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Record linkage methods help us combine multiple data sets from different

sources when a single data set with all necessary information is unavailable or when

data collection on additional variables is time consuming and extremely costly. Link-

age errors are inevitable in the linked data set because of the unavailability of an

error-free and unique identifier and because of possible errors in measuring or record-

ing. It has been realized that even a small amount of linkage errors can lead to

substantial bias and increase variability in estimating the parameters of a statistical

model. The importance of incorporating uncertainty of the record linkage process

into the statistical analysis step cannot be overemphasized.

The current research is mainly focused on the regression analysis of the linked

data. The record linkage and statistical analysis processes are treated as two sepa-

rate steps. Due to the limited information about the record linkage process, simpli-

fying assumptions on the linkage mechanism have to be made. In reality, however,

these assumptions may be violated. Also, most of the existing linkage error models



are built on the linked data set, which only contains records for the designated links.

Information about linkage errors carried by the designated non-links is missing.

In the dissertation, we provide general methodologies for both regression anal-

ysis and small area estimation using data from multiple files. A general integrated

model is proposed to combine the record linkage and statistical analysis processes.

The proposed linkage error models are built directly on the data values from the

original sources, and based on the actual record linkage method that is used. We

have adapted the jackknife methods to estimate bias, variance, and mean squared

error of our proposed estimators. To illustrate the general methodology, we give one

example of estimating the regression coefficients in the linear and logistic regression

models, and another example of estimating small area mean under the nested-error

linear regression model. In order to reduce the computational burden, simplified

version of the proposed estimators, jackknife methods, and numerical algorithms

are given. A Monte Carlo simulation study is devised to evaluate the performance

of the proposed estimators and to investigate the difference between the standard

and simplified jackknife methods.



Statistical Inference Using Multiple Data Files Combined Through
Record Linkage Techniques

by

Ying Han

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2018

Advisory Committee:
Professor Partha Lahiri, Chair/Advisor
Professor Cinzia Cirillo
Professor Paul Smith
Professor Takumi Saegusa
Professor Yan Li



c© Copyright by
Ying Han

2018





Dedication

I dedicate this dissertation to my caring husband, Alexander Estes.

ii



Acknowledgments

First of all, I would like to thank my dissertation advisor, Partha Lahiri. This

dissertation would not have been possible completed without his consistent guidance

and support. It is him who brought me into the area of Survey Methodology, the

area I would devote myself into. It is him who gave me the opportunity to work

on multiple interesting projects for the past years. It is him who helped me in my

job hunting when graduation was approaching. It has been a great pleasure to work

with him during my graduate life.

I would also like to give my special thanks to the rest of my committee mem-

bers, Cinzia Cirillo, Paul Smith, Takumi Saegusa, and Yan Li for taking the time

to read the thesis and give me their insightful feedbacks.

Thank you to all the other faculties in the Department of Mathematics, Eric

Slud, Leonid Koralov, Benjamin Kedem, Abram Kagan, and Joan Ren, for helping

me building a solid background in mathematics and statistics.

Thank you to all my friends, especially, Yimei Fan, Xia Li, Xuan Yao, and

Chen Wang, for encouraging me when I got frustrated, and providing suggestions

whenever I need some.

Thank you to my parents, Zhongtang Han and Shuxiangfan, and my sister,

Shujuan Han, for supporting me over the years. Thank you to the rest of the family

for their support and collective wisdom. Thank you to my husband, Alex Estes, for

being with me the whole way.

Thank you to everyone else who has helped me.

iii



Table of Contents

Dedication ii

Acknowledgements iii

List of Tables vii

List of Figures viii

List of Abbreviations ix

List of Notations x

1 Introduction 1
1.1 Record Linkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Fellegi and Sunter Model . . . . . . . . . . . . . . . . . . . . . 2
1.2 Statistical Analysis of Linked Data . . . . . . . . . . . . . . . . . . . 7

1.2.1 Linkage Mechanisms . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 Linkage Error Model: Chambers (2009) . . . . . . . . . . . . . 11
1.2.3 Linkage Error Model: Scheuren and Winkler (1993) . . . . . 14

1.3 Discussion and Overview of the Dissertation . . . . . . . . . . . . . . 16

2 Regression Analysis of Data from Two Files 19
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Problem Description and Data Availability . . . . . . . . . . . . . . . 20
2.3 General Integrated Model for Regression Analysis . . . . . . . . . . . 21

2.3.1 Regression Model . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.2 Linkage Error Model . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.3 Mixture Model . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.4 Designation of Links and non-Links . . . . . . . . . . . . . . . 26

2.4 Estimation of Regression Coefficients . . . . . . . . . . . . . . . . . . 27
2.5 Variance Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.7 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

iv



2.7.1 Proof of (2.5) . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.7.2 Proof of (2.7) . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Applications to Linear and Logistic Regression 39
3.1 Linear Regression using Data from Two Files . . . . . . . . . . . . . 39
3.2 Logistic Regression using Data from Two Files . . . . . . . . . . . . . 45
3.3 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.1 Proof of (3.5) . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3.2 Proof of (3.4), (3.6), and (3.7) . . . . . . . . . . . . . . . . . . 50
3.3.3 Proof of (3.10) . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3.4 Proof of (3.11) . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.5 Proof of (3.13) . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Small Area Estimation with Data from Two Files 57
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Small Area Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3 General Integrated Model for Small Area Estimation . . . . . . . . . 59

4.3.1 Problem Description and Data Availability . . . . . . . . . . . 59
4.3.2 General Integrated Model for Small Are Estimation . . . . . . 61

4.4 Empirical Best Prediction Estimator . . . . . . . . . . . . . . . . . . 66

4.5 Estimation of the Mean Squared Error of θ̂i
EBP

. . . . . . . . . . . . 68
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Application to the General Linear Mixed Model 71
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 General Linear Mixed Model with Block Diagonal Covariance . . . . 72
5.3 Nested Error Linear Model . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3.1 Estimation of Small Area Mean Using Data From a Single File 75
5.3.2 Estimation of Small Area Mean Using Data From Two Files . 75
5.3.3 Estimation of φφφ: Maximum Likelihood Method . . . . . . . . 80
5.3.4 Numerical Algorithms . . . . . . . . . . . . . . . . . . . . . . 82
5.3.5 Estimation of φφφ: Pseudo Maximum Likelihood Method . . . . 86

5.4 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.4.1 Proof of (5.2) . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.4.2 Proof of (5.11) . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.4.3 Proof of (5.12) . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.4.4 Proof of (5.15) . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.4.5 Proof of (5.16) and (5.17) . . . . . . . . . . . . . . . . . . . . 96
5.4.6 Proof of (5.19) . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.4.7 Proof of (5.20) and (5.21) . . . . . . . . . . . . . . . . . . . . 104
5.4.8 Proof of (5.23) . . . . . . . . . . . . . . . . . . . . . . . . . . 107

v



6 Monte Carlo Simulation Study 109
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.2 The Equal Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2.1 Linear regression with linked data . . . . . . . . . . . . . . . 115
6.2.2 Logistic regression with linked data . . . . . . . . . . . . . . . 118

6.3 The Unequal Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.3.1 Linear regression with linked data . . . . . . . . . . . . . . . 123

6.4 Comparison of the Standard and Simplified Jackknife Methods . . . . 127
6.4.1 Equal Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.4.2 Unequal Scenario . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7 Future Research 136

Bibliography 140

vi



List of Tables

2.1 Data layout for observations on y and xxx in Fy and Fx. . . . . . . . . . 21

4.1 Data layout for joint observations on y and xxx for each small area . . . 59
4.2 Data layout for observations on y and xxx for each small area in Fy and

Fx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.1 Estimating equations for β estimators in linear and logistic models. . 110
6.2 Simulation conditions for two cases under the equal scenario. . . . . . 112
6.3 AAD, ASD and PRI of β estimators for linear regression (Equal Sce-

nario). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.4 AAD, ASD and PRI of β estimators for logistic regression (Equal

Scenario). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.5 Monte Carlo estimates and standard deviations for logistic regression

(Equal, Case 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.6 RE of β estimators for logistic regression (Equal Scenario, Case 1). . 123
6.7 Simulation conditions for two cases under the unequal scenario. . . . 124
6.8 AAD, ASD and PRI of β estimators for linear regression (Unequal

Scenario). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.9 Monte Carlo estimates and standard deviations for linear regression

(Unequal Scenario, Case 1) . . . . . . . . . . . . . . . . . . . . . . . . 129
6.10 RE of β estimators for linear regression (Unequal Scenario, Case 1). . 129
6.11 Wilcoxon signed rank test for absolute relative difference in estimated

variance for logistic regression (Equal Scenario, Case 1). . . . . . . . 132
6.12 Wilcoxon signed rank test for absolute relative difference in estimated

variance for linear regression (Unequal Scenario, Case 1). . . . . . . 135

vii



List of Figures

6.1 Scatter plots of β estimates in a linear model (Equal Scenario). . . . . 116
6.2 Heat maps of absolute and squared deviations of β estimates in a

linear model (Equal Scenario). . . . . . . . . . . . . . . . . . . . . . . 117
6.3 Scatter plots of β estimates in a logistic model (Equal Scenario). . . . 120
6.4 Heat maps of absolute and squared deviations of β estimates in a

logistic model (Equal Scenario). . . . . . . . . . . . . . . . . . . . . 121
6.5 Box plots of deviations and relative deviations of β estimators for

logistic regression (Equal Scenario, Case 1). . . . . . . . . . . . . . . 122
6.6 Plots of Monte Carlo estimates and standard deviations for logistic

regression (Equal Scenario, Case 1). . . . . . . . . . . . . . . . . . . . 122
6.7 Scatter plots of β estimates in a linear model (Unequal Scenario). . . 125
6.8 Heat maps of absolute and squared deviations of β estimates in a

linear model (Unequal Scenario). . . . . . . . . . . . . . . . . . . . . 126
6.9 Box plots of deviations and relative deviations of β estimates for linear

regression (Unequal Scenario, Case 1). . . . . . . . . . . . . . . . . . 128
6.10 Plots of Monte Carlo estimates and standard deviations for linear

regression (Unequal Scenario, Case 1). . . . . . . . . . . . . . . . . . 128
6.11 Box plot of relative differences in estimated variance of β estimators

for logistic regression. (Equal Scenario, Case 1). . . . . . . . . . . . . 133
6.12 Histogram of absolute relative differences in estimated variance of β

estimators for logistic regression (Equal Scenario, Case 1). . . . . . . 133
6.13 Box plot of relative differences in estimated variance of β estimators

for linear regression. (Unequal Scenario, Case 1). . . . . . . . . . . . 134
6.14 Histogram of absolute relative differences in estimated variance of β

estimators for linear regression (Unequal Scenario, Case 1). . . . . . . 135

viii



List of Abbreviations

AAD Average Absolute Deviation
ASD Averate Squared Deviation
BLUE Best Linear Unbiased Estimator
BP Best Prediction
CMSE Conditional Mean Squared Error
EBP Empirical Best Prediction
EM Expectation Maximization
ECM Expectation Conditional Maximization
ML Maximum Likelihood
MLE Maximum Likelihood Estimate
MOM Method of Moments
OLS Ordinary Least Squares
WLS Weighted Least Squares
PML Pseudo Maximum Likelihood
PMLE Pseudo Maximum Likelihood Estimate
MSE Mean Squared Error
PRI Percent Relative Improvement
RE Relative Efficiency
REML Restricted Maximum Likelihood
SE Standard Error

ix



List of Selected Notations

U the population of interest.
y a scalar random variable of interest.
xxx a vector random variable of order p.
www the vector of K matching fields.
ccc the comparison vector variable.
Fy the file containing observations on y.
Fx the file containing observations on xxx.
Sy the set of population units covered Fy.
Sx the set of population units covered Fx.
M the set of matches.
M c the set of mismatches.
N the number of records in Fx.
n the number of records in Fy.
G the number of blocks.
m the number of small areas.
Ni the number of records in block or small area i from file Fx.
ni the number of records in block or small area i from file Fy.
K the number of matching fields.
mk the probability of a record pair agreeing on matching field k among matches M .
µk the probability of a record pair agreeing on matching field k among mismatches M c.
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Chapter 1: Introduction

1.1 Record Linkage

In record linkage, or exact file matching, one compares two or more files on

a single population in absence of a unique and error-free identifier for purposes of

unduplication or production of an enhanced, merged database (e.g., Newcombe et

al. 1959, Fellegi and Sunter 1969, Herzog et al. 2007). Record linkage differs from

statistical matching in terms of the types of units to be linked or matched. The

primary goal of record linkage is to link an entity (e.g., person, household, farm,

etc.) from one file to the same entity in other file(s). In contrast, the primary goal

of statistical matching is to link similar units (e.g., matching the same demographic

group from different files). In this dissertation, our focus is on the statistical esti-

mation related to record linkage and not statistical matching. Readers interested in

statistical matching are referred to Rässler(2002), D’Orazio (2006), and others.

A merged or linked database, created by record linkage, is of great interest

to analysts interested in certain specialized multivariate analysis, which would be

otherwise either impossible or difficult without advanced statistical expertise as

variables are stored in different files. Record linkage is used in many applications,

including population size estimation at the Census Bureau (Winkler 1994, 1995, and
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Jaro 1989), epidemiological and medical studies (e.g., Gill 1997), sociological studies,

survey frame improvement, and, more recently, counter-terrorism (Gomatam and

Larsen 2004). For more information on its applications, see Alvey and Jamerson

(1997) and references therein. The National Death Index is matched to existing

insurance, medical, and other databases for studies (e.g., Livingston and Ko 2005).

Record linkage techniques can be broadly classified into deterministic and

probabilistic record linkages. They both use common matching fields available from

files to be linked that are indicative of a true match status of an entity. Examples

of matching fields include last name, date of birth, address, etc. In deterministic

record linkage, a record pair is deemed a link if the two records agree on all or some

available matching fields according to a pre-specified rule, and hence there is no

stochastic element in the deterministic record linkage process. On the other hand,

if such a link is only deemed a link with certain probability it is called probabilistic

record linkage. This dissertation concerns probabilistic record linkage.

1.1.1 Fellegi and Sunter Model

Fellegi and Sunter (1969) first developed a theoretical framework for record

linkage. Suppose we have two files FA and FB, which contain records for a sample

SA of size n and a sample SB of size N , respectively, from the same population

U . Let j represent the index of a record in FA, and let j′ represent the index

of a record in FB. The goal of record linkage is to partition all record pairs in

the set FA × FB = {(j, j′) : j ∈ FA, j
′ ∈ FB} into two disjoint sets: the set

2



of matches M = {(j, j′) : ljj′ = 1, j ∈ FA, j
′ ∈ FB} and the set of mismatches

M c = {(j, j′) : ljj′ = 0, j ∈ FA, j
′ ∈ FB}. Here, ljj′ represent the true matching

status of the record pair (j, j′); that is, ljj′ = 1 if record j from FA and record j′

from FB actually correspond to the same population unit.

The goal of record linkage is achieved by making comparisons comparisons of

information on matching fields between records in FA and records in FB. The match-

ing fields usually do not include a unique and error-free identifier, such as Social

Security Number. Examples of matching fields include name, gender, race, date of

birth, address, etc. Some matching fields (e.g., last name) have more discriminatory

power than the others (e.g., gender) in distinguishing matches from mismatches.

Let www = (wk)
K
k=1 denote a vector of K matching fields, and let wwwAj and wwwBj′ represent

the values of www for record j ∈ FA and j′ ∈ FB, respectively. The record linkage

model is built on a comparison vector ccc = (ck)
K
k=1, which is a vector-valued variable

that displays the pattern of agreement and disagreement on matching fields. The

simplest method of constructing comparison vectors is to use exact matching. The

comparison vector cccjj′ = (cjj′k)
K
k=1 for the record pair (j, j′) is defined as:

cccjj′k =


1 if wAjk = wBj′k

0 if wAjk 6= wBj′k

.

For example, when there are K = 3 matching fields, the possible values of a com-

parison vector are (1, 1, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 0, 0), (0, 1, 0), (0, 0, 1) and

(0, 0, 0). Matches tend to have more ones in their comparison vectors than mis-

matches.
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Fellegi and Sunter (1969) proposed an optimal decision rule to designate record

pairs into links and non-links. The decision rule is optimal in the sense that it

minimizes the number of records requiring clerical review at a fixed error level. The

decision rule is based on the following likelihood ratio score:

Rjj′ =
P (cccjj′|(j, j′) ∈M)

P (cccjj′|(j, j′) ∈M c)
=
P (cccjj′ |ljj′ = 1)

P (cccjj′ |ljj′ = 0)
(1.1)

Intuitively, the larger the likelihood ratio Rjj′ is, the more likely the record pair

(j, j′) is to be a true match. Therefore, based on the values of Rjj′ , one of three

decisions are to be made based on the following rule:

• If Rjj′ > RU , then designate the record pair (j, j′) as a link ;

• If RL < Rjj′ < RU , then send the record pair (j, j′) to clerical review;

• If Rjj′ < RL, then designate the record pair (j, j′) as a non-link ;

where RU and RL are the optimal upper and lower thresholds, respectively, which

are determined at a pre-specified error levels for false links and false non-links. Note

that any monotone increasing function (such as logarithm) of the likelihood ratio

Rjj′ can serve equally well as a test statistic for the purpose of record linkage.

The probabilities in (1.1) are unknown and need to be estimated. To simplify

the estimation of these probabilities, Fellegi and Sunter (1969) made a conditional

independence assumption: agreements on matching fields are independent within

4



matches and mismatches. That is,

P (cccjj′|ljj′ = 1) =
K∏
k=1

P (cjj′k|ljj′ = 1) =
K∏
k=1

m
cjj′k
k (1−mk)

1−cjj′k ,

P (cccjj′|ljj′ = 0) =
K∏
k=1

P (cjj′k|ljj′ = 0) =
K∏
k=1

u
cjj′k
k (1− uk)1−cjj′k , (1.2)

where mk = P (cjj′k = 1|ljj′ = 1) and uk = P (cjj′k = 1|ljj′ = 0) are the probabilities

of a record pair agreeing on the matching field k among matches M and mismatches

M c, respectively. Under this assumption, estimation of the unknown probabilities in

(1.1) is reduced to estimation of the matching parameters {mk, uk, k = 1, · · · , K}.

The optimality of Fellegi and Sunter’s method heavily depends on the accuracy of

the estimates of these matching parameters.

Fellegi and Sunter (1969) also suggested a method called blocking to reduce

the computational burden caused by the large amount of comparison vectors. The-

oretically, all the record pairs in set FA × FB should be considered for comparison.

However, comparison of two moderate files can lead to an extremely large amount of

comparison vectors. For example, 105 comparison vectors will be generated for two

files of sizes 102 and 103. Fellegi and Sunter (1969) suggested to partition records

into blocks based on whether they agree on one or a set of characteristics, such as

zip code or the first three digits of phone numbers. Only records within the same

block are compared. In this way, the number of comparison vectors can be greatly

reduced.

Remark 1: Elements of the comparison vector ccc can be binary or continu-

ous. Besides exact matching, a comparison vector with binary elements can also

be constructed in a more general way by assigning a distance function dk(·) and a

5



threshold τk to each matching field k, k = 1, · · · , K. For the record pair (j, j′), its

comparison vector can be defined as: cjj′k = 1 if dk(wjk, wj′k) ≤ τk and cjj′k = 0

if dk(wjk, wj′k) > τk, k = 1, · · · , K. For example, the string comparator (Winkler

1990) can be used as a distance function for a string-valued matching field.

Remark 2: The conditional independence assumption has been criticized

since it often fails in practice. However, estimation under the conditional indepen-

dence assumption can still provide accurate decision rules even though the assump-

tion is violated; see e.g., Thibaudeau (1993), Winkler (1989a, 1994). The conditional

independence assumption can also be relaxed by introducing interactions among

matching fields; see e.g., Armstrong and Mayda 1993, Thibaudeau 1993, Larsen and

Rubin 2001.

Remark 3: The optimality of the decision rule heavily depends on the accu-

racy of the estimates of the matching parameters and the choices of the upper and

lower thresholds; see e.g., Belin 1993, Belin and Rubin 1995. Also, it is possible that

a record in FA is linked to two or more records in FB, since all the record pairs with

their likelihood ratio scores above the upper threshold will be designated as links.

Some programming approaches have been developed to force one-to-one linkage; see

e.g. Jaro (1989) and Fortini et al. (2002). Though these approaches can help to

avoid the occurrence of the one-to-many or many-to-one linkage problems in record

linkage, it may also remove the true matches.
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1.2 Statistical Analysis of Linked Data

Probabilistic record linkage procedures are subject to linkage errors. There

are two types of linkage errors. The linkage error is called false positive if a true

mismatch is deemed a link by the record linkage procedure. On the other hand,

the linkage error is called false negative if a true match is deemed a non-link by

the record linkage procedure. Neter et al. (1965) showed that a relatively small

amount of linkage errors could lead to substantial bias in estimating a regression

relationship. If one simply ignores the linkage errors, analysis of linked data could

yield misleading results in a scientific study. Therefore, the importance of accounting

for linkage errors in statistical analysis cannot be overemphasized.

1.2.1 Linkage Mechanisms

Suppose that a linked data set is generated by combining the records from

two files Fy and Fx through some record linkage techniques. Here, Fy represents

the file containing the observed values of a scalar variable y, and Fx represents the

file containing the observed values of a vector-valued variable xxx of order p. Let XXX

denote the matrix of the observed xxx values in file Fx, let yyy denote the vector of the

unobserved true y values corresponding to XXX, and let yyy? denote the vector of the

y values that are selected from the file Fy and linked to XXX. Thus, the linked data

set contains (yyy?,XXX). Most of the existing linkage error models are directly built

on the linked data by exploiting the relationship between yyy? and yyy. Under certain

assumptions, the randomness of the record linkage process can be generally modeled
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via the following identity:

yyy? = TTTyyy (1.3)

Here, TTT = (tjj′)
n,N
j=1,j′=1 is an unknown random permutation matrix, with tjj′ repre-

senting the true matching status between y?j and yj′ , where y?j is the y value that

is linked to xxxj and yj′ is the true y value corresponding to xxxj′ ; that is, tjj′ = 1 if

y?j and yj represent the y value for the same population unit, tjj′ = 0 otherwise. So

tjj = 1 indicates that (xj, y
?
j ) is correctly linked.

The distribution of linkage errors depends on the characteristic of the proba-

bilistic record linkage method that is actually used. Here, based on the conditional

distribution of the matching status matrix TTT given the observed data yyy?, XXX, CCC, we

classify the linkage mechanisms into three categories:

• LCAR: The linkage is called linkage completely at random (LCAR) if the

conditional distribution of TTT given the data yyy?, XXX and CCC, say f(TTT |yyy?,XXX,CCC;γγγ)

does not depend on yyy?, XXX and CCC; that is, f(TTT |yyy?,XXX,CCC;γγγ) = f(TTT ;γγγ) for all yyy?,

XXX, CCC, γγγ, where γγγ denotes a vector of unknown parameters. Note that it does

not mean that the linkage process is random, but the linkage process does not

depends on values of yyy?, XXX and CCC.

• LAR: The linkage is called linkage at random (LAR) if the conditional distri-

bution of TTT given the data yyy?, XXX and CCC depends only XXX or/and CCC, but not

on yyy?. That is, f(TTT |yyy?,XXX,CCC;γγγ) = f(TTT |XXX,CCC;γγγ) for all yyy?, XXX, CCC, γγγ.

• LNAR: The linkage is called linkage not at random (LNAR) if the conditional
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distribution of TTT given the data yyy?, XXX and CCC depends on yyy?.

However, the detailed information about record linkage may not be available

to the people who perform statistical analysis. To adjust the linkage bias in the

statistical analysis of the linked data, assumptions on the linkage mechanism have

to be made based on the available information one can obtain about linkage errors.

In secondary data analysis, researchers can only get access to the linked data

generated from the record linkage process. The information about linkage errors can

be obtained from a training sample of the linked data. The true matching status for

each linked record pair in the training sample can be determined through clerical

review. If the linked data and the training sample are available to researchers, there

is a scope for correcting the linkage bias in the statistical analysis. Neter et al.

(1965) discussed this secondary analysis using an audit sample. In the context of

understanding the effects of low-level radiation data on cancer death rate, Lahiri

(1995) and Krewski et al. (2001) suggested analysis of the Cox proportional hazard

model using information contained in a sample to correct for linkage error biases.

More recently, following Neter et al. (1965), Chambers (2009) put forward a variety

of methods for different secondary data analyses that use a sample to correct for

linkage error biases. Following the work of Chambers (2009), researchers advanced

the secondary data analysis of the linked data in several different directions; see e.g.,

Chambers et al. (2009), Chipperfield et al. (2011), Kim and Chambers (2012a,b,

2013), Samart and Chambers (2014), Dasylva (2014), Chipperfield and Chambers

(2015), and Chambers and Kim (2016). Kandari and Lahiri (2016), following up
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on Lahiri (1995), suggested a theory of predicting a function misclassified binary

variables using information from a sample. However, due to the limited information

about the linkage process in secondary data analysis, researchers typically assume

that the linkage is LAR or LCAR (limited to dependence on XXX only).

In primary data analysis, researchers can get access to not only the linked

data but also some summary information generated during the record linkage pro-

cess, such as values of matching fields, values of comparison vectors, the matching

weights (such as the likelihood ratio score), the estimated linkage probabilities,

and so on. This detailed information can assist researchers to learn more about

the linkage mechanism, and can be potentially used to correct the linkage bias in

the statistical procedures. Scheuren and Winkler (1993, 1997) showed how to use

record linkage process information in correcting the linkage bias of the ordinary least

squares (OLS) estimator of the regression coefficient in a standard multiple linear

regression model. Their approach involves first estimating an analytical expression

of the bias of the OLS using the record linkage process information and then ap-

plying the estimated bias correction to the OLS. Lahiri and Larsen (2005) obtained

an exact unbiased estimator of regression coefficients by deriving the expected value

of the linked response variable when linkage errors are uncorrelated with the true

response given the comparison vectors. Hof and Zwinderman (2012) followed up

on the Lahiri-Larsen approach and showed how to extend it to link multiple files

or when one-to-one matching is not desired. In primary data analysis, with the

additional information about the linkage process, researches are able to build more

sophisticated linkage error models by assuming that the linkage depends on CCC, XXX,
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or both (LAR).

1.2.2 Linkage Error Model: Chambers (2009)

In this part, we introduce the linkage error model proposed by Chambers

(2009) as an example of using the LCAR linkage mechanism and a training sample

in secondary data analysis.

Chambers (2009) developed a linkage error model under the following assump-

tions:

(1) The linked data is obtained by combining two files Fy and Fx. Fy and Fx

contain the observed values of y and x, respectively, for all the units of the same

population of size N , without duplicate. Hence, Fy and Fx are of the same size N .

(2) The records in files Fy and Fx are partitioned into G blocks, with Ni records

in block i, without error. So linkage errors only occur within the same block.

(3) The resulting linkage is complete (i.e., all records are linked) and one-to-one

between Fy and Fx.

Let xxxij denote the observed value of xxx for record j in block i from Fx, let

yij denote the true value of y corresponding to xxxij, and let y?ij denote the value

of y that is recorded in block i of Fy and linked to xxxij. Let yyyi = (yij)
Ni
j=1 and

yyy?i = (y?ij)
Ni
j=1 denote the vector of true y values and the vector of linked y values in

block i corresponding to XXX i = (xxxTij)
Ni
j=1, respectively. Under the above assumptions,

Chambers (2009) modeled the randomness of the outcome of the linkage process via
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the identity

yyy?i = TTT iyyyi, i = 1, · · · , G.

where TTT i = (tijj′)
Ni,Ni

j=1,j′=1 is an unknown random permutation matrix of dimension

Ni×Ni with 111TNi
TTT i = 111TNi

and TTT i111Ni
= 111Ni

, and the TTT i are independently distributed

across blocks.

Following Neter et al. (1965), Chambers (2009) further assumed that:

(4) The probability of a designated link being a true match is the same within

each block.

(5) The probability of a designated non-link being a true match is the same

within each block.

Under these assumptions, Chambers proposed the following exchangeable link-

age error model:

P (tijj = 1|data) = λi, P (tijj′ = 1|data) =
1− λi
Ni − 1

,

for i = 1, · · · , G, j = 1, · · · , Ni, j
′ = 1, · · · , Ni, and j 6= j′, where λi is an unknown

block-specific parameter.

Under the above framework for statistical analysis of the linked data, Cham-

bers (2009) took account of linkage errors into the linear regression analysis of the

linked data. Inspired by Scheuren and Winkler (1993), Chambers (2009) developed

a bias-corrected ordinary least squares (OLS) estimator of the regression coefficient

by adjusting the bias of the naive OLS estimator under the exchangeable linkage

error model. Inspired by Lahiri and Larsen (2005), Chambers (2009) developed

an unbiased OLS estimator and a best linear unbiased estimator (BLUE) of the
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regression coefficient by exploiting the regression relationship between yyy?i and XXX i

under the exchangeable linkage error model. Chambers (2009) also extended these

ideas, developed a general estimating-equations-based theory for the regression anal-

ysis using linked data by correcting the bias of the estimating functions under the

proposed exchangeable linkage error model, and applied the theory to the linear

and logistic regressions. Subsequently, Kim and Chambers (2012a, 2012b, 2013)

extended the methodology to accommodate the situation where the linked data is

produced by linking more than two files and the linkage is incomplete. Smart and

Chambers (2014) proposed a method for estimating the regression coefficient in a

nested-error linear regression model when linked data is used. Other related articles

include Chambers et al. (2009), Chipperfield and Chambers (2015), Chambers and

Kim (2016).

Remark 1: The exchangeable linkage error model is based on the assumption

that the linkage mechanism is LCAR. Chambers (2009) realized that it was probably

the simplest way to characterize the behavior of a probability-based record linkage

process, and that more sophisticated models could be formulated with additional

information. Evidently, the optimal estimators derived from the proposed estimating

equations under the exchangeable linkage error model will not be optimal under

a more complex linkage error model, such as the one proposed by Scheuren and

Winkler (1993), which allows the probability of correct linkage to vary both within

and across blocks.

Remark 2: The estimators of the regression coefficient mentioned above are

unbiased in the sense that they are unbiased when the block-specific parameters λi,
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i = 1, · · · , G (and variance component parameters if they are involved) are known.

In practice, however, these block-specific parameters are unknown and need to be

estimated by using a clerically-reviewed training sample of the linked data for each

block. The block-specific parameters λi can be simply estimated by the sample pro-

portions of the correctly-linked record pairs in block i, i = 1, · · · , G. Therefore, the

unbiasedness and efficiency of the proposed estimators of the regression coefficient

depends on the accuracy of the estimated block-specific parameters. The estimate

of λi can be unreliable if there are not enough samples in block i, which occurs often

in the literature of small area estimation.

1.2.3 Linkage Error Model: Scheuren and Winkler (1993)

Here, we introduce the linkage error model proposed by Scheuren and Winkler

(1993) as an example of using the LAR linkage mechanism and summary information

from the record linkage process in primary data analysis.

Using assumptions (1) and (2) in Section 1.2.2, the linkage error models pro-

posed by Scheuren and Winkler (1993) can be generally rewritten as:

yyy?i = TTT iyyyi, i = 1, . . . , G.

where TTT i = (tijj′)
Ni,Ni

j=1,j′=1 with TTT i111Ni
= 111Ni

, and TTT i are independent across blocks.

The linkage error model proposed by Scheuren and Winkler (1993) allows

the probability of being a true match to vary across record pairs. They generally

assumed that:

P (tijj′ = 1|data) = qijj′ ,
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where
∑Ni

j′=1 q
i
jj′ = 1, i = 1, . . . , G, j = 1, . . . , Ni, and j′ = 1, . . . , Ni.

Based on the available information about the linkage process, more specific

assumptions can be made on the linkage mechanism to simplify the estimation of

the probabilities qijj′ . As illustrated in Scheuren and Winkler (1993), one can assume

that the probability of a record pair (j, j′) in block i being a true match only depends

on its corresponding matching weight rijj′ , which can be derived from the comparison

vector cccijj′ . That is, P (tijj′|data) = P (tijj′|rijj′). In this case, the method proposed

by Belin and Rubin (1991) can be used to estimate probabilities qijj′ by fitting

a two-class Gaussian mixture model to the transformed matching weights. Note

that a clerically-reviewed training sample is also required to estimate the unknown

parameters involved in the transformation. Under the linkage error model, Scheuren

and Winkler obtained an unbiased estimator of the regression coefficient in a multiple

linear regression model by adjusting the linkage bias of the naive OLS estimator.

Following Scheuren and Winkler (1993), Lahiri and Larsen (2005) assumed

that the probability of a record being a true match depends only on its comparison

vectors cccijj′ . That is, P (tijj′ |data) = P (tijj′ |cccijj′). Assuming that the comparison

vectors follow a two-class mixture model, estimation of probabilities qijj′ reduces

to the estimation of unknown parameters in the mixture model. The maximum

likelihood estimates of the mixture model parameters can be approximated by using

the Expectation-Maximization algorithm. By exploiting the relationship between

the linked y values and the true x values, Lahiri and Larsen developed an exact

unbiased estimator of the regression coefficient in a general linear model.

Remark 1: The exchangeable linkage error model proposed by Chambers
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(2009) can be treated as a special case of the one proposed by Scheuren and Winkler

(1993), where qijj = λi and qijj′ = (1 − λi)/(Ni − 1), i = 1, . . . ,m, j = 1, . . . , Ni,

j′ = 1, . . . , Ni, j
′ 6= j, which are estimated using a sample drawn from the linked

data file. In contrast, in Chapter 2 we propose a model where the probability of

correct linkage could vary both within and across blocks. Moreover, the number of

parameters is reduced by exploiting data on matching weights rijj′ or comparison

vectors cccijj′ through the mixture model and hence the parameters are estimated

efficiently using data from many blocks. The difference between the two approaches

can be attributed to the fact that Chambers (2009) focused on the secondary analysis

of linked data while we focus on a method that can be directly applied to two

separated data sets to be linked.

1.3 Discussion and Overview of the Dissertation

In Chapter 1, we have presented a brief overview of the record linkage tech-

niques for data integration. We have introduced the first statistical framework for

record linkage, and the optimal decision rules used for designating record pairs into

links and non-links, as a special example. In addition, we have discussed the effects

of linkage errors on statistical analysis and emphasized the importance of taking ac-

count of linkage errors into statistical analysis. The existing methods for correcting

the linkage bias are discussed, and several examples are provided.

In Chapter 2 and Chapter 3, we provide a methodological framework for the

regression analysis using data from two different files. Especially, we are interested
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in estimating the regression parameters related to the conditional distribution of

the response variable y given the predictors xxx. Rather than separating regression

analysis from record linkage as most existing methods do, we propose a general

integrated model to combine these two processes, based on the assumption that the

sample units in one file is a subset of those in the other file. We also provide a general

class of estimating equations that can produce different estimators corrected for the

linkage bias. A jackknife method is then adapted to estimate the bias, variance

and mean squared error of our estimators. Our methodology can be widely applied

to the general linear regression models, the generalized linear regression models,

and the general linear mixed models, as long as observations on y are independent

across blocks given xxx. To illustrate our methodology, we implement our general

methodology to two special situations where the linear and logistic regression models

are of the focus of research.

In Chapter 4 and Chapter 5, we focus our research on small area estimation

using data from two files. Specifically, we are interested in predicting an area-specific

parameter, which can be expressed as a function of fixed and mixed effects. A new

linkage error model is developed to combine the small area model with the record

linkage model. Its difference from the previously proposed linkage error model is

discussed. Under the modified general integrated model, we provide the general

methodology for obtaining the Empirical Best Prediction (EBP) estimator of the

parameter of interest and for estimating its mean squared error. To illustrate our

methodology for small area estimation, we consider the situation where the general

linear mixed model with block-diagonal covariance structure is used as the unit-level
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small area model. The nested-error linear model is discussed as a special example.

In Chapter 6, we devise a Monte Carlo simulation study to compare differ-

ent estimators, and we investigate the performance of the standard and simplified

jackknife methods.

In Chapter 7, we offer some scope for future research.
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Chapter 2: Regression Analysis of Data from Two Files

2.1 Introduction

In Chapter 2, we provide a methodological framework for statistical analysis

using data from two different files. Specifically, we are interested in estimating

the regression parameters related to the conditional distribution of the response

variable y given the predictors xxx. We propose a general integrated model that takes

account of linkage errors in the analysis of a wide range of variables—discrete and

continuous. We also provide a general class of systems of estimating equations

that can produce various estimators corrected for the linkage bias. A jackknife

method is then adapted to estimate the bias, variance and mean squared error of

our estimators. Moreover, we also introduce some simplified versions of the proposed

estimators and the standard jackknife method in order to reduce the computational

burden. Application of our methodology only requires observations of the response

variable y to be independent across blocks given predictor xxx. So it is not limited to

the observations related to mutually independent population units, but can be used

for observations corresponding to units that are independent across blocks, such as

residents in a county, patients in a clinic, or students in a school.
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2.2 Problem Description and Data Availability

Let y represent a scalar random variable of interest, and let xxx represent a

vector-valued variable of order p. Our goal is to model the relationship between y

and xxx in a population U . In particular, we are interested in estimating the regression

parameters associated with the conditional distribution of y given xxx. However,

the joint observations on (y,xxx) are not available. Instead, observations on y and

observations on xxx are separately recorded in two files Fy and Fx, but the matching

status between any record from Fy and any record from Fx is unknown.

To be specific, Fy contains the observed values of y for a sample Sy of n units

from U , Fx contains the observed values of xxx for a sample Sx of N units from U ,

and there is no duplicate in either file. In this dissertation, we assume that Sy ⊂ Sx.

The data layout for files Fy and Fx is shown in Table 2.1. Here, ỹj denotes the value

of y for record j in Fy, xxxj′ denotes the value of xxx for record j′ in Fx, and yj′ denote

value of y corresponding to xxxj′ , where j = 1, . . . , n, j′ = 1, . . . , N . Since yj′s exist

but are not observed in Fx. their corresponding column in Fx is shaded in gray.

The records in Fy are not aligned to those in Fx, so ỹj and yj′ may not represent

the y-values for the same population unit even if j′ = j.

Assume that there also exists a vector of K matching fields, denoted by www,

whose observations are available in both files. Let w̃̃w̃wj and wwwj′ represent the values of

www for record j in Fy and record j′ in Fx, respectively. It is also sufficient to assume

that only the values of comparison vector ccc, cccjj′ , are available for each record pair

(j, j′), j ∈ Sy, j′ ∈ Sx.

20



Let ỹ̃ỹy = (ỹj)
n
j=1 denote the n×1 vector of observed y values in Fy,XXX = (xxxTj′)

N
j′=1

denote the N×p matrix of observed xxx values in Fx, yyy = (yj′)
N
j′=1 denote the unknown

N × 1 vector of y values associated with XXX, W̃̃W̃W =
(
w̃̃w̃wTj
)n
j=1

denote the n×K matrix

of www values in Fy, WWW =
(
wwwTj′
)N
j′=1

denote the N ×K matrix of www values in Fx, and

CCC denote the Nn×K matrix of comparison vectors derived from comparing W̃̃W̃W and

WWW . In summary, our observed data are {ỹ̃ỹy,XXX,W̃̃W̃W,WWW}, or equivalently, {ỹ̃ỹy,XXX,CCC}.

Table 2.1: Data layout for observations on y and xxx in Fy and Fx: Fy contains
observed values of variables www and y for a sample Sy of size n, Fx contains observed
values of variables www and xxx for a sample Sx of size N , and Sy ⊂ Sx. Note that the
true y values corresponding to xxx (shaded in gray) exist but are not observed in Fx.

Fy

Label wwwT y
1 w̃̃w̃wT1 ỹ1

· · · · · · · · ·
j w̃̃w̃wTj ỹj
· · · · · · · · ·
n w̃̃w̃wTn ỹn

Fx

Label wwwT xxxT y
1 wwwT1 xxxT1 y1

· · · · · · · · · · · ·
j′ wwwTj′ xxxTj′ yj′

· · · · · · · · · · · ·
N wwwTN xxxTN yN

2.3 General Integrated Model for Regression Analysis

In this section, we propose a general integrated model to propagate the un-

certainty of the linkage process in the later estimation step under the assumption

of data availability described in Section 2.2. The general integrated model involves

three important components: a regression model, a linkage error model and a mix-

ture model. The regression model is used to characterize the relationship between

the response variable y and the predictor xxx, the linkage error model is used to

characterize the randomness of the linkage process, and the mixture model on com-
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parison vectors is used to estimate the probability of a record pair being a match

given the observed data and designate all record pairs into links and non-links. In

the following part, we introduce each component one by one.

2.3.1 Regression Model

Assume that values of (y,xxx) for units in the population U follow a general

regression model and the model holds for all sampled units in Sx. To illustrate the

methodology, we assume that

E(yyy|XXX) = µµµ(XXX;βββ), V ar(yyy|XXX) = VVV (XXX;βββ,τττ). (2.1)

Here, βββ is a p× 1 vector of unknown coefficient parameters, τττ is an h× 1 vector of

other unknown variance components, µµµ(XXX;βββ) = (µj′(XXX;βββ))Nj′=1 is an N × 1 vector,

and VVV (XXX;βββ,τττ) = (vj′t′(XXX;βββ,τττ))N,Nj′=1,t′=1 is an N ×N matrix, where µj(·) and vj′t′(·)

are known functions. Three simple examples are given below:

Example 1: For the linear regression model yyy|XXX ∼ N(XXXβββ, σ2
eIIIN) where IIIN is

an identity matrix of dimension N×N , we have µµµ(XXX;βββ) = XXXβββ, VVV (XXX;βββ,τττ) = σ2
eIIIN ,

and τττ = σ2
e .

Example 2: For the logistic regression model where yj′s are independent and

identically distributed with P (yj′ = 1|xxxj′) = g(xxxTj′βββ) = exp
(
xxxTj′βββ

)
/[1 + exp

(
xxxTj′βββ

)
],

we have the mean component µµµj′(XXX;βββ) = g(xxxTj′βββ) and the covariance component

vvvj′t′(XXX;βββ,τττ) = g(xxxTj′βββ)
[
1− g(xxxTj′βββ)

]
for j′ = t′ and vvvj′t′(XXX;βββ,τττ) = 0 for j′ 6= t′.

Example 3: For a nested-error linear model yyyi = XXX iβββ + vi111Ni
+ eeei where

vi
iid∼ N(0, σ2

v), eeei
ind∼ N(000Ni

, σ2
eIIINi

), vi is independent of eeei, 111Ni
is an Ni × 1 vector
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of ones, 000Ni
is a matrix of zeros of dimension Ni × Ni, IIINi

is an identity matrix of

dimension Ni × Ni, and Ni is the number of units in group i, i = 1, . . . , G, with∑G
i=1Ni = N , we have µµµ(XXX;βββ) and VVV (XXX;βββ,τττ) are block-diagonal with the ith block

values µµµi(XXX;βββ) = XXX iβββ, VVV i(XXX;βββ,τττ) = σ2
v111Ni

111TNi
+ σ2

eIIINi
and τττ = (σ2

v , σ
2
e)
T .

2.3.2 Linkage Error Model

As discussed in Chapter 1, most of the existing linkage error models are built

directly on the linked data, based on the assumptions that (1) the linked data

is obtained by linking two files of the same size that contain observations on all

population units of U , and (2) the resulting linkage is complete for Fx, i.e., each

record in Fx has a designated link selected from Fy. In reality, however, the two

files used for analysis usually come from different sources, such as survey samples

and administrative records, and thus their coverage of the population is different.

Typically, the units covered by Fy are a subset of those covered by Fx, as described

in our dissertation. Also, only the designated links obtained from the linkage process

are contained in the linked data file. In practice, the decision rules for most record

linkage techniques rely on the specified threshold values. Seldom, the choice of the

threshold values can lead to a complete linkage for Fx. In this way, information

about the linkage error carried by the designated non-links is ignored.

Here, we develop a new linkage error model that allows different file sizes as

long as Sy ⊂ Sx. The model is built directly on data from the original files by

exploiting the relationship between the observed y values in Fy and the unobserved
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y values corresponding to the observed xxx in Fx. The linkage error model we proposed

here is the key to the general integrated model, serving as a connection between the

regression model introduced in Section 2.3.1 and the record linkage model, which

will be described in Section 2.3.3.

Under the assumption that there is no duplicate in each file and that Sy ⊂ Sx,

a specific observed y value in file Fy, say ỹj, and one of these unobserved y values

from the set {yj′ : j′ = 1, . . . , N} must be related to the same population unit. Let

ljj′ be the unknown binary matching status indicator for record pair (j, j′), such

that ljj′ = 1 if record j in Fy and record j′ in Fx represent the same population

unit, and ljj′ = 0 otherwise, j ∈ Sy, j′ ∈ Sx. Then the relationship between ỹj and

{yj′ : j′ = 1, . . . , N} can be modeled via the following identity:

ỹj =
N∑
j′=1

ljj′yj′ , j = 1, . . . , n. (2.2)

Let LLL = (ljj′)
n,N
j=1,j′=1. Then the above model (2.2) can also be written in the

following matrix form:

ỹ̃ỹy = LLLyyy (2.3)

In other words, ỹ̃ỹy, the observed y values for all sampled units in Sy, is a n-permutation

of yyy, the unobserved y values for all sampled units in Sx.

In this dissertation, we assume that the linkage mechanism is at random

(LAR). That is, the conditional probability of LLL given yyy, XXX, and CCC could depend

on XXX and CCC but not on yyy, i.e., P (LLL|yyy,XXX,CCC) = P (LLL|XXX,CCC). Here, specifically, we

assume that the probability of a record pair being a true match only depends on its
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comparison vector. That is,

P (LLL|yyy,XXX,CCC) = P (LLL|CCC).

2.3.3 Mixture Model

Following Larsen and Rubin (2001), we assume that the comparison vectors fol-

low a two-class mixture model. Jaro (1989), Winkler (1993, 1994, 1995), Thibaudeau

(1993), and Armstrong and Mayda (1993) used mixture models in record linkage

problems. The two-class mixture model on comparison vectors is motivated by the

idea that patterns of agreement and disagreement on matching fields would have

different distributions among matches M = {(j, j′) : ljj′ = 1, j ∈ Sy, j′ ∈ Sx} and

mismatches M c = {(j, j′) : ljj′ = 0, j ∈ Sy, j′ ∈ Sx}. The comparison vectors cccjj′ are

assumed to be independent and identically distributed with the following probability

mass function:

P (cccjj′) = πP (cccjj′ |ljj′ = 1) + (1− π)P (cccjj′|ljj′ = 0),

where π = P (ljj′ = 1) represents the probability of a record pair being a match,

P (cccjj′|ljj′ = 1) and P (cccjj′|ljj′ = 0) are the probabilities of observing cccjj′ among

matches M and among mismatches M c, respectively.

Under the conditional independence assumption as shown in (1.2), the above

mixture model is simplified into:

P (cccjj′) = π
K∏
k=1

m
cjj′k
k (1−mk)

(1−cjj′k) + (1− π)
K∏
k=1

u
cjj′k
k (1− uk)(1−cjj′k). (2.4)

where cjj′k is the kth element of cccjj′ , mk = P (cjj′k = 1|ljj′ = 1) and uk = P (cjj′k =

1|ljj′ = 0) are the probabilities of a record pair agreeing on matching fields k among
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matches and mismatches, respectively. Let ψψψ = (π,m1, . . . ,mK , u1, . . . , uK)T denote

the vector of unknown parameters in the mixture model.

By Bayes’ Rule, the conditional probability of a record pair being a match

given the observed comparison vector is given by:

P (ljj′ = 1|cccjj′ ;ψψψ) =
π
∏K
k=1m

cjj′k
k (1−mk)

(1−cjj′k)

π
∏K
k=1m

cjj′k
k (1−mk)

(1−cjj′k) + (1− π)
∏K
k=1 u

cjj′k
k (1− uk)(1−cjj′k)

:= qjj′ .

Note that qjj′ = qjj′(cccjj′ ;ψψψ) is a function of cccjj′ and ψψψ. Let QQQ(ψψψ) ≡ QQQ(CCC;ψψψ) =

(qjj′)
n,N
j=1,j′=1. Then we have

E(LLL|yyy,XXX,CCC) = E(LLL|CCC) = QQQ(ψψψ).

The maximum likelihood estimator of ψψψ can be obtained using the expecta-

tion maximization (EM) (Dempster, Laird, and Rubin 1977) and the expectation

conditional maximization (ECM) (Meng and Rubin 1993) algorithms.

2.3.4 Designation of Links and non-Links

As mentioned before, it is not necessary to produce a linked file in the middle

of the record linkage process for the purpose of parameter estimation in our case.

If the primary goal is to generate a linked data set for secondary data users, the

estimated probabilities can be used to partition the record pairs into designated links

and non-links and to estimate error rates. The decision rule is similar to Fellegi and

Sunter’s method. A record pair (j, j′) is declared as a link if the probability qjj′ is

above a pre-specified upper threshold. Other than qjj′ , one can also consider use

one of the following as a matching weight:
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(1) likelihood ratio: Rjj′(ψψψ) =
P (cccjj′ |ljj′=1)

P (cccjj′ |ljj′=0)
=

∏K
k=1m

cjj′k
k (1−mk)

(1−cjj′k)∏K
k=1 u

cjj′k
k (1−uk)

(1−cjj′k)

(2) posterior likelihood ratio: rjj′(ψψψ) =
P (ljj′=1|cjj′ )
P (ljj′=0|cjj′ )

=
qjj′

1−qjj′
.

In our dissertation, based on the assumption that Sy ⊂ Sx, it is reasonable

to assume that the record linkage is complete for Fy; that is, each record in Fy

has a linked record from Fx. Thus, we designate record pairs as links and non-

links based on the following decision rule: for any record j in Fy, a record j′ in Fx

is selected to be its link if its corresponding probability qjj′ is the largest among

{qjt : t = 1, . . . , N}, j = 1, . . . , n. By using this decision rule, we can generate a

linked dataset, which contains data (ỹ̃ỹy, X̃̃X̃X?). Here, X̃̃X̃X? = (x̃̃x̃x?Tj )nj=1 denote the n× p

matrix of xxx values which are selected from Fx and linked to ỹ̃ỹy, and x̃̃x̃x?j denotes the

selected xxx value from Fx that is linked to ỹ̃ỹyj in Fy, j = 1, . . . , n. Therefore, X̃̃X̃X? in

the linked data set is an n-permutation of XXX in Fx. That is,

X̃̃X̃X? = AAAXXX

where AAA = (ajj′)
n,N
j=1,j′=1 is an n × N permutation matrix with AAA111N = 111n. Here,

ajj′ = 1 if qjj′ is the largest among {qjt : t = 1, . . . , N}, ajj′ = 0 otherwise. Note

that AAA is derived from probabilities qjj′ , which are functions of comparison vectors

cccjj′ and mixture model parameters ψψψ. Hence, when ψψψ is known and CCC is observed,

AAA is fixed. Therefore, X̃̃X̃X? is fixed given XXX, CCC and ψψψ.

2.4 Estimation of Regression Coefficients

Assuming that yyy is conditionally independent of CCC given XXX, the conditional

mean and variance of ỹ̃ỹy given XXX and CCC can be derived under the general integrated
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model. That is,

E(ỹ̃ỹy|XXX,CCC) = QQQ(CCC;ψψψ)µµµ(XXX;βββ), V ar(ỹ̃ỹy|XXX,CCC) = ΣΣΣ(XXX,CCC;ψψψ,βββ,τττ). (2.5)

where ΣΣΣ ≡ ΣΣΣ(XXX,CCC;ψψψ,βββ,τττ) = (σjt)
n,n
j=1,t=1 with diagonal entries σjj and off-diagonal

entries σjt (j 6= t) equal to

σjj = σjj(XXX,CCC;ψψψ,βββ,τττ) =
N∑
j′=1

N∑
t′=1

qjj′qjt′vj′t′ +
N∑
j′=1

qjj′(1− qjj′)
(
vj′j′ + µ2

j′

)
,

σjt = σjt(XXX,CCC;ψψψ,βββ,τττ) =
N∑
j′=1

N∑
t′=1

qjj′qtt′vj′t′ , (t 6= j).

The detailed proof of (2.5) is shown in Section 2.7.1.

When ψψψ is known, merely based on (2.5), we can estimate βββ by solving the

following class of system of p unbiased estimating equations:

β̂̂β̂β : f(βββ,τττ ,ψψψ) = HHH(βββ,τττ ,ψψψ) [ỹ̃ỹy −QQQ(ψψψ)µµµ(βββ)] = 000p, (2.6)

where HHH(βββ,τττ ,ψψψ) ≡HHH(CCC,XXX;βββ,τττ ,ψψψ) is a given p× n matrix which does not depend

on ỹ̃ỹy, and 000p is a p × 1 vector of zeros. The possible choices for matrix HHH(βββ,τττ ,ψψψ)

includes but are not limited to X̃̃X̃XT ,XXXTQQQT , andXXXTQQQTΣΣΣ−1. The choices ofHHH(βββ,τττ ,ψψψ)

for the linear and logistic regressions will be discussed in the next chapter.

When ∂f(βββ,τττ ,ψψψ)
∂βββ

exits, an application of Taylor series expansion yields

f(β̂̂β̂β, τττ ,ψψψ) ≈ f(βββ,τττ ,ψψψ) +
∂f(βββ,τττ ,ψψψ)

∂βββ

(
β̂̂β̂β − βββ

)
.

Based on the fact that f(β̂̂β̂β, τττ ,ψψψ) = 000p, E [f(βββ,τττ ,ψψψ)] = 000p, and

V ar (f(βββ,τττ ,ψψψ)|XXX,CCC) = HHH(βββ,τττ ,ψψψ)ΣΣΣ (ψψψ,βββ,τττ)HHHT (βββ,τττ ,ψψψ),
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we can obtain that

E(β̂̂β̂β|XXX,CCC) ≈
[
∂f(βββ,τττ ,ψψψ)

∂βββ

]−1

E
[
f(β̂̂β̂β, τττ ,ψψψ)− f(βββ,τττ ,ψψψ)

]
+ βββ = βββ, (2.7)

V ar(β̂̂β̂β|XXX,CCC) ≈
[
∂f(βββ,τττ ,ψψψ)

∂βββ

]−1

HHH(βββ,τττ ,ψψψ)ΣΣΣ (ψψψ,βββ,τττ)HHHT (βββ,τττ ,ψψψ)

([
∂f(βββ,τττ ,ψψψ)

∂βββ

]−1
)T

,

when the matrix ∂f(βββ,τττ ,ψψψ)
∂βββ is invertible at the true value of βββ. The detailed proof of (2.7)

is given in Section 2.7.2. It implies that the resulting estimator β̂̂β̂β from solving (2.6) is

(approximately) unbiased for βββ when other parameters are unknown.

When the estimating equations in (2.6) are used, the resulting estimator β̂̂β̂β may

depend on the unknown variance component τττ if the selected matrix HHH(βββ,τττ ,ψψψ) depends

on τττ . In that case, methods for estimating τττ need to be considered. When additional

assumptions about the regression model are made, such as normality, other unbiased

estimating functions f(βββ,τττ ,ψψψ) can be derived to estimate βββ and τττ simultaneously when ψψψ

is known. For example, the maximum likelihood estimator of βββ and τττ can be obtained by

using the first partial derivatives of the log-likelihood function as the estimating functions.

An example is given for the linear regression case in the next chapter.

In order to simplify the methodology, one may replaceQQQ in the estimating equations

f(βββ,τττ ,ψψψ) by QQQM (or QQQM2), which is a simplified version of QQQ with all entries in each row

set to zeros except the largest one (or two). For known ψψψ, let β̂̂β̂βF (ψψψ) denote an estimator

of βββ obtained as a solution to (2.6) for a given choice of HHH(βββ,τττ ,ψψψ). The corresponding

estimator of βββ when QQQ is replaced by QQQM (or QQQM2) in (2.6) is denoted by β̂̂β̂βM (ψψψ) (or

β̂̂β̂βM2(ψψψ)). When ψψψ is unknown, one can use β̂̂β̂βF (ψ̂̂ψ̂ψ) to estimate βββ by replacing ψψψ with

one of its consistent estimators ψ̂̂ψ̂ψ. The corresponding estimator of βββ when QQQ is replaced

by QQQM (or QQQM2) in (2.6) is denoted by β̂̂β̂βM (ψ̂̂ψ̂ψ) (or β̂̂β̂βM2(ψ̂̂ψ̂ψ)). In this dissertation, the

maximum likelihood estimator of ψψψ is used as ψ̂̂ψ̂ψ, and it can also be treated as a solution of
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a system of estimating equations. An estimator of the variance of β̂̂β̂β(ψ̂̂ψ̂ψ) can be obtained by

plugging in the estimates β̂̂β̂β, τ̂̂τ̂τ and ψ̂̂ψ̂ψ in the variance formula from (2.7). But we do realize

that this plug-in variance estimator would underestimate V ar(β̂̂β̂β(ψ̂̂ψ̂ψ)|XXX,CCC) since it does

not take account of the variability of τ̂̂τ̂τ and ψ̂̂ψ̂ψ. In the next section, a resampling method of

estimating V ar(β̂̂β̂β(ψ̂̂ψ̂ψ)|XXX,CCC) is given for the case where the measurements are uncorrelated

across blocks, and we leave the variance estimation for the correlated-across-blocks case

for future research.

Now, we consider the situation where blocking is used during the record linkage

process. The records in Fy and Fx can be partitioned into G blocks based on some basic

characteristics, such as zip code, first letter of last name, or first three digits of phone

numbers. Let ni and Ni be the number of sample units in block i within Sy and Sx,

respectively, i = 1, . . . , G. So
∑G

i=1 ni = n and
∑G

i=1Ni = N . Let ỹij denote the value of

y for record j in block i from Fy, xxxij′ denote the value of xxx for record j′ in block i within Fx,

and yij′ denote its corresponding y value, i = 1, . . . , G, j = 1, . . . , ni, j
′ = 1, . . . , Ni. We

denote the vector of values ỹij′ and yij′ within block i by ỹ̃ỹyi = (ỹij)
ni
j=1 and yyyi = (yij′)

Ni
j′=1,

respectively. Similarly, we denote the matrix of xxx values in block i by XXXi = (xxxTij′)
Ni
j′=1.

Then the regression model shown in (2.1) can be rewritten as:

E(yyyi|XXXi) = µµµi(XXXi;βββ), V ar(yyyi|XXXi) = VVV i(XXXi;βββ,τττ), (2.8)

for i = 1, . . . , G. Here, we assume that yyyi are independent across blocks given XXX.

We assume that there is zero probability that one record from Fy and another record

from Fx represent the same population unit if they are from different blocks. Therefore,

only records within the same blocks need to be compared, and linkage errors can only

occur within blocks. Let lijj′ denote the matching status of record pair (j, j′) in block i,

and LLLi = (lijj′)
ni,Ni

j=1,j′=1 denote its corresponding matrix. The linkage error model in (2.3)
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can be simplified into:

ỹ̃ỹyi = LLLiyyyi, i = 1, . . . , G. (2.9)

In other words, LLL = diag(LLL1, . . . ,LLLG).

Let cccijj′ be value of the comparison vector ccc derived from values of matching fields

w̃̃w̃wij and wwwij′ for record pair (j, j′) in block i. The two-class mixture model in (2.4) can be

re-written as

P (cccijj′) = π

K∏
k=1

m
ci
jj′k
k (1−mk)

(1−ci
jj′k)

+ (1− π)

K∏
k=1

u
ci
jj′k
k (1− uk)

(1−ci
jj′k)

. (2.10)

Let qijj′ = P (lijj′ = 1|cccijj′) and QQQi = (qijj′)
ni,Ni

j=1,j′=1, then E(LLLi|CCCi) = QQQi.

Therefore, in case of blocking, when yyyi’s are independent across blocks, the estimat-

ing equations for βββ (and τττ) given known ψψψ can be generally written are

G∑
i=1

fi(βββ,τττ ,ψψψ) = 000t, (2.11)

where t is equal to p for estimating βββ or (p + h) for estimating βββ and τττ . In particular,

fi(βββ,τττ ,ψψψ) = HHH i(βββ,τττ ,ψψψ) [ỹ̃ỹyi −QQQi(ψψψ)µµµi(βββ)] for (2.6).

2.5 Variance Estimation

As mentioned above, when the mixture model parameter ψψψ is known, estimate of βββ

(and τττ) can be obtained by solving the following system of estimating equations. That is,

G∑
i=1

fi(βββ,τττ ,ψψψ) = 000t, (2.12)

In order to estimate the bias, variance, and mean squared error of an estimate β̂̂β̂β(ψψψ), the

unified jackknife theory proposed by Jiang, Lahiri and Wan (2002), henceforth referred to

as JLW, can be used. Jackknife replicate i is obtained by deleting data from block i in
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both files Fx and Fy, (i = 1, . . . , G). The delete-i estimates of βββ, β̂̂β̂β−i(ψψψ), and the delete-i

estimate of τττ , τττ−i(ψψψ), are the solutions of

β̂̂β̂β−i(ψψψ), τττ−i(ψψψ) :

G∑
i′ 6=i

fi′(βββ,τττ ,ψψψ) = 000t, (2.13)

for i = 1, . . . , G. The jackknife estimate of bias, variance and mean squared error of β̂̂β̂β,

when ψψψ is known, are then given by

biasJ

(
β̂̂β̂β(ψψψ)

)
= (G− 1)

(
¯̂
β
¯̂
β
¯̂
β(ψψψ)− β̂̂β̂β(ψψψ)

)
,

varJ

(
β̂̂β̂β(ψψψ)

)
=
G− 1

G

G∑
i=1

(
β̂̂β̂β−i(ψψψ)− ¯̂

β
¯̂
β
¯̂
β(ψψψ)

)(
β̂̂β̂β−i(ψψψ)− ¯̂

β
¯̂
β
¯̂
β(ψψψ)

)T
,

mseJ

(
β̂̂β̂β(ψψψ)

)
=
G− 1

G

G∑
i=1

(
β̂̂β̂β−i(ψψψ)− β̂̂β̂β(ψψψ)

)(
β̂̂β̂β−i(ψψψ)− β̂̂β̂β(ψψψ)

)T
.

where
¯̂
β
¯̂
β
¯̂
β(ψψψ) = 1

G

∑G
i=1 β̂̂β̂β−i(ψψψ) is the average of the replicate estimates of βββ. The bias,

variance and mean squared error of τ̂̂τ̂τ(ψψψ) can also be estimated similarly.

In practice, however, the mixture model parameter ψψψ is unknown. The maximum

likelihood estimate (MLE) of ψψψ, say ψ̂̂ψ̂ψ, can be obtained using the EM algorithm. The

MLE ψ̂̂ψ̂ψ can also be treated as the solution of a system of estimating equations derived from

the log-likelihood function based on the distribution of comparison vectors cccijj′ . In order

to account for uncertainty of ψ̂̂ψ̂ψ, ψψψ should be replaced by ψ̂̂ψ̂ψ and ψ̂̂ψ̂ψ−i in (2.12) and (2.13),

respectively, where ψ̂̂ψ̂ψ−i is the delete-i estimate of ψψψ by removing values of comparison

vectors in block i, i = 1, . . . , G. Then the bias, variance, and mean squared error of β̂̂β̂β(ψ̂̂ψ̂ψ)

can be estimated. The properties of β̂̂β̂β(ψ̂)(ψ̂)(ψ̂) are expected to be similar to those of β̂̂β̂β(ψψψ) if ψ̂̂ψ̂ψ

is assumed to be independent of the response variable y; that is, the distribution of the

matching variables (e.g., last name, phone number) is assumed to be independent of the

response variable y (e.g., income) and hence of ỹ. This is true in many applications. The

bias, variance and mean squared error of any smooth function of βββ can be proposed in a
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straightforward way. For large G, under regularity conditions, asymptotic properties of

β̂̂β̂β(ψ̂̂ψ̂ψ) and the jackknife estimators proposed in this section can be obtained from the unified

theory on jackknife given in Jiang et al. (2002). To reduce the computational burden,

a simplified jackknife method can be used by replacing the delete-i estimate ψ̂̂ψ̂ψ−i by its

full sample estimate ψ̂̂ψ̂ψ. Our simulation results show that the accuracy of the variance

estimate would not be jeopardized much even though the uncertainty of ψ̂̂ψ̂ψ is ignored.

2.6 Summary

In chapter 2, we introduce a general methodology for regression analysis when data

values are from two different files. Rather than separating regression analysis from record

linkage as most existing methods do, we connect the regression model and the record

linkage model through our proposed new linkage error model. The general integrated

model can be implemented when the sample units in one file are a subset of those in

the other file. The y values observed in Fy are related to the xxx values observed in Fx

through the integrated model, and standard statistical analysis methods can be applied

for parameter estimation. For the purpose of parameter estimation, there is no need to

generate a linked file in the middle of the process. Information about linkage errors carried

by all record pairs (links and non-links) can all be passed into the estimation process and

used to correct for linkage bias. This is where our model is different from the secondary

data analysis where only the designated links are considered.

Essentially,, parameter estimation starts with deriving the conditional distribution

of the observed y values in file Fy given the observed xxx values in Fx and comparison

vectors. Based on their relationship, estimators can be obtained by solving a system of

estimating equations. In case of blocking, if data values are independent across blocks, the
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jackknife resampling method proposed by Jiang, Lahiri, and Wan (2005) can then be used

to estimate the bias, variance, and mean squared errors of the estimators, taking account

of both estimation errors and linkage errors. In the following chapter, we will give two

specific examples to illustrate our methodology.

2.7 Proofs

2.7.1 Proof of (2.5)

Based on the assumption that P (LLL|ỹ̃ỹy,XXX,CCC) = P (LLL|CCC), it can be proved from the

mixture model that ljj′ are conditionally independent given CCC with

P (ljj′ = 1|yyy,XXX,CCC) = P (ljj′ = 1|CCC) = P (ljj′ = 1|cccjj′) = qjj′ .

Therefore, for j = 1, . . . , n, j′ = 1, . . . , N , t = 1, . . . , n, t′ = 1, . . . , N , we have

E(ljj′ |yyy,XXX,CCC) = qjj′ , E
[
ljj′ ltt′ |yyy,XXX,CCC

]
=


qjj′ if j = t and j′ = t′

qjj′qtt′ otherwise

. (2.14)

Let QQQ = (qjj′)
n,N
j=1,j′=1, then

E(LLL|yyy,XXX,CCC) = QQQ (2.15)

Now, we consider the first-order and second-order conditional expectation of ỹ̃ỹy given

yyy, XXX and CCC. Combined result (2.15) with the linkage error model ỹ̃ỹy = LLLyyy, we can get

E [ỹ̃ỹy|yyy,XXX,CCC] = E [LLLyyy|yyy,XXX,CCC] = E [LLL|yyy,XXX,CCC]yyy = QQQyyy.

Since ỹj =
∑N

j′=1 ljj′yj′ under the linkage error model, the (j, t)th entry of the matrix ỹ̃ỹyỹ̃ỹyT

is equal to

(ỹ̃ỹyỹ̃ỹyT )jt =

 N∑
j′=1

ljj′yj′

( N∑
t′=1

ltt′yt′

)
, j = 1, . . . , n, t = 1, . . . , n.
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By applying the results in (2.14), we can calculate the (j, j) diagonal entries and (j, t)

off-diagonal entries of E[ỹ̃ỹyỹ̃ỹyT |yyy,XXX,CCC]. That is, for j = 1, . . . , n and t = 1, . . . , n,

E[ỹ̃ỹyỹ̃ỹyT |yyy,XXX,CCC]jj = E

 N∑
j′=1

ljj′yj′

( N∑
t′=1

ljt′yt′

)
|yyy,XXX,CCC


=

N∑
j′=1

N∑
t′=1

yj′yt′E
[
ljj′ ljt′ |yyy,XXX,CCC

]
=

N∑
j′=1

∑
t′ 6=j′

yj′yt′E
[
ljj′ ljt′ |yyy,XXX,CCC

]
+

N∑
j′=1

yj′yj′E
[
ljj′ ljj′ |yyy,XXX,CCC

]
=

N∑
j′=1

∑
t′ 6=j′

yj′yt′qjj′qjt′ +
N∑
j′=1

y2
j′qjj′

=

N∑
j′=1

N∑
t′=1

yj′yt′qjj′qjt′ +

N∑
j′=1

y2
j′qjj′(1− qjj′), (2.16)

E[ỹ̃ỹyỹ̃ỹyT |yyy,XXX,CCC]jt = E

 N∑
j′=1

ljj′yj′

( N∑
t′=1

ltt′yt′

)
|yyy,XXX,CCC


=

N∑
j′=1

N∑
t′=1

yj′yt′E
[
ljj′ ltt′ |yyy,XXX,CCC

]
=

N∑
j′=1

N∑
t′=1

yj′yt′qjj′qtt′ , (j 6= t).

Assuming that the response variable y is conditionally independent of comparison

vector ccc given xxx, we can derive the first-order and second-order expectation of y given xxx

and ccc from the regression model (2.1). That is,

E(yj′ |XXX,CCC) = E(yj′ |XXX) = µj′ ,

E
[
yj′yt′ |XXX,CCC

]
= E

[
yj′yt′ |XXX

]
= vj′t′ + µj′µt′ (2.17)

for j′ = 1, . . . , N , t′ = 1, . . . , N .

Based on results (2.16) and (2.17), the first-order and second-order of ỹ̃ỹy given XXX
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and CCC can be derived by applying law of total expectations. That is,

E[ỹ̃ỹy|XXX,CCC] = E (E[ỹ̃ỹy|yyy,XXX,CCC]|XXX,CCC) = E (QQQyyy|XXX,CCC) = QQQE (yyy|XXX,CCC) = QQQuuu,

E[ỹ̃ỹyỹ̃ỹyT |XXX,CCC]jj = E
(
E[ỹ̃ỹyỹ̃ỹyT |yyy,XXX,CCC]j,j |XXX,CCC

)
= E

 N∑
j′=1

N∑
t′=1

yj′yt′qjj′qjt′ +

N∑
j′=1

y2
j′qjj′(1− qjj′)|XXX,CCC


=

N∑
j′=1

N∑
t′=1

qjj′qjt′E
(
yj′yt′ |XXX,CCC

)
+

N∑
j′=1

qjj′(1− qjj′)E
(
y2
j′ |XXX,CCC

)
=

N∑
j′=1

N∑
t′=1

qjj′qjt′
[
vj′t′ + µj′µt′

]
+

N∑
j′=1

qjj′(1− qjj′)
[
vj′j′ + µ2

j′
]
,

E[ỹ̃ỹyỹ̃ỹyT |XXX,CCC]jt = E
(
E[ỹ̃ỹyỹ̃ỹyT |yyy,XXX,CCC]j,t|XXX,CCC

)
= E

 N∑
j′=1

N∑
t′=1

yj′yt′qjj′qtt′ |XXX,CCC


=

N∑
j′=1

N∑
t′=1

qjj′qtt′E
(
yj′yt′ |XXX,CCC

)
=

N∑
j′=1

N∑
t′=1

qjj′qtt′
(
vj′t′ + µj′µt′

)
, (t 6= j).

for j = 1, . . . , n, t = 1, . . . , n.

By applying the identity V ar(ỹ̃ỹy|XXX,CCC) = E[ỹ̃ỹyỹ̃ỹyT |XXX,CCC] − E[ỹ̃ỹy|XXX,CCC]E[ỹ̃ỹy|XXX,CCC]T , the

diagonal and off-diagonal entries of V ar(ỹ̃ỹy|XXX,CCC) are given by:

V ar(ỹ̃ỹy|XXX,CCC)jj = E[ỹ̃ỹyỹ̃ỹyT |XXX,CCC]jj −
(
E[ỹ̃ỹy|XXX,CCC]E[ỹ̃ỹy|XXX,CCC]T

)
jj

=
N∑
j′=1

N∑
t′=1

qjj′qjt′
[
vj′t′ + µj′µt′

]
+

N∑
j′=1

qjj′(1− qjj′)
[
vj′j′ + µ2

j′
]

−
N∑
j′=1

N∑
t′=1

qjj′qjt′µj′µt′

=

N∑
j′=1

N∑
t′=1

qjj′qjt′vj′t′ +

N∑
j′=1

qjj′(1− qjj′)
[
vj′j′ + µ2

j′
]

:= σjj ,

36



V ar(ỹ̃ỹy|XXX,CCC)jt = E[ỹ̃ỹyỹ̃ỹyT |XXX,CCC]jt −
(
E[ỹ̃ỹy|XXX,CCC]E[ỹ̃ỹy|XXX,CCC]T

)
jt

=
N∑
j′=1

N∑
t′=1

qjj′qtt′
(
vj′t′ + µj′µt′

)
−

N∑
j′=1

N∑
t′=1

qjj′qtt′µj′µt′

=
N∑
j′=1

N∑
t′=1

qjj′qtt′vj′t′ := σjt, (t 6= j),

for j = 1, . . . , n and j = 1, . . . , n.

Let ΣΣΣ ≡ ΣΣΣ(XXX,CCC;ψψψ,βββ,τττ) = (σjt)
n,n
j=1,t=1, then the conditional mean and variance of

ỹ̃ỹy given XXX and CCC can be written in the following matrix form:

E(ỹ̃ỹy|XXX,CCC) = QQQ(CCC;ψψψ)uuu(XXX;βββ), V ar(ỹ̃ỹy|XXX,CCC) = ΣΣΣ(XXX,CCC;ψψψ,βββ,τττ).

2.7.2 Proof of (2.7)

By using Talor expansion, the estimating function can be approximated by

f(β̂̂β̂β, τττ ,ψψψ) ≈ f(βββ,τττ ,ψψψ) +
∂f(βββ,τττ ,ψψψ)

∂βββ

(
β̂̂β̂β − βββ

)
.

Thus, when the matrix ∂f(βββ,τττ ,ψψψ)
∂βββ is invertible at the true value of βββ, we can have

β̂̂β̂β − βββ ≈
[
∂f(βββ,τττ ,ψψψ)

∂βββ

]−1 [
f(β̂̂β̂β, τττ ,ψψψ)− f(βββ,τττ ,ψψψ)

]
.

Based on the fact that E [ỹ̃ỹy|XXX,CCC] = QQQ(ψψψ)µµµ(βββ) and V ar (ỹ̃ỹy|XXX,CCC) = ΣΣΣ (ψψψ,βββ,τττ), we
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can get

E [f(βββ,τττ ,ψψψ)|XXX,CCC] = E [HHH(βββ,τττ ,ψψψ) (ỹ̃ỹy −QQQ(ψψψ)µµµ(βββ)) |XXX,CCC]

= HHH(βββ,τττ ,ψψψ) (E [ỹ̃ỹy|XXX,CCC]−QQQ(ψψψ)µµµ(βββ))

= 000p,

V ar (f(βββ,τττ ,ψψψ)|XXX,CCC) = V ar (HHH(βββ,τττ ,ψψψ) [ỹ̃ỹy −QQQ(ψψψ)µµµ(βββ)] |XXX,CCC)

= HHH(βββ,τττ ,ψψψ)V ar (ỹ̃ỹy|XXX,CCC)HHHT (βββ,τττ ,ψψψ)

= HHH(βββ,τττ ,ψψψ)ΣΣΣ (ψψψ,βββ,τττ)HHHT (βββ,τττ ,ψψψ).

Combing the above results with the fact f(β̂̂β̂β, τττ ,ψψψ) = 000p, we can get

E(β̂̂β̂β|XXX,CCC) ≈ E

([
∂f(βββ,τττ ,ψψψ)

∂βββ

]−1 [
f(β̂̂β̂β, τττ ,ψψψ)− f(βββ,τττ ,ψψψ)

]
+ βββ|XXX,CCC

)

=

[
∂f(βββ,τττ ,ψψψ)

∂βββ

]−1

[000p − E (f(βββ,τττ ,ψψψ|XXX,CCC))] + βββ

= βββ,

V ar(β̂̂β̂β|XXX,CCC) = V ar(β̂̂β̂β − βββ|XXX,CCC)

≈
[
∂f(βββ,τττ ,ψψψ)

∂βββ

]−1

V ar
(
f(β̂̂β̂β, τττ ,ψψψ)− f(βββ,τττ ,ψψψ)|XXX,CCC

)([∂f(βββ,τττ ,ψψψ)

∂βββ

]−1
)T

=

[
∂f(βββ,τττ ,ψψψ)

∂βββ

]−1

V ar (f(βββ,τττ ,ψψψ)|XXX,CCC)

([
∂f(βββ,τττ ,ψψψ)

∂βββ

]−1
)T

=

[
∂f(βββ,τττ ,ψψψ)

∂βββ

]−1

HHH(βββ,τττ ,ψψψ)ΣΣΣ (ψψψ,βββ,τττ)HHHT (βββ,τττ ,ψψψ)

([
∂f(βββ,τττ ,ψψψ)

∂βββ

]−1
)T

.
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Chapter 3: Applications to Linear and Logistic Regression

To illustrate our general methodology for regression analysis using data from two files

as described in Section 2.2, we consider two special situations where regression parameters

in linear and logistic models are of interest. Here, we use the same notation as Chapter 2.

3.1 Linear Regression using Data from Two Files

Assume that the values of y and xxx for all sampled units in block i of Sx satisfy the

following model:

E(yyyi|XXXi) = XXXiβββ, V ar(yyyi|XXXi) = σ2
eIIIni , i = 1, . . . , G, (3.1)

where σ2
e is an unknown constant parameter. Note that values yij in block i are uncorre-

lated and have the same variance σ2
e (homoscedasticity).

When data (yyyi,XXXi) is available for each block, the Ordinary Least Squares (OLS)

estimator is the best linear unbiased estimator (BLUE), and it is given by:

β̂̂β̂β =

(
G∑
i=1

XXXT
i XXXi

)−1( G∑
i=1

XXXT
i yyyi

)
(3.2)

However, the above estimator cannot be used to estimate βββ in our case since the yyyi’s are

not observed.

If a linked data file is generated based on the decision rule described in 2.3.4 during

the record linkage process and data (ỹ̃ỹyi, X̃̃X̃X
?
i ) is available, one may simply assume the linkage

39



is perfect, replace XXXi and yyyi in (3.2) by X̃̃X̃X?
i and ỹ̃ỹyi, and obtain a naive OLS estimator

β̂̂β̂βN (ψψψ). That is,

β̂̂β̂βN (ψψψ) =

(
G∑
i=1

X̃̃X̃X?T
i X̃̃X̃X?

i

)−1( G∑
i=1

X̃̃X̃X?T
i ỹ̃ỹyi

)
, (3.3)

which can be treated as the solution of the following system of estimating equations:

β̂̂β̂βN (ψψψ) :

G∑
i=1

X̃̃X̃X?T
i

(
ỹ̃ỹyi − X̃̃X̃X?

iβββ
)

= 000p.

In Section 3.3.2, we prove that the mean and variance of β̂̂β̂βN (ψψψ) under the general inte-

grated model are

E
(
β̂̂β̂βN (ψψψ)|XXX,CCC,ψψψ

)
=

(
G∑
i=1

X̃̃X̃X?T
i X̃̃X̃X?

i

)−1( G∑
i=1

X̃̃X̃X?T
i QQQiXXXi

)
βββ, (3.4)

V ar
(
β̂̂β̂βN (ψψψ)|XXX,CCC,ψψψ

)
=

[
G∑
i=1

X̃̃X̃X?T
i X̃̃X̃X?

i

]−1 [ G∑
i=1

X̃̃X̃X?T
i ΣΣΣiX̃̃X̃X

?
i

][
G∑
i=1

X̃̃X̃X?T
i X̃̃X̃X?

i

]−1

.

Based on the result, we can see that β̂̂β̂βN (ψψψ) is an biased estimator of βββ.

In order to correct the linkage bias and obtain a more robust estimator of βββ, we

exploit the relationship between ỹ̃ỹyi and XXXi, CCCi under the general integrated model. By

using the linear model (3.1) as the first component of the general integrated model, the

conditional mean and variance of ỹ̃ỹyi given XXXi and CCCi can be derived under the assumption

that yyyi is independent of CCCi given XXXi . That is, for i = 1, . . . , G,

E(ỹ̃ỹyi|XXXi,CCCi) = QQQiXXXiβββ, V ar(ỹĩyĩyi|XXXi,CCCi) = ΣΣΣi. (3.5)

Here, ΣΣΣi = (σijt)
ni,ni
j=1,t=1 is the ni × ni variance-covariance matrix with diagonal element

σijj and off-diagonal element σijt (j 6= t) equal to

σijj =

Ni∑
j′=1

qijj′σ
2
e +

Ni∑
j′=1

qijj′(1− qijj′)(xxxTij′βββ)2, σijt =

Ni∑
j′=1

qijj′q
i
tj′σ

2
e .

The detailed proof for (3.5) is given in Section 3.3.1. It is consistent with the general

result shown in (2.5). Note that ΣΣΣi depends on βββ, σ2
e and ψψψ. When compared to the
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distribution of yyyi given XXXi in (3.1), ỹ̃ỹyi also follows a linear regression model of βββ, but the

design matrix changes fromXXXi toQQQiXXXi and the variance matrix changes from σ2
eIIIni to ΣΣΣi.

The unequal diagonal entries and the non-zero off-diagonal entries of ΣΣΣi imply that values

ỹij in Fy have different variances and are correlated within blocks (heteroscedasticity).

When ψψψ is known, several different estimators of βββ can be developed based on the

relationship between ỹ̃ỹy and XXX, CCC. These estimators include the bias-corrected estimator

β̂̂β̂βC(ψψψ), the ordinary least squares estimator β̂̂β̂βOLS(ψψψ), the weighted least squares estimator

β̂̂β̂βWLS(ψψψ, σ2
e), and the maximum likelihood estimator β̂̂β̂βMLE(ψψψ).

The development of the bias-corrected estimator β̂̂β̂βC(ψψψ) starts with investigating the

bias of the naive OLS estimator β̂̂β̂βN (ψψψ) conditional on values XXX and CCC. By using the fact

that E(ỹ̃ỹyi|XXXi,CCCi) = QQQiXXXiβββ, we prove in Section 3.3.2 that

E
(
β̂̂β̂βN (ψψψ)|XXX,CCC

)
=

(
G∑
i=1

X̃̃X̃X?T
i X̃̃X̃X?

i

)−1( G∑
i=1

X̃̃X̃X?T
i QQQiXXXi

)
βββ

If the matrix
∑G

i=1 X̃̃X̃X
?T
i QQQiXXXi is invertible, an unbiased linear estimator β̂̂β̂βC(ψψψ) of βββ can

be obtained by adjusting the bias of β̂̂β̂βN (ψψψ). That is,

β̂̂β̂βC(ψψψ) =

(
G∑
i=1

X̃̃X̃X?T
i QQQiXXXi

)−1( G∑
i=1

X̃̃X̃X?T
i ỹ̃ỹyi

)
,

which can be treated as the solution of the following system of estimating equations:

β̂̂β̂βC(ψψψ) :

G∑
i=1

X̃̃X̃X?T
i (ỹ̃ỹyi −QQQiXXXiβββ) = 000p.

In Section 3.3.2, we prove that the mean and variance of β̂̂β̂βC(ψψψ) are equal to:

E(β̂̂β̂βC(ψψψ)|XXX,CCC) = βββ, (3.6)

V ar(β̂̂β̂βC(ψψψ)|XXX,CCC) =

[
G∑
i=1

X̃̃X̃X?T
i QQQiXXXi

]−1 [ G∑
i=1

X̃̃X̃X?T
i ΣΣΣiX̃̃X̃X

?
i

][
G∑
i=1

XXXT
i QQQ

T
i X̃̃X̃X

?
i

]−1

.

Moreover, by directly utilizing this linear regression relationship between ỹ̃ỹyi and XXXi,

CCCi as shown in (3.5), we can also use the ordinary least squares method to obtain an linear
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unbiased estimator β̂̂β̂βOLS(ψψψ) of βββ. That is,

β̂̂β̂βOLS(ψψψ) = arg min
βββ

G∑
i=1

(ỹ̃ỹyi −QQQiXXXiβββ)T (ỹ̃ỹyi −QQQiXXXiβββ)

=

(
G∑
i=1

XXXT
i QQQ

T
i QQQiXXXi

)−1( G∑
i=1

XXXT
i QQQ

T
i ỹ̃ỹyi

)
,

which can be treated as the solution of the following system of estimating equations:

β̂̂β̂βOLS(ψψψ) :
G∑
i=1

XXXT
i QQQ

T
i (ỹ̃ỹyi −QQQiXXXiβββ) = 000p.

The mean and variance of β̂̂β̂βOLS(ψψψ) are equal to

E(β̂̂β̂βOLS(ψψψ)|XXX,CCC) = βββ, (3.7)

V ar(β̂̂β̂βOLS(ψψψ)|XXX,CCC) =

[
G∑
i=1

XXXT
i QQQ

T
i QQQiXXXi

]−1 [ G∑
i=1

XXXT
i QQQ

T
i ΣΣΣiQQQiXXXi

][
G∑
i=1

XXXT
i QQQ

T
i QQQiXXXi

]−1

.

We do realize that the OLS estimator β̂̂β̂βOLS(ψψψ) is not the best linear unbiased

estimator of βββ since ỹij are correlated within blocks under the general integrated model.

One may consider to use the weighted least squares method to obtain the best linear

unbiased estimator of βββ by using the inverse of the variance-covariance matrix ΣΣΣi as the

weight matrix. That is,

β̂̂β̂βWLS(ψψψ, σ2
e) = arg min

βββ

G∑
i=1

(ỹ̃ỹyi −QQQiXXXiβββ)TΣΣΣ−1
i (ỹ̃ỹyi −QQQiXXXiβββ) (3.8)

6=

(
G∑
i=1

XXXT
i QQQ

T
i ΣΣΣ−1

i QQQiXXXi

)−1( G∑
i=1

XXXT
i QQQ

T
i ΣΣΣ−1

i ỹ̃ỹyi

)
(3.9)

To obtain β̂̂β̂βWLS(ψψψ, σ2
e), we take partial derivatives of the sum of weighted squares

with respect to βk (k = 1, . . . , p), and set the partial derivatives to zeros. Then the

weighted least squares (WLS) estimator β̂̂β̂βWLS(ψψψ, σ2
e) of βββ is obtained by solving the

following set of estimating equations:

β̂̂β̂βWLS(ψψψ, σ2
e) :

G∑
i=1

{
2δδδTkXXX

T
i QQQ

T
i + (ỹ̃ỹyi −QQQiXXXiβββ)TΣΣΣ−1

i DDDi,k

}
ΣΣΣ−1
i (ỹ̃ỹyi −QQQiXXXiβββ) = 0, (3.10)
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for k = 1, . . . , p. The detailed proof is given in Section 3.3.3. Here, δδδk = ∂β
∂βk

is the kth

column of the identity matrix IIIp of dimension p× p, and DDDi,k = ∂ΣΣΣi
∂βk

is an ni × ni matrix

with diagonal entries
∂σi

jj

∂βk
and

∂σijj
∂βk

= 2

Ni∑
j′=1

qijj′(1− qijj′)(xxxTij′βββ)xij′kδδδk,
∂σijt
∂βk

= 0,

We can see that the WLS estimator β̂̂β̂βWLS(ψψψ, σ2
e) obtained from optimizing (3.8) is

not the best linear unbiased estimator that we expect as shown in (3.9). This is mainly

because the variance-covariance matrix ΣΣΣi is not free of βββ. For the same reason, the

resulting β̂̂β̂βWLS(ψψψ, σ2
e) may not possess the nice properties of the weighted least squares

estimator of βββ obtained in the case where the variance-covariance matrix of the linear

regression model is free of βββ. For example, (1) there is no close-form expressions for

β̂̂β̂βWLS(ψψψ, σ2
e), and β̂̂β̂βWLS(ψψψ, σ2

e) is not a linear estimator; (2) β̂̂β̂βWLS(ψψψ, σ2
e) is not identical

to the MLE estimator, which can be seen by comparing their estimating equations. In

addition, β̂̂β̂βWLS(ψψψ, σ2
e) depends on parameter σ2

e , which is usually unknown and need to

be estimated. Otherwise, β̂̂β̂βWLS(ψψψ, σ2
e) cannot be evaluated even if ψψψ is known.

Under the assumption of normality, ỹ̃ỹyi|XXXi,CCCi ∼ N(QQQiXXXiβββ,ΣΣΣi), we can also derive

the maximum likelihood estimator (MLE) of βββ and σ2
e simultaneously when ψψψ is known.

The log-likelihood function of βββ and σ2
e based on data {ỹ̃ỹyi,XXXi,CCCi, i = 1, . . . , G} is given

by:

l(βββββββββ, σ2
e) = −1

2

m∑
i=1

{
ni ln(2π) + ln |ΣiΣiΣi|+ (ỹ̃ỹyi −QQQiXXXiβββ)TΣiΣiΣi

−1(ỹ̃ỹyi −QQQiXXXiβββ)
}
.

The MLE estimators β̂̂β̂βMLE(ψψψ) and σ̂2
e(ψψψ) can be treated as solutions of the following
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system of estimating equations:

G∑
i=1

{
tr
(
ΣΣΣ−1
i DDDi,k

)
−
[
2δδδTkXXX

T
i QQQ

T
i + (ỹ̃ỹyi −QQQiXXXiβββ)TΣΣΣ−1

i DDDi,k

]
ΣΣΣ−1
i (ỹ̃ỹyi −QQQiXXXiβββ)

}
= 0

G∑
i=1

{
tr
(
ΣΣΣ−1
i DDDi,σ

)
− (ỹ̃ỹyi −QQQiXXXiβββ)TΣΣΣ−1

i DDDi,σΣΣΣ
−1
i (ỹ̃ỹyi −QQQiXXXiβββ)

}
= 0 (3.11)

for k = 1, . . . , p. The detailed proof of (3.11) is in Section 3.3.4. Here, DDDi,σ = ∂ΣΣΣi
∂σ2

e
=(

∂σi
jt

∂σ2
e

)ni,ni

j=1,t=1

denotes the partial derivative of ΣΣΣi with respect to σ2
e with

∂σijj
∂σ2

e

=

Ni∑
j′=1

qijj′ ,
∂σijt
∂σ2

e

=

Ni∑
j′=1

qijj′q
i
tj′ , (t 6= j).

Remark 1: Here, based on the linear relationship between ỹ̃ỹy and XXX, CCC under the

general integrated model, we derive four different estimators for the regression coefficient

βββ in a multivariate linear regression model: β̂̂β̂βC(ψψψ), β̂̂β̂βOLS(ψψψ), β̂̂β̂βWLS(ψψψ, σ2
e), and β̂̂β̂βMLE(ψψψ).

Note that all these four estimators depend on ψψψ. When ψψψ is unknown, one can estimate βββ

by substituting ψψψ with its maximum likelihood estimate ψ̂̂ψ̂ψ, which can be obtained by the

expectation-maximization algorithm. Besides ψψψ, β̂̂β̂βWLS(ψψψ, σ2
e) also depends on σ2

e . One

may consider to use the linked data (ỹ̃ỹy, X̃̃X̃X) to obtain an estimate of σ2
e . An estimator of

σ2
e under the exchangeable linkage error model is given by Chambers (2009).

Remark 2: In order to estimate the variances of estimators β̂̂β̂βN (ψ̂̂ψ̂ψ), β̂̂β̂βC(ψ̂̂ψ̂ψ), β̂̂β̂βOLS(ψ̂̂ψ̂ψ),

β̂̂β̂βWLS(ψ̂̂ψ̂ψ, σ̂2
e), and β̂̂β̂βMLE(ψ̂̂ψ̂ψ), we can simply replacing the unknown parameters βββ, σ2

e , and

ψψψ with β̂̂β̂β, σ̂2
e , and ψ̂̂ψ̂ψ in the formula of their corresponding theoretical variances of β̂̂β̂βN (ψψψ),

β̂̂β̂βC(ψψψ), β̂̂β̂βOLS(ψψψ), β̂̂β̂βWLS(ψψψ, σ2
e), and β̂̂β̂βMLE(ψψψ). The expression for the theoretical variances

of β̂̂β̂βN (ψψψ), β̂̂β̂βC(ψψψ) and β̂̂β̂βOLS(ψψψ) are given in (3.4), (3.6), and (3.7), respectively. However,

the variability of σ̂2
e , and ψ̂̂ψ̂ψ would be ignored in this way. Since these estimators of βββ

and the maximum likelihood estimator of ψψψ can all be treated as solutions to a system

of estimating equations, the jackknife method proposed by Jiang, Lahiri, and Wan (2005)

can then be used to estimate their bias, variance, and mean squared error.
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Remark 3: As shown above, there is no closed-from expressions for the WLS

estimator β̂̂β̂βWLS and the MLE estimator β̂̂β̂βMLE . So numerical algorithms, such as Newton-

Raphson method and Fisher scoring algorithm, are needed to find the solutions to the

estimating equations. Initial values are required for these numerical algorithms. The

naive OLS estimate β̂̂β̂βN (ψ̂̂ψ̂ψ), bias-corrected estimate β̂̂β̂βC(ψ̂̂ψ̂ψ), and OLS estimate β̂̂β̂βOLS(ψ̂̂ψ̂ψ)

can be chosen as the initial values.

3.2 Logistic Regression using Data from Two Files

Assuming there is no sampling bias, the logistic regression model also holds for all

samples units in Sx. That is, yij′ are independent and identically distributed with

P (yij′ = 1|xxxTij′ ;βββ) = g(xxxTij′βββ) =
exp
(
xxxTij′βββ

)
1 + exp

(
xxxTij′βββ

) , i = 1, . . . , G, j′ = 1, . . . , Ni.

Here, let g(XXXiβββ) =
(
g(xxxTij′βββ)

)Ni

j′=1
denote the Ni × 1 vector of means.

When the joint observations (yij′ ,xxxij′) are available, we can estimate βββ by using the

maximum likelihood method. The MLE estimate β̂̂β̂β of βββ is the solution of the following

estimating equations:

β̂̂β̂β :
G∑
i=1

XXXT
i (yyyi − g(XXXiβββ)) = 000p.

When data values are from two different files and a linked data set with values

(ỹ̃ỹyi, X̃̃X̃X
?
i ) (i = 1, . . . , G) is produced by any record linkage process, we can simply ignore

the linkage errors in the linked file and obtain a naive MLE estimator β̂̂β̂βN (ψψψ) of βββ:

β̂̂β̂βN (ψψψ) :
G∑
i=1

X̃̃X̃X?T
i

(
ỹ̃ỹyi − g(X̃̃X̃X?

iβββ)
)

= 000p. (3.12)

However, the existence of linkage errors can lead to significant bias of the estimators,

this is probably because they weaken the relationship between y and xxx. Similarly to the
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linear regression case, we can correct the linkage bias by utilizing the relationship between

ỹ̃ỹy and XXX, CCC under the general integrated model.

Applying the fact that

E(yij′ |xxxTij′) = g(xxxTij′βββ),

V ar(yij′ |xxxTij′) = g(xxxTij′βββ)
[
1− g(xxxTij′βββ)

]
,

Cov(yij′ , yit′ |XXXi) = 0,

for i = 1, . . . , Ni, j
′ = 1, . . . , Ni, t

′ = 1, . . . , Ni, t
′ 6= j′, we follow the steps in Section

3.3.1 and obtain the conditional mean and variance of ỹ̃ỹyi given XXXi, CCCi under the general

integrated model:

E(ỹ̃ỹyi|XXXi,CCCi) = QQQig (XXXiβββ) , V ar(ỹĩyĩyi|XXXi,CCCi) = ΣΣΣi. (3.13)

Here, ΣΣΣi = (σijt)
ni,ni
j=1,t=1 is the ni×ni variance-covariance matrix depending on parameters

βββ and ψψψ with diagonal element σijj and off-diagonal element σijt (j 6= t) equal to:

σijj =

Ni∑
j′=1

qijj′g(xxxTij′βββ)
[
1− qijj′g(xxxTij′βββ)

]
, σijt =

N∑
j′=1

qijj′q
i
tj′g(xxxTij′βββ)[1− g(xxxTij′βββ)].

Note that under the general integrated model, ỹ̃ỹyi does not follow a generalized linear model

anymore given XXXi and CCCi, and the ỹij are correlated within each blocks.

Based on the fact that E(ỹ̃ỹyi|XXXi,CCCi) = QQQig (XXXiβββ), we can obtain a set of unbiased

estimating equations by adjusting the bias of the estimating function used for the naive

MLE estimator, as shown in (3.12). Noting that

E

[
G∑
i=1

X̃̃X̃X?T
i

(
ỹ̃ỹyi − g(X̃̃X̃X?

iβββ)
)
|XXXi,CCCi

]
=

G∑
i=1

X̃̃X̃X?T
i

(
QQQig(XXXiβββ)− g(X̃̃X̃X?

iβββ)
)
,

the unbiased estimating equations for the bias-corrected estimator β̂̂β̂βC(βββ) are given by:

β̂̂β̂βC(βββ) :
G∑
i=1

X̃̃X̃X?T
i (ỹ̃ỹyi −QQQig(XXXiβββ)) = 000p. (3.14)
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More generally, when ψψψ is known, we can focus on the following system of p unbiased

estimating equations:
G∑
i=1

HHH i [ỹ̃ỹyi −QQQig(XXXiβββ)] = 000p, (3.15)

where HHH i ≡HHH i(CCCi,XXXi;βββ,ψψψ) is a given p× n matrix. The possible choices for HHH i includes

X̃̃X̃X?T
i , X̃̃X̃X?T

i QQQTi , and X̃̃X̃X?T
i QQQTi ΣΣΣ−1

i .

3.3 Proofs

3.3.1 Proof of (3.5)

Under the linkage error model ỹ̃ỹyi = LLLiyyyi, we have ỹij =
∑Ni

j′=1 l
i
jj′yij′ . Assum-

ing the linkage is at random (LAR), it is true that P (lijj′ = 1|yyyi,XXXi,CCCi) = P (lijj′ =

1|CCCi) = P (lijj′ = 1|cccijj′) = qijj′ under the mixture model. Thus, E(lijj′ |yyyi,XXXi,CCCi) = qijj′ ,

Cov(lijj′ , l
i
tt′ |yyyi,XXXi,CCCi) = qijj′(1− qijj′) if j = t and j′ = t′, and Cov(lijj′ , l

i
tt′ |yyyi,XXXi,CCCi) = 0

otherwise. Here, i = 1, . . . , G, j = 1, . . . , ni, j
′ = 1, . . . , Ni, t = 1, . . . , ni, t

′ = 1, . . . , Ni.

By using these facts, we can get:

E(ỹij |yyyi,XXXi,CCCi) = E

 Ni∑
j′=1

lijj′yij′ |yyyi,XXXi,CCCi


=

Ni∑
j′=1

E(lijj′ |yyyi,XXXi,CCCi)yij′

=

Ni∑
j′=1

qijj′yij′ ,

Cov (ỹij , ỹit|yyyi,XXXi,CCCi) =

Ni∑
j′=1

Ni∑
t′=1

yij′yit′Cov
(
lijj′ , l

i
tt′ |yyyi,XXXi,CCCi

)
= 0,
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V ar(ỹij |yyyi,XXXi,CCCi) = Cov (ỹij , ỹij |yyyi,XXXi,CCCi)

= Cov

 Ni∑
j′=1

lijj′yij′ ,

Ni∑
t′=1

lijt′yit′ |yyyi,XXXi,CCCi


=

Ni∑
j′=1

Ni∑
t′=1

yij′yit′Cov
(
lijj′ , l

i
jt′ |yyyi,XXXi,CCCi

)
=

Ni∑
j′=1

yij′yij′Cov
(
lijj′ , l

i
jj′ |yyyi,XXXi,CCCi

)
+

Ni∑
j′=1

∑
t′ 6=j′

yij′yit′Cov
(
lijj′ , l

i
jt′ |yyyi,XXXi,CCCi

)
=

Ni∑
j′=1

y2
ij′q

i
jj′(1− qijj′),

Based on the linear regression model (3.1) and the assumption that the response

variable y is conditionally independent of comparison vector ccc given xxx, we have

E(yij′ |XXXi,CCCi) = E(yij′ |XXXi) = xxxTij′βββ,

Cov(yij′ , yij′ |XXXi,CCCi) = Cov(yij′ , yij′ |XXXi) = σ2
e ,

Cov(yij′ , yit′ |XXXi,CCCi) = Cov(yij′ , yij′ |XXXi) = 0, (j′ 6= t′)

for i = 1, . . . , G, j′ = 1, . . . , Ni, t
′ = 1, . . . , Ni. By applying the law of total expectation,

the law of total variance, and the law of total covariance, we can get

E(ỹij |XXXi,CCCi) = E[E(ỹij |yyyi,XXXi,CCCi)|XXXi,CCCi]

=
N∑
j′=1

qijj′E[yij′ |XXXi]

=
N∑
j′=1

qijj′xxx
T
ij′βββ,
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V ar(ỹij |XXXi,CCCi) = E [V ar(ỹij |yyyi,XXXi,CCCi)|XXXi,CCCi] + V ar (E[ỹij |yyyi,XXXi,CCCi]|XXXi,CCCi)

= E

 Ni∑
j′=1

y2
ij′q

i
jj′(1− qijj′)|XXXi,CCCi

+ Cov

 Ni∑
j′=1

qijj′yij′ ,

Ni∑
t′=1

qijt′yit′ |XXXi,CCCi


=

Ni∑
j′=1

qijj′(1− qijj′)E
[
y2
ij′ |XXXi,CCCi

]
+

Ni∑
j′=1

Ni∑
t′=1

qijj′q
i
jt′Cov

(
yij′ , yit′ |XXXi,CCCi

)
=

Ni∑
j′=1

qijj′(1− qijj′)
(
V ar(yij′ |XXXi) + (E[yij′ |XXXi])

2
)

+

Ni∑
j′=1

qijj′q
i
jj′Cov

(
yij′ , yij′ |XXXi

)
+

Ni∑
j′=1

∑
t′ 6=j′

qijj′q
i
jt′Cov

(
yij′ , yit′ |XXXi

)
=

Ni∑
j′=1

qijj′(1− qijj′)σ2
e +

Ni∑
j′=1

qijj′(1− qijj′)(xxxTij′βββ)2 +

Ni∑
j′=1

(qijj′)
2σ2
e + 0

=

Ni∑
j′=1

qijj′σ
2
e +

Ni∑
j′=1

qijj′(1− qijj′)(xxxTij′βββ)2 := σijj ,

Cov (ỹij , ỹit|XXXi,CCCi) = E [Cov (ỹij , ỹit|yyyi,XXXi,CCCi) |XXXi,CCCi]

+ Cov (E[ỹij |yyyi,XXXi,CCCi], E[ỹit|yyyi,XXXi,CCCi]|XXXi,CCCi)

= 0 + Cov

 Ni∑
j′=1

qijj′yij′ ,

Ni∑
t′=1

qitt′yit′ |XXXi,CCCi


=

Ni∑
j′=1

Ni∑
t′=1

qijj′q
i
tt′Cov

(
yij′ , yit′ |XXXi,CCCi

)
=

Ni∑
j′=1

qijj′q
i
tj′Cov

(
yij′ , yij′ |XXXi

)
+

Ni∑
j′=1

∑
t′ 6=j′

qijj′q
i
tt′Cov

(
yij′ , yit′ |XXXi

)
=

N∑
j′=1

qijj′q
i
tj′σ

2
e := σijt, (t 6= j).

Let ΣΣΣi = (σijt)
ni,ni
j=1,t=1, then the above result can be written in the following matrix form:

E(ỹ̃ỹyi|XXXi,CCCi) = QQQiXXXiβββ, V ar(ỹ̃ỹyi|XXXi,CCCi) = ΣΣΣi, i = 1, . . . , G.
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3.3.2 Proof of (3.4), (3.6), and (3.7)

In case of blocking, the xxx values in the linked data set are related to the xxx values in

Fx through the following identity:

X̃̃X̃X?
i = AAAiXXXi, i = 1, . . . , G.

where X̃̃X̃X?
i is the ni × p matrix of xxx values linked to ỹ̃ỹyi in Fy, XXXi is the Ni × p matrix of

xxx values in Fx, and AAAi = (aijj′)
ni,Ni

j=1,j′=1 is the ni ×Ni matrix of linkage status indicators,

where aijj′ = 1 if qijj′ is the largest among probabilities {qijt′ : t′ = 1, . . . , Ni}, and aijj′ = 0

otherwise.

Note that AAAi is derived from QQQi, which is a function of CCCi and ψψψ. Thus, AAAi is fixed

when CCCi and ψψψ are known, and X̃̃X̃X?
i is fixed whenXXXi, CCCi and ψψψ are known. Also recall that

E[ỹ̃ỹyi|XXXi,CCCi] = QQQiXXXiβββ, V ar(ỹ̃ỹyi|XXXi,CCCi) = ΣΣΣi under the general integrated model. Based

on these facts, when ψψψ is known, the mean and variance of β̂̂β̂βN (ψψψ) are given by:

E
(
β̂̂β̂βN (ψψψ)|XXX,CCC

)
= E

( G∑
i=1

X̃̃X̃X?T
i X̃̃X̃X?

i

)−1( G∑
i=1

X̃̃X̃X?T
i ỹ̃ỹyi

)
|XXX,CCC


=

(
G∑
i=1

X̃̃X̃X?T
i X̃̃X̃X?

i

)−1( G∑
i=1

X̃̃X̃X?T
i E[ỹ̃ỹyi|XXX,CCC]

)

=

(
G∑
i=1

X̃̃X̃X?T
i X̃̃X̃X?

i

)−1( G∑
i=1

X̃̃X̃X?T
i E[ỹ̃ỹyi|XXXi,CCCi]

)

=

(
G∑
i=1

X̃̃X̃X?T
i X̃̃X̃X?

i

)−1( G∑
i=1

X̃̃X̃X?T
i QQQiXXXiβββ

)

=

(
G∑
i=1

X̃̃X̃X?T
i X̃̃X̃X?

i

)−1( G∑
i=1

X̃̃X̃X?T
i QQQiXXXi

)
βββ,
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V ar
(
β̂̂β̂βN (ψψψ)|XXX,CCC

)
= V ar

[ G∑
i=1

X̃̃X̃X?T
i X̃̃X̃X?

i

]−1 [ G∑
i=1

X̃̃X̃X?T
i ỹ̃ỹyi

]
|XXX,CCC


=

[
G∑
i=1

X̃̃X̃X?T
i X̃̃X̃X?

i

]−1

V ar

(
G∑
i=1

X̃̃X̃X?T
i ỹ̃ỹyi|XXX,CCC

)[
G∑
i=1

X̃̃X̃X?T
i X̃̃X̃X?

i

]−1

=

[
G∑
i=1

X̃̃X̃X?T
i X̃̃X̃X?

i

]−1 [ G∑
i=1

X̃̃X̃X?T
i V ar (ỹ̃ỹyi|XXX,CCC) X̃̃X̃X?

i

][
G∑
i=1

X̃̃X̃X?T
i X̃̃X̃X?

i

]−1

=

[
G∑
i=1

X̃̃X̃X?T
i X̃̃X̃X?

i

]−1 [ G∑
i=1

X̃̃X̃X?T
i ΣΣΣiX̃̃X̃X

?
i

][
G∑
i=1

X̃̃X̃X?T
i X̃̃X̃X?

i

]−1

.

Similarly, the mean and variance of the bias-corrected estimator β̂̂β̂βC(ψψψ) are given

by:

E(β̂̂β̂βC(ψψψ)|XXX,CCC) = E

[ G∑
i=1

X̃̃X̃X?T
i QQQiXXXi

]−1 [ G∑
i=1

X̃̃X̃X?T
i ỹ̃ỹyi

]
|XXX,CCC


=

[
G∑
i=1

X̃̃X̃X?T
i QQQiXXXi

]−1 G∑
i=1

X̃̃X̃X?T
i E (ỹ̃ỹyi|XXX,CCC)

=

[
G∑
i=1

X̃̃X̃X?T
i QQQiXXXi

]−1 G∑
i=1

X̃̃X̃X?T
i QQQiXXXβββ

= βββ,

V ar(β̂̂β̂βC(ψψψ)|XXX,CCC) = V ar

[ G∑
i=1

X̃̃X̃X?T
i QQQiXXXi

]−1 [ G∑
i=1

X̃̃X̃X?T
i ỹ̃ỹyi

]
|XXX,CCC


=

[
G∑
i=1

X̃̃X̃X?T
i QQQiXXXi

]−1

V ar

(
G∑
i=1

X̃̃X̃X?T
i ỹ̃ỹyi|XXX,CCC

)[
G∑
i=1

XXXT
i QQQ

T
i X̃̃X̃X

?
i

]−1

=

[
G∑
i=1

X̃̃X̃X?T
i QQQiXXXi

]−1 [ G∑
i=1

X̃̃X̃X?T
i V ar (ỹ̃ỹyi|XXX,CCC) X̃̃X̃X?

i

][
G∑
i=1

XXXT
i QQQ

T
i X̃̃X̃X

?
i

]−1

=

[
G∑
i=1

X̃̃X̃X?T
i QQQiXXXi

]−1 [ G∑
i=1

X̃̃X̃X?T
i ΣΣΣiX̃̃X̃X

?
i

][
G∑
i=1

XXXT
i QQQ

T
i X̃̃X̃X

?
i

]−1

.
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Similarly, the mean and variance of the OLS estimator β̂̂β̂βOLS(ψψψ) are given by:

E(β̂̂β̂βOLS(ψψψ)|XXX,CCC)

= E

[ G∑
i=1

XXXT
i QQQ

T
i QQQiXXXi

]−1 [ G∑
i=1

XXXT
i QQQ

T
i ỹ̃ỹyi

]
|XXX,CCC


=

[
G∑
i=1

XXXT
i QQQ

T
i QQQiXXXi

]−1 G∑
i=1

XXXT
i QQQ

T
i E (ỹ̃ỹyi|XXX,CCC)

=

[
G∑
i=1

XXXT
i QQQ

T
i QQQiXXXi

]−1 G∑
i=1

XXXT
i QQQ

T
i QQQiXXXiβββ

= βββ,

V ar(β̂̂β̂βOLS(ψψψ)|XXX,CCC)

= V ar

[ G∑
i=1

XXXT
i QQQ

T
i QQQiXXXi

]−1 [ G∑
i=1

XXXT
i QQQ

T
i ỹ̃ỹyi

]
|XXX,CCC


=

[
G∑
i=1

XXXT
i QQQ

T
i QQQiXXXi

]−1

V ar

(
G∑
i=1

XXXT
i QQQ

T
i ỹ̃ỹyi|XXX,CCC

)[
G∑
i=1

XXXT
i QQQ

T
i QQQiXXXi

]−1

=

[
G∑
i=1

XXXT
i QQQ

T
i QQQiXXXi

]−1 [ G∑
i=1

XXXT
i QQQ

T
i V ar (ỹ̃ỹyi|XXX,CCC)QQQiXXXi

][
G∑
i=1

XXXT
i QQQ

T
i QQQiXXXi

]−1

=

[
G∑
i=1

XXXT
i QQQ

T
i QQQiXXXi

]−1 [ G∑
i=1

XXXT
i QQQ

T
i ΣΣΣiQQQiXXXi

][
G∑
i=1

XXXT
i QQQ

T
i QQQiXXXi

]−1

.

3.3.3 Proof of (3.10)

Recall that the diagonal entries σijj and off-diagonal entries σijt of the variance-

covariance matrix ΣΣΣi are equal to:

σijj =

Ni∑
j′=1

qijj′σ
2
e +

Ni∑
j′=1

qijj′(1− qijj′)(xxxTij′βββ)2, σijt =

Ni∑
j′=1

qijj′q
i
tj′σ

2
e , (t 6= j).

By taking the first partial derivative with respect to βk, we can get:

∂σijj
∂βk

= 2

Ni∑
j′=1

qijj′(1− qijj′)(xxxTij′βββ)xij′k
∂βββ

∂βk
= 2

Ni∑
j′=1

qijj′(1− qijj′)(xxxTij′βββ)xij′kδδδk,
∂σijt
∂βk

= 0,
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for k = 1, . . . , p, where δδδk is the kth column of the identity matrix IIIp of dimension p× p.

Let DDDi,k = ∂ΣΣΣi
∂βk

= (
∂σi

jt

∂βk
)ni,ni
j=1,t=1 denote the first partial derivative of ΣΣΣi with respect to βk.

When σ2
e andψψψ are known, the weighted least squares (WLS) estimator β̂̂β̂βWLS(σ2

e ,ψψψ)

is defined to be the value of βββ that minimizes the weighted sum of squares (WSS) with ΣΣΣi

as its weight matrix. That is,

β̂̂β̂βWLS = arg min
βββ

G∑
i=1

(ỹ̃ỹyi −QQQiXXXiβββ)TΣΣΣ−1
i (ỹ̃ỹyi −QQQiXXXiβββ) := arg min

βββ
fwss(βββ, σ

2
e ,ψψψ).

Equivalently, β̂̂β̂βWLS can be obtained by solving the following estimating equations:

∂fwss(βββ, σ
2
e ,ψψψ)

∂βββ
=

(
∂fwss(βββ, σ

2
e ,ψψψ)

∂βk

)p
k=1

= 000p,

where

∂fwss(βββ, σ
2
e ,ψψψ)

∂βk

=
G∑
i=1

{
− ∂βββT

∂βk
XXXT
i QQQ

T
i ΣΣΣ−1

i (ỹ̃ỹyi −QQQiXXXiβββ)− (ỹ̃ỹyi −QQQiXXXiβββ)TΣΣΣ−1
i

∂ΣΣΣi

∂βk
ΣΣΣ−1
i (ỹ̃ỹyi −QQQiXXXiβββ)

− (ỹ̃ỹyi −QQQiXXXiβββ)TΣΣΣ−1
i QQQiXXXi

∂βββT

∂βk

}
= −

G∑
i=1

{
2δδδTkXXX

T
i QQQ

T
i ΣΣΣ−1

i (ỹ̃ỹyi −QQQiXXXiβββ) + (ỹ̃ỹyi −QQQiXXXiβββ)TΣΣΣ−1
i DDDi,kΣΣΣ

−1
i (ỹ̃ỹyi −QQQiXXXiβββ)

}

= −
G∑
i=1

{
2δδδTkXXX

T
i QQQ

T
i + (ỹ̃ỹyi −QQQiXXXiβββ)TΣΣΣ−1

i DDDi,k

}
ΣΣΣ−1
i (ỹ̃ỹyi −QQQiXXXiβββ).

3.3.4 Proof of (3.11)

Under the assumption of normality, ỹ̃ỹyi|XXXi,CCCi ∼ N(QQQiXXXiβββ,ΣΣΣi). When ψψψ is known,

the log-likelihood function of βββ and σ2
e based on data {ỹ̃ỹyi,XXXi,CCCi, i = 1, . . . , G} is given

by:

l(βββββββββ, σ2
e) = −1

2

G∑
i=1

{
ni ln(2π) + ln |ΣΣΣi|+ (ỹ̃ỹyi −QQQiXXXiβββ)TΣΣΣ−1

i (ỹ̃ỹyi −QQQiXXXiβββ)
}
.
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Let DDDi,k = ∂ΣΣΣi
∂βk

=

(
∂σi

jt

∂βk

)ni,ni

j=1,t=1

and DDDi,σ = ∂ΣΣΣi
∂σ2

e
=

(
∂σi

jt

∂σ2
e

)ni,ni

j=1,t=1

denote the partial

derivatives of ΣΣΣi with respect to βk and σ2
e , respectively, where

∂σijj
∂βk

= 2

Ni∑
j′=1

qijj′(1− qijj′)(xxxTij′βββ)xij′kδδδk,
∂σijt
∂βk

= 0, (j 6= t)

∂σijj
∂σ2

e

=

Ni∑
j′=1

qijj′ ,
∂σijt
∂σ2

e

=

Ni∑
j′=1

qijj′q
i
tj′ , (j 6= t)

for i = 1, . . . , G, j = 1, . . . , ni, t = 1, . . . , ni, and k = 1, . . . , p.

The first derivatives of the log-likelihood function l(βββ, σ2
e) with respect to βk and σ2

e

are:

∂l(βββ, σ2
e)

∂βk
= −1

2

G∑
i=1

{
∂ ln |ΣΣΣi|
∂βk

− ∂βββT

∂βk
XXXT
i QQQ

T
i ΣΣΣ−1

i (ỹ̃ỹyi −QQQiXXXiβββ)

− (ỹ̃ỹyi −QQQiXXXiβββ)TΣΣΣ−1
i

∂ΣΣΣi

∂βk
ΣΣΣ−1
i (ỹ̃ỹyi −QQQiXXXiβββ)− (ỹ̃ỹyi −QQQiXXXiβββ)TΣΣΣ−1

i QQQiXXXi
∂βββT

∂βk

}
= −1

2

G∑
i=1

{
tr

(
ΣΣΣ−1
i

∂ΣΣΣi

∂βk

)
− 2δδδTkXXX

T
i QQQ

T
i ΣΣΣ−1

i (ỹ̃ỹyi −QQQiXXXiβββ)

− (ỹ̃ỹyi −QQQiXXXiβββ)TΣΣΣ−1
i DDDi,kΣΣΣ

−1
i (ỹ̃ỹyi −QQQiXXXiβββ)

}
= −1

2

G∑
i=1

{
tr
(
ΣΣΣ−1
i DDDi,k

)
− 2δδδTkXXX

T
i QQQ

T
i ΣΣΣ−1

i (ỹ̃ỹyi −QQQiXXXiβββ)

− (ỹ̃ỹyi −QQQiXXXiβββ)TΣΣΣ−1
i DDDi,kΣΣΣ

−1
i (ỹ̃ỹyi −QQQiXXXiβββ)

}
,

∂l(βββββββββ, σ2
e)

∂σ2
e

= −1

2

G∑
i=1

{
∂ ln |ΣΣΣi|
∂σ2

e

+ (ỹ̃ỹyi −QQQiXXXiβββ)T
∂ΣΣΣ−1

i

∂σ2
e

(ỹ̃ỹyi −QQQiXXXiβββ)

}

= −1

2

G∑
i=1

{
tr

(
ΣΣΣ−1
i

∂ΣΣΣi

∂σ2
e

)
− (ỹ̃ỹyi −QQQiXXXiβββ)TΣΣΣ−1

i

∂ΣΣΣ−1
i

∂σ2
e

ΣΣΣ−1
i (ỹ̃ỹyi −QQQiXXXiβββ)

}

= −1

2

G∑
i=1

{
tr
(
ΣΣΣ−1
i DDDi,σ

)
− (ỹ̃ỹyi −QQQiXXXiβββ)TΣΣΣ−1

i DDDi,σΣΣΣ
−1
i (ỹ̃ỹyi −QQQiXXXiβββ)

}
.
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3.3.5 Proof of (3.13)

Under the linkage error model ỹ̃ỹyi = LLLiyyyi, we have ỹij =
∑Ni

j′=1 l
i
jj′yij′ . Assum-

ing the linkage is at random (LAR), it is true that P (lijj′ = 1|yyyi,XXXi,CCCi) = P (lijj′ =

1|CCCi) = P (lijj′ = 1|cccijj′) = qijj′ under the mixture model. Thus, E(lijj′ |yyyi,XXXi,CCCi) = qijj′ ,

V ar(lijj′ |yyyi,XXXi,CCCi) = qijj′(1 − qijj′), and Cov(lijj′ , l
i
tt′ |yyyi,XXXi,CCCi) = 0 if j 6= t or j′ 6= t′.

Here, i = 1, . . . , G, j = 1, . . . , ni, j
′ = 1, . . . , Ni, t = 1, . . . , ni, t

′ = 1, . . . , Ni. By using

these facts, we can get:

E(ỹij |yyyi,XXXi,CCCi) =

Ni∑
j′=1

qijj′yij′ ,

V ar(ỹij |yyyi,XXXi,CCCi) =

Ni∑
j′=1

y2
ij′q

i
jj′(1− qijj′),

Cov (ỹij , ỹit|yyyi,XXXi,CCCi) = 0.

Based on the logistic regression model and the assumption that the response variable

y is conditionally independent of comparison vector ccc given xxx, we have E(yij′ |XXXi,CCCi) =

g(xxxTij′βββ), V ar(yij′ |XXXi,CCCi) = g(xxxTij′βββ)[1 − g(xxxTij′βββ)], and Cov(yij′ , yit′ |XXXi,CCCi) = 0 for i =

1, . . . , G, j′ = 1, . . . , Ni, t
′ = 1, . . . , Ni, and t′ 6= j′. By applying law of total expectation,

law of total variance, and law of total covariance, we can get the following result for

i = 1, . . . , G, j = 1, . . . , ni, t = 1, . . . , ni and t 6= j:

E(ỹij |XXXi,CCCi) =
N∑
j′=1

qijj′g(xxxTij′βββ),

V ar(ỹij |XXXi,CCCi) =

Ni∑
j′=1

qijj′g(xxxTij′βββ)[1− g(xxxTij′βββ)] +

Ni∑
j′=1

qijj′(1− qijj′)g2(xxxTij′βββ),

=

Ni∑
j′=1

qijj′g(xxxTij′βββ)[1− qijj′g(xxxTij′βββ)],

Cov (ỹij , ỹit|XXXi,CCCi) =

N∑
j′=1

qijj′q
i
tj′g(xxxTij′βββ)[1− g(xxxTij′βββ)], (t 6= j).
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Let ΣΣΣi = (σ2i
jt)

ni,ni
j=1,t=1, then the above result can be written in the following matrix form:

E(ỹ̃ỹy|XXXi,CCCi) = QQQiXXXiβββ, V ar(ỹ̃ỹy|XXXi,CCCi) = ΣΣΣi, i = 1, . . . , G.
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Chapter 4: Small Area Estimation with Data from Two Files

4.1 Introduction

In this chapter, we focus our research on a specific area: small area estimation.

Specifically, we are interested in predicting an area-specific parameter, which can be ex-

pressed as a function of fixed effects and random effects related to the conditional dis-

tribution of the variable of interest given the auxiliary variables. We provide a general

methodology for small area estimation using data from two files. Similar to the regres-

sion analysis using data from two files, we propose a general integrated model for small

area estimation, where a new linkage error model is developed to connect the unit-level

small area model and the record linkage model. The empirical best prediction estimation

of the area-specific parameter is considered under the general integrated model. To es-

timate its mean squared error, two jackknife methods are provided. Application of the

general methodology is not limited to the mutual independence of measurements. It can

be applied to measurements that are correlated within small areas but independent across

small areas. Unit-level models such as the general linear model with correlated sampling

errors within small areas, the general linear mixed model with nested errors can all be

considered.
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4.2 Small Area Estimation

Small area estimation refers to the methodology and techniques used to improve

estimation precision for sub-populations (small areas, domains), where the sample sizes

for some sub-populations are not large enough to provide a reliable direct estimate (such

as a sample mean) with adequate precision.

Small area estimation is widely used to provide small area estimates to support

policy making, regional planning, and fund allocation at government agencies. For exam-

ple, the Small Area Income and Poverty Estimates (SAIPE) program established by the

U.S Census Bureau provides estimates of median household income and poverty rate of

school-aged children at state and county levels. The government utilizes these small area

estimates to allocate federal funds to states and domains within each state.

The basic idea of small area estimation is to increase effective sample size by bor-

rowing strength from values of the variable of interest from other related areas. Models

are used to link related small areas through the use of auxiliary information related to the

variable of interest, such as census and administrative records. The small area models can

be generally classified into two types: (1) area-level models that relate direct estimates to

area-specific and/or area-specific auxiliary variables, and (2) unit-level models that relate

the unit values of the study variable to unit-specific auxiliary variables. In the dissertation,

unit-level models are of the focus of the research.

Most of the existing unit-level-model-based small area estimation methods rely on

the joint observations on the variable of interest y and the auxiliary variable xxx. The

corresponding data layout for each small area is shown in Table 4.1. This type of data

can be obtained in a couple of ways: (1) A sample of y is obtained by sampling from a
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population frame with known xxx; (2) Two separate files (one containing the observations

of y and the other containing the observations of xxx) are linked without any errors. For

example, a survey data set can be perfectly linked to an administrative data set if there

exists a unique and error-free identifier. Under this data layout, a huge literature on small

area estimation is available. We refer reader to Rao and Molina (2015).

However, the auxiliary information may not be recorded in the same file as the

variable of interest, but is available in an administrative data set. Data integration could

be a potential approach to cut down costs in data collection by preventing the need to

collect new survey data with all necessary information. In this chapter, we provide a

general methodology for small area estimation in the case where observations on y and xxx

are recorded in two different files, and the matching status between records is unknown.

Table 4.1: Data layout for the joint observations on (y,xxx): Values of y are available
for a sample of ni units in small area i, values of xxx are available for a finite population
of size Ni in small area i, and the values are aligned, i = 1, . . . ,m.

Label y xxxT

1 yi1 xxxTi1
· · · · · · · · ·
ni yini

xxxTini

· · · · · ·
Ni xxxTiNi

4.3 General Integrated Model for Small Area Estimation

4.3.1 Problem Description and Data Availability

Suppose that the population of interest U can be partitioned into m subpop-

ulations (small areas) Ui, i = 1, · · · ,m. Let y and xxx denote a scalar variable of
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interest and a vector random variable of dimension p, respectively. Our goal is to

estimate an area-specific parameter θi, which can be expressed as a function of fixed

effects βββ and random effects vvv related to the conditional distribution of y given xxx,

say θi = h(βββ,vvv), where h(·) is known. However, the joint observations on (y,xxx)

are not available. Instead, observations on y and observations on xxx are separately

recorded in two files Fy and Fx, respectively, and the matching status between any

record from Fy and any record from Fx is unknown.

To be specific, Fy (Fx) contains the observed values of y (xxx) for a sample Sy

(Sx) of size n (N) selected from U . There is no duplicate in either file and Sy ⊂ Sx.

We assume that the records in both files can be partitioned into small areas without

error. Therefore, there is zero probability that two records (one from Fy and the

other from Fy) represent the same unit if they are in different small areas. The

data layout for files Fy and Fx is shown in Table 4.2. Let ỹij denote the observed

value of y for record j in small area i from Fy, let x̃̃x̃xij denote the unobserved value

of xxx corresponding to ỹij, and let xxxij′ represent the observed value of xxx for record

j′ in small area i from Fx. Since x̃̃x̃xij exists but is not observed in Fy, hence its

corresponding column in Fy is shaded in gray. Note that the records in Fy are not

aligned to those in Fx, so ỹij and yij′ may not represent the y values for the same

population unit even if j′ = j. Other than y and xxx, there also exists a vector of K

matching fields, denoted by www, whose observations are available in both files. Let

w̃̃w̃wij and wwwij′ represent values of matching fields www for record j and record j′ in small

area i from Fx and Fy, respectively. It is also sufficient to assume that only the

value of comparison vector cccijj′ is available for each record pair (j, j′) in small area
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i. Here, i = 1, · · · ,m, j = 1, · · · , ni, j′ = 1, · · · , Ni.

Let ỹ̃ỹyi denote the ni × 1 vector of observed y values in small area i from Fy,

let X̃̃X̃X i denote the ni × p matrix of unobserved xxx values corresponding to ỹ̃ỹyi, let XXX i

denote the Ni× p matrix of observed xxx values in small area i from Fx, let yyyi denote

the unobserved Ni × 1 vector of y values associated with XXX i, let W̃̃W̃W i denote the

ni×K matrix of www values in small area i from Fy, let WWW i denote the Ni×K matrix

of www values in small area i from Fx, and CCCi denote Nini ×K matrix of comparison

vectors derived from comparing W̃̃W̃W i and WWW i. In summary, our observed data are

{ỹ̃ỹyi,XXX i, W̃̃W̃W i,WWW i : i = 1, · · · ,m}, or equivalently, {ỹ̃ỹyi,XXX i,CCCi : i = 1, · · · ,m}.

Table 4.2: Data layout for observations on y and xxx for each small area in Fy and
Fx: Fy contains observed values of variables www and y for a sample Sy of ni units in
small area i, Fx contains observed values of variables www and xxx for a sample Sx of Ni

units in small area i, and Sy ⊂ Sx. Note that the true xxx values corresponding to y
exists but are not observed in Fy (shaded in gray).

Fy

Label wwwT y xxxT

1 w̃̃w̃wTi1 ỹi1 x̃̃x̃xTi1
· · · · · · · · · · · ·
j w̃̃w̃wTij ỹij x̃̃x̃xTij
· · · · · · · · · · · ·
ni w̃̃w̃wTini

ỹini
x̃̃x̃xTini

Fx

Label wwwT xxxT

1 wwwTi1 xxxTi1
· · · · · · · · ·
j′ wwwTij′ xxxTij′
· · · · · · · · ·
Ni wwwTiNi

xxxTiNi

4.3.2 General Integrated Model for Small Are Estimation

The general integrated model for small area estimation contains three compo-

nents, similar to that for the regression analysis. The record linkage model (mixture

model) stays the same, but the regression model has been replaced by a unit-level

small area model and a new linkage error model is used.
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Unit-Level Small Area Model: In our dissertation, we focus our research

on those unit-level small area models for which the values of y are assumed to

be independent across small areas. Suppose that values of (y,xxx) for units in the

population U follow a unit-level small area model, which can be generally written

in the following form:

yyyij = g(xxxij, vvvi, eij;φφφ), i = 1, · · · ,m, j ∈ Ui, (4.1)

where g(·) is a known function, vvvi is a vector of area-specific random effects, eij

is a sampling error, and φφφ is a vector of unknown parameters. Note that yij =

g(xxxij, eij;φφφ) is a special case of the above general small area model without random

effects. Two examples of the unit-level small area models are given below:

Example 1: Linear Regression Model with Common Regression Coefficients:

yij = xxx′ijβββ + eij, i = 1, · · · ,m, j ∈ Ui,

where βββ is a vector of unknown regression coefficients, and eij
iid∼ N(0, σ2

e). In this

case, φφφ = (βββ, σ2
e)
T . When the population size Np

i of small area i is large, the small

area mean ȳi = 1
Np

i

∑
j∈Ui

yij can be treated as a linear function of βββ under the

model; that is, ȳi ≈ x̄̄x̄xTi βββ, where x̄̄x̄xi = 1
Np

i

∑
j∈Ui

xxxij is the population mean of xxx in

small area i.

Example 2: Nested Error Linear Regression Model:

yij = xxxTijβββ + vvvi + eij, i = 1, · · · ,m, j ∈ Ui, (4.2)

where vvvi is a vector of area-specific random effects and eij is the error term, which

takes account of any unexplained variation not taken care of by the other terms of
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the above mixed model. It is often assumed that vi’s and eij’s are independently

distributed with vi
iid∼ N(0, σ2

v) and eij
iid∼ N(0, σ2

e). Here, φφφ = (βββT , σ2
v , σ

2
e). When

Np
i is large, ȳi can be treated as a linear function of fixed effects βββ and random effect

vi under the model; that is, ȳi ≈ x̄̄x̄xTi βββ + vi. Battese et al. (1998) implemented the

model to estimate areas covered by corn (or soybeans) for m = 12 counties in north

central Iowa using the farm-interview data as y and the LANDSAT satellite data

(the number of pixels classified as corn and soybeans) as xxx. The standard method

of estimating small area mean ȳi is described in Section 5.3.1 for the situation where

joint observations (yij,xxxij) is available for all sampled units and the population mean

for each small area x̄̄x̄xi is known.

Here, we further assume that the model holds for the sampled units in Sy. The

assumption is satisfied if the sample design is non-informative, that is, the sample

selection probabilities do not depend on values of y but may depends on values of

xxx. Then we have

ỹ̃ỹyij = g(x̃̃x̃xij, vvvi, eij;φφφ), i = 1, · · · ,m, j = 1, · · · , ni.

Linkage Error Model:

Recall that the linkage error model used in Chapter 2 is developed by exploiting

the relationship between the observed y values in Fy and the unobserved y values

corresponding to xxx values in Fx. Here, we develop another linkage error model

based on the same idea but with a focus on the relationship between the observed

and unobserved xxx values.

Under the assumption that (1) there are no duplications in both files, (2) Sy ⊂
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Sx, and (3) there is no error in partitioning records into small areas, the unobserved

xxx value corresponding to ỹij in Fy, x̃̃x̃xij, must be one of those observed x values

{xxxi1, · · · ,xxxiNi
} in the same small area i from Fx. Let lijj′ be the unknown binary

matching status indicator for record pair (j, j′) in small area i; that is, lijj′ = 1 if

record j from Fy and record j′ from Fx in small area i represent the same population

unit, and lijj′ = 0 otherwise. Then the relationship between x̃̃x̃xij and {xxxi1, · · · ,xxxiNi
}

can be modeled via the following identity:

x̃̃x̃xij =
∑
j′=1

lijj′xxxij′ , i = 1, · · · ,m, j = 1, · · · , ni.

Let LLLi = (lijj′)
niNi

j=1,j′=1 be the ni×Ni matrix of matching status indicators, then

the above linkage error model can be written in the following matrix form:

X̃̃X̃X i = LLLiXXX i, i = 1, · · · ,m. (4.3)

In other words, the unobserved xxx values for sampled units of Sy in small area i, is a

permutation of ni observed x values for sampled units of Sx in the same small area.

More generally, the following linkage error model can be used:

X̃̃X̃X = LLLXXX. (4.4)

where X̃̃X̃X is the n× p matrix of unobserved xxx values for units in Sy, XXX is the N × p

matrix of observed xxx values for units in Sx, and LLL = (ljj′)
nN
j=1,j′=1 is the n × N

matrix of matching status indicators, where ljj′ represents the matching status for

record pair (j, j′), with j ∈ Sy, j
′ ∈ Sx. This general model (4.4) can be used

when the records are partitioned into small areas with errors, and all the possible

record pairs (Nn in total) need to be considered for the purpose of record linkage.
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The linkage error model (4.3) is a special case of the general model (4.4) with

LLL = diag(LLL1, · · · ,LLLm).

In most situations, both the linkage error model built on y values and the one

built on xxx values can be used for the purpose of regression analysis or small area

estimation. However, in some situations, it is easier to implement our proposed

general methodology when the former model is used than when the latter model is

used. The opposite may be true in other situations. Below are two examples. For

the purpose of comparison, we follow the notation in this chapter.

Example 1: Consider the situation where a logistic regression model is used as

the first component of the general integrated model. It is easier to calculate the con-

ditional expectation of the observed y values in Fy given xxx values in Fx and compari-

son vector ccc when the linkage error model built on y values is used. When the linkage

error model built on y values is used, calculation of the conditional expectation is

quite simple. That is, E(ỹ̃ỹyi|XXX i,CCCi) = QQQiggg(XXX iβββ), where ggg(XXX iβββ) =
(
g(xxxTijβββ)

)ni

j=1
and

g(xxxTijβββ) = exp
(
xxxTijβββ

)
/[1+exp

(
xxxTijβββ

)
]. However, when the linkage error model built on

xxx values is used, E(ỹ̃ỹyi|XXX i,CCCi) = E [ggg(LLLiXXX iβββ)|XXX i,CCCi], where ggg(LLLiXXX iβββ) is a ni×1 vec-

tor with the jth element equal to exp
(∑Ni

j′=1 l
i
jj′xxx

T
ij′βββ
)
/
[
1 + exp

(∑Ni

j′=1 l
i
jj′xxx

T
ij′βββ
)]

,

whose conditional expectation is difficult to calculate.

Example 2: Consider the situation where a linear model with common re-

gression coefficient and equal variance is used as the first component of the general

integrated model. The conditional covariance of observed y values in Fy given xxx

values in Fx and comparison vectors ccc has a simpler format when the linkage model

built on xxx values is used. When the linkage error model built on y values is used,
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under certain assumptions, the (j, j)th diagonal and the (j, t)th off-diagonal entries

of V ar(ỹ̃ỹyi|XXX i,CCCi) are given by

σijj =

Ni∑
j′=1

qijj′σ
2
e +

Ni∑
j′=1

qijj′(1− qijj′)(xxxTij′βββ)2, and σijt =

Ni∑
j′=1

qijj′q
i
tj′σ

2
e .

In contrast, when the linkage error model built on xxx values is used, under certain

assumptions,

σijj =

Ni∑
j′=1

qijj′(1− qijj′)(xxxTij′βββ)2 + σ2
e , and σijt = 0.

When it comes to small area estimation, general linear models and general

linear mixed models are widely used as unit-level small area models. So we choose

to use the linkage error model built on X̃̃X̃X, that is, X̃̃X̃X i = LLLiXXX i, in order to obtain a

simple format of the conditional covariance matrix, since X̃̃X̃X i = LLLiXXX i can only affect

the fixed effects term but not the random effects and mixed error terms.

4.4 Empirical Best Prediction Estimator

Under the squared error loss, the best prediction (BP) estimator θ̂BPi of θi is

equal to the conditional expectation of θi given the data under the general integrated

model when both φφφ in the small area model and ψψψ in the mixture model are known;

that is θ̂BPi = E(θi|ỹ̃ỹy,XXX,CCC). The resulting BP estimator θ̂BPi can be expressed as a

function of ỹ̃ỹy,XXX,CCC,φφφ and ψψψ, say

θ̂BPi = π(ỹ̃ỹy,XXX,CCC;φφφ,ψψψ) ≡ π(φφφ,ψψψ).

To obtain the BP estimator of θi, it is important to derive the conditional

distribution of ỹ̃ỹy (and vvv) given XXX and CCC under the general integrated model if the
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small area model is a fixed (mixed) effect model. The empirical best prediction

(EBP) estimator is obtained from BP by substituting suitable estimators φ̂̂φ̂φ, ψ̂ψψ of

model parameters φφφ, ψψψ:

θ̂EBPi = π(φ̂̂φ̂φ, ψ̂̂ψ̂ψ).

Therefore, once the expression of the BP estimator is obtained, the estimation of

θi reduces to the estimation of unknown parameters φφφ and ψψψ. Then the general

methodology given in Chapter 2 can be used.

Recall that when ψψψ is known, we can estimate φφφ by solving a system of es-

timating equations derived from the conditional distribution of ỹ̃ỹy given XXX and CCC.

The estimating equations for φφφ can be generally written as

φ̂̂φ̂φ(ψψψ) :
m∑
i=1

f
′

i (ỹ̃ỹyi,XXX i,CCCi;φφφ,ψψψ) + a
′
(φφφ,ψψψ) = 000. (4.5)

where f
′
i (ỹ̃ỹyi,XXX i,CCCi;φφφ,ψψψ) are vector-valued functions such thatE[f

′
i (ỹ̃ỹyi,XXX i,CCCi;φφφ,ψψψ)] =

000 with respect to the general integrated model for true values of φφφ and ψψψ, a′(φφφ,ψψψ) is a

vector-valued functions which may depend on the joint distribution of {ỹ̃ỹy1, · · · , ỹ̃ỹym},

and 000 is a vector of zeros with the same order as φφφ. Note that f
′
i (ỹ̃ỹyi,XXX i,CCCi;φφφ,ψψψ) has

the same order as φφφ. When a(φφφ,ψψψ) 6= 000, it plays the role of a modifier or penalizer.

In practice, however, value of ψψψ is unknown. The MLE estimate ψ̂̂ψ̂ψ of ψψψ can

also be treated as the solution of a system of unbiased estimating equations.

ψ̂̂ψ̂ψ :
m∑
i=1

f
′′

i (CCCi;ψψψ) = 000 (4.6)

where where f
′′
i (CCCi;ψψψ) are vector-valued functions such that E[f

′′
i (CCCi;ψψψ)] = 000 for

true values of ψψψ, and 000 is a vector of zeros of the same order as ψψψ.
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Based on (4.5) and (4.6), φ̂̂φ̂φ ≡ φ̂̂φ̂φ(ψ̂̂ψ̂ψ) and ψ̂̂ψ̂ψ are solutions to the following

estimating equations:

φ̂̂φ̂φ, ψ̂̂ψ̂ψ : F (φφφ,ψψψ) =
m∑
i=1

fi(ỹ̃ỹyi,XXX i,CCCi;φφφ,ψψψ) + a(φφφ,ψψψ) = 000 (4.7)

where

fi(ỹ̃ỹyi,XXX i,CCCi;φφφ,ψψψ) =
(
f
′

i (ỹ̃ỹyi,XXX i,CCCi;φφφ,ψψψ)T , f
′′

i (CCCi;ψψψ)T
)T

, a(φφφ,ψψψ) =
(
a
′
(φφφ,ψψψ)T ,000T

)T
,

for i = 1, · · · ,m.

4.5 Estimation of the Mean Squared Error of θ̂i
EBP

In order to estimate the mean squared error (MSE) of the empirical best

prediction estimator θ̂EBP , the unified jackknife method proposed by Jiang, Lahiri

and Wan (2002, JLW) and its alternative proposed by Lohr and Rao (2009, LR)

can be used.

The jackknife replicate j is constructed by deleting (ỹ̃ỹyj,XXXj,CCCj) from the data.

The delete-j estimates φ̂̂φ̂φ−j, φ̂̂φ̂φ−j of φφφ, ψψψ are the solutions of

φ̂̂φ̂φ−j, ψ̂̂ψ̂ψ−j :
∑
i 6=j

fi(ỹ̃ỹyi,XXX i,CCCi;φφφ,ψψψ) + a−j(φφφ,ψψψ) = 000,

and the delete-j EBP estimate of θi is given by θ̂EBPi(−j) = π(φ̂̂φ̂φ−j, ψ̂̂ψ̂ψ−j), for j =

1, · · · ,m.

The JLW jackknife estimate of bias, variance, matrix MSE and scale MSE of
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φ̂̂φ̂φ are defined as

biasJ(φ̂) = (m− 1)(
¯̂
φ
¯̂
φ̄̂φ− φ̂̂φ̂φ),

varJ(φ̂) =
m− 1

m

m∑
j=1

(φ̂̂φ̂φ−j − ¯̂
φ
¯̂
φ̄̂φ)(φ̂̂φ̂φ−j − ¯̂

φ
¯̂
φ̄̂φ)T ,

mseJ(φ̂̂φ̂φ) =
m− 1

m

m∑
j=1

(φ̂̂φ̂φ(−j) − φ̂̂φ̂φ)(φ̂̂φ̂φ(−j) − φ̂̂φ̂φ)T ,

where
¯̂
φ
¯̂
φ̄̂φ = 1

m

∑m
j=1 φ̂̂φ̂φ−j is the average of the replicate estimate of φφφ. The jackknife

estimates for ψ̂̂ψ̂ψ are defined similarly.

In terms of estimating the mean squared error of θ̂EBPi , both the JLW and LR

methods are based on the following decomposition of MSE(θ̂EBPi ):

MSE(θ̂EBPi ) = MSAE(θ̂EBPi ) +MSE(θ̂BPi ), (4.8)

where MSAE(θ̂EBPi ) = E
[
(θ̂EBPi − θ̂BPi )2

]
and MSE(θ̂BPi ) = E

[
(θ̂BPi − θi)2

]
.

The jackknife estimate of the first term on the right-hand side of (4.8) is the same

for both methods. That is,

msae(θ̂EBPi ) =
m− 1

m

m∑
i=1

(θ̂EBPi(−j) − θ̂EBPi )2. (4.9)

The jackknife estimate for the second term is different for the two methods. The

method proposed by Jiang, Lahiri and Wan(2005) requires a closed-form expres-

sion for the mean squared error of θ̂BPi , while the method proposed by Lohr and

Rao (2009) requires a closed-form expression for the conditional mean squared

error (CMSE) of θ̂BPi . Suppose MSE(θ̂BPi ) = bi(φφφ,ψψψ) and CMSE(θ̂BPi ) =

E
[
(θ̂BPi − θi)2|ỹ̃ỹy,XXX,CCC

]
= V ar(θi|ỹ̃ỹy,XXX,CCC) = b′i(φφφ,ψψψ). Then the jackknife estimates
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of the second term are given by

mseJ(θ̂BPi ) = bi(φ̂̂φ̂φ, ψ̂̂ψ̂ψ)− m− 1

m

m∑
j=1

[
bi(φ̂̂φ̂φ−j, ψ̂̂ψ̂ψ−j)− bi(φ̂̂φ̂φ, ψ̂̂ψ̂ψ)

]
, (4.10)

mseL(θ̂BP ) = b′i(φ̂̂φ̂φ, ψ̂̂ψ̂ψ)−
∑
j 6=i

[
b′i(φ̂̂φ̂φ−j, ψ̂̂ψ̂ψ−j)− b′i(φ̂̂φ̂φ, ψ̂̂ψ̂ψ)

]
. (4.11)

Both jackknife estimators are nearly unbiased for MSE(θ̂EBPi ) in the sense of

having unconditional bias of order o(1/m) under regularity conditions. Compared

with the method proposed by Jiang, Lahiri, and Wan (2005), Lohr and Rao’s ap-

proach is less computationally intensive, because it does not require the calculation

of bi(φφφ,ψψψ), which usually involves integration with respect to ỹ̃ỹyi, XXX i and CCCi.

4.6 Summary

In this Chapter, a new linkage error model is developed based on the relation-

ship between observed and unobserved xxx values. It provides a connection between

the unit-level small area model and the mixture model in the general integrated

model for small area estimation. Under the general integrated model, we provide a

general methodology for obtaining an empirical best prediction (EBP) estimator of a

area-specific mixed parameter θ. A jackknife resampling method for estimating the

mean squared error of the EBP estimator is also provided. Application of the general

methodology is not limited to the mutual independence of measurements. It can

be applied to measurements that are correlated within small areas but independent

across small areas. Unit-level models such as general linear model with correlated

sampling errors within small areas, general linear mixed model with nested errors

can all be considered.
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Chapter 5: Application to the General Linear Mixed Model

5.1 Introduction

To illustrate our general methodology for small area estimation, we consider

the situation where the general linear mixed model with block diagonal covariance

structure is used as the unit-level small area model. The Empirical Best Predic-

tion (EBP) estimator for a mixed parameter is derived under the general integrated

model. The closed-form expression for the conditional mean squared error of its cor-

responding Best Prediction (BP) Estimator is also provided for estimating its mean

squared error using the jackknife method provided by Lohr and Rao (2009). As a

special example, we consider the estimation of small area means when a nested error

linear model is used. We provide two methods for estimating the unknown parame-

ters: the Maximum Likelihood (ML) method and the Pseudo Maximum Likelihood

(PML) method. We also discuss the use of numerical algorithms in approximat-

ing the maximum likelihood estimates (MLE), including Newton-Raphson method

and Fish scoring algorithm, and further propose a quasi-scoring algorithm in order

to reduce the computational burden. In this chapter, we follow the notation from

Chapter 4.
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5.2 General Linear Mixed Model with Block Diagonal Covariance

In this section, we consider a specific case where the first component of the

general integrated model is a general linear mixed model with block diagonal co-

variance structure, which may be expressed as:

ỹ̃ỹyi = X̃̃X̃X iβββ + Ũ̃ŨU ivvvi + eeei, i = 1, . . . ,m. (5.1)

Here, ỹ̃ỹyi = (ỹij)
ni
j=1 represents the ni × 1 vector of observed y values in small area i

from file Fy, X̃̃X̃X i = (x̃̃x̃xTij)
ni
j=1 is the ni×p matrix of unobserved xxx values corresponding

to ỹ̃ỹyi, βββ is an p× 1 vector of fixed effects, Ũ̃ŨU i is a known matrix of dimension ni×h,

vvvi is an h× 1 vector of area-specific random effects, eeei is an ni× 1 vector of random

errors, and the vvvis and eeeis are independent with vvvi ∼ N(000,GGGi) and eeei ∼ N(000,RRRi),

where GGGi and RRRi depend on variance parameters δδδ.

We are interested in estimating a linear combination of fixed effects βββ and

mixed effects vvvi, say θi = aaaTi βββ + bbbTi vvvi, for specified known vectors aaai of order p and

bbbi of order h, i = 1, . . . ,m.

Under the assumption that vivivi and eeei are independent of XXX i and CCCi given X̃̃X̃X i,

the conditional distribution of ỹ̃ỹyi and vvvi given XXX i and CCCi isỹ̃ỹyi
vvvi

 |XXX i,CCCi
ind∼ N


QQQiXXX iβββ

000

 ,
 ΣΣΣi Ũ̃ŨU iGGGi

GGGiŨ̃ŨU
T
i GGGi


 . (5.2)

Here, QQQi = (qijj′)
ni Ni

j=1,j′=1 is the matrix of matching probabilities, and ΣΣΣi = KKKi +

Ũ̃ŨU iGGGiŨ̃ŨU
T
i + RRRi, where KKKi = (kijt)

ni,ni

j=1,t=1 is a ni × ni diagonal matrix with diagonal
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entry kijj equal to

kijj =

Ni∑
j′=1

qijj′(1− qijj′)xxxTij′ββββββTxxxij′ , i = 1, . . . ,m, j = 1, . . . , ni.

The detailed proof of (5.2) is given in Appendix 5.4.1.

Therefore, the conditional distribution of vvvi given ỹ̃ỹyi , XXX i and CCCi is

vvvi|ỹ̃ỹyi,XXX i,CCCi
ind∼ N

(
GGGiŨ̃ŨU

T
i ΣΣΣ−1

i (ỹ̃ỹyi −QQQiXXX iβββ),GGGi −GGGiŨ̃ŨU
T
i ΣΣΣ−1

i Ũ̃ŨU iGGGi

)
. (5.3)

Based on results from (5.3), the BP estimator of vvvi and θi are given by

v̂vvBPi = v̂vvBPi (βββ,δδδ,ψψψ) = E(vvvi|ỹ̃ỹyi,XXX i,CCCi) = GGGiŨ̃ŨU
T
i ΣΣΣ−1

i (ỹ̃ỹyi −QQQiXXX iβββ), (5.4)

θ̂BPi = θ̂BPi (βββ,δδδ,ψψψ) = E(θi|ỹ̃ỹyi,XXX i,CCCi) = aaaTi βββ + bbbTi v̂vv
BP
i ,

and the conditional mean squared error of θ̂BPi is given by

CMSE(θ̂BPi ) = bbbTi V ar(vvvi|ỹ̃ỹyi,XXX i,CCCi)bbbi = bbbTi

(
GGGi −GGGiŨ̃ŨU

T
i ΣΣΣ−1

i Ũ̃ŨU iGGGi

)
bbbi.

Note that the estimator θ̂BPi depends on the model parameters βββ, δδδ from the small

area model and ψψψ from the mixture model.

When ψψψ is known, the estimates β̂̂β̂β(ψψψ) and δ̂̂δ̂δ(ψψψ) of βββ and δδδ can be obtained

by using the maximum likelihood method based the conditional distribution of ỹ̃ỹyi

given XXX i and CCCi:

ỹ̃ỹyi|XXX i,CCCi
ind∼ N(QQQiXXX iβββ,ΣΣΣi).

When ψψψ is unknown, the MLE estimate ψ̂̂ψ̂ψ of ψψψ can be obtained by using the

Expectation-Maximization algorithm, and β̂̂β̂β = β̂̂β̂β(ψ̂̂ψ̂ψ), δ̂̂δ̂δ = δ̂̂δ̂δ(ψ̂̂ψ̂ψ). By substituting β̂̂β̂β

for βββ, δ̂̂δ̂δ for δδδ, and ψ̂̂ψ̂ψ for ψψψ in (5.4), we can obtain the EBP estimator of θ:

θ̂EBPi = θ̂BPi (β̂̂β̂β, δ̂̂δ̂δ, ψ̂̂ψ̂ψ) = aaaTi β̂̂β̂β + bbbTi v̂vv
BP
i (β̂̂β̂β, δ̂̂δ̂δ, ψ̂̂ψ̂ψ) (5.5)
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The jackknife methods are applicable to estimate MSE(θ̂BPi ), because the

data {ỹ̃ỹyi,XXX i,CCCi} are independent across small areas and the unknown parameters

{βββ,δδδ,ψψψ} are estimated using estimating equations. We first calculate the delete-j

estimators β̂̂β̂β−j, δ̂̂δ̂δ−j, ψ̂̂ψ̂ψ−j for each jackknife replicate j constructed by deleting data

{yyyj,XXXj,CCCj} in small area j from the full data, j = 1, . . . ,m, and then obtain the

delete-j estimators θ̂EBPi(−j) by replacing βββ, δδδ and ψψψ by β̂̂β̂β−j, δ̂̂δ̂δ−j and ψ̂̂ψ̂ψ−j, respectively.

The jackknife MSE estimator proposed by Lohr and Rao (2009) is recommended to

use since the closed-form expression of CMSE(θ̂BPi ) is available.

The above results can be easily adjusted for the case where a general linear

model is used as the first component of the general integrated model by letting Ũ̃ŨU i

be a matrix of zeros.

5.3 Nested Error Linear Model

In this section, we consider a specific example of the general linear mixed

model with block diagonal covariance structure. Here, a nested error linear model

is used as a unit-level small area model to characterize the relationship between y

and xxx. We are interested in estimating population means θi = ȳi = 1
Np

i

∑
j∈Ui

yij for

each small area. The small area mean ȳi can be treated as a linear combination of

the fixed effect βββ and the mixed effect vi under the nested error linear model if the

population sizes Np
i are sufficiently large. To be exact,

θi = ȳi ≈ x̄xxTi β + vi, i = 1, . . . ,m.

where x̄xxi = 1
Np

i

∑
j∈Ui

xxxij is the population mean of xxx for small area i.
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5.3.1 Estimation of Small Area Mean Using Data From a Single File

First, we consider the ideal case where data for small area estimation are from

a single file as shown in Table 4.1. Or equivalently, the joint observations (yij,xxxij)

are available for each unit in a sample of ni units in small area i, and the population

means x̄̄x̄xi are known, the best prediction (BP) estimator of θi is given by

θ̂BPi = x̄Ti β + (1−Bi)(ȳi,s − x̄Ti,sβ) (5.6)

where ȳi,s = 1
ni

∑ni

j=1 yij and x̄i,s = 1
ni

∑ni

j=1 xij are sample means of y and x in

small area i, respectively, and Bi = σ2
e/(σ

2
e + niσ

2
v). An empirical best prediction

(EBP) estimator of small area mean ȳi can be obtained by substituting the unknown

parameters φφφ = (βββT , σ2
v , σ

2
e) with their suitable estimates φ̂̂φ̂φ = (β̂̂β̂βT , σ̂2

v , σ̂
2
e) in the

above formula for BP estimator. Typically, the weighted least squares methods is

used to estimate βββ, and methods of moments (MOM), maximum likelihood method

(ML), or restricted maximum likelihood (REML) method is used to estimate the

variance components σ2
v and σ2

e . Under regularity conditions, the mean squared

error (MLE) of the EBP estimator of small area mean θ = ȳi can be estimated by

M̂SE(θ̂EBPi ) ≈ g1i(σ̂
2
v , σ̂

2
e) + g2i(σ̂

2
v , σ̂

2
e) + g3i(σ̂

2
v , σ̂

2
e)

where the functions g1i(·), g2i(·), g3i(·) are given in Rao (2003), Chapter 7.

5.3.2 Estimation of Small Area Mean Using Data From Two Files

Now, we consider the case where observations on y and xxx are separately

recorded in two different files (Fy and Fx) and the matching status between records
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from Fy and Fx is unknown. The data layout is shown in Table 4.2.

Assuming that the nested error linear model also holds for all sampled units

in file Fy, the general integrated model then becomes:

(a) ỹij = x̃̃x̃xTijβββ + vi + eij, vi
iid∼ N(0, σ2

v), eij
iid∼ N(0, σ2

e);

(b) x̃̃x̃xij =

Ni∑
j′=1

lijj′xxxij′ ; (5.7)

(c) lijj′
iid∼ Binom(1, π), cijj′k|lijj′ = 1

ind∼ Binom(1,mk), c
i
jj′k|lijj′ = 0

ind∼ Binom(1, uk);

where vi are independent of eij, i = 1, . . . ,m, j = 1, . . . , ni.

As discussed above, the small area mean can be expressed as ȳi ≈ x̄xxTi βββ + vi

under the nested error linear model, where x̄xxi is known for each small area i, i =

1, . . . ,m. Then, derivation of the best prediction estimator of ȳi reduces to the

derivation of the best prediction estimator of random effect vi. This requires us

to obtain the conditional distribution of vi given observed data under the general

integrated model.

Under the nested error linear model as described in (a), it is not difficult to

obtain that

E(ỹij|x̃̃x̃xij) = x̃̃x̃xTijβββ, Cov(ỹij, ỹit|x̃̃x̃xij, x̃̃x̃xit) = σ2
v ,

V ar(ỹij|x̃̃x̃xij) = σ2
v + σ2

e , Cov(ỹij, vi|x̃̃x̃xij) = σ2
v . (5.8)

for integers i ≤ i ≤ m, 1 ≤ j, t ≤ ni, 1 ≤ j′ ≤ Ni.

Based on the linkage error model as described in (b), for any value of βββ, we

can get

x̃̃x̃xTijβββ =

Ni∑
j′=1

lijj′xxx
T
ij′βββ. (5.9)
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Under the mixture model as described in (c), by using Bayes’ rule and the LAR

assumption, we can obtain that P (lijj′ = 1|cccijj′) = qijj′ . Thus, for any 1 ≤ j, j′ ≤ ni,

1 ≤ t, t′ ≤ Ni, and j 6= t, we have

E(lijj′ |CCCi) = qijj′ , V ar(l
i
jj′ |CCCi) = qijj′(1− qijj′), Cov(lijj′ , l

i
tt′ |CCCi) = 0. (5.10)

By combining results from (5.9) and (5.10), we can get

E(x̃̃x̃xTijβββ|XXX i,CCCi) =

Ni∑
j′=1

qijj′xxx
T
ij′βββ,

V ar(x̃̃x̃xTijβββ|XXX i,CCCi) =

Ni∑
j′=1

qijj′(1− qijj′)(xxxTij′βββ)2, (5.11)

Cov(x̃̃x̃xTijβββ, x̃̃x̃x
T
itβββ|XXX i,CCCi) = 0,

for integers 1 ≤ i ≤ m, 1 ≤ j, t ≤ ni, (j 6= t).

Under the assumption that vivivi and eeei are independent of XXX i and CCCi given X̃̃X̃X i,

by combining results from (5.8) and (5.11), we can prove that

E(ỹij|XXX i,CCCi) =

Ni∑
j′=1

qijj′xxx
T
ij′βββ,

V ar(ỹij|XXX i,CCCi) =

Ni∑
j′=1

qijj′(1− qijj′)(xxxTij′βββ)2 + σ2
v + σ2

e , (5.12)

Cov(ỹij, ỹit|XXX i,CCCi) = σ2
v ,

Cov(ỹij, vi|XXX i,CCCi) = σ2
v ,

for integers 1 ≤ i ≤ m, 1 ≤ j, t ≤ ni, (j 6= t). The detailed proof of (5.11) and

(5.12) is given in Section 5.4.2 and Section 5.4.3, respectively.
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The above results can also be written in the following matrix form:

E(ỹ̃ỹyi|XXX i,CCCi) = QQQiXXX iβββ,

V ar(ỹ̃ỹyi|XXX i,CCCi) = KKKi + σ2
v111ni

111Tni
+ σ2

eIIIni
:= ΣΣΣi

Cov(ỹ̃ỹyi, vi|XXX i,CCCi) = σ2
v111ni

.

where 111ni
is the ni × 1 vector of ones, IIIni

is the ni × ni identity matrix, and KKKi =

(kijj′)
nini

j=1j′=1 is an ni × ni diagonal matrix with diagonal entry kijj equal to

kijj =

Ni∑
j′=1

qijj′(1− qijj′)(xxxTij′βββ)2.

Here, KKKi can also be written in a matrix form, that is,

KKKi = diag
{[
QQQi ◦ (111ni

111TNi
−QQQi)

]
[(XXX iβββ) ◦ (XXX iβββ)]

}
.

where MMM1 ◦MMM2 is the Hadamard product of any two matrix MMM1 and MMM2 of the

same dimension, and diag{vvv} is a diagonal matrix with diagonal entries same as

entries of a vector vvv. Note that both ΣΣΣi and KKKi depends on unknown parameter

φφφ = (βββT , σ2
v , σ

2
e) from the nested error linear model and unknown parameter ψψψ =

(π,m1, . . . ,mK , u1, . . . , uK) from the mixture model.

Based on the above analysis, the conditional distribution of (ỹ̃ỹyi, vi) given XXX i

and CCCi is then given by

ỹ̃ỹyi
vi

 |XXX i,CCCi ∼ N


QQQiXXX iβββ

0

 ,
 ΣΣΣi 111ni

σ2
v

111Tni
σ2
v σ2

v


 .
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Therefore, for known φφφ and ψψψ, the BP estimate of vi and θi are given by

v̂BPi = E(vi|ỹ̃ỹyi,XXX i,CCCi) = σ2
v111
T
ni

ΣΣΣ−1
i (ỹ̃ỹyi −QQQiXXX iβββ),

θ̂BPi = x̄xxTi βββ + σ2
v111
T
ni

ΣΣΣ−1
i (ỹ̃ỹyi −QQQiXXX iβββ) (5.13)

The EBP estimate θ̂EBPi is obtained by replacing φφφ and ψψψ by their estimates φ̂φφ and

ψ̂ψψ in formula (5.13). That is,

θ̂EBPi = x̄xxTi β̂ββ + σ̂2
v111
T
ni

Σ̂ΣΣ
−1

i (ỹ̃ỹyi − Q̂QQiXXX iβ̂ββ), (5.14)

where Σ̂ΣΣi = ΣΣΣi(φ̂φφ, ψ̂ψψ) is an estimate of ΣΣΣi. The methods for estimating unknown

parameters φφφ and ψψψ will be introduced in the subsequent part.

The jackknife methods described in this dissertation can be used to the mean

squared error of θ̂EBPi . The choice of the jackknife methods depends on whether

a closed-form expression for MSE(θ̂BPi ) or CMSE(θ̂BPi ) is available. We prove in

Section 5.4.4 that

CMSE(θ̂BPi ) = σ2
v − σ2

v111
T
ni

ΣΣΣ−1
i 111ni

σ2
v ,

MSE(θ̂BPi ) = σ2
v − σ2

v111
T
ni
E(ΣΣΣ−1

i )111ni
σ2
v . (5.15)

Note that there exists a closed-form expression for CMSE(θ̂BPi ), but not for

MSE(θ̂BPi ) due to the difficulty in calculating the component E(ΣΣΣ−1
i ). Therefore,

the estimate of MSE(θ̂EBPi ) can be obtained by using the jackknife method pro-

posed by Lohr and Rao (2009) rather than the one proposed by Jiang, Lahiri and

Wan (2002).
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5.3.3 Estimation of φφφ: Maximum Likelihood Method

When ψψψ is known, we can use the maximum likelihood method to estimate

φφφ. Based on the facts that f(ỹ̃ỹyi,XXX i,CCCi;φφφ,ψψψ) = f(ỹ̃ỹyi|XXX i,CCCi;φφφ,ψψψ)f(XXX i,CCCi;ψψψ) and

f(XXX i,CCCi;ψψψ) does not depends on φφφ, the log-likelihood function of φφφ based on data

{yyyi,XXX i,CCCi, i = 1, . . . ,m} can be expressed as

l(φφφ; ỹ̃ỹy,XXX,CCC) ∝
m∑
i=1

ln (f(ỹ̃ỹyi|XXX i,CCCi;φφφ,ψψψ))

= −1

2

m∑
i=1

{
ni ln(2π) + ln |ΣiΣiΣi|+ (ỹ̃ỹyi −QQQiXXX iβββ)TΣΣΣ−1

i (ỹ̃ỹyi −QQQiXXX iβββ)
}
.

The first derivatives of l(φφφ; ỹ̃ỹy,XXX,CCC) are given by:

∂l(φφφ; ỹ̃ỹy,XXX,CCC)

∂βk
= −1

2

m∑
i=1

{
tr
(
ΣΣΣ−1
i DDDi,k

)
− 2δδδTkXXX

T
i QQQ

T
i ΣΣΣ−1

i (ỹ̃ỹyi −QQQiXXX iβββ)

− (ỹ̃ỹyi −QQQiXXX iβββ)TΣΣΣ−1
i DDDi,kΣΣΣ

−1
i (ỹ̃ỹyi −QQQiXXX iβββ)

}
, (5.16)

∂l(φφφ; ỹ̃ỹy,XXX,CCC)

∂σ2
v

= −1

2

m∑
i=1

{
tr
(
ΣΣΣ−1
i 111ni

111Tni

)
− (ỹ̃ỹyi −QQQiXXX iβββ)TΣΣΣ−1

i 111ni
111Tni

ΣΣΣ−1
i (ỹ̃ỹyi −QQQiXXX iβββ)

}
,

∂l(φφφ; ỹ̃ỹy,XXX,CCC)

∂σ2
e

= −1

2

m∑
i=1

{
tr
(
ΣΣΣ−1
i

)
− (ỹ̃ỹyi −QQQiXXX iβββ)TΣΣΣ−1

i ΣΣΣ−1
i (ỹ̃ỹyi −QQQiXXX iβββ)

}
,

where tr(MMM) is the trace of any square matrixMMM , δδδk is the kth column of the identity

matrix IIIp, andDDDi,k = (dijj′,k)
nini

j=1j′=1 is a ni×ni diagonal matrix with diagonal entries

dijj,k = 2
∑Ni

j′=1 q
i
jj′(1− qijj′)(xxxTij′βββ)xij′k for i = 1, . . . ,m, j = 1, . . . , ni, k = 1, . . . , p.
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The second derivatives of l(φφφ; ỹ̃ỹy,XXX,CCC) are given by:

∂2l(φφφ; ỹ̃ỹy,XXX,CCC)

∂βt∂βk
= −1

2

m∑
i=1

{
tr
(
−ΣΣΣ−1

i DDDi,tΣΣΣ
−1
i DDDi,k + ΣΣΣ−1

i DDDi,kt

)
+ 2δδδTkXXX

T
i QQQ

T
i ΣΣΣ−1

i DDDi,tΣΣΣ
−1
i (ỹ̃ỹyi −QQQiXXX iβββ)

+ 2δδδTkXXX
T
i QQQ

T
i ΣΣΣ−1

i QQQiXXX iδδδt + 2δδδTt XXX
T
i QQQ

T
i ΣΣΣ−1

i DDDi,kΣΣΣ
−1
i (ỹ̃ỹyi −QQQiXXX iβββ)

+ 2(ỹ̃ỹyi −QQQiXXX iβββ)TΣΣΣ−1
i DDDi,tΣΣΣ

−1
i DDDi,kΣΣΣ

−1
i (ỹ̃ỹyi −QQQiXXX iβββ)

− (ỹ̃ỹyi −QQQiXXX iβββ)TΣΣΣ−1
i DDDi,ktΣΣΣ

−1
i (ỹ̃ỹyi −QQQiXXX iβββ)

}
∂2l(φφφ; ỹ̃ỹy,XXX,CCC)

∂βk∂σ2
v

= −1

2

m∑
i=1

{
− tr

(
ΣΣΣ−1
i DDDi,kΣΣΣ

−1
i 111ni

111Tni

)
+ 2δδδTkXXX

T
i QQQ

T
i ΣΣΣ−1

i 111ni
111Tni

ΣΣΣ−1
i (ỹ̃ỹyi −QQQiXXX iβββ)

+ 2(ỹ̃ỹyi −QQQiXXX iβββ)TΣΣΣ−1
i DDDi,kΣΣΣ

−1
i 111ni

111Tni
ΣΣΣ−1
i (ỹ̃ỹyi −QQQiXXX iβββ)

}
,

∂2l(φφφ; ỹ̃ỹy,XXX,CCC)

∂βk∂σ2
e

= −1

2

m∑
i=1

{
− tr

(
ΣΣΣ−1
i DDDi,kΣΣΣ

−1
i

)
+ 2δδδTkXXX

T
i QQQ

T
i ΣΣΣ−1

i ΣΣΣ−1
i (ỹ̃ỹyi −QQQiXXX iβββ)

+ 2(ỹ̃ỹyi −QQQiXXX iβββ)TΣΣΣ−1
i DDDi,kΣΣΣ

−1
i ΣΣΣ−1

i (ỹ̃ỹyi −QQQiXXX iβββ)

}
, (5.17)

∂2l(φφφ; ỹ̃ỹy,XXX,CCC)

∂σ2
v∂σ

2
v

= −1

2

m∑
i=1

{
tr
(
−ΣΣΣ−1

i 111ni
111Tni

ΣΣΣ−1
i 111ni

111Tni

)
+ 2(ỹ̃ỹyi −QQQiXXX iβββ)TΣΣΣ−1

i 111ni
111Tni

ΣΣΣ−1
i 111ni

111Tni
ΣΣΣ−1
i (ỹ̃ỹyi −QQQiXXX iβββ)

}
,

∂2l(φφφ; ỹ̃ỹy,XXX,CCC)

∂σ2
v∂σ

2
e

= −1

2

m∑
i=1

{
− tr

(
ΣΣΣ−1
i 111ni

111Tni
ΣΣΣ−1
i

)
+ 2(ỹ̃ỹyi −QQQiXXX iβββ)TΣΣΣ−1

i 111ni
111Tni

ΣΣΣ−1
i ΣΣΣ−1

i (ỹ̃ỹyi −QQQiXXX iβββ)

}
,

∂2l(φφφ; ỹ̃ỹy,XXX,CCC)

∂σ2
e∂σ

2
e

= −1

2

m∑
i=1

{
− tr

(
ΣΣΣ−1
i ΣΣΣ−1

i

)
+ 2(ỹ̃ỹyi −QQQiXXX iβββ)TΣΣΣ−1

i ΣΣΣ−1
i ΣΣΣ−1

i (ỹ̃ỹyi −QQQiXXX iβββ)

}
,

where DDDi,kt = (dijj′,kt)
nini

j=1j′=1 is an ni × ni matrix with diagonal entries dijj,kt =
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2
∑m

i=1 q
i
jj′(1−qijj′)xij′txij′k, i = 1, . . . ,m, j = 1, . . . , ni, k = 1, . . . , p and t = 1, . . . , p.

Recall that the maximum likelihood estimation (MLE) of φφφ is obtained by

setting the score function SSS(φφφ) = ∂l(φφφ;ỹ̃ỹy,XXX,CCC)
∂φφφ

to zero. Here, SSS(φφφ) is our estimating

functions. The components of SSS(φφφ) are given by equations in (5.16). Based on the

above analysis, we can see that there is no closed-form expression for the solutions

of SSS(φφφ) = 000. In this case, the equations SSS(φφφ) = 000 must simultaneously be solved

numerically by using some iterative algorithms. In the following part, we discuss

the advantages and drawbacks of two existing algorithms for optimizing l(φφφ; ỹ̃ỹy,XXX,CCC)

(Newton-Raphson method and Fisher scoring algorithm), and propose a new algo-

rithm which is expected to be computationally friendly and robust to poor starting

values.

5.3.4 Numerical Algorithms

The Newton-Raphson method starts with an initial guess φφφ(0) for the root of

SSS(φφφ), and then takes the following iteration step until a convergence criterion is

reached:

φφφ(t+1) = φφφ(t) + JJJ−1(φφφ(t))SSS(φφφ(t)) (5.18)

where φφφ(t) is the approximation of φφφ at iteration t, and JJJ(φφφ) is the negative value

of the gradient of SSS(φφφ), that is, JJJ(φφφ) = −∂SSS(φφφ)
∂φφφ

= −∂2l(φφφ;ỹ̃ỹy,XXX,CCC)
∂φφφ∂φφφT

. The components

of JJJ(φφφ) can be obtained by taking the negative values of the second derivatives of

l(φφφ; ỹ̃ỹy,XXX,CCC) given by equations in (5.17). We can see that JJJ(φφφ) is a very complicated

matrix depending on data {ỹ̃ỹyi,CCCi,XXX i, i = 1, . . . ,m} and parameters φφφ and ψψψ.

82



The Newton-Raphson method is easy to understand and can be implemented

here since the matrix JJJ(φφφ) is available. It is expected that the Newton- Raphson’s

algorithm would converge rapidly because of its quadratic converge rate. However,

it can still take long time to converge due to the difficulty in calculating the com-

plicated matrix JJJ(φφφ(t)) in each iteration. Also, the Newton-Raphson method may

not be effective if the iterations begin with a poor starting values φφφ(0).

One alternative to Newton-Raphson method is the Fisher scoring algorithm,

which is commonly used for optimizing log-likelihood functions. The Fisher scoring

algorithm is obtained by replacing the matrix JJJ(φφφ) in the iteration equation (5.22)

by its expectation, i.e., the Fisher information matrix III(φφφ). The iteration equation

then becomes

φφφ(t+1) = φφφ(t) + III−1(φφφ(t))SSS(φφφ(t)).

The Fisher scoring algorithm can reduce the computations in Newton-Raphson

method by simplifying the matrix JJJ(φφφ). Jennrich and Sampson (1976) demonstrated

its robustness to poor staring values. However, the Fisher scoring algorithm requires

a closed form expression of the Fisher information matrix III(φφφ), which is not available

in our case. By the law of total expectations,

III(φφφ) = E

[
−∂

2l(φφφ; ỹ̃ỹy,XXX,CCC)

∂φφφ∂φφφT

]
= E

[
E

(
−∂

2l(φφφ; ỹ̃ỹy,XXX,CCC)

∂φφφ∂φφφT
|XXX,CCC

)]
.

Therefore, in order to derive III(φφφ), we need to take expectation of both sides of

the equations in (5.19) with respect to XXX and CCC . The calculation involves taking

expectations of complicated terms QQQT
i ΣΣΣ−1

i QQQi, DDDi,tDDDi,k, ΣΣΣ−1
i 111ni

111Tni
ΣΣΣ−1
i , ΣiΣiΣi

−1ΣiΣiΣi
−1 and
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ΣiΣiΣi
−1DDDi,kΣiΣiΣi

−1, which is not practical. Therefore, the Fisher scoring algorithm cannot

be implemented here despite of its advantages over the Newton-Raphson method.

Based on the above analysis, both the Newton-Raphson method and the Fisher

scoring algorithm are not ideal for approximating the MLE estimate of φφφ. Here,

inspired by the derivation of the Fisher scoring algorithm, we propose a new iterative

algorithm: the quasi-scoring algorithm. The matrix JJJ(φφφ) in the Newton-Raphson

method is replaced by its conditional expectation given the observed comparison

vectors XXX and CCC, IIIc(φφφ) = E[JJJ(φφφ)|XXX,CCC], rather than its expected value III(φφφ). Then

the interaction equation used for the quasi-scoring algorithm is given by:

φφφ(t+1) = φφφ(t) + III−1
c (φφφ(t))SSS(φφφ(t)).

The components of IIIc(φφφ) are given by:

E

(
−∂

2l(φφφ; ỹ̃ỹy,XXX,CCC)

∂βt∂βk
|XXX,CCC

)
=

1

2

m∑
i=1

{
2δδδTkXXX

T
i QQQ

T
i ΣΣΣ−1

i QQQiXXX iδδδt + tr
(
ΣΣΣ−1
i DDDi,tΣΣΣ

−1
i DDDi,k

)}
,

E

(
−∂

2l(φφφ; ỹ̃ỹy,CCC)

∂βk∂σ2
v

|XXX,CCC
)

=
1

2

m∑
i=1

111Tni
ΣΣΣ−1
i DDDi,kΣΣΣ

−1
i 111ni

,

E

(
−∂

2l(φφφ; ỹ̃ỹy,XXX,CCC)

∂βk∂σ2
e

|XXX,CCC
)

=
1

2

m∑
i=1

tr
(
ΣΣΣ−1
i DDDi,kΣΣΣ

−1
i

)
, (5.19)

E

(
−∂

2l(φφφ; ỹ̃ỹy,XXX,CCC)

∂σ2
v∂σ

2
v

|XXX,CCC
)

=
1

2

m∑
i=1

111Tni
ΣΣΣ−1
i 111ni

111Tni
ΣΣΣ−1
i 111ni

,

E

(
−∂

2l(φφφ; ỹ̃ỹy,XXX,CCC)

∂σ2
v∂σ

2
e

|XXX,CCC
)

=
1

2

m∑
i=1

111Tni
ΣΣΣ−1
i ΣΣΣ−1

i 111ni
,

E

(
−∂

2l(φφφ; ỹ̃ỹy,XXX,CCC)

∂σ2
e∂σ

2
e

|XXX,CCC
)

=
1

2

m∑
i=1

tr
(
ΣΣΣ−1
i ΣΣΣ−1

i

)
.

The derivation of (5.19) is based on the fact that ỹ̃ỹyi|XXX i,CCCi
ind∼ N(QQQiXXX iβββ,ΣiΣiΣi) and

E
[
(ỹ̃ỹyi −QQQiXXX iβββ)TMMM(ỹ̃ỹyi −QQQiXXX iβββ)|CCC

]
= tr (MMMΣΣΣi) for any ni × ni matrix MMM , which

may depends on XXX and CCC but not on ỹ̃ỹy.
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We can see that the format of IIIc(φφφ) is much simpler than that of JJJ(φφφ) by

comparing their components shown in (5.19) and (5.17). So theoretically the quasi-

scoring algorithm can reduce computations at each iteration when compared to

the Newton-Raphson method, while the Newton-Raphson method can take less

number of iterations compared to the quasi-scoring algorithm. Also, the quasi-

scoring algorithm may preserve the property of robustness to poor starting values

of Fisher scoring, while the Newton-Raphson method may diverge if the starting

point is too far from the root of SSS(φφφ). Here, it is highly recommended to start an

iterative procedure with the quasi-scoring algorithms in the first few steps and then

change to Newton-Raphson method later. In this way, the quasi-scoring algorithm

can reduce computations and generate a find a good starting value for iterations

using the Newton-Raphson method.

All iterative methods do have their drawbacks. First, they may not converge

well due to poor starting values. The common approach is to use different starting

values and hope the algorithm will converge. Second, the resulting approximated

solutions φ̃φφ = (β̃ββ, σ̃2
v , σ̃

2
e)
T of SSS(φφφ) = 000 may not be within the parameter space of

φφφ = (βββ, σ2
v , σ

2
e)
T . For example, σ̃2

v ≤ 0 or σ̃2
e ≤ 0. This inaccuracy may be caused by

the different ranges of the parameters. One may improve the accuracy by scaling

the parameters σ2
v and σ2

e so that they all have approximate the same range as βββ.
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5.3.5 Estimation of φφφ: Pseudo Maximum Likelihood Method

Pseudo maximum likelihood method was first introduced by Samart and

Chambers (2014) as an appropriate modifications to the maximum likelihood

method of variance components estimation in presence of linkage errors. Based on

the above analysis shown in 5.3.3, we can see that the maximum likelihood method

may not be easy to use in practice. This is mainly caused by the difficulty of calcu-

lating the derivatives of l(φφφ; ỹ̃ỹyi,XXX i,CCCi) due to the complexity of ΣΣΣi. The matrix ΣΣΣi

depends on not only the variance components σ2
v , σ

2
e but also the regression coeffi-

cient βββ. The basic idea of the pseudo maximum likelihood method is to reduce the

computation complexity by assuming that ΣΣΣi is fixed in βββ, and depends on σ2
v and

σ2
e only.

Whenψψψ is known, the log-likelihood function of φφφ based on data {ỹ̃ỹyi,XXX i,CCCi, i =

1, . . . ,m} is given by

l(φφφ; ỹ̃ỹy,XXX,CCC) = −1

2

m∑
i=1

{
ni ln(2π) + ln |ΣiΣiΣi|+ (ỹ̃ỹyi −QQQiXXX iβββ)TΣiΣiΣi

−1(ỹ̃ỹyi −QQQiXXX iβββ)
}
.

Under the assumption that ΣΣΣi is fixed in βββ, the first derivatives of l(φφφ; ỹ̃ỹy,XXX,CCC)

with respect to βββ, σ2
v and σ2

e are given by

∂l(φφφ; ỹ̃ỹy,XXX,CCC)

∂βββ
=

m∑
i=1

XXXT
i QQQ

T
i ΣΣΣ−1

i (ỹ̃ỹyi −QQQiXXX iβββ),

∂l(φφφ; ỹ̃ỹy,XXX,CCC)

∂σ2
v

= −1

2

m∑
i=1

{
111Tni

ΣΣΣ−1
i 111ni

− (ỹ̃ỹyi −QQQiXXX iβββ)TΣΣΣ−1
i 111ni

111Tni
ΣΣΣ−1
i (ỹ̃ỹyi −QQQiXXX iβββ)

}
,

∂l(φφφ; ỹ̃ỹy,XXX,CCC)

∂σ2
e

= −1

2

m∑
i=1

{
tr
(
ΣΣΣ−1
i

)
− (ỹ̃ỹyi −QQQiXXX iβββ)TΣΣΣ−1

i ΣΣΣ−1
i (ỹ̃ỹyi −QQQiXXX iβββ)

}
. (5.20)

The pseudo maximum likelihood estimate (PMLE) of φφφ is obtained by solving
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the following estimating functions:

S̃̃S̃S(φφφ) =

(
∂l(φφφ)

∂βββ
,
∂l(φφφ)

∂σ2
v

,
∂l(φφφ)

∂σ2
e

)T
= 000

Note that the resulting solution of S̃̃S̃S(φφφ) = 000 is referred as the PMLE estimator

of ψψψ because the estimating equations S̃̃S̃S(φφφ) is derived under the assumption ΣΣΣi is

fixed in βββ. However, ΣΣΣi is actually a function of βββ, σ2
v and σ2

e . Therefore, the

estimating equations S̃̃S̃S(φφφ) = 000 cannot be solved analytically. Again, we can use

either Newton-Raphson algorithm or quasi-scoring algorithm to solve the estimating

equations iteratively.

From (5.20), we can obtain the second derivatives of l(φφφ):

∂2l(φφφ; ỹ̃ỹy,XXX,CCC)

∂βββ∂βββT
= −

m∑
i=1

XXXT
i QQQ

T
i ΣΣΣ−1

i QQQiXXX i,

∂2l(φφφ; ỹ̃ỹy,XXX,CCC)

∂βββ∂σ2
v

= −
m∑
i=1

XXXT
i QQQ

T
i ΣΣΣ−1

i 111ni
111Tni

ΣΣΣ−1
i (ỹ̃ỹyi −QQQiXXX iβββ),

∂2l(φφφ; ỹ̃ỹy,XXX,CCC)

∂βββ∂σ2
e

= −
m∑
i=1

XXXT
i QQQ

T
i ΣΣΣ−1

i ΣΣΣ−1
i (ỹ̃ỹyi −QQQiXXX iβββ),

∂2l(φφφ; ỹ̃ỹy,XXX,CCC)

∂σ2
v∂σ

2
v

= −1

2

m∑
i=1

{
− 111Tni

ΣΣΣ−1
i 111ni

111Tni
ΣΣΣ−1
i 111ni

(5.21)

+ 2(ỹ̃ỹyi −QQQiXXX iβββ)TΣΣΣ−1
i 111ni

111Tni
ΣΣΣ−1
i 111ni

111Tni
ΣΣΣ−1
i (ỹ̃ỹyi −QQQiXXX iβββ)

}
,

∂2l(φφφ; ỹ̃ỹy,XXX,CCC)

∂σ2
v∂σ

2
e

= −1

2

m∑
i=1

{
− 111Tni

ΣΣΣ−1
i ΣΣΣ−1

i 111ni

+ 2(ỹ̃ỹyi −QQQiXXX iβββ)TΣΣΣ−1
i ΣΣΣ−1

i 111ni
111Tni

ΣΣΣ−1
i (ỹ̃ỹyi −QQQiXXX iβββ)

}
,

∂2l(φφφ; ỹ̃ỹy,XXX,CCC)

∂σ2
e∂σ

2
e

= −1

2

m∑
i=1

{
− tr

(
ΣΣΣ−1
i ΣΣΣ−1

i

)
+ 2(ỹ̃ỹyi −QQQiXXX iβββ)TΣΣΣ−1

i ΣΣΣ−1
i ΣΣΣ−1

i (ỹ̃ỹyi −QQQiXXX iβββ)

}
.

The Newton-Raphson for approximating the pseudo maximum likelihood es-
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timator of φφφ = (βββ, σ2
v , σ

2
e) has the following iteration equations:

φφφ(t+1) = φφφ(t) + J̃̃J̃J−1(φφφ(t))S̃̃S̃S(φφφ(t)) (5.22)

where φφφ(t) is the approximation of φφφ at iteration t, and J̃̃J̃J(φφφ) is the negative value of

the gradient of S̃̃S̃S(φφφ). The components of J̃̃J̃J(φφφ) can be obtained by taking the negative

values of the second derivatives of l(φφφ; ỹ̃ỹy,XXX,CCC) given by equations in (5.21).

By using the fact that E
[
(ỹ̃ỹyi −QQQiXXX iβββ)TMMM(ỹ̃ỹyi −QQQiXXX iβββ)|XXX,CCC

]
= tr (MMMΣΣΣi)

and that E(ỹ̃ỹyi|XXX i,CCCi) = QQQiXXX iβββ, we can obtain the following results from (5.21):

E

[
−∂

2l(φφφ; ỹ̃ỹy,XXX,CCC)

∂βββ∂βββT
|XXX,CCC

]
=

m∑
i=1

XXXT
i QQQ

T
i ΣΣΣ−1

i QQQiXXX i,

E

[
−∂

2l(φφφ; ỹ̃ỹy,XXX,CCC)

∂βββ∂σ2
v

|XXX,CCC
]

= 000p,

E

[
−∂

2l(φφφ; ỹ̃ỹy,XXX,CCC)

∂βββ∂σ2
e

|XXX,CCC
]

= 000p, (5.23)

E

[
−∂

2l(φφφ; ỹ̃ỹy,XXX,CCC)

∂σ2
v∂σ

2
v

|XXX,CCC
]

=
1

2

m∑
i=1

111Tni
ΣΣΣ−1
i 111ni

111Tni
ΣΣΣ−1
i 111ni

,

E

[
−∂

2l(φφφ; ỹ̃ỹy,XXX,CCC)

∂σ2
v∂σ

2
e

|XXX,CCC
]

=
1

2

m∑
i=1

111Tni
ΣΣΣ−1
i ΣΣΣ−1

i 111ni
,

E

[
−∂

2l(φφφ; ỹ̃ỹy,XXX,CCC)

∂σ2
e∂σ

2
e

|XXX,CCC
]

=
1

2

m∑
i=1

tr
(
ΣΣΣ−1
i ΣΣΣ−1

i

)
,

where 000p is a p-order vector of zeros.

Thus, the quasi-scoring algorithm for approximating the pseudo maximum

likelihood estimator of φφφ = (βββ, σ2
v , σ

2
e) has the following iteration equations:

φφφ(t+1) = φφφ(t) + {Ĩc̃Ic̃Ic(φφφ(t))}−1S̃̃S̃S(φφφ(t))
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where φφφ(t) is the estimate of φφφ at iteration t, and Ĩc̃Ic̃Ic(φφφ) is given by

Ĩc̃Ic̃Ic(φφφ) =
1

2

m∑
i=1


XXX iQQQiΣΣΣ

−1
i QQQiXXX i 000p 000p

000Tp 111Tni
ΣΣΣ−1
i 111ni

111Tni
ΣΣΣ−1
i 111ni

111Tni
ΣΣΣ−1
i ΣΣΣ−1

i 111ni

000Tp 111Tni
ΣΣΣ−1
i ΣΣΣ−1

i 111ni
tr
(
ΣΣΣ−1
i ΣΣΣ−1

i

)

 . (5.24)

5.4 Proofs

5.4.1 Proof of (5.2)

Theorem: When the linear mixed model (5.1), the linkage error model (4.3) and

the mixture model (2.4) are used as the three components of the general integrated

model, the conditional distribution of ỹ̃ỹyi and vvvi given XXX i and CCCi can be derived

under the assumption that vvvi and eeei are independent of XXX i and CCCi given X̃̃X̃X i. That

is, ỹ̃ỹyi
vvvi

 |XXX i,CCCi
ind∼ N


QQQiXXX iβββ

000

 ,
 ΣΣΣi Ũ̃ŨU iGGGi

GGGiŨ̃ŨU
T
i GGGi


 . (5.25)

Here, QQQi = (qijj′)
ni Ni

j=1,j′=1 is the matrix of matching probabilities, and ΣΣΣi = KKKi +

Ũ̃ŨU iGGGiŨ̃ŨU
T
i + RRRi, where KKKi = (kijt)

ni,ni

j=1,t=1 is a ni × ni diagonal matrix with diagonal

entry kijj equal to

kijj =

Ni∑
j′=1

qijj′(1− qijj′)xxxTij′ββββββTxxxij′ , j = 1, . . . , ni, i = 1, . . . ,m.

Proof: Under the LAR assumption that P (LLL|ỹ̃ỹy,XXX,CCC) = P (LLL|CCC), we can obtain

the following from the mixture model described in (2.4):

E[LLLi|ỹ̃ỹyi,XXX i,CCCi] = E[LLLi|CCCi] = QQQi. (5.26)
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Recall that QQQi depends on CCCi but not XXX i. Therefore,

E(LLLi|XXX i,CCCi) = E[E(LLLi|ỹ̃ỹyi,XXX i,CCCi)|XXX i,CCCi] = E[QQQi|XXX i,CCCi] = QQQi. (5.27)

Under the linkage error model that X̃̃X̃X i = LLLiXXX i, by applying the result in (5.27), it

is not difficult to obtain that

E
[
X̃̃X̃X iβββ|XXX i,CCCi

]
= E [LLLiXXX iβββ|XXX i,CCCi] = E [LLLi|XXX i,CCCi]XXX iβββ = QQQiXXX iβββ,

V ar
[
X̃̃X̃X iβββ|XXX i,CCCi

]
= E

[
X̃̃X̃X iββββββ

T X̃̃X̃XT
i |XXX i,CCCi

]
− E

[
X̃̃X̃X iβββ|XXX i,CCCi

] (
E
[
X̃̃X̃X iβββ|XXX i,CCCi

])T
= E

[
X̃̃X̃X iββββββ

T X̃̃X̃XT
i |XXX i,CCCi

]
−QQQiXXX iββββββ

TXXXT
i QQQ

T
i .

Now, we partition X̃̃X̃X i and QQQi into ni row vectors x̃̃x̃xTi1, . . . , x̃̃x̃x
T
ini

and qqqiT1 , . . . , qqq
iT
ni

,

respectively, where qqqiTj = (qij1, . . . , q
i
jNi

). By using the fact that x̃̃x̃xij =
∑Ni

j′=1 l
i
jj′xxx

T
ij′

under the linkage model and that qqqiTj XXX i =
∑Ni

j′=1 q
i
jj′xxx

T
ij′ , we can achieve the (j, t)

entry of V ar
[
X̃̃X̃X iβββ|XXX i,CCCi

]
, that is,

V ar
[
X̃̃X̃X iβββ|XXX i,CCCi

]
j,t

= E
[
X̃̃X̃X iββββββ

T X̃̃X̃XT
i |XXX i,CCCi

]
j,t
−
(
QQQiXXX iββββββ

TXXXT
i QQQ

T
i

)
j,t

= E
[
x̃̃x̃xTijββββββ

T x̃̃x̃xit|XXX i,CCCi

]
− qqqiTj XXX iββββββ

TXXXT
i qqq

i
t

= E

( Ni∑
j′=1

lijj′xxx
T
ij′

)
ββββββT

(
Ni∑
t′=1

litt′xxx
T
it′

)T ∣∣∣∣XXX i,CCCi


−

(
Ni∑
j′=1

qijj′xxx
T
ij′

)
ββββββT

(
Ni∑
t′=1

qijt′xxx
T
it′

)T

= E

[
Ni∑
j′=1

Ni∑
t′=1

lijj′xxx
T
ij′ββββββ

Txxxit′l
i
tt′

∣∣∣∣XXX i,CCCi

]

−
Ni∑
j′=1

Ni∑
t′=1

qijj′xxx
T
ij′ββββββ

TXXX it′q
i
tt′

=

Ni∑
j′=1

Ni∑
t′=1

(
E
[
lijj′l

i
tt′|CCCi

]
− qijj′qitt′

)
xxxTij′ββββββ

Txxxit′ ,
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for j = 1, . . . , ni and t = 1, . . . , ni.

Since lijj′s are conditionally independent given CCCi with P (lijj′ = 1|CCCi) = qijj′

under the mixture model for j = 1, . . . , ni and j′ = 1, . . . , Ni, then

E
[
lijj′l

i
tt′ |CCCi

]
=


qijj′ if j = j′ and t = t′

qijj′q
i
tt′ otherwise

.

Therefore, the (j, t) off-diagonal entry (i.e., when j 6= t) and the (j, j) diagonal

entry of V ar
[
X̃̃X̃X iβββ|XXX i,CCCi

]
are given by

V ar
[
X̃̃X̃X iβββ|XXX i,CCCi

]
j,t

=

Ni∑
j′=1

Ni∑
t′=1

(
qijj′q

i
tt′ − qijj′qitt′

)
xxxTij′ββββββ

Txxxit′ = 0 (j 6= t),

V ar
[
X̃̃X̃X iβββ|XXX i,CCCi

]
j,j

=

Ni∑
j′=1

(
E
[
lijj′l

i
jj′ |CCCi

]
− qijj′qijj′

)
xxxTij′ββββββ

Txxxij′

+

Ni∑
j′=1

∑
t′ 6=j′

(
E
[
lijj′l

i
jt′|CCCi

]
− qijj′qijt′

)
xxxTij′ββββββ

Txxxit′

=

Ni∑
j′=1

(
qijj′ − qijj′qijj′

)
xxxTij′ββββββ

Txxxij′

+

Ni∑
j′=1

∑
t′ 6=j′

(
qijj′q

i
jt′ − qijj′qijt′

)
xxxTij′ββββββ

Txxxit′

=

Ni∑
j′=1

qijj′
(
1− qijj′

)
xxxTij′ββββββ

Txxxij′

= kijj.

Based on the above analysis,

E
[
X̃̃X̃X iβββ|XXX i,CCCi

]
= QQQiXXX iβββ, V ar

[
X̃̃X̃X iβββ|XXX i,CCCi

]
= KKKi. (5.28)

From the general linear mixed model, we have

E
[
ỹ̃ỹyi|X̃̃X̃X i

]
= X̃̃X̃X iβββ, V ar

(
ỹ̃ỹyi|X̃̃X̃X i

)
= Ũ̃ŨU iGGGiŨ̃ŨU

T
i +RRRi, Cov

(
ỹ̃ỹyi, vvvi|X̃̃X̃X i

)
= Ũ̃ŨU iGGGi (5.29)
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Under the assumption that vvvi and eeei is independent of XXX i and CCCi given X̃̃X̃X i, ỹ̃ỹyi is

independent of XXX i and CCCi given X̃̃X̃X i. By combining (5.28) and (5.29), we have

E [ỹ̃ỹyi|XXX i,CCCi] = E
[
E
(
ỹ̃ỹyi|X̃̃X̃X i,XXX i,CCCi

)
|XXX i,CCCi

]
= E

[
E
(
ỹ̃ỹyi|X̃̃X̃X i

)
|XXX i,CCCi

]
= E

[
X̃̃X̃X iβββ|CCCi

]
= QQQiXXX iβββ,

V ar (ỹ̃ỹyi|XXX i,CCCi) = V ar
(
E
[
ỹ̃ỹyi|X̃̃X̃X i,XXX i,CCCi

]
|XXX i,CCCi

)
+ E

[
V ar

(
ỹ̃ỹyi|X̃̃X̃X i,XXX i,CCCi

)
|XXX i,CCCi

]
= V ar

(
E
[
ỹ̃ỹyi|X̃̃X̃X i,

]
|XXX i,CCCi

)
+ E

[
V ar

(
ỹ̃ỹyi|X̃̃X̃X i

)
|XXX i,CCCi

]
= V ar

(
X̃̃X̃X iβββ|XXX i,CCCi

)
+ E

[
Ũ̃ŨU iGGGiŨ̃ŨU

T
i +RRRi|XXX i,CCCi

]
= KKKi + Ũ̃ŨU iGGGiŨ̃ŨU

T
i +RRRi

= ΣΣΣi,

Cov (ỹ̃ỹyi, vvvi|XXX i,CCCi) = Cov
(
E
[
ỹ̃ỹyi|X̃̃X̃X i,XXX i,CCCi

]
, E
[
vvvi|X̃̃X̃X i,XXX i,CCCi

]
|XXX i,CCCi

)
+ E

[
Cov

(
ỹ̃ỹyi, vvvi|X̃̃X̃X i,XXX i,CCCi

)
|XXX i,CCCi

]
= Cov

(
E
[
ỹ̃ỹyi|X̃̃X̃X i

]
, E
[
vvvi|X̃̃X̃X i

]
|XXX i,CCCi

)
+ E

[
Cov

(
ỹ̃ỹyi, vvvi|X̃̃X̃X i

)
|XXX i,CCCi

]
= Cov

(
X̃̃X̃X iβββ, 0|XXX i,CCCi

)
+ E

[
Ũ̃ŨU iGGGi|XXX i,CCCi

]
= Ũ̃ŨU iGGGi.

Therefore, the conditional distribution of ỹ̃ỹyi and vvvi given XXX i and CCCi isỹ̃ỹyi
vvvi

 |XXX i,CCCi
ind∼ N


QQQiXXX iβββ

000

 ,
 ΣΣΣi Ũ̃ŨU iGGGi

GGGiŨ̃ŨU
T
i GGGi


 .
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5.4.2 Proof of (5.11)

E(x̃̃x̃xTijβββ|XXX i,CCCi) = E

(
Ni∑
j′=1

lijj′xxx
T
ij′βββ|XXX i,CCCi

)

=

Ni∑
j′=1

E
(
lijj′|XXX i,CCCi

)
xxxTij′βββ

=

Ni∑
j′=1

E(lijj′ |cccijj′)xxxij′βββ

=

Ni∑
j′=1

qijj′xxx
T
ij′βββ,

V ar(x̃̃x̃xTijβββ|XXX i,CCCi) = V ar

(
Ni∑
j′=1

lijj′xxx
T
ij′βββ|XXX i,CCCi

)

=

Ni∑
j′=1

V ar(lijj′|XXX i,CCCi)(xxx
T
ij′βββ)2

=

Ni∑
j′=1

V ar(lijj′|cccijj)(xxxTij′βββ)2

=

Ni∑
j′=1

qijj′(1− qijj′)(xxxTij′βββ)2.

Cov(x̃̃x̃xTijβββ, x̃̃x̃x
T
itβββ|XXX i,CCCi) = Cov

(
Ni∑
j′=1

lijj′xxx
T
ij′βββ,

Ni∑
t′=1

litt′xxx
T
it′βββ|XXX i,CCCi

)

=

Ni∑
j′=1

Ni∑
t′=1

Cov
(
lijj′xxx

T
ij′βββ, l

i
tt′xxx

T
it′βββ|XXX i,CCCi

)
=

Ni∑
j′=1

Ni∑
t′=1

Cov(lijj′ , l
i
tt′|CCCi)(xxx

T
ij′βββ)(xxxTit′βββ)

= 0.
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5.4.3 Proof of (5.12)

Assuming vi and eij is conditionally independent of XXX i and CCCi given X̃̃X̃X i,

then we have E(ỹij|x̃̃x̃xij,XXX i,CCCi) = E(ỹij|x̃̃x̃xij), V ar(ỹij|x̃̃x̃xij,XXX i,CCCi) = V ar(ỹij|x̃̃x̃xij),

Cov(ỹij, ỹit|x̃̃x̃xij, x̃̃x̃xit,XXX i,CCCi) = Cov(ỹij, ỹit|x̃̃x̃xij, x̃̃x̃xit), and E(vi|x̃̃x̃xij,XXX i,CCCi) = E(vi|x̃̃x̃xij).

By applying the law of total conditional expectation, we have

E(ỹij|XXX i,CCCi) = E [E(ỹij|x̃̃x̃xij,XXX i,CCCi)|XXX i,CCCi] = E[x̃̃x̃xTijβββ|XXX i,CCCi] =

Ni∑
j′=1

qijj′xxx
T
ij′βββ.

By applying the law of total conditional variance, we have

V ar(ỹij|XXX i,CCCi) = V ar (E(ỹij|x̃̃x̃xij,XXX i,CCCi)|XXX i,CCCi) + E (V ar(ỹij|x̃̃x̃xij,XXX i,CCCi)|XXX i,CCCi)

= V ar (E(ỹij|x̃̃x̃xij)|XXX i,CCCi) + E (V ar(ỹij|x̃̃x̃xij)|XXX i,CCCi)

= V ar
(
x̃̃x̃xTijβββ|XXX i,CCCi

)
+ E

(
σ2
v + σ2

e |XXX i,CCCi

)
=

Ni∑
j′=1

qijj′(1− qijj′)(xxxTij′βββ)2 + σ2
v + σ2

e .

By applying the law of total conditional covariance, we have

Cov(ỹij, ỹit|XXX i,CCCi) = Cov (E(ỹij|x̃̃x̃xij, x̃̃x̃xit,XXX i,CCCi), E(ỹit|x̃̃x̃xij, x̃̃x̃xit,XXX i,CCCi)|XXX i,CCCi)

+ E [Cov(ỹij, ỹit|x̃̃x̃xij, x̃̃x̃xit,XXX i,CCCi)|XXX i,CCCi]

= Cov (E(ỹij|x̃̃x̃xij), E(ỹit|x̃̃x̃xit)|XXX i,CCCi)

+ E [Cov(ỹij, ỹit|x̃̃x̃xij, x̃̃x̃xit)|XXX i,CCCi]

= Cov
(
x̃̃x̃xTijβββ, x̃̃x̃x

T
itβββ|XXX i,CCCi

)
+ E

[
σ2
v |XXX i,CCCi

]
= 0 + σ2

v

= σ2
v ,
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Cov(ỹij, vi|XXX i,CCCi) = E[Cov(ỹij, vi|x̃̃x̃xij,XXX i,CCCi)|XXX i,CCCi]

+ Cov (E(ỹij|x̃̃x̃xij,XXX i,CCCi), E(vi|x̃̃x̃xij,XXX i,CCCi)|XXX i,CCCi)

= E[Cov(ỹij, vi|x̃̃x̃xij)|XXX i,CCCi] + Cov (E(ỹij|x̃̃x̃xij), E(vi|x̃̃x̃xij)|XXX i,CCCi)

= E[σ2
v |XXX i,CCCi] + Cov

(
x̃̃x̃xTijβ, 0|XXX i,CCCi

)
= σ2

v .

5.4.4 Proof of (5.15)

Based on the general integrated model, the conditional distribution of (yyyi, vi)

given XXX i and CCCi isỹ̃ỹyi
vi

 |XXX i,CCCi ∼ N


QQQiXXX iβββ

0

 ,
 ΣΣΣi 111ni

σ2
v

111Tni
σ2
v σ2

v


 .

It is also not difficult to obtain that V ar(vi|ỹ̃ỹyi,CCCi) = σ2
v − σ2

v111
T
ni

ΣΣΣ−1
i 1ni

σ2
v .

The conditional mean squared error (CMSE) of θ̂BPi is equal to

CMSE(θ̂BPi ) = E
[
(θ̂BPi − θi)2|ỹ̃ỹyi,XXX i,CCCi

]
= V ar

(
θ̂BPi − θi|ỹ̃ỹyi,XXX i,CCCi

)
+
(
E
[
θ̂BPi − θi|ỹ̃ỹyi,XXX i,CCCi

])2

= V ar (θi|ỹ̃ỹyi,XXX i,CCCi) +
(
θ̂BPi − E [θi|ỹ̃ỹyi,XXX i,CCCi]

)2

= V ar (θi|ỹ̃ỹyi,XXX i,CCCi) + 0

= V ar(x̄xxiβββ + vi|ỹ̃ỹyi,XXX i,CCCi)

= V ar(vi|ỹ̃ỹyi,XXX i,CCCi)

= σ2
v − σ2

v111
T
ni

ΣΣΣ−1
i 1ni

σ2
v .
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The mean squared error (MSE) of θ̂BPi is equal to

MSE(θ̂BPi ) = E
[
(θ̂BPi − θi)2

]
= E

{
E
[
(θ̂BPi − θi)2|ỹ̃ỹyi,XXX i,CCCi

]}
= E

[
CMSE(θ̂BPi )

]
= E

[
σ2
v − σ2

v111
T
ni

ΣΣΣ−1
i 1ni

σ2
v

]
= σ2

v − σ2
v111
T
ni
E(ΣΣΣ−1

i )1ni
σ2
v .

5.4.5 Proof of (5.16) and (5.17)

When the mixture model parameter ψψψ is known, the log-likelihood function of

φφφ based on observed data {ỹ̃ỹyi,XXX i,CCCi, i = 1, . . . ,m} is given by

l(φφφ;yyy,XXX,CCC) = −1

2

m∑
i=1

{
ni ln(2π) + ln |ΣΣΣi|+ (ỹ̃ỹyi −QQQiXXX iβββ)TΣΣΣ−1

i (ỹ̃ỹyi −QQQiXXX iβββ)
}
.

Since the first derivative of kijj with respective to the kth element of βββ, βk, is

equal to

∂kijj
∂βk

= 2

Ni∑
j′=1

qijj′(1− qijj′)(xxxTij′βββ)xij′k := dijj,k, (5.30)

for k = 1, . . . , p, where xij′k is the kth element of xxxij′ . Define DDDi,k as a ni × ni

matrix with diagonal entries dijj,k. Then ∂KKKi

∂βk
= DDDi,k, the first derivatives of ΣΣΣi =

KKKi + σ2
v111ni

111Tni
+ σ2

eIIIni
are

∂ΣΣΣi

∂βk
=
∂KKKi

∂βk
= DDDi,k,

∂ΣΣΣi

∂σ2
v

=
∂σ2

v111ni
111Tni

∂σ2
v

= 111ni
111Tni
,
∂ΣΣΣi

∂σ2
e

=
∂σ2

eIIIni

∂σ2
e

= IIIni
, (5.31)

and

∂βββ

∂βk
= δδδk. (5.32)
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where δδδk is defined as the kth column of identity matrix IIIp.

By using results from (5.31) and (5.32), the first partial derivatives of the

likelihood function l(φφφ; ỹ̃ỹy,XXX,CCC) with respect to parameters βk, σ
2
v and σ2

e are given

by:

∂l(φφφ; ỹ̃ỹy,XXX,CCC)

∂βk

= −1

2

m∑
i=1

{
0 +

∂ ln |ΣiΣiΣi|
∂βk

− ∂βββT

∂βk
XXXT

i QQQ
T
i ΣΣΣ−1

i (ỹ̃ỹyi −QQQiXXX iβββ)

+ (ỹ̃ỹyi −QQQiXXX iβββ)T
∂ΣΣΣ−1

i

∂βk
(ỹ̃ỹyi −QQQiXXX iβββ)− (ỹ̃ỹyi −QQQiXXX iβββ)TΣΣΣ−1

i QQQiXXX i
∂βββ

∂βk

}
= −1

2

m∑
i=1

{
tr

(
ΣΣΣ−1
i

∂ΣΣΣi

∂βk

)
− 2δδδTkXXX

T
i QQQ

T
i ΣΣΣ−1

i (ỹ̃ỹyi −QQQiXXX iβββ)

− (ỹ̃ỹyi −QQQiXXX iβββ)TΣΣΣ−1
i

∂ΣΣΣi

∂βk
ΣΣΣ−1
i (ỹ̃ỹyi −QQQiXXX iβββ)

}
= −1

2

m∑
i=1

{
tr
(
ΣΣΣ−1
i DDDi,k

)
− 2δδδTkXXX

T
i QQQ

T
i ΣΣΣ−1

i (ỹ̃ỹyi −QQQiXXX iβββ)

− (ỹ̃ỹyi −QQQiXXX iβββ)TΣΣΣ−1
i DDDi,kΣΣΣ

−1
i (ỹ̃ỹyi −QQQiXXX iβββ)

}
; (5.33)

∂l(φφφ; ỹ̃ỹy,XXX,CCC)

∂σ2
v

= −1

2

m∑
i=1

{
0 +

∂ ln |ΣΣΣiΣΣΣiΣΣΣi|
∂σ2

v

+ (ỹ̃ỹyi −QQQiXXX iβββ)T
∂ΣΣΣ−1

i

∂σ2
v

(ỹ̃ỹyi −QQQiXXX iβββ)

}

= −1

2

m∑
i=1

{
tr

(
ΣΣΣ−1
i

∂ΣΣΣi

∂σ2
v

)
− (ỹ̃ỹyi −QQQiXXX iβββ)TΣΣΣ−1

i

∂ΣΣΣi

∂σ2
v

ΣΣΣ−1
i (ỹ̃ỹyi −QQQiXXX iβββ)

}

= −1

2

m∑
i=1

{
tr
(
ΣΣΣ−1
i 111ni

111Tni

)
− (ỹ̃ỹyi −QQQiXXX iβββ)TΣΣΣ−1

i 111ni
111Tni

ΣΣΣ−1
i (ỹ̃ỹyi −QQQiXXX iβββ)

}
; (5.34)
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∂σ2
e

= −1

2

m∑
i=1

{
0 +

∂ ln |ΣΣΣiΣΣΣiΣΣΣi|
∂σ2

e

+ (ỹ̃ỹyi −QQQiXXX iβββ)T
∂ΣΣΣ−1

i

∂σ2
e

(ỹ̃ỹyi −QQQiXXX iβββ)

}

= −1

2

m∑
i=1

{
tr

(
ΣΣΣ−1
i

∂ΣΣΣi

∂σ2
e

)
− (ỹ̃ỹyi −QQQiXXX iβββ)TΣΣΣ−1

i

∂ΣΣΣi

∂σ2
e

ΣΣΣ−1
i (ỹ̃ỹyi −QQQiXXX iβββ)

}

= −1

2

m∑
i=1

{
tr
(
ΣΣΣ−1
i

)
− (ỹ̃ỹyi −QQQiXXX iβββ)TΣΣΣ−1

i ΣΣΣ−1
i (ỹ̃ỹyi −QQQiXXX iβββ)

}
. (5.35)

From (5.30), we can get

∂dijj′,k
∂βt

= 2
m∑
i=1

qijj′(1− qijj′)zij′tzij′k := dijj,kt, for integers 1 ≤ k, t ≤ p.

Define DDDi,kt as a diagonal matrix with diagonal entries dijj,kt, then

∂DDDi,k

∂βt
= DDDi,kt. (5.36)

Again, by using (5.31)-(5.35), and (5.36), we can obtain the second derivatives of

the log-likelihood function l(φφφ; ỹ̃ỹy,XXX,CCC). That is,

∂2l(φφφ; ỹ̃ỹy,XXX,CCC)

∂βk∂σ2
v

= −1

2

m∑
i=1

{
tr

(
∂ΣΣΣ−1

i

∂βk
111ni

111Tni

)
+ 2

∂βββT

∂βk
XXXT

i QQQ
T
i ΣΣΣ−1

i 111ni
111Tni

ΣΣΣ−1
i (ỹ̃ỹyi −QQQiXXX iβββ)

− 2(ỹ̃ỹyi −QQQiXXX iβββ)T
∂ΣΣΣ−1

i

∂βk
111ni

111Tni
ΣΣΣ−1
i (ỹ̃ỹyi −QQQiXXX iβββ)

}
= −1

2

m∑
i=1

{
− tr

(
ΣΣΣ−1
i

∂ΣΣΣi

∂βk
ΣΣΣ−1
i 111ni

111Tni

)
+ 2δδδTkXXX

T
i QQQ

T
i ΣΣΣ−1

i 111ni
111Tni

ΣΣΣ−1
i (ỹ̃ỹyi −QQQiXXX iβββ)

+ 2(ỹ̃ỹyi −QQQiXXX iβββ)TΣΣΣ−1
i

∂ΣΣΣi

∂βk
ΣΣΣ−1
i 111ni

111Tni
ΣΣΣ−1
i (ỹ̃ỹyi −QQQiXXX iβββ)

}
= −1

2

m∑
i=1

{
− tr

(
ΣΣΣ−1
i DDDi,kΣΣΣ

−1
i 111ni

111Tni

)
+ 2δδδTkXXX

T
i QQQ

T
i ΣΣΣ−1

i 111ni
111Tni

ΣΣΣ−1
i (ỹ̃ỹyi −QQQiXXX iβββ)

+ 2(ỹ̃ỹyi −QQQiXXX iβββ)TΣΣΣ−1
i DDDi,kΣΣΣ

−1
i 111ni

111Tni
ΣΣΣ−1
i (ỹ̃ỹyi −QQQiXXX iβββ)

}
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∂βt∂βk

= −1

2

m∑
i=1

{
∂ tr

(
ΣΣΣ−1
i DDDi,k

)
∂βt

− 2δδδTkXXX
T
i QQQ

T
i

∂ΣΣΣ−1
i

∂βt
(ỹ̃ỹyi −QQQiXXX iβββ)

+ 2δδδTkXXX
T
i QQQ

T
i ΣΣΣ−1

i QQQiXXX i
∂βββ

∂βt
+
∂βββT

∂βt
XXXT

i QQQ
T
i ΣΣΣ−1

i DDDi,kΣΣΣ
−1
i (ỹ̃ỹyi −QQQiXXX iβββ)

− (ỹ̃ỹyi −QQQiXXX iβββ)T
∂ΣΣΣ−1

i

∂βt
DDDi,kΣΣΣ

−1
i (ỹ̃ỹyi −QQQiXXX iβββ)

− (ỹ̃ỹyi −QQQiXXX iβββ)TΣΣΣ−1
i

∂DDDi,k

∂βt
ΣΣΣ−1
i (ỹ̃ỹyi −QQQiXXX iβββ)

− (ỹ̃ỹyi −QQQiXXX iβββ)TΣΣΣ−1
i DDDi,k

∂ΣΣΣ−1
i

∂βt
(ỹ̃ỹyi −QQQiXXX iβββ) + (ỹ̃ỹyi −QQQiXXX iβββ)TΣΣΣ−1

i DDDi,kΣΣΣ
−1
i QQQiXXX i

∂βββ

∂βt

}
= −1

2

m∑
i=1

{
∂ tr

(
ΣΣΣ−1
i DDDi,k

)
∂βt

− 2δδδTkXXX
T
i QQQ

T
i

∂ΣΣΣ−1
i

∂βt
(ỹ̃ỹyi −QQQiXXX iβββ)

+ 2δδδTkXXX
T
i QQQ

T
i ΣΣΣ−1

i QQQiXXX i
∂βββ

∂βt
+ 2

∂βββT

∂βt
XXXT

i QQQ
T
i ΣΣΣ−1

i DDDi,kΣΣΣ
−1
i (ỹ̃ỹyi −QQQiXXX iβββ)

− 2(ỹ̃ỹyi −QQQiXXX iβββ)T
∂ΣΣΣ−1

i

∂βt
DDDi,kΣΣΣ

−1
i (ỹ̃ỹyi −QQQiXXX iβββ)

− (ỹ̃ỹyi −QQQiXXX iβββ)TΣΣΣ−1
i

∂DDDi,k

∂βt
ΣΣΣ−1
i (ỹ̃ỹyi −QQQiXXX iβββ)

}
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2

m∑
i=1

{
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(
∂ΣΣΣ−1

i

∂βt
DDDi,k + ΣΣΣ−1

i

∂DDDi,k

∂βt

)
+ 2δδδTkXXX

T
i QQQ

T
i ΣΣΣ−1

i

∂ΣΣΣi

∂βt
ΣΣΣ−1
i (ỹ̃ỹyi −QQQiXXX iβββ)

+ 2δδδTkXXX
T
i QQQ

T
i ΣΣΣ−1

i QQQiXXX iδδδt + 2δδδTt XXX
T
i QQQ

T
i ΣΣΣ−1

i DDDi,kΣΣΣ
−1
i (ỹ̃ỹyi −QQQiXXX iβββ)

+ 2(ỹ̃ỹyi −QQQiXXX iβββ)TΣΣΣ−1
i

∂ΣΣΣi

∂βt
ΣΣΣ−1
i DDDi,kΣΣΣ

−1
i (ỹ̃ỹyi −QQQiXXX iβββ)

− (ỹ̃ỹyi −QQQiXXX iβββ)TΣΣΣ−1
i

∂DDDi,k

∂βt
ΣΣΣ−1
i (ỹ̃ỹyi −QQQiXXX iβββ)

}
= −1

2

m∑
i=1

{
tr
(
−ΣΣΣ−1

i DDDi,tΣΣΣ
−1
i DDDi,k + ΣΣΣ−1

i DDDi,kt

)
+ 2δδδTkXXX

T
i QQQ

T
i ΣΣΣ−1

i DDDi,tΣΣΣ
−1
i (ỹ̃ỹyi −QQQiXXX iβββ)

+ 2δδδTkXXX
T
i QQQ

T
i ΣΣΣ−1

i QQQiXXX iδδδt + 2δδδTt XXX
T
i QQQ

T
i ΣΣΣ−1

i DDDi,kΣΣΣ
−1
i (ỹ̃ỹyi −QQQiXXX iβββ)

+ 2(ỹ̃ỹyi −QQQiXXX iβββ)TΣΣΣ−1
i DDDi,tΣΣΣ

−1
i DDDi,kΣΣΣ

−1
i (ỹ̃ỹyi −QQQiXXX iβββ)

− (ỹ̃ỹyi −QQQiXXX iβββ)TΣΣΣ−1
i DDDi,ktΣΣΣ

−1
i (ỹ̃ỹyi −QQQiXXX iβββ)

}
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∂βk∂σ2
e
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∂βk

)
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∂βββT

∂βk
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T
i ΣΣΣ−1

i ΣΣΣ−1
i (ỹ̃ỹyi −QQQiXXX iβββ)

− 2(ỹ̃ỹyi −QQQiXXX iβββ)T
∂ΣΣΣ−1

i

∂βk
ΣΣΣ−1
i (ỹ̃ỹyi −QQQiXXX iβββ)

}
= −1

2

m∑
i=1

{
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(
ΣΣΣ−1
i

∂ΣΣΣi

∂βk
ΣΣΣ−1
i

)
+ 2δδδTkXXX

T
i QQQ

T
i ΣΣΣ−1

i ΣΣΣ−1
i (ỹ̃ỹyi −QQQiXXX iβββ)

+ 2(ỹ̃ỹyi −QQQiXXX iβββ)TΣΣΣ−1
i

∂ΣΣΣi

∂βk
ΣΣΣ−1
i ΣΣΣ−1

i (ỹ̃ỹyi −QQQiXXX iβββ)

}
= −1

2

m∑
i=1

{
− tr

(
ΣΣΣ−1
i DDDi,kΣΣΣ

−1
i

)
+ 2δδδTkXXX

T
i QQQ

T
i ΣΣΣ−1

i ΣΣΣ−1
i (ỹ̃ỹyi −QQQiXXX iβββ)

+ 2(ỹ̃ỹyi −QQQiXXX iβββ)TΣΣΣ−1
i DDDi,kΣΣΣ

−1
i ΣΣΣ−1

i (ỹ̃ỹyi −QQQiXXX iβββ)

}
∂2l(φφφ; ỹ̃ỹy,XXX,CCC)

∂σ2
v∂σ

2
v

= −1

2

m∑
i=1

{
∂ tr
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ΣΣΣ−1
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)
∂σ2

v

− 2(ỹ̃ỹyi −QQQiXXX iβββ)T
∂ΣΣΣ−1

i

∂σ2
v

111ni
111Tni

ΣΣΣ−1
i (ỹ̃ỹyi −QQQiXXX iβββ)

}
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2
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{
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i

∂ΣΣΣi

∂σ2
v

ΣΣΣ−1
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)

+ 2(ỹ̃ỹyi −QQQiXXX iβββ)TΣΣΣ−1
i

∂ΣΣΣi

∂σ2
v

ΣΣΣ−1
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111Tni
ΣΣΣ−1
i (ỹ̃ỹyi −QQQiXXX iβββ)
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2
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i=1

{
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−ΣΣΣ−1
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ΣΣΣ−1
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ΣΣΣ−1
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ΣΣΣ−1
i (ỹ̃ỹyi −QQQiXXX iβββ)

}
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2
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i

∂σ2
v
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∂σ2
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i
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i

∂ΣΣΣi

∂σ2
v
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}
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}
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e

− 2(ỹ̃ỹyi −QQQiXXX iβββ)T
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∂σ2
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i (ỹ̃ỹyi −QQQiXXX iβββ)
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{
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(
ΣΣΣ−1
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i
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i
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∂σ2
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{
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i
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i ΣΣΣ−1

i (ỹ̃ỹyi −QQQiXXX iβββ)

}

5.4.6 Proof of (5.19)

Since ỹ̃ỹyi|XXX i,CCCi
ind∼ N(QQQiXXX iβββ,ΣiΣiΣi), then it is not difficult to obtain that

E(ỹ̃ỹyi −QQQiZZZiβββ|XXX i,CCCi) = 000, E
[
(ỹ̃ỹyi −QQQiXXX iβββ)(ỹ̃ỹyi −QQQiXXX iβββ)T |XXX i,CCCi

]
= ΣΣΣi. (5.37)

By using basic properties of trace, we can prove that for any ni × ni matrix MMM =

MMM(XXX,CCC,φφφ,ψψψ), which may depends on XXX and CCC but not on ỹ̃ỹy,

E
[
(ỹ̃ỹyi −QQQiXXX iβββ)TMMM(ỹ̃ỹyi −QQQiXXX iβββ)|XXX,CCC

]
= tr (MMMΣΣΣi) , (5.38)

since

E
[
(ỹ̃ỹyi −QQQiXXX iβββ)TMMM(ỹ̃ỹyi −QQQiXXX iβββ)|XXX,CCC

]
= E

[
tr
(
(ỹ̃ỹyi −QQQiXXX iβββ)TMMM(ỹ̃ỹyi −QQQiXXX iβββ)

)
|XXX,CCC

]
= E
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(
MMM(ỹ̃ỹyi −QQQiXXX iβββ)(ỹ̃ỹyi −QQQiXXX iβββ)T
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|XXX,CCC
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MMM(ỹ̃ỹyi −QQQiXXX iβββ)(ỹ̃ỹyi −QQQiXXX iβββ)T |XXX,CCC
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(
MMME

[
(ỹ̃ỹyi −QQQiXXX iβββ)(ỹ̃ỹyi −QQQiXXX iβββ)T |XXX,CCC

])
= tr (MMMΣΣΣi) .
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By using the fact (5.37) and (5.38), we can obtain the following results:
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(ỹ̃ỹyi −QQQiXXX iβββ)TΣΣΣ−1

i DDDi,kΣΣΣ
−1
i 111ni

111Tni
ΣΣΣ−1
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i E[ỹ̃ỹyi −QQQiXXX i|XXX,CCC]

+ 2E
[
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(ỹ̃ỹyi −QQQiXXX iβββ)TΣΣΣ−1

i 111ni
111Tni

ΣΣΣ−1
i 111ni

111Tni
ΣΣΣ−1
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111Tni
ΣΣΣ−1
i

)
+ 2E

[
(ỹ̃ỹyi −QQQiXXX iβββ)TΣΣΣ−1

i 111ni
111Tni

ΣΣΣ−1
i ΣΣΣ−1

i (ỹ̃ỹyi −QQQiXXX iβββ)|XXX,CCC
]}

=
1

2

m∑
i=1

{
− tr

(
ΣΣΣ−1
i 111ni

111Tni
ΣΣΣ−1
i

)
+ 2 tr

(
ΣΣΣ−1
i 111ni

111Tni
ΣΣΣ−1
i

)}

=
1

2

m∑
i=1

tr
(
ΣΣΣ−1
i 111ni

111Tni
ΣΣΣ−1
i

)
=

1

2

m∑
i=1

111Tni
ΣΣΣ−1
i ΣΣΣ−1

i 111ni
,
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E

(
−∂

2l(φφφ;yyy,XXX,CCC)

∂σ2
e∂σ

2
e

|XXX,CCC
)

=
1

2

m∑
i=1

{
− tr

(
ΣΣΣ−1
i ΣΣΣ−1

i

)
+ 2E

[
(ỹ̃ỹyi −QQQiXXX iβββ)TΣΣΣ−1

i ΣΣΣ−1
i ΣΣΣ−1

i (ỹ̃ỹyi −QQQiXXX iβββ)|XXX,CCC
]}

=
1

2

m∑
i=1

{
− tr

(
ΣΣΣ−1
i ΣΣΣ−1

i

)
+ 2 tr

(
ΣΣΣ−1
i ΣΣΣ−1

i

)}

=
1

2

m∑
i=1

tr
(
ΣΣΣ−1
i ΣΣΣ−1

i

)
.

5.4.7 Proof of (5.20) and (5.21)

When ψψψ is known, the log-likelihood function of φφφ based on data {ỹ̃ỹyi,CCCi, i =

1, . . . ,m} is given by

l(φφφ; ỹ̃ỹy,XXX,CCC) = −1

2

m∑
i=1

{
ni ln(2π) + ln |ΣiΣiΣi|+ (ỹ̃ỹyi −QQQiXXX iβββ)TΣiΣiΣi

−1(ỹ̃ỹyi −QQQiXXX iβββ)
}
.

Assuming that the matrix ΣΣΣi = KKKi + σ2
v111ni

111Tni
+ σ2

eIIIni
is fixed in βββ, we have

∂ΣΣΣi

∂βββ
= 000,

∂ΣΣΣi

∂σ2
v

= 111ni
111Tni
,
∂ΣΣΣi

∂σ2
e

= IIIni
,

and

∂ΣΣΣ−1
i

∂σ2
v

= −ΣΣΣ−1
i

∂ΣΣΣi

∂σ2
v

ΣΣΣ−1
i = −ΣΣΣ−1

i 111ni
111Tni

ΣΣΣ−1
i ,

∂ ln |ΣΣΣi|
∂σ2

v

= tr

(
ΣΣΣ−1
i

∂ΣΣΣi

∂σ2
v

)
= tr

(
ΣΣΣ−1
i 111ni

111Tni

)
,

∂ΣΣΣ−1
i

∂σ2
e

= −ΣΣΣ−1
i

∂ΣΣΣi

∂σ2
e

ΣΣΣ−1
i = −ΣΣΣ−1

i ΣΣΣ−1
i ,

∂ ln |ΣΣΣi|
∂σ2

e

= tr

(
ΣΣΣ−1
i

∂ΣΣΣi

∂σ2
e

)
= tr

(
ΣΣΣ−1
i

)
.

Using the above results, the first derivative of l(φφφ; ỹ̃ỹy,XXX,CCC) with respect to
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parameters βββ, σ2
v and σ2

v are given by

∂l(φφφ; ỹ̃ỹy,XXX,CCC)

∂βββ

= −1

2

m∑
i=1

{
−XXXT

i QQQ
T
i ΣΣΣ−1

i (ỹ̃ỹyi −QQQiXXX iβββ)− (ỹ̃ỹyi −QQQiXXX iβββ)TΣΣΣ−1
i QQQiXXX i

}
=

m∑
i=1

XXXT
i QQQ

T
i ΣΣΣ−1

i (ỹ̃ỹyi −QQQiXXX iβββ),

∂l(φφφ; ỹ̃ỹy,XXX,CCC)

∂σ2
v

= −1

2

m∑
i=1

{
∂ ln |ΣΣΣi|
∂σ2

v

+ (ỹ̃ỹyi −QQQiXXX iβββ)T
∂ΣΣΣ−1

i

∂σ2
v

(ỹ̃ỹyi −QQQiXXX iβββ)

}

= −1

2

m∑
i=1

{
tr
(
ΣΣΣ−1
i 111ni

111Tni

)
− (ỹ̃ỹyi −QQQiXXX iβββ)TΣΣΣ−1

i 111ni
111Tni

ΣΣΣ−1
i (ỹ̃ỹyi −QQQiXXX iβββ)

}
= −1

2

m∑
i=1

{
111Tni

ΣΣΣ−1
i 111ni

− (ỹ̃ỹyi −QQQiXXX iβββ)TΣΣΣ−1
i 111ni

111Tni
ΣΣΣ−1
i (ỹ̃ỹyi −QQQiXXX iβββ)

}
,

∂l(φφφ; ỹ̃ỹy,XXX,CCC)

∂σ2
e

= −1

2

m∑
i=1

{
∂ ln |ΣΣΣi|
∂σ2

e

+ (ỹ̃ỹyi −QQQiXXX iβββ)T
∂ΣΣΣ−1

i

∂σ2
e

(ỹ̃ỹyi −QQQiXXX iβββ)

}

= −1

2

m∑
i=1

{
tr
(
ΣΣΣ−1
i

)
− (ỹ̃ỹyi −QQQiXXX iβββ)TΣΣΣ−1

i ΣΣΣ−1
i (ỹ̃ỹyi −QQQiXXX iβββ)

}
.

The second derivatives of l(φφφ; ỹ̃ỹy,XXX,CCC) with respect to parameters βββ, σ2
v and

σ2
v are given by

∂2l(φφφ; ỹ̃ỹy,XXX,CCC)

∂βββ∂βββT
= −

m∑
i=1

XXXT
i QQQ

T
i ΣΣΣ−1

i QQQiXXX i,

∂2l(φφφ; ỹ̃ỹy,XXX,CCC)

∂βββ∂σ2
v

=
m∑
i=1

XXXT
i QQQ

T
i

∂ΣΣΣ−1
i

∂σ2
v

(ỹ̃ỹyi −QQQiXXX iβββ)

= −
m∑
i=1

XXXT
i QQQ

T
i ΣΣΣ−1

i 111ni
111Tni

ΣΣΣ−1
i (ỹ̃ỹyi −QQQiXXX iβββ),
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∂2l(φφφ; ỹ̃ỹy,XXX,CCC)

∂βββ∂σ2
e

=
m∑
i=1

XXXT
i QQQ

T
i

∂ΣΣΣ−1
i

∂σ2
e

(ỹ̃ỹyi −QQQiXXX iβββ)

= −
m∑
i=1

XXXT
i QQQ

T
i ΣΣΣ−1

i ΣΣΣ−1
i (ỹ̃ỹyi −QQQiXXX iβββ),

∂2l(φφφ; ỹ̃ỹy,XXX,CCC)

∂σ2
v∂σ

2
v

= −1

2

m∑
i=1

{
111Tni

∂ΣΣΣ−1
i

∂σ2
v

111ni
− (ỹ̃ỹyi −QQQiXXX iβββ)T

∂ΣΣΣ−1
i

∂σ2
v

111ni
111Tni

ΣΣΣ−1
i (ỹ̃ỹyi −QQQiXXX iβββ)

− (ỹ̃ỹyi −QQQiXXX iβββ)TΣΣΣ−1
i 111ni

111Tni

∂ΣΣΣ−1
i

∂σ2
v

(ỹ̃ỹyi −QQQiXXX iβββ)

}
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2

m∑
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{
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ΣΣΣ−1
i 111ni

111Tni
ΣΣΣ−1
i 111ni

+ (ỹ̃ỹyi −QQQiXXX iβββ)TΣΣΣ−1
i 111ni

111Tni
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i 111ni
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ΣΣΣ−1
i (ỹ̃ỹyi −QQQiXXX iβββ)
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i 111ni
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2
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∂σ2
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∂ΣΣΣ−1
i

∂σ2
e
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111Tni

ΣΣΣ−1
i (ỹ̃ỹyi −QQQiXXX iβββ)

− (ỹ̃ỹyi −QQQiXXX iβββ)TΣΣΣ−1
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111Tni

∂ΣΣΣ−1
i

∂σ2
e

(ỹ̃ỹyi −QQQiXXX iβββ)
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i ΣΣΣ−1

i 111ni
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111Tni
ΣΣΣ−1
i (ỹ̃ỹyi −QQQiXXX iβββ)
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i 111ni
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i ΣΣΣ−1

i (ỹ̃ỹyi −QQQiXXX iβββ)

}
= −1

2

m∑
i=1

{
− 111Tni

ΣΣΣ−1
i ΣΣΣ−1

i 111ni
+ 2(ỹ̃ỹyi −QQQiXXX iβββ)TΣΣΣ−1
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i 111ni

111Tni
ΣΣΣ−1
i (ỹ̃ỹyi −QQQiXXX iβββ)

}
,
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∂2l(φφφ; ỹ̃ỹy,XXX,CCC)

∂σ2
e∂σ

2
e

= −1

2

m∑
i=1

{
tr

(
∂ΣΣΣ−1

i

∂σ2
e

)
− (ỹ̃ỹyi −QQQiXXX iβββ)T

∂ΣΣΣ−1
i

∂σ2
e

ΣΣΣ−1
i (ỹ̃ỹyi −QQQiXXX iβββ)
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i
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i

∂σ2
e
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2
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i=1

{
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(
ΣΣΣ−1
i ΣΣΣ−1

i

)
+ (ỹ̃ỹyi −QQQiXXX iβββ)TΣΣΣ−1

i ΣΣΣ−1
i ΣΣΣ−1

i (ỹ̃ỹyi −QQQiXXX iβββ)

+ (ỹ̃ỹyi −QQQiXXX iβββ)TΣΣΣ−1
i ΣΣΣ−1

i ΣΣΣ−1
i (ỹ̃ỹyi −QQQiXXX iβββ)

}
= −1

2

m∑
i=1

{
− tr

(
ΣΣΣ−1
i ΣΣΣ−1

i
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+ 2(ỹ̃ỹyi −QQQiXXX iβββ)TΣΣΣ−1

i ΣΣΣ−1
i ΣΣΣ−1

i (ỹ̃ỹyi −QQQiXXX iβββ)

}
.

5.4.8 Proof of (5.23)

Since ỹ̃ỹyi|XXX i,CCCi
ind∼ N(QQQiXXX iβββ,ΣiΣiΣi), then for any ni × ni matrix MMM which does

not depend on ỹ̃ỹy, we have

E(ỹ̃ỹyi −QQQiXXX iβββ|XXX i,CCCi) = 000ni
, E

[
(ỹ̃ỹyi −QQQiXXX iβββ)TMMM(ỹ̃ỹyi −QQQiXXX iβββ)|XXX i,CCCi

]
= tr (MMMΣΣΣi) ,

where 000ni
is a ni × 1 vector of zeros.

Using the above results, we can get

E

[
−∂

2l(φφφ; ỹ̃ỹy,CCC)

∂βββ∂βββT
|XXX i,CCCi

]
=

m∑
i=1

XXXT
i QQQ

T
i ΣΣΣ−1

i QQQiXXX i,

E

[
−∂

2l(φφφ; ỹ̃ỹy,CCC)

∂βββ∂σ2
v

|XXX i,CCCi

]
=

m∑
i=1

XXXT
i QQQ

T
i ΣΣΣ−1

i 111ni
111Tni

ΣΣΣ−1
i E [ỹ̃ỹyi −QQQiXXX iβββ|XXX i,CCCi] = 000p,

E

[
−∂

2l(φφφ; ỹ̃ỹy,CCC)

∂βββ∂σ2
e

|XXX i,CCCi

]
=

m∑
i=1

XXXT
i QQQ

T
i ΣΣΣ−1

i ΣΣΣ−1
i E [ỹ̃ỹyi −QQQiXXX iβββ|XXX i,CCCi] = 000p,
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E
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−∂

2l(φφφ; ỹ̃ỹy,CCC)

∂σ2
v∂σ
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v
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1
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i 111ni
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i 111ni
111Tni

ΣΣΣ−1
i 111ni

111Tni
ΣΣΣ−1
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Chapter 6: Monte Carlo Simulation Study

6.1 Introduction

In this section, we design a Monte Carlo simulation study to compare finite

sample performances of different estimators of regression coefficient β in simple

linear and logistic models in the presence of linkage errors. Four different estimators

are evaluated: naive estimator β̂N that ignores linkage errors, proposed estimator

β̂F that incorporates linkage errors, and two of its computational simpler versions

β̂M and β̂M2. These estimators can be derived by solving a set of corresponding

estimating equations ( See Table 6.1 ), where QQQM
i and QQQM2

i are simplified versions

of design matrix QQQi = (qijj′)
ni,Ni

j=1,j′=1, i = 1, . . . G. All the entries except the largest

one are set to zero on each row in QQQM
i , while all the entries except the first two

largest are set to zero on each row inQQQM2
i . In our simulation, we assume that linkage

errors only exist within blocks, but not across blocks. The conditional independence

assumption is made. That is, the agreement on one matching field is independent

from that on others.

Simulation results for both equal and unequal scenarios are presented. Files

Fy and Fx are of the same size (i.e., the number of units) within each block in the

equal scenario while they are different in the unequal scenario. However, even in
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the equal scenario, we allow block sizes to vary across blocks. In each scenario, two

sets of simulation conditions are considered in order to compare the performances

of different estimators under different levels of linkage errors. Results for these

two different scenarios are shown in section 4.1 and 4.2, respectively. We consider

G = 100 blocks and R = 100 independent simulation replications throughout each

section.

In section 6.4, we conduct another Monte Carlo simulation to investigate the

difference between the standard and simplified jackknife methods in estimating the

variance of the estimators of β. The simulation is performed under two different

scenarios: the equal scenario and the unequal scenario. In the equal scenario, sim-

ulation is done for a simple logistic model. In the unequal scenario, simulation is

done for a simple linear model.

Table 6.1: Estimating equations used for four different estimators of regression
coefficient β in simple linear and logistic models. Notation is followed from Chapter
2.

Est. Linear Model Logistic Model

β̂N
∑G

i=1XXX
T
i {ỹ̃ỹyi −XXX iβ} = 000

∑G
i=1XXX

T
i (ỹ̃ỹyi − g(XXX i, β)) = 000

β̂F
∑G

i=1(QQQiXXX i)
T (ỹ̃ỹyi −QQQiXXX iβ) = 000

∑G
i=1(QQQiXXX i)

T (ỹ̃ỹyi −QQQig(XXX i, β)) = 000

β̂M
∑G

i=1(QQQM
i XXX i)

T (ỹ̃ỹyi −QQQM
i XXX iβ) = 000

∑G
i=1(QQQM

i XXX i)
T
(
ỹ̃ỹyi −QQQM

i g(XXX i, β)
)

= 000

β̂M2

∑G
i=1(QQQM2

i XXX i)
T (ỹ̃ỹyi −QQQM2

i XXX iβ) = 000
∑G

i=1(QQQM2
i XXX i)

T
(
ỹ̃ỹyi −QQQM2

i g(XXX i, β)
)

= 000

Note: g(XXX i, β) = col1≤j≤Ni

exp(xijβ)

1+exp(xijβ)
. QQQi = (qijj′)

ni,Ni

j=1,j′=1, i = 1, . . . G is the design

matrix, and QQQM
i and QQQM2

i are its simplified versions. All the entries except the
largest one are set to zero on each row in QQQM

i , while all the entries except the first
two largest are set to zero on each row in QQQM2

i .
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6.2 The Equal Scenario

Simulation Conditions: The number of records in each block i, ni, across

different simulation replications varies from 10 to 40 in case 1, and from 20 to 40 in

case 2. Then there are
∑G

i=1 n
2
i potential links in total with n2

i potential links in block

i ranging from 100 to 1600 in case 1 and from 400 to 1600 in case 2. The number of

matching fields, K, across different simulation replications varies between 8 and 10

in case 1, and between 6 and 10 in case 2. Across different replications, probability

of agreement on matching field k among matches, mk, and among mismatches, uk,

take values from interval (0.55, 0.95) and (0.10, 0.50), respectively, in case 1, whereas

they take values from interval (0.55, 0.85) and (0.20, 0.50) in case 2. In general,

linkage errors are less likely to occur under case 1 than under case 2 when combining

files Fy and Fx, since it has smaller block sizes, more matching fields, and larger

probabilities of agreement among matches and smaller probabilities of agreement

among mismatches. Hence, we would expect to have better estimates in case 1 than

those in case 2. A summary of simulation conditions for case 1 and case 2 is shown

in Table 6.2.

Simulation Steps: (1) Data Generation: N values of x in Fx and ỹ in

Fy are generated based on the selected model and simulated regression coefficient

β. A comparison vector ccc can be generated for each record pair based on their

true matching status, the number of matching fields K, probabilities of agreement

on matching fields among matches {mk, k = 1, . . . , K}, and among mismatches

{uk, k = 1, . . . , K}. Note that only the records within the same blocks are compared.
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Table 6.2: Simulation conditions for case 1 and case 2 under the equal scenario.

Symbol Description Case 1 Case 2
lower
limit

upper
limit

lower
limit

upper
limit

G number of blocks 100 100
R number of simulations 100 100
x univariate covariate x ∼ N(0, 1) x ∼ N(0, 1)
β regression coefficient 0 1 0 1
σ2
e regression variance σ2

e = 1− β2 σ2
e = 1− β2

ni size of block i 10 40 20 40

N size of file Fy and Fx N =
∑G

i=1 ni N =
∑G

i=1 ni
K number of matching fields 8 12 6 10
mk probability of agreement on

field k for a match
0.55 0.95 0.55 0.85

uk probability of agreement on
field k for a mismatch

0.10 0.50 0.20 0.50

Note: the condition for σ2 is used for simulation of linear regression on linked data
only.

The observed data for the following linkage step and statistical analysis includes XXX

in Fx, ỹ̃ỹy in Fy, and comparison vector CCC.

(2) Record Linkage: A two class mixture model is fitted to observed com-

parison vectors ccc using the expectation maximization (EM) algorithm. All the

parameters in the mixture model are estimated. These parameters consist of

weights of class, π, probabilities of agreement on matching fields among matches,

{mk, k = 1, . . . , K}, and among mismatches, {uk, k = 1, . . . , K}. The probability of

a record pair (j, j′) within block i being a link, qijj′ , is the same as the probability of

its corresponding vector cccijj′ belonging to class M . It can be estimated by applying

Bayes’ Theorem and can be used to partition the record pairs into designated links

and non-links.

(3) Parameter Estimation: For the naive estimator, it is essential to determine
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designated links. The designate link to a record j within block i in Fy is a record

j′ within the same block in Fx whose corresponding linkage probability qijj′ is the

largest among {qijt, t = 1, . . . , ni}. In our case, it is possible a record j′ in Fy is

linked to two or more records in Fx since one-to-one assignment is not enforced. For

our proposed estimators, the design matrix QQQi, QQQ
M
i and QQQM2

i for block i need to

be constructed based on the estimated linkage probabilities {qijj′ , i = 1, ..., G, j =

1, ..., ni, j = 1, ..., ni}. QQQi = (qijj′)
ni,ni

j=1,j′=1, i = 1, . . . m, QQQM
i and QQQM2

i are simplified

versions of QQQi. All the entries except the largest one are set to zero on each row in

QQQM
i , while all the entries except the first two largest are set to zero on each row in

QQQM2
i . Then the four estimators β̂N , β̂F , β̂M and β̂M2 can be estimated by solving

the estimating equations shown in Table 6.1.

(4)Variance Estimation: Jackknife is used to estimate bias, variance and mean

squared error of each estimator of β. Jackknife replicates are generated by leaving

out data of one block from the two files at a time. Hence, there are G = 100 jackknife

replicate in total. For each jackknife replicate, step 2 and step 3 are performed and

estimates of β are re-evaluated. The jackknife estimates of the bias, variance and

mean squared error of an estimator can be obtained by aggregating G replicate

estimates of β. And a 95% confidence interval can be obtained for each estimate of

β.

Step (1) to (4) are performed for R = 100 simulation runs.

Performance Evaluation: The performance of the four estimators can be

evaluated by the average absolute deviation (AAD) and average squared deviation

(ASD) over all the simulation runs. The formulas for AAD and ASD of an estimator
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β̂ are shown below.

AAD(β̂) =

∑R
r=1 |β̂(r) − β|

R
,

ASD(β̂) =

∑R
r=1(β̂(r) − β)2

R
,

where β̂(r) is value of β̂ calculated based on simulation r. We can also measures

improvement of an estimator β̂ over β̂N with respect to AAD and ASD by relative

percent improvement (RPI). The formulas are shown below.

RPIAAD(β̂) =
AAD(β̂N)− AAD(β̂)

AAD(β̂N)
× 100%,

RPIASD(β̂) =
ASD(β̂N)− ASD(β̂)

ASD(β̂N)
× 100.%

To learn more about the properties of these estimators, Monte Carlo estimates

of sampling mean, bias, relative bias, variance, relative variance, mean square error,

relative mean square error of each estimator are obtained. Suppose R independent

replicates are generated, and β̂(r) is the estimate of β computed based on replicate

r, r = 1, . . . R. Then the Monte Carlo estimate of sampling mean, variance, and

mean square error of β̂ are given by

Ê(β̂) =
1

R

R∑
r=1

β̂(r), B̂ias(β̂) =
1

R

R∑
r=1

β̂(r) − β,

V̂ (β̂) =
1

R− 1

R∑
r=1

(
β̂(r) − 1

R

R∑
r=1

β̂(r)

)2

, M̂SE(β̂) =
1

R

R∑
r=1

(β̂(r) − β)2.

And the Monte Carlo standard deviations of the estimated mean, bias, mean square

error are given by

SE(Ê(β̂)) = SE(B̂ias(β̂)) =
sd(β̂)√
R
,

SE(M̂SE(β̂)) =
sd
(

(β̂ − β)2
)

√
R

.
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6.2.1 Linear regression with linked data

In each simulation run, values of a scalar independent variable X are randomly

and independently generated from N(0, 1), and the corresponding values of Y are

given by

yij = xijβ + e, i = 1, . . . , G, j = 1, . . . , ni.

where the regression coefficient β is randomly selected from a uniform distribution

in [0, 1], and the random errors ε are randomly and independently sampled from

N(0, σ2
e) with σ2

e = 1− β2.

Scatter plots of β̂N , β̂F , β̂M , β̂M2 estimates versus true values of β are shown in

Fig 6.1. The true values of β is on the x-axis and the estimated value of β is on the

y-axis. A 45 degree straight line is plotted in red, and a fitted straight line is plotted

in blue. If an estimator performs well, the data points should gather closely around

red line and the blue line should be close to the red line. Based on the results, we can

see that naive estimator β̂N usually underestimate β under both of the two cases.

This phenomenon is even more obvious under case 2. This is because the linkage

errors in the linked data weakened the correlation between y and x, which introduce

a bias toward zero when estimating the slope of the regression line. All of our

proposed estimators correct this bias, with full estimator and max2 estimator being

the most efficient, and max estimator being the least efficient. The max estimator

β̂M seems to overestimate β a little bit when the true value of β increases, but it

still behaves much better than β̂N especially in Case 2. In general, our proposed

estimators behave better than the naive estimator based the visual results. This is
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Figure 6.1: Simulation results for a simple linear regression under case
1 and case 2 in the equal scenario: Scatter plots of naive, full, max and
max2 estimates versus true values of regression coefficient β. Diagonal
lines with slop 1 are plotted in red. Fitted lines are plotted in blue.

probably because they take account of the linkage errors in the linked data.

Fig 6.2 shows heat maps of 100 absolute deviations and squared deviations

of each estimators from true values of β in a linear model under two cases. The

darker the color is, the smaller the absolute deviation is. We can clearly see that our

proposed estimators performs much better than the naive estimator, especially in

case 2. Table 6.3 shows the average absolute deviations (AAD) and average squared

deviations (ASD) of our proposed estimators for β, as well as the relative percent

improvement (RPI) over the naive estimator under Case 1 and Case 2 in the equal

scenario. Values of AAD and ASD are shown in black and values of RPI are shown in

blue. Under both cases, β̂N has the smallest values of AAD and ASD among the four

estimators, implying it performs the worst in estimating the regression coefficient in
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Figure 6.2: Simulation results for linear regression under case 1 and case
2 in the equal scenario: Heat map of absolute deviations (top 2) and
squared deviations (bottom 2) for estimates of regression coefficient β.

a simple linear model; β̂M2 performs better, but not as well as β̂F and β̂M2. We can

also see that values of AAD and ASD increase under Case 2 when compared to Case

1. This is as expected because Case 2 has more difficult simulation conditions (less

matching fields, larger block sizes, small probabilities of agreement among matches

and larger probabilities of agreement among mismatches) and then linkage errors

are more likely to occur. However, our proposed estimators improved more over

the naive estimator in Case 2 then in Case 1, indicated by the larger values of RPI

under Case 2. It shows that our proposed estimator would be especially useful when

linkage errors are more likely to occur.
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Table 6.3: Simulation results for linear regression under case 1 and case 2 in the
equal scenario: Average absolute deviations (AAD) and average squared deviations
(ASD) of naive, full, max and max2 estimators of regression coefficient β. The
percent relative improvement (PRI) of the proposed estimators over naive estimator
is shown in blue.

Estimator Case 1 Case 2
AAD ASD AAD ASD

β̂N 0.0601 0.0070 0.2211 0.0670

β̂F 0.0166 0.0005 0.0286 0.0015
72.43% 92.33% 87.08% 97.82%

β̂M 0.0435 0.0027 0.0664 0.0060
27.63% 61.92% 69.95% 91.00%

β̂M2 0.0176 0.0006 0.0308 0.0017
70.65% 91.85% 86.05% 97.48%

6.2.2 Logistic regression with linked data

In this section, we want to compare the performances of different estimators of

regression coefficient β in a simple logistic model. Simulation for logistic regression

basically follows the same steps as those for linear regression. The only difference

is in the generation of values of x and y. In each simulation run, values of a scalar

independent variable x are randomly and independently selected from N(0, 1), and

the corresponding values of y are given by

P (yij = 1|xij) = g(xij) =
exp(βxij)

1 + exp(βxij)
, i = 1, . . . ,m, j = 1, . . . , ni,

where the regression coefficient β is randomly selected from a uniform distribution

in [0, 1].

Fig 6.3 shows scatter plots of naive, full, max and max2 estimates and true

values of β in a simple logistic regression on 100 simulation runs under Case 1
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and Case 2 in the equal scenario. Heat map for absolute deviations and squared

deviations for each estimator on 100 simulation runs is in Fig 6.4, and values of

average absolute deviations (AAD) and average squared deviations (ASD) of our

proposed estimators and their relative percent improvement (RPI) are displayed in

Table 6.4.

Results shown in Fig 6.3, Fig 6.4 and Table 6.4 for logistic regression on

linked data are similar to those for linear regression. Again, a bias toward zero is

introduced to the naive estimator. The proposed estimators correct this bias, with

max2 estimator and full estimator being the most efficient, and max estimator being

the least efficient. The increased relative percent improvements from Case 1 to Case

2 implied again that our proposed estimators improve more over the naive estimator

when the linkage error are more likely to occur.

Table 6.4: Simulation results for logistic regression under case 1 and case 2 in the
equal scenario: Average absolute deviations (AAD) and average squared deviations
(ASD) of naive, full, max and max2 estimators of regression coefficient β. The
percent relative improvement (PRI) of the proposed estimator over naive estimator
is shown in blue.

Estimator Case 1 Case 2
AAD ASD AAD ASD

β̂N 0.0811 0.0112 0.2320 0.0811

β̂F 0.0527 0.0045 0.0755 0.0098
35.01% 59.78% 66.61% 87.90%

β̂M 0.0681 0.0080 0.1215 0.0269
16.02% 28.60% 47.65% 66.78%

β̂M2 0.0517 0.0043 0.0796 0.0106
36.24% 61.28% 65.70% 86.99%

In order to further evaluate the performances of these four estimators, another

set of 100 simulation runs for logistic regression under case 1 in equal scenario is
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Figure 6.3: Simulation results for logistic regression under case 1 and
case 2 in the equal scenario: Scatter plot of naive, full, max and max2
estimates versus true values of regression coefficient β. Diagonal lines
with slop 1 are plotted in red. Fitted lines are plotted in blue.

performed with β fixed at 0.5. Box plot of deviations and relative deviations of

different estimators from the true value of β is shown in Fig 6.5. Table 6.5 gives

the Monte Carlo estimate of bias, relative bias, mean square error (MSE), relative

mean square error, length and coverage of nominal 95% confidence intervals of β

for each method. The standard errors of these estimates are shown in blue. The

negative values of bias and relative bias of naive estimator implies it underestimate

values of β, and the other three estimators correct this bias, with max2 estimator

and full estimator being the most efficient. The correctness of bias and relative bias

also lead to the decrease of mean square error and relative mean square error. In

terms of mean square error and relative mean square error, the max2 estimator β̂M2

performs the best, followed closely by the full estimator β̂F . The relative efficiency
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Figure 6.4: Simulation results for logistic regression under case 1 and
case 2 in the equal scenario: Heat map for absolute deviations (top 2)
and squared deviations (bottom 2) of estimates of regression coefficient
β.

of each proposed estimator to the naive estimator with respect to mean square error

is given in Table 6.6. We can also see that the coverage rates of confidence intervals

produced by max2 and full estimators and their jackknife variances are very close to

their desired nominal level, while those produced by naive estimator is lower than

the desired nominal level.

6.3 The Unequal Scenario

In this section, we attempt to compare performances of different estimators
under the unequal scenario where the number of records in the same blocks are
different in Fx and Fy. Our parameter of interest is the regression coefficient β in
a simple linear model. Two sets of simulation conditions are considered. They are
similar to those used for the equal scenario, but slightly different. The number of
observations of y in block i of file Fy, ni, is different from the number of observations
of x in the same block of file Fx, Ni, i = 1, . . . ,m. ni ranges from 10 to 20 under
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Figure 6.5: Simulation results for logistic regression under case 1 in
the unequal scenario: Box plot of deviations and relative deviations of
different estimators from the true value of β over 100 simulation runs.

Figure 6.6: Simulation results for logistic regression under case 1 in the
equal scenario: Plot of Monte Carlo estimate of bias, relative bias, vari-
ance, relative variance, mean square error (MSE), relative mean squared
error(RMSE), length and coverage of nominal 95% confidence intervals
of regression coefficient β by different methods over 100 simulation runs.
Value of β is set to 0.5 for each simulation.
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Table 6.5: Simulation results for logistic regression under case 1 in the equal scenario:
Monte Carlo estimate of bias, relative bias (R.Bias), variance, relative variance
(R.Var), mean square error (MSE), relative mean squared error(R.MSE), length and
coverage rate (C.R.) of nominal 95% confidence intervals of regression coefficient β
by different methods over 100 simulation runs. Value of β is set to 0.5 for each
simulation. The corresponding estimated standard deviation is show in blue.

Bias R.Bias Var R.Var MSE R.MSE Length C.R.
Naive -0.0731 -0.1462 0.0044 0.0175 0.0097 0.0387 0.1869 63%

0.0066 0.0132 0.0011 0.0045 0.0022 0.0485
Full -0.0096 -0.0192 0.0046 0.0185 0.0047 0.0187 0.2429 93%

0.0068 0.0136 0.0007 0.0027 0.0048 0.0256
Max 0.0430 0.0859 0.0042 0.0167 0.0060 0.0239 0.2388 90%

0.0065 0.0129 0.0009 0.0035 0.0051 0.0302
Max2 -0.0007 -0.0014 0.0037 0.0148 0.0037 0.0147 0.2259 95%

0.0061 0.0122 0.0005 0.0019 0.0034 0.0219

Table 6.6: Simulation results for logistic regression under case 1 in the equal scenario:
Relative efficiency (RE) of proposed estimators to naive estimator with respect to
mean square error.

Naive Full Max Max2
MSE 0.0097 0.0047 0.0060 0.0037
RE 0.4821 0.6179 0.3798

Case 1 and from 20 to 30 under Case 2. The ratio of ni and Ni is denoted by ri,
which varies from 1.5 to 3, and Ni, is set to Ni = bniric. With this setup, linkage
errors would be more likely to occur compared to the equal size scenario. For the
details of the simulation conditions, see Table 6.7.

6.3.1 Linear regression with linked data

Fig 6.7 displays scatter plots of naive, full, max and max2 estimates versus the

true values of β in a simple linear model under Case 1 and Case 2 in the unequal

scenario. Similar to the results for the equal scenario, the naive estimator underes-

timate the regression coefficient, indicated by the obvious discrepancy between the
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Table 6.7: Simulation conditions for Case 1 and Case 2 under the unequal scenario.

Symbol Description Case 1 Case 2
lower
limit

upper
limit

lower
limit

upper
limit

G number of blocks 100 100
R number of simulations 100 100
x univariate covariate x ∼ N(0, 1) x ∼ N(0, 1)
β regression coefficient 0 1 0 1
σ2
e regression variance σ2

e = 1− β2 σ2
e = 1− β2

ni size of block i in Fy 10 20 20 30
ri ratio of sizes of block i in Fy

and Fx

1.5 3 1.5 3

Ni size of block i in Fx Ni = bniric Ni = bniric
K number of matching fields 8 12 6 10
mk probability of agreement on

field k for a match
0.55 0.95 0.55 0.85

uk probability of agreement on
field k for a mismatch

0.10 0.50 0.20 0.50

red line and the blue line. Our proposed estimators, especially the full estimator,

correct the bias. The fitted blue line for the full estimator almost coincide with the

diagonal red line. Fig 6.8 shows the heat map of absolute deviations and squared

deviations of each estimator over the 100 simulation runs. The simulation runs are

sorted in a decreasing order of values of full estimator. The darker the color is,

the smaller the absolute deviation is. Table 6.8 gives the average absolute devia-

tions (AAD) and average squared deviations (ASD) of our proposed estimator and

its relative percent improvement over the naive estimator. Results show that our

proposed estimators, especially full estimator and max2 estimator, performs better

than the naive estimator, especially in the case where linkage errors are more likely

to occur.

In order to further evaluate the performances of these four estimators, another
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Figure 6.7: Simulation results for linear regression under case 1 and case
2 in the unequal scenario: Scatter plot of naive, full, max and max2
estimates versus true values of regression coefficient β in a simple linear
model on 100 simulation runs. Diagonal lines with slop 1 are plotted in
red. Fitted lines are plotted in blue.
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Figure 6.8: Simulation results for linear regression under case 1 and
case 2 in the unequal scenario: Heat map of absolute deviations and
squared deviations for estimates of regression coefficient β in a simple
linear model on 100 simulation runs.

set of 100 simulation runs for linear regression under case 1 of unequal scenario is

performed with β fixed at 0.5. Box plot of deviations and relative deviations of

different estimators from the true value of β is shown in Fig 6.9. Table 6.9 gives the

Monte Carlo estimate of bias, relative bias, mean square error (MSE), relative mean

square error(RMSE), length and coverage of nominal 95% confidence intervals of β

for each method. The standard errors of these estimates are shown in blue. The

negative values of bias and relative bias of naive estimator implies it underestimate

values of β, and the other three estimators correct this bias, with full estimator being

the best. Our proposed estimators also efficiently decreased the variance by about

50% when compared to the naive estimator. We can also see that the coverage rate

of confidence intervals produced by full estimators and their jackknife variances is
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Table 6.8: Simulation results for linear regression under case 1 and case 2 in the
unequal scenario: Average absolute deviations (AAD) and average squared devia-
tions (ASD) of naive, full, max and max2 estimators of regression coefficient β in
a simple linear model over 100 simulation runs. The percent relative improvement
(PRI) of the proposed estimator over naive estimator is shown in blue.

Estimator Case 1 Case 2
AAD ASD AAD ASD

β̂N 0.0573 0.0061 0.2780 0.1056

β̂F 0.0192 0.0006 0.0366 0.0023
66.51% 89.88% 86.84% 97.80%

β̂M 0.0456 0.0028 0.0665 0.0062
20.55% 53.06% 76.08% 94.09%

β̂M2 0.0201 0.0007 0.0402 0.0026
64.96% 88.45% 85.53% 97.52%

very close to its desired nominal level, with only 1 percent off, while those produced

by other estimators are lower than the desired nominal level. In terms of mean

square error and relative mean square error, the full estimator β̂F performs the

best, followed by the max2 estimator β̂M2 and max estimator β̂M . The relative

efficiency of each proposed estimator to the naive estimator with respect to mean

square error is given in Table 6.10.

6.4 Comparison of the Standard and Simplified Jackknife Methods

Inspired by Jiang, Lahiri and Wan (2005), we proposed to use Jackknife

method to estimate variance of each estimator of β. A Jackknife replicate i is

constructed by leaving out data from blocks i, i = 1, . . . , G in file Fy and Fx.

The estimate of mixture model parameters ψψψ = {π,m1, . . . ,mK , u1, . . . , uK} are re-

estimated at each replicate data, and then are used to estimate the probability of
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Figure 6.9: Simulation results for linear regression under case 1 in the
unequal scenario: Box plot of deviations and relative deviations of dif-
ferent estimates from the true value of β over 100 simulation runs.

Figure 6.10: Simulation results for linear regression under case 1 in the
unequal scenario: Plot of Monte Carlo estimate of bias, relative bias,
variance, relative variance, mean square error (MSE), relative mean
squared error(RMSE), length and coverage of nominal 95% confidence
intervals of regression coefficient β by different methods over 100 simu-
lation runs. Value of β is set to 0.5 for each simulation.
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Table 6.9: Simulation results for linear regression under case 1 in the unequal sce-
nario: Monte Carlo estimate of bias, relative bias(R.Bias), variance, relative variance
(R.Var), mean square error (MSE), relative mean squared error(RMSE), length and
coverage rate (C.R.) of nominal 95% confidence intervals of regression coefficient
β by different methods over 100 simulation runs. Value of β is set to 0.5 for each
simulation. The corresponding estimated standard deviation is show in blue.

Bias R.Bias Var R.Var MSE R.MSE Length C.R.
Naive -0.0785 -0.1569 0.0028 0.0112 0.0089 0.0357 0.1149 35%

0.0053 0.0106 0.0012 0.0049 0.0025 0.0479
Full 0.0061 0.0122 0.0011 0.0043 0.0011 0.0044 0.1225 94%

0.0033 0.0066 0.0001 0.0006 0.0023 0.0239
Max 0.0501 0.1003 0.0016 0.0064 0.0041 0.0164 0.1294 69%

0.0040 0.0080 0.0005 0.0020 0.0031 0.0465
Max2 0.0117 0.0235 0.0014 0.0056 0.0015 0.0061 0.1240 88%

0.0037 0.0075 0.0002 0.0009 0.0027 0.0327

Table 6.10: Simulation results for linear regression under case 1 in the unequal
scenario: Relative efficiency (RE) of proposed estimators to naive estimator with
respect to mean square error.

Naive Full Max Max2
MSE 0.0089 0.0011 0.0041 0.0015
RE 0.1244 0.4607 0.1713

linkage and designate the record pairs as links and non-links. Then β̂−i, the esti-

mate of β for replicate i, can be obtained based on replicate data and ψ̂̂ψ̂ψ−i. And

the jackknife variance of an estimator of β can be obtained by aggregating these

G replicate estimates of β. This way, the estimated variance V̂ cannot only cap-

ture the variability caused by linkage errors but also cover the variability caused by

expectation maximization algorithm

However, the above jackknife method of estimating variance is time consum-

ing because of the complexity of process. The expectation maximization algorithm

is operated G + 1 times estimate mixture model parameters during the entire pro-
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cess, 1 time on the full data to obtain ψ̂̂ψ̂ψ, G times on all jackknife replicates to get

{ψ̂̂ψ̂ψ−i, i = 1, . . . , G}. Also, the design matrix QQQ used in the estimating functions

need to be re-constructed for each jackknife replicate since it depends on the mix-

ture model parameters. We wonder whether the jackknife method can be simplified

to decrease the computation time without losing much accuracy. Based on some of

our findings that (1) the expectation maximization algorithm takes most part of the

computation time during the entire process; (2) there’s no big difference between

the estimate of mixture model parameters on the full data and on the jackknife

replicates, we propose a simplified version of the above jackknife method. Instead of

re-estimating mixture model parameters ψψψ for each jackknife replicate, we use the

estimate obtained from the full data ψ̂̂ψ̂ψ during the entire process. Let V̂0 denote the

estimated variance of an estimate obtained from the simplified jackknife method.

Next, we conduct a Monte Carlo simulation study to show that the difference be-

tween these two estimated variances V̂ and V̂0 is quite small.

Again, the simulation is performed under two different scenarios: the equal

scenario and the unequal scenario. In the equal scenario, simulation is done for a

simple logistic model under Case 1 with simulation conditions as shown in Table

6.2. In the unequal scenario, simulation is done for a simple linear model under

Case 1 with simulation conditions as shown in Table 6.7. Under both scenarios, the

true value of the regression coefficient β is set to 0.5. For each of the R simulation

runs, two different jackknife methods are used to estimate variance of an estimate.
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6.4.1 Equal Scenario

Figure 6.11 shows the box plot of the relative difference of V̂0 and V̂ of each

estimate of β. First, most of the relative differences among R simulation runs are

above 0, showing that V̂ is usually greater than V̂0. This is expected since V̂0 ignores

the variability in estimating mixture model parameters while V̂0 does not. Also, we

can clearly see the relative difference of V̂ and V̂0 is large for the naive estimator but

small for our propose estimators, especially for the full estimator β̂F , which is within

0.1. We wonder whether the absolute relative difference of V̂0 and V̂ is smaller than

a positive constant L. We would like to test the hypotheses

H0: d = C.

H0: d < C

where d >= 0 is the absolute relative difference of V̂0 and V̂ .

A one sample t test may be considered. However, the histogram of the absolute

relative difference, shown in Figure 6.12, looks strongly skewed, suggesting lack

of normality. We would therefore to use the Wilcoxon signed rank test, a non-

parametric statistical hypothesis test. The test statistic W+is the sum of ranks of

the positive difference of d and C. That is,

W+ =
R∑
i=1

|d− C| × I{sign(d− C) = 1}

Under the null hypothesis, W+ has mean

µW+ =
R(R + 1)

4
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and standard deviation

σW+ =

√
R(R + 1)(2R + 1)

24

Under the null hypothesis, the distribution of the signed rank statistic W+ converges

to a normal distribution when the number of replicate R becomes large. Then we

can use the normal probability calculation (with continuity correct) to approximate

P-value for W+. The P-value is equal to

PW+(X < W+) = P

(
Z <=

W+ − µW+

σW+

)
= Ψ

(
W+ − µW+

σW+

)

The Wilcoxon signed rank statistics and their corresponding p values of the

hypotheses test for different choices of C are shown in Table 6.11. Based on the

result, there is strong evidence that the absolute relative difference between V̂ and V̂0

is less than 0.02 for full estimator, and less than 0.04 for all the proposed estimators.

There’s no evidence that the absolute relative difference is within 0.05 for the naive

estimator.

Table 6.11: Simulation results for logistic regression under case 1 in the equal sce-
nario: Table of test statistic and p values of one tailed Wilcoxon signed rank test.
The alternative hypothesis is that the absolute relative difference between the two
jackknife variances of the estimate of β is less than C.

C 0.01 0.02 0.03 0.04 0.05
Estimator w p.value w p.value w p.value w p.value w p.value

Naive 4954 1.00 4787 1.00 4618 1.00 4412 1.00 4104 1.00
Full 3440 1.00 1367 0.00 654 0.00 244 0.00 45 0.00
Max 4234 1.00 3452 1.00 2578 0.57 1936 0.02 1388 0.00
Max2 4327 1.00 3073 0.97 2196 0.13 1439 0.00 864 0.00
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Figure 6.11: Simulation results for logistic regression under case 1 in the
equal scenario: Box plot of relative difference between the two jackknife
variances of each estimate of β. The true value of β is set to 0.5.

Figure 6.12: Simulation results for logistic regression under case 1 in
the equal scenario: Relative frequency histogram of absolute relative
difference between the two jackknife variances of each estimate of β.
The black line is the kernel density estimate.
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Figure 6.13: Simulation results for linear regression under case 1 in the
unequal scenario: Box plot of relative difference between the two jack-
knife variances of each estimate of β. The true value of β is set to 0.5.

6.4.2 Unequal Scenario

Similar results are obtained for the linear regression under case 1 in the unequal

scenario. The box plot of relative differences of V̂ and V̂0 is displayed in Figure 6.13,

the histogram of absolute relative differences is shown in Figure 6.14, and the results

for the hypothesis test is given in Table 6.12. Based on the result, there is strong

evidence that the absolute relative difference of V̂ and V̂0 is within 0.05 for all the

proposed estimators, but not for the naive estimator.

6.4.3 Conclusions

Based on the results of the one-sided hypothesis test, we concludes that the ab-

solute relative difference between the variances obtained from the standard jackknife
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Figure 6.14: Simulation results for linear regression under case 1 in the
unequal scenario: Relative frequency histogram of absolute relative dif-
ference between the two jackknife variances of each estimate of β. The
black line is the kernel density estimate.

Table 6.12: Simulation results for linear regression under case 1 in the unequal
scenario: Table of test statistic and p values of one tailed Wilcoxon signed rank
test. The alternative hypothesis is that the absolute relative difference between the
two jackknife variances of the estimate of β is less than C.

C 0.01 0.02 0.03 0.04 0.05
Estimator w p.value w p.value w p.value w p.value w p.value

Naive 5034 1.00 4994 1.00 4895 1.00 4767 1.00 4519 1.00
Full 4918 1.00 4354 1.00 3534 1.00 2773 0.80 1911 0.02
Max 4713 1.00 3887 1.00 3066 0.97 2343 0.27 1860 0.01
Max2 4866 1.00 4225 1.00 3443 1.00 2631 0.64 2019 0.04

method and from the simplified jackknife method are small for our proposed estima-

tors, but not for the naive estimator, under both the equal scenario and the unequal

scenario. Hence, we would recommend to use the simplified jackknife method to

estimate variance for any of the proposed estimators if one would like to pursue less

computation time.
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Chapter 7: Future Research

Our research has initiated some new ideas and points to several directions for

future research.

A key assumption of the general methodology for small area estimation is that

the records from multiple sources can be partitioned into small areas without error,

and small areas coincide with blocks. In reality, however, this may not hold in

different situations:

(1) The variable specifying the membership of small areas is not present in all

files to be linked. Thus, it is impossible to partition the records in each file into

small areas before the record linkage process.

(2) Even when the records in multiple files can be divided into small areas

successfully, the number of record pairs within some small areas could be large,

and thus blocking within small areas may be a reasonable option in order to reduce

computational burden. In this case, our general methodology works when a small

modification to the linkage error model is made. The matrix of matching status

indicators LiLiLi = diag(LLLi1, . . . ,LLLiGi
) turns block-diagonal, assuming that the records

in small area i are partitioned into Gi blocks without error.

(3) It is also possible that small areas are nested within blocks. In this case, the
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model is likely to introduce correlation across small areas. Our general methodology

works for point estimation because global parameters like the regression coefficients

and variance components will be estimated properly as long as we have a large

number of blocks. As for variance estimation, a new method is required since the

current jackknife methods used in the dissertation requires the measurements to

independent across small areas.

Our research is limited to performing statistical analysis on data from two

different files. Specifically, we consider the case where the variable of interest and

its predictors are observed separately for two samples of population units. When

developing the current methodology, we see the potential of extending it to an even

more general case, where observations on the variable of interest and some of its

predictors are recorded in one file and observations on the rest of its predictors are

stored in other multiple files. The basic idea is to use a system of linkage error models

and a system of mixture models. The validity of the idea need to be investigated in

the future.

Our proposed methodology requires the measurements to be independent

across blocks or small areas. This is mainly due to the assumption of the jackknife

methods we used for estimating bias, variance, and mean squared errors. Recently,

Jiang and Mahmoud proposed a Monte-Carlo-assisted approach to mean squared

error estimation of a small area estimate, which allows correlation across small areas.

It can be a potential tool to improve our research.

The dissertation is focused on the classical method of small area estimation

using data from multiple files. The classical unit-level models are used for describing
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the relationship between the study variable and auxiliary variables, and the mixture

model is used for the purpose of record linkage. In the literature of small area esti-

mation, Hierarchical Bayesian approaches have been suggested due to the following

advantages:

(1) It is straightforward to take into account all sources of variation.

(2) The MCMC techniques have made it computationally feasible and easy to

estimate the model.

(3) The Bayesian approaches allow the use of the one-to-one matching assump-

tion, so that we do not need to be concerned about the one-to-many and many-to-one

linkage problem that usually occurs when classical methods are used.

In the future, we would like extend our research to use Bayesian methods for

small area estimation using data from multiple files.

In this dissertation, Monte Carlo simulations are used to provide preliminary

evidence supporting the validity of our general methodology. In the future, we would

like to apply the classical and Bayesian methods of statistical analysis using data

from multiple files to address some real issues. Poverty mapping and nonresponse

adjustment are two possible applications. We may have very limited information

about the individuals in poverty or nonrespondents from the sampling frame, but

more valuable information about them can be obtained if we can link the survey

and administrative data. As the amount of information increases, more advanced

models can be built to help us understand their behavior and further improve the

accuracy of poverty estimates or efficiency of weight adjustment. For example,

weighting class adjustment method is commonly used for nonresponse adjustment
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when relatively few variables are available. If additional variables can be obtained

from record linkage, response propensity models, using logistic regression, can be

applied to predict the likelihood of response versus nonresponse, and then provide

a weighting factor. When it comes to poverty mapping, the more advanced models

can better predict the poverty status of an individual that was not sampled in the

survey, and further provide a more reliable poverty estimate for each small area.
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[56] Rässler, S. (2002) Statistical matching: a frequentist theory, practical ap-
plications, and alternative Bayesian approaches, Lecture Notes in Statistics,
Springer.

144



[57] Sadinle, M. and Fienberg, S. (2013). A generalized Fellegi-Sunter framework for
multiple record linkage with application to homicide record-systems Journal of
the American Statistical Association, 108, pp. 385-397.

[58] Rao, J.N.K. and Molina, I. (2015), Small Area Estimation, 2nd ed., Wiley.

[59] Särndal, C-E, Swensson, B., and Wretman, J. (1992) Model Assisted Survey
Sampling, Springer-Verlag.

[60] Samart, K. and Chambers R. (2014) Linear regression with nested errors using
probability-linked data, Australian and New Zealand Journal of Statistics,56(1),
27-46.

[61] Scheuren, F.J. and Winkler, W.E. (1993) Regression analysis of data files that
are computer matched, Survey Methodology, 19, 39-58.

[62] Scheuren, F.J. and Winkler W.E. (1997). Regression Analysis of Data that are
Computer Matched - Part ii. Survey Methodology, 23(2):157-165.

[63] Schnell, R. (2013), Linking Surveys and Administrative Data, German Record
Linkage Center Working Paper Series, No. WP-GRLC-2013-03.

[64] Steorts, R. C., Hall, R. and Fienberg, S. E. (2015). A Bayesian Approach
to Graphical Record Linkage and De-Duplication. Journal of the American
Statistical Association, in press.

[65] Tancredi, A., and Liseo, B. (2011) A hierarchical Bayesian approach to record
linkage and population size problems. Annals of Applied Statistics, 5, 1553-1585.

[66] Tancredi, A. and Liseo, B.(2015). Regression analysis with linked data: prob-
lems and solutions, Statistica.

[67] Tancredi, A., Steorts, R.C., Liseo, B. (2017). A Bayesian approach for dedupli-
cation, record linkage and inference with linked data. Working paper, MEMO-
TEF, Sapienza Università di Roma.
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