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Abstract. The framework of Doyle’s structured singular value is extended to take advan-
tage of possibly available phase information on the dynamic uncertainty. A computable
upper bound is obtained for this phase-sensitive structured singular value.
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1. Introduction and preliminaries

Let RH., denote the set of real rational stable proper scalar transfer functions and let
RHZ™ be the set of n X n matrices with entries in RH,. Given two nonnegative integers

r+c
r and ¢ and a list of integers (block-structure) K = (k1,- -, kr; krg1, -+, krte), with > k; =
i=1

n, consider the subspace Xx of RHZX™ given by
X = {block diag(61Jk,," -, 0rtelr,y.) :
6ER,e=1,---,r; bpyi € RHs, 1=1,--+,c}.

Many robust stability analysis issues can be addressed via the following question for the
feedback system S of Figure 1 below [1-3]):Given P € RH2*™ and § > 0, is S well-
formed and internally stable for any A € Xk satisfying ||Alleo < 8, where || - ||oo denotes
the Ho norm? Here 6;, ¢ = 1,---,r, correspond to real parametric uncertainties and
8rti, 1 =1,-+-,¢, to unmodeled dynamics. In [1,2] Doyle et al. showed that this question

can be answered by means of the structured singular value (SSV) px, defined for any
complex n x n matrix M by px(M) =0 if det(I — AM) # 0 for all A € Xk, and

pr(M) = (Argi)?;c{&(A) cdet(I — AM) = 0}) i

otherwise, where the subspace Xx of C**" is given by?
Xx = {block diag(é1Lx,, -, brycdr, ;. ) :
6 eR,1=1,---,r1; 5r+z’ eC, = 1,--',6}
and where () denotes the largest singular value. Specifically, the “Small g Theorem” [2]
asserts that S is well-formed and internally stable for any A € Xk, ||Alloo < 6 if, and only
if,
sup uc(P(jw)) <1/ .

While exact numerical evaluation of the SSV appears to be generally computationally
prohibitive when r # 0, a reasonably good upper bound (yielding a sufficient stability
condition) can be obtained at moderate cost [4,5].

Figure 1

2 Note that functions in Xx take values in X

2



The purpose of this paper is to extend the framework of the SSV to allow for the case
when, besides structure— and magnitude information, phase information is available for the
uncertainty (see [6,7] for other work on robustness with phase information). Specifically,
we consider the situation in which given some function © : R — [0,7]¢, A is known to lie
in the set X2 C RH™X™ defined by ® *

AR ={A € X : [L64:(jw) £ Oi(w), i=1,---,c} U{0},

where given any z € C\{0}, £z denotes its phase in (—7,7]. We are naturally lead to
define a “phase-sensitive” SSV.

In the sequel, for 8 € [0, 7], we make usé of the set X C €"*", defined by

XL ={A€Xx:|Lbryi| <6i i=1,--,c}U{0}.

Definition 1. Given a block-structure K and a vector § € [0,7]°, the phase-sensitive
structured singular value p% (M) of M with respect to block-structure K and phase 8 is
given by p& (M) = 0 if there is no A € X7 such that det(I — AM) = 0, and

ph (M) = (aneli;?;{&(A) det(I — AM) = o) (1)

otherwise. []

Below, it is first shown that a natural extension of the Small 4 Theorem holds in this case.
A more tractable formula is then proposed for u% (M), a direct extension of one obtained
in [4] for px(M). Finally, an efficiently computable upper bound (vielding a sufficient
condition of stability) is given, again directly related to that for ux(M) derived in [4].

2. Extended Small ¢ Theorem

For any 6 > 0, let

26 ={Aex: |Allw<8); XL ={AeXX: 5(A)<68}.
Theorem 1.5 Given P € RH®*", § > 0, and © : R — [0, 7]° continuous, the following
two statements are equivalent: (i) the feedback system S of Figure 1 is well-formed and

internally stable for all A € X2(8); (i)

sup ,u%(w)(P(jw)) <1/6.

3 The more natural situation in which ®;(w) < Zé,4i(jw) < ¥i(w), for some @, ¥ :
R — (—,7]° can be easily reduced to the case considered here.

4 Q;(w) =  for all w accounts for blocks with no phase information.

5 More generally the theorem holds with X 2 replaced by any subset X' of RHZX"
containing the origin such that, for any § > 0, {A € X' : IA|lco < 6} is pathwise connected,
and p(M) defined accordingly.



Proof. We first show that (i) is equivalent to
det(I — A(jw)P(jw)) #0 VA € X2(8), w € [~o0, ). (2)

Since P € RH™*™ and X2(§) ¢ RH2X", (i) holds if and only if, for all A € X2(é),
(I — A(s)P(s))™! is well defined and has no poles in C4 U {0}, i.e., det(I — A(s)P(s)) #
0 Vs € €4 U{oo}. Since P and A are analytic and bounded in €4, in view of the Principle
of the Argument, it follows that (i) holds if and only if for all A € X’ 2(6) the closed curve

I':= {det(I — A(jw)P(jw)): w € [—o0,00]}

does not encircle or pass through the origin. Thus, in particular, (i) implies (2). Conversely
suppose that (2) holds. Let A € X2(§) and let ¢ : [0,1] — [—00, 0] be continuous and
onto. In view of the definition of X2(6), aA € XR(6) for any « € [0,1]. In view of (2), it
follows that the continuous function h : [0,1] x [0,1] — C given by

h(a,t) = det(I — aA(je(t)P(ie(t)))

defines a homotopy in the punctured plane C\{0} between h(0,-) = 1 and h(1,-) = det(I -
A(e(-)P(Ge(+))). Thus the family of closed curves generated by h(a,-), as o ranges over
[0,1], corresponds to a single element in the fundamental group of equivalence classes of
closed curves in the punctured plane, i.e., all these curves encircle the origin the same
number of times (see, e.g., [8, Section 8-5] for details). Thus the curve I (={h(1,t): t e
[0,1]}) does not encircle the origin, so that 5 is well-formed and internally stable for the
given A. Thus (i) is equivalent to (2). To complete the proof, we now show that (2) is
equivalent to (ii). First, note that, for given w, when A ranges over A 2(6), its value A(jw)

ranges over X,GC)(W)(cs). Thus (2) holds if, and only if,
det(I — AP(jw)) #0 VA € X2“(8), Vw € [—00,00]

or equivalently, since © is continuous,

inf{ min {5(A):det(] — AP(jw))=0}}>¢ .
w AEX,(;)(‘U)

In view of Definition 1, the last statement is equivalent to (ii). [J

Note that the standard Small 2 Theorem [2] is obtained as a particular case of Theorem
1, corresponding to Q;(w) =7, i =1,---,¢, for all w.

3. Computation of uf.(M)

Computing (M) by solving optimization problem (1) is impractical as this problem
may have many local minimizers that are not global. Such local minima yield lower
bounds to % (M), and thus sufficient conditions for instability may be tested. Short of
computing % (M) exactly, of more interest would be an upper bound to it, allowing a
sufficient condition for stability to be checked. As a first step toward this goal, we express
pd.(M) as the optimal value of a smooth constrained maximization problem (note that
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problem (1) is nonsmooth). In this section, we sacrifice generality for clarity and restrict
ourselves to the structure £ = ( ;1,1), i.e., to two scalar dynamic uncertainty blocks, and
we assume that no phase information is available concerning the first block, i.e., 8; = .
For notational simplicity, §; is renamed @ and all K subscripts are dropped. Extension to
more gencral structures presents no conceptual difficulties.

For any f € R, let G5 € €**2 be given by

0 0
Gg = ol
g [0 1+ 3B ]
Also let Py = diag(1,0), and P, = diag(0,1). Finally, we denote by B the unit Euclidean
ballin €, i.e., 9B = {z € C" : ||z||; < 1} and supercript H indicates conjugate transpose.
The phase sensitive SSV can be expressed as the optimal solution of a smooth constrained
optimization problem as follows.

Theorem 2.
0 if SO(M) = 0;
pl(M) = max {7 : |PiMz|l2 > v||Pizll2, ¢=1,2} otherwise.
€SV (M)

Y20

where S?(M) is defined as follows:

(1) 8°(M) = {z € OB =z (M P, — P,M)z =0,
(MY Py, + P,M)z > 0}

(22) for 6 € (0, 7],

S'(M)={z € 8B :a" (M7 G+ G M)z >0 VB € {£cotd}}
(222) for 6 € (5, )
S'(M)y={z€dB:2"(M"Gs+ G M)z >0, f=—cot¥,
je (MY Py — P,M)z > 0}

U{z € 9B : (M7 Gg + GH M)z > 0, B = cot¥,
(M P, — P,M)x < 0).

n
Note that the second inequalities in each of the components of S?(M) for the case 6 € (Z, )
correspond to the limit of inequality

(MY Gg+ G M)z >0 (3)

as ( tends to +o00 and —oo, respectively. This leads to the next step, which is to observe
that, as (3) is affine in 8, for 8 € (0, ), the set S?(M) can be equivalently written as

SOM) = {e € dB: " (MHIG+GM)z) >0 VG e G”}

)



for 6 € [0, 7], and

SHM) = {z € 0B :z"(MPG+GM)z >0 VGeGi}
U{z € dB:zT(MIG+G M)z >0 VG eG®)}

for § € (§, ), with
- G°={aGp:a>0, e R},
G° = {aGg:a 20, |8 < cot 6, 6 € (0, 3]
G% ={aGp:a >0, B> —cot b},
G® ={aGg:a >0, B <cotb}.
Using an argument similar to that employed in [4] one can then prove the following.

Theorem 3.

pb (M) <A (M) <5(M) Ve[0,n)

where
max{0, Gingﬂ:\(MHM+MHG+GHM)} 6 elo, %]
€
H 3 H H H
V(M) = max{0, Glélgi MMEM + MY G+ G7 M), (4)
inf A(MTM + MEG+GHEM)} b€ (%7
Geg?
O

It is readily checked that, like u(M), u®(M) satisfies p®(DMD™') = p®(M) for any
nonsingular diagonal matrix D (with our current assumption of scalar uncertainty blocks).
It follows that

pf (M) < p8(M) :=inf{v*(DMD™'): D = diag(dy,d2),d1 # 0 # d2} (5)

It turns out that the value of the infimum is unchanged if d; and d; are constrained to be
real positive. The algorithm proposed in [5] can be modified to compute 2% (M).

4. Discussion

As mentioned above, the results of Section 3 can be readily extended to more general
structures. It should be noted however that if, say, k of the components of 8 lie in (7/2, 7),
the expression for v?(M) will involve 2k optimization problems instead of 2. If this is
computationally prohibitive, an alternate upper bound to 1% (M) can be obtained as fol-
lows. Rewrite the constraint [£8;| < 8, with 8 € [r/2,7), as §; = 6]6F, with |£26}] < /2,
|£62] < § — w/2. The magnitude constraint |[§;| < & can be expressed, e.g., as |6} < 6,
62| < 1 and, by elementary block diagram transformations, the system can be represented
as in Figure 1 with 8} and 62 corresponding to distinct diagonal blocks in A. The results
of Section 3 can be extended to such structure.
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Preliminary numerical tests have been carried out based on (4) and (5), and on the
algorithm proposed in [5]. The results are promising in that the computed upper bound is
typically lower (yielding a less conservative sufficient stability test) than when the phase

information is not taken into account.
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