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Abstract

There are abundance of web accessible life science sources. Traver-
sal of a particular path can answer a navigational query, returning a
target object set (T'OS). The cardinality of TOS is considered as the
benefit of a path and there is some cost function associated with each
path. It is common that multiple alternate paths satisfy the query
and we are not allowed to pick all these paths to answer the query,
since there could be exponential number of paths in a graph. We are
interested in selecting a subset of these paths.

We present two problems in this context. The first problem is to
select a subset of paths of maximum benefit within a cost budget. This
is known as Budgeted Maximum Coverage Problem in the literature.
The second problem is to select a subset of paths of minimum cost
with a threshold benefit guarantee. This is the Minimum Set Cover
with Threshold Problem. We develop randomized approximation algo-
rithms based on LP rounding and conduct experiments.

1 Introduction

The last few years have seen an explosion in the number of public life science
data sources, as well as the volume of data entries about scientific entities,
such as genes, proteins, sequences, molecules, etc., that are characterized in
these sources. Consequently, biologists spend a considerable amount of time
navigating through the contents of these sources to obtain useful information.



Life sciences sources, and the navigational queries that are of interest to
scientists, pose some unique challenges. First, information about a scientific
entity, e.g., a protein, may be available in a large number of autonomous
sources, each of which may provide different characterizations of the protein.
While it is clear that the contents of these sources overlap, these sources are
not replicas since they do not always cover the same instances of proteins, and
they do not characterize the instances in an identical manner. Second, the
links between scientific entities (links between data objects) in the different
sources are unique in this domain in that they capture significant knowledge
about the relationship and interactions between these entities. These links
are uncovered in the process of navigating between sources. They may change
over time as new knowledge is discovered. Third, limited by bandwidth or
connection cost, since most of these sources are autonomous and distributed,
it is usually not feasible to collect all the paths satisfying the query.

We consider a set of sources, and we further assume that the data objects
in any of these sources have links to data objects in one or more of the other
sources. We further assume that a (simple) navigational query identifies an
origin class, e.g., protein and possibly a (set of) origin sources that are of
interest, e.g., UniProt. The query also identifies a target class of interest,
e.g., publications, as well as an optional list of intermediate sources. Then,
answering the query first involves exploring the data sources and classes, and
the links between data sources. Our goal is to find paths at the logical level
(among classes) and paths at the physical level (among sources implementing
these classes). While we note that the query language can be extended to
other query types, for our study we use a simple query.

Each path is associated with a benefit, namely the number of distinct
objects reached in the target object set (TOS) in the target class. Each
path is also associated with a cost of evaluating the query on the sources
to compute the TOS. Given the overlap between sources and the highly
interconnected nature of the object graph, each m-way combination of TOSs
of paths is also associated with a T'OS overlap. This overlap represents same
objects reached in the TOS using different paths, and reduces the combined
benefit of this path combination.

We present dual problems in this context of selecting the best set of paths.
The first problem is to select a set of paths that satisfy a constraint on the
evaluation cost while maximizing the benefit or the number of distinct objects
in the TOS of these paths. This problem maps to the budgeted maximum
coverage (BMC) problem [8]. We expect that in many cases, a user is more



interested in reaching some desired threshold or number of objects and may
not set a constraint on the budget. To explore this situation, we consider the
dual problem, which selects a set of paths that satisfies a threshold of the
TOS benefit with minimal evaluation cost. The dual can be mapped to the
maximal set cover with a threshold (MSCT).

The problems we address apply to many other scenarios. Consider a gen-
eral problem - find a best set of paths to the data sources - and a simpler
subproblem - find the best set of sources, ignoring that there might be mul-
tiple heterogeneous paths to reach these sources. This subproblem arises in
many data integration situations, namely whenever (i) the integrated system
has access to multiple sources that overlap in the data they store, (ii) it is
not necessarily required to retrieve all answers to a query (some are enough),
and (iii) some per-source cost is incurred to find and retrieve answers. Ap-
plications include metasearch engines and search engines for intranets, stock
information systems (queries cost money), shopping agents that integrate
multiple online shops, and digital libraries. For each of these systems it
is worthwhile to access only some data sources and still present satisfying
results to a user or application.

The problem is also interesting in a scenario that has the restriction that
some sources cannot be reached directly but can be reached only via other
sources. Most prominently, P2P file sharing systems try solve this problem.
Their typical solution is to broadcast a query to all peers (within a certain
scope, such as 7 hops), but more sophisticated methods using specialized
indices have been proposed. In the intersection of P2P systems and data
integration systems lie so called peer data management systems (PDMS), for
which many application scenarios have been proposed [12].

The outline of this report is as follows: Sec. 2 presents LP rounding
algorihtm for the first problem and shows optimality results. Sec. 3 presents
LP rounding algorihtm for the second problem and shows optimality results.
Finally Sec. 4 concludes.

2 BMC problem

This section solves the problem using standard LP relaxation and rounding
approach. We are able to show that the expected cost does not exceed budget
and the expected cost is within a factor of optimal solution.



2.1 Integer Programming and Linear Programming For-
mulation

Let S be a family of sets(paths), & = {S1,Ss,...S,}; Z be the set of el-
ements(objects), Z = {z1,29,...2,}, B be the budget allowed to choose a
subset of paths S’ ¢(S;) be the cost of picking set S;; w; be the benefit of
covering element z;. In our problem, we consider a uniform benefit for all
objects; that is, w; = 1 for each object z;. We can set integer variables z; = 1
iff set S; is picked in §" and y; = 1 iff z; is covered. The IP formulation is as
follows:

maximize i1 Yj Wy
subject to
v < DUilesy T for allj
z; € {0,1} for all 4
y; € {0,1} for all j

Although IP gives optimal solution to the problem, it is impractical to
compute exact solution as IP problem is NP-complete.

By relaxing the constraints that z; and y; must be integers, we have the
following Linear Program (LP) formulation. Note that only the two last
constraints of ’1che [P formulation have been modified as follows:
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2.2 Algorithm and Analysis

We will show that using a standard technique such as Randomized rounding
[10], we can derive a randomized algorithm whose expected cost is at most
B and at the same time the expected weight of the covered elements is
at least (1 — %) times the LP benefit. Since the LP benefit is an upper
bound on the optimal integral solution, this would be an alternate way of
deriving the bound developed earlier using a greedy algorithm combined with
an enumeration approach [8].

We solve the Linear Program developed earlier (using CPLEX) thus ob-
taining an optimal fractional solution, called (z*,y*). We now obtain a col-
lection of sets 8" such that Pr| Set S; is chosen in &' = z7.
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Algorithm BMC_LP
Solve LP relaxation, get fractional solution (z*, y*)
Rounding * values to pick a subset of paths

Lemma 2.1 The expected cost of S' is at most B.

Proof. Let us compute the expected cost of S as follows.

m

Ele(8)] => ¢(S:)-zf < B
i=1
Thus the expected cost of the rounded solution is at most B. [ |

Lemma 2.2 The total weight of the covered elements is at least (1—2)w(OPT)
where w(OPT) is the weight of an optimal set of covered elements by choosing
a collection of sets of cost at most B.

Proof. We prove this as follows. We first consider the probability that an
element z; is covered. We will abuse notation and let S’ refer to the collection
of sets chosen by the algorithm as well as the collection of covered elements.

Priz;€S1=1-Priz; ¢ §']
Note that z; ¢ S" if and only if each set that z; belongs to is not included in
S'.
Prlz;jeS1=1- [] Q—2])
ZjESi

We know that for any real number p, 1 —p < e7?, where 0 < p < 1. This
can be shown by elementary calculus. Define a function f(p) =e? — 1+ p.
We have f(0) = 1 and f'(p) =1 —e?. f'(p) > 0forall p>0. f(p)is
increasing when p > 0; therefore, e — 1+ p > 0 when p > 0. We have
1 —p <eP. We replace (1 — %) by e~ in the formula, get:

PrizjeS)>1- ] ™

Zj €S;

Rewirte the formula, we have:



Priz; € §1>1— e2siesi

According to the LP constraints, we have 3-, g, —x7 > y7,

Priz;e8S1>1—¢e Y
The expected benefit of &’ will be:

E(w(8") = Zn:ijr[zj €S

J=1

With Priz; € §' > 1 — e”Y , the expected benefit is guaranteed to be
“good”:

B(w(S) 2 3 w1 - %)

If we consider the ratio of the expected weight of S’ to the LP cost,
>_j—1 w;y;, which is an upper bound of optimal value. We get

B(w(S)  Zjerwy(1 =)
>j=1 Wiy 21 WY;

Next we show that 1 —e 7 > (1 — %) +q for 0 < ¢ < 1. Let us consider
function f(¢) = 1—e % where 0 < ¢ < 1. This is a concave function in interval
[0,1]. The function f(q) lies above the straight line joining points (0, f(0))
and (1, f(1)), that is (0,0) and (1,1 — £). Therefore, 1 —e™? > (1 — 2)q.

Since (1 —¢ %) > (1 — 1/e)y; we get that the ratio is at least (1 —1). W

Immediately from lemma 2.1 and 2.2, we have the following:

Theorem 2.3 Algorithm BMC_LP is a randomized (1 — 1) approzimation
algorithm with expected cost B.

3 MSCT Problem

However, users are usually more concerned about quality of query answers
instead of the cost of answering query. The problem becomes minimizing the
cost of query plan while guarantee some quality value. More formaly, we are
interested in the problem that selecting a subset of paths with a threshold,
with minimum cost.



3.1 IP and LP Formulation

The notation is the same as in Section 2, except that we want to choose a
subset of paths that meet the threshold 7" while minimizing the cost. The
[P formulation is as follows:

minimize moe(S;) -
subject to
Yy wp 2 T
Yj < Yilzyesy i for ally
z; € {0,1} for all ¢
y; € {0,1} for all j

By letting x; and y; be reals in [0,1] and ignoring one side of the con-
straints, we replace the last two constraints in IP to obtain the LP formula-
tion:

L
Yj

0
0
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3.2 Algorithm and Analysis

We use the similiar randomized rounding approach as before.

Let (z*,y*) be the fractional solution obtained by CPLEX. We choose
a collection of sets &’ such that Pr[ Set S; is chosen in 8’| = min(1, ax}),
where o > 1 is a boosting factor to ensure that we reach the threshold. This
algorithm produces solutions with expected benefit at least (1 — 8%) -T and
expected cost at most a- OPT.

Algorithm MSCT_LP
Solve LP relaxation, get fractional solution (z*, y*)
Rounding z* values such that
Pr[ Set S; is chosen in &’ = min(1, ax})

Lemma 3.1 The expected cost of S' is at most « OPT.

Proof. Let us compute the expected cost of S’ as follows.
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Elc(S')] Si) -

( S;) - o)
z IC(Sl) ;k
aOPT
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Thus the expected cost of the rounded solution is at most oo OPT. [ |

Lemma 3.2 The total weight of the covered elements is at least (1 — e%) -T.

Proof. Again we first consider the probability that an element z; is covered.

Prizje 8] = 1-1Iles(1 —7)
= 1- Hz €S; (1 —azx)
> 1- HZJES O
> 1 ES
> 1-— —ayf

The expected benfit of S’ is:

E(w(S")) i1 w;Pr(z; € &'

> i wi(l— e’ayf)
Therefore, we have:

Do wi(1-e %)
Z;‘Lzl w;iYj
(1—e )T

AVARAY,

Immediately from lemma 3.1 and 3.2, we have the following:
Theorem 3.3 Algorithm MSCT_LP is a randomized o approximation al-
gorithm with expected benefit at least (1 — ) T.
4 Conclusion

Originally motivated by the problem of finding good paths and sets of paths
through NCBI life sciences sources we have generalized the problem to data
integration in the presence of overlapping sources, which applies to many



different kinds of information systems. We presented a pair bounded ran-
domized approximation algorithms. To summarize, life sciences data sources
are an excellent field to test new query models (paths through sources) and
optimization problems (overlap-adjusted benefit), all the while solving prob-
lems that are relevant to biologists.

Possible future work is abundant. In a direct continuation of the work
presented here we plan to expand on the types of queries to find out how
our algorithms fare under different applications. Further strands of research
are in the field of path query languages, efficient enumeration of all possible
paths, and finally optimization techniques on the actual web-accessible NCBI
sources rather than on large sampled sets stored in a local database.
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