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Abstract

Automated recognition of features from CAD models has been attempted for a wide range of
application domains in mechanical engineering. However, the absence of a clear mathematical
formalism for the problem has made it di�cult to develop a general approach|and thus most
of these methods are limited in scope.

In this paper, we develop a formalization of the problem of recognizing a class of machinable
features expressed as MRSEVs (a PDES/STEP library of machining features) [19], and an
algorithm for solving this problem. Some of the characteristics of this approach are:

� the algorithm handles a large variety of hole and pocket features features along with
elementary accessibility constraints and blends for those features;

� it is provably complete, even if the features intersect with each other in arbitrarily complex
ways;

� it has O(n4) worst-case time complexity.

1 Introduction

Although many approaches have been developed for recognizing machinable features in solid models
of mechanical parts, the absence of a clear mathematical formalism for the problem has made it
di�cult to develop a general approach|and thus most of these methods are limited in scope. It is
often unclear what speci�c classes of objects, features, and feature interactions can be handled by
various approaches, making it di�cult to evaluate their overall utility.

As a �rst step toward addressing this di�culty, we have developed a formalization of the prob-
lem of recognizing a subset of the set of all machinable features expressible as MRSEVs (Material
Removal Shape Element Volumes) [19]. MRSEVs are volumetric features corresponding to machin-
ing operations on 3-axis milling machines. MRSEVs can be de�ned using EXPRESS (the o�cial
PDES information modeling language) and PDES form features. Kramer [19] has already done
this for a subset of the MRSEV library, and has de�ned the rest using an EXPRESS-like language.

Based on this formalization, we have developed a algorithm for solving the problem of recog-
nizing every solid that can be described as the di�erence between an arbitrary piece of stock and
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an arbitrary set of machinable features. The features in our class include a large variety of hole
and pocket features, along with some elementary accessibility constraints for those features. The
algorithm is provably complete over the set of all solids in our class, even if the features intersect
with each other in arbitrarily complex ways. For example, our algorithm can handle each of the
objects in Figs. 3 and 5. In addition, the recognition algorithm has a worst-case time complexity
of O(n4) where n is the size of the solid model.

This paper describes our formalism and feature recognition algorithm, with an analysis of its
complexity. Section 2 describes how this work relates to other research. Section 3 de�nes the class of
MRSEVs that we are interested in, how they are used to generate descriptions of mechanical parts,
and the feature recognition problem for this domain. Section 4 presents procedures for recognizing
individual features in this domain. Section 5 derives theorems guaranteeing recognizability; builds
an algorithm for �nding feature models of parts; and proves its completeness and its ability to handle
arbitrarily complex feature interactions. Section 6 presents complexity results on the algorithm,
and Section 7 provides examples of how the algorithm would operate on various parts. Section 8
gives conclusions and future directions for work in this area. The proofs and details of procedures
are in appendix A.

2 Related Work

The graph algorithm approaches of [6, 14] provide an excellent level of computational formality.
However, while they have known algorithmic properties, they appear di�cult to extend to realistic
manufacturing problems. Additionally, graph-based methods and the graph grammars of [26, 32] are
prone to combinatorial di�culties [25]. The recent work in [9] describes recognition techniques that
attempt to combat the combinatorial problems by abstracting an approximation of the geometric
and topological information in a solid model and �nding features in the approximation.

The feature interaction problem has been the focus of numerous research e�orts, notably the
heuristic approaches of [14, 34]. In [15, 16], an algebra of features is developed for the computation
of alternate feature interpretations for parts. The work of [7] included the formalization of a feature
description language and employed frame-based reasoning algorithms to extract machining features
for computer aided process planning. [33] illustrates the need for extracting user de�ned features
types that may arise in speci�c applications. Each of these goals would bene�t >from a general
feature recognition formalism.

The work of Henderson [4, 10] was seminal in employing expert systems on the feature recogni-
tion problem. Large expert systems, such as [3] for part coding, have practical applicability but do
not present a framework for their feature recognition domain. In this case, there may be no formal
means of specifying the capabilities of the system due to the subjective nature of the part coding
problem. Kyprianou [20] presents an early e�ort to use grammars to parse solid models of parts
for group coding.

Perhaps the most comprehensive and formal approach to date has been attempted by Van-
denbrande [34]. This method provides a computationally rigorous way of recognizing a class of
realistic manufacturing features via arti�cial intelligence techniques in combination with queries
to a solid modeler.1 The work stopped short of proving the completeness of the approach and,
while providing techniques for handling interacting features, does not formalize the complete class
of interactions within its capabilities; arbitrarily complex feature interactions may pose problems.

An aggressive approach to handle feature interactions and intersections was done by Mare-
fat [21]. The work built on the representation scheme of [14] and used a novel combination of
expert system and hypothesis testing techniques to extract surface features from polyhedral ob-

1A more detailed outline of this method can be found in [31].
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Figure 1: De�nitions for MRSEV Holes and MRSEV Pockets with islands.

jects. While providing insights into the feature interaction problem, the method has the same
combinatorial di�culties of [14] and the added costs of an expert system to handle interactions.
Additionally, although the method is complete for its domain, it is di�cult to envision how it would
extend to more complex objects and feature classes (such as those involving curved surfaces) and
how completeness would be still be possible.

Other recent work includes feature recognition from 2D engineering drawings [22], via neural
network techniques [27], and using convex volume decompositions [17].

The bibliography for complexity results speci�c to solid modeling operations is not extensive.
Existing work contains empirical and some theoretical analysis of the time and space costs for
various data structures for representing solids. Woo [36] analyzes several types of boundary rep-
resentation data structures and compares their time costs for a set of primitive operations and
space requirements. Weiler [35] presents data structures for curved surfaces and with their time
and storage complexities. Ala [1, 2] builds on this work and introduces variations on the boundary
representation data structure with advantages for certain application. Extensions to face-based
representations are introduced in [8] and algorithms for their manipulation are analyzed. An excel-
lent source of worst-case complexity analysis for boolean operations on boundary data structures is
Ho�mann [11]. Peters [25] illustrates some of the combinatorial di�culties inherent in many graph-
theoretic approaches to the feature recognition problem. In the feature recognition literature, [6]
presents an analysis of the complexity of her methodology. Other attempts to measure performance
include timing results, most notably in [3, 20]. Results of this type are highly dependent on the
hardware, software implementation, the domain of interest, and the particular test cases chosen for
the timing tests. Hence they represent a weak basis for comparisons between feature recognition
methodologies.
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3 De�nitions

A solid object is a manifold r-set [30] with planar, cylindrical, toroidal, conical and spherical bound-
ing surfaces. These are the only surfaces present in MRSEVs de�ned below, hence this set contains
any object that they describe.

The set of features that we will consider in this paper is based on the library of material removal
shape element volumes (MRSEVs), which was developed by Kramer [19] as a means of categorizing
the shapes of volumes to be removed by machining operations on a 3-axis machine tool. MRSEVs
are volumetric features, some of the bene�ts of which have been explained in [28]. The MRSEV
hierarchy provides a framework for describing a large class of volumes of interest to machining.

Kramer's primary MRSEV types include linear swept features, edge-cut features, ramps, and
rotational pockets. For the purpose of this paper we con�ne our domain to the linear swept
features, i.e., holes, pockets, and pockets with islands. Kramer de�nes linear swept feature as a
shape resulting from sweeping a closed pro�le of edges along a straight line perpendicular to the
plane of the pro�le.2 Figs. 1 (a) and 1 (b) present our illustrations of pocket and hole MRSEVs.
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Figure 2: Instances of a hole and a pocket.

The MRSEVs are parameterized solids; a feature is a speci�c instance of one of these MRSEVs,
resulting from a speci�c choice of attribute values. For example, suppose we choose the following
attribute values:

location = (�1; 0; 0);
orientation = (1; 0; 0);
depth = 5;
radius = 1;
end = round end:

This would de�ne the round-bottomed hole illustrated in Fig. 2 (a). Geometrically, this hole consists
of the point set (S1 \� S2 \� S3) [ S4, where

S1 = f(x; y; z) : x � 5g;

S2 = f(x; y; z) : y2 + z2 � 1g;

S3 = f(x; y; z) : x � 0g;

2In the case of a pocket with islands, an island is considered to be a subfeature de�ned by its own closed pro�le.
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S4 = f(x; y; z) : x2 + y2 + z2 � 1g:

Similarly, consider the following values for the attributes of a MRSEV pocket:

location = (0; 0; 1);
orientation = (0; 1; 0);
depth = 2;
pro�le = fe1; e2; e3; e4; e5; e6g;
bottom blend = ;;
islands = fI1g;
pro�le I1 = fe7; e8; e9; e10g;
bottom blend I1 = ;;
height I1 = 2:

This would de�ne a pocket with a single island as pictured in Fig. 2 (b). Geometrically, this pocket
consists of the point set (S5 [ S6)�

� S7, where:

S5 = f(x; y; z) : 1 � x � 4; 0 � y � 1; 1 � z � 3g;

S6 = f(x; y; z) : 4 � x � 7; 0 � y � 1; 1 � z � 5g;

S7 = f(x; y; z) : 5 � x � 6; 0 � y � 1; 3 � z � 4g:

The initial workpiece, WP0, is a solid object of raw stock material to be acted upon by a set
of machining operations generating MRSEVs. The machined part (or just part) is a solid object
part produced as a result of subtracting a �nite set F of MRSEVs from an initial workpiece (hence
part � WP0). The delta volume is the regularized3 di�erence of the initial workpiece and the
part: � =WP0 �

� part.
Given a part and an initial workpiece WP0, we assume that the solid objects are bounded.

Let min be the a value (or dimension) such that given any point in WP0 and a vector, a line of
length min centered at the point and oriented on the trajectory of the vector would extend beyond
the minimum enclosing sphere ofWP0 in both directions. For example, given a hole of depth min

with its center located within WP0, neither end-face of the hole is contained in WP0.
4

Each feature has conditions that must be met in order for it to be accessible.5 A hole is
accessible if the circular cross-section of the hole can be swept in at least one of the two directions
perpendicular to it a distance min without intersecting the part. The condition for a pocket
involves a sweep of the pro�le and is similar.

A feature model of an initial workpiece WP0 and a part is a set of accessible features FM =
fM1;M2;M3; : : : ;Mng such that

i : 8Mi 2 FM;Mi \� part = ;
ii : WP0 �

� part �
S
FM

We say FM is a feature model of part andWP0. There may be many feature models of part and
WP0. FM is an element of this class of feature models of part and WP0|it describes � as a set
of features.

3See [11] for the de�nitions of the regularized boolean operations.
4The value of min tries to capture the idea that each element in our class of objects is bounded. Boundedness

implies that there exists an uncountably in�nite number of upper bounds on the size of a given object. Because
de�ning a least upper bound may present many degenerative special cases, for the purposes of this paper, min

represents a reasonable upper bound that is not minimal.
5The MRSEV de�nitions from [19] do not include associated accessibility volumes. The potential bene�ts of such

a development is mentioned in [24].
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A feature M is recognizable in � if it is part of a feature model that describes �, and there
exists a computable method of recognizing M from �.

The feature recognition problem is de�ned as follows:

De�nition: Feature Recognition
INPUT: part;WP0

OUTPUT: return a feature model FM of WP0 and part if one exists;
; otherwise.

We de�ne a feature recognition algorithm to be complete if it returns a feature model of part and
WP0 whenever they are describable by a feature model.

In this paper, we will only consider parts that satisfy the following restrictions:

� for any hole in F , a subface of its cylindrical face or its complete ending surfaces are present
in �;

� for any pocket in F , either a subface of its bottom face is present in �, or else it is a through
pocket with a corner radius or at least two of its non-parallel planar side faces present in �;

These restrictions provide the minimum conditions for recognizability. For example, consider
the restrictions placed on the MRSEV pockets. Assume we have a part and a WP0 for which
there exists a feature model containing an instance of a pocket. If this MRSEV pocket instance is a
through pocket whose only remnant is a single planar side face there would be no tractable means
of determining its orientation and location|with no other face from which the obtain a hint, there
would be an uncountably in�nite number of possible orientations. It is granted that there may exist
other kinds of feature hints such as faces of the part blocking some of the possibilities. However no
amount of information is going to remove all of possibilities and, in the worst case, there will still
be a huge number of possibilities that must be explored by often ad hoc heuristics.

Additionally, we must assume the existence of constraints on the size of certain features; in
particular, threshold values on the dimensions of surfaces that are identi�ed as blends or holes. A
bottom blend is basically a transition surface between a pocket's sides and its bottom. Though the
geometric de�nitions may allow us to classify a portion of a large hole as a blend, it would not be
realistic to do so. Let max blend be the maximum radius or, for 
at blends, width that a blend
may have. For example, any cylindrical surface with a radius greater than max blend must be
described as an instance of a MRSEV hole.

4 Recognition of MRSEV Instances

The conditions for recognizability of each MRSEV feature type are formulated in the following
lemmas. Note that in presenting these lemmas, we outline the cases for a general feature recognition
algorithm for this class of MRSEVs. The proofs of these lemmas can be found in appendix A.

For any given feature instance in �, these lemmas show that in our domain as de�ned in
section 3, a method exists to determine the attributes of a feature that subsumes it.

Lemma 4.1 Let M be a MRSEV hole having a subface of one of its faces as a face in �, then
there exists a recognizable MRSEV hole M 0 such that M �M 0.

As stated in the de�nitions of section 3, pockets are of two types: through pockets and non-
through pockets. The subsequent lemmas prove that for any feature instance in � a feature instance
subsuming it can be extracted.
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Lemma 4.2 Let M be a MRSEV through pocket with subfaces of two or more non-parallel planar
side faces or a subface of a corner radius as subfaces of the boundary of �, then there exists a set
of recognizable MRSEV pockets M such that M �

S
M.

Lemma 4.3 Let M be a MRSEV pocket having a subface of its bottom face as a subset of the
boundary of �, then there exists a set of recognizable MRSEV pockets M such that M �

S
M.

The lemmas provide an outline for building procedures to recognize individual feature instances
in � through queries to the solid modeling system. For a complete elaboration of the details of
these procedures and the primitive procedures needed to construct them please see appendix A.

These procedures share a common parameter list of part, WP0, and a surface f in �. If,
for example, the surface f belongs to an instance of a hole, the procedure Find MRSEV Hole

Instance will return an instance of a maximal hole that creates f . If there is no such hole then
the empty set is returned. One situation in which this could happen is the case of an inaccessi-
ble cylindrical surface|no hole instance will be found when all possible holes have a non-empty
intersection with the part.

Procedure 4.1 Find MRSEV Hole Instance

INPUT: part, WP0, a face f in WP0 �
� part formed from an instance of a MRSEV hole.

OUTPUT: M , a MRSEV hole found from f .

The class of pockets dealt with in lemma 4.3 may include bottom blends. The next procedure
�nds the set of bottom blend surfaces associated with the pro�le of a MRSEV pocket instance.
To keep the features consistent with the de�nitions of [19], Find Bottom Blends returns a set
of pro�les and blend surfaces. These pro�les will be contain the original pro�les and enclose any
bottom blend that may be found.

Procedure 4.2 Find Bottom Blends

INPUT: part, a set of edge pro�les P , and a vector v indicating the direction of the top of the
pocket.
OUTPUT: a set B = fhP 0; Big where P 0 is a set of pro�les, and B is a set B = fsg where s is a
blend surface for the pocket whose pro�le and islands are elements of P 0.

Finding a set of possible bottom blends is necessary because there may be situations where
overlapping pockets share part of the same bottom face. Hence, the pro�les of the maximal pocket
instances may be incident to a set of di�erent blend surfaces. Find Bottom Blends reconciles
the di�erent blend surfaces by returning a set of maximal pocket pro�les for each type and size
of blend surface found. This allows us to maintain the condition of the maximality of recognized
features while ensuring that each pocket has exactly one bottom blend.

Employing the routine for recognizing bottom blends, we give the procedure outlined by lem-
mas 4.2 and 4.3 for the recognition of maximal pocket instances. If the surface f is not a subface
of any pocket side or pocket bottom then the procedure returns the empty set.

Procedure 4.3 Find MRSEV Pocket Instance

INPUT: part, WP0, a face f in WP0 �� part formed from an instance of a MRSEV pocket.
OUTPUT: a set M = fM 0g of instances of a MRSEV pockets found from f .
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5 Finding a Feature Model

The procedures of the previous section recognize instances of individual MRSEV features from a
face created by them. The issue now becomes how the procedures can be used to built a feature
model. If a feature model FM exists for a particular part andWP0 will the procedures built from
the lemmas �nd an equivalent feature model? While there is no guarantee that the procedures will
�nd the exactly the same FM , what the following theorem asserts is that if any feature model
exists for part and WP0 an equivalent feature model will be found. As with the lemmas, the
proofs for the theorem and its corollaries are located in appendix A.

Theorem 5.1 Given any feature model of a part and WP0; FM; for all MRSEV features M 2
FM , there exists a set of features M = fM 0g where each M 0 is recognizable in � and M �

S
M .

The theorem proves that if individual feature instances are recognizable then a feature model
can be constructed. Hence an algorithm can be built that determines whether or not a feature
model exists for a speci�c part and WP0. If a feature model does exist, then the algorithm
returns an equivalent model. If no model exists, the algorithm will return the empty set.6

Algorithm 5.1 MRSEV Feature Recognition

INPUT: part and WP0 for which a feature model exists
OUTPUT: a set F , a feature model of part and WP0

F = ;
While ���

S
F 6= ; and 9 unmarked faces of boundary(���

S
F )\� boundary(�)

do

Pick an unmarked face f from the boundary(���
S
F ) \� boundary(�)

Mark face f

if f is planar:

F = F [ (Find MRSEV Pocket Instance(part;WP0; f))
else

if f is cylindrical:

F = F [ fFind MRSEV Hole Instance(part;WP0; f)g
F = F [ (Find MRSEV Pocket Instance(part;WP0; f))
else

F = F [ fFind MRSEV Hole Instance(part;WP0; f)g
endif

Remove redundant features: N 2 F 3 N �
S
(F � fNg)

EndWhile

Our claim is that this algorithm is complete; that is it returns a feature model for every part
and WP0 for which one exists. The proof of this is a consequence of theorem 5.1.

Corollary 5.1 (Completeness) Suppose part and WP0 can be described by a feature model, then
the algorithm MRSEV Feature Recognition returns a feature model of part and WP0.

The corollary that the algorithm can �nd a feature model for anyWP0 and part with arbitrarily
complex feature intersections is similar. Note that the algorithm deals with features interactions
in a general manner|that is to say there is not a set of feature-by-feature interaction cases and
techniques employed by the algorithm.

6The fact that the algorithm halts is proven in section 6.
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Figure 3: Examples parts from [12, 13] and a variant on the ANC101 part recognizable with this
algorithm.

Corollary 5.2 (Feature Intersection Independence) Suppose part and WP0 can be described by
a feature model and for every such model the features intersect. The algorithm MRSEV Feature

Recognition returns a feature model of part and WP0.

Corollaries 5.1 and 5.2 show that algorithm 5.1 will extract a feature model for a given part

and WP0 for which one exists regardless of how the features intersect. Hence algorithm 5.1 is
complete over class of objects describable by MRSEV holes and pockets, independent of how the
feature instances intersect.

6 Computational Complexity

In this section we derive several results on the computational complexity of the general MRSEV
feature recognition algorithm. As mentioned in section 2, the bibliography of work on theoretical
complexity results for solid modeling systems consists of a handful of references [1, 2, 8, 11, 35, 36].

Calculating the computational complexity of a feature recognition system can be approached
several ways. If the feature recognition algorithm operates on a data structure abstracted from a
solid model of an object of interest, such as in [6, 14], its complexity can be calculated by counting
the number of operations on the data structure. Alternatively, many systems employ extensive
queries to the solid modeling system in a search for hints from which to build up a feature model|
most notably [34]. In such systems, a precise calculation of complexity will depend on the cost of the
queries. Factors such as the cost of primitive solid modeling operations such as \union", \intersect",
or \sweep" are dependent on the particular implementation of solid modeler. Some commercially
available solid modeling packages contain additional layers of data abstraction and overhead which
may also contribute to the computational cost. Because algorithm 5.1 uses extensive queries to
the solid modeling system to access the information necessary to extract feature instances, we will
choose the latter approach.

For the purposes of this analysis, we will not consider the overhead costs of commercial solid
modelers nor the consequences of the various di�erent representations they may employ. What
appears to be a reasonable goal is to isolate the subset of the fundamental functions needed to
implement the procedures of section 4 and 5 and to determine the complexity of those procedures
with respect to that subset.

Assume a solid S is represented by some boundary data structure, in general, the size nS of
this data structure will be nS = O(ES) where ES is the number of edges of the solid.7 There are

7For the worst case of these data structures, we can say the size is O(nS) where nS = ES + VS + FS and ES ; VS;
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two fundamental types of primitive solid modeling operations required by our procedures:

� Operations that query information from a solid model and its constituent parts. For example,
given a solid S, generate a list of the edges of S; given an edge e, determine the endpoints
and parameters8 of the edge.

Similar to analyses presented for boundary data structures in [2, 11, 36], we assume that
queries of this type can be made in time linear in the number of primitive elements queried.
For instance, given a solid model S, a query to generate a list of all the faces in the solid
model takes O(nS) time|the time required to traverse a structure, such as a boundary
representation, and identify all the faces. A query to �nd all the edges of a particular face
would also take time O(nS). If we have a given edge e, query to determine the parameters of
e takes O(1) time.

� Operations that change a solid model either by changing its characteristics or by its interaction
with other solid models. For example, creation of solids, Euler operations, and boolean set
operations.

Procedures 4.1 through 4.3 and algorithm 5.1 require routines for creation of solid models; the
regularized boolean operations of union, subtraction, and intersection; translation; rotation;
and sweeping. The boolean operations are discussed extensively in [11] and their complexities
are quadratic in nS . For example, if A and B are two solid models and nA and nB are their
sizes then the operation A �� B can be performed in O((nA + nB)2) time. Translation and
rotation of solid can be done in linear time by applying the appropriate transformation to
each of the elements in the boundary representation. Sweeping also requires the consideration
of all entities of a boundary representation of an entity S and, depending on the particular
implementation, the creation and union of additional solids to get the swept volume|hence
it is also O(n2S). These operations are common model construction techniques [23].

Given these assumptions, the complexity of procedure 4.1 isO(n2part); procedure 4.2 is O(n
2
part);

and procedure 4.3 is O(n3part). The detailed analysis of the complexity for each procedure in sec-
tion 4 can be found in appendix A.

In order to make a meaningful statement on the complexity of algorithm 5.1, it is necessary
to prove that the problem as de�ned is computable. To prove computability, we must show that
algorithm 5.1 will halt for any input from its domain of objects. This implies we consider an
arbitrary solid from the domain of objects stated in section 3 and show that the algorithm will
halt|returning a feature model for the object or reporting that none exists.

Let S be a solid object and let WP0 be the stock we will attempt to describe it from using our
class of MRSEVs. We will show that the algorithm MRSEV Feature Recognition will only
need to consider each face of � once, where � = WP0 �� S. The proof of theorem 6.1 can be
found in appendix A.

Theorem 6.1 (Termination of MRSEV Feature Recognition) Let S be a solid object and
WP0 be an initial workpiece. The algorithm MRSEV Feature Recognition will consider each
face of � at most once.

Analysis of algorithm 5.1: Theorem 6.1 proves that theWhile loop is executed only a �nite
number of times. Note that at each iteration, the algorithm considers a face of � that remains in

and FS are the number of edges, vertices, and faces of S respectively. By Euler's equation 2 = V � E + F , we can
simplify this to be nS = 2 + 2E or nS = O(ES).

8For instance, the parameters of a circular edge would be the axis and radius; of an elliptical edge would be the
major and minor axes and foci.
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Figure 4: An example part with a variety of feature intersections and a feature model describing
it.

���
S
F and that each face of � is picked at most once. Hence, the While loop will be executed

at most O(n�) times, where n� is the size of �. Because O(n�) = O(npart), we will say that the
While loop is executed O(npart) times.

The interior of theWhile loop consists of identifying the type of face that was picked. Depending
on the geometry of the face, the algorithm calls one or more of our procedures from section 4 to �nd
the feature or set of features that may associated with that face. There is at most a single call to the
subroutines for holes and pockets, the most costly of which is Find MRSEV Pocket Instance.
Hence the complexity of the algorithm MRSEV Feature Recognition is O(n4part).2

7 Examples

To illustrate that this algorithm can function in realistic machining situations, Figure 3 provides
some examples from the domain described by these MRSEVs. These �gures appeared previously
in [5, 12, 13].

An example of the general algorithm's feature intersection independence can be found in Fig. 4.9

This �gure depicts a cylindrical part containing a hole with two intersecting keyways and shoulders.
The interaction of the criss-crossing keyways within a cylindrical hole could be problematic for many
feature recognition methodologies. If delta-volume reduction technique were used, the possibility
exists that it may recognize the hole �rst|thus making the keyways di�cult, if not impossible, to
recognize. Any methodology attempting to �nd edge loops to determine the cross-section of the
hole would �nd there is no such planar edge loop in the part. The shoulders, while easily described
as instances of MRSEV pockets, may confuse a system that cannot deduce the existence of faces
not in the �nal part. In some graph-based recognition schemes, each keyway doubles the number
of graph elements needed to describe the hole. While this may not preclude the recognition of the
hole, it will require additional computational time to recognize the hole|a task that, in the worst
case for some systems, is exponential.

Algorithm 5.1 handles this example without any special-case reasoning. If the stock material is
the complete cylinder, then the two shoulders both have part of their bottom faces in �|hence,
by lemma 4.3, the algorithm will �nd MRSEV pockets subsuming all other MRSEV pockets that
describe the shoulders. For each of the keyways, it is evident that at least two of their non-planar
side faces are present in �|hence, by lemma 4.2, they will be recognized as instances of MRSEV

9The four MRSEV pocket instances and single MRSEV hole instance in FM are not rendered in scale with respect
to the part.
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Figure 5: An example from [34] with interacting slots and a hole and a variation on it.

pockets. Recognizability of the hole is given by lemma 4.1.
Figure 5 presents an example from [34] with interacting slots and a variation on it. In the

original example, algorithm 5.1 would be capable of �nding a feature model Because each of the
slots can be identi�ed from the part of its bottom face in � and the center hole can be found from
the part of its cylindrical face in �. The variation contains the same features but complicates their
instances and interactions. The hole and slots occur at di�erent angles relative to the part|no
longer are the opposite faces of the slots necessarily similar. However, the information essential to
recognizing a feature model, the same information as for the original example, still exists in �.

It is important to note that the theorems, while strong enough to guarantee the recognizability
of a large class of parts, do not make any statements regarding the MRSEVs instances that will be
found. As described, the algorithm is non-deterministic and, depending on its implementation, the
MRSEV feature model described above for Fig. 4 is one of many alternate valid models.

8 Conclusions

In this paper, we have presented a new approach for recognition of machinable features from solid
models.

Most previous work on this topic has focused on introducing new techniques for getting a solu-
tion to the problem, without fully exploring the capabilities and limitations of these techniques. As
a result, it has often been unclear what speci�c classes of objects, features, and feature interactions
can be handled by previous approaches. In contrast, the primary goal of our work has been to
develop a general de�nition of the problem domain, an algorithm capable of handling all problems
in that domain, and formal analyses of the algorithm's completeness and complexity.

Our approach has the following characteristics:

1. Our problem de�nition is based on a standard class of machining features [18] that describe a
wide variety of shapes manufacturable on 3-axis milling machines. The primary limitation of
our approach as presented here is that it is designed only to handle linearly swept features (i.e.,
holes and pockets). However, our de�nitions of holes and pockets are more general than the
de�nitions used in a number of feature recognition systems; for example, the pockets may be
complicated swept contours that include corner radii, islands, blends and other characteristics,
in order to realistically describe a non-trivial set of mechanical parts.

2. Our approach, like that of [34], uses queries to the solid modeler to search for the information
from which to identify feature instances. It di�ers from the iterative �-volume subtraction
techniques such as developed in [4, 10] in that we do not reduce � to ;. It is not based on
expert-system rules for deducing feature instances and resolving interaction as in [3, 4, 10, 21].
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Further, because our algorithm and features are not graph-based, we have been able to base
them on a realistic feature class and avoid the tractability problems of [14, 21]. In particular,
our algorithm is guaranteed to �nd feature models for all parts describable with our features,
regardless of how complicated the interactions are among the features.

3. The algorithm's complexity of O(n4) represents an improvement over other approaches such
as those based on subgraph isomorphism matching and expert systems, some of which require
exponential time in the worst case. In addition, O(n4) is a worst-case bound on the algorithm
and would only occur in the most geometrically pathological examples. The typical-case run-
time would likely be lower.

Near-term goals for future work include incorporating a more sophisticated de�nition of acces-
sibility and implementing our algorithm. Medium-term directions include extending our results
and procedures to include other MRSEVs; generalizing these results to encompass a wider variety
of feature recognition domains; and exploring techniques for the simplifying the model in order to
achieve a reduction in complexity (as done in [9]).

As a long-term goal, we hope to develop a general computational paradigm for recognition of
machinable features, and mathematical results presented in this paper can be viewed as a �rst step
toward that goal. More powerful results of similar nature will be required to build a satisfactory and
useful formalism for a wider class of feature recognition problems. Such a formalism would provide
a framework within which to compare and contrast the results of feature recognition research in
any application area that can be represented in this class. This would allow conclusions about
complexity, features recognized, feature interactions, and completeness of an approach to have
signi�cance outside individual application areas.
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A Appendix

A.1 Primitive Procedures

The following procedures will help us in recognizing instances of the MRSEVs we described earlier.
These procedural primitives will be used to build the recognition procedure for the MRSEVs de�ned
in section 3. We give pseudo-code for these procedures, because the speci�c details will depend on
what technique one uses to represent solid models. Instead, for each procedure we give an outline
illustrating that it is within the abilities of solid modeling systems. The details showing how these
procedures could be implemented can also be found in [29].

Procedure A.1 Maximum Enclosing Cylinder

INPUT: part, s, a subset of a cylindrical surface.
OUTPUT: an accessible cylinder Cs such that Cs is the largest cylinder of height less than or equal
to min having s as a subface and Cs \

� part = ;.
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s

Cs

Figure 6: Maximum Enclosing Cylinder.

Consider the cylinder Cm of height min with the same axis and radius as the surface
s and centered along the axis such that the surface s contains one or more points in
the cylindrical side face of Cm equidistant from Cm's planar side faces. Recall, that
because Cm is of height min and has its center somewhere within the stock we are
guaranteed that the both end faces of Cm lie outside the stock. We de�ne Cs to be the
largest cylinder with the same radius and axis as s, centered along s, such that Cs � Cm

and Cs \� part = ; and Cs is accessible. This can be determined by examining the
maximum and minimum points on the edges of part \� Cm with respect to a plane
perpendicular to the axis of s. 2

In this feature class, there are only two ways to make a cylindrical surface: as part of a hole
or as a corner radius in the pro�le of a pocket. The procedure Maximum Enclosing Cylinder

returns the cylinder that is a the body of the maximal MRSEV hole capable of creating surface s.
Note, by the de�nition of accessibility, the cylinder returned must be accessible via at least one of
its two ends. If both ends of Cs are blocked by the part then there would be no way of making
such a hole.

Plane P

P'

v

S

Figure 7: Project Object Onto Plane.

Procedure A.2 Project Object Onto Plane

INPUT: a plane P , an object S, and a normal vector to P , v.
OUTPUT: subplane P 0 of P such that P 0 is the projection of S in the direction of v onto P . Note:
P 0 may be zero or more disjoint faces.
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The plane P and vector v de�ne a half-space; the intersection of this half-space with
S yields S0, the portion of S \above" P in the direction of v. A transformation of the
entities of S0 computes the projection onto P , leaving a set P , of two dimensional faces.
Therefore, P 0 = P �� P , is a set of disjoint faces such that for each face f , is a potential
bottom face of a pocket. 2

The vital de�ning attribute of a MRSEV pocket is the pro�le. Project Object Onto

Plane can be used to get the pro�le of any MRSEV pocket. There are two possibilities for a
pocket instance: a through pocket and non-through pocket. For the through pocket, if we know its
orientation, the pro�les of all through pockets in that orientation can be calculated by projecting
the part onto any plane perpendicular to that orientation. Each of the edge loops in the projection
are pro�les of through pockets on that orientation.

In the case of a non-through pocket, we know there exists a subface of its bottom surface in �.
Project Object Onto Plane can then be used to �nd an initial pro�le for the pocket. This
pro�le can be used to �nd blends and islands. The �nal pocket's pro�le will be altered to include
the additional area of any blends.

Distance to closest point

S

Face f

v

Figure 8: Distance To Closest Point.

Procedure A.3 Distance To Closest Point

INPUT: a planar face f , a vector normal to f , v, and an object S.
OUTPUT: the distance from f on vector v to a point p on the surface of S such that, for all other
points p0 on S on vector v from f , the distance from f to p0 is greater than or equal to the distance
to p.

Let S0 be the intersection of the swept solid with bottom face f and height equal to
min with the part. The solid resulting from the intersection, if one exists, can be
transformed into a coordinate system having v as an axis. The point on each face of S0

closest to f on vector v can be calculated by geometric based on the surface type (i.e.
calculating the closest point when the face of S0 is planar is a di�erent formula than
the case when it is cylindrical). The smallest of these distances is the distance from f

to S on vector v. 2

Distance To Closest Point is used in the case of a MRSEV hole instance to obtain the
distance to the bottom of a hole.

A.2 Recognition Procedures

Procedure 4.2 Find MRSEV Hole Instance

INPUT: part, WP0, a face f in WP0 �
� part formed from an instance of a MRSEV hole.

OUTPUT: M , a MRSEV hole found from f .
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� =WP0 �
� part

if f is cylindrical and > max blend:

orientation = query(f;axis direction)
radius = query(f;radius)
fmax =Maximum Enclosing Cylinder(f)
location = query(fmax;location)
depth = query(fmax;height)
end = 
at

create instance M

else

if f is conical, toroidal, or spherical and > max blend:

end = query(f;surface type)
location = query(f;location)
orientation = query(f;axis)
depth = min

/* in the case where f is conical, query for the

radius of the base of the f */

radius = query(f;radius)
create instance M

else

if f is planar:

noop

endif

return(M)

Procedure 4.3 Find Bottom Blends

INPUT: part, a set of edge pro�les P , and a vector v indicating the direction of the top of the
pocket.
OUTPUT: a set B = fhP 0; Big where P 0 is a set of pro�les, and B is a set B = fsg where s is a
blend surface for the pocket whose pro�le and islands are in P 0.

B = ;
V = volumes of height min with the pro�les of P as bottom faces

/* these volume can be created by, among other ways, sweeping

the faces outlined by P in direction v distance min */

S = query(part;surfaces incident with elements of V and of size �max blend)
P 0 =Project Object Onto Plane(S;plane of P )
for each p 2 P that shares an edge with p0 2 P 0 do:

P 0 = P 0 � fp0g
P 0 = P 0 [ fp [ p0g
B = B [ fsg
/* s is the surface that was projected onto

the plane of P to get p0 */

return(P 0; B)

Procedure 4.4 Find MRSEV Pocket Instance

INPUT: part, WP0, a face f in WP0 �
� part formed from an instance of a MRSEV pocket.

OUTPUT: a set M = fM 0g of instances of a MRSEV pockets found from f .

� =WP0 �� part
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M = ;
if f is planar:

/* Find the set of maximal pockets for which f is

coplanar with the bottom face */

fP = Project Object Onto Plane(part; f;norm(f))
P =query(fP ; outer edge loops)
for each p 2 P do

orientation = norm(f)
depth =min

location = query(p; vertices)
I = query(fP ; inner edge loops inside p)
islands = I

B = ;
B =Find Bottom Blends(part; fpg [ I;norm(f))
for each hP 0; Bi 2 B do

pro�le =query(P 0;edge loop containing p)
bottom blend =query(s 2 B;radius or width)
/*depends on type of surface of s*/

for each l 2 I do

pro�le Il =query(P 0;edge loop containing l)
orientation Il = norm(f)
bottom blend Il = B

height Il =min

create instance M

M =M[ fMg
/* Find the set of maximal through pockets for which

f contains part of a side face */

F =query(�;planar faces not parallel to f)
for each f 0 2 F do

calculate a plane p perpendicular to f and f 0

pup =Project Object Onto Plane(part; p;norm(p))
pdown =Project Object Onto Plane(part; p;�norm(p))
p0 = pup \� pdown
P =query(p0;edge loops)
for each pro�le 2 P do

/* each edge loop in P is a profile of a through pocket */

bottom blend = none

orientation = norm(p)
depth =min

location =query(p0;vertices)
islands = ;
create instance M

M =M[ fMg
endif

if f is cylindrical:

/* Find the set of maximal through pockets for which f is

a corner radius */

orientation =query(f; axis)
calculate any plane p normal to orientation
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pup =Project Object Onto Plane(part; p;norm(p))
pdown =Project Object Onto Plane(part; p;�norm(p))
p0 = pup \� pdown
P =query(p0;edge loops)
for each pro�le 2 P do

/* each edge loop in P is a profile of a through pocket */

bottom blend = none

orientation = norm(p)
depth =min

location =query(p0;vertices)
islands = ;
create instance M

M =M[ fMg
endif

return(M)

A.3 Lemmas, Theorems, and Corollaries

Lemma 4.1 Let M be a MRSEV hole having a subface of one of its faces as a face in �, then
there exists a recognizable MRSEV hole M 0 such that M �M 0.

Proof: Let f be a face of M in �, to �nd an instance of a MRSEV hole requires loca-
tion, orientation, radius, depth, and hole end. We will show how suitable values
for these attribute can be found from � and the part.

Case 1: f is conical, spherical, or toroidal

If f is one of these surface types then it must be the end surface for the hole|hence
providing a value for hole end and location. Also, each of these surfaces provides an
orientation for the hole. The depth is determined from the hole bottom of which f

is a subface; it must extend past the initial workpiece WP0. Hence the depth may be
arbitrarily set to min. We know that f is the complete ending surface for some hole.
Hence the radius of the hole is determined by the radius if it is a spherical surface,
the major and minor radii if it is a toroidal surface, or the radius of the base if it is a
conical surface.

Case 2: f is cylindrical

Let Cs be the largest cylinder containing f as a subface as computed by Maximum

Enclosing Cylinder. Cs gives us values for the radius and orientation. If the
cylinder Cm centered in Cs of height min with the same radius and orientation as Cs

does not intersect the part then Cs is creatable by a through hole. In this case the hole
end and location attributes can be arbitrarily set to any values instantiating such a
through hole.

If Cm does intersect the part then it does so in one direction of the axis.10 In the
direction of Cm's intersection with the part will be a planar hole end|any other kind
of hole end would have been found in case 1.

10If Cm intersected the part in both directions of the axis, the hole would be inaccessible.
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Using the circular cross section of Cs as a face, determine the Distance To Closest

Point of the part in the direction of the hole bottom. The provides the depth and
location of the deepest hole that may have created face f . Therefore we have found
an instance of a 
at bottomed hole.

Case 3: f is planar

We need not consider planar surfaces created by MRSEV holes. The only such planar
surface must be a hole bottom and, if not recognized already by case 2, it must also be
recognizable as the bottom of a MRSEV pocket.

Hence in each case we have determined attributes for an MRSEV hole M 0 recognizable
from � and at least as large as the hole M that contained f as a subsurface. 2

Lemma 4.2 Let M be a MRSEV through pocket with subfaces of two or more non-parallel planar
side faces or a subface of a corner radius as subfaces of the boundary of �, then there exists a set
of recognizable MRSEV pockets M such that M �

S
M.

Proof:

Case 1: There exists non-parallel planar faces f1 and f2 in �

Let f1 and f2 be the faces of � containing subfaces of two non-parallel planar side faces
of M . Again, we wish to �nd values for the location, orientation, depth, pro�le
and islands attributes of a MRSEV pocket M 0.

Because f1 and f2 are non-parallel, it is known they intersect at a line, l. Pick a point
p on l and consider the plane P passing through p and perpendicular to l.

Compute P 0
1 and P 0

2 with Project Object Onto Plane. P 0
1 is the projection of the

part onto P in one direction on l, P 0
2 is the projection from the other direction. The

set of planar faces given by P 0
1 \

� P 0
2 \

� � are the cross-sections of the through pockets
parallel to line l. Consider the face fp in this set that has edges from the projection of
f1 and f2 onto P .

Line l provides an orientation; because it is a through pocket the depth may be set
to min and the location can be set to an arbitrary place outside �. Face fp provides
a pro�le and, again because it is a through pocket, there can be no islands.

Case 2: There exists a cylindrical face f in �

In this case, f forms part of a corner radius of the pocket. Computing the axis of the
surface yields us the orientation. Again, because it is a through pocket the depth
may be set to min and the location can be �xed to a point outside �.

As above, compute P 0
1 and P 0

2 with Project Object Onto Plane where P 0
1 is the

projection of the part onto P in one direction on l, P 0
2 is the projection >from the other

direction. The set of planar faces given by P 0
1 \

� P 0
2 \

� � are the cross-sections of the
through pockets parallel to line l. Consider the face fp in this set that has edge from
the projection f onto P . Face fp provides a pro�le and, because it is a through pocket,
there can be no islands or bottom blends.2

Lemma 4.3 Let M be a MRSEV pocket having a subface of its bottom face as a subset of the
boundary of �, then there exists a set of recognizable MRSEV pockets M such that M �

S
M.
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Proof: Let f be the face of � containing a subface of the bottom ofM . An instance of a
MRSEV pocket requires �nding values for the location, orientation, depth, pro�le,
bottom blends, and islands attributes.

Let v be the normal vector11 to the surface of f , P be the plane containing f , and S

be the solid object that is the intersection of the part with the half-space above P in
the direction of f . Compute the set of subfaces of plane P , P 0 using Project Object
Onto Plane. Consider the subface f 0 of P 0 \� � containing f .

The face f 0 determines a location for the MRSEV pocket bottom and vector v provides
an orientation. The depth can be set to min because the result of the projection
implies that there is no subset of the part above f 0 in the direction v. The outside edge
loop of f 0 gives an initial value for the pro�le of the MRSEV pocket and, lastly, any
interior edge loops de�ne the locations for any islands.

Bottom blends are found by considering the surfaces on the part with edges incident
on the solid formed by sweeping face f 0 to height min in direction v. Of the many
incident edges, the possible blends will be those tangent to f 0 or extendable to being
tangent to f 0. In addition, blend surfaces must conform to a size restriction, as stated
in our assumption from section 3. There are two things that must be done:

� Ensure that the potential blend is accessible by considering a planar cross-section
in the plane of the pocket bottom. If this planar cross section is not blocked in
the direction given by v (this can be determined with Project Object Onto

Plane) then the surface is a blend.

� If multiple blend types or radii exist for a particular pocket bottom, then the
removal volume will be described as a set M = fM 0g of overlapping MRSEV
pockets each with di�erent blend conditions. Satisfying the condition M � M
requires that we make each pocket instance as large as possible. This can be done
by letting each have f 0 as its bottom face unless the blends interfere with one
another. In which case, the dimensions of the interference can be calculated and
the bottom pro�le for that particular MRSEV can be altered to insure that it is
largest MRSEV instance where the blends do not interfere.

Hence, for any MRSEV pocket M having a subface of its bottom face as a subface of
�, there exists a set of recognizable MRSEV pockets M = fM 0g where M �

S
M.2

Theorem 5.1 Given any feature model of a part and WP0; FM; for all MRSEV features M 2
FM , there exists a set of features M = fM 0g where each M 0 is recognizable in � and M �

S
M .

Proof: Let FM be a feature model for a part andWP0 and let M 2 FM . M is either
a MRSEV hole or pocket feature.

Case 1: M is a hole

By our previous assumptions, it is known that a subface of one of the faces of M is a
subface of a face in �. Therefore, by Lemma 4.1 there exists a recognizable feature M 0

such that M �M 0.

Case 2: M is a pocket

11The vector v points away from the interior of the part
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M has a portion of its bottom face in � or is a through pocket with at least two of its
non-parallel planar side faces or a portion of a corner radius present in �. The former
case has been proven in Lemma 4.3 and the latter in Lemma 4.2.

Hence, if part and WP0 have a feature model FM we can recognize a set of features
forming another feature model of part and WP0, FM

0, such that 8M 2 FM; 9M 0 2
FM 0 such that M �M 0:2

Corollary 5.1 (Completeness) Suppose part and WP0 can be described by a feature model, then
the procedure MRSEV Feature Recognition returns a feature model of part and WP0.

Proof: The procedure, using the results and subroutines from section 4, �nds features
M 0 such that there does not exist a feature M 00 where M 0 � M 00. We must show that
the set F returned by MRSEV Feature Recognition is a feature model. Therefore
we must show:

i : 8Mi 2 F;Mi \
� part = ;

ii : WP0 �� part �
S
F

The way recognizable features are instantiated by the procedure satis�es (i). To show
(ii), recall that there exists a feature model FM of WP0 and part. By theorem 5.1,
it is known that for every feature M 2 FM there exists a feature M 0 in F such that
M �M 0. Therefore WP0 �� part �

S
FM �

S
F

Hence the procedure returns an feature model for any WP0 and part that have one.
2

Corollary 5.2 (Feature Intersection Independence) Suppose part and WP0 can be described by
a feature model and for every such model the features intersect. The procedure MRSEV Feature

Recognition returns a feature model of part and WP0.

Proof: Again, we know a feature model exists: call it FM . The fact that the features
intersect in an inconceivably pathological manner does not alter the fact that the proce-
dure, using the results and subroutines from section 4, �nds featuresM 0 such that there
does not exist a feature M 00 where M 0 � M 00. We must show that the set F returned
by MRSEV Feature Recognition is a feature model.

As before, we get (i) for free. To show (ii), recall by theorem 5.1, it is known that for
every feature M 2 FM there exists a feature M 0 in F such that M � M 0. Therefore
WP0 �� part �

S
FM �

S
F

Hence the procedure returns an feature model for anyWP0 and part regardless of how
the features describing WP0 and part interact. 2

Theorem 6.2 (Termination of MRSEV Feature Recognition) Let S be a solid object and
WP0 be an initial workpiece. The algorithm MRSEV Feature Recognition will consider each
face of � at most once.

Proof:

Case 1: There exists a feature model describing �

Because a feature model exists for �, there must exist a set of features FM = fM1;M2;M3; : : : ;Mng
such that � �

S
FM . Hence, each face of � must belong to some feature. Further,

because 8Mi 2 FM;Mi \
� part = ;, each face of � that is also a face of part must be

a subface of a face of one or more Mi 2 FM .
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Let f be a face in � and assume f is \picked" while MRSEV Feature Recognition

is computing a feature model. If f is cylindrical and created by a MRSEV hole, the hole
instance can be computed|f need not be considered again. If f is cylindrical and not
created by a hole (for example, f may be the corner radius of a pocket) the MRSEV
instance describing f will be built from other faces in �. If f is planar then it may:
1) contain part of the bottom faces of one or more MRSEV pockets; 2) contain part of
the side faces of one or more bottomless MRSEV pockets; 3) contain portions of the
side faces of MRSEV pockets which have parts of their bottom faces elsewhere in �.
In case (3), these portion of f face make no contribution to building a feature model
and can be discarded. For cases (1) and (2), all such features can be recognized >from
f and f will not have to be picked again. When f is toroidal, spherical, or conical it
may be formed as an end condition for a hole or as part of a pocket. When f is an
end condition for a hole, it can be used to determine the attributes of the instance of
the hole. Otherwise, when f is part of a pocket, the pocket will be recognized by other
planar faces that are either its bottom or sides.

Hence f needs to be considered at most once and the algorithm MRSEV Feature

Recognition will then halt having found a feature model.

Case 2: There does not exist a feature model describing �

If there is no feature model describing S and WP0 then the algorithm will termi-
nate when all faces will become marked. Upon termination, we will wish to determine
whether or not the set returned, F , is a feature model. This can easily be done by
checking to see that F satis�es the two criteria of a feature model:

i : 8Mi 2 F;Mi \� part = ;
ii : WP0 �

� part �
S
F

As a byproduct of the way the algorithm builds MRSEV instances, we know F will
satisfy (i). However, Because no feature model exists, we know that for every set of
MRSEV instances MI , one of the following must be true otherwise there would exist a
feature model:

a: 8Mi 2MI;Mi \� part 6= ;
b: WP0 �

� part 6�
S
MI

Because F satis�es (i), (a) cannot be true; to verify that a feature model was found
requires that we check (b)|this can easily be done with the routines available to us
through the solid modeler.

Therefore, if no feature model exists, MRSEV Feature Recognition will halt and
return a set F that will be an invalid feature model. 2

A.4 Additional Complexity

Analysis of procedure A.1: Suppose we have part of a cylindrical face, s. We can, in constant
time, determine its axis v and radius r. Further, we can also obtain in constant time a point x on
surface s and the point y on the axis of s that is perpendicular to it. The cylinder Cm centered at
y, with axis v and radius r, having its base a distance min

2 below y can be instantiated and the
intersection with part computed in O(n2part). Finding the maximum cylinder of radius r and axis
v that �ts inside this intersection volume requires examining all the edges of the volume for extrema
points. The extrema points can be found in constant time with known formula hence this takes
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O(npart).
12 Therefore the Maximum Enclosing Cylinder can be found in O(n2part+npart) or

just O(n2part) time.2

Analysis of procedure A.2: Given a plane P , a vector v normal to P , and a solid model
S, we want to determine P 0, the complement of the projection of the part of S above plane P as
de�ned by v onto P . Let S0 be the portion of S that lies in the half plane above P in the direction
given by v; S0 can be computed via an intersection operation in O(n2S) time. P

0 can be created by
taking the solid S0 and sweeping it distance min in the direction opposite v, through P , to create
a solid S00. Cost of the sweep is O(n2S). Hence P

0 now can be computed as: P 0 = P �� S00 at cost
O(n2S). Hence the cost of procedure Project Object Onto Plane is O(n2S).2

Analysis of procedure A.3: Given f , v, and S, create the solid Sf of height min sweeping
f in direction v distance min. This operation takes O(n2S) time. Form the intersection Sf \ S and
call it S0|this also takes O(n2S). Now we need to determine the minimum point on the top surface
or surfaces of S0 relative to f and v. This can be done by examining all the top surfaces and their
bounding edges and employing min/max formulas to �nd minimum points (O(nS)). The distance
from the least of all of these points to f will yield us the Distance To Closest Point and can
be found in O(n2S).2

Analysis of procedure 4.1: This procedure contains several queries to the solid modeler
and a single call to Maximum Enclosing Cylinder. In the worst case, the execution of the
queries costs O(npart + nWP0

) and the call to Maximum Enclosing Cylinder costs O(n2part).

Hence Find MRSEV Hole Instance can be executed in O(n2part + npart + nWP0
) or just

O(n2part).2

Analysis of procedure 4.2: The cost in this procedure is incured during the call toProject
Object Onto Plane. All the other queries and the for each loop are O(part). Hence the proce-
dure Find Bottom Blends is O(n2part).2

Analysis of procedure 4.3: The worst case for this algorithm occurs when the face f

is planar and it must enter a for each loop iterating through all pro�les of pockets sharing that
bottom. This loop has a worst case time of O(npart) because there cannot be more pro�les in fP
than elements the structure of part.13 The loop contains a call to Find Bottom Blend at a cost
of O(n2part). Hence the overall complexity of the procedure Find MRSEV Pocket Instance is

O(n3part).2
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