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tThere are abundan
e of web a

essible life s
ien
e sour
es. Traver-sal of a parti
ular path 
an answer a navigational query, returning atarget obje
t set (TOS). The 
ardinality of TOS is 
onsidered as thebene�t of a path and there is some 
ost fun
tion asso
iated with ea
hpath. It is 
ommon that multiple alternate paths satisfy the queryand we are not allowed to pi
k all these paths to answer the query,sin
e there 
ould be exponential number of paths in a graph. We areinterested in sele
ting a subset of these paths.We present two problems in this 
ontext. The �rst problem is tosele
t a subset of paths of maximum bene�t within a 
ost budget. Thisis known as Budgeted Maximum Coverage Problem in the literature.The se
ond problem is to sele
t a subset of paths of minimum 
ostwith a threshold bene�t guarantee. This is the Minimum Set Coverwith Threshold Problem. We develop randomized approximation algo-rithms based on LP rounding and 
ondu
t experiments.1 Introdu
tionThe last few years have seen an explosion in the number of publi
 life s
ien
edata sour
es, as well as the volume of data entries about s
ienti�
 entities,su
h as genes, proteins, sequen
es, mole
ules, et
., that are 
hara
terized inthese sour
es. Consequently, biologists spend a 
onsiderable amount of timenavigating through the 
ontents of these sour
es to obtain useful information.1



Life s
ien
es sour
es, and the navigational queries that are of interest tos
ientists, pose some unique 
hallenges. First, information about a s
ienti�
entity, e.g., a protein, may be available in a large number of autonomoussour
es, ea
h of whi
h may provide di�erent 
hara
terizations of the protein.While it is 
lear that the 
ontents of these sour
es overlap, these sour
es arenot repli
as sin
e they do not always 
over the same instan
es of proteins, andthey do not 
hara
terize the instan
es in an identi
al manner. Se
ond, thelinks between s
ienti�
 entities (links between data obje
ts) in the di�erentsour
es are unique in this domain in that they 
apture signi�
ant knowledgeabout the relationship and intera
tions between these entities. These linksare un
overed in the pro
ess of navigating between sour
es. They may 
hangeover time as new knowledge is dis
overed. Third, limited by bandwidth or
onne
tion 
ost, sin
e most of these sour
es are autonomous and distributed,it is usually not feasible to 
olle
t all the paths satisfying the query.We 
onsider a set of sour
es, and we further assume that the data obje
tsin any of these sour
es have links to data obje
ts in one or more of the othersour
es. We further assume that a (simple) navigational query identi�es anorigin 
lass, e.g., protein and possibly a (set of) origin sour
es that are ofinterest, e.g., UniProt. The query also identi�es a target 
lass of interest,e.g., publi
ations, as well as an optional list of intermediate sour
es. Then,answering the query �rst involves exploring the data sour
es and 
lasses, andthe links between data sour
es. Our goal is to �nd paths at the logi
al level(among 
lasses) and paths at the physi
al level (among sour
es implementingthese 
lasses). While we note that the query language 
an be extended toother query types, for our study we use a simple query.Ea
h path is asso
iated with a bene�t, namely the number of distin
tobje
ts rea
hed in the target obje
t set (TOS) in the target 
lass. Ea
hpath is also asso
iated with a 
ost of evaluating the query on the sour
esto 
ompute the TOS. Given the overlap between sour
es and the highlyinter
onne
ted nature of the obje
t graph, ea
h m-way 
ombination of TOSsof paths is also asso
iated with a TOS overlap. This overlap represents sameobje
ts rea
hed in the TOS using di�erent paths, and redu
es the 
ombinedbene�t of this path 
ombination.We present dual problems in this 
ontext of sele
ting the best set of paths.The �rst problem is to sele
t a set of paths that satisfy a 
onstraint on theevaluation 
ost while maximizing the bene�t or the number of distin
t obje
tsin the TOS of these paths. This problem maps to the budgeted maximum
overage (BMC) problem [8℄. We expe
t that in many 
ases, a user is more2



interested in rea
hing some desired threshold or number of obje
ts and maynot set a 
onstraint on the budget. To explore this situation, we 
onsider thedual problem, whi
h sele
ts a set of paths that satis�es a threshold of theTOS bene�t with minimal evaluation 
ost. The dual 
an be mapped to themaximal set 
over with a threshold (MSCT).The problems we address apply to many other s
enarios. Consider a gen-eral problem - �nd a best set of paths to the data sour
es - and a simplersubproblem - �nd the best set of sour
es, ignoring that there might be mul-tiple heterogeneous paths to rea
h these sour
es. This subproblem arises inmany data integration situations, namely whenever (i) the integrated systemhas a

ess to multiple sour
es that overlap in the data they store, (ii) it isnot ne
essarily required to retrieve all answers to a query (some are enough),and (iii) some per-sour
e 
ost is in
urred to �nd and retrieve answers. Ap-pli
ations in
lude metasear
h engines and sear
h engines for intranets, sto
kinformation systems (queries 
ost money), shopping agents that integratemultiple online shops, and digital libraries. For ea
h of these systems itis worthwhile to a

ess only some data sour
es and still present satisfyingresults to a user or appli
ation.The problem is also interesting in a s
enario that has the restri
tion thatsome sour
es 
annot be rea
hed dire
tly but 
an be rea
hed only via othersour
es. Most prominently, P2P �le sharing systems try solve this problem.Their typi
al solution is to broad
ast a query to all peers (within a 
ertains
ope, su
h as 7 hops), but more sophisti
ated methods using spe
ializedindi
es have been proposed. In the interse
tion of P2P systems and dataintegration systems lie so 
alled peer data management systems (PDMS), forwhi
h many appli
ation s
enarios have been proposed [12℄.The outline of this report is as follows: Se
. 2 presents LP roundingalgorihtm for the �rst problem and shows optimality results. Se
. 3 presentsLP rounding algorihtm for the se
ond problem and shows optimality results.Finally Se
. 4 
on
ludes.2 BMC problemThis se
tion solves the problem using standard LP relaxation and roundingapproa
h. We are able to show that the expe
ted 
ost does not ex
eed budgetand the expe
ted 
ost is within a fa
tor of optimal solution.3



2.1 Integer Programming and Linear Programming For-mulationLet S be a family of sets(paths), S = fS1; S2; : : : Smg; Z be the set of el-ements(obje
ts), Z = fz1; z2; : : : zng, B be the budget allowed to 
hoose asubset of paths S `; 
(Si) be the 
ost of pi
king set Si; wj be the bene�t of
overing element zj. In our problem, we 
onsider a uniform bene�t for allobje
ts; that is, wj = 1 for ea
h obje
t zj. We 
an set integer variables xi = 1i� set Si is pi
ked in S ` and yj = 1 i� zj is 
overed. The IP formulation is asfollows:maximize Pnj=1 yj � wjsubje
t to Pmi=1 
(Si) � xi � Byj � Pfijzj2Sig xi for all jxi 2 f0; 1g for all iyj 2 f0; 1g for all jAlthough IP gives optimal solution to the problem, it is impra
ti
al to
ompute exa
t solution as IP problem is NP-
omplete.By relaxing the 
onstraints that xi and yj must be integers, we have thefollowing Linear Program (LP) formulation. Note that only the two last
onstraints of the IP formulation have been modi�ed as follows:xi � 1yj � 12.2 Algorithm and AnalysisWe will show that using a standard te
hnique su
h as Randomized rounding[10℄, we 
an derive a randomized algorithm whose expe
ted 
ost is at mostB and at the same time the expe
ted weight of the 
overed elements isat least (1 � 1e ) times the LP bene�t. Sin
e the LP bene�t is an upperbound on the optimal integral solution, this would be an alternate way ofderiving the bound developed earlier using a greedy algorithm 
ombined withan enumeration approa
h [8℄.We solve the Linear Program developed earlier (using CPLEX) thus ob-taining an optimal fra
tional solution, 
alled (x�; y�). We now obtain a 
ol-le
tion of sets S 0 su
h that Pr[ Set Si is 
hosen in S 0℄ = x�i .4



Algorithm BMC LPSolve LP relaxation, get fra
tional solution (x�; y�)Rounding x� values to pi
k a subset of pathsLemma 2.1 The expe
ted 
ost of S 0 is at most B.Proof. Let us 
ompute the expe
ted 
ost of S 0 as follows.E[
(S 0)℄ = mXi=1 
(Si) � x�i � BThus the expe
ted 
ost of the rounded solution is at most B.Lemma 2.2 The total weight of the 
overed elements is at least (1�1e)w(OPT )where w(OPT ) is the weight of an optimal set of 
overed elements by 
hoosinga 
olle
tion of sets of 
ost at most B.Proof. We prove this as follows. We �rst 
onsider the probability that anelement zj is 
overed. We will abuse notation and let S 0 refer to the 
olle
tionof sets 
hosen by the algorithm as well as the 
olle
tion of 
overed elements.Pr[zj 2 S 0℄ = 1� Pr[zj =2 S 0℄Note that zj =2 S 0 if and only if ea
h set that zj belongs to is not in
luded inS 0. Pr[zj 2 S 0℄ = 1� Yzj2Si(1� x�i )We know that for any real number p, 1� p � e�p, where 0 � p � 1. This
an be shown by elementary 
al
ulus. De�ne a fun
tion f(p) = e�p � 1 + p.We have f(0) = 1 and f 0(p) = 1 � e�p. f 0(p) > 0 for all p > 0. f(p) isin
reasing when p > 0; therefore, e�p � 1 + p > 0 when p > 0. We have1� p � e�p. We repla
e (1� x�i ) by e�x�i in the formula, get:Pr[zj 2 S 0℄ � 1� Yzj2Si e�x�iRewirte the formula, we have: 5



Pr[zj 2 S 0℄ � 1� ePzj2Si �x�iA

ording to the LP 
onstraints, we have Pzj2Si �x�i � y�j ,Pr[zj 2 S 0℄ � 1� e�y�jThe expe
ted bene�t of S 0 will be:E(w(S 0)) = nXj=1wjPr[zj 2 S 0℄With Pr[zj 2 S 0℄ � 1 � e�y�j , the expe
ted bene�t is guaranteed to be\good": E(w(S 0)) � nXj=1wj(1� e�y�j )If we 
onsider the ratio of the expe
ted weight of S 0 to the LP 
ost,Pnj=1wjy�j , whi
h is an upper bound of optimal value. We getE(w(S 0))Pnj=1wjyj � Pnj=1wj(1� e�y�j )Pnj=1wjyjNext we show that 1 � e�q � (1 � 1e) � q for 0 � q � 1. Let us 
onsiderfun
tion f(q) = 1�e�q where 0 � q � 1. This is a 
on
ave fun
tion in interval[0; 1℄. The fun
tion f(q) lies above the straight line joining points (0; f(0))and (1; f(1)), that is (0; 0) and (1; 1� 1e ). Therefore, 1� e�q � (1� 1e)q.Sin
e (1� e�y�j ) � (1� 1=e)y�j we get that the ratio is at least (1� 1e ).Immediately from lemma 2.1 and 2.2, we have the following:Theorem 2.3 Algorithm BMC LP is a randomized (1� 1e ) approximationalgorithm with expe
ted 
ost B.3 MSCT ProblemHowever, users are usually more 
on
erned about quality of query answersinstead of the 
ost of answering query. The problem be
omes minimizing the
ost of query plan while guarantee some quality value. More formaly, we areinterested in the problem that sele
ting a subset of paths with a threshold,with minimum 
ost. 6



3.1 IP and LP FormulationThe notation is the same as in Se
tion 2, ex
ept that we want to 
hoose asubset of paths that meet the threshold T while minimizing the 
ost. TheIP formulation is as follows:minimize Pmi=1 
(Si) � xisubje
t to Pnj=1 yj � wj � Tyj � Pfijzj2Sig xi for all jxi 2 f0; 1g for all iyj 2 f0; 1g for all jBy letting xi and yj be reals in [0; 1℄ and ignoring one side of the 
on-straints, we repla
e the last two 
onstraints in IP to obtain the LP formula-tion: xi � 0yj � 03.2 Algorithm and AnalysisWe use the similiar randomized rounding approa
h as before.Let (x�; y�) be the fra
tional solution obtained by CPLEX. We 
hoosea 
olle
tion of sets S 0 su
h that Pr[ Set Si is 
hosen in S 0℄ = min(1; �x�i ),where � � 1 is a boosting fa
tor to ensure that we rea
h the threshold. Thisalgorithm produ
es solutions with expe
ted bene�t at least (1� 1e� ) � T andexpe
ted 
ost at most �� OPT.AlgorithmMSCT LPSolve LP relaxation, get fra
tional solution (x�; y�)Rounding x� values su
h thatPr[ Set Si is 
hosen in S 0℄ = min(1; �x�i )Lemma 3.1 The expe
ted 
ost of S 0 is at most � OPT.Proof. Let us 
ompute the expe
ted 
ost of S 0 as follows.7



E[
(S 0)℄ = Pmi=1 
(Si) �min(1; � � x�i )� Pmi=1 
(Si) � � � x�i� �Pmi=1 
(Si) � x�i� �OPTThus the expe
ted 
ost of the rounded solution is at most � OPT.Lemma 3.2 The total weight of the 
overed elements is at least (1� 1e� ) �T .Proof. Again we �rst 
onsider the probability that an element zj is 
overed.Pr[zj 2 S 0℄ = 1�Qzj2Si(1� x�i )= 1�Qzj2Si(1� �x�i )� 1�Qzj2Si e��x�i� 1� e��Pzj2Si x�i� 1� e��y�jThe expe
ted ben�t of S 0 is:E(w(S 0)) = Pnj=1wjPr[zj 2 S 0℄� Pnj=1wj(1� e��y�j )Therefore, we have: E(w(S0))Pnj=1 wjyj � Pnj=1 wj(1�e��y�j )Pnj=1 wjyj� (1� e��)TImmediately from lemma 3.1 and 3.2, we have the following:Theorem 3.3 Algorithm MSCT LP is a randomized � approximation al-gorithm with expe
ted bene�t at least (1� 1e� )T.4 Con
lusionOriginally motivated by the problem of �nding good paths and sets of pathsthrough NCBI life s
ien
es sour
es we have generalized the problem to dataintegration in the presen
e of overlapping sour
es, whi
h applies to many8



di�erent kinds of information systems. We presented a pair bounded ran-domized approximation algorithms. To summarize, life s
ien
es data sour
esare an ex
ellent �eld to test new query models (paths through sour
es) andoptimization problems (overlap-adjusted bene�t), all the while solving prob-lems that are relevant to biologists.Possible future work is abundant. In a dire
t 
ontinuation of the workpresented here we plan to expand on the types of queries to �nd out howour algorithms fare under di�erent appli
ations. Further strands of resear
hare in the �eld of path query languages, eÆ
ient enumeration of all possiblepaths, and �nally optimization te
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