [69], Canny [73] and the probabilis-

tic edge detector (gPb) without the adaptation for microscopy images using

the above mentioned PR curve framework. For Sobel and Prewitt detectors,

the outputs were thresholded at progressively higher values to plot the PR

curve. However, for Canny the hysteresis threshold values were progressively

increased to obtain multiple levels of binary edge responses from which the PR

curves were derived. For 3D real microscopic datasets, edge measurements ob-

tained by using multi-scale multi-orientation FIJI [97] based Trainable WEKA

Segmentation(TWS) (version 2.1.0 with FastRandomForest classifier having

200 trees and 2 features per node) was also used for comparison.

• Anisotropy The effects of anisotropic voxels was measured for 3D synthetic

datasets by comparing the PR curves for corresponding isotropic and anisotropic

synthetic volumes.

• Slice-by-slice and Full 3D The 3D edge detection method is computation-

ally intensive and to test whether a 2D slice-by-slice edge detection method

was good enough, the PR curves generated by the two methods were compared

for a synthetic and a simulated data volume.

• Varying Original Samples To demonstrate the performance of 2D and 3D
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edge detectors on real microscopy data, three kinds of biological sample images

were utilized and the performance of the edge detectors were quantified against

boundaries obtained by human semi-automatic segmentation results.

3.5 Experimental Results

In this section we report the performance results of our experiments with the

2D and 3D edge detection algorithms.

3.5.1 2D Edge Detection Results

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3.6: MiPb response for synthetic 2D image with (a) SNR 2 Blur 0.4 (b) SNR
3 Blur 0.4 (c) SNR 3 Blur 0.7 (d) SNR 3 Blur 1.0 (e) SNR 4 Blur 0.7. Simulated
2D image with (a) SNR 2 Blur 0.4 (b) SNR 3 Blur 0.4 (c) SNR 3 Blur 0.7 (d) SNR
3 Blur 1.0 (e) SNR 4 Blur 0.7.

The basic framework for experimentation was using the PR curves as men-

tioned in the previous section. Table 3.1 reports the F-score values for synthetic

and simulated 2D images for varies values of SNR and blurring as obtained us-

ing Sobel(S), Prewitt(P), Canny(C), probabilistic edge detector without microscopy
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(a) (b) (c) (d) (e)

(f) (g) (h) (j)(i)

Figure 3.7: MiPb response for single slice of synthetic 3D image with (a) SNR 2
Blur 0.4 (b) SNR 3 Blur 0.4 (c) SNR 3 Blur 0.7 (d) SNR 3 Blur 1.0 (e) SNR 4 Blur
0.7. Single slice of simulated 3D image with (a) SNR 2 Blur 0.4 (b) SNR 3 Blur 0.4
(c) SNR 3 Blur 0.7 (d) SNR 3 Blur 1.0 (e) SNR 4 Blur 0.7.

adaptation (gPb) and the reported method(MiPb). MiPb consistently works better

than the other edge detectors as reflected by the F-score values. MiPb shows rea-

sonably robust results against increasing blur and decreasing SNR. It should also

be noted that the additional channel used in MiPb to adapt gPb for microscopic

images boosts the performance of the edge detector in almost all cases. Fig. 3.6

shows the contrast stretched MiPb response for 2D synthetic and simulated images

corresponding to Fig. 3.2.

The maximum F-scores for the real micrscopic images from MCF-10A, human

breast tissue micro-array and mouse embryo sample are shown in Table 3.2. In this

case too, MiPb works consistently better than the other edge detectors. Fig 3.8

shows the PR plots for 2D synthetic and simulated datasets at SNR 3 and blurring

of 0.7 (settings which are closest to an average confocal microscope image) and real
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2D images from MCF-10A, human breast tissue micro-array and mouse embryo

samples. Fig. 3.9 shows the contrast stretched MiPb response for real microscopic

2D images corresponding to Fig. 3.4.

(a) (b) (c)

(d) (e)

Figure 3.8: PR curves for 2D synthetic, simulated, MCF-10A Acini, Human breast
tissue micro-array and Mouse embryo samples

3.5.2 3D Edge Detection Results

The edge detector performance for the 3D case was also measured using the

PR framework. Table 3.3 shows maximum F-score values for Sobel(S), Prewitt(P),

Canny(C), probabilistic edge detector without microscopy adaptation (gPb) and

the reported 3D method(MiPb) for synthetic (having anisotropic voxel size) and

simulated datasets at various levels of noise corruption and blurring. For 3D too,

MiPb works consistently better than the other edge detectors in terms of F-score.

It should also be noted that the F-scores for the simulated datasets are in general
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(a) (b) (c)

Figure 3.9: MiPb response for (a) Sample 2D image from human breast tissue
dataset (b) Sample 2D image from MCF-10A dataset (c) Sample 2D image from
mouse embryo dataset.

(a) (b) (c)

Figure 3.10: MiPb response for (a) Single slice of sample subvolume of 3D image
from human breast tissue dataset (b) Single slice of sample subvolume of 3D image
from MCF-10A dataset (c) Single slice of sample subvolume of 3D image from mouse
embryo dataset.

higher than for the synthetic datasets, which is counter intuitive since the simulated

datasets incorporate the low frequency texture components present in real nuclear

volumes which should ideally hamper the performance of the edge detection algo-

rithm. MiPb F-scores are reasonably robust across variations in SNR and blurring.

Fig. 3.7 shows the contrast stretched MiPb response for a single slice of 3D synthetic
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and simulated images corresponding to Fig. 3.3. Table 3.4 shows the maximum F-

score values observed for actual microscopic datasets. As previously mentioned,

the edge maps against which the performance of the detector responses were mea-

sured were obtained from a semi-automatic graphcut based interactive segmentation

method reported in the following chapter and depends on the visual perception of

the annotator. Hence the F-score values are not as reliable as those obtained from

synthetic and simulated datasets. Fig. 3.11 shows the precision recall plots for all

the edge detectors for synthetic with anisotropic voxel (at SNR 3 and blur 0.7),

simulated (at SNR 3 and blur 0.7) and real microscopic datasets. Fig. 3.10 shows

the contrast stretched MiPb response for a single slice of real 3D microscopic images

corresponding to Fig. 3.5.

Fig 3.12 shows the PR plot for isotropic and anisotropic synthetic volumes at

SNR 3 and blurring 0.7. The maximum F-score value for both the cases was 0.86.

It should be noted that MiPb accuracy and robustness is largely retained for even

anisotropic voxel sizes (with z dimension three times the x-y dimension) implying

that the method can be reliably used for most 3D optical microscopy applications

without significant degradation of its performance.

Table 3.5 presents the maximum F-score values for 3D synthetic (SNR 3 and

blur 0.7), simulated (SNR 3 and blur 0.7) and real images from MCF-10A, human

breast tissue micro-array and mouse embryo samples for full 3D MiPb edge detec-

tion and 2D slice by slice edge detection. As expected the 3D method performs

consistently and significantly better than the slice-by-slice method.
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(a) (b) (c)

(d) (e)

Figure 3.11: PR curves for 3D synthetic, simulated, MCF-10A Acini, Human breast
tissue micro-array and Mouse embryo samples
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Figure 3.12: PR curves for comparing 3D isotropic and anisotropic synthetic vol-
umes. Both have maximum F-score of 0.86

3.6 Discussion and Conclusion

The chapter presented a robust and accurate probabilistic edge detection

method developed for 3D microscopic volumes. The inspiration for the work was one

of the best known 2D edge detection methods developed for natural images. The
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method utilizes brightness, texture and spectral decomposition based edge features

to train a logistic regression based classifier in a supervised learning framework. It

also incorporates modifications for adapting the original 2D method for natural im-

ages to work better in 2D microscopic images first and then the ideas were extended

to 3D.

The supervised learning framework is particularly attractive for edge detection

in microscopic images due to considerable variations in objects of interest and their

brightness and textural properties when imaged under a confocal microscope. Al-

though the method was used only to detect nuclear edges in the reported work, the

performance of the developed edge detector is envisioned to be reliable and accurate

for other objects of interest due to the supervised learning framework used to train

the classifier. In the reported work too, the MiPb edge detector was trained on a

single subvolume of the MCF-10A tissue sample and the resulting logistic regres-

sion coefficients were used for all the reported experiments. Excellent performance

of the edge detector for all the experiments (including the synthetic and simulated

datasets) emphasize the robustness and reliability of the method boosting the con-

fidence that it will perform reasonably well for other target objects of interest.

Performance of all the edge detectors were tested using the PR framework.

However, the PR framework might not be the best possible way to measure the ac-

curacy and robustness of edge detectors for microscopic images. The edge detection

step is only an intermediate step for the development of reliable segmentation meth-

ods for the target images. Hence the ultimate test for the method is to characterize

the impact of the developed method in improving segmentation algorithms. Chapter

81



4 will illustrate one such method based on graphcuts which can take full advantage

of robust and accurate edge detection and convert the pixel level information to the

object level by successfully segmenting the target objects.

The computational load of the method is a limiting factor and future work will

be focused towards mitigating this limitation. All the experiments were conducted

on volumes which were relatively small due to the complexity constraints. How-

ever, the method can be used for computing edge maps for larger volumes by tiling

several overlapping subvolumes and computing the edge maps for each subvolume

separately. Although the current implementation uses a 3D orientation-based paral-

lelism to improve the run time of the algorithm, the computational performance of

the method can be further improved by using more fine grained parallelism. Also, in

line with the 2D algorithm, the 3D algorithm can be ported to a GPGPU platform

which should significantly improve the running time of the algorithm.

As part of future work we also want to apply the method to a wider variety of

target objects and compare the results with more recent edge detection methods in

order to further identify the strengths and weaknesses of the method.
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Table 3.1: Maximum F-score values for 2D synthetic and simulated datasets using precision recall framework for evaluation
SNR 2 3 4

Blur S P C gPb MiPb S P C gPb MiPb S P C gPb MiPb

0.4
Syn 0.43 0.44 0.65 0.88 0.90 0.52 0.54 0.85 0.89 0.92 0.57 0.60 0.90 0.89 0.93
Sim 0.48 0.49 0.72 0.84 0.85 0.55 0.58 0.83 0.87 0.89 0.60 0.63 0.86 0.88 0.89

0.7
Syn 0.40 0.41 0.63 0.87 0.89 0.53 0.56 0.75 0.88 0.93 0.61 0.63 0.85 0.90 0.93
Sim 0.45 0.47 0.67 0.82 0.82 0.56 0.58 0.79 0.86 0.89 0.62 0.64 0.82 0.87 0.90

1.0
Syn 0.37 0.38 0.46 0.86 0.88 0.55 0.57 0.67 0.87 0.91 0.66 0.68 0.80 0.89 0.93
Sim 0.44 0.46 0.56 0.80 0.80 0.56 0.58 0.72 0.84 0.87 0.64 0.65 0.76 0.86 0.89
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Table 3.2: Maximum F-score values for 2D real images from MCF-10A, human
breast tissue micro-array and mouse embryo samples

Sample S P C gPb MiPb

MCF-10A 0.62 0.63 0.65 0.78 0.80
Human Breast Tissue 0.65 0.66 0.75 0.76 0.78

Mouse Embryo 0.62 0.62 0.67 0.73 0.75
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Table 3.3: Maximum F-score values for 3D anisotropic synthetic and simulated datasets using precision recall framework for
evaluation

SNR 2 3 4
Blur S P C gPb MiPb S P C gPb MiPb S P C gPb MiPb

0.4
Syn 0.66 0.67 0.69 0.82 0.84 0.66 0.67 0.75 0.84 0.85 0.67 0.69 0.77 0.90 0.90
Sim 0.75 0.75 0.75 0.88 0.89 0.75 0.75 0.80 0.91 0.93 0.75 0.76 0.84 0.89 0.93

0.7
Syn 0.67 0.68 0.68 0.81 0.83 0.67 0.68 0.71 0.80 0.86 0.69 0.70 0.78 0.86 0.88
Sim 0.75 0.75 0.75 0.83 0.87 0.74 0.75 0.79 0.82 0.89 0.75 0.76 0.82 0.89 0.90

1.0
Syn 0.67 0.67 0.67 0.78 0.80 0.67 0.68 0.70 0.79 0.81 0.70 0.71 0.75 0.82 0.83
Sim 0.75 0.75 0.75 0.83 0.85 0.74 0.75 0.77 0.84 0.86 0.75 0.76 0.79 0.86 0.89
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Table 3.4: Maximum F-score values for 3D real images from MCF-10A, human
breast tissue micro-array and mouse embryo samples

Sample S P C TWS gPb MiPb

MCF-10A 0.79 0.79 0.81 0.85 0.83 0.85
Human Breast Tissue 0.75 0.75 0.76 0.78 0.80 0.81

Mouse Embryo 0.83 0.83 0.80 0.82 0.84 0.85

Table 3.5: Maximum F-score values for 3D synthetic (SNR 3 and blur 0.7), simulated
(SNR 3 and blur 0.7) and real images from MCF-10A, human breast tissue micro-
array and mouse embryo samples by full 3D and slice by slice MiPb calculation

Sample Synthetic Simulated MCF-10A Tissue Micro-array Mouse Embryo

Slice-by-slice 0.82 0.84 0.78 0.74 0.83
Full 3D 0.86 0.88 0.85 0.81 0.85
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Chapter 4: Graphcut Based Method For Nuclear Segmentation in

2D and 3D Optical Microscopy Tissue Images

4.1 Introduction

In this chapter we present a robust and accurate nuclear segmentation algo-

rithm based on graphcuts. The resulting combinatorial optimization algorithm is

mainly targeted towards the segmentation of cell nuclei in 3D tissue samples of

higher order organisms. We also present a 2D version of the algorithm which is

a straight forward simplification of the 3D algorithm and can be used as an inde-

pendent 2D algorithm in its own merit. The aim of the presented 2D algorithm

was to segment as many cell nuclei as possible unlike the 2D segmentation methods

presented in chapter 2 where the main aim was to identify only a subset of well

segmented nuclei. However, the main focus of the chapter is the 3D segmentation

algorithm.

In several biological studies and clinical applications attempting to understand

biological processes such as morphogenesis [98] [99], tumorigenesis [100], disease pro-

gression and diagnosis [11], protein dynamics [101] [102] and drug screening [103],

detection and segmentation of cells, cell nuclei, sub cellular and sub nuclear struc-

tures is the stepping stone for extracting biological information from microscopic

image datasets. The importance of robust and accurate segmentation is paramount
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in a large proportion of such studies and hence decades of research has focused on

developing such methods. Although significant progress has been made towards the

development of robust 2D segmentation algorithms, in 3D it still remains a chal-

lenge and there is a dearth of effective algorithms to reliably segment objects of

interest. In this context it should be noted that, compared to 2D cell culture, the

problem of segmentation is particularly difficult for 3D images of tissue samples due

to tight packing of the cells, low signal to noise ratio and poor resolution in the

depth direction.

Inspired by previous works in open pit mining [104] [105] and medical image

segmentation [106], the proposed method transforms the microscopic volumes to a

geometric volume in the spherical space with respect to a point of reference internal

to a target nuclei and finds the globally optimal surface in that geometric volume

which separates the target cell nuclei from the rest of the volume. The segmentation

problem is posed as one of finding a minimal closure [107] in a directed graph and

is solved efficiently using the maxflow-mincut algorithm [108]. The algorithm has

several desirable properties one of which is gracefully handling the unique problem

of anisotropic voxel dimensions. An interactive version of the algorithm requiring

minimal manual interaction for segmentation initialization and correction has also

been developed for low throughput studies where the accuracy of segmentation is of

utmost importance. As opposed to the work reported in [106], this work develops

the segmentation method for ellipsoidal objects in microscopic volumes such as cell

nuclei, extends the method to handle multiple target objects and also proposes an

interactive version of the algorithm. Experiments comparing our segmentation maps
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to those obtained from a recently reported state-of-the art segmentation algorithm

[109] shows improved robustness and accuracy of the proposed method.

The chapter is organized as follows. Section 4.2 discusses relevant works in the

area of nuclear segmentation. Section 4.3 is going to present a detailed description

of the graphcut based segmentation method. Section 4.4 provides a description

of the experimental datasets and methods followed by the experimental results in

section 4.5. Section 4.6 discusses relevant issues, observations regarding the reported

method, explores the future avenues of improvements and concludes the chapter.

4.2 Related Work

Automatic nuclear segmentation in 2D fluorescence optical microscopy im-

ages has been an area of research for several decades. Some of the most promi-

nent works in this area use methods such as thresholding [110] [111], watershed

based algorithm [112] [113] [19], template matching [114], active contours and lev-

elsets [22] [23] [115] [116] to segment 2D images of volume or surface labeled cell

nuclei in a wide variety of cell types. Although each of the aforementioned methods

work well under certain conditions, there is no single robust and generic algorithm

to handle nuclear segmentation in all kinds of microscopic images. Thresholding-

based methods work well when the nuclei are well separated and all the images

have uniform background illumination. The widely used watershed-based methods

suffer from the short coming of over-segmentation which is a severe drawback and

although several post processing methods have been developed to post process and

merge over segmented watershed outputs, the results are often far from satisfactory.
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Template matching-based methods also work well on images having well separated

nuclei but fail to handle cases where there is close clustering of nuclei. The active

contours and levelsets are often considered state-of-the-art for 2D nuclear segmen-

tation. Computational complexity, careful designing of the energy function to be

optimized and requirement of careful initialization of such algorithms are significant

drawbacks.

Automatic nuclear segmentation in 3D is significantly more challenging com-

pared to its 2D counter part. Several methods and algorithms have been proposed

to perform detection and segmentation for the 3D case using the generalized hough

transform [117] [17],watershed algorithm [111] [118] [17] and active contour and lev-

elset based energy minimizing deformable models [119] [120] [56] [121]. However,

problems similar to those mentioned for the 2D case also plague the 3D segmenta-

tion methods such as the watershed-based methods suffer from over-segmentation

and the deformable models suffer from significant computational complexity and

requirement for careful initialization. Appleton et al [122] reported a 3-D continu-

ous maximal flow based segmentation technique to find globally minimal surfaces.

Some other methods that worth mentioning include those based on generic clas-

sification [123], gradient flow tracking [124], atlas-based methods [125], geometric

filtering and curvature-based partitioning [126], seeded geodesic image segmentation

method [109] and graph regularization [127]. For nuclear segmentation in 2D and

3D several interactive segmentation methods have also been developed for applica-

tions where the quality and accuracy of segmentation is of paramount importance.

Methods reported in [18] [14] use dynamic programming and combinatorial opti-
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mization to perform interactive segmentation. [128] report a combination of random

walk and the geodesic graph-based method for performing interactive segmentation

in microscopic images.

The use of graph-based methods for segmentation in microscopic images is far

more limited compared to that of natural scenes. Graph-based image segmentation

methods are very versatile and often segmentation algorithms are based on the use

of minimum spanning tree [129] [130], shortest paths [131] [132] [18] and graph cuts

[133] [134] [135] [136] [137]. The minimum s-t cut [138] method is most relevant to

the algorithm presented in this chapter. [139] [15] [117] report graph-based methods

developed for nuclear segmentation in microscopic images. The method proposed

in [15] is limited to 2D. [139] uses graphcuts to identify nuclear foreground followed

by convexity and concavity analysis to split clumped nuclei. However, the method

fails to split nuclear clumps which are themselves convex in shape.

4.3 Graph Cut Based Segmentation

The algorithm for segmenting 2D and 3D nuclei in microscopic images is posed

as finding optimal surfaces separating each object from the rest of the volume. For

a single nuclei, a minimum s-t graph cut is used to efficiently solve the problem on

a edge weighted graph derived from the original volume of interest. The method

was then extended to handle the common problem of segmenting multiple nuclei of

interest in a microscopic volume.
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4.3.1 Minimal Closure and Equivalent s-t Cut

The problem of finding an optimal surface enclosing the object of interest

is first reduced to the problem of finding the minimal closure on a directed graph

(digraph)G(V,E), where V = {v1, v2, . . . , vn} is the set of n nodes and E = {(vi, vj)}

is the set of directed arcs where (vi, vj) is the arc from node vi to vj . Also the digraph

is node weighted i.e. each node vi in G has an associated real valued cost wi. A

closure C on graph G is defined as a set of nodes whose successors are also within C.

The minimal closure Cmin is the closure for which the sum of the costs of all nodes

in the closure (
∑

vi∈C
wi) is minimum.

Picard [107] showed that the problem of finding Cmin for a node weighted

digraph G can be solved by finding the minimal cut (min-cut) on a edge weighted

source-sink (s-t) digraph which is derived from G. The minimal closure problem for

digraph G can be represented as

Min g(z) =
n
∑

i=1

−wizi +
n
∑

i=1

n
∑

j=1

κqijzi(1− zj) (4.1)

where zi is an indicator variable which is 1 if vi ∈ C and 0 otherwise, qij is the

ijth entry of the incidence matrix of G i.e. qij = 1 if (vi, vj) ∈ E and 0 otherwise

and κ is a constant which is large enough to ensure that
∑n

i=1

∑n
j=1 qijzi(1− zj) = 0

which in turn ensures that C is a closure in G by imposing the condition zi ≤ zj for

(vi, vj) ∈ E.

Considering another graph G′(V ′, E ′) with vertices V ′ = {v′0, v′1, . . . , v′n, v′n+1},

v′0 and v′n+1 being the source and sink nodes respectively, a cut (C, C̄) where (v′0 ∈
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C, v′n+1 ∈ C̄, C ∪ C̄ = V, C ∩ C̄ = ∅) can be expressed as a vector (1, y1, y2, . . . , yn, 0)

[140], where y0 = 1,yn+1 = 0, yi = 0 or 1 for i = 1, 2, . . . , n, C = {v′i|yi = 1} and

C̄ = {v′i|yi = 0}. The capacity of the cut can be expressed as

c(Y ) =
n+1
∑

j=1

c0,j +
n
∑

i=1

(ci,n+1 − c0,i)yi +
n
∑

i=1

n
∑

j=1

ci,jyi(1− yj) (4.2)

where ci,j is the capacity of arc (v′i, v
′
j) ∈ E ′ and Y = (y1, y2, . . . , yn).

Equations 4.1 and 4.2 are similar in form with the exception of a constant term

∑n+1
j=1 c0,j . Hence the minimal closure problem on G can be solved by performing a

min-cut on a derived equivalent graph G′. Let T+ = {i|wi > 0; i = 1, 2, . . . , n} and

T− = {i|wi < 0; i = 1, 2, . . . , n}. The graph G′ is then constructed as follows,

• Nodes: Retain all existing nodes and add two additional nodes, a source v0

also called s and a sink vn+1 also called t to G

• ∞ Edges: Assign a very high capacity κ (can be set to infinity) to the existing

arcs in graph G i.e. ci,j = κ = ∞.

• s-t Edges: ∀i ∈ T+, add arcs from v0 to vi with capacity c0,i = wi and

∀i ∈ T−, add arcs from vi to vn+1 with capacity ci,n+1 = −wi

Subsequently, performing a min-cut on G′ provides the minimal closure for G.

4.3.2 Single Object Segmentation

The segmentation algorithm is illustrated for a 3D object embedded in a vol-

ume. The 2D case is a straight forward simplification of the same. The segmentation

method assumes the object to be point convex i.e. all the lines connecting boundary
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Figure 4.1: (a) Object O embedded in a 3D volume in Cartesian coordinate system
and corresponding variables r, θ and φ in spherical coordinate system. (b) Surface S
representing point convex object O in the spherical volume Vs (c) Edge connections
of the graph shown for a single vertex v′r,θ,φ corresponding to voxel Ir,θ,φ in (b). The
red and green edges show connections in the θ and φ dimensions respectively

points of the object to atleast one internal point are completely enclosed by the

object, which is a valid assumption for most frequently encountered cell nuclei in

microscopic images.

Let V be a volume where intensity at each voxel is inversely related to the

likelihood (based on a suitable pre-defined notion of edge strength) of being on the

surface of an object O with an internal point P with respect to which O is point con-

vex as shown in Fig. 4.1(a). Defining a {x,y, z} Cartesian coordinate system with

P as the origin, a spherical transform is performed to convert volume V to a volume

VS in {r, θ,φ} space (Fig. 4.1(b)) where r ∈ r = {0, 1, 2, . . . , rmax} is the radial

distance upto a certain distance rmax from the origin, θ ∈ θ = {0, δθ, 2δθ, . . . , 2π}

is the azimuthal angle and φ ∈ φ = {0, δφ, . . . , π} is the polar angle. Conceptually,

the object O is unwrapped with respect to the origin P and the enclosing surface

of the object in Cartesian coordinate system is transformed to a terrain-like surface
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(S) in the spherical domain as illustrated in Figure 4.1(b). Since object O is point

convex with respect to P each column of the spherical volume contains one and only

one voxel belonging to S i.e. for a particular value of θ and φ, the radial distance of

a surface point rS(θ, φ) is unique and the cost of the surface S defined as the sum

of intensities (Ir,θ,φ) of all voxels ∈ S (
∑

S Ir,θ,φ) is the global minimum among all

such terrain-like surfaces.

In order to formulate the problem as a minimal closure problem, a new volume

V ′
S is derived from VS such that

w′
r,θ,φ =



























Ir,θ,φ if r = 0,

Ir,θ,φ − Ir−1,θ,φ if r = 1, 2, . . . , rmax

(4.3)

where Ir,θ,φ are voxel intensities of VS and w′
r,θ,φ are voxel intensities of V

′
S. Due

to such a construction of V ′
S, the cost of S in VS is equal to the sum of intensities of

set of all voxels enclosed by the plane r = 0 and surface S in V ′
S i.e.

∑

S∈VS
Ir,θ,φ =

∑

θ,φ∈V ′

S
w′

0≤r≤rS(θ,φ),θ,φ
. Thus the problem of finding the surface S in volume VS

with minimal cost is modified into that of finding the set of voxels enclosed by the

r = 0 plane and surface S in V ′
S with an equal minimal cost. To find this set of

voxels, an equivalent edge weighted graph G′ is subsequently constructed so that

the minimal closure C∗ corresponds to the same set of voxels enclosed by the r = 0

plane and surface S in V ′
S

The equivalent graph G′ to find the minimal closure of V ′
S is created as follows:

• Nodes: Each voxel v′r,θ,φ in volume V ′
S in spherical domain represent a node
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in the graph G′(V ′, A′). In addition, a source node s and a sink node t are

added to the set of nodes i.e. V ′ = {s, t, v′r,θ,φ}.

• ∞ Edges The aforementioned problem formulation requires that if voxel v′r,θ,φ

belongs to the minimal closure, all voxels v′0≤r′≤r,θ,φ also belongs to the minimal

closure. The following ∞-capacity edges of G′ impose such a condition,

(v′r,θ,φ, v
′
r−1,θ,φ) ∈ A′ where r > 0

The next set of edges control the flexibility of the minimal surface by im-

posing certain geometric constraints which can be application specific. The

∞-capacity edges are defined as,

(v′r,θ,φ, v
′
max(0,r−∆θ),θ−δθ,φ) ∈ A′

(v′r,θ,φ, v
′
max(0,r−∆θ),θ+δθ,φ) ∈ A′

(v′r,θ,φ, v
′
max(0,r−∆φ),θ,φ−δφ) ∈ A′

(v′r,θ,φ, v
′
max(0,r−∆φ),θ,φ+δφ) ∈ A′

where the parameters ∆θ and ∆φ control the maximum radial variation allowed

for a feasible surface in θ and φ directions respectively. In other words, if a

voxel v′r,θ,φ is on the minimal surface, it’s nearest neighbors in θ direction,

v′·,θ−δθ,φ and v′·,θ+δθ,φ, cannot be lower or higher than ∆θ relative to v′r,θ,φ. The

same explanation holds true for the φ direction. All edge connections for a

single node is shown in Fig. 4.1(c).
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• s-t Edges Defining two sets of voxels T+ = {v′r,θ,φ|w′
r,θ,φ > 0} and T− =

{v′r,θ,φ|w′
r,θ,φ < 0}, the s-t edges of G′ are defined as,

(s, v+r,θ,φ) ∈ A′ where v+r,θ,φ ∈ T+ and capacity + w′
r,θ,φ

(v−r,θ,φ, t) ∈ A′ where v−r,θ,φ ∈ T− and capacity − w′
r,θ,φ

• Translation of Base Set The set of nodes corresponding to the plane r = 0 is

termed as the base set and by construction of G′ this set of nodes is contained

by all non empty closures in G′. However, an empty set is also a closure in G′

and in order to avoid the minimum closure to be an empty set, all nodes in the

base set are assigned an arbitrary negative node weight in V ′
S such as −1. This

is called a translation and ensures that the minimal closure is a non-empty set

of nodes.

• Additional Constraints For maintaining continuity of the surface of object

O in the Cartesian coordinates, the vertices on edge planes θ = 0 and θ = 2π

are connected using the same connectivity constraints in θ so that on the

optimal surface, the edge nodes on θ = 0 plane is within ∆θ distance from the

nodes on θ = 2π. Also, for φ = 0 and φ = π planes, the value of r should be

a constant corresponding to single points on the north and south poles of the

object O. Hence for nodes on those two edge planes, ∆θ = 0 which in turn

ensures that r is a constant on those points.
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The min-cut of G′ corresponds to the set of voxels enclosed by the r = 0 plane

and surface S in V ′
S and the upper envelope (in terms of radial distance r) of this

set corresponds to the minimal surface S of object O.

4.3.3 Automatic Multi-Object Segmentation

The method for segmenting single objects, as outlined above, was subsequently

extended to handle multi-object segmentation in 2D and 3D microscopic images. For

both 2D and 3D cases, the most important step was to identify a point internal to

each individual object, with respect to which the spherical transform was performed

in order to create the edge weighted graph G′ on which the min-cut problem was

solved. The procedure was repeated for each individual object, one at a time, in

order to find the best surface separating that object from the rest of the volume

without overlapping with segmentations of all previously segmented objects.

4.3.3.1 Segmentation in 2D

Identification of object internal point can be tackled in a number of ways

depending on the application specific sample staining and quality of images available.

For example, in a number of applications, the cell nucleus and the cell membrane

are tagged with fluorescent dyes and the goal is to segment individual cells using the

membrane stain. Although the cells can be tightly packed, the nuclei are often well

separated so that individual nuclear bodies can be identified by simple operations

such as thresholding and they can then act as cellular internal points which can be

used to initialize the graph cut segmentation.

In our work we developed a 2D object model-based graph search technique to
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(a) (b) (d) (e)(c)

(f) (g)

(h)

(i) (j) (k)

Figure 4.2: (a) Single slice of a subvolume of human breast tissue sample showing
DAPI stained cell nuclei (b) Contrast stretched probabilistic edge map (c) Contours
extracted using oriented watershed and ultra metric contour map. Gray scale val-
ues of the countours are proportional to their respective probabilistic edge strength
(d) Blue contours and red dots corresponding to the edges and vertices of the 2D
dynamic programming based segmentation graph (e) Sample graph around coun-
tour/edge aij having vertices vi and vj and red and green points at a distance of
average sample radius on either side of the edge (f) Clockwise directed graph con-
tructed using green point (g) Anti-clockwise directed graph contructed using red
point (h) Red arrows showing gradient direction across edges a1, a2 and a3. θ1 and
θ2 show angle between gradient directions of parent edge a1 to prospective child
child edges a2 and a3 (i) Angular deviation µ between parent edge a1 and child edge
a2 (j) 2D initial rough segmentation shown as a white overlay on original image (k)
Final 2D segmentation using the graphcut based method initialized using centroids
of rough segmented objects.

estimate object internal points which can handle more sophisticated nuclear segmen-

tation tasks. Figure 4.2(a) shows a small region of interest of a human breast tissue

sample visualizing closely packed cell nuclei, which are to be segmented. Simple

thresholding and morphological operations were unable to reliably identify internal

nuclear points. In this case, the object edges were first quantified using the 2D

probabilistic edge detector illustrated in chapter 3. Since the edge detector was
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supervised, an user had to delineate objects of interest in a small subset of training

images. Two levels of information were extracted from the training data, (i) the pixel

level information used for training the edge detector and (ii) the object level infor-

mation in the form of features(capturing shape, morphology, texture etc) which were

used to train a logistic regression(LR) based object model. Using the object edges

detected in the previous step (Fig. 4.2(b)), the probabilistic edge strength weighted

dominant contours of the image were then extracted using the oriented watershed

transform [68] followed by the generation of the ultra metric contour map [68] as

shown in Fig. 4.2(c). A graph G = (V,A) was created from the weighted contours

where V = {set of all contour junctions} and A = {set of all edge weighted contours}

(shown as red dots and blue contours) (Fig.4.2(d)). For each edge aij(= (vi, vj) ∈ A)

in the graph (Fig. 4.2(e)), assuming that two objects of interest might be located

on either side of the edge, two directed acyclic graphs (DAGs) (Fig. 4.2(f) and Fig.

4.2(g) respectively) were created by assigning the rest of the contours clockwise

or anti-clockwise directionality with respect to two points situated at object mean

radial distance (= rO extracted from training data) on either side of the original

contour aij . Hence, a path originating from vi and ending at vj created a closed loop

in clockwise or anti-clockwise directions respectively. Dynamic programming(DP)

was used to find the optimal clockwise and counter clockwise loops on either side

of aij. For performing DP, three kinds of equally weighted costs were used, (i) edge

transition costs penalizing large angular deviation (µ in Fig. 4.2(i)) from parent

(a1) to child edge(a2), (ii) probabilistic edge strength encouraging inclusion of edges

having higher edge probability and (iii) gradient direction costs penalizing transi-
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tions where angular deviation of gradient direction (θ1 and θ2 in Fig. 4.2(h)) across

parent and child edges were high. The objects created by those loops were subse-

quently scored by the LR based object model to quantify the goodness of fit with

respect to the target objects. This procedure was repeated for all edges in A and

for each pixel in the 2D image the highest LR score was retained. Thresholding

the model suggested LR scores at a very low level (1−6 in our case) resulted in a

rough segmentation of the original image (Fig. 4.2(j)). The centroids of the objects

found in the previous segmentation were subsequently used to initialize the graph

cut based segmentation for a more accurate result (Fig. 4.2(k)).

4.3.3.2 Automatic Segmentation in 3D

The multi-object 3D segmentation was again initialized by a set of object

internal points identified with the help of the 2D segmentation. At first, the volume

was segmented slice by slice using the 2D segmentation method outlined in the

previous section and LR based 2D object model scores si and centroids ci = (cxcy cz)

where i ∈ {set of 2D segmented objects O2D} were retained for all segmented objects.

Using these scores, we calculate one more score for each 2D object indicating the

likelihood of the 2D object to be close to the center of a 3D object in z direction.

Calculation of the score assumed that for a particular 3D object, the corresponding

2D slice objects around the central region of the 3D object in z direction are well

segmented since they conformed well with the 2D object model (usually in 2D

imaging of a 3D object, the central slices in z direction are taken to be a faithful

representation of the object in 2D) and the centroids of all 2D objects belonging to
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Figure 4.3: Graph modifications for interactive segmentation

a particular 3D object were close to each other within the 3D volume. The score τi

for each segmented object in the slice by slice segmentation was defined in terms of

a 3D Gaussian kernel as,

τi =
∑

j∈O2D

sj e
−dT

ij
Σdij with dij = (ci − cj) Σ =








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(4.4)

where σx, σy and σz were user specified parameters depending on the x, y and

z extent of a typical object in the 3D volume. A greedy approach was utilized to

perform the actual 3D segmentation by sorting τi in descending order for all objects

in O2D and initializing the first 3D segmentation with the centroid of the highest

scored object. Once the first object was segmented, all 2D objects having centroids

within the 3D segmentation were discarded and the second 3D segmentation was

initialized by the centroid of the highest scored object among all remaining objects.

This was continued till all 2D objects were used up.
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4.3.4 Interactive Segmentation

The graph cut segmentation method was also adapted to perform interactive

segmentation of 2D and 3D objects. As mentioned earlier, identification of an inter-

nal object point was crucial for a reliable multi-object segmentation. For interactive

segmentation, the user provided this internal point by using a single mouse click.

Once the initial segmentation was completed, an user could add additional edit

points in order to correct the initial segmentation and could keep on doing the edits

till he/she was satisfied with the segmentation. Once done with one object, they

could start the same procedure with other objects in the microscopic image. In

this case too, once an object was segmented, all nodes of G′ contained within the

object were assigned a large negative value resulting in non-overlapping segmenta-

tion of the objects. When an edit point was added to an initial segmentation, the

corresponding spherical domain node v′re,θe,φe
in G′ was first calculated. The edge

weighted graph G′ was subsequently modified by adding two sets of additional edges

Ar− and Ar+ where,

Ar− = (s, v′r≤re,θe,φe
) with cost λ = ∞

Ar+ = (v′r>re,θe,φe
, t) with cost λ = ∞

as shown in Fig. 4.3. The corresponding graph cut solution forced all nodes

v′r≤re,θe,φe
to be included in the minimal closure of G′ and all nodes v′r>re,θe,φe

were

excluded from the minimal closure so that the minimal surface S included the node
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v′re,θe,Φe
. The final segmentation of an object was computed using the modified

G′ which included all the additional edges resulting from all additional edit points

incorporated by the user.

For cases in which multiple edit points are required for a successful segmenta-

tion, there remains a potential for addition of edit points which violate the convexity

and smoothness constraints of the graph. In those case the solution is the best possi-

ble segmentation of the nucleus with inclusion of the maximal number of edit points

without violating the convexity and smoothness constraints of the graph. Although

the convexity constraint has to be maintained in all cases, the permissible smooth-

ness of the graph can be easily adapted to the application requirements by altering

the ∆θ and ∆φ parameters of the graph.

4.4 Experimental Datasets and Methods

Experiments were performed on two kinds of datasets. The simulated datasets

created using real microscopic objects and the real microscopic volumes illustrated in

chapter 3 were used for quantifying the performance of the segmentation algorithm in

both 2D and 3D. For the simulated datasets the ground truth was available and the

performance quantification was accurate. However, for the the actual microscopic

volumes, the ground truth was generated by humans using the interactive graph

cut based segmentation interface and hence the performance quantification is not as

accurate as the simulated volumes since the ground truth segmentation is subjective

and depends on the perception of the human annotator.

104



4.4.1 Segmentation Evaluation Metrics

Three kinds of metrics were used for quantifying the accuracy of the segmen-

tation method. The metrics were as follows:

• Rand Index (RI): Rand index [141] is a method for computing similarity

between two clusterings of a set of points S = {s1, s2, · · · , sn} with possibly

different number of classes. The index is computed by looking at pairwise

label relationship of all pairs of points in the original set. If S1 and S2 are

two valid labelings of the set S with corresponding labels {l1i } and {l2i } with

i = 1, 2, · · · , n, the Rand Index measuring similarity between the two labelings

is defined as

RI(S1, S2) =
1

(

n

2

)

∑

i,j
i 6=j

[I(l1i = l1j ∩ l2i = l2j ) + I(l1i 6= l1j ∩ l2i 6= l2j )] (4.5)

where I is the indicator function. Effectively, it is the ratio of the number of

point pairs having same labeling relationship and the total number of unique

point pairs. The Rand Index can be computed in an efficient way using the

following expression if the number of labels is much smaller than the number

of points

RI(S1, S2) = 1−

[

1
2
(
∑

p n
2
p• +

∑

q n
2
•q)−

∑

p,q n
2
pq

]

N(N − 1)/2
(4.6)

where np• is the number of points having label p in S1, n•q is the number of

points having label q in S2 and npq is the number of points having label p in
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(a) (b) (c)

Figure 4.4: (a) Sample 2D nucleus with polar coordinates superimposed. O is
the object inner seed point. (b) Polar transformed image (c) Radially outward
directional gradient edge measurement in 2D. The red arrows show the negative
edge measure produced by the target object and yellow arrows show the positive
edge measure produced by neighboring objects which discourages the inclusion of
those regions in the optimal cut.

S1 and q in S2 respectively.

The Rand Index was used to find the similarity between the ground truth

segmentation and the test segmentation for both 2D and 3D cases. The value

of the index varies from 0 to 1 with 0 signifying no correspondence between

S1 and S2 and 1 signifying perfect correspondence between the two labelings.

• Average Overlap Ratio (OR): The overlap ratio measured the overlap

between a segmented region in the test segmentation and the best possible

corresponding region in the ground truth segmentation based on the maximum

overlap. For segmented objects O1 in the test segmentation and O2 in the

ground truth segmentation, the overlap ratio was defined as

OR(O1, O2) =
2A(O1 ∩ O2)

A(O1) +A(O2)
(4.7)

where A(O) is the area or volume of a region O and ∩ is the intersection of the

two regions O1 and O2. The metric was averaged over all the test segmentation
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Table 4.1: Rand Index(RI), mean Overlap Ration(OR) and mean/standard devia-
tion of Boundary Deviation (BD) (in terms of pixels) metrics comparing graphcut
(GC) based segmentation and MINS segmentation maps with ground truth object
boundaries of 2D simulated datasets.

SNR 2 3 4
Blur RI OR BD RI OR BD RI OR BD

0.4
GC-Gradient 0.95 0.95 1.4/0.3 0.96 0.95 1.3/0.2 0.96 0.95 1.2/0.07

MINS 0.89 0.87 1.7/0.8 0.92 0.92 1.4/0.6 0.95 0.94 1.3/0.6

0.7
GC-Gradient 0.95 0.92 1.6/0.7 0.96 0.96 1.3/0.2 0.97 0.95 1.3/0.1

MINS 0.9 0.9 1.7/0.8 0.92 0.92 1.5/0.5 0.95 0.93 1.4/0.6

1.0
GC-Gradient 0.94 0.87 2.8/3.0 0.96 0.95 1.3/0.1 0.95 0.95 1.4/0.2

MINS 0.9 0.87 1.7/0.7 0.92 0.84 3.8/5 0.93 0.9 1.5/0.6

objects to obtain a consolidated measure of overlap accuracy.

• Mean Boundary Deviation (BD): The mean boundary deviation has been

defined in chapter 3 for the 2D case. We extended it for the 3D case here.

It measures the average deviation of each object boundary pixel/voxel of the

test segmentation from the closest boundary point of the corresponding ob-

ject (based on maximum overlap) on the ground truth segmentation in terms

of pixels/voxels calculated using an Euclidean distance transform which as-

signed progressively increasing distances to pixels/voxels as one moved away

from the groundtruth boundary. We report the mean value for all boundary

pixels/voxels and the corresponding standard deviations.

4.4.2 Edge Measurement Methods

For all 2D experiments using the graphcut (GC) segmentation method, a ra-

dially outward normalized gradient measure with respect to the inner seed point

of an object was used as the edge measure. This measure encodes the directional

slope information of the edges which increase the robustness of the segmentation

by preventing the boundaries from jumping on boundaries of adjacent nuclei as il-
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lustrated in Fig. 4.4. Briefly, the directional gradient calculated with respect to an

inner seed point for an object is negative for the object edges itself (shown by red

arrows in Fig. 4.4(c)) and positive for edges belonging to adjacent objects (shown

by yellow arrows in Fig. 4.4(c)). Since the GC method finds a min cut on the graph

derived from the directional gradient image, the cut is discouraged to include the

positive gradient regions which discourages the segmentation boundary to jump on

to neighboring objects.

For the 3D GC based method, two kinds of edge measurements were used

for the simulated datasets. The first one was based on MiPb, the 3D probabilistic

edge measure presented in the previous chapter. The other edge measure was a

directional gradient (termed as Gradient in tables 4.1 and 4.3) calculated radially

outwards from the inner seed point of an object as illustrated in 2D. Experiments

were performed to evaluate whether the MiPb based robust and accurate edge de-

tection method improved the segmentation accuracy. In practice, instead of simple

MiPb values, a linear combination of MiPb and normalized directional gradient

information was used as the edge measure to take advantage of the directional in-

formation encoded in the gradient which is not available from MiPb measurements.

A linear combination of the two edge measures was advantageous since it combined

the robust edge measurements from MiPb and the directional information encoded

in the gradient and discouraged cuts to jump onto neighboring objects. However,

due to complexity constraints, MiPb was not calculated for real microscopic 3D

volumes and all experiments with GC segmentation were conducted with the radial

directional gradient information as the edge measure for those datasets.
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4.4.3 Comparison With Other Segmentation Methods

Segmentation maps obtained from the reported 2D and 3D methods were

compared to that obtained from a recently reported seeded geodesic image segmen-

tation [109] based 2D and 3D segmentation tool (modular interactive nuclear seg-

mentation - MINS) using the three aforementioned metrics. It was also shown [109]

that the segmentation maps obtained using their software out performed in terms

of accuracy those obtained from other segmentation methods such as ilastik [142],

FARSIGHT [143], and CellSegmentation3D [124]. For both MINS and GC method,

the only parameter input was an average nuclear diameter.

4.4.4 Implementation

The proposed algorithms were implemented in Matlab 2010b (The Mathworks

Inc., Natick, MA) along with the DipImage Toolbox [38], Matlab Boost Graph

Library [144] and pre-existing implementations for mincut-maxflow algorithm [145]

and 2D probabilistic edge detection with oriented watershed [68].

4.5 Experimental Results

This section provides quantitative results showcasing the performance of the

2D and 3D segmentation methods.

4.5.1 Results of 2D Automatic Segmentation

Experiments using 2D simulated datasets were performed to quantify the qual-

ity of segmentation maps obtained using the graphcut (GC) based segmentation and

MINS method to the groundtruth object boundaries. For the simulated datasets the
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4.5: Segmentation using graphcut based method of 2D simulated images with
(a) SNR 2 Blur 0.4 (b) SNR 3 Blur 0.4 (c) SNR 3 Blur 0.7 (d) SNR 3 Blur 1.0 (e)
SNR 4 Blur 0.7. Segmentation using MINS method of 2D simulated images with
(f) SNR 2 Blur 0.4 (g) SNR 3 Blur 0.4 (h) SNR 3 Blur 0.7 (i) SNR 3 Blur 1.0 (j)
SNR 4 Blur 0.7.

Table 4.2: Rand Index(RI), mean Overlap Ration(OR) and mean/standard devia-
tion of Boundary Deviation (BD) (in terms of pixels) metrics comparing graphcut
(GC) based segmentation and MINS segmentation maps with manually annotated
object boundaries of 2D actual microscopic datasets.

Dataset
RI OR BD

GC MINS GC MINS GC MINS

MCF-10A 0.96 0.9 0.91 0.81 1.9/2.0 3.2/3.7
Human Breast Tissue 0.92 0.84 0.84 0.73 3.1/3.4 4.0/3.5

Mouse Embryo 0.94 0.86 0.82 0.68 2.3/3.3 3.4/4.2

true object boundaries were available and hence the performance quantification is

accurate. Table 4.1 provides the three metrics measured for 2D simulated datasets.

In almost all cases, GC method outperforms the MINS meathod in terms of all the

three metrics. It should also be noted that the GC method is particularly robust

across various values of SNR and blur. Also in most cases the standard deviation of

pixel deviation is lower compared to the MINS method. This metric is particularly

important for applications where the boundary accuracy of object delineation is of

110



(a) (b) (c)

(d) (e) (f)

Figure 4.6: Segmentation using graphcut based method of 2D real images from
(a) Human breast tissue (b) MCF-10A (c) Mouse embryo datasets respectively.
Segmentation using MINS method of 2D real images from (d) Human breast tissue
(e) MCF-10A (f) Mouse embryo datasets respectively.

paramount importance.

Fig. 4.5 illustrates a few sample segmentations of the simlulated images across

various values of SNR and blur. Visual inspection shows that the quality of seg-

mentation for GC method is better than the MINS method as also shown by the

quantitative metrics.

Results for experiments involving real microscopic images are shown in Table

4.2. The segmentation maps obtained by the GC and MINS method were compared
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Table 4.3: Rand Index(RI), mean Overlap Ration(OR) and mean/standard devia-
tion of Boundary Deviation (BD) (in terms of voxels) metrics comparing graphcut
(GC) based segmentation and MINS segmentation maps with ground truth object
boundaries of 3D simulated datasets.

SNR 2 3 4
Blur RI OR BD RI OR BD RI OR BD

0.4
GC-MiPb 0.93 0.89 1.0/0.04 0.94 0.91 1.1/0.04 0.94 0.9 1.0/0.03

GC-Gradient 0.92 0.86 1.1/0.1 0.93 0.89 1.1/0.2 0.94 0.9 1.1/0.02
MINS 0.82 0.76 1.5/0.3 0.88 0.83 1.3/0.19 0.91 0.85 1.2/0.10

0.7
GC-MiPb 0.90 0.83 1.3/0.2 0.9 0.83 1.2/0.2 0.9 0.85 1.2/0.2

GC-Gradient 0.88 0.80 1.40/0.1 0.89 0.83 1.2/0.2 0.9 0.85 1.28/0.1
MINS 0.80 0.74 1.64/0.3 0.86 0.79 1.4/0.2 0.89 0.82 1.3/0.3

1.0
GC-MiPb 0.88 0.83 1.4/0.3 0.87 0.81 1.2/0.1 0.88 0.80 1.3/0.15

GC-Gradient 0.83 0.78 1.5/0.1 0.84 0.80 1.2/0.1 0.87 0.79 1.2/0.1
MINS 0.78 0.70 1.73/0.21 0.83 0.75 1.5/0.3 0.84 0.76 1.5/0.2

to that obtained by interactive segmentation of the images by a human annotator.

In this case too, GC outperforms the MINS method in terms of all the metrics in

almost all cases. In general the mean boundary deviation and standard deviations

are higher for both GC and MINS compared to the simulated datasets. However, for

the GC method the boundaries are more accurate compared to the MINS method.

Fig. 4.6 illustrates a few sample segmentations of the real microscopic images for

a human breast tissue , MCF-10A and a mouse embryo sample. Visual inspection

shows that the quality of segmentation for GC method is better than the MINS

method as also demonstrated by the quantitative metrics.

4.5.2 Results of 3D Automatic Segmentation

The results of segmentation performance evaluation for 3D simulated datasets

are shown in Table 4.3 for various SNR and blur values. As mentioned previously,

the two kinds of edge measures were used for the GC-based method. The GC

based method using both the edge measurements outperformed the MINS based

segmentation method in almost all cases. A comparison of the metrics for GC-
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.7: (a,e) Single XY and YZ slices of original 3D simulated image at SNR 3
and blurring of 0.7 (b,f) Corresponding groundtruth available from synthetic object
boundaries (c,g) Graphcut segmentation (d,h) MINS segmentation.

Table 4.4: Rand Index(RI), mean Overlap Ration(OR) and mean/standard devia-
tion of Boundary Deviation (BD) (in terms of voxels) metrics comparing graphcut
(GC) based segmentation and MINS segmentation maps with manually annotated
object boundaries of 3D actual microscopic datasets.

Dataset
RI OR BD

GC-Gradient MINS GC-Gradient MINS GC-Gradient MINS

MCF-10A 0.92 0.89 0.76 0.7 2.1/1.2 3.2/2.6
Human Breast Tissue 0.89 0.85 0.76 0.65 2.5/2.9 3.6/3.8

Mouse Embryo 0.87 0.85 0.6 0.6 2.3/1.6 2.8/2.5

MiPb and GC-Gradient shows that in most cases the MiPb-based edge measure

did improve the performance of the segmentation algorithm marginally compared

to the radial gradient measure. However, for none of the cases the improvement was

drastic. Fig. 4.7 shows a single slice of the 3D segmentation boundaries overlayed

on the simulated data for various SNR and blur values.

Table 4.4 shows the performance metrics for real microscopic datasets from

human breast tissue, MCF-10A and mouse embryo samples. In this case only the

GC-Gradient method was used for experimentation due to complexity constraints of

MiPb computation. However, the GC-Gradient method itself performed better than
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(a) (b) (c)

(d) (e) (f)

Figure 4.8: Segmentation using graphcut based method of 3D real images from (a)
Human breast tissue (b) MCF-10A (c) Mouse embryo datasets respectively. Seg-
mentation using MINS method of 3D real images from (a) Human breast tissue (b)
MCF-10A (c) Mouse embryo datasets respectively. Only one slice of the segmenta-
tions are shown.

the MINS segmentation method in almost all the cases in terms of all the metrics.

Fig. 4.8 shows a single slice of the 3D segmentation boundaries overlayed on real

microscopic data from various datasets.

4.6 Discussion and Conclusions

The current chapter presents a graphcut-based nuclear segmentation algo-

rithm for both 2D and 3D microscopic datasets. Given a measure of the object
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edge strengths, the method finds an optimal path (in 2D) or surface (in 3D) which

separates an object from rest of the volume. The 2D and 3D segmentation al-

gorithms presented in this chapter showed improved performance compared to a

recently reported state-of-the art segmentation tool for similar datasets. However,

the algorithm did fail to segment several nuclei in test volumes due to inaccurate

seed detection and lack of edge response between two juxtaposed nuclei especially

in the z-direction in which the imaging resolution is significantly poor compared to

the x and y dimensions. Inaccurate seed point detection contributed to a number

failures of the segmentation algorithm. A more robust and accurate seed detection

method will improve the segmentation performance. With more confidence on the

detected seeds, additional constrains can be incorporated in the graph to success-

fully avoid cases such as inclusion of multiple seeds within a single object. The

second source of segmentation error was poor edge response especially with closely

packed nuclei. The improvement due to the use of MiPb based edge measure over

using a radial directional derivative was marginal. Due to computational constrains

MiPb was calculated in 64 3D orientations. It may be the case that with increase in

the number of orientations of MiPb calculation and improved training would result

in better edge response which in turn should improve segmentation performance.

Also, possibly the robustness of the optimal segmentation method renders the use

of a sophisticated edge measure superfluous.

The segmentation method presented is limited to point convex objects. How-

ever, for nuclear segmentation this constraint introduced due to the problem formu-

lation using the spherical transform is advantageous since it inherently incorporates
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the ellipsoidal structure of cell nuclei observed in most cell types. However, this

constraint can be potentially removed by using multiple seed points within a non

point convex object and developing a mapping of the space to convert the object to

a point convex one. Future studies will look into development of such methods.

A 3D interactive segmentation method using a combination of dynamic pro-

gramming and combinatorial optimization was presented in [14]. The reported

method overcomes quite a few constraints imposed by the dynamic programming-

based method. Firstly, for interactive segmentation the previous method needed

manual identification of two points, one on the boundary of the object and an inter-

nal seed point. The graphcut-based method reduces such manual interaction to a

single internal seed point identification. Also the solution derived by [14] is subop-

timal. On the other hand, for the method reported in this chapter, the solution is

globally optimal in terms of the edge measure for the object of interest. It should be

noted that both the methods suffer from sampling artifacts when converting the im-

age volume from Cartesian to spherical domain especially close to the poles. Also to

reduce the computational complexity of the algorithm, the authors of [14] searched

for a surface in the spherical domain where the neighboring voxels are within the

26-connected neighborhood of each other. The graphcut-based method relaxes this

constraint and allows the surface to be more flexible due to a careful interconnection

of the ∞-weight edges of the graph via the parameters ∆θ and ∆φ which control

the extent of flexibility. This in fact also helps in better handling of the anisotropic

voxel dimensions inherent in optical microscopy datasets. In this formulation the φ

dimension in the spherical domain roughly corresponds to the z or depth direction
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in Cartesian coordinate system. Hence providing a larger value of ∆φ would give

more flexibility to the spherical domain surface in φ dimension which in turn would

better accommodate for the increased voxel dimension in the z direction.

In future, further experimentation would be done to quantify the strengths and

weaknesses of the proposed method in a more comprehensive manner. Simulations

will surely play a significant role in such experiments since for real microscopy

datasets the true ground truth is not available. Future work will also concentrate

on development of pattern classification method to remove outliers and identify

’well-segmented’ nuclei in similar line to the 2D study presented in chapter 2. The

development of such quality-based nuclear screening or ranking method will further

boost the usable final segmented objects obtained using the segmentation method.

Also, since the current segmentation method runs one nucleus at a time, the same

process can be parallelized to perform segmentation for multiple nuclei at a time.

This can be achieved by first using a graph coloring algorithm to color individual

seeds/nuclei and running the segmentation for nuclei having the same color at a

time since nuclei of same color would not be neighbors in the colored graph.
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Chapter 5: MiPipeline (Microscopy Pipeline): A User Friendly Soft-

ware Ecosystem for Microscopy Image Analysis and In-
formatics

5.1 Introduction

In this chapter we present MiPipeline, a comprehensive compute and data

exploration environment for large microscopic image datasets. We have ported the

cancer detection technique presented in chapter 2 to the MiPipeline environment to

analyze a human breast tissue micro-array dataset consisting of 1700 sample images

and present a case study on the same. Other case studies showcase the importance

of the proposed compute environment by importing essential microscopic image

analysis tools such as BioFormats and ImageJ.

The past few years have witnessed unprecedented improvements in optical

microscopes particularly in terms of spatial resolution [146] and the automated gen-

eration of highcontent inevitably led to an explosion in the quantity of acquired

data (MBytes to GBytes to TBytes). Concomitantly, there is an increasing need

for rigorous quantification of the complex biological interactions often at hierarchi-

cal scales (tissues, cells, subcellular/nuclear, and molecular) that are captured in

microscopic images [147] [1] [148] [149]. Thus, analysis and visualization of large,

information rich microscopic bio-image datasets is becoming increasingly important

and challenging. Since, manual processing and interpretation of such datasets is
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impractical and subjective, automatic analysis is essential. However, the variations

in the implementations of image processing algorithms and the adaptation of anal-

ysis procedures due to differences in samples and/or acquisition platforms lead to

results that are poorly reproducible. This brings forth with it an urgency for data

and process provenance.

To address the analysis needs of large bio-image datasets, a comprehensive

computational environment should ideally provide:

• Access to algorithms and libraries from multiple disciplines (image processing,

computer vision, machine learning, and biostatistics [10] [11] [113])

• Data and process provenance for accurate tracking of data and image process-

ing and analysis procedures

• A collaborative workflow management so that multiple participants can seam-

lessly contribute to data analysis and development of analysis tools

• An environment for visual programming and workflow management requiring

minimal programming knowledge to work with

• Integration with high performance computing (HPC) clusters, and

• Information visualization and analytics.

The goal of this study was to provide a comprehensive computing environ-

ment for analysis of biological samples imaged with optical microscopy. The en-

vironment, MiPipeline is based on the LONI Pipeline [150] for image process-

ing and analysis coupled with a new web browser based visual analytics. LONI
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Pipeline [150] (http://www.loni.usc.edu/Software/Pipeline) is a computational tool

originally built for processing neuroimaging data. It has two components: A dis-

tributed processing server (LONI-DPS), which is deployed on a central machine and

controls high performance computational resources via a cluster management soft-

ware. The second component, the Pipeline client, available for popular operating

systems (OS), enables a user to connect to the LONI-DPS. The client provides a

rich visual programming environment where individual data processing steps, rep-

resented as modules, can be interconnected to create complex analysis workflows.

The reported MiPipeline environment provides:

1. A collaborative environment with independence from specific application pro-

gramming interface or API (e.g., Java or Python)

2. End-user friendly visual workflows

3. Tight integration with existing HPC resources

4. Data provenance and reproducibility through provision of an XML [151] back-

bone that tracks image data and its progress through processing and analysis

algorithms

5. Rapid transition from prototyping to production

6. Availability of Bioformats [152] for importing images in formats commonly

used in biomicroscopy and ImageJ/Fiji for image processing and analysis

7. Preexisting pool of multidisciplinary algorithms included in LONI Pipeline

that can be used in creating visual workflows
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8. Seamless information exploration and analytics via a web interface

The subsequent sections of this chapter are organized as follows: The next

section discusses some related work. The following section describes the MiPipeline

environment infrastructure. The next section provides a simple, worked example

of its utilization for segmenting cell nuclei from images. Subsequent sections show-

case MiPipeline for two case studies: super-resolution localization of single, photo-

activated fluorescence molecules, and breast cancer detection by measuring the posi-

tion of specific genes in the cell nuclei in patient biopsy tissue sections. The chapter

concludes with discussion of future extensions of MiPipeline.

5.2 Related Work

Several promising data processing platforms for bio-image data have emerged

in the past few years that each address a subset of aforementioned needs. The

principal platforms include: OME/OMERO [153] [154], Farsight Toolkit [143], Cell

Profiler [155] and ICY [156]. OME/OMERO provides data provenance, collabora-

tive image database capabilities along with server side script execution from the local

client, and it supports grid computing through the use of the IceGrid [157] frame-

work. The Farsight Toolkit provides multiple image processing modules that can be

toolchained using a scripting language, but it does not currently provide tools for

managing visual workflows. Cell Profiler is similar in that it provides a wide array of

image processing and machine learning algorithms, including data provenance and

workflow sharing capabilities. It, however, has minimal HPC integration capabilities

and does not provide an environment for visual workflow creation. ICY, in contrast,
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Figure 5.1: MiPipeline infrastructure showing various components of the MiPipeline
environment

is an environment for visual workflow creation, provides easy integration with Im-

ageJ [158], Micromanager [159] and Java/Eclipse based application programming

interface (API) for creating custom plugins. However, ICY lacks support for data

provenance and since ICY does not follow a client server model, it lacks capabilities

for cluster computation.

From a workflow management standpoint, several additional opensource and

commercial platforms called workflow management systems (WMS) exist, e.g., KN-

IME [160], TAVERNA [161], KEPLER [162], TRIANA [163], LONIPipeline envi-

ronment [150], PSOM [164], Galaxy [165] [166] [167] and Pipeline Pilot (Accelrys,
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Inc., San Diego, CA, USA). These platforms provide access to algorithms from

widearray of disciplines and can be executed on existing HPCs. Most of them also

provide visual data processing and reporting. TAVERNA, KEPLER and TRIANA

are versatile general purpose open source WMS which supports desired facilities

such as grid computing, visual workflow management, workflow sharing, web based

interaction and process provenance. However, support for integration of system ex-

ecutables and bio-image informatics is limited. Pipeline Pilot on the other hand is

a commercial product that also supports a comprehensive set of desired facilities.

Among these Galaxy, PSOM and KNIME are most similar to the work that

we report here. Galaxy is a web based WMS for a wide variety of bioinformatics ap-

plications which supports grid computing and visual programming. PSOM provides

script based pipeline creation and management tools, parallel execution capabilities

and data provenance. KNIME on the other hand provides a visual programming

interface for workflow creation and management, data provenance, a JAVA based

API for custom modules and provision for integration of popular scripting languages

(R, Python and Matlab). However, it has minimal control when incorporating sys-

tem executables into workflows. Furthermore, KNIMEs server side products (e.g.,

centralized workflow management and cluster compute engine) are part of their

commercial offering.

5.3 MiPipeline Environment

Figure 5.1 illustrates the four components of the MiPipeline environment along

with their interactions, namely, USER INTERACTION, DATA PROCESSING,
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DATA STORAGE and INFORMATION VISUALIZATION.

The first component, USER INTERACTION includes organizing and trans-

ferring images of biological samples and associated data for processing, software

development activities if needed for custom applications, setting up the process-

ing pipeline and manual data mining activities with the interactive information

visualization component: INFORMATION VISUALIZATION once the analysis is

completed.

The DATA PROCESSING component is based on LONI-DPS and provides a

user friendly interface (via LONI Pipeline Client) to high performance computing

resources. Once the user sets up their processing pipeline, this component gets the

input data either directly from the user (’STAGING’,Fig. 5.1) or from a central file

server (DATA STORAGE). Once the data processing is completed, the results are

streamed back to the user (’STAGING’) or saved on the central storage.

The third component is DATA STORAGE, which is a central data server

accessible from the user local resources and all compute nodes of the DATA PRO-

CESSING component. A user can directly upload (’DIRECT UPLOAD’ in Fig.

5.1) their raw data onto the DATA STORAGE which is subsequently processed

by the DATA PROCESSING component. An user can also create an XML infor-

mation backbone post data processing, which is subsequently used for information

visualization and data provenance.

The INFORMATION VISUALIZATION component of the MiPipeline envi-

ronment is web technology based and uses the XML backbone to visualize metadata

and results for exploration and mining purposes. The interaction is completely web
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Figure 5.2: A simple ImageJ based workflow for performing nuclear segmentation
and creating a backbone XML for visualization. The figure also explains the modules
used for creating the workflow, the data connection lines and the module input
output nodes. The red box on the left shows all pre-existing modules available on
the LONI server which can be interconnected to create custom workflows.

enabled and is performed via a web browser.

5.3.1 LONI Pipeline

The LONI Pipeline tool is well suited for deployment of intricate and involved

data analysis pipelines and warrant minimal maintenance and support overhead.

Once a module/workflow is deployed on the main server, a user with minimal or

no programming background can easily import their data and process it using a

rich set of pre-existing workflows or their own custom made workflows created by
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interconnecting the available server or local custom-made modules (see Fig. 5.2 for

a simple example). Along with a large pool of central server based repositories,

catering the needs of a wide user base, local repositories of custom-made modules,

which cater to the requirements of focused research groups, can be maintained.

Moreover, content management of modules and workflows become very centralized

as they themselves can hold a wealth of associated information such as licensing,

links to publications, tags and documentation.

The visual programming environment offered by LONI Pipeline client is also

conducive for rapid application prototyping, deployment and sharing. The client

can either be installed by downloading it from the LONI Pipeline website or can be

started from the web using the webstart version of the application which requires

no local installation. Once developed, generic as well as custom workflows can not

only be easily accessed on the server via the LONI pipeline client, but can also be

shared as ’.pipe’ files which are XML documents encoding the workflow details. Such

an environment in turn fosters reproducible research in the form of server deployed

standardized or sharable workflows that can be easily accessed and executed through

a Pipeline client.

LONI Pipeline is a versatile platform where users can easily incorporate and

interconnect softwares developed in disparate languages as modules as long as they

can be invoked from the command line prompt on the server. For example, a single

pipeline can incorporate modules developed using R, Perl, Java, Python, C, C++,

Octave or Matlab (using Matlab Runtime Component) and more. Furthermore,

the LONI pipeline, which itself runs on a Linux OS is inherently OS independent

126



and can be accessed through the pipeline client, which is available on all popular

operating systems.

The Pipeline server provides a seamless integration of the modules to existing

high performance computing infrastructure available locally or at the main server.

The biggest advantage for a user is that they can simply use the visual programming

environment to tap into the enormous resource of large compute grids without going

into the intricate details of configuring, scheduling and using a parallel computing

environment

The current deployment of MiPipeline DATA PROCESSINGmodule is hosted

on LONI Pipeline Server at cranium.loni.usc.edu and provides (guest) access

to LONI DPS installed on top of Oracle/Sun Grid engine (SGE) The main high

performance computation (HPC) cluster include a Linux (CentOS 6.4, 64bit) com-

puter cluster with one head node and thousands of multicore compute nodes (http:

//pipeline.loni.usc.edu/). The HPC cluster has the capability to run applica-

tion executables developed in a wide variety of programming languages.

5.3.2 MiPipeline File Server

The file server (DATA STORAGE in Fig. 5.1) is the main data hub for the

MiPipeline environment. A user can upload their acquired images onto the server

which can then be processed by LONI DPS. The analysis results can also be stored

on the server. The file server can be a simple data server such as a NFS share, image

databases such as OMERO, XNAT, or can be very generic cloud sources such as

Dropbox or Amazon S3.
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(a) (b)

Figure 5.3: (a) XML schema used or MiPipeline data provenance. (b) Visualization
of a simple XML file generated by the worked example using the generic XML
visualization capabilities of MiPipeline.

5.3.3 MiPipeline Data Provenance

MiPipeline provides two layers of data provenance. The LONI Pipeline tool

(DATA PROCESSING) itself provides the first layer of module and workflow prove-

nance in the form of internal XML files.

In MiPipeline, we added a second layer of application specific data provenance

in the form of an XML information backbone. Figure 5.3.(a) shows a simple XML

schema illustrating the method of capturing often inherent hierarchical structure in

biological datasets. The sample schema has four levels: (i) Experiment (an instance

of an image database capturing images from a multi-patient biological experiment),

(ii) Dataset (which might correspond to individual patients), (iii) Image (Multiple

images captured from one or more patient samples) and (iv) Nucleus (nuclear objects

identified by image analysis algorithms). The backbone needs to be created by

the user depending on the needs of the application. Comprehensive application
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data provenance, such as the one offered by MiPipeline, is essential for complex

biological applications and enables extraction of complicated and hard to ascertain

trends and results while ensuring reproducible research. The XML is populated with

information such as meta-data about the biological sample, steps taken in the image

processing and results. This information, can be seamlessly visualized, explored and

mined using the MiPipeline information visualization component.

5.3.4 MiPipeline Information Visualization

In the case of large image datasets, it is a challenge for users to explore, nav-

igate and extract connections, trends, and distributions from the meta data and

experimental output. Thus we have developed a custom web-browser based flexi-

ble yet powerful dynamic information visualization framework. It was built using

open source JavaScript visualization techniques (d3.js [168]) and noSQL database

(MongoDB [169]). The frontend of this framework provides a web application for

efficient data interaction and navigation, which can be accessed using any mod-

ern web browser. To facilitate metadata storage and search capability within the

web interface, the XML information backbone is parsed into the noSQL database

(MongoDB). MongoDB is flexible, thus allowing us to quickly adopt the dynamic vi-

sualization framework for different types of data sets . MongoDB also has a powerful

and flexible search capability.

Data visualization is done with minimal overhead development by integrating

multiple JavaScript libraries such as d3.js, jQuery [170] and Bootstrap [171]. Initial

data preparation and processing (preceding the database injection) for visualization
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and analysis tasks is done on the server side by a mixture of C/C++ binaries and

PHP scripts.

In its most generic version, this system can render any XML file as an inter-

active hierarchical tree structure, in lines with the sample XML schema displayed

in Figure 5.3.(a), using d3.js functions. To draw the tree structure, we pull meta-

data from MongoDB database and create the tree structure in JavaScript Object

Notation (JSON) format, which is required by d3.js for rendering. This dynamic

tree structure generation method also allows us to generate subtree structure cre-

ated from search results for rendering (Fig. 5.3.(b)). In the MiPipeline information

visualization framework we added additional visual exploration and mining capa-

bilities of image display, data filtering, feature visualization and searching. These

capabilities are incorporated based on the nature of information to be visualized for

custom applications.

5.3.5 Microscopy Tool Integration

We integrated some popular and powerful microscopy tools into the MiP-

ipeline environment: LOCI Bio-Formats [152] library and ImageJ/Fiji [158]. LOCI

Bio-Formats library enables reading of metadata as well as image data of more than

one hundred file types including proprietary microscopy image formats. Whereas

ImageJ/Fiji provides a wide array of microscopy image analysis tools that can fur-

thermore be used in a parallel computing infrastructure. Advanced image analysis

workflows can be created by interconnecting ImageJ tools where each one is an

ImageJ macro. The only restriction is that the macro must be launched from the
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Table 5.1: Description of the worked example modules.
Modules User Input Description

Data Source
Input files on user’s lo-
cal machine

This pre-existing Pipeline module acts as a source for input
data residing on the local computer and transfers (stages) the
input data on to the server before processing.

IJ Simple segmentation

(i) ImageJ path vari-
able locating the path
of ImageJ jar file if
not already populated
(ii) Location for saving
the output files on the
server

This custom made ImageJ macro based module reads input
images, splits the channels for RGB images, selects the B chan-
nel, performs Gaussian filtering on B, thresholds the chan-
nel, runs watershed based segmentation, measures several seg-
mented object features and saves the segmented image and
the feature measurements in a comma separated value (CSV)
ASCII files. The ImageJ macro is called from a BASH script
file which is executed from the command line by the server.

Create XML Backbone
Location where output
files are located on the
server

This custom made BASH script based module reads the out-
put CSV files and creates an XML file, used for visualizing,
filtering and searching the results from the segmentation. The
XML file has three tags, experiment at the top, image with an
image identification attribute id and object assigning labels to
each individual segmented object.

Data Sink
Local folder on user’s
machine where final re-
sults are staged back.

This pre-existing Pipeline module acts as a sink for output
results and transfers (stages) them from the server to the local
machine after processing is done.

command line prompt and therefore must be able to execute as a headless, batch

mode operation. The integration of such Java based applications is seamless and can

be easily accomplished by making the appropriate jar files available on the Pipeline

server.

5.3.6 Worked Example and User Interaction

To illustrate the user interactions necessary to run applications and visualize

results in MiPipeline, in this section, we provide a small worked example, which seg-

ments cell nuclei in 2D images. Figure 5.2 shows the workflow in the LONI Pipeline

client interface which has four modules: Data Source, IJ Simple segmentation, Cre-

ate XML Backbone and Data Sink. The modules were dragged and dropped from

the left hand side panel, which contains the prepopulated pool of existing modules

available on the Pipeline server. Table 1 describes the individual modules.

Once the modules are dragged onto the workflow area, they are intercon-

nected as shown in Fig. 5.2. When the workflow is executed, first the input
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data is staged from the local computer to a temporary folder on the server and

the IJ Simple segmentation module starts a distributed execution depending on the

number of input images and available cores on the server. On execution completion

of the segmentation module, the XML creation module reads the output comma

separated values (CSV) files from a pre-specified server location and creates the

XML information backbone file to enable visualization, filtering and searching of

the results. Finally, all the output files including the XML is staged back to a folder

on the users local machine by the Data Sink.

The visualization system is web based and the XML file is first transferred

to a pre-specified folder on the web server, which is intermittently polled to check

for new XML files to be visualized. The web interface lists the available XML

files and on selecting the XML file specific to the example workflow produces a

dynamic visualization of the xml file (Fig. 5.3(b)). In this particular example,

there were 3 images and the tree had three hierarchies: the experiment at the top,

the sample images and the segmented objects. Application specific visualization

components can also be used in addition to the interactive tree visualization and

all such advanced components will be discussed as part of a case study later in the

paper.

5.4 Case Studies

In this section we discuss two case studies to demonstrate the strength and

capabilities of the MiPipeline environment.
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(a)

(b)

(c)
Figure 5.4: (a) ImageJ plugin based QuickPALM workflow using module
IJ QuickPALM (b) Average image from a sequence of PALM images of retinal pig-
ment epithelium cells with tubules(c) Super-resolution PALM reconstruction from
the sequence of images of retinal pigment epithelium cells with tubules

5.4.1 QuickPALM Case Study

The first case study illustrates the integration of an ImageJ plugin, Quick-

PALM [172] which is an algorithm for reconstruction and analysis of super reso-

lution photoactivated localization microscopy (PALM) [173] and stochastic optical

resolution microscopy (STORM) [174] based 2D and 3D datasets. Both the methods

utilize fluorescence molecules that can be activated to fluoresce, thus enabling only a

small fraction of molecules can be made fluorescent at a given time. In this situation

each fluorescence molecule produces a point spread function from which the exact
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position of these molecules can be localized to 10s of nanometers of precision. By

sequentially imaging different sparse subsets of molecules, a complete picture of the

molecules in the sample can be constructed. QuickPALM as an ImageJ plugin pro-

vides algorithms for real time reconstruction of 2D images along with methods to do

3D reconstruction, drift correction and acquisition. As the reconstruction process

for such datasets is computationally intensive, adequate use of high performance

computing machinery is essential for large datasets.

QuickPALM integration with MiPipeline was performed as part of ImageJ.

Figure 5.4(a) shows the MiPipeline QuickPALM module IJ QuickPALM in a simple

workflow, which is in the form of an ImageJ macro. MiPipeline QuickPALM is

called using a BASH script, which handles the custom input and output operations.

All the analysis and reconstruction parameters of QuickPALM can be integrated

into the module. One such parameter, the display update rate has been currently

integrated to showcase the methodology.

To illustrate IJ QuickPALM, fixed RPE (Retinal Pigment Epithelium) cells

with tubules labeled by transfection with EHD1- mEos plasmid was imaged with

an Olympus TIRF 3 based PALM system that included an IX-82 inverted micro-

scope, and a 100x, 1.49 NA TIRFM oil objective lens. Before PALM imaging,

the green fluorescence of mEos was excited with a 488 nm laser (SAPH, Coher-

ent, Santa Clara, CA) and emission was collected with a quad-band emission filter

(LF405/488/561/635-A, Semrock, Rochester, New York). The green image was

used to locate the cell for PALM imaging. During PALM imaging. A 405-nm laser

(CUBE, Coherent, Santa Clara, CA) set to a low intensity converted mEos from
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green to red emission. The red fluorescence of mEos was continuously excited with a

561 nm DPSS laser (85-YCA-020-115, Melles Griot, Carlsbad, CA) with an excita-

tion intensity of 1 kW/cm2. Emission was collected continuously at an acquisition

time of 40 msec with the same quad-band emission filter and an additional 561

longpass to remove background. Images were acquired with an EMCCD camera

(C9100-13, Hamamatsu, Middlesex, NJ) and a total of 8000 frames were collected

for each PALM image. The average image of the 8000 frames is shown in Fig. 5.4(b)

and the super-resolution image resulting from MiPipeline QuickPALM is shown in

Fig. 5.4(c).

5.4.2 Parallel Genome Organization Diagnosis Application (PAGODA)
Case Study

The second MiPipeline case study deals with analysis of spatial positioning of

genes within cell nuclei as a potential method to detect breast cancer. The software

builds on recent studies showing that spatial organization of candidate genes, for

instance HES5 and FRA2, differ between normal and breast cancer cells both in

cell culture models [10] and in human biopsied tissue sections [11]. This technology

could potentially emerge as a diagnostic and/or prognostic tool for breast cancer.

5.4.2.1 Tissue Samples and Image Acquisition

The experimental data used for testing PAGODA was from a tissue micro array

(TMA) slide which comprised of 43 human breast biopsy samples (40 breast cancer

and 3 non cancerous breast disease samples). HES5 and FRA2 DNA sequences were

labeled by fluorescence in situ hybridization (FISH), imaged and pseudocolored as
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Figure 5.5: Figure showing MiPipeline PAGODA workflow

red and green color channels, respectively [11]. The 4’,6 diamidino2phenylindole

counter stained cell nuclei were imaged and assigned to the blue channel. On av-

erage, each patient sample was imaged in 3D at 40 different locations by visually

selecting regions-of-interest (ROI) on a Deltavision microscope (equipped with de-

convolution software). The input to PAGODA was approximately 5.1 GB (maxi-

mum intensity projected 1703 2D RGB images of size 1024x1024 pixels with 3 8-bit

channels). A small portion of the TMA data is available on cranium.loni.usc.edu
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Figure 5.6: PAGODA standalone modules for FISH segmentation and nuclear seg-
mentation

(TMA DEMO) for testing and the current PAGODA workflow is configured to

demonstrate its capabilities on this small dataset.

5.4.2.2 Image Analysis and Workflow

The analysis of tissue section images involved the following steps [113]:

• Background removal

• Wavelet-based edge enhancement of the nuclear channel

• Automatic segmentation of cell nuclei

• Selection of accurately-segmented nuclei using a logistic regression [63] based

pattern recognition engine

• Detection of fluorescence in situ hybridization (FISH) labeled gene sequences
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• Measurement of the gene locations (FISH signals) with respect to the nuclear

periphery. For a statistically significant result, 100 200 nuclei had to be

analyzed per patient tissue sample [11].

Fig. 5.5 shows the PAGODA workflow. Core PAGODA modules were implemented

using MATLAB 2010b [175] making use of functions from commercial MATLAB

toolboxes: Image Processing and Statistics toolboxes. In addition, Lastwave [35],

DipImage [38], PRTOOLs [176] and XML IO Tools [177] were also used for perform-

ing some specialized image processing and XML related operations. The modules

were converted to executables (using MATLAB compiler and requires MATLAB

Component Runtime for execution) with appropriate wrappers (BASH scripts) for

accommodating custom input output requirements. The aforementioned image anal-

ysis steps were offered as MiPipeline PAGODAmodules. Two modules, one for FISH

signal segmentation and another for nuclear segmentation are also available as mod-

ules (Fig. 5.6) that can be used in custom workflows.. The details of the algorithms

were reported in [113] [63].

An XML backbone was used for data provenance which captured a compre-

hensive set of meta-data and experimental results.

5.4.2.3 PAGODA Results

The validation and accuracy of the segmentation module and machine learning

modules of PAGODA have been reported previously [113] [63]. Using MiPipeline

PAGODA, the TMA slide data with 38 patient samples was compared to a manually

pooled benchmark dataset using Kolmogorov-Smirnov (KS) test with a 1% level of
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Figure 5.7: PAGODA hierarchical visualization and intermediate result display.

significance. Datasets where sufficient number of nuclei (greater than 75) were

identified, the centrality measure of HES5 and FRA2 were able to correctly predict

the patient tissue type (whether cancer or normal) correctly in 86.8% and 92.1%

cases, respectively.

On average, the processing time for each image from a patient sample was

approximately 7 to 8 mins and the entire analysis was completed in 2 hours on the

USC LONIs Cranium cluster, resulting in a 80 fold speedup compared to the sequen-

tial version of the code (data not shown). The speedup was sublinear, since not all

the modules and operations in PAGODA processing were parallelized. The analysis

of the input data using MiPipeline PAGODA, resulted in a raw output occupying

35 GB in disk space, including redundant intermediate files from each module in

the workflow. The XML information backbone file generated from the full analysis

was, however, only 32 MB and has appropriate network locations for intermediate
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Figure 5.8: PAGODA heat map display of dataset similarity measure along with
tools for feature space visualization and filtering

results (input images, segmentation boundaries, feature vectors, plots/graphs, cross

comparison tables, etc.) on the network file server.

5.4.2.4 Advanced Visual Exploration and Mining

Processing of the TMA data using the PAGODA visual workflow produced

over 700k files which included intermediate images from various image processing

modules, plots, tables, and numerical data files. Understandably, it is a challenge for

users to explore, navigate and extract connections, trends, and distributions from

the experimental output. Utilizing the XML metadata backbone, we have developed

a custom webbrowser based flexible yet powerful dynamic information visualization

framework. The basic visualization of the XML was the hierarchical tree structure

as illustrated in Figure 5.7. There are four different levels in TMA data, namely

experiment, dataset, image and nuclei. When user places the mouse cursor over a

140



tree node, the event is captured and node properties and details get displayed to the

user. Color encoding is implemented on nodes to help users understand the data

set. For example, at the dataset level, nodes are color-coded based on cancerous or

noncancerous tissue type.

We have also implemented search capabilities for users to narrow down exam-

ination scope to target data points of interest. Search functions could be performed

at specific tree levels or in the entire tree structure. Upon opening a new data set,

we extract node properties and list them as tags such that user could search based

on a specific node property. Fig. 5.7 shows the search user interface built in our

visualization framework. Currently, four predetermined parameters are provided for

search functionality: Class Name, Tag Name, Condition, and Keyword. Class Name

specifies the hierarchical level in the tree at which the search is performed. The Tag

Name is based on the properties of the specific Class Name. The Condition is the

type of search criteria used. The Keyword is what is going to be searched. There

are three types of search capabilities: Global Search, Search by Class Name, and

Search by Tag Name. Global Search searches the entire data set with given Condi-

tion and Keyword. Search by Class Name will limit scope of search to the selected

level in the tree structure. Search by Tag Name will further limit scope of search

on the selected node property in addition to the selected Class Name. All search

capabilities are based on the presumption that a proper Keyword and Condition

have been provided by user. The possible choice of Condition are: =, >,<,>=, <=,

Not Equal, and Regular Expression. The result of executing a search is a new graph

of relevant results with proper child and parent relationship of any relevant node.
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Figure 5.8 shows the data browsing and analysis capability implemented in our

visualization framework. The interactive heat map matrix displays cross correlation

values between any of the 71 datasets in the experiment. Numerical value of each

cell can be revealed by simply placing mouse cursor over each cell. Users can click

each individual matrix cell in the heat map chart to further examine the pair of

datasets associated with the selected cell which are displayed as a tree structure.

Users can check properties and detailed information for each tree node by simply

placing mouse cursor over these nodes. For the TMA experiment dataset, each sub

tree has thousands of nuclei. Each nucleus has several properties such as analysis

score, index, and other numerical values. We have used CrossFilter [178] to ma-

nipulate this set of multivariate data. CrossFilter is a JavaScript library featuring

fast interaction on large multivariate datasets. Lastly, we used d3.js for rendering

parallel coordinates from the filtered subset of nuclei for feature space visualization.

5.5 Discussion and Conclusions

The current chapter reports the development of a visual programming based

high throughput analysis and information visualization environment called MiP-

ipeline for handling large microscopy based image datasets. The LONI pipeline

distributed processing server which interacts with general purpose cluster manage-

ment systems for job handling, is used as the basis for the high throughput data

processing. On the other hand, the LONI pipeline client provides a rich visual pro-

gramming environment with a pre-existing pool of algorithms available as modules

which can be inter-connected to create custom processing workflows. MiPipeline
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also has provisions for a comprehensive process and data provenance via the use

of XML backbones which are further utilized for information visualization. The

information visualization module of MiPipeline is webbrowser based and utilizes

javascript based libraries such as d3.ds to visualize meta data and experimental

results. Several other tools for feature visualization, intermediate results display,

searching and data exploration have been integrated with MiPipeline information

visualization framework. A number of tools which are very useful in handling mi-

croscopy based datasets such as LOCI- Bioformats and ImageJ have been ported to

MiPipeline environment and future work will concentrate on broadening the array

of modules that are available on MiPipeline. On the other hand, several improve-

ments are planned for the information visualization framework to make it more

generic and intuitive by incorporating several other information visualization tools

which would help in understanding and interpreting underlying trends of the data

and results. On the whole MiPipeline is a software environment targeted towards

processing and visualizing information from microscopic datasets which attempts

to provide a number of attributes such as access to multi-disciplinary algorithms,

provision for process and data provenance, visual programming environment, cluster

based high-throughput processing and seamless information visualization that are

desirable for modern day research involving large microscopic datasets.
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Chapter 6: Conclusions and Future Directions

In this dissertation we presented methods for analyzing and exploring images

and information extracted from biological samples imaged using fluorescence optical

microscopes. Recent advances in optical microscopy have led to a data and infor-

mation explosion warranting the development of reliable, accurate and automatic

image analysis techniques for the extraction of biologically relevant information that

can be used for applications such as disease prognosis, diagnosis and drug discovery.

Furthermore, the presentation of the results to the end-user, post analysis, is also an

equally challenging issue, especially when the data (and/or the hypothesis) involves

several spatial/hierarchical scales (e.g., tissues, cells, (sub)-nuclear components).

6.1 Summary

Chapter 1 provided a brief introduction to optical microscopy and the problem

of analyzing optical microscopy-based image datasets for accurate understanding

of individual cell coordination in tissue context. It also outlines the novel

contributions of the dissertation.

Chapter 2 discussed a prospective method for human breast cancer prognosis

and diagnosis based on spatial localization of specific genes within the cell nuclei.

In order to automate the method and develop a computer-based system to mimic
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manual analysis procedure, two 2D nuclear segmentation methods were developed

based on levelsets and the watershed algorithm along with a supervised pattern

classification based screening procedure to identify ’well-segmented’ nuclei. A com-

parison of manual and automatic analysis results for human breast tissue sample

images showed successful automation of the cancer detection procedure.

As a natural extension to 3D and to overcome the shortcomings of the 2D

nuclear segmentation methods presented in chapter 2, we developed robust and

accurate methods for probabilistic edge detection and nuclear segmentation for 3D

tissue datasets analyzing which is considerably more challenging compared to its

2D cell culture counterpart. The multi-scale and multi-orientation edge detection

method reported in chapter 3 outperformed several conventional edge detection

methods and results from experiments involving both synthetic and real microscopic

datasets demonstrated the robustness and accuracy of the method across a wide

range of noise, blurring and sample variations. Unlike the boundary enhancement

procedure presented in chapter 2, which enhanced the unwanted internal structures

of the cell nuclei, the probabilistic edge detector specifically targets object edges

which are relevant for the application.

Chapter 4 presented the design of a graphcut-based optimal segmentation

method for cell nuclei in 3D datasets. The method proved to be robust and accurate

across variations in noise and blurring in synthetic datasets. Experiments using a

wide variety of real datasets also demonstrated superior results compared to other

methods for 3D segmentation of cell nuclei. We also presented a 2D version of the

algorithm which is a straight forward simplification of the 3D case.
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Finally, chapter 5 outlined the development of MiPipeline, an environment

for high-throughput processing and seamless information visualization targeted to-

wards handling large microscopy datasets. The environment provides several other

essential benefits in the form of comprehensive data and process provenance, an

user friendly visual programming environment, platform independence and repro-

ducibility. Several tools such as BioFormats and ImageJ which are highly relevant

for analyzing microscopic datasets have been ported to the environment for easy

user access. An XML backbone used for data provenance provides the basis for

the information visualization framework which has several exploratory and mining

functionalities.

6.2 Future Directions of Work

Although the dissertation outlines a variety of tools and methods for analyzing

optical microscopy based datasets, considerable amount of future work is required

to address the problem of accurate understanding of individual cell coordi-

nation in tissue context. We outline several such prospective areas of work:

• Super Resolution Datasets: Development of super resolution optical mi-

croscopy techniques has enabled scientists to go beyond the diffraction limit

of light and image nano scale objects. With higher resolution comes large

amounts of information. There are several associated challenges such as data

handling since super resolution datasets are inherently large, faithful and ef-

ficient data reconstruction and development of appropriate image analysis al-

gorithms that can analyze such datasets while taking full advantage of the
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enhanced resolution.

• High Performance Computing: Although we presented the MiPipeline en-

vironment for high throughput processing and information visualization tar-

geted towards microscopy datasets, further enhancements in this area are war-

ranted. It will be a challenging and interesting task to incorporate GPU-based

computing for improving the computational performance of algorithms such as

reconstruction of super resolution datasets, edge detection and segmentation,

especially in 3D. Also it is essential to port several of the existing algorithms to

a multicore or multigpu computing environments so that legacy applications

become more efficient.

• Multidimensional Data Visualization and Annotation: Multidimen-

sional data visualization and annotation come in as a challenging problem.

Manual annotation and screening plays a big role in the development of ac-

curate and robust segmentation and screening algorithms in the form of an

essential quality control step. A number of commercial and open source tools

are available for performing such tasks. However, their flexibility and accu-

racy in providing desired level of multidimensional visualization and especially

annotation capabilities leave significant scope for improvements.

• Tracking in Multidimensional Data: Time lapse microscopic imaging is a

very powerful tool which has the ability to visualize and capture cellular and

sub-cellular dynamics in time and space. However, the addition of time as

an additional dimension significantly increases the complexity of the analysis.
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The most fundamental problem with time lapse datasets is that of tracking

which can provide us a wealth of information about cell proliferation, differ-

entiation and migration, characterization of which is extremely important in

developmental biology. Although several methods [179] have been reported

for tracking cellular and sub-cellular objects of interest, further research and

development of robust and accurate algorithms is essential. As a future work,

we would like to develop robust, efficient and accurate tracking algorithms for

2D and 3D time lapse microscopic datasets.
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Chapter A: Appendix

A.1 Nuclear Feature Set used for ANN PRE

The 64 dimensional feature set used to characterize segmented objects for

classification with the ANN based PRE in chapter 2 is provided below.

1. CCBendingEnergy

2. Feret (3 dimensions)

3. GreyInertia (2 dimensions)

4. GreyMu (3 dimensions)

5. Inertia (2 dimensions)

6. Mass

7. Mean object intensity

8. Mu (3 dimensions)

9. P2A

10. Perimeter

11. PodczeckShapes (5 dimensions)
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12. Size

13. StdDev

14. DimensionsEllipsoid - major axes

15. DimensionsEllipsoid - minor axes

16. DimensionsEllipsoid - eccentricity

17. DimensionsEllipsoid - minor/major ratio

18. MajorAxes (4 dimensions)

19. ConvexRatio - Object Area/Convex Hull Area

20. ConvexRatio - Convex Hull Area - Object Area

21. RadiusStats - entropy of all radii

22. RadiusStats - range of all radii

23. RadiusStats - variance of all radii

24. GradientStats - magnitude sum

25. GradientStats - mean

26. GradientStats - range

27. GradientStats - variance

28. Autocorrelation
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29. Contrast

30. Correlation (2 dimensions)

31. Cluster Prominence

32. Cluster Shade

33. Dissimilarity

34. Energy

35. Entropy

36. Homogeneity (2 dimensions)

37. Maximum probability

38. Sum of sqaures: Variance

39. Sum average

40. Sum variance

41. Sum entropy

42. Difference variance

43. Difference entropy

44. Information measure of correlation1

45. Information measure of correlation2
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46. Inverse difference (INV)

47. Inverse difference normalized (INN)
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