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Diverse applications including consumer electronics, robotic systems, and med-

ical devices require compact, high-torque motors capable of operating at speeds in

the range of 10s to a 1000 rpm. Traveling wave ultrasonic motors are a perfect fit

for these specifications as they generate higher torques for a given size-scale com-

pared to electrostatic and electromagnetic motors. Furthermore, the electrostatic

and electromagnetic motors require an additional gearing mechanism to operate

at low speeds, which adds more complexity to the system. The miniaturization

of ultrasonic rotary traveling wave motor has had limited success due to lack of

high-resolution, high-precision fabrication techniques. This dissertation describes

the development of a novel microfabrication technique for the manufacture of bulk

lead zirconate titanate (PZT) microsystems involving only two lithography steps

that enables the realization of bending-mode piezoelectric microsystems from a sin-

gle homogeneous layer of bulk piezoceramic, requiring a few hours to fabricate. This

novel fabrication process and device design concept is applied to the development of



a new class of bulk PZT rotary traveling wave micromotor fabricated using a single

sheet of commercially available bulk PZT.

For the microfabrication of bulk PZT microsystems, relationships between

micro powder blasting process parameters and PZT etching characteristics are pre-

sented, including key process parameters such as particle size, nozzle pressure and

nozzle-to-substrate distance, with etch rate and etch anisotropy evaluated as a func-

tion of these parameters and space resolution. Furthermore, the photolithographic

masking of bulk PZT using dry film photoresist, yielding a facile method for achiev-

ing precise and high-resolution features in PZT is presented.

The work on the development of a new class of homogeneous bulk PZT uni-

morphs, which eliminates the need of additional elastic layers found in traditional

piezoelectric bimorphs, is also reported. The developed fabrication and actuation

process are key parameters to developing miniaturized bulk PZT traveling wave mo-

tor. The challenges of generating traveling waves are described in detail, followed

by the successful demonstration of bi-directional traveling waves and rotor motion.

The stator and rotor performance under varying stator/rotor preload forces and

actuation conditions have been characterized.
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Chapter 1: Introduction

1.1 Motivation and background

Ultrasonic motor is a class of electric motor which utilizes the converse piezo-

electric effect of the stator, resulting in high frequency vibrations in the ultrasonic

range. The mechanical movement of the rotor or slider is obtained through frictional

contact with the stator. This results in a high-speed, low-torque motor, which is

desired for applications such as camera auto-focal lenses, miniature robotics, ultra-

sound catheter systems, automobile and aerospace systems, precision positioning

systems, etc (Fig. 1.1) [1–3].

To achieve similar characteristics, the conventional electromagnetic and elec-

trostatic motors require a gearing mechanism to lower the speed, thereby increasing

the size, mass and complexity of the system. Additionally, the rotor of an ultrasonic

motor can be of any material and need not be conductive, a larger choice of rotor

materials is possible compared to electrostatic, electromagnetic or electrothermal

actuators [4].

Although ultrasonic motors are popular in the centimeter scale, they have had

limited success in the millimeter scale due to the unavailability of high-resolution and

precise fabrication techniques. Therefore, this work will focus on the development
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Figure 1.1: Applications of ultrasonic motors [15]

of a high-resolution, batch-scale fabrication process for bulk piezoelectric systems,

enabling the development of a new class of millimeter-scale ultrasonic motor.

1.1.1 Background

The history of ultrasonic motors dates back to the late 1940s, when the first

patent for a piezoelectric motor was filed by Williams and Brown [5]. The schematic

of this motor is shown in (Fig. 1.2). Following this invention, the next notable

ultrasonic motor was patented by Lavrinenko in 1965, which was a low cost, low

speed, high torque and high energy density motor [6]. The huge gap in time was
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Figure 1.2: First ultrasonic motor in 1942 [5]

Figure 1.3: First traveling wave ultrasonic motor in 1983 [10].
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Figure 1.4: Schematic of ring type traveling wave ultrasonic motor in Canon EOS

camera (2012) [13]

due to lack of availability of materials and manufacturing techniques. From 1971

to 1982, different kinds of macro-scale ultrasonic motors were developed [7–10]. In

1983, Sashida invented the first traveling wave ultrasonic motor, which attracted

commercial attention (Fig. 1.3) [11]. Canon commercialized the ring type traveling

wave motor by incorporating it into EOS camera autofocal lens in 1987 (Fig. 1.4)

[12]. Flynn developed the first millimeter scale traveling wave ultrasonic motor in

1990 [14].
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1.2 Classification of ultrasonic motors

Over the past several decades, various types of ultrasonic motors have been re-

ported in literature. Ultrasonic motors can be classified into different categories [15].

Based on the kind of wave propagation in the motor, they can be classified as stand-

ing wave or traveling wave motors. Under these, they can be further categorized as

linear or rotary motors, depending on the output movement. Some of these motors

operate by exciting the stator elements at resonance and are classified as resonant

motors and the rest belong to the category of non-resonant motors. Based on the

direction of displacement of the stators, they can either be in-plane or out-of-plane

type of ultrasonic motors. They are also classified based on the geometrical shapes

of the stators such as disk-type, ring-type, tubular-type motors. Finally, they can

be unidirectional or bidirectional motors depending on the rotary conditions.

This dissertation is focused on the development of a unique rotary, ring-type,

traveling wave motor which is actuated out-of-plane and operated at resonance,

capable of bi-directional rotation.

1.3 Operating principle of a traveling wave ultrasonic motor

Traveling wave ultrasonic motors operate through the propagation of elastic

waves which generate high-frequency elliptical motions with sub-micron amplitudes

at the stator surface. The retrograde trajectories of particles at the stator surface

transfer momentum to a frictionally coupled rotor as shown in Fig. 1.5. Traveling
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Figure 1.5: Stator surface points follow elliptical paths, with momentum transfer to

a coupled stator in the opposite direction of wave propagation.

Figure 1.6: Schematic of a B03 mode in an annular ring
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wave motors employ piezoelectric materials such as lead zirconate titanate (PZT),

which generate a strain due to an applied electric field resulting in elastic waves.

The traveling waves are generated by simultaneously exciting two standing waves by

superimposing periodic inputs phase-shifted by a quarter wavelength in both time

and space. This can be represented by the trigonometric identity in Eq. 1.1

sin(nθ)sin(ωt) + cos(nθ)cos(ωt) = cos(nθ − ωt) (1.1)

where, n is the number of nodal diameters, θ is the angular polar coordinate, ω is

the actuation frequency, and t is time.

An example of a mode with 0 nodal circles and 3 nodal diameters, termed as

B03 mode, in an annular ring is shown in Fig. 1.6. Blue regions in the figure represent

nodes or regions with zero out-of-plane displacement and red regions represent anti-

nodes or regions with maximum out-of-plane displacement.

1.4 Merits of ultrasonic motors

Ultrasonic micromotors have many advantages over conventional electromag-

netic motors, particularly as device dimensions scale downward.

• Large energy density

Ultrasonic motors are capable of generating large torques compared to elec-

trostatic and electromagnetic motors of the same scale (Fig. 1.7) [16]. The

relative permittivity (εr) of ferroelectric materials such as PZT, commonly

used in ultrasonic motors, is 1800 to 3800 while that of air in the air gap of
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Figure 1.7: Comparison of electrostatic, electromagnetic and piezoelectric motors

[16].

the electrostatic motors is 1. The energy density, given by the formula:

Emax =
1

2
εoεrE

2
bd (1.2)

is therefore higher for ultrasonic motors, since the breakdown strengths (Ebd)

of air and PZT are comparable.

• Low speed operation without the requirement of gearing mechanism

A desirable feature of ultrasonic motors is the ability to generate low speeds,

without the use of a gearing mechanism. This reduces the fabrication com-

plexity, especially at smaller scales. We can obtain more clarity by looking at

some typical numbers as described by Hagedorn and Wallaschek [17]. A stator

with an eleventh mode resonant frequency at about 40 KHz would result in

a rotor speed of about 60 rpm or 1 Hz. This is a practical speed for various
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applications and a reduction in the frequency by a factor of 40,000 without

the use of any gearing mechanism. This also means that the ultrasonic motors

operate silently since the input frequency is above the human audible range

and there is no additional noise due to gearing mechanism.

• No Electromagnetic interference

Ultrasonic motors do not produce magnetic fields nor are they affected by

electromagnetic interference. This makes them suitable for a wide range of

applications. This characteristic of ultrasonic motors enables magnetic pre-

loading mechanism, which will be described in Section 6.2.4.

• Wider choice of rotor materials

The rotor is frictionally coupled to the stator element in ultrasonic motors.

This implies that the material need not be electrically or magnetically conduc-

tive, unlike electrostatic and electromagnetic motors. This opens up a wider

choice of rotor materials, thereby making these motors suitable for a wider

range of applications.

• Holding torque

Ultrasonic motors have a unique trait of maintaining a holding torque in the

absence of external power, enabled by frictional coupling of the rotor to the

stator. This is a significant advantage for battery operated systems, where the

total energy consumed is of critical concern.
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1.5 Demerits of ultrasonic motors

• Low efficiency

Ultrasonic motors have a low efficiency resulting from the energy losses from

the two-stage energy conversion process of these motors. The first stage in-

volves the conversion of electrical energy into mechanical energy via converse

piezoelectric effect and the second stage involves conversion of high-frequency

vibrations to a slower macroscopic rotary motion of the rotor. The state of

the art traveling wave motors have less than 50 percent efficiency [ [15]].

• Complex circuitry

Ultrasonic motors are resonant devices, with the resonance characteristics be-

ing dependent on factors such as temperature. In such cases, the resonant

frequency needs to be altered to match the new resonance in order to continue

smooth operation. This makes the circuity for these motors complex.

• Not suitable for continuous operation

While a lot of advantages rise from frictional coupling, it also affects the dura-

bility of these motors due to low resistance to wear. The wear characteristics

are dependent on the type of material used for the frictional layer. Ishii et.

al. incorporated carbon fiber reinforced plastics as the wear material and

measured its lifetime to be 5760 hours [18].
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1.6 Miniaturized ultrasonic motors

1.6.1 State of the art

Flynn was the pioneer of miniaturized ultrasonic motors [14]. Although the

motors presented by Flynn did not meet all of the desired performance metrics, her

work provided deep insight about the challenges in developing miniaturized rotary

traveling wave motors. In the millimeter regime, there has been a lot of work over

the last two decades in the development of thin-film and bulk PZT motors, which

have different operation principles. Kaajakari, Kanda, Morita and Uchino have

developed millimeter scale tubular traveling wave motors employing both thin film

and bulk PZT but use an actuation scheme that does not support the advantages

of ultrasonic motors such as zero holding torque and automatic-gearing mechanism

[19–22]. Recently, Rudy developed a 2 mm diameter thin film PZT motor, with

a total thickness of 1 mm, and demonstrated bidirectional rotation [23]. In the

commercial sector, 30 mm PCB motor made from mounting bulk PZT elements onto

a PCB board, using the board as the elastic layer mounted onto PCB is noteworthy

and has an expected lifetime of over 1000 hours [24]. Even smaller is the 10 mm

ultrasonic motor developed by Seiko for the drive mechanism in a watch [25].

1.6.2 Limitations of previous work

There are several disadvantages with the existing micromotor technologies.

Firstly, the traveling wave motors employing thin film piezoelectric materials mostly
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rely on complex fabrication processes involving multiple deposition, photolithogra-

phy and etching steps, which greatly increase the cost and fabrication time of these

motors. Moreover, their achievable power densities and output torques are highly

limited, making them inappropriate for many practical applications. Secondly, both

rotary and tubular traveling wave motors based on thin-film and bulk PZT incor-

porate an elastic layer bonded onto PZT in order to generate flexural vibration

modes. This heterogeneous bimorph structure poses a lot of disadvantages such

as temperature sensitivity, unnecessary damping and residual stresses apart from

adding fabrication complexity. Thirdly, most of the motors reported in literature

operate in the conventional d31 mode in which an electric field is applied across the

thickness of the piezoelectric film, generating a longitudinal strain within the film

through the transverse d31 coupling coefficient. From the perspective of electrome-

chanical coupling, the use of longitudinal-mode d33 actuation ensures better device

performance, since d31 is typically two to three times smaller than the d33 coupling

coefcient.

1.7 Bulk PZT motors

1.7.1 Bulk PZT vs thin-film PZT

Gerson and Marshall conducted studies of breakdown strength vs. thickness

of PZT [26]. They found that

Ebd = 27.2h−0.39
p (1.3)
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where, Ebd is the breakdown strength and hp is the thickness of PZT.

The total input electrical energy that can be stored in a given volume of PZT

is given by:

UPZT,input =
1

2
εpztεoE

2
bdAhp

(1.4)

where, εpzt is the relative permittivity of PZT, εo is the permittivity of free

space and A is the PZT area.

Gerson and Marshall estimated that for 1 µm thick PZT that is a typical

thickness of thin-film PZT, the breakdown field is about 1000 kV/cm and for a 100

µm thick PZT that is a typical thickness of bulk PZT, the breakdown field is about

200 kV/cm. For a PZT ring with a 4 mm outer diameter and 3 mm inner diameter,

the ratio of total input energy that can be stored in PZT thin-film of 1 µm thickness

and bulk PZT of 100 µm thickness can be calculated to be around 4, using Eq. 1.4.

This shows that, despite the breakdown strength being lower in bulk PZT, the total

input energy that can be applied is twice as large, for a device of the same area. This

higher energy density translates to higher torques which are suitable for practical

applications.
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1.7.2 Technical challenges in miniaturizing bulk PZT motors

Although the bulk PZT traveling wave motor is well-understood and com-

monly used in the macro-scale, it has had limited success in the millimeter scale.

• Challenges involved in generating traveling waves

Traveling wave is generated by actuating standing waves out of phase, which

are apart in both phase and time by a quarter wavelength. The number of

electrode sections is designed based on the desired mode of operation. For

example, in order to operate in the three-wavelength of B03 mode, Flynn

used the electrode configuration shown in Fig. 1.8. This has twelve different

electrode sections and to generate a traveling wave, standing waves should be

excited in each section and they should all have the same B03 mode frequency.

The resonant characteristics of each section depends on the geometry. To

ensure the same resonant characteristics, the stator fabrication needs to be

uniform and precise. This is tough to accomplish using the techniques and

manual assembly process used in macro-scale motors.

• Lack of a precise, high-resolution microfabrication technique

Microfabrication of bulk PZT demands etching processes capable of achieving

high-resolution patterns in relatively thick substrate layers on the order of tens

or hundreds of micrometers. Various techniques used for the manufacture

of thin-film PZT devices have been used with minimal success and will be

described in Chapter. 2. While laser cutting has been used by several research
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Figure 1.8: Electrode configuration used by Flynn to generate a B03 mode traveling

wave.

groups to fabricate millimeter scale bulk PZT motors, this process causes

overheating of the PZT leaving behind fairly significant dead zones. This

makes laser cutting unsuitable for millimeter and sub-millimeter scale bulk

PZT motors.

• Lack of batch-fabrication technique

Batch microfabrication lowers the device cost by fabricating tens to hundreds

of micromotor stators in one batch. Although thin-film PZT motors are ex-

pensive and take several weeks to fabricate, researchers such as Flynn were

attracted to thin film PZT due to the ability to batch fabricate these motors

using conventional MEMS fabrication techniques. The technique which was

commonly used to fabricate millimeter scale bulk PZT motors such as laser
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micromachining was a slow serial process, making it undesirable, both in terms

of speed and time.

1.8 Objectives of this work

The objective of this work is threefold:

1. Development of an inexpensive, precise and facile microfabrication process

suitable for all bulk PZT systems.

2. Development and optimization of a novel homogeneous bulk PZT actuator

topology.

3. Development of millimeter-scale bulk PZT rotary traveling wave motor using

a batch fabrication approach, with the capability of further miniaturization.

At the completion of this work, the significant contributions of this work include:

• Development of an inexpensive, precise and facile microfabrication process

suitable for all bulk PZT systems.

• Development and optimization of a novel homogeneous bulk PZT actuator

topology.

• Demonstration of the smallest bulk PZT rotary traveling wave motor, with

the capability of further miniaturization.

• Multi-material integration of bulk PZT systems leading to the development of

a disposable, quick and chemical-free on-chip mechanical cell-lysis device.
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1.9 Dissertation outline

Chapter 2 describes the different fabrication methods used for the manufac-

ture of bulk PZT microsystems currently, followed by the development of a novel

microfabrication process suitable for all bulk PZT microsystems. Chapter 3 con-

tains the development of a homogeneous bulk PZT actuator topology to eliminate

the problems of temperature sensitivity and residual stresses due to the difference

in material properties of active and elastic layers used in traditional bimorph struc-

tures. Chapter 4 describes the development of miniaturized bulk PZT traveling

wave micromotors, with a focus on addressing the challenges associated with the

generation of traveling waves. Chapter 5 describes the exploration of multi-material

integration with the intention of further miniaturizing the micromotors and the de-

velopment of a microfluidic on-chip cell-lysis device. The summary of this work and

possible directions for future work are described in chapter 6.
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Chapter 2: Fabrication of bulk PZT microsystems

2.1 Overview

As discussed in Chapter 1, the success of a traveling wave motor depends

entirely on the ability to generate traveling waves, which is in turn dependent on

the ability to precisely fabricate a stator such that the frequencies of the orthogonal

modes match. This chapter describes the novel fabrication process for miniaturized

bulk PZT systems that enabled the development of millimeter scale traveling wave

motors with sub-millimeter feature sizes, which will be presented in Chapter 3.

2.2 Existing methods of patterning bulk PZT

Microfabrication of bulk PZT demands etching processes capable of achiev-

ing high-resolution patterns in relatively thick substrate layers on the order of tens

or hundreds of micrometers. Various etching processes such as Reactive ion etch-

ing (RIE), wet chemical etching, mechanical and ultrasonic machining, and laser

ablation techniques have been widely explored.
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Figure 2.1: Schematic of Reactive Ion Etching [28]

2.2.1 Reactive Ion Etching (RIE)

RIE is a type of dry etching in which the high energy ions from a chemically

reactive plasma attack the wafer surface and react with it (Fig. 2.1). Due to its use

in both ferroelectric memory [30] and MEMS applications [31], etching processes for

thin film PZT based on RIE using high-density plasma systems have been widely ex-

plored and optimized [33–37,88]. While RIE can provide reasonable etch anisotropy

for thin film PZT, etch rates are generally below several hundred nanometers per

minute [27,33,38,39], far too slow for processing bulk PZT substrates. Additionally,

the electrical properties of PZT can deteriorate during RIE due to a combination of

physical and chemical damage [40,41].
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Figure 2.2: Schematic of an isotropic wet chemical etch process.

2.2.2 Wet chemical etching

Wet chemical etching using Buffered Hydrofluoric acid and Hydrochloric Acid

has been explored for PZT patterning [41–44]. However, these processes suffer from

undesirable undercut of masked features [43, 45, 46] and the rapid formation of in-

soluble etch products [41,45] that render them impractical for bulk PZT patterning.

While wet etch chemistries have been modified to optimize their performance with

thick film [47] and bulk [45, 48, 49] PZT, etch anisotropy remains low and multi-

ple processing steps are required to remove etch residue [49]. Fig. 2.2 shows the

schematic of a wet chemical etch set-up.

2.2.3 Mechanical machining

Direct machining or milling using diamond tools has been successfully em-

ployed for patterning bulk PZT. Mechanical machining using a wafer dicing saw

has been demonstrated for patterning 100 m square pillars in bulk PZT [50], al-
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though this approach is limited in its ability to produce evaluated, but rapid wear

of the diamond cutting tools and damage to the PZT surface significantly limits this

approach [51].

2.2.4 Ultrasonic micromachining

Ultrasonic micromachining, in which an abrasive slurry is used to remove ma-

terial through microchipping induced by high-frequency acoustic energy injected

through a mechanical probe [52], may be used for micropatterning ceramic materi-

als (Fig. 2.3). However, this is a serial process with limited throughput, and with

constraints on the range of shapes and pattern resolution that may be achieved

based on the dimensions of the ultrasonic probe [54]. While PZT etching has been

successfully demonstrated using a wafer-scale ultrasonic process in which a micro-

machined metal template is used for parallel patterning of multiple features [39],

template fabrication is complex and time consuming, and uniform pattern transfer

between the template and PZT surface is challenging. In addition, template wear

during ultrasonic machining can be significant [54], further complicating the process.

2.2.5 Laser ablation

Laser ablation is a technique in which the interaction of the laser energy with

the sample leads to the removal of the material (Fig. 2.4). This is another bulk PZT

etching technique that has been explored and has been shown to yield moderate

etch rates with excellent etch anisotropy [56, 57]. However, it remains a slow serial
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Figure 2.3: Schematic of ultrasonic micromachining [53]

process that is not suitable for batch-scale processing. Laser ablation also suffers

from redeposition of etch debris surrounding the etching zone [57], and thermal

shock that can produce significant changes in the morphology and electromechanical

properties of the substrate material [47,58].

2.2.6 Micropowderblasting

Micro powder blasting is a mechanical etching process whereby a focused jet

of micron-scale abrasive particles is used to ablate material from a substrate, often

using a metal or polymeric mask to selectively pattern regions of the surface [59].

While micro powder blasting is a serial process, etching occurs over a relatively large

region of the surface (typically measured in tens of mm2) due to lateral spreading of

the abrasive particles from the nozzle, and etch rates are sufficiently high to make the

process suitable for batch manufacturing by rastering the nozzle across the surface
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Figure 2.4: Schematic of laser micromachining. [29]

for large-area patterning. Micropowderblasting has been widely adapted for micro-

machining, and offers much potential as a technique for rapid microstructuring of

complex patterns in materials which are not amenable to traditional etching meth-

ods. While micro powderblasting has been widely studied as a method to pattern

glass [60–63], its use toward bulk PZT etching has not been extensively explored.

Previous work on micropowderblasting bulk PZT has employed masks fabricated

from metal [64, 65] or elastomers [65, 66], with these masking techniques capable

of realizing features with moderate resolutions on the order of 75100 µm [64, 67].

Because the metal or elastomer layers are fabricated separately from the PZT sub-

strate, mask alignment can be challenging, particularly in the case of metal masks

which lack the optical transparency of silicone elastomers. Furthermore, unwanted

gaps between the mask and PZT substrate can allow abrasive particles to rapidly

undercut the mask, leading to degradation of patterning resolution. While elastomer

masks based on polydimethylsiloxane (PDMS) elastomer have shown excellent etch
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selectivity during PZT micro powder blasting [66], issues of mask alignment and

resolution limits remain, and this approach requires significant effort for mask fab-

rication. Finally, the use of a separately aligned mask layer prohibits the formation

of PZT geometries requiring discrete piezoelectric elements fully separated from the

neighboring substrate, since this would require that the mask itself be discontinuous.

2.3 Motivation

The motivation of this work is threefold.

• Explore the relationships between micro powder blasting process parameters

and PZT etching characteristics, which has not been investigated in detail

previously. Key process parameters explored in this work include particle

size, nozzle pressure and nozzle-to-substrate distance, with etch rate and etch

anisotropy evaluated as a function of these parameters and space resolution.

• Demonstrate photolithographic masking of bulk PZT using dry film photore-

sist, yielding a facile method for achieving precise and high-resolution fea-

tures in PZT using a masking material that is compatible with micro powder

blasting, while avoiding the disadvantages associated with physical masks fab-

ricated from metal or molded elastomer. Dry film photoresist designed for

micro powder blasting is readily available, inexpensive and requires minimal

equipment for preparation beyond a standard UV flood exposure system or

mask aligner, enabling a simple one step process for direct photolithographic

patterning of PZT sheets prior to etching. Here we demonstrate the use of dry
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film photoresist as an effective method for greatly simplifying the overall PZT

patterning process while providing exceptionally high line and space resolution

compared to previously explored methods for patterning bulk PZT by micro

powder blasting.

• Demonstrate the combination of dry film photoresist patterning and micro

powder blasting for bulk PZT microfabrication, two different cantilever mi-

croactuator topologies are demonstrated using this process, namely a longi-

tudinally actuated d33 mode cantilever unimorph comprising a single layer of

patterned PZT with aligned interdigitated electrodes fabricated on one side

of the bulk PZT substrate, and a transverse-actuated d31 mode cantilever

multimorph consisting of a PZT/glass composite structure with continuous

electrode layers on each side of the PZT. These particular actuator designs

were selected to demonstrate the utility of the presented fabrication approach

toward device topologies useful for a wide range of bulk piezoelectric microsys-

tems.

2.4 Experimental procedures

2.4.1 PZT masking and etching

All experiments were performed using 7.2 cm2 PZT sheets (PSI-5A4E, type

5A, Piezo Systems Inc.) supplied with thin film nickel electrodes deposited on both

sides. Micro powder blasting was performed using a commercial abrasive blaster
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(AccuFlo AF-10, Comco Inc.) configured with a 1.17 mm diameter nozzle. Alu-

minum oxide (Al2O3) particles (Comco) with reported mean sizes of 10 µm and

25 µm were used as the abrasive powder. Measurements of the supplied particles

revealed actual size distributions of 11.6 ± 3.7 µm and 25.5 ± 4.7 µm, respectively.

To improve the mechanical robustness of the brittle PZT during processing, each

piezoelectric sheet was temporarily bonded to a glass plate using a desktop laminator

(PL-1200hp, Professional Laminating Systems) at 110oC with a 30 µm thick layer

of dry film photoresist (MG Chemicals) used as a sacrificial adhesion layer. Before

bonding the PZT sheet to the dry film photoresist, the glass/resist substrate was

baked at 100oC on a hotplate. This method of bonding the substrates was found to

be very robust, yielding highly coplanar surfaces with no trapped bubbles between

the layers. A second dry film photoresist specifically designed for use in micro pow-

der blasting (RapidMask High Tack, 100 µm thick, Ikonics) was then applied to the

exposed PZT surface to serve as an etch mask during micro powder blasting, with

lamination performed at room temperature. The photoresist was patterned with ar-

rays of trenches of varying line and space widths using a contact mask aligner (EVG

620, EV Group) with a total UV dose of 20.7 mW/cm2. The RapidMask photoresist

is designed to become brittle upon exposure to UV radiation, allowing the exposed

resist to be rapidly removed during the initial stage of micro powder blasting, elim-

inating the need to employ a chemical developer to remove the exposed photoresist

from the substrate prior to PZT etching. For micro powder blasting of the masked

PZT, the blasting nozzle was fixed to an adjustable stand within a sealed chamber,

allowing the nozzle-to-substrate distance to be controllably adjusted. Upon etch-
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ing, the exposed brittle areas of the dry film photoresist were rapidly ablated, while

the unexposed regions served to mask the underlying PZT film from the abrasive

particles. Following a timed etch, both the masking and adhesion photoresist layers

were removed by an overnight soak in acetone. The released PZT chips were finally

rinsed with DI water and dried in vacuum. For timed etch tests, the resulting etch

depths were measured by optical profilometry (Eclipse LV-100, Nikon).

Etch anisotropy was determined from the ratio of maximum etch depth to half

of the difference between the initial mask opening dimension and the final etch pit

width measured at the top surface of the PZT substrate.

2.4.2 Cantilever actuator fabrication

To fabricate d31 mode multimorph cantilever actuators, a 1 mm wide hole

was first powder blasted through an 80 µm thick glass cover slip to serve as an

access port for making electrical contact with the anchored bottom electrode of the

PZT cantilever. A layer of DF-2014 dry film photoresist was laminated to the glass,

followed by a second pass through the laminator with the PZT sheet placed on top

of the photoresist to permanently bond the multilayer structure. RapidMask pho-

toresist was laminated at room temperature on top of the PZT sheet as an etch

mask. Patterning of the photoresist was performed in a contact mask aligner as de-

scribed previously. Micro powder blasting was performed using parameters selected

based on the results of the etch characterization study, with a nozzle pressure of 415

kPa and blasting distance of 8 cm using 25 µm particles. After etching through

27



the PZT/glass composite, the remaining dry film photoresist mask was mechani-

cally removed with tweezers in a completely dry process. This process was found

to be easy to implement, allowing for a complete set of devices to be fabricated at

the wafer scale within 1 hour. The full fabrication process ow for the d31 mode

multimorphs is shown in Fig. 2.5. While conceptually simpler than the d31 mode

multimorphs, the d33 mode unimorph cantilever actuators employ interdigitated

electrodes on the upper surface of the PZT and thus required an additional masking

step for electrode patterning. Both top and bottom nickel electrodes were first re-

moved from an as-purchased PZT sheet by wet etching in ferric chloride. The sheet

was then temporarily bonded to a silicon handle wafer using a layer of RapidMask

photoresist. Electrodes were patterned by depositing a lift-off photoresist (LOR-7A,

MicroChem) followed by deposition of a positive photoresist (1813, Shipley). After

photolithography of both resists, a 500 nm aluminum film was deposited by e-beam

evaporation. Stripping of the remaining photoresist resulted in removal of aluminum

from unexposed regions of the wafer. RapidMask photoresist was laminated to the

PZT surface, followed by UV exposure of the resist through a mask aligned to the

metal patterns. Etching was performed using the same powder blasting parameters

as the d31 mode actuators. Before testing, individual chips were diced, and released

from the silicon handle wafer by an overnight soak in acetone. The full fabrication

process ow for the unimorph actuators is shown in Fig. 2.6.
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Figure 2.5: Overview of the bulk PZT cantilever microfabrication processes for d31

mode PZT/glass multimorph

Figure 2.6: Overview of the bulk PZT cantilever microfabrication processes for d33

mode PZT unimorph actuators.
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2.4.3 Micro powder blasting etch characterization

An ideal etching process would provide perfect anisotropy with a high etch rate

and infinite etch selectivity relative to the masking layer. In RIE processes routinely

used for MEMS fabrication, etching characteristics may be tuned by a combination

of chemical and physical material removal mechanisms to achieve the desired process

results. In contrast, micro powder blasting is a purely physical etching process, with

momentum transfer between the abrasive particles and substrate material serving

as the sole removal mechanism. Thus, beyond the mechanical properties of the

substrate material, the key parameters that affect etching rate are particle size,

nozzle pressure and nozzle-to-substrate distance. To evaluate the performance of

micro powder blasting for bulk PZT patterning, a sequence of experiments were

conducted to determine the impact of these parameters on PZT etch rate and etch

anisotropy as a function of mask dimensions, as well their impact on the relative

etch rate of the dry film photoresist mask used for photolithographic patterning of

the PZT substrate (Fig. 2.7).

As shown in Fig. 2.8, the PZT etch rate was found to be highly dependent on

each of the process parameters, with etch rate following an inverse power relation-

ship with nozzle to-substrate distance and approximately linear scaling with nozzle

pressure, with the larger 25 µm Al2O3 particles yielding etch rates twice those of the

10 µm particles for the same etch conditions. Note that due to high etch rates at

small nozzle distances and high nozzle pressures, accurate measurements of etch rate

could not be performed under certain process conditions as indicated by dashed lines
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Figure 2.7: Parametric study of micropowderblasting process for bulk PZT.

in Fig. 2.8. While similar overall behavior was observed for etching of the photoresist

mask, the photoresist etch rate was significantly less sensitive to nozzle distance. As

a result, the etch selectivity, defined as the ratio of PZT etch rate (ERPZT) to pho-

toresist etch rate (ERPR), was greatly improved as the nozzle distance was reduced

(Fig. 2.9). Surprisingly, for moderate and large nozzle distances, the photoresist

etch rate was maximum at the intermediate value of nozzle pressure. As a result,

the minimum etch selectivity occurred at 415 kPa, a trend that was observed for

both the 10 µm and 25 µm particles. Overall, etch selectivities ranging from 4 to 10

were achieved. While this selectivity is low compared to masks based on elastomeric

silicone [64], it is sufficient for patterning a wide range of PZT microsystems with

thicknesses below 1 mm when using 100 µm thick dry film photoresist. Previous

efforts to use dry film photoresist as a masking layer for micro powder blasting of
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glass have demonstrated similar selectivities, but with ultimate resolution limits on

the order of 50µm for a 50 µm thick photoresist layer [64]. Furthermore, significant

resist degradation was reported, resulting in penetration of particles through the

resist and damage to the underlying surface. Over the range of etching conditions

evaluated in this work, no surface damage beneath the photoresist layer was ob-

served, and photolithographic resolution limits on the same scale as the smallest

tested abrasive particles (10 µm) can be achieved. The measured etch anisotropy,

defined as the ratio of maximum vertical to lateral PZT etch rate, was inversely pro-

portional to nozzle distance as shown in Fig. 2.10. As the distance between nozzle

and substrate increases, the diameter of the cone of abrasive particles impacting the

PZT surface expands, with increasingly oblique particle trajectories away from the

centerline of the nozzle.

As a result, particles at the outer edge of the impact circle will possess greater

lateral momentum, and thus a higher lateral etch rate ratio that increases as nozzle

distance is reduced. However, in our experiments, etch measurements were per-

formed from the region of the substrate directly aligned with the nozzle axis, and

thus the increasing anisotropy ratio at lower nozzle distances does not reect this

phenomenon. Surprisingly, particle size does not appear to be a factor in etch

anisotropy for bulk PZT etching, in contrast to previous results reported for glass

etching in which smaller abrasive particles were found to yield significantly straighter

sidewalls [68].

The data presented in figs 2.8 - 2.8 reflect measurements performed using

large mask openings on the order of 1 mm. However, the etching characteristics
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Figure 2.8: PZT etch rate as a function of nozzle-to-substrate distance for differ-

ent nozzle pressures using 10 µm (left) and 25 µm (right) particles. The dashed

lines indicate that etch rates above 60 µms−1 were observed, preventing accurate

measurements at the given nozzle distances

Figure 2.9: Etch selectivity for PZT over dry film photoresist for 10 µm (left) and

25 µm (right) particles
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of the micro powder blasting process depend strongly on the mask opening dimen-

sions. A well-known issue with many wet and dry chemical etching processes is

the phenomenon of etch lag, in which the etch rates for smaller features tends to

be lower than those for larger mask openings. In the case of micro powder blast-

ing, etch lag arises from the emergence of sloped sidewalls during the etch process

that reduce the average impact angle of abrasive particles on the exposed substrate.

An example of the impact of etch lag on PZT features patterned by micro powder

blasting is provided in Fig. 2.11 a, which presents profilometry traces from a series

of etch trenches of varying width between 25 µm and 150 µm. Etch lag has been

extensively investigated in the context of glass microfabrication [59, 61], with mod-

els developed to describe the phenomenon [69] and various solutions proposed to

minimize etch lag, including the use of smaller abrasive particles [63] and the use

of multiple angled abrasive nozzles to increase the sidewall impact angle [66]. Ulti-

mately, for mask openings smaller than the average abrasive particle size, the etch

rate can be severely reduced as particles are excluded from reaching the exposed

surface [61]. For glass micro powder blasting, a minimum mask opening to particle

size ratio of 3 has been suggested [61]. Using a 415 kPa nozzle pressure for both

10 µm and 25 µm particles at selected nozzle distances, measured PZT etch rates

are presented in Fig. 2.11 b as a function of mask opening. Significant etch lag is

observed, with 3−4 times reduction in etch rate for both data sets over the range

of mask dimensions evaluated. Etch selectivity, presented in Fig. 2.11 c, is similarly

reduced for narrower mask openings, since the photoresist etch rate is not affected

by pattern dimensions. Although PZT etch anisotropy is also dependent upon mask
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dimensions, as shown in Fig. 2.11 d, the relationship is not as strong as in the case

of the vertical etch rate. This weaker relationship between mask dimensions and

anisotropy ratio reects the fact that the maximum lateral etch occurs at the top

surface of the PZT substrate, which presents the same sidewall angle throughout

the full etch process regardless of mask dimensions. Based on the presented data,

several issues that impact the selection of process parameters for PZT micropow-

derblasting can be observed. While maximum selectivity is achieved at high nozzle

pressures, depending on the nozzle distance and particle size the resulting high etch

rate can make it difficult to control the process and generate reproducible results.

While smaller particles can be used to lower the etch rate to a more manageable

level, this is done at the cost of lower selectivity, and thus may not be appropri-

ate for thick PZT substrates where the wear resistance of the photoresist mask is

paramount.

In general, smaller nozzle distance is desirable to achieve higher etch rate,

selectivity and anisotropy. However, a smaller distance between the nozzle and

substrate also reduces the etch area. For the blasting nozzle used in this work,

particles are ejected from the nozzle with a measured cone half-angle of 1.2o.At the

minimum 3 cm nozzle spacing, etching occurs only within a 2.4 mm diameter circle,

compared to a 7.6 mm etch diameter at 9 cm spacing. For etching larger substrate

areas, an automated system for rastering the nozzle over the substrate may therefore

be required to provide repeatable etching results. Finally, we note that the resolution

limits depend on etch lag which reduces both selectivity and anisotropy for smaller

features. Contrary to previous reports with other brittle substrates, etch anisotropy
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Figure 2.10: Etch anisotropy ratio (ERPZT,vertical /ERPZT,lateral) for (a) 10 µm

and (b) 25 µm particles. A cross-sectional view of a fabricated PZT beam with an

anisotropy ratio of 3.5 (16o sidewall angle) is shown in inset (a).

and the related phenomenon of etch lag do not appear to be correlated with particle

size for PZT micro powder blasting, even for the smallest features explored in this

work with dimensions (25 µm) matched to the largest particle size. Overall, these

results suggest the use of larger particles at low nozzle pressure and small nozzle

distance to achieve high but controllable etch rate with excellent etch selectivity and

moderate anisotropy. When a larger nozzle distance is desirable to increase the etch

area, the use of higher nozzle pressure can compensate for the reduced etch rate.

This is summarized in Fig. 2.12.

2.4.4 Fabricated d31 and d33 microcantilevers

Examples of both microcantilever designs, fabricated using identical micro

powder blasting parameters (415 kPa nozzle pressure with 25 µm particles), are
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Figure 2.11: (a) Profilometry traces revealing etch lag at varying mask openings for

the case of 25 µm particles at 8 cm nozzle-to-substrate spacing at 415 kPa nozzle

pressure (5 s etch time). (b) PZT etch rate, (c) etch selectivity (ERPZT/ERPR),

and (d) etch anisotropy ratio as a function of mask opening width for selected nozzle-

to-substrate spacings using 10 µm and 25 µm particles at 60 psi nozzle pressure.

The specific nozzle-to-substrate spacings were selected due to the similarity in etch

rates observed for wider trenches.
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Figure 2.12: Summary of the parametric study of the micropowderblasting process.

38



Figure 2.13: (a) Electron micrograph of a d33 unimorph cantilever, with magnified

views of (b) inside and (c) outside corners of the cantilever structure patterned by

micro powder blasting. (d) Detailed image of the interdigitated electrodes with 20

µm spacing. (e) Image of a d31 multimorph cantilever, with views of (f) inside and

(g) outside corners. (h) Cross-sectional view of the multilayer structure consisting

of a 127 µm PZT layer with top and bottom thin film Ni electrodes, a 14 µm dry

film photoresist adhesion film and an 80 µm glass layer.
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shown in Fig. 2.13. Because the device length was on the order of several millimeters,

a nozzle distance of 8 cm was used to provide sufficiently large etching area to

pattern each actuator without moving the nozzle during powder blasting. As seen

in the device micrographs, good pattern definition was achieved with PZT sidewall

angles ranging from 15o to 20o. Some rounding of both inside and outside corners

was observed due to a combination of limited pattern resolution for the thick film

photoresist mask, finite etch anisotropy at the inside corners, and higher wear rates

for outside corner edges. Overall pattern fidelity followed the anticipated trends,

with a measured mask undercut of approximately 50 µm consistent with a predicted

anisotropy ratio of 2.5 based on the data in Fig. 2.10. The anisotropy ratio and

overall etch rate for the composite multimorphs were typically lower than the PZT-

only unimorphs, since the etching parameters were not optimized for patterning of

the additional materials including metal films, photoresist adhesion layer and glass.
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Chapter 3: Bending Mode Actuation of Homogeneous Bulk PZT Mi-

crosystems

3.1 Overview

This chapter focuses on the development of homogeneous bulk PZT actuators.

Here we present bulk PZT cantilevers fabricated by single-layer metallization and

micropowderblasting [96] which are used to demonstrate the TIE actuation concept.

Optimal poling conditions are established, and the relationship between transverse

actuation and electrode spacing is investigated by finite element and analytical mod-

eling combined with experimental validation using the fabricated devices.

3.2 Motivation

Piezoelectric transduction offers significant benefits toward the actuation of

microscale systems due to the high energy density offered by advanced piezoelectric

materials, together with attractive scaling laws that enable high force and power

output to be achieved at reduced length scales compared with electrostatic or elec-

tromagnetic transduction [72]. In particular, thin-film ferroelectric PZT is a widely

used active material in piezoelectric microsystems due to its superior electrome-
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chanical coupling coefficients [73]. However, despite advances in the processing and

integration of PZT films into silicon fabrication processes, the piezoelectric coeffi-

cients of thin-film PZT depend strongly on the composition, grain size, and orien-

tation of the film, all of which vary on the basis of the film deposition of growth

conditions, substrate conditions, and film thickness [74]. While the textured growth

of piezoelectric films is enabling the deposition of materials with piezoelectric per-

formance approaching that of bulk processed PZT, small variations in processing

conditions can lead to irreproducibility in the resulting films, and even under opti-

mal conditions, the piezoelectric performance of PZT films is typically well below

that of bulk PZT materials [74–76]. The deposition of crack-free PZT films more

than several micrometers thick also remains a challenge, limiting the areal energy

density of piezoelectric microsystems that can be achieved using thin-film processes.

In contrast, high-quality bulk PZT is widely available from multiple commercial

sources with a wide range of mechanical and electromechanical properties, offering

higher coupling coefficients and more consistent performance than available thin-

film materials. The cost of bulk-processed PZT is significantly lower than that of

thin films, and the integration of bulk PZT with other microsystem components can

be performed without the need for high-temperature processing steps. While the

development of subtractive microfabrication techniques for bulk PZT materials is

ongoing [77–79], further progress in this area can open the door to the routine pro-

duction of reliable high-performance piezoelectric microsystems that can be realized

at lower cost than devices based on thin-film piezoelectrics.
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3.3 Actuation principle

3.3.1 Heterogeneous bimorph actuators

The actuation of piezoelectric transducers is most commonly achieved by trans-

forming longitudinal stress within the piezoelectric film into a bending moment by

depositing or bonding the active piezoelectric layer onto a passive elastic substrate.

When an electric field (E3) is applied across the thickness of the piezoelectric film,

a longitudinal strain (S1) is generated within the film through the transverse d31

coupling coefficient following the constitutive relationship given by

S1 = d31E3 (3.1)

With one surface of the piezoelectric film constrained by strain matching to

the coupled elastic layer, the longitudinal strain is converted into a bending mo-

ment due to the offset between the piezoelectric layer and the overall neutral axis

of the composite structure, resulting in the displacement of the beam transverse to

its length axis. This design configuration, sometimes termed a unimorph or het-

erogeneous bimorph [79], [80], is routinely used in a wide variety of piezoelectric

microactuators [72], [81] - [96]. However, heterogeneous bimorphs present several

disadvantages for microelectromechanical systems actuation. First, a composite

structure consisting of both piezoelectric and elastic layers is required, complicating

device fabrication and often necessitating one or more additional photolithography

steps for device patterning. Applying an electric field through the thickness of the

piezoelectric film also requires electrodes on both upper and lower surfaces of the
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piezoelectric layer. Making electrical contact to a buried electrode between the

piezoelectric film and coupled elastic layer further complicates device fabrication

and demands an etch process with high selectivity between the piezoelectric and

electrode materials. For the case of bulk PZT integration, the microfabrication of

heterogeneous bimorphs capable of transverse actuation often requires a bonding or

adhesive film to mate the piezoelectric and elastic layers, further complicating device

fabrication and potentially introducing unwanted damping or strain release into the

structure. Finally, from the perspective of electromechanical coupling, the use of

transverse-mode d31 actuation sacrifices device performance, since d31 is typically

two to three times smaller than the longitudinal d33 coupling coefficient [85, 86].

3.3.2 Homogeneous bimorph actuators

In this work, we report a new design topology for piezoelectric homogeneous

bimorph microactuators capable of generating transverse bending-mode actuation

using a single homogeneous layer of bulk PZT. The approach, termed transverse

interdigitated electrode (TIE) actuation, addresses each of the issues associated

with traditional piezoelectric microactuators based on heterogeneous bimorph de-

signs. Interdigitated electrodes have been previously explored using thin-film PZT

for piezoelectric sensors [87,88] and actuators [85–89] and are commonly used for the

actuation of traveling acoustic waves in both thin film and bulk piezoelectric materi-

als [94,95]. In contrast to these established applications of interdigitated electrodes

for piezoelectric transduction, the TIE concept enables the transverse actuation of
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a homogeneous layer of bulk piezoelectric material. The topology of a TIE actuator

is shown in Fig. 3.1 for the case of a simple cantilever bending actuator. A metal

film deposited on the upper surface of a homogeneous PZT beam is patterned to

yield two sets of interdigitated electrodes forming a series of capacitive gaps posi-

tioned along the length of the beam. The poling mechanism is described in Section

3.3. Once poled, an actuation voltage applied between the electrodes generates field

lines parallel to the fixed dipoles, resulting in longitudinal strain (S3) though the

d33 converse piezoelectric effect as

S3 = d33E3 (3.2)

By choosing an appropriate spacing between the interdigitated electrodes, the

effective penetration depth of the electric field lines, shown in Fig. 3.1 b, can be

designed to yield a desired offset between the mean strain axis and the location

of the beams neutral axis. Just as with a heterogeneous bimorph fabricated from

a coupled piezoelectric/elastic composite structure, this offset converts longitudinal

stress into a bending moment within the homogeneous beam, resulting in the desired

transverse deection.

3.4 Material choice

3.4.1 Soft vs hard PZT

Soft PZT is characterized by large electromechanical coupling factors, large

piezoelectric constants, high permittivity and large dielectric constants due to which
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Figure 3.1: (a) Poling and (b) actuation of a homogenous PZT beam using the

Transverse Interdigitated Electrode (TIE) scheme.
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Figure 3.2: Material properties of PZT PSI-5A4E and PSI-5H4E [91].

they are capable of producing larger displacements compared to hard PZT. But

they also suffer from high dielectric losses, low mechanical quality factors, and poor

linearity, making them more susceptible to depolarization and other degradation.

Their Curie temperature is typically below 300oC, making them unsuitable for high

temperature operations [90].

Hard ceramics have Curie points typically above 300oC. They are character-

ized by small piezoelectric charge constants, large electromechanical coupling fac-

tors, and large mechanical quality factors. They also are more difficult to polarize

or depolarize compared to soft PZT.

For our application, the ability to polarize PZT in the desired orientation is

the most important factor in selecting the kind of PZT ceramic. Therefore, soft

PZT is used throughout this work.

3.4.2 PSI-5A4E vs PSI-5H4E

PZT ceramics PSI-5A4E and PSI-5H4E (Piezo Systems. Inc) were selected as

the materials for this work, based on the material properties shown in the table (Fig
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3.2). While PSI-5H4E was more desirable due to its higher d-coefficients, it had

a much lower mechanical quality factor and Curie temperature, and was harder to

polarize compared to PSI-5A4E. Therefore, PSI-5A4E was chosen as the material

for the rest of this work.

3.5 Electrical Poling

In their original state, piezoceramics do not exhibit piezoelectric characteris-

tics. Piezoelectric effects are induced by elevating the substrate temperature while

biasing the electrode pair using a high electric field sufficient to generate permanent

remnant polarization of ferroelectric domains within the material. This is referred

to as poling. The bulk PZT sheets that are purchased are pre-poled along the

thickness. For the operation of the devices in the d33 mode, the material needs

to be re-poled along the beam length as shown in Fig. 3.3. The resulting dipoles

are aligned along the field lines between the electrode pairs, with opposite poling

directions for each set of adjacent electrode gaps.

3.6 Results and Discussion

3.6.1 Determination of poling conditions

Aligning the ferroelectric dipoles according to the electric field lines between

each adjacent pair of interdigitated electrode gaps is necessary to establish the de-

sired orientations for d33 mode actuation of the beams. Fabricated cantilever beams

were poled using a high-voltage dc power supply connected to the device electrodes
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Figure 3.3: Schematic of poling actuators in d31 mode (above) d33 mode (below).

Figure 3.4: SEM of a 127-µm-thick TIE cantilever actuator fabricated by microp-

owder blasting and lift-off metallization in a simple two-mask process.
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through probe tips, with the substrate temperature controlled using a digital hot

plate. Devices were poled with varying temperature, time, and electric field. To

evaluate poling results, the devices were actuated using the integrated signal gen-

erator of a scanning laser vibrometer (Polytec MSA-500) while optically measuring

quasi-static beam deection. Measurements of all devices were performed at the

most distal interdigitated electrode trace, rather than the beam tip, to avoid the

confounding influence of the unactuated region of PZT at the end of the beam.

Actuator responses were measured by exciting the cantilever beams with 5 V am-

plitude sinusoids at 200 Hz, well below their resonant frequencies. Consistent with

previous studies of PZT poling conditions for traditional parallel-plate electrode

configurations [97,98], temperature and time were found to have a negligible impact

on device performance, provided that these parameters were held above threshold

values of approximately 90oC and 10 min, respectively. To ensure consistent perfor-

mance, the impact of poling field was investigated for devices heated to 100oC and

held at a set field for 30 min. Measurements were performed using beams ranging

in length from 1.04 to 2.74 mm. The poling field was varied in steps of 0.5 V/µm

between 2 and 5 V/µm, and the resulting quasi-static beam deection was measured.

Beam curvature (κ) was extracted from this data using the relationship for a beam

of length L in pure bending with a measured tip deection (δ) as

κ = 2δ/L2 (3.3)

The resulting data, normalized to the maximum measured curvature, are
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Figure 3.5: Quasi-static curvature as a function of poling field for varying electrode

gaps, normalized to the maximum value measured for a device with a 50-µm gap.

Poling was performed at a temperature of 100oC for 30 min using beams with lengths

varying between 1.04 and 2.74 mm.

shown in Fig. 3.5. In all cases, the curvature was found to saturate for poling

fields above 4 V/µm, with negligible improvement in beam deection beyond this

limit. Based on these results, all further testing was performed using a poling field

of 4 V/µm.

3.6.2 Effect of actuation voltage on beam curvature

For TIE actuators poled under these conditions, beam curvature was found to

be nearly linear with applied voltage over the full range of actuation fields tested

(up to 1.6 V/µm), with no significant hysteresis observed in the response as shown

for the case of an actuator with 75-µm electrode spacing in Fig. 3.6.
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Figure 3.6: Cantilever actuator response under increasing and decreasing biases,

revealing minimal nonlinearity and hysteresis. Measurements were performed using

a 1.46-mm-long beam with a 75-µm electrode spacing. A curvature of 2.32 m−1 was

measured at the maximum applied field strength of 1.6 V/µm.
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3.6.3 Effect of electrode gap

In the case of interdigitated thin film piezoelectric microactuators, the elec-

trode spacing is significantly larger than the film thickness, and thus, strain gen-

erated within the film may be estimated by assuming a uniform poling axis along

the length of the actuator beam. For the present case of the bulk PZT TIE actu-

ators, however, the electrode spacing and PZT thickness are of the same order of

magnitude. As a result, the orientation and magnitude of the electric field, together

with the orientation of ferroelectric dipoles, vary between any given pair of electrode

fingers, resulting in complex electromechanical interactions upon the application of

an actuation voltage that are not readily modeled. As an approximation, an an-

alytical model was derived by estimating the effective penetration depth for the

electric potential isoclines and using this value as the effective active piezoelectric

layer thickness in an expression for actuation of a heterogeneous bimorph [88] given

by

κ =
2d33Π(ha + he)(AaEaAeEe)

4(EaIa + EaIa)(AaEa + AeEe) + (AaEaAeEe)(ha + he)2
(3.4)

where Π is the average magnitude of the electric field and h, A, I, and E are the

thickness, cross-sectional area, bending moment of inertia, and elastic modulus of

the active (a) and elastic (e) regions of the beam, respectively. For the homogeneous

PZT TIE actuators under consideration in this work, the values of E and A for each

region are equal, and the expression reduces to
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κ =
6d33Πhahe

(h3a + h3e) + 3hahe(ha + he)
(3.5)

Defining α as the fractional effective penetration depth of the electric field such that

ha = αh, where h is the overall thickness of the full PZT element, Eq. 3.5 further

reduces to

κ =
6d33Πα(1− α)

h(α3 + (1− α)3 + 3α(1− α))
(3.6)

Equation 3.6 provides a compact expression for predicting actuator performance in

which the beam thickness and fractional penetration depth are the only geometric

parameters. Using an effective penetration depth estimated to be 82 % of the

electrode gap from finite element method simulations over the range of electrode

gaps used in this study, model results are presented in Fig. 3.7 for 127-µm-thick TIE

actuators with electrode gaps ranging from 50 to 150 µm, with a constant applied

voltage of 5 V. Both the predicted beam curvature and corresponding tip deection for

a 1-mm-long cantilever are presented in this plot. To compare the model predictions

against experimental data, a set of actuators was fabricated with varying electrode

gaps and characterized by quasi-static LDV analysis. The measured curvature values

are shown in Fig. 3.7, with error bars reecting standard deviations for independent

measurements performed from at least three different devices. Equivalent static

deections corresponding to a 1-mm-long cantilever actuated using a 5 V bias between

the interdigitated electrodes are also shown on the secondary axis in this figure. The

analytic model reveals that, for a constant applied voltage, actuator beam curvature
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Figure 3.7: Comparison of quasi-static analytical and experimental cantilever beam

curvatures for an actuation voltage of 5 V.

is maximized by reducing the electrode gap, with the ultimate limit defined by

depoling or electrical breakdown of the piezoelectric medium. As expected, the

maximum experimental deection was observed for the smallest electrode gap used

in this study (50 µm). However, for applications where the applied voltage is not

constrained, curvature is limited by the maximum electric field [81]. Under this

constraint, the analytic model predicts an optimal electrode gap of 79 µm for a

127-µm-thick PZT beam.

3.6.4 Evaluation of TIE actuator performance

To further evaluate TIE actuator performance, the dynamic response of several

devices was characterized. The resulting experimental first-mode resonant frequen-
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Figure 3.8: Experimental first-mode resonant frequency as a function of beam length

revealing the expected L−3/2 dependence. The frequency response of a 1.4-mm-long

TIE actuator with a 75-µm electrode spacing, driven with a sinusoidal amplitude of

5 V , is shown in the inset.

cies as a function of beam length are shown in Fig. 3.8. As expected, the resonant

frequency is proportional to L−3/2, and the resonance frequencies closely match the

theoretical values. The amplitude spectrum of a 1.4-mm-long beam with a 75-µm

electrode spacing is also shown inset in Fig. 3.8, revealing the resonance frequencies

of the first bending mode (13.9 kHz), first torsional mode (40 kHz), and second

bending mode (79 kHz) of the beam. The quality factor of the first bending mode,

determined from the ratio of the resonant frequency to the peak width 3 dB below

the resonance amplitude, was measured to be Q = 70 in air.
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Chapter 4: Miniaturized bulk PZT traveling wave ultrasonic motors

4.1 Overview

The development of the fabrication process for miniaturized bulk PZT systems

(Chapter 2) and the realization of homogeneous bulk PZT actuators (Chapter 3)

enabled the work leading to the development of the smallest bulk PZT rotary travel-

ing wave motor, which is described in this chapter. PZT-5A4E from Piezo Systems,

Inc. was used as the micromotor stator material for this work.

4.2 Micromotor stator design

4.2.1 Stator ring design

The proof-of-concept traveling wave micromotor stator was designed to consist

of an annular ring, which is the active part of the stator. The hollow center in

the ring is helpful to integrate rotor assemblies and is particularly advantageous for

applications such as intravascular ultrasound catheters so that the imaging assembly

can be inserted through (Fig. 4.1). Additionally, a chain of motors can be stacked

together for superior performance, which is difficult with other configurations. The

hollow center is beneficial optically as well.
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Figure 4.1: Hollow center of the ring allows easy integration of imaging assembly in

an imaging catheter system.

The outer and inner diameters of the ring were designed using Gabrielsons

table for frequency constants for transverse vibration of annular as a reference [99].

The finite element analysis software, COMSOL, was used to perform modal analysis

to extract different mode shapes of these stators. Fig. 5.6 shows the different flexural

modes of a stator with 4 mm outer diameter and 3 mm inner diameter up to a

frequency of 110 kHz. These modes have eigenvalues of multiplicity two due to

axial symmetry and traveling waves can be generated by exciting both these modes

as standing waves, 90 degrees apart in phase. We designed our stators to operate

in the flexural mode containing three nodal diameters, commonly termed as B03

mode, where 0 represents the number of nodal circles and 3 represents the number

of nodal diameters. B03 mode was chosen since low frequency operation is desired
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Figure 4.2: Flexural modes of a 127 micron thick bulk PZT free ring with 4 mm

outer diameter and 3 mm inner diameter

while having at least three contact points for stable rotor motion.

4.2.2 Stator electrode design

Three sections, each generating one full wavelength, are required to operate

the stators in the B03 mode. Each section is designed to have four TIE electrode

pairs to apply signals which are apart in space and phase by a quarter wavelength.

Therefore, the design for B03 mode operation, includes a total of twelve electrode

pairs around the ring. Additionally, since these are homogeneous devices with no

elastic layers, they cannot be operated in the conventional d31 mode. The TIE
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Figure 4.3: Electrode configuration for B03 mode operation of homogeneous bulk

PZT stator.

electrodes, shown in Fig. 4.3, enable them to be operated in the d33 mode. The

actuation principle is described in detail in Sec. 4.3.1.

4.2.3 Mechanical support design:

The ring is mechanically supported from the outer edge through twelve teth-

ers, which also serve as platforms that carry the electrical trace lines to the twelve

TIE electrode pairs on the ring. Fig. 4.4 shows a stator fabricated using the mi-

cropowderblasting process described in Chapter 2.

Previous research by Rudy et al. [105] showed that incorporating tethers results

in a mismatch in the orthogonal modes, which inhibits the generation of traveling

wave. In our designs, stator ring with different tether lengths varying from 0.8 mm

to 2 mm were used to study the effects of tether stiffness on device performance.
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Figure 4.4: Bulk PZT stator (i.d. 2080 m, o.d. 4120 m), and magnified view of the

transverse interdigitated electrodes (right).

Modal analysis using COMSOL verified that there was less than 1 percent mismatch

in the orthogonal mode frequencies due to tether effects (Fig. 4.5). Fig. 4.6 shows the

different modeshapes of an annular ring with 4 mm outer diameter and 3 mm inner

diameter, with twelve 0.8 mm long tethers, generated via Eigenfrequency analysis

using COMSOL up to a frequency of 110 kHz.

4.3 Stator operation

4.3.1 Differential Quadrature Drive

Most rotary traveling wave micromotor stators reported in literature have

electrodes on the top and bottom surfaces of the piezoelectric material and are

operated in the d31 mode in which, a longitudinal strain (S1) is generated due to the

applied electric field (E3) across the thickness of the piezoelectric film through the

61



Figure 4.5: Difference in the orthogonal B03 mode frequencies for different stator

tether lengths.

Figure 4.6: Flexural modes of a tethered 127 micron thick bulk PZT ring with 4

mm outer diameter and 3 mm inner diameter
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transverse d31 coupling co-efcient following the constitutive relationship given by

S1 = d31E3 (4.1)

These stators typically use the electrode configuration shown in Fig. 4.7 a to

generate B03 mode traveling waves. Each set of sin, cos, −sin, −cos signals, which

are also spatially apart by a quarter wavelength, define one of the three sections of

the B03 mode (Fig. 4.7 b). The number of sections can be designed based on the

desired mode of operation. These signals are applied across the thickness of the

PZT with respect to a ground electrode on the backside.

In this work, the micromotor stators are fabricated using a single sheet of bulk

PZT. By engineering the electric field depth using TIE electrodes, as described in

Chapter 3, we define the active and the inactive elastic areas within the PZT to

actuate it as a traditional bimorph structure. Thus, the homogeneous bulk PZT

stators presented in this work cannot be actuated using the conventional topol-

ogy shown in Fig. 4.7 a. However, using the TIE actuation enables a novel drive

scheme for ultrasonic micromotors termed the differential quadrature drive (DQD).

A schematic of a B03 mode annular disk stator driven using DQD in shown in Fig. 4.7

c. Four sinusoidal drive signals are applied to the electrodes with each adjacent pair

in quadrature, i.e. a temporal phase difference of a quarter wavelength between each

adjacent signal (±sin, ±cos). Although the topology looks similar to the conven-

tional style, it is important to note that the piezoelectric elements are actuated by

the difference between the adjacent signals, which are also in quadrature (Fig. 4.7

b), thereby generating a traveling wave. Two advantages arise as a result of this
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actuation topology. Firstly, the TIE actuation implies that the stators are actuated

in the d33 mode, wherein an actuation voltage applied between the electrodes gen-

erates field lines parallel to the fixed dipoles, resulting in longitudinal strain (S3)

though the d33 converse piezoelectric effect as

S3 = d33E3 (4.2)

As discussed earlier, the d33 mode is superior to the d31 mode in terms of

electromechanical coupling. Secondly, DQD actuation results in an enhancement

of the input by a factor of
√

2 based on the design alone, thereby enhancing the

traveling wave amplitudes, which will be reported in the results.

4.3.2 Stator Poling

Motor actuation required that the PZT dipoles within each of the 12 electrode

sections are aligned circumferentially, with each section oriented in the same direc-

tion, e.g. all clockwise as outlined in Fig. 4.8. Each section is poled individually and

a Laser Doppler Vibrometer (LDV) is used to measure the standing wave amplitude

before and after poling, to ensure that each section is successfully poled.

Capacitance measurements are used to ensure successful poling. Typically, a

32% increase in the final capacitance value is expected after successful poling [100].

However, the PZT used it in work is pre-poled along the thickness of the material

for operation in d31 mode. Therefore, when we pole the materials, we change the

orientation of some of the dipoles on the surface of the PZT by 90 degrees. We

observe a slight increase in the capacitance after poling which corresponds to an
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Figure 4.7: (a) Conventional d31 motor actuation topology to generate B03 mode

traveling wave, (b) Representation of the applied signals which are quarter wave-

length apart, (c) DQD actuation topology for homogeneous d33 motor to generate

B03 mode traveling wave (d) Representation of the applied difference in signals which

are still quarter wavelength apart.
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Figure 4.8: Twelve electrode pairs poled one at a time according to the configuration

shown.

increase in the standing wave amplitude values, verifying the success of the poling

process. We attribute this effect to a slight expansion of the material in the direction

of the poling, which increases the distance between the electrode fingers, thereby

resulting in a decrease in the measured capacitance.
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4.4 Stator characterization

There are two major requirements to generate a traveling wave, which can be

better understood using the following equation:

w(r, θ, t) = Amn(r)cos(nθ)cos(ωmnt) + Amn(r)sin(nθ)sin(ωmnt) (4.3)

where m and n represent the mode shape with m denoting the nodal circle and

n denoting the nodal diameters. Amn, in our designs represents the radial amplitude

of the standing waves of the orthogonal modes and r, θ and t represent the radius,

azimuthal position and time. Now, if the two orthogonal modes have different

frequencies, then the trigonometric identity does not hold and a clear traveling wave

cannot be generated. Again, if the orthogonal modes have different amplitudes,

the trigonometric identity does not hold and a beat phenomenon can be observed.

Additionally, the B03 mode frequencies of all the twelve sections around the stator

should match for generating a traveling wave.

4.4.1 Geometrical inconsistencies around the stator

These stators were fabricated from PZT-5A4E using the microfabrication ap-

proach with DFR as the mask as described in Chapter 2. Although each section,

when actuated independently, generated clean standing waves, the resonant frequen-

cies of the B03 mode for the twelve different sections around the stator varied by

± 7% (Fig. 4.9). On measuring the dimensions of the fabricated stators, the tether
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Figure 4.9: Geometrical inconsistencies from micropowderblasting leading to differ-

ence in B03 mode resonant frequencies around the stator.

widths varied greatly across the stator, resulting in each section having different B03

mode frequencies.

4.4.2 Etch lag

The geometrical inconsistencies were attributed to the differential over-etching

resulting from the differences in the feature sizes across the stator. To address this

issue, a high-performance nozzle with a larger diameter was used for powderblast-

ing. Additionally, the areas to be powderblasted were designed to be uniform across

the device Fig. 4.10. The B03 mode resonant frequency mismatch around the sta-

tor sections reduced to 0.7 percent as shown in Fig. 4.11. However, with this set

of devices, the amplitudes of the different sections varied greatly, despite poling.
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Figure 4.10: Geometrical inconsistencies resulting from large powderblasting areas

(Prototype 1) resolved by designing smaller, more uniform powderblasting areas

(Prototype 2).

On investigating further through capacitance measurements, it was found out that

the capacitance of certain sections were changing after powderblasting as shown in

Fig. 4.28.

4.4.3 Investigating the effects of powderblasting on device perfor-

mance

In order to verify that the powderblasting process was affecting the material

properties of PZT, cantilevers of the dimensions of the micromotor stator ring were

fabricated using the same fabrication process. A decrease in the capacitance values

after powderblasting was used as an indication of damage done to the PZT during

the powderblasting process. As shown in Fig. 4.13, powderblasting caused a dete-
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Figure 4.11: Less than 1 % frequency mismatch between the twelve electrode pairs.

Figure 4.12: Damage caused by powderblasting detected through capacitance mea-

surements.
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Figure 4.13: Effect of using DFR mask to fabricate cantilevers of width 0.5 mm and

length 0.8 mm.

rioration in the capacitance value for three of the five devices fabricated. However,

the slightly larger cantilevers characterized in Chapter 3, showed no degradation in

capacitance although they were fabricated using the same process (Fig. 4.14).

Energy-dispersive X-ray Spectroscopy measurements

We suspected that the delamination of dry film resist mask during the pow-

derblasting process along the outer periphery of these devices caused some damage to

the surface. Inspection of the edges of the cantilever did not show any visible cracks

or physical damage to the material. Furthermore, the DFR itself was inspected for

pinholes after the powderblasting process and it was found to be fully intact even

after the powderblasting process, except near the edges of the device. The electrical

continuity of the metal traces remained unaffected as well. We suspected that there
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Figure 4.14: Effect of using DFR mask to fabricate cantilevers of width 0.9 mm and

length 1.5 mm.
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Figure 4.15: SEM image of the area where EDS measurements were performed.

could be trapped alumina particles and performed an Energy-dispersive X-ray spec-

troscopy (EDS) on the outer edge of the device (Fig. 4.15) to find out the elemental

composition of the PZT devices after powderblasting and cleaning the device. As

can be seen in Fig. 4.16, fairly large amount of aluminum was detected. On cleaning

the devices in an ultrasonic bath, the aluminum and oxygen content dropped with

respect to the lead, zirconium, and titanium content as can be seen in the EDS

analysis in Fig. 4.17. However, despite cleaning in an ultrasonic bath for over two

hours, the aluminum content did not reduce further, and the capacitance values did

not improve significantly.

4.4.3.1 Modified fabrication process

The fabrication process was modified by using a glass mask, which was also

patterned using powderblasting (Fig. 4.18). This was bonded to PZT using a 50

µm thick sheet wax. By including this additional step, the fabrication complexity

was not significantly increased. In fact, there was an additional advantage of faster
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Figure 4.16: EDS elemental analysis confirms the presence of trapped alumina after

powderblasting.

Figure 4.17: EDS elemental analysis detects the presence of trapped alumina even

after thorough cleaning.
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Figure 4.18: Bulk PZT micromotor fabrication process, comprising (a) Bonding

PZT to a handle wafer using wax, (b) Lift-off metallization of Al electrodes (mask

1), (c) MPB to fabricate glass mask using DFR (mask 2), (d) Bonding the glass

mask using sheet wax (e) MPB to define stator geometry using glass mask, and (f)

resist strip.
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Figure 4.19: Comparison of using DFR mask and hard mask on the capacitance of

powderblasted cantilevers.
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alignment to the substrate due to the transparency of the glass mask as opposed to

the almost opaque DFR mask. The cantilevers of the dimensions of the stator ring

were fabricated using this technique and if our hypothesis about alumina particles

getting trapped affecting the material properties was true, these devices should

perform better. As seen in Fig. 4.19, the cantilevers fabricated using the glass mask

showed no degradation in capacitance values after powderblasting.

4.4.3.2 Effect of powderblasting masking method on capacitance

To investigate these effects further, we designed an experiment to determine

the feature size at which using DFR mask for powderblasting begins to deteriorate

the capacitance between the TIE electrodes. Figure shows that below feature size

of 0.7 mm, using the DFR mask for powderblasting damages the device. It can also

be seen that by using glass mask, the resolution limits of powderblasting can be

increased significantly.

4.4.4 Optimization of poling process

The stators were poled using the conditions determined in Chapter 3, one

electrode pair at a time. There was a very minimal increase in the standing wave

amplitude of every the area between each electrode pair even after poling. This was

again an effect that was not observed in feature sizes larger than 1 mm.

Bhattacharya et al. reported that in ferroelectric materials such as PZT, 90

degree dipole domains have been experimentally found to be significant and these are
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Figure 4.20: Standing wave amplitudes for all 12 sections of a stator show that

depoling by heating above Curie temperature before repoling is consistently better.

very stable and difficult to pole [101]. This was probably what we were witnessing

since we were seeing no change in performance after poling.

If this hypothesis were to be true, depoling the PZT and randomizing the

orientation of the dipoles before poling it in the desired orientation should solve

the issue. So, PZT was depoled by heating it to slightly above Curie temperature

and after several hours of cool down, the PZT was poled using the optimized poling

conditions. This method ensured successful poling as shown in Fig. 4.20. The larger

devices did not get affected by this, possibly due to the larger number of domains

and these effects were probably not significant enough to be a problem.
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Figure 4.21: Poling one section causes depoling of the previous section.

4.4.5 Modification of electrode design

These devices were fabricated using the new fabrication technique and poled

using the established conditions. However, poling one section resulted in depoling

the previous section as can be seen in Fig. 4.21.

Previous designs employed a single trace connecting two electrode pairs as

shown in Fig. 4.22. Since the electrode pairs were poled individually, poling one

section maintained a floating voltage on the previous electrode. This was depol-

ing the previous section. This is a significant problem because the standing wave

amplitudes are directly influenced by poling and as previously discussed.

4.4.5.1 Split electrode configuration

In order to address the above mentioned problem, a split electrode configura-

tion was used as shown in Fig. 4.23. With this configuration, poling an electrode

pair did not affect the previously poled section. Another advantage was that all

sections could be poled together which reduced the poling process from 16 hours
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Figure 4.22: Electrode configuration used for previous designs.

to about an hour. However, after the poling process, the split electrodes had to

be connected together for the actuation process, which added negligible amount of

effort compared to the advantages.

4.4.6 Stator performance characterization

Stators with 4 mm ring diameter and tether sizes ranging from 0.8 mm to

2 mm were used to characterize the stator behavior. B03 mode frequencies for

these stators varied from 30 kHz to 70 kHz and the trend matched well with the

FEA B03 mode frequencies (Fig. 4.25), both curves exhibiting an L−2 dependence of

resonant frequency on tether length (L). The difference between the analytical and

experimental resonant frequencies can be attributed to the variation in the geometry
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Figure 4.23: Split electrode configuration.

Figure 4.24: Poling one section does not affect the previous section in split-electrode

configuration.
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Figure 4.25: Comparison of analytical and experimental resonant frequency data

for stators with 4 mm ring diameter and varying tether lengths.

of the stators resulting from powderblasting.

4.4.6.1 Generation of standing waves

A Polytec Scanning Laser Doppler Vibrometer (LDV) was used to characterize

the frequencies and out-of-plane amplitudes of the stators. In order to identify the

B03 mode frequency, white noise in the range of 0 - 100 KHz. Each electrode pair was

individually actuated with a sine wave at the corresponding B03 mode frequency to

generate standing waves. The difference in the B03 resonant frequencies for different

sections was less than 2 percent and the variation in the standing wave amplitudes

was about 22 percent as was shown in Fig. 4.20. This difference in the performance

between the twelve sections across the stator was significantly small to inhibit the
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Figure 4.26:
√

2 enhancement of standing wave amplitude due to DQD.

generation of traveling waves. Additionally, when a section is actuated with sine -

cosine instead of sine - ground, the standing wave amplitudes are higher by a factor

of
√

2 as shown in Fig. 4.26.

4.4.6.2 Generation of traveling waves

Ring stators with 4 mm outer diameter and 2 mm inner diameter having 12

tethers of 1 mm length with a B03 mode frequency of around 54 KHz were used

as proof of concept stators to study the traveling wave response. Well controlled

traveling waves were generated by exciting standing waves in each section such that

they are a quarter wavelength apart in both phase and space as shown in Fig. 4.7c.

LDV was used to optically measure and track the traveling wave. Bidirectional

rotation of the traveling waves was obtained by reversing the order of input voltages
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Figure 4.27: Scanning LDV measurements of a B03 traveling wave in a 4 mm diam-

eter bulk PZT ring stator driven with TIE electrodes. The black dot shown traces

the traveling wave propagation both anti-clockwise (left) and clockwise (right).

(Fig. 4.27).

4.4.6.3 Traveling wave amplitude as a function of actuation voltage

The stator traveling wave amplitude as a function of actuation voltage was

measured using LDV, for a range of input values up to 80 V, which is the initial

depolarizing voltage of for the given electrode spacing (Fig. 4.28). For traveling
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Figure 4.28: Traveling wave amplitudes for stators of 4.1 mm diameter and 1 mm

tether length

wave amplitudes higher than 200 nm, the stators exhibited consistent non-linear

behavior, which is typical of PZT at larger strains.

4.4.6.4 Effect of tether compliance

The compliance of the tethers was varied by varying the tether lengths from

800 µm to 2 mm, while maintaining constant ring dimensions. Larger traveling

wave amplitudes are expected as the tether compliance increases. However, when

the tethers are too compliant, the maximum amplitude of out of plane deflection

moves away from the ring towards the tethers as shown in COMSOL simulations

of stators with tether lengths ranging from 800 µm to 2 mm (Fig. 4.29). The red
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regions in the figures correspond to highest relative out-of-plane amplitudes and

the blue regions correspond to the lowest out-of-plane amplitudes. This result was

consistent with what was observed in the experiments with traveling wave amplitude

values dropping off for stators with tether lengths larger than 1.6 mm, as shown in

Fig. 4.30. The ultimate goal is to decrease the device footprint by maximizing the

traveling wave amplitude and this result provides insight into the effects of tether

compliance on the traveling wave amplitudes, which will help in the selection and

design of more compliant tether materials.

4.5 Glass rotors

4.5.1 Fabrication of glass rotors

Glass rotors are fabricated using the micropowderblasting process described

in Chapter 2 using the process shown in Fig. 4.31. A permanent dry film resist DFR

3020 (EMS Adhesives) is used as a post to prevent the rotor from sliding off when

placed on the stator. This is clearly another benefit of having the hollow center.

4.5.2 Rotor characterization

4.5.2.1 Insufficient preload force

Rotors fabricated from 100 µm thick glass cover slips were used as test rotors.

A stator with 1 mm length was used to actuate this rotor. No motion was observed

all the way up to 80 V, although traveling waves were generated. Upon using a
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Figure 4.29: A B03 mode standing wave for stators with 4.1 mm outer diameter,

2 mm inner diameter and tether lengths of (a)800 µm, (b)1000 µm, (c)1200 µm,

(d)1400 µm, (e)1600 µm, (f)1800 µm, (h)2000 µm. Notice the maximum amplitude

location move from the ring towards the tether as the tether length increases.
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Figure 4.30: Traveling wave amplitudes for stators of 4.1 mm diameter and different

tether lengths when actuated at 80V at the corresponding B03 frequency.

micromanipulator probe to apply a small unknown normal force, the rotor vibration

was observed, suggesting insufficient rotor preload.

4.5.3 Electrostatic adhesion

A 300 µm thick glass rotor was used in this trial. This was placed on top

of the stator ring which was actuated to generate a clockwise traveling wave. At

around 40 V, the rotor started vibrating and at 50 V, it began slowly traversing in

the anti-clockwise direction. But within about 10 seconds, it stopped moving and

was stuck to the stator. Initially, this was attributed to overheating of the stator

but was later found to be stuck due to electrostatic attraction between the TIE

electrodes on top of the stator ring and the glass rotor.
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Figure 4.31: Glass rotor fabrication process flow.

Figure 4.32: Fabricated glass rotor placed on top of a stator.
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To circumvent this problem, backside of the stator was used to actuate the

stator, which solved the problem.

4.5.4 Rotor speed vs weight

The preload force applied between the stator and rotor plays a key role in

defining the torque and speed achievable by the ultrasonic micromotors. While

it is envisioned that the preload force may be applied using integrated compliant

elements, here the impact of preload force on motor performance was evaluated by

modifying the rotor weight to define the desired preload force.

The stators with the smallest tether length of 800 µm were used to actuate

glass rotors of five different weights. Glass rotors of 4 mm diameter were placed

on top of the stators with no additional pre-load. Initial rotor motion for most

rotors was observed at about 40 V, corresponding to a traveling wave amplitude of

about 200 nm. Fig. 4.33 shows that the rotor speeds are directly proportional to

the traveling wave amplitudes. It also highlights the performance of different rotor

weights.

Stable bi-directional rotor speeds of up to 30 rpm was observed. It was also

observed that, based on the self-weight of the rotor and no additional pre-load, rotors

weighing 320 mN were able to optimally transfer the momentum from the stator

motion and thus rotated the fastest for an actuation voltage of 80 V (Fig. 4.34).

Based on the weight of the rotor which spins at maximum speed, the torque

due to static friction between the stator and rotor was calculated using the static
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Figure 4.33: Characterization of the dependence of rotor speed on the traveling wave

amplitude measured by varying the actuation voltage.
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Figure 4.34: Rotor speed dependence on rotor self-weight highlighting the optimum

weight.

co-efficient of friction. The surface of PZT on the backside is coated with nickel.

This surface contacts the rotor material, which is made of glass. The static co-

efficient of friction (µ), assuming dry contact, between glass and nickel surfaces is

0.78 [106]. The micromotor stators in this work operate in B03 mode. Therefore,

the rotor contacts the surface of the stator at three points at any instant of time

(Fig. 4.35). Using the Eq. 4.4, the tangential force (Fθ) for a 320 mN rotor (mRg)

can be calculated as 83.2 mN . The torque (τ) can then be calculated using Eq. 4.6

to be 291.2 mN−mm. This is about 5 orders of magnitude higher than the thin-film

PZT motor [105], where the reported torque was 2.5 µmN −mm.

Fθ =
µmRg

3
(4.4)
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Figure 4.35: Torque calculation schematic.

τ = Fθrm (4.5)

Substituting Eq. 4.4 in Eq. 4.5 we get,

τ =
µmRg

6
(ri + ro) (4.6)
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Chapter 5: Multi-Material Integration

5.1 Overview

In this chapter, the first part focuses on the exploration of integrating bulk

PZT with non-traditional MEMS materials, which are more compliant than PZT-

5A4E. The second part reports the development of a mechanical cell-lysis microflu-

idic device involving the integration of bulk PZT-5A4E with the cyclo olefin polymer

(COP).

5.2 Motivation

As discussed in Chapter 4, longer tethers, which are more compliant, result in

a larger out-of-plane displacement on the ring for a given actuation voltage. Due

to the resolution limitations of the micropowderblasting process, the length of the

tethers is the only parameter that can be altered to modify the compliance. This

goes against our goal, which is to minimize the device footprint. One solution to

this is integrating more compliant materials with the bulk PZT ring, instead of the

current PZT tethers, which are of the same thickness as the PZT in the ring. This

would enable further miniaturization of the stators. Figure 5.1 shows the B03 mode
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Figure 5.1: Flexural modes of a 127 µm thick bulk PZT free ring with 4 mm outer

diamter and 3 mm inner diameter

of a 4 mm PZT ring with 100 µm PDMS tether.

5.3 Background

Microfabrication technologies that integrate non-traditional MEMS materials

such as polymers are desirable due to the difference in their material properties

compared to the traditional materials such as silicon, silicon dioxide, silicon nitride

etc [107]. Polymer materials such as polydimethylsiloxane (PDMS), Parylene, SU8,

Polyimide are attractive due to their low Youngs modulii as shown in Table 5.1. Pre-

vious work in integrating these materials with traditional Silicon MEMS processes

has been successful [?,109]. Wang et al [104] have used PDMS as a packaging mate-

rial for embedding bulk PZT elements. However, the integration of these materials

with bulk PZT microsystems has not been previously investigated.
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Table 5.1: Young’s modulus of some non-traditional MEMS materials compatible

with MEMS process

Material Young’s modu-

lus

Reference

PDMS Sylgard

184

360-870 kPa Re-configurable fluid circuits by PDMS

elastomer micromachining

Ecoflex 00-50 80 kPa http://www.sculpt.com/technotes/

TechSheets/TECHSHEET/Ecoflex

Parylene C 2.8 GPa http://vsiparylene.com/pdf/ Parylene-

Properties2013.pdf

SU-8 2000 2 GPa http://www.microchem.com/pdf/SU-

8- table-of- properties.pdf

PZT 5A4E 50-60 GPa http://piezo.com/prodmaterialprop.html

DFR 3020 4.5 GPa EMSadhesives.com

COP 2.6 - 3.2 GPa http://www.cidraprecisionservices.com/

life-sciences-materials-polymer-

materials-coc-cop.html
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Figure 5.2: Fabrication process for the integration of parylene with PZT.

5.4 Integration of different materials with bulk PZT

5.4.1 Integration of Parylene with bulk PZT

The Youngs modulus of parylene, although lower than that of PZT, is much

higher than that of elastomers. Parylene is an attractive material due to the simple

and conformal chemical vapor deposition (CVD) process that allows for very thin,

high aspect ratio films. Figure 5.2 describes the fabrication process flow of parylene

integration with bulk PZT. PZT micromotor ring was patterned using micropow-

derblasting process described in Chapter 2. Following thorough solvent cleaning of

PZT, a 5 µm thick parylene C film was deposited using a CVD process. The adhe-

sion of parylene is extremely sensitive to the cleanliness of the substrate. Despite

multiple attempts, good adhesion to the sidewalls of the PZT could not be obtained.

Figure 5.3 shows the SEM image of parylene coated onto bulk PZT stator ring. On

close inspection, delamination of parylene from the sidewalls can be noticed.
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Figure 5.3: SEM image of parylene coated over PZT.

5.4.2 Integration of PDMS to PZT

PDMS is an attractive material to integrate with PZT due to its low Youngs

modulus of 360-870 kPa compared to the Youngs modulus of PZT of 80 GPa.

PDMS is most commonly used for quick and easy fabrication of small and clear

channels for uid ow in microuidics and bioMEMS [110]. However, it has rarely

been used for its mechanical properties, primarily because of the lack of adequate

fabrication processes. Another advantage of using PDMS in our process is that it is

resistant to powderblasting and is compatible with the current fabrication process,

making it a commonly used masking material for powderblasting.

The PDMS used in this work was Sylgard 184 from Dow Corning with a base

to curing agent mass ratio of 10:1. The process flow for the fabrication of integrated

PDMS-PZT stator is as shown in Fig. 5.4. There are two ways in which PDMS can

be bonded to PZT surface, both of which were explored as described below.
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Figure 5.4: Fabrication process for the integration of PDMS with PZT.

• Spincoating PDMS onto PZT: In this method, PDMS was spincoated onto

bulk PZT sheet which were temporarily bonded onto a handle wafer using dry

film resist. The thickness of the PDMS film was controlled by varying the

spin speed. The PDMS layer was then cured by heating it to 100oC for 20

minutes. The PZT-PDMS bonded stucture was then released and bonded

to the substrate with the PDMS side facing the substrate. PZT was then

powderblasted to obtain the desired features, with PDMS acting as an etch

stop. The whole structure was then released in an acetone bath. In this

method, although PDMS survived the tape test, it is bonded to PZT with

Van der Waal’s forces. Acetone, which is the solvent used for releasing our

structures, caused swelling of PDMS and this resulted in PDMS delaminating

in several areas. Several adhesion promoters such as Dow Cornings P5200

were tried but did not improve the adhesion of PDMS to PZT.

• Plasma bonding: An alternate approach involved spincoating a layer of
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PDMS on a silicon wafer and post curing, peeling it off and performing an

oxygen plasma surface activation of PDMS film and PZT at an RF power

of 50 W , an oxygen pressure of 150 mTorr for 20 seconds before bringing

the two surfaces into contact. Initially, PDMS did not bond to PZT. This

was attributed to the surface roughness of bulk PZT sheets which is of the

order of 3-4 µm over a span of 500 µm. On performing a chemical-mechanical

polishing of the PZT surface using a 6 µm diamond slurry, followed by a

0.05 µm colloidal silica slurry, the surface roughness of PZT was reduced to

less than 50 nm over a span of 500 µm. Oxygen plasma surface activation

of PDMS and polished PZT resulted in a chemical bond between the two

surfaces. Following this, the PDMS-PZT bonded structure was released from

the substrate and placed upside-down on the same substate with a DFR resist

as the adhesion layer. Powderblasting was then performed to pattern the PZT

and the entire structure was released.

SEM image (Fig. 5.5) shows good adhesion at the PZT sidewall - PDMS in-

terface. This was further verified by sputtering a 500 nm of aluminum (SEM

image). Good electrical continuity was obtained across the structure, further

confirming good adhesion of PDMS at the PZT sidewall - PDMS interface.

This is a promising approach for further miniaturization of the device foot-

print.
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Figure 5.5: SEM image showing good adhesion of PDMS to PZT at the interface

after powderblasting.
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Figure 5.6: Continuous Al deposition along the sidewalls of PZT and at the interface

of PZT-PDMS.
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5.4.3 Integration of Ecoflex with bulk PZT

Ecoflex is a soft, stretchy and strong material which resembles rubber when

cured. In this work, we used Ecoflex 00-50, which has a Young’s modulus of about

80 kPa, from Smooth-On and spin coated a 30 µm thick layer of Ecoflex on PZT

surface. PZT was then powderblasted with Ecoflex being an etch-stop layer. The

adhesion of Ecoflex to PZT was poor. However, an interesting phenomenon was

observed. Ecoflex trapped alumina particles in the areas where the PZT was pow-

derblasted into precise features 1 mm ×250µm, 1 mm × 120 µm rectangular fea-

tures as shown in Fig. 5.7. This process could potentially be used to embed specific

micron-sized magnetic particles into a flexible matrix for applications such as pro-

grammable magnetic soft matter [ref].

5.4.4 Integration of SU-8 with bulk PZT

SU-8 is an attractive material because it is photopatternable in a wide range of

film thicknesses (¡1 µm to¿1 mm), but it requires carefully controlled pre- and post-

exposure bakes and has large residual stresses [111]. It is an epoxy based permanent

photoresist and exhibits excellent adhesion to PZT. However, it is not resistant to

the powderblasting. Therefore, if used with PZT, it needs to be spincoated after

patterning PZT. Considering the depth of the PZT trenches, spincoating can be

an option only after the trenches are filled with a sacrificial material and this adds

complexity to the fabrication process. We did not pursue this process further.
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Figure 5.7: Alumina particles trapped into Ecoflex after etching the PZT in the

area.
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Figure 5.8: Integration of permanent dry film resist (DFR 3020) with PZT.

5.4.5 Integration of permanent DFR with bulk PZT

Permanent dry film resists are similar to SU-8 in their material properties

but are in the form of a film which can be easily laminated over trenches. They

are available in different thicknesses starting from 10 µm. Fig 5.8 shows different

structures formed by photolithography and hard bake of a 50 µm thick permanent

dry film resist. The adhesion of DFR to PZT is not very good. The use of a

trimethoxy epoxy silane treatment and a brief plasma treatment before laminating

the DFR is shown to have improved adhesion [112], which will be explored.

5.4.6 Integration of cyclo olefin polymer (COP) with bulk PZT

COP is a commonly used material for microfluidic applications. Solvated COP,

which was formed by dissolving 70 weight percent of COP pellets (Zeonor 1420R) in

70 weight percent of decalin, was spin-coated onto PZT and cured to obtain a film

thickness of around 50 µm (Fig 5.9). COP acted as an etch stop to powderblasting
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Figure 5.9: Integration of thin film COP with PZT.

and doing a tape test proved that the adhesion was excellent at all areas of PZT

except near the sidewalls. Therefore, this material would not work for integration

with the stators. However, the fact that the adhesion was excellent opened up a

new application, an ultrasonic cell-lysis device.

5.5 Microfluidic ultrasonic cell-lysis device

5.5.1 Overview

In this section, we report a new approach to on-chip mechanical cell lysis

through the integration of a microfabricated ultrasonic horn into a thermoplas-

tic microfluidic system. Bulk PZT horns patterned by micro-powder blasting are
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seamlessly integrated into COP chips using a solvent bonding approach, enabling

the localized lysis of cells flowing through a coupled micro-channel. Unlike prior

work in ultrasonic lysis in microfluidic systems employing large off-chip piezoelec-

tric actuators, the integrated devices directly couple ultrasonic energy to the fluid,

significantly reducing power requirements and overall system costs while enhancing

lysis efficiency, opening the door to simple reagent-free cell lysis in a portable and

disposable chip.

5.5.2 Background

Cell lysis is an important step in sample preparation for the analysis of intracel-

lular components including nucleic acids and proteins. Various approaches to cell ly-

sis in microfluidic systems have been reported, including the use of chaotropic agents,

enzymes, bead beating, and freeze-thaw cycles to disrupt cell membranes [114–116].

Disruption using an ultrasonic probe, commonly performed in benchtop lysis work-

flows, has the potential to eliminate the need for additional reagents and simplify

sample preparation in portable platforms. However, the smallest commercially avail-

able ultrasonic probe cannot process volumes less than 500 µL and costs several

hundred dollars [117].

5.5.3 Description

To overcome the disadvantages of conventional ultrasonic probes, we have

developed an inexpensive and disposable on-chip mechanical lysis technology that
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takes advantage of photolithographic patterning of bulk PZT to realize miniature

ultrasonic horns suitable for microfluidic integration. The fabrication process is

as shown in Figure 5.10. Microchannels and fluidic access ports were formed in

thermoplastic chips molded from COP resin using a hot press. Bulk PZT ultrasonic

horns were fabricated from 127 m thick PZT sheets using micro-powder blasting [96].

The piezo elements are designed to operate in their first longitudinal mode. The

horns were coated with a 1 µm thick layer of parylene to insulate the electrodes,

and bonded to the bottom chip which was exposed to 30 percent decalin in ethanol

(v/v) for 2.5 minutes before dipping in ethanol and blow drying excess solvent with

N2 gas. The two COP chips were then bonded together in the hot press, sealing the

PZT elements within the microfluidic system with the horn tips suspended in an

open fluidic chamber. Fluidic interfaces for syringe pumps were created by inserting

needle at the inlet and outlet ports. The fabricated device is shown in Fig. 5.11.

5.5.4 Experimental Results

The different mode shapes of the designed ultrasnoic horn were obtained

through modal analysis using COMSOL. The resonant frequency of the ultrasonic

horns first longitudinal mode was validated experimentally, with a value within 10

percent of the modeled frequency of 159 kHz (Fig. 5.12). A sinusoidal voltage of

30 V was applied across the thickness of the piezo horn while flowing suspensions of

diluted blood at varying concentrations through the microchannel to observe lysis

of red blood cells (RBCs). As seen in Fig. 5.13, actuation at the horn resonance
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Figure 5.10: Fabrication process flow involving milling of COP chips, solvent bond-

ing them with PZT element to form an integrated on-chip mechanical lysis device.
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Figure 5.11: Fabricated device with 9 individual ultrasonic horns and fluidic interface

for introduction of cell suspensions.
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Figure 5.12: COMSOL simulation showing the first longitudinal mode at a frequency

of 159 KHz.

resulted in cavitation within the microchannel, a desirable effect that serves to in-

crease agitation and shear forces experienced by cells within the flow cell. Within

5 minutes of actuation, 95 percent of RBCs were found to lyse (Fig. 5.14). The 6

µm diameter RBC count decreased from 650 to 60 and the lysate showed a huge

increase in 1-2 µm sized lysate particles (Fig. 5.15).

5.5.5 Millimeter-scale on-chip lysis device

The proof-of-concept device was too large for practical lab-on-a-chip applica-

tions. We fabricated a millimeter scale piezohorn array with the total chip size being
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Figure 5.13: Ultrasonic horn tip (a) before, (b) during actuation. As seen in (b), ac-

tuation at resonance results in desirable cavitation in the microchannel contributing

to high shear forces and cell lysis.

Figure 5.14: Lysates obtained after actuating the PZT element with a 30 V ampli-

tude sinusoidal voltage at the first longitudinal resonant frequency for 5 minutes in

two separate devices (a,b) before lysis, and (a,b) after lysis (20 X magnification).
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Figure 5.15: Measured cell distribution before and after 5 minutes of mechanical

lysis.

Figure 5.16: Miniaturized on-chip cell-lysis device

20 mm x 20 mm as shown in Fig. which is of a practical size for dealing with sample

volumes in the range of several microliters, typical for micro total analysis systems.
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Chapter 6: Conclusion and future work

6.1 Summary and Contributions

This work, aimed at the development of bulk PZT traveling wave motors,

resulted in several significant contributions to the field of bulk PZT microsystems,

which will be described in this section.

6.1.1 Development of microfabrication process for bulk PZT microsys-

tems

A facile fabrication process for bulk PZT microsystems using dry film photore-

sist and micropowderblasting was developed. Bulk PZT and dry film photoresist

etching characteristics were evaluated as a function of process parameters and mask

dimensions using 127 µm thick PZT substrates. The resulting process simplified mi-

croscale patterning of bulk PZT compared with existing methods, with selection of

suitable etching parameter providing excellent etch rate, selectivity and anisotropy.

Two different cantilever microactuator topologies based on piezoelectric d31 and d33

mode actuation were fabricated using this process, demonstrating the capabilities of

the patterning method for applications in bulk PZT microelectromechanical systems

114



(MEMS).

The different input and output parameters involved in the experimental char-

acterization of micropowderblasting process is shown in Fig. 2.7. The summary of

this study is shown in Fig. 2.12.

6.1.2 Development of homogeneous bulk PZT actuators

A new method for achieving transverse bending mode actuation of piezoelectric

devices microfabricated from homogeneous layers of bulk lead zirconate titanate

(PZT) was developed and optimized. This technique is the first ever demonstration

of bending mode actuation, without the use of an elastic layer. This novel topology

addresses several key challenges such as fabrication complexities, unwanted damping

and thermal mismatch associated with the elastic layer employed in heterogeneous

bimorphs.

6.1.3 Development of miniaturized homogeneous bulk PZT rotary

traveling wave motor

The development of fabrication process and actuation mechanism for homoge-

neous bulk PZT microsystems enabled the development of a miniaturized bulk PZT

rotary traveling wave motor. This is the first-ever demonstration of a micromotor

which generates flexural modes without the use of an elastic layer. This is realized

through a novel actuation scheme, termed differential quadrature drive, since these

motors cannot be actuated in a conventional fashion.
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This is the first successful demonstration of millimeter-scale ring-type bulk

PZT rotary traveling wave motor, after Flynn’s attempt at in 1990. The technical

challenges involved in generating traveling waves were clearly outlined, investigated

and addressed, resulting in the development of the smallest ring-type bulk PZT

rotary traveling wave motor as per the author’s knowledge. This motor was capable

of driving loads three orders of magnitude higher than the thin-film PZT motor of

the same size-scale [105]. The summary of the stator and rotor characteristics is

given below:

Stator summary

Material: PZT 54AE

Shape: Ring

Outer diameter: 4 mm

Inner diameter: 3 mm

Thickness: 127 µm

TIE spacing: 50 µm

Excitation mode: B03

Number of tethers: 12

Tether width: 200 m

Optimum tether length: 1.6 mm

Smallest tether length: 0.8 mm

Maximum operating voltage: 80 V

Maximum traveling wave amplitude for 0.8 mm tether length stator: 1400 nm

Bi-directional traveling wave: Yes
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Rotor summary

Material: Glass

Shape: Disk

Diameter: 4 mm

Optimum weight for maximum speed under no external preload: 320 mN

Torque due to static friction between stator and rotor: 291 mN-mm

Actuation voltage for initial rotor motion: 40 V

Maximum speed: 30 rpm

Bi-directional motion: Yes

6.1.4 Multi-material integration

Further miniaturization of these micromotors, while retaining the properties

resulting from long PZT tethers, is possible by replacing the PZT tethers with more

compliant materials such as elastomers. Integration of PZT with some of these

materials were explored, with PDMS being the most promising tether material.

The summary of this work is shown in Fig. 6.1.

Lessons learned from the integration of PZT with COP, opened up a new

application in the form of an ultrasonic mechanical cell-lysis device. Unlike com-

mercially available ultrasonic probes which cannot process sample volumes below

500 µL, the developed device was capable of processing sample volumes as small as

5 µL. The summary of this work is described below:

Ultrasonic horn material: PZT 5A4E
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Figure 6.1: Summary of multi-material integration.

Lysis chip material: COP

Sample volumes: 5 - 40 µL

Integration method: Solvent bonding

Excitation mode: Longitudinal mode

Analytical longitudinal resonant frequency = 159 KHz

Experimental longitudinal resonant frequency = 174 KHz

Cells lysed: RBCs

Actuation voltage: 30 V

Lysis time: 5 minutes

6.2 Recommendations for future work

6.2.1 Intravascular imaging catheter system

Ultrasonic micromotors have garnered significant interest in the field of medi-

cal robotics, such as imaging catheters. These catheters typically employ a flexible

steel drive shaft to transfer torque from an external motor to the imaging probe,
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enabling 360 scanning around the probe circumference [118]. Ultrasonic motors are

attractive as they eliminate the need for a mechanical drive shaft for probe rotation,

significantly reducing catheter stiffness and thus enhancing steering control, im-

proving image quality, and enabling arbitrary probe positioning for high resolution

imaging of selected tissue regions. While miniature motors have been previously

demonstrated for rotation of endoscope catheter imaging probes [119–121], these

motors are too large for the proposed steerable catheter, and provide low output

torque that limits the maximum rotational scan rate. Our fabrication process allows

us to fabricate bulk PZT motors as small as 1 mm in diameter and are capable of

producing high output torques. Preliminary work integrating the bulk PZT stator

and a rotor carrying a micro-mirror for imaging into an observation head is shown

in the Fig. 6.2.

6.2.2 Friction layer

In an ultrasonic micromotor, high frequency vibrations generated in the sta-

tor are converted into macroscopic rotary motion at the stator surface, which is

transferred to the rotor through frictional contact. The motor performance can

be improved by incorporating a friction layer, which increases the area of contact

and reduces the wear of the stator surface. The thickness of the contact layer

should be minimized so that the efficiency, stall-torque and no-load speed are not

decreased [15]. Materials such as TiN , Al2O3 [122] , NiP , alumite [?] have been

employed in ultrasonic micromotors and have shown to have improved the wear
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Figure 6.2: Application of bulk PZT ultrasonic micromotor for ultrasound imag-

ing. (a) Mounting of bulk PZT stator onto a 3D printed shell. (b) Gold plated

Silicon acoustic mirror rotor mounted onto the stator. (c) Electrical connections to

the stator. (d) Schematic of an annular ultrasonic micromotor integrated into an

intravascular ultrasound catheter tip.
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Figure 6.3: Permanent dry film resist (DFR1014)

resistance of these motors. The fabrication process used in this work is compati-

ble with atomic layer deposition of alumina, which allows for several angstroms of

alumina to be deposited.

6.2.3 Stator teeth

Stator teeth are small protrusions on the stator surface which augment the

distance of the contact surface from the neutral axis of the stator, thereby enhancing

the rotor speed. Eqn 6.1 shows the relationship between height of the stator tooth

and rotor speed.

ωR =
1

r
wkω(hpzt + ht) (6.1)

where, ωR is the no-load speed of the rotor, w is the out-of-plane deflection, k

is the wave number, ω is the wave frequency, hpzt is the thickness of PZT and ht is
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Figure 6.4: Permanent dry film resist (DFR3020)

the height of the stator tooth.

Wallaschek et al., found that the material of the stator teeth has negligible

effect on the stiffness of the material and only act as an added mass. In motors

which use an elastic layer bonded to PZT, the stator teeth can be patterned in the

elastic layer itself [3]. However, for the homogeneous bulk PZT motor fabricated

using the micropowderblasting process, this is not an option. We explored two types

of permanent dry film resist materials (EMS 1014 and EMS 3020) as possible op-

tions for stator teeth. EMS 1014, which is 14 µm thick, produced high resolution

5 µm features (Fig. 6.3) while EMS 3020, which is 36 µm thick, produced 15 µm

features (Fig. 6.4). Their adhesion to PZT was pretty good, similar to SU-8. The

figure shows high resolution features of this material obtained through photolitho-

graphic patterning. However, this work was not pursued further due to the limited

availability of these materials.
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Figure 6.5: Schematic of magnetic preload.

6.2.4 Magnetic preload

Previous research has shown that torque can be increased by increasing the

normal force acting on the rotor [3]. Since the ultrasonic motors are not affected

by electromagnetic interference, magnetically preloading the rotor is an attractive

option. Since ultrasonic motors rely on frictional contact, preloading the rotor is

important to maintain intimate contact when the motor is used in applications such

as imaging catheters where the orientation of the motor is arbitrary. We explored

this by depositing steel shavings onto a glass rotor and using a neodymium magnet

under the stator. However, due to large fringing fields, the rotor was misaligned.

This problem may be solved by using a magnet as a rotor and using a magnetic

material such as iron, nickel or steel under the stator to create the magnetic force.

6.2.5 Measurement of torque

Speed-torque characterization of micromotors is required in order to apply

these motors to practical actuation tasks. Micromotor torques can be calculated

by measuring the starting acceleration and inertia of a spinning rotor [3]. In this

work, we estimated the torque due to static friction between the rotor and stator,
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using the weight of the rotor and static co-efficient of friction between the stator

and rotor materials. However, this estimation of torque typically ends up being

higher than the practical achievable torques. An alternate option to measure the

torques in these miniaturized motors is by using a micro-dynamometer such as the

one described in [123], which can apply variable mechanical loading.

6.2.6 3D printed masks for micropowderblasting

The ability to 3D print a mask eliminates the need for expensive infrastruc-

ture such as clean room, photolithography, photoresists, masks etc. Furthermore,

these masks could potentially be reused, making it even more cost-effective. High-

resolution features, up to 100 µm can be printed, which matches the resolution limits

of micropowderblasting. There is a wide choice of materials available, with varying

degrees of transparency, which makes alignment easy. Some of these materials are

sticky and can be bonded directly onto PZT surface. We explored this option using

a rubbery material called TangoBlack from Stratasys to fabricate a miniaturized

ultrasonic horn, as shown in Fig. 6.6
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Figure 6.6: 3D printed mask for micropowderblasting.
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