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Due to exponential increases in internet traffic, Active Queue Management
(AQM) has been heavily studied by numerous researchers. However, little is known
about AQM in satellite networks. A microscopic examination of queueing behavior in
satellite networks is conducted to identify problems with applying existing AQM
methods. A new AQM method is proposed to overcome the problems and it is vali-
dated using a realistic emulation environment and a mathematical model. Three prob-
lems that were discovered during the research are discussed in this dissertation.

The first problem is oscillatory queueing, which is caused by high buffering due
to Performance Enhancing Proxy (PEP) in satellite networks where congestion con-
trol after the PEP buffering does not effectively control traffic senders. Existing
AQMs that can solve this problem have tail drop queueing that results in consecutive
packet drops (global synchronization). A new AQM method called Adaptive Virtual

Queue Random Early Detection (AVQRED) is proposed to solve this problem.



The second problem is unfair bandwidth sharing caused by inaccurate measure-
ments of per-flow bandwidth usage. AVQRED is enhanced to accurately measure
per-flow bandwidth usage to solve this problem without adding much complexity to
the algorithm.

The third problem is queueing instability caused by buffer flow control where
TCP receive windows are adjusted to flow control traffic senders instead of dropping
received packets during congestion. Although buffer flow control is quite attractive to
satellite networks, queueing becomes unstable because accepting packets instead of
dropping them aggravates the congestion level. Furthermore, buffer flow control has
abrupt reductions in the TCP receive window size due to high PEP buffering causing
more instability. AVQRED with packet drop is proposed to solve this problem.

Networks with scarce bandwidth and high propagation delays can not afford to
have an unstable AQM. In this research, three problems that are caused by existing
AQMs are identified and a new AQM is proposed to solve the problems. This re-
search can be used by the satellite industry to improve gateway performances and

provide better end-user experiences.
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Chapter 1

Introduction

1.1. Internet over Satellite

Internet Protocol (IP) over Satellite (IPoS) has been commercially available for the
last few decades. Due to its high mobility, IPoS has been attractive to areas where
terrestrial services are not available as well as enterprises with geographically dis-
persed branch offices. One big barrier that [PoS has faced is its high propagation de-
lay between earth stations and satellite. A typical round trip time (RTT) for a two-
way geosynchronous satellite is around 600 msec.

Figure 1.1 illustrates the system architecture of a typical two-way IPoS system
where half of the 600 msec RTT occurs between the gateways and the satellite; the
other half occurs between the remotes and the satellite. The biggest problem with
such high propagation delay is the TCP performance. One aspect of the problem is
the TCP slow start [1] phase where it takes a long time (RTT x log, x SSTHRESH) to
reach the maximum congestion window threshold (maximum rate at which the sender
sends traffic); and the other aspect is that the maximum throughput of 65,535x 8/
RTT is too low when the TCP Window Scale option is not supported. Even when the
TCP Window Scale option is supported, unless all nodes support the option, fair
bandwidth sharing becomes an issue. TCP Spoofing or Performance Enhancing Proxy

(PEP) [2] has been practiced by most of IPoS service providers to overcome this



problem with TCP. For consistency, the term PEP will be used throughout this paper.
The basic idea behind PEP is to buffer at least one round trip worth of data by locally
acknowledging the data. Usually buffering only one round trip worth of data is not
enough because one has to account for queueing delays associated with congestion

and inroute (uplink) bandwidth allocations.
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Figure 1.1: Typical IPoS system

1.2. Overview of AQM

Active Queue Management (AQM) is an algorithm that detects and reacts to conges-
tion to avoid queue overflows. There are generally two ways to react to congestion:

signal congestion to traffic sources explicitly by setting Explicit Congestion Notifica-



tion (ECN) [3] bits; or signal congestion to traffic sources implicitly by dropping
packets. ECN is not used in our study due to the following reasons:

1. The problems that we are trying to solve are not due to packet drops be-
tween gateways and senders. In fact, not dropping packets causes more
problems as discovered in Chapter 6.

2. ECN marking after PEP (transmit queue in Figure 1.2) may seem to avoid
retransmissions over satellite and fix the queueing instability problem dis-
cussed later, but it is too late to enforce ECN bits when data are already
acknowledged without ECN bits by PEP.

In satellite networks, gateways can also indicate congestion to traffic senders by ad-
vertising smaller TCP receive windows because PEP in the gateways replaces the ac-
tual TCP hosts at the remote terminal side. This method will be referred to as buffer
flow control throughout this dissertation.

When applying AQM to satellite networks, the following need to be considered:

1. The source of congestion is different in satellite networks. i.e. In satellite
networks, congestion arises mainly due to the satellite link capacity, not
due to the processing capacity. Therefore, gateways in satellite networks
become congested when the offered load is greater than the allowed trans-
mit rate whereas gateways in terrestrial networks often become congested
when the offered load is greater than the processing capacity.

2. Monitoring and dropping packets after PEP is not a good idea because it

involves retransmissions over satellite.



3. Monitoring (with real-queue-based AQM) and marking packets before PEP
is not a good idea because the receive queue will never be congested when
the congestion bottleneck is the spacelink capacity, not the processing ca-
pacity. This is not true for virtual-queue-based [4] AQMs such as Adaptive
Virtual Queue (AVQ) [5].

AQMs with both drop and buffer flow control marking methods are examined in
this thesis. The problems and the solutions are revealed and validated through a real-
istic emulation environment constructed with the actual gateway software used in
Hughes Network Systems’ HughesNet® networks. Intuitive analysis of the problems
and the solutions is given via mathematical models. The emulation results and the

MATLAB results are compared to validate the analysis.

1.3. Statement of the Problems

The main objectives we are trying to achieve are to avoid retransmissions over satel-
lite, maintain queueing stability and avoid global synchronization (consecutive packet

drops) while preserving high link utilization.
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Figure 1.2: Gateway with PEP in satellite networks



1.3.1. Asynchronous Queueing and Global Synchronization

Given that the congested queue is the transmit queue (in Figure 1.2), when AQMs
with packet drop marking is used in satellite networks, dropping packets after PEP is
not a good idea because it involves retransmissions over satellite. Because the con-
gested queue is the transmit queue, monitoring must occur after the PEP unless the
AQM is virtual-queue-based. Because there is significant delay due to PEP buffering
between the AQM monitoring queue (transmit queue) and the marking queue (receive
queue), the monitoring queue (transmit queue) will have an oscillatory queueing be-
havior. This problem will be referred as asynchronous queueing throughout this dis-
sertation.

The asynchronous queueing is fixed by virtual-queue-based AQMs because the
monitoring queue is a virtual queue which can be placed anywhere. So, in satellite
networks, the monitoring queue can be placed at the receive queue (in Figure 1.2) to
avoid the asynchronous queueing. However, virtual-queue-based AQMs have the
global synchronization problem (consecutive packet drops) due to their tail-drop na-

ture which degrades TCP link utilization.

1.3.2. Fair Bandwidth Sharing

Because satellite networks have far scarcer bandwidth than terrestrial networks, pre-
cise fair bandwidth sharing is demanded. Several representative per-flow sensitive
AQMs are examined and none of them is found to compute a precise enough fair
bandwidth share for each flow. The solution to the previous problem (asynchronous
queueing and global synchronization) is enhanced to provide a far more precise fair

bandwidth share to each of the TCP and non-TCP flows.



1.3.3. Buffer Flow Control Instability

When AQMs with buffer flow control marking method are applied to satellite net-
works, the congested queue becomes unstable due to the following two phenomena:
1.  When a received packet is marked due to congestion, it is still accepted to
the congested queue aggravating the congestion.
2. When the gateway is congested, any new TCP connections cause initial
bursts until their TCP receive windows are adjusted to small enough win-

dows and the adjustments can take a long time due to big PEP buffers.

1.4. Contributions

First, we have found the following unique properties of satellite networks:
1. Congestion arises due to the satellite link capacity not the processing ca-
pacity.
2. There is high buffering between the traffic sources and the congested queue
due to PEP.
3. There is a limitation on where to drop packets because dropping packets af-
ter PEP involves retransmissions over satellite.
Second, we have found the following problems when applying existing AQMs to
satellite networks and provided the solutions for them:
1.  Real-queue-based AQMs have the asynchronous queueing problem due to
its inability to synchronize with traffic senders, and virtual-queue-based

AQMs have the global synchronization problem due to their tail-drop na-

ture.



2. Existing per-flow sensitive AQMs do not have precise enough fair band-
width distributions.

3. AQMs with buffer flow control marking have a queueing stability problem
because they accept packets instead of dropping them during congestion
and new connections have bursty startups.

Third, we have constructed an emulation environment with the real gateway
software used in Hughes Network Systems’ HughesNet® networks and a traffic gen-
erator called Spirent to produce far more realistic traffic and performance measure-
ments than simulations. To provide intuitive illustrations of the first and the third
problems, we have constructed mathematical models which agreed with the emula-

tions results.

1.5. Dissertation Organization

The arrangement of this dissertation is as follows: Chapter 2 provides the overview of
PEP and existing AQMs, and justifies the selection of the AQMs that are compared
with the solutions. Chapter 3 provides the emulation framework and parameter set-
tings. Chapter 4 discusses the first problem (asynchronous queueing and global syn-
chronization) and its solution. The emulation results and the MATLAB results are
provided. Chapter 5 discusses the second problem (fair bandwidth sharing) and its
solution. The emulation results are provided. Chapter 6 discusses the third problem
(buffer flow control instability) and its solution. The emulation results and the

MATLAB results are provided. Finally, chapter 7 concludes this dissertation.



Chapter 2

Background and Related Work

2.1. Overview of PEP

This section illustrates PEP and provides the limitations on active queue management
that it imposes in satellite networks. PEP enhances the TCP performance by locally
acknowledging one+ round trip worth of TCP data at the gateway over terrestrial
links. Although there can be many different flavors of PEP, the core idea of buffering

up one+ round trip worth of TCP data remains the same.
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Figure 2.1: PEP flows
Figure 2.1 illustrates the end-to-end PEP flows in a two-way satellite network,
and Figure 2.2 is the ladder diagram of a simple HTTP transaction over PEP. Note
that ACK(s) for Data 1 ~ Data 2 could be earlier. To better visualize PEP in a gate-

way, Figure 1.2 is provided. PEP is drawn in a typical gateway structure where PEP



processes packets after the receive queue and the transmit queue resides after PEP. In

Figure 1.2, the congested queue is the transmit queue.
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Figure 2.2: HTTP transaction over PEP

It is common that PEP is also implemented in remote terminals to gain higher
upload speeds and to keep the implementation symmetric, but congestion avoidance
in the upload direction (from remote terminals to internet) is not discussed in this dis-

sertation as it involves different congestion paths.

2.2. Overview AQM Methods

This section provides an overview of eight AQM methods and justifies the selections
of the AQM methods that are compared with our solutions, AVQRED [6][7][8] and
PFAVQRED [9]. The eight AQM methods are Random Early Detection [10], Stabi-
lized Random Early Drop [11], Yellow [12], CHOKe [13], VRC [14], Adaptive Vir-

tual Queue [5], VQ-RED [15] and REDFC [16]. In summary, RED and AVQ are se-



lected for the asynchronous queueing and global synchronization problems. RED,
AVQ and SRED are selected for the fair bandwidth sharing problem. And RED and

AVQRED are selected for the buffer flow control instability problem.

2.2.1. RED

The RED [10] algorithm computes the marking probability when the weighted queue
size falls between miny and max, parameters. The marking probability becomes
higher as the weighted queue size gets closer to max;, (becomes 1 if it is greater than
maxy), and it also becomes higher as the distance between each marking gets larger.
Parameter tuning is required for w, and max,. w, controls the weighted average queue
size which then determines how quickly the algorithm reacts to congestion. Reacting
too quickly or too slowly may result in queueing instability. max, is a scaling factor

for the marking probability which also controls how quickly the algorithm reacts to

congestion.
Initialization:
avg = 0
count = -1

for each packet arrival
if the queue is nonempty

avg =(l-wg)avg+wg.g
else

m = f(time—g time)

avg = (l-wg) "avg

if ming, <= avg < maxy
increment count
calculate probability pa:
Py = maxg(avg-minth) / (maxi—ming)
Pa = P / (1-count.py)
with probability pa:
mark the arriving packet
count = 0
else if maxy, <= avg
mark the arriving packet
count = 0

else count -1

10



when queue becomes empty
g time = time

RED algorithm
RED was selected for the comparisons to show the queueing instability problem
of real-queue-based AQMs. Although choosing the best real-queue-based AQM for
the comparisons is not within the scope of this research, one of our previous studies
[8] revealed that RED performed the best amongst RED, BLUE [17] and PI [18].

Therefore, RED was selected to represent the real-queue-based AQM class.

2.2.2. SRED

Stabilized Random Early Drop (SRED) [11] is a real-queue-based AQM which main-
tains a list of M recently seen flows called zombies. The intuition is to identify misbe-
having flows by randomly choosing a flow from the zombie list and comparing it with
the received packet. When the packet matches any of the flows, the algorithm penal-
izes the packet by applying a higher drop probability hoping that misbehaving flows
will have more hits.

Hit(r) 0 if no hit (match not found in zombies)
1 =

1 if hit (match found in zombies)
P(t)y=(1-a)-P(t-D)+a- Hit(t), 0<a<l

Do if%B£q<B
(q) = 1 iflp<g<lp
psred q 4 pmax 6 —q 3
0 HOSq<%B

pnewﬁsred (q) = pred (q)

) - o y Hit(t)
Pip = P nnn(h(256x]%¢D2J (1+ P(?) j
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Hit(t)
P(1)
P-qp 15 the drop probability proposed by Ott et al [11] and ppew -4p 1s our modified

pnewﬁzap = pnewﬁsred X {1 +

drop probability. The original p.q is also slightly modified and named as pyew sred t0
produce smoother transitions of the drop probability where p,., is the RED drop prob-

ability, p,, described in section 2.2.1. Because the second term of the right hand side

1

of poup, min| |, —
’ ( (256 P(1))°

j, can only lower the drop probability and does not help

penalizing misbehaving flows, it was removed (or the 256 part was changed to 1) in
the modified SRED drop probability, piew -qp. Furthermore, the authors of SRED
stated that the choice of 256 in p.,, was arbitrary, and our preliminary emulation re-
sults (which are not shown) with p.,, produced worse results than pe, -4,. Therefore,
Drnew zap Was used throughout the emulations.

SRED was selected to compare the fairness metric as it is per-flow sensitive.

2.2.3. Yellow

Yellow [12] is a real-queue-based AQM method which is similar to BLUE [17]. The
main idea is to increase or decrease the packet marking probability using the load fac-
tor which is the ratio between the offered load and the available virtual capacity. The

available virtual capacity, c’, is calculated by the following equations:

.a .
max | ODLF ,A forg>gq,,
(a_l)'q-i_qref ‘
f(q)= F,
V' Py for0<g<gq,,
(ﬂ_l)'q-i_qref .
c(q@)=f(q)-c
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. Offered load
c'(q)

Variables:

* ODLF (Queue drain limit factor) = Minimum utilization factor.

*  g.= Target queue length.

* o= Parameter that controls the reaction speed when congestion is detected (¢
> g,or). The bigger this value is, the faster and less stable the algorithm be-
comes.

* [ =Parameter that controls the reaction speed when congestion is not de-
tected (0 < g < grep).
*  y=Target utilization factor that ranges up to 1.0.

if (z >= 1 + delta)
if ((now - last update) > freeze time)
pmark = pmark + d*Z
last update = now
if (z < 1)
if ((now - last update) > freeze time)

Pnark = Pmark — d/z
last update = now

Yellow algorithm

Yellow was not selected for the comparisons because it is also a real-queue-
based AQM which is not any better than RED when applied to satellite networks due
to the asynchronous queueing behavior described in section 4.1. In fact, some emula-
tion results revealed that its freeze time adds more delays between the AQM

queue and the traffic senders aggravating the asynchronous queueing effect.

2.2.4. CHOKe

CHOKe [13] is a real-queue-based AQM which is very similar to RED except it pe-
nalizes a flow (which is the flow of a randomly chosen packet from the congested
queue) if the received packet belongs to the same flow. If the received packet belongs

to the flow, both the received packet and the packet in the congested queue are
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dropped. Otherwise, the RED drop probability is applied to the received packet. The
objective of CHOKe is to find misbehaving flows by comparing the received packet

with a randomly chosen packet from the congested queue and penalize them.

For each arrival packet:
if (avg g size < ming)
admit pkt rx
else if (ming, <= avg_g size <= maxy)
pick pkt rand from the congested Q
if (pkt rx.conn == pkt rand.conn)
drop pkt rx and pkt rand
else if (avg g size <= max)
drop pkt rx with RED drop prob, pa
else
drop pkt rx

Choke algorithm
There are two problems with CHOKe when applying it to satellite networks. The
first problem is that we can not drop randomly chosen packets in the congested queue
because dropping them causes retransmissions over satellite. The second problem is
that dropping PEP packets can penalize well-behaving TCP flows because one PEP
transport layer flow can contain multiple TCP flows. Therefore, CHOKe was not se-

lected for our comparisons.

2.2.5. VRC

Virtual Rate Control (VRC) [14] is a real-queue-based AQM that maintains a virtual
target rate and computes the marking probability which is derived from the difference
between the input rate and the virtual target rate. The reason for deriving the marking
probability using the virtual target rate instead of the actual target rate is that the input

rate does not converge to the actual target rate. The reason why it doesn’t converge is
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that the input rate exceeds the target rate when the marking probability is directly de-
rived from the difference between them.

p) =la(x(t)-x. ()], a>0, []"=max(min(, 1), 0)

where p(?) is the drop probability, x(?) is the input rate, and x,(2) is the target rate. p(?)
starts dropping packets only when the input rate is greater than the target rate and the
result is queueing instability and overflows. Therefore, the virtual target rate is used
in the actual VRC algorithm. The virtual target rate is slightly lower than the actual
target rate and adjusted according to the difference between the input rate and the ac-

tual target rate.

For every Ts sampling interval
/* Calculate the target rate x, */

Xy = C+y * (ar - Q)
/* calculate the virtual target rate x, */
Ax, = Ax, + B * (x - x;)

Xy = X, — Ax,

/* calculate the marking probability */
P = * (x - Xy)

VRC algorithm
VRC was not selected for our comparisons because there is no need to estimate
the target rate when the output (spacelink) capacity is well-known. Furthermore, start
marking packets before the full utilization (by introducing a virtual target rate) would
result in lower link utilization, and the RED algorithm has more intuitive global syn-

chronization avoidance.
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2.2.6. AVQ

Gibbens-Kelly Virtual Queue (GKVQ) [4] is a virtual-queue-based AQM which
maintains a virtual queue whose service rate is the desired link utilization. When an
incoming packet exceeds the virtual queue limit, it drops or marks the packet. Adap-
tive Virtual Queue (AVQ) [5] maintains the same virtual queue whose capacity is dy-
namically adjusted. The virtual capacity is adjusted by adding the number of bytes
that could have been serviced between the last and the current packets minus the
bytes that were just received. Configured parameters are y (target utilization), C (real

capacity), and B (virtual queue limit).

At each packet arrival epoch do
/* Update Virtual Queue Size */
VQ = max(VQ - C" (t - s), 0)
If VO + b > B
Mark or drop packet in the real queue
else
/* Update Virtual Queue Size */
VQ = VQ + b

Endif
/* Update Virtual Capacity */
C’ = max(min (C’+a*y*C* (t-s),C) - a*b, 0)

s = t /* Update last packet arrival time */
Variables:
B = buffer size
s = arrival time of previous packet
t = current time
b = number of bytes in current packet
VQ = number of bytes currently in the virtual queue

C’ = virtual capacity
C = actual capacity

AVQ algorithm
AVQ was selected for our comparisons because the algorithm builds a virtual

queue which can solve the asynchronous queueing problem (described in section 4.1).
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It also provides the target utilization (desired link utilization, ») which fits well for

satellite networks where the spacelink capacity is known and static.

2.2.7. VQ-RED

VQ-RED [15] is a virtual-queue-based AQM that aims at improving the fairness of
RED by creating N virtual queues and applying a RED-like algorithm to each virtual

queue.

For every period:
/* estimate average rate */
rate = rate*0.1 + avg rate per conn*0.9

For each inactivity period:
Delete inactive vg

For each arrival packet (pkt):
find (or create) flow 1 that pkt belongs to
if (vglil].length > maxiy)
drop
else if (vgl[i]l.length < ming,)
vg[i].length += pkt.lenght

else
/* compute RED-like marking probability */
p = (vgli]l.length — ming)/ (maxy - ming)

if (!dropped)
vg[i].length += pkt.length

vg[i].length -= (now - vqgl[i].last) * rate
vg[i].length = max(vgl[i].length, 0.0)
vgl[i].last = now

VQ-RED algorithm
The main difference between our solutions (AVQRED and PFAVQRED) and
VQ-RED is that VQ-RED does not have the target utilization and it reacts to the con-
gestion level of each virtual queue, whereas AVQRED and PFAVQRED control the
congestion level of the aggregate traffic via imposing the target utilization on a single

virtual queue. This difference makes VQ-RED very sensitive to the accuracy level of
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the number of flows estimate because an accurate per-flow rate relies on an accurate
number of flows estimate. Furthermore, VQ-RED can have unnecessary packet drops.
For example, if the link capacity is 1 Mbps and there are only two flows with 100
Kbps and 50 Kbps each, then the average rate per flow will be 75 Kbps. The virtual
queue for the flow with 100 Kbps will grow and eventually cause packet drops al-
though the aggregate utilization is well under the capacity. Most importantly, config-
uring ming, and max,, is not intuitive because they depend on the number of flows.
The following equation depicts this point:
pkts =min, xn+(1- p)x(max,—min, )xn

where pkts is the total number of packets accepted to the real queue, n is the total
number flows, miny ~ max,, is the congestion region for each virtual queue, and p is
the overall marking probability. This equation implies that having a static congestion
region (miny ~ max,;,) for each virtual queue makes the real queue unstable when n
varies.

VQ-RED was not selected for our comparisons due to the problems mentioned

above.

2.2.8. REDFC

Random Early Detection Flow Control (REDFC) [16] is a real-queue-based AQM
designed for satellite networks. The main idea is to apply the RED algorithm to the
transmission rate. It controls the transmission rate by using the RED marking prob-
ability, pa.

for each arrival packet
calculate the avg g size
if avg g size < maxe
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Transmit the packet
else i1f mingy,<=avg g size<=maxy
calculate RED mark probability, pa
with pa:
transmit the packet
if the packet is not transmitted
wait for time T, then try again

REDFC algorithm

Although REDFC can avoid packet drops and retransmissions over satellite, it

was not selected for our comparisons due to the following problems:

e There is no nice retransmissions timeout, 7, that can avoid duplicate retrans-
missions from PEP or TCP. When there are many duplicate retransmissions,
the transmit queue can be filled with retransmitted packets and the actual
end-user throughputs can degrade significantly while the gateway utilization
is high.

* There can be high buffering in the remote terminals because delaying the
transmissions causes holes in a sequence of PEP or TCP transmissions which
cause the resequencing queue to grow in the remote terminals.

¢ [f'the remote terminals do not maintain resequencing queue, delaying trans-
missions can trigger unnecessary retransmission logic (such as transmitting

SACKs) in the remote terminals.

2.3. Overview of AQM Marking Methods

Two types of marking method are used with the AQM methods selected: packet drop
marking and buffer flow control marking [19]. Marking packets with ECN bits is not

considered due to the reasons stated in section 1.2. Therefore, when a packet is
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marked, either the PEP buffers will shrink to advertise smaller TCP windows to the

sender or the packet will be dropped to trigger congestion avoidance at the sender.

< Data 1
ACK 1 (W=16000) .
Congestion detected W < Data 2
revwind= MIN(Buffer x decr, max rcvwind) ACK 2 (W=10000)
>
No congestion detected P Data 3
revwind= MIN(PEP buffer + incr, max rcvwing) N ACK 3 (W=11460)
>
No congestion detected P Data 4
revwina= MIN(PEP buffer + incr, max revwind) D ACK 4 (W=12920)
>
Congestion detected . Data 5
revwind= MIN(Buffer x decr, max revwinad) = ACK 5 (W=8075)
>
No congestion detected P Data 6
revwina= MIN(PEP buffer + incr. max rcvwinad) N ACK 6 (W=9535)
>
No congestion detected P Data 7
revwina= MIN(PEP buffer + incr, max rcvwind) D
Receiver
(Gateway) Sender

Figure 2.3: Buffer flow control packet marking

Figure 2.3 illustrates how marking (or unmarking) packets with buffer flow con-
trol causes the sender to slow down (or speed up) the transmissions. When a packet is
marked due to congestion, the PEP buffers are reduced by a configurable amount and
the reduction ends up reducing the TCP receive window. When a packet is not
marked, the PEP buffers are increased by a configurable amount and the TCP receive
window is re-opened gradually allowing the sender to send more data. To avoid oscil-
latory behavior of buffer adjustments, a configurable freeze time (usually an average
RTT) is applied to each increment of the buffers. The intuition behind decrementing
(or incrementing) the PEP buffers is to have the buffer adjustments indirectly cause
the senders to behave as if they are in congestion avoidance (or recovery) phase de-
scribed in RFC 2001 [1], RFC 2581 [20] and [21]. The following equation summa-
rizes the buffer flow control mechanism where I is the advertised TCP receive win-
dow, B is the available PEP buffers and MaxRcvWind is the maximum TCP receive

window.
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2.1)

i

MIN(B,_, xdecr, MaxRcvWind) if congestion is detected
MIN(B,_, +incr, MaxRcvWind) if congestion is not detected

decr and incr are configurable parameters that control the adjustments of the
PEP buffers. Our emulation results showed that reducing the buffer limit by 1/2 upon
detecting congestion results in very oscillatory queueing behavior because 1/2 of the
PEP buffers is quite a lot (unlike 1/2 of the maximum TCP cwnd, 1/2 x64 KB). For
our emulations, we explored several values of decr to find the best setting(s).

Figure 2.4 illustrates how dropping (or not dropping) packets causes the TCP
sender to slow down (or speed up) the transmissions. The assumption is that the send-
ers honor the congestion control method described in RFC 2001 [1], RFC 2581 [20]
and [21]. When a packet is dropped due to congestion, three duplicate ACKs from the
receiver (gateway) cause a fast retransmission from the sender and a reduction in the
congestion window by 1/2. Whenever an ACK for new data is received, the conges-
tion window is incremented by one segment (or by a configurable amount).

Data 1

ACK 1
Drop Data 2
Data 3

A

A A

ACK 1 (Duplicate #1) .
P Data 4
ACK 1 (Duplicate #2) .
P Data 5
ACK 1 (Duplicate #3) . Congestion detected
Data 2 (Retx) cwnd = MAX(cwnd / 2, 2xMSS)
ACK 5 . No congestion detected
Data 6 cwnd = MIN(cwd + MSS, ssthresh)
ACK 6 . No congestion detected
cwnd = MIN(cwd + MSS, ssthresh)
Receiver
(Gateway) Sender

Figure 2.4: Packet drop marking and TCP congestion avoidance
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Please note that Figure 2.4 is just one scenario that causes a retransmission. Other
scenarios such as timeouts and SACKSs are not described in this dissertation as the

main idea of how senders react to congestion remains the same.

2.4. Summary

Table 2.1 summarizes the existing AQM methods we discussed in section 2.2. Three
of them are selected for the comparisons with our solutions and the reasons for not
selecting the others are provided in the corresponding subsection. The fairness metric
will also be compared with the optimal share of the bandwidth to better visualize the

fairness of each algorithm.

Table 2.1: Existing AQM method summary

AQM method Queue type Flow aware Selected
RED Real queue No Yes
SRED Real queue Yes Yes
Yellow Real queue No No
CHOKe Real queue Yes No
VRC Real queue No No
AVQ Virtual queue No Yes
VQ-RED Virtual queue Yes No
REDFC Real queue No No

For the asynchronous queueing, global synchronization and fair bandwidth shar-
ing problems, the above selected AQMs are used with packet drop marking method.
For the buffer flow control instability problem, only RED and AVQ will be used with
both packet drop and buffer flow control marking methods. The reason why SRED
was not used for the buffer flow control problem is that the problem is not related to

the fairness of bandwidth usage.
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Chapter 3

Emulation Framework

3.1. Components and Traffic

The actual gateway software, IP Gateway, from Hughes Network Systems’ Hughes-
Net® networks was used to evaluate the AQM methods. The three AQM methods
were implemented according to Table 2.1. The emulation environment was con-
structed using two IP Gateways (one serves as the actual IP Gateway that faces the
internet and the other serves as the satellite terminals for N different users) and a traf-
fic generator called Spirent. A high level illustration of the gateway internal structures
is shown in Figure 1.2. Both server and client IP Gateways have the same PEP code
and some modifications to the software were done to resolve address translation and
routing issues created by the client IP Gateway. Details of the modifications are not
discussed here as they are not relevant to the interest of this research. Spirent was
used to best emulate real life traffic characteristics.

Figure 3.1 illustrates the connectivity of the emulation setup. All links are loss-
less and 100 Mbps full-duplex. A delay simulator was inserted between the two gate-
ways to simulate satellite delays with uniform distribution between 300 ~ 400 msec
each way. The round trip time (RTT) between the client IP Gateway and the Spirent
is 4 msec, the RTT between the client [P Gateway and the server IP Gateway is 600 ~

800 msec, and the RTT between the server IP Gateway and the Spirent is 40 ~ 80
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msec resulting in an end to end RTT of 644 ~ 884 msec. 400' HTTP connections

were generated between 200 clients and 60 servers with the following attributes.

1.

At the startup, there are 20 new HTTP connections every 5 seconds with 5
second sleep time between each ramp up until 400 (500 for the fair band-
width sharing problem) HTTP connections are established.
When a connection is closed, a new connection is created to fill the gap to
maintain 400 (500 for the fair bandwidth sharing problem) HTTP connec-
tions.
Each web page contains 250 Kbytes ~ 550 Kbytes of data with 10 seconds
user think time.
The maximum download speed of each TCP connection is 5 Mbps.
Average birth and death rate of the connections is about 20 (25 for the fair
bandwidth sharing problem) connections per second (approximately 5 % of
the total population).

300 ~ 400 300 ~ 400

msec msed

Clien! IP Cateway Server [P Gateway

Satellite
Delay

Simulator
4 msec 40 ~ 80 msec

Figure 3.1: Emulation flow

1500 connections were emulated for the fair bandwidth sharing problem.
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To introduce misbehaving flows for the fair bandwidth sharing problem, three
UDP flows were also generated with 80 Kbps, 160 Kbps and 320 Kbps constant bit

rates (CBRs).

3.2. Evaluation Methodologies

The following performance metrics were used for validation:

1. Link utilization — The purpose of this metric is to make sure the proposed
solution produces comparable link utilizations.

2. Queue size — The purpose of this metric is to compare queue size and
queueing stability of each AQM method.

3. Packet drop — The purpose of this metric is to compare consecutive packet
drops of each AQM method.

4. Per-flow throughput — The purpose of this metric is to compare fair sharing
of the bandwidth. This metric is measured only for the fair bandwidth shar-
ing problem.

The measurements were taken after all 400 (500 for the fair bandwidth sharing

problem) HTTP connections are established to best emulate a loaded scenario.

3.3. Parameter Settings

The following system parameters were used throughout the emulations:
¢ 20 Mbps downlink bandwidth (gateway to terminal direction).
* 1 Mbps uplink bandwidth (terminal to gateway direction). This link is as-
sumed to be non-congested link because the application is downlink-oriented

web browsing.
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* 5 msec transmit rate regulator latency in the server IP Gateway.

e Target transmit queueing delay of 33 msec.

* Average packet size is 1400 bytes for the downlink direction.

For RED, there are four parameters to configure: miny,, max;,, max,, and w,. 60
and 120 are configured for min, and max,, respectively. miny, is set slightly higher
than 59 (= 20 Mbps / 8 / 1400 x0.033 from the system parameters) to ensure full
utilization of 20 Mbps bandwidth. max;, is set to at least twice miny, as [10] recom-
mends. Several permutations of max,, and w, were emulated as these parameters need
to be fine-tuned according to traffic characteristics as shown in Table 3.1.

For SRED, there are three more parameters than RED. The low-pass filter, ¢, for
estimating the hit rate, P(t), is set to 0.1 and setting it to a different value would not
make a big difference in results because the dynamics of our traffic model are not
drastic (only 5% of the total population are changing). The number of zombies, M,
was set to 500 since there are about 500 flows. The number of lookups to find a hit in
the zombie list was set to 1 and 50. The other parameters that are RED specific were
set to the values that produced the best emulation results with RED. i.e. min,, = 60,
maxy, =120, w, = 0.1, max, = 0.7.

For AVQ, the target utilization, y, is set to 100 %, and the buffer size, B, is set to
123,750 bytes where 123,750 = 82,500 (= 20 Mbps / 8 x 0.033) + 82,500 / 2. Half of
the buffer required for 20 Mbps (82,500 / 2) is added to ensure full utilization. The «
is set to an arbitrary number as our optimal virtual capacity is pre-determined.

For buffer flow control (see equation (2.1)), there are three parameters to config-

ure besides the AQM specific parameters: decr, incr and RTT. RTT is set to 200 msec
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(160 msec + fuzzy factor, obtained from the system attributes described above), and
incr is set to only 1% of the available PEP buffers to keep the recovery from conges-
tion slow and conservative. Several permutations of decr were experimented to fine-
tune it as we found that applying the 1/2 window reduction rule from RFC 2001 [1],
RFC 2581 [20] and [21] is not applicable to high buffering systems. 97%, 95%, 90%,
80% and 50% were experimented for decr.

Parameters for AVQRED are discussed in the next chapter where its algorithm is

described.
Table 3.1: AQM Parameters

AQM Parameters

miny, max, Wy max,
RED 1 60 120 0.02 0.5
RED 2 60 120 0.05 0.7
RED 3 60 120 0.10 0.5
RED 4 60 120 0.10 0.7

RED a M Lookups
SRED 1 RED 4 0.1 500 1
SRED 2 RED 4 0.1 500 50

Y B
AVQ 100% 123,750 Bytes

Table 3.2: Buffer flow control parameters
Buffer FC AQMs Parameters
decr incr RTT [msec]

RED FC 1 0.97 0.01 x Buffer 200
RED FC2 0.95 0.01 x Buffer 200
RED FC 3 0.90 0.01 x Buffer 200
RED FC 4 0.80 0.01 x Buffer 200
RED FC 5 0.50 0.01 x Buffer 200
AVQRED FC 1 0.97 0.01 x Buffer 200
AVQRED FC 2 0.95 0.01 x Buffer 200
AVQRED FC 3 0.90 0.01 x Buffer 200
AVQRED FC 4 0.80 0.01 x Buffer 200
AVQRED FC 5 0.50 0.01 x Buffer 200
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Chapter 4
Asynchronous Queueing and Global Synchroniza-

tion

4.1. Problems

The problem with real-queue-based AQMs such as RED in satellite networks is syn-
chronization between the monitored queue and the traffic senders. Synchronizing
them is very difficult due to the high buffering that occurs between them. i.e. Drop-
ping a packet at the receive queue due to congestion in the transmit queue does not
immediately reduce the congestion level of the transmit queue resulting in unwanted
packet drops until the PEP buffers are all transmitted. These packet drops then result
in less queue occupancy until senders’ congestion windows evolve causing oscillatory
queueing behavior. Figure 4.1 illustrates how an asynchronous queueing can occur.
Note that the packets are consecutively dropped from T1 through T6 because the
transmit queue is always occupied by the packets from the PEP layer. After PEP
buffers are all used up, the transmit queue becomes almost empty and the PEP starts
building up its buffers at T7. Until there are enough PEP buffers, the transmit queue
does not drop packets at the receive queue causing oscillatory queueing behavior.

The problem with virtual-queue-based AQMs such as AVQ is global synchroni-

zation where consecutive packet drops occur due to their tail-drop nature of packet
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marking. When packets are dropped consecutively, multiple TCP connections will
react to the drops simultaneously resulting in under-utilization amongst multiple TCP

connections.

Receive Queus

Drap
Crap
Drop
Drop
Drop
Drop

BRRRRRRARI

i

— Drap

Figure 4.1: Asynchronous Queueing

This problem is severer with RED due to its oscillatory queueing behavior.
When the transmit queue congestion level and the senders’ congestion windows are
not synchronized, the RED region will likely be exceeded resulting in tail-drop be-

havior.

4.2. Solution

A new AQM algorithm, Adaptive Virtual Queue Random Early Detection [6][7][8],
is proposed to address the asynchronous queueing and the global synchronization

problems.

for each packet arrival

/* Calculate virtual queue size */

d <- curr time - last measure

if d>1
/* Compute actual output rate in bps */
tx bytes <- bytes transmitted
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output rate <- (tx bytes - prev tx bytes)* 8000 / &
prev_tx bytes <- tx bytes

/* Smoothen virtual capacity */
v_capacity <- a * output rate + (1.0 - a) * v capacity

/* Update virtual capacity */
v_capacity <- MAX (MIN (max_capacity,
v_capacity),min_capacity)

/* # of bytes that could have been transmitted */
serviced bytes <- v _capacity / 1000 / 8 * &

if VQ > serviced bytes
VQ <- VQ - serviced bytes
else
VQ <= 0
g time <- curr time

last measure <- curr time
g size <- VQ / AvgPktSize

/* Feed VQ size to the RED algorithm */
if ming < g size < maxgy
count <- count + 1
Pr <- (g size - ming) / (Maxe, — ming)
Pa <- pa / (1 - count * py)
With probability pa:
Mark the arriving packet
count <- 0
else if maxy <= g size
Mark the arriving packet
count <- 0
else
count <- -1
VO <= VQ + Db

AVQRED algorithm

The AVQRED algorithm constructs a virtual queue and feeds the virtual queue

size to the RED algorithm instead of feeding the weighted average queue size to it.

By doing so, AVQRED essentially moves the transmit queue to the receive queue and

produces better synchronization between the transmit queue and the traffic sources.

AVQRED reshapes the incoming traffic according to the desired link utilization be-

cause the RED algorithm reacts to the congestion level of the virtual queue which is
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serviced by the desired link utilization. The AVQRED Algorithm above highlights
the AVQRED parameters in bold. Note that w, and max, are no longer in the algo-
rithm because their functionalities are replaced by the desired link utilization in
AVQRED. «is a low-pass filter for the actual capacity calculation. min_capacity and
max_capacity define the range of processing capacity. For satellite networks where
processing capacity is assumed to be greater than spacelink capacity, min_capacity
should be equal to max_capacity and « can be any value.

AVQRED solves the asynchronous queueing problem by both monitoring and
marking at the receive queue. Monitoring and marking at the receive queue is possi-
ble because AVQRED constructs a virtual queue which can be placed anywhere.

AVQRED solves the global synchronization problem by preserving the global

synchronization avoidance of the RED algorithm.

4.2.1. Parameter Settings

For our emulations, 60 and 120 are chosen for min,, and max,, respectively with the
same reason as RED; « is set to an arbitrary number as our optimal virtual capacity is
pre-determined. Target utilization is set to 100 % by setting min_capacity =

max_capacity =20 Mbps.

4.3. Emulation Results

RED, AVQ and AVQRED were emulated for 20 minutes with the parameter settings
specified in Table 3.1 and section 4.2.1. Link utilization, queue size and packet drop
metrics were measured once every 100 msec and the following subsections discuss

the results for each metric. For link utilization and queue size histograms, only RED 4
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out of the four RED settings is presented as it performed the best amongst the four

RED settings.

4.3.1. Link Utilization

As Figure 4.2, Figure 4.3, and Table 4.1 show, the utilization of AVQRED is compa-
rable with the utilization of RED. Although there is about 0.5% loss in the mean utili-
zation, there is about 56% gain in the stability (the standard deviation).
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Figure 4.2: RED 4 link utilization
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Figure 4.3: AVQ and AVQRED link utilzation

Utilization loss and stability gain can be explained by the queueing behavior of

RED and AVQRED which is discussed more in the next section. Basically,
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AVQRED maintains just enough data to fill up the 20 Mbps pipe whereas RED’s
utilization is oscillatory and unstable due to its asynchronous queueing behavior. Fur-
thermore, RED’s high utilization and low stability indicate that it tends to accept

more data than the gateway capacity.

Table 4.1: Link utilization mean and standard deviation

AQM Mean [Mbps] Standard Deviation [Kbps]

RED 1 19.8 135
RED 2 19.8 117
RED 3 19.8 108
RED 4 19.8 107
AVQ 19.5 49
AVQRED 19.7 47

Although AVQ’s algorithm is similar to AVQRED's in terms of approximating
the virtual capacity, its utilization is lower than AVQRED. This result is consistent
with the fact that AVQ has more consecutive packet drops because consecutive
packet drops cause multiple senders to shrink their congestion windows synchro-

nously resulting in lower link utilization.

4.3.2. Queue Size

Figure 4.4, Figure 4.5 and Figure 4.6 show the transmit queue size of RED, AVQ and
AVQRED. The queue size of RED is higher than AVQ and AVQRED because of its
tendency to exceed the RED region (60 ~ 120) due to its oscillatory queueing behav-
ior. To provide a better visualization of this point, Figure 4.7 and Figure 4.8 magnify
Figure 4.4 and Figure 4.6 between 50" and 150™ seconds (500" ~ 1500™ points ac-
cording to the x axis’ scale). Table 4.2 summarizes mean and standard deviation of

the queue size results.
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Figure 4.4: RED 4 transmit queue size
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Figure 4.5: AVQ transmit queue size
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Figure 4.6: AVQRED transmit queue size
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Figure 4.7: RED 4 transmit queue size (50"~100™ seconds)
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Figure 4.8: AVQRED transmit queue size (50" ~ 100" seconds)

Table 4.2: Queue size mean and standard deviation

AQM Mean [packets] Standard Deviation [packets]
RED 1 63.39 36.59
RED 2 59.15 33.42
RED 3 63.54 30.79
RED 4 59.91 30.34
AVQ 20.45 21.81
AVQRED 29.62 25.11

This oscillatory queueing behavior is the asynchronous queueing behavior de-

scribed earlier which is resulted from high PEP buffering between the transmit queue

and the receive queue. Therefore, we can conclude that AVQRED and AVQ solve the

asynchronous queueing problem by both monitoring and dropping at the receive

queue. As discussed earlier, monitoring the receive queue with a real-queue-based
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AQM such as RED cannot be done because the receive queue will never be congested

when the bottleneck is the transmit queue by the spacelink bandwidth limitation.

4.3.3. Packet Drop

Because 20 minutes worth of the packet drop histogram is too long to present, only
the first 1000 packets are presented to show how packet drops are distributed. This

illustration is valid because AVQRED has the least number of packet drops as shown

in Table 4.3.
Table 4.3: Total packet drops
AQM Total packet drops
RED 1 486,932
RED 2 491,798
RED 3 492,025
RED 4 492,999
AVQ 484,639
AVQRED 484,582

Figure 4.9 shows packet drops for the first 1000 packets. Given that AVQRED
has the least number of packet drops, having the least clustered packet drops proves
that AVQRED has the least global synchronization level. RED packet drops are more

clustered than they should be due to the asynchronous queueing.
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Figure 4.9: Packet drops for 1% ~ 1000™ packets

From the data shown in this section, we can conclude that AVQRED solves the
global synchronization problem of AVQ and RED by dropping packets more uni-

formly.

4.4. Mathematical Model

This section provides a mathematical model for the queueing behavior to validate the
asynchronous queueing problem and our solution, AVQRED. The global synchroni-
zation problem is not validated mathematically, but the same model can be used to
show the marking behavior by analyzing the standard deviation of the marking prob-
ability. Furthermore, we believe that the evidence of the global synchronization prob-

lem is quite visible in the AVQ algorithm and the emulation results.

dA m A

— = (= pO)x 7= pOxT— “.1)
% =—pu+(1- p(t—d(®))x ot —d(t))x At —d(t)) (4.2)
dv

— = Txut (1- p(0) x w(t)x A1) (4.3)
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dw log(1-B) log(1- B)
—_— =W t _—_ t 4.4
= 5 (1) 5 q(t) (4.4)
—1.0x p(¢) ifw (orv) < min,
Prnax ‘ xd—w if min, <w<max, for RED
dp |(max,—min,) dt 4.5)
di P : xﬂ if min, <v<max, for AVQRED
(max,—min,) dt

1.0—- p(?) else

(4.1) is the ODE of the arrival rate of the offered load where R is the RTT be-
tween the gateway and internet hosts and m is the number of TCP connections. [22]
has the details on how it is mathematically derived. In our MATLAB experimentation,
R was scaled down by 1/10 due to our time unit conversion from 1 second to 100
msec.

(4.2) is the ODE of the transmit queue size where x is the service rate (20 Mbps
with 1400 bytes per packet and 100 msec time unit), p(?) is the marking probability,
d(t) is the fourier series of the PEP buffering delays, and @(?) is the fourier series of
the offered load variation. The ODE is derived from the Lindley equation and the de-
lay factor was added to it to capture the PEP buffering effect. To best resemble our
traffic model used for the emulations, fourier series (shown in Figure 4.10 and Figure
4.11) with 500 actual data points were used. For d(t), the data points are the average
duration that each PEP packet resides in the buffer during a 100 msec measurement
period. For @(t), the data points are the mean offered load to the actual offered load
ratio. All the data points were measured without AQM and bottlenecking transmit

queue to avoid any feedback effects caused by AQM.
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(4.3) is the ODE of the virtual queue size where 7 is the target utilization. Note
that it is similar to (4.2) except that it does not have the PEP buffering delays.

(4.4) is the ODE of the weighted average transmit queue size from [23]. B is w,
and o is the smallest time unit of our ODE approximation which is 1 msec (= 0.01 of
100 msec).

(4.5) is the ODE of the marking probability which is just the first derivative of
p(t) when the respective queue size (g or v) falls between ming, and max,;. For AVQ,
this needs to be changed slightly.

i.e. -1.0 x p(t) if v < (max,, — ming)/2, and 1.0 - p(?), otherwise.
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Figure 4.10: Fourier series for offered load variation
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Figure 4.11: Fourier series for PEP buffering variation
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4.5. MATLAB Results

To validate the asynchronous queueing problem, the above ODEs were fed to
MATLAB and the transmit queue size (4.2) was examined for both RED (with RED
4 parameters in Table 3.1) and AVQRED. As Figure 4.12 shows, RED has the same
oscillatory queueing behavior as the one that Figure 4.4 shows. The mean is slightly
lower than the emulation because the ODEs did not account for the 5 msec queueing
latency caused by the output rate regulator. The standard deviation is slightly higher
than the emulation because the fourier series for the PEP buffering delays was ap-
proximated using only 500 data points which resulted in more frequent and regular

oscillations.

MATLAB RED 4 Trassmit Guere Size (packets)
Mean = 46,89, StdDev = 32,48

1 1379 EZ757Y 413f 5513 6391 8269 0647 11025
100 msec

Figure 4.12: RED 4 transmit queue size (MATLAB)

As Figure 4.13 shows, AVQRED fixes the oscillatory queueing behavior. The
mean and standard deviation are slightly different from the emulation because of the

5 msec latency and the relatively small fourier sample space.
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Figure 4.13: AVQRED transmit queue size (MATLAB)

To summarize and compare the improvement percent of mean and standard de-
viation, Figure 4.14 is provided. Figure 4.14 depicts that the MATLAB results concur
with the emulation results. As stated earlier, the small discrepancies between emula-
tion and MATLAB are from the 5 msec rate regulator latency and the small fourier

sample space.
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Figure 4.14: Transmit queue size improvement by AVQRED
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4.6. Summary

In an effort to improve the gateway performance of satellite networks, AQM was ap-
plied to satellite networks. This study found that applying existing AQMs such as
RED and AVQ has unwanted side effects: asynchronous queueing and global syn-
chronization. A new AQM method, AVQRED, was developed to fix the problems.

Emulations were conducted to validate the problems and the solution. The emu-
lation environment was constructed with the real gateway software used in Hughes
Network Systems’ HughesNet® networks and a traffic generator called Spirent.

A mathematical model was constructed to provide intuitive illustrations of the
problem and the solution. The model was fed to MATLAB and the results concurred

with the emulation results.

42



Chapter 5

Fair Bandwidth Sharing

5.1. Problem

Becase the bandwidth is scarce in satellite networks, an unfair distribution of the
bandwidth can easily sacrifice light users. Therefore, the fairest bandwidth distribu-
tion is necessary to ensure each user gets at least the minimum bandwidth he deserves
during congestion.

The main reason why existing AQMs do not perform well in terms of the fair-
ness metric is that they do not maintain full per-flow states to avoid adding complex-
ity to the algorithm. However, the complexity added to AVQRED to make it fully
per-flow aware is not much due to its virtual-queue-based queueing. Even if the com-
plexity is much, giving up the fairness in networks with limited bandwidth does not

seem reasonable.

5.2. Solution

The solution we propose is an extension of the AVQRED algorithm called
PFAVQRED [9]. We extend the algorithm by adding a per-flow weight to the
AVQRED marking probability. The per-flow weight, pf,eien, and the final marking

probability, p,, are calculated by the following equations:
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0 if flow age <100 msec

f 2

p weigh = .

ot Pl otherwise
pffair_rate

_ bytes _transmitted x8

pf;’ate -

duration
Vv _capacity

P e = total _number of _ flows
Pa = Pa* P veignt

Because we want to avoid packet drops during the connection startup, 0 is as-
signed to pfieigne When the connection was started less than 100 msec ago. The (.)2
part of the pfy.ien calculation is to provide stiffer penalties for misbehaving flows. By
applying pfieion: to the existing AVQRED marking probability, p,, there is no need to
create N different virtual queues for N flows. This is the main difference between
other virtual-queue-based flow-aware AQMs such as VQ-RED. By having only one
virtual queue, configuration of the congestion region (ming, ~ maxy) is intuitive and
the outcomes of the virtual queue processing are much more predictable and accurate.

The complexity overhead of PFAVQRED is not any worse than other flow-
aware AQM methods such as SRED, CHOKe and VQ-RED because they all need a
mechanism to identify flows and store the flow information for some (or all) active
flows. The only difference is the memory usage because AQMs such as SRED and
CHOKe store the flow information of some active flows whereas PFAVQRED stores

it for all active flows. However, we claim that consumption of a few extra kilo-bytes

is not an issue with gateways these days.
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5.2.1. Parameter Settings

As there are no extra parameters for PFAVQRED, the same parameters used for

AVQRED are used for the PFAVQRED emulations.

5.3. Emulation Results

As noted in section 3.2, three UDP flows were injected to the emulations, and per-
flow throughput was measured for AVQRED, PFAVQRED and each of the AQMs in
Table 3.1. Because the link utilization and queue size results of SRED and
PFAVQRED are almost the same as the results of RED and AVQRED, these two
metrics are not presented in this chapter as they are already presented in Chapter 4.
Therefore, only the packet drop and per-flow throughput metrics are presented in this

chapter.

5.3.1. Packet Drops

Table 5.1: Total packet drops

AQM Total packet drops
RED 1 465,052
RED 2 464,273
RED 3 466,136
RED 4 466,416
SRED 1 466,772
SRED 2 515,847
AVQ 450,021
AVQRED 450,010
PFAVQRED 631,931

Table 5.1 shows that SRED and PFAVQRED have more packet drops than their an-
cestors, RED and AVQRED respectively. This confirms that their fairness enforce-

ment is the best amongst all of the AQMs experimented. The fact that SRED 2 has
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more packet drops than SRED 1 confirms that the SRED algorithm performs better

when there are more number of lookups for zombie list hits.

5.3.2. Per-flow Throughput

Figure 5.1 through Figure 5.9 show the per-flow throughputs for each AQM setting
we experimented. The purpose of this data is to provide how uniform the bandwidth
distribution is amongst all the flows. The x axis represents the 3 UDP and the 500
HTTP flows, and the y axis represents the average throughput in bps for each flow.
The optimal bandwidth share for each flow would be around 40 Kbps (20 Mbps / 503
flows). The wider the variation is, the less fair the bandwidth sharing is. All of the
AQMs have similar variation except for SRED 2 and PFAVQRED. SRED 2 pro-
duced fairer bandwidth sharing compared to SRED 1 because it has a higher hit rate
by doing more zombie list lookups which penalized misbehaving flows more. The
fact that PFAVQRED produced the lowest variation in throughputs proves that it has
the fairest bandwidth allocation for each flow. To summarize the throughput variation,

standard deviation of each AQM is provided in Table 5.2.
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Figure 5.1: RED 1 per-flow throughput
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Figure 5.2: RED 2 per-flow throughput

AED 3 Par—ilw Thioughput {bps)
400000 |

250000 |
200000 |
250003 |
20000
150000
100Ca0

o MM !MJ i W fﬂ‘l‘v

1 35 69 103 137 171 206 239273 307 341 375 409 443 477
Flaw 0z

Figure 5.3: RED 3 per-flow throughput
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Figure 5.4: RED 4 per-flow throughput
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Figure 5.5: SRED 1 per-flow throughput
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Figure 5.6: SRED 2 per-flow throughput

A0 Par—flow Throughpet (bpst
400000

AB0CO0 |

300000 |

ZEOCO0 |

200003

150000

100000 | |

BOCOG l ﬁ |I ‘J JA‘H
o |

1 35 69 103 137 171 205 239273 307 3471 375 400 443 477
Flow 1005

Figure 5.7: AVQ per-flow throughput
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Figure 5.8: AVQRED per-flow throughput
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Figure 5.9: PFAVQRED per-flow throughput

Table 5.2: Per-flow throughput standard deviation

AQM Standard deviation [bps]
RED 1 51,161
RED 2 39,841
RED 3 39,640
RED 4 47,892
SRED 1 55,953
SRED 2 37,189
AVQ 42,351
AVQRED 45,793
PFAVQRED 18,150

Figure 5.10 shows the throughputs for each of the three greedy (misbehaving)

UDP flows (80 Kbps, 160 Kbps, 320 Kbps). The purpose of the charts is to show how
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much each UDP flow is penalized by each AQM method. The closer to the optimal

share (40 Kbps) the throughput is, the fairer bandwidth allocation the AQM provides.

It confirms that SRED 2 and PFAVQRED penalize misbehaving flows more than the

other AQMs. It also confirms that PFAVQRED’s fairness enforcement is the best

amongst these AQMs which is consistent with what Figure 5.1 through Figure 5.9

show.
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Figure 5.10 UDP throughputs

From the data presented in this section, we can conclude that PFAVQRED suc-

cessfully enhances AVQRED and provides close to the optimal bandwidth sharing.

The per-flow throughput results are also consistent with the packet drop results be-

cause PFAVQRED has the highest number of packet drops due to its ability to penal-

ize misbehaving flows.
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5.4. Summary

As an extension of AVQRED, PFAVQRED was developed to improve the fairness.
The key difference between AVQRED and PFAVQRED is that PFAVQRED applies
a per-flow weight (which is derived from the bandwidth usage of each flow) to the
marking probability to penalize misbehaving flows and to maintain fair bandwidth
usage.

PFAVQRED was compared with RED, SRED, AVQ and AVQRED with an ad-
ditional performance metric, per-flow throughput. RED and SRED performed simi-
larly in terms of link utilization and queue size. AVQRED and PFAVQRED also per-
formed similarly in terms of link utilization and queue size. However, SRED and
PFAVQRED dropped more packets due to their ability to penalize misbehaving flows.
In terms of the fairness, PFAVQRED performed the best as it produced close to the

optimal bandwidth distribution.
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Chapter 6

Buffer Flow Control Instability

6.1. Problems

One of the problems with buffer flow control is its abrupt and unstable TCP receive
window adjustments for new connections. Because each PEP connection has to make
sure its maximum PEP buffer limit is at least one round trip worth, the TCP receive
window is usually smaller than the PEP buffer limit. This discrepancy introduces sig-
nificant delays (between the start of buffer reduction and the actual TCP receive win-
dow reduction) that cause queueing instability and failure to effectively back pressure
the senders. Figure 6.1 illustrates a buffer flow control scenario where 625 KB is al-
located for the PEP buffers of each user, the PEP buffer limit is decremented by 10 %
of the previous limit upon a packet mark, and the maximum TCP receive window is
set to 16,000 Bytes. The figure depicts that the congestion meter is required to be
lower than 0.0256 to advertise a smaller TCP window which translates into 36 con-
secutive packet marks. Until then, the senders do not slow down the transmissions
causing not only abrupt reductions in the transmission rate but also oscillatory queue-
ing behavior in the gateway.

The other problem is that the arrival packets are always accepted regardless of

the congestion level of the queue aggravating the congestion.
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Figure 6.1: Abrupt TCP receive window adjustments by buffer flow control

6.2. Solution

To fix the abrupt TCP receive window adjustments and the congestion aggravation
problems, we propose to use AQM with packet drop marking to shift the rate control-
ling entity from the receiver to the senders where rate adjustments are smoother be-
cause there is no PEP buffering in the senders. As we discussed in Chapter 4, we rec-
ommend AVQRED for the AQM method because other existing AQMs have the

asynchronous queueing and/or global synchronization problems.

6.3. Emulation Results

Each of the AQM methods in Table 3.2, RED 4 and AVQRED were emulated for 15
minutes. All three performance metrics were collected: link utilization, transmit

queue size and packet drop. For the link utilization metric, both input and output link

53



utilizations were collected to show the savings in the input link utilization by not
dropping packets with the buffer flow control based AQM methods. For the packet
drop metric, the marking probability is shown instead of the actual marking instances
to provide a global visualization in terms of how effective each AQM method is in
controlling the senders’ transmit rate. Per-flow throughput metric was not collected as

the problem is not related to the fairness.

6.3.1. Output Link Utilization

As Figure 6.2 and Figure 6.3 show, the output link utilization of buffer flow control
AQMs becomes unstable as the decrement factor, decr, increases. As Figure 6.2,
Figure 6.3, Figure 6.4 and Table 6.1 show, the first two settings of each AQM (RED
FC 1, RED FC 2, AVQRED FC 1 and AVQRED FC 2) yield output link utilizations
that are somewhat comparable to RED and AVQRED. However, the queue size and

stability are far worse than the packet drop AQMs as revealed in section 6.3.3.
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Figure 6.2: Buffer flow control RED output link utilization
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Figure 6.3: Buffer flow control AVQRED output link utilization
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Figure 6.4: Packet drop RED and AVQRED output link utilization

Although analyzing the differences between RED and AVQRED (for both buffer
flow control and packet drop methods) is not within the scope of this chapter, some
explanation is provided for completeness as follows: The reason why AVQRED has

lower link utilization and higher standard deviation is that it tends to react to conges-
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tion earlier than RED resulting in slightly lower link utilization but lower and more
stable queue size as depicted in section 6.3.3. The lower standard deviation of RED
utilization seems to contradict the results in Table 4.1, but the standard deviation of
RED is lower in this case because the transmit rate regulator lowers the output varia-
tion while the transmit queue is over-loaded by the asynchronous queueing and higher
offered load. The higher offered load was caused by hundreds of extra TCP connec-
tions” that were created by unstable AQMs (RED FC 5 and AVQRED FC 5) that
were executed right before RED and AVQRED were executed. In other words, the
utilization becomes flatter as the transmit queue is occupied more frequently; and the
transmit queue is occupied unnecessarily frequently by RED due to its asynchronous

queueing problem when the offered load is abnormally high.

Table 6.1: Mean and standard deviation of output link utilization

AQM Mean [bps] StdDev [bps]
RED FC 1 19,976,464 32,300
RED FC 2 19,710,622 169,424
RED FC 3 17,491,225 503,592
RED FC 4 15,351,695 627,044
RED FC 5 15,006,684 1,434,812
AVQRED FC 1 19,834,171 213,647
AVQRED FC 2 19,181,604 379,949
AVQRED FC 3 16,633,357 809,237
AVQRED FC 4 14,672,899 832,690
AVQRED FC 5 14,580,907 1,916,090
RED 19,966,805 34,937
AVQRED 19,715,454 204,944

In summary, there exist some parameter settings (RED FC 1, RED FC 2,
AVQRED FC 1, and AVQRED FC 2) for buffer flow control AQMs that result in

output link utilizations that are comparable to packet drop AQMs.

? This may be a limitation with the Spirent traffic generator which will not be explored any further.
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6.3.2. Input Link Utilization

The input link utilization captures the link utilization before the AQM marking and
the purpose of this metric is to show the terrestrial bandwidth usage. Although it is
clear that the buffer flow control AQMs provide much more efficient usage by not
dropping marked packets, it needs to be understood that stable queueing, low queue
size and high output utilization are far more important factors in satellite networks
because the scarce resource is the satellite link almost all the time (not the terrestrial

links fed to satellite gateways).
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Figure 6.5: Buffer flow control RED input link utilization

Table 6.2 is consistent with Table 6.1 except that 1) the packet drop AQMs
(RED and AVQRED) have higher link utilization due to their packet drop marking
and 2) higher variation in utilization due to the unregulated offered load. Packet drop

AQMs dropped about 19 % of the original offered load after AQM marking which is
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consistent with the average packet drop probability (16.7% for RED and 18.1% for

AVQRED).
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Figure 6.6: Buffer flow control AVQRED input link utilization
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Figure 6.7: Packet drop RED and AVQRED input link utilization

In summary, buffer flow control AQMs improved the terrestrial bandwidth us-

age efficiency by the average packet drop probability. In our traffic model, the aver-
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age packet drop probability was around 17~18 % and about 19 % efficiency im-

provement was achieved by the buffer flow control AQMs in the terrestrial links.

Table 6.2: Mean and standard deviation of input link utilization

AQM Mean [bps] StdDev [bps]
RED FC 1 20,124,689 372,613
RED FC2 19,840,931 325,317
RED FC 3 17,592,220 540,831
RED FC 4 15,441,918 660,253
RED FC 5 15,180,693 2,112,514
AVQRED FC 1 19,981,757 277,339
AVQRED FC 2 19,300,427 359,035
AVQRED FC 3 16,729,259 757,070
AVQRED FC 4 14,798,855 837,137
AVQRED FC 5 14,819,918 1,980,519
RED 24,823,058 1,009,220
AVQRED 24,447,902 860,513

6.3.3. Transmit Queue Size

Except for the ones that resulted in heavy under-utilization, buffer flow control
AQMs resulted in very high and unstable queue size compared to packet drop AQMs.
As Table 6.3 summarizes, all of the buffer flow control AQMs are worse than packet
drop AQMs in terms of transmit queue size. The most comparable AQMs are RED
FC 4, AVQRED FC 3 and AVQRED FC 4 but they have heavy under-utilization.
These results confirm the problem described in section 6.1. For example, slow reac-
tion to congestion by RED FC 1 and AVQRED FC 1 confirms that buffer adjustments
do not effectively flow control the senders. Faster reaction to congestion but lower
utilization by RED FC 4 and AVQRED FC 4 confirm that PEP buffers need to be
brought well below the full-utilization level (below the maximum TCP receive win-

dow = 16,000 Bytes) in order to effectively flow control the senders. The results for
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RED FC 5 and AVQRED FC 5 will not be considered as their queueing stability goes

beyond a reasonable range.
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Figure 6.8: RED FC 1 transmit queue size
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Figure 6.9: RED FC 2 transmit queue size
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Figure 6.10: RED FC 3 transmit queue size
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Figure 6.11: RED FC 4 transmit queue size
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Figure 6.12: RED FC 5 transmit queue size
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Figure 6.13: AVQRED FC 1 transmit queue size
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Figure 6.14: AVQRED FC 2 transmit queue size
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Figure 6.15: AVQRED FC 3 transmit queue size
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Figure 6.16: AVQRED FC 4 transmit queue size
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Figure 6.17: AVQRED FC 5 transmit queue size
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Figure 6.18: RED transmit queue size
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Figure 6.19: AVQRED transmit queue size

The spikes in the RED transmit queue size histogram (Figure 6.18) are due to the

asynchronous queueing problem discussed in section 4.1.

Table 6.3: Mean and standard deviation of transmit queue size

AQM Mean [packets] StdDev [packets]
RED FC 1 157.52 90.09
RED FC 2 119.59 90.48
RED FC 3 81.68 91.61
RED FC 4 45.17 63.65
RED FC 5 158.26 271.02
AVQRED FC 1 213.21 162.41
AVQRED FC 2 78.12 77.17
AVQRED FC 3 47.13 62.68
AVQRED FC 4 27.38 45.26
AVQRED FC 5 153.06 259.57
RED 55.81 30.49
AVQRED 28.48 23.05

In summary, none of the buffer flow control AQMs maintained the target queue
size (= less than 90 packets) while preserving utilization close to 20 Mbps. On the
other hand, all of the packet drop AQMs maintained the target queue size with close
to the full utilization. The results confirm that the buffer flow control AQMs do not

effectively flow control the senders because they accept packets even when the
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transmit queue detects congestion and new connections allow undesirable bursts to

enter the congested queue.

6.3.4. Marking Probability

Marking probability shows how effective each AQM method is. As shown in Figure
6.20 through Figure 6.29, all of the buffer flow control AQMs have higher marking
probabilities than the packet drop AQMs. These results confirm that the buffer flow
control method does not effectively flow control the senders as depicted in section
6.3.3. One of the noticeable consequences of the ineffectiveness in flow controlling
the senders is queue instability. As shown in section 6.3.3, all of the buffer flow con-

trol AQMs have more unstable queueing behavior than the packet drop AQMs.
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Figure 6.20: RED FC 1 marking probability
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Figure 6.21: RED FC 2 marking probability
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Figure 6.22: RED FC 3 marking probability
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Figure 6.23: RED FC 4 marking probability
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Figure 6.24: RED FC 5 marking probability
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Figure 6.25: AVQRED FC 1 marking probability
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Figure 6.26: AVQRED FC 2 marking probability
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Figure 6.27: AVQRED FC 3 marking probability
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Figure 6.28: AVQRED FC 4 marking probability
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Figure 6.29: AVQRED FC 5 marking probability
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Figure 6.30: RED marking probability
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Figure 6.31: AVQRED marking probability

In summary, the emulation results confirmed that the marking probability of the
buffer flow control AQMs is oscillatory and is higher than the packet drop AQMs.
Unstable and high marking probability implies that the senders are not flow con-

trolled effectively via buffer adjustments at the gateway.

6.4. Mathematical Model

The model used in section 4.4 is slightly modified to illustrate the buffer flow control

instability problem mathematically. The differences between these two models are:
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1.  Model for the buffer flow control problem accepts packets instead of drop-
ping them.

2. Model for the buffer flow control problem has new connections with full
TCP receive windows.

dn

= =0(t)-m-MaxRcvWin—n(t) (6.1)
dA (1-v(t))-m A? dn
—=(1-p@t))x———— p(t) xdecr x —— +— 6.2
G = 1o POV P pla)xdecr xS (62)
dq
= H o(t—d(t))x A(t—d(t)) (6.3)
dv
st o(t)x A(t) (6.4)
dw log(1-B) log(1- B)
228 iy -2 ot 6.5
= 5 O q(t) (6.5)
—1.0x p(¢) if w(orv) < min,,
P - xd—w if min, <w<max, for RED
dp |(max,—min,) dt
= p (6.6)
g Lo ‘ 2L if min, <v<max, for AVQRED
(max,—min,) dt
1.0—- p(?) else

(6.1) 1s the ODE of the arrival rate of new connections (that have passed the
slow start phase) where MaxRcvWin is our configured maximum TCP receive win-
dow (16,000 bytes/10 to convert 1 second unit to 100 msec unit). m is the number of
TCP connections, 500. u(t) is the fourier series for new connections captured for 50
seconds during an actual emulation without AQM (shown in Figure 6.32). v(t) can
range from 0 to 1, and represent the proportion of the total TCP connections that are

new.
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(6.2) is the ODE of the arrival rate of the offered load which is similar to (4.1).
The difference is that only the old enough connections, (1- v(t))- m, participate in the
TCP evolution, and the new connections always transmit at the full TCP receive win-
dow (by adding dn/dt to the equation). decr is the decrement factor that replaces the
TCP halving factor, 1/2, in equation (4.1).

(6.3) is the ODE of the transmit queue size which is similar to (4.2). The differ-
ence is that the received packets are never dropped by removing the (1— p(#-d(¢)))
term.

(6.4) is the ODE of the virtual queue size which is similar to (4.3). The differ-
ence is that the receive packets are never dropped by removing the (1 — p(7)) term.

(6.5) 1s the ODE of the weighted average transmit queue size which is the same
as (4.4).

(6.6) is the ODE of the marking probability which is the same as (4.5).
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Figure 6.32: New connection variation
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6.5. MATLAB Results

RED FC 2 and AVQRED FC 2 were fed to MATLAB, and the results are shown in
this section. RED FC 2 and AVQRED FC 2 were selected as they are the most stable
ones amongst the ones that have close to the full link utilization. MATLAB results for
RED and AVQRED are not presented again because they are already presented in

section 4.5.
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Figure 6.33: RED FC 2 transmit queue size (MATLAB)
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Figure 6.34: AVQRED FC 2 transmit queue size (MATLAB)

Compared to Figure 6.9, Figure 6.33 is little more oscillatory because the PEP

buffering variation for the buffer flow control based AQMs is not the same as the fou-
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rier series used in the model. During the experimentation, it was found that the ampli-
tude and the period of PEP buffering variation are smaller with buffer flow control
based AQMs. Analyzing the cause of this different behavior in PEP buffering varia-
tion is left for future study if necessary. However, it is important to note that the
queueing behavior of Figure 6.34 resembles very closely to the behavior of Figure
6.14 because AVQRED is much less sensitive to PEP buffering as discussed in
Chapter 4. Figure 6.35 and Figure 6.36 summarize the above results.
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Figure 6.35: Emulation vs. MATLAB (Mean)
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Figure 6.36: Emulation vs. MATLAB (Standard deviation)
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To show how much of the instability is caused by the new connections and how much
is caused by accepting packets during congestion, we used u(t) = 0 and re-ran
MATLAB. The results are shown in Figure 6.37 and Figure 6.38. There are some im-
provements by not allowing new connections to burst in but the core of the problem

still remains.
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Figure 6.37: RED FC 2 transmit queue size without new connections

The purpose of this experimentation is not to generalize how much of the im-
provement we get by not allowing the new connection bursts, but to show which of
the two (not dropping packets or allowing bursty new connections) is the main cause
of the queueing instability. Figure 6.39 summarizes the improvement by not allowing
bursty new connections. It is clear that accepting marked packets is more responsible

for the queueing instability problem.
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Figure 6.38: AVQRED FC 2 transmit queue size without new connections
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Figure 6.39: Queueing stability Improvement by removing new connections

6.6. Summary

We have applied two classes of AQM to satellite networks. One is buffer flow control
AQM and the other is packet drop AQM. Buffer flow control adjusts the senders’
transmission rate by adjusting the receive buffer limit. This method is quite applicable
and attractive to satellite networks due to their inevitable PEP buffers. Microscopic

examinations of buffer flow control predicted that it would be ineffective in flow con-
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trolling the senders by allowing packets to enter the congested queue and by allowing
bursts from new connections. Not being able to flow control the senders effectively
would then result in queueing instability.

AVQRED with packet drop marking was proposed as the solution, and both the
problem and the solution were validated with emulations and a mathematical model.
The MATLAB results further revealed that allowing packets to enter the congested

queue plays the major role in the instability problem.
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Chapter 7

Conclusions

In this dissertation, we have examined utilizing existing active queue management
(AQM) methods in satellite communication networks, found problems with the exist-
ing AQM methods, and provided the solutions for the problems. In these investiga-
tions, we have discovered three problems which we analyzed and resolved. The first
problem is queueing instability (asynchronous queueing) due to high PEP buffering
and global synchronization from virtual-queue based AQMs. The second problem is
unfair bandwidth sharing. The third problem is queueing instability caused by allow-
ing packets to enter the congested queue and by allowing new connections to burst
into the queue.

First, we have looked at 8 existing AQM methods, selected 3 that are suitable for
our experimentations and provided the reasons for the selections. The AQMs that
were selected are RED, SRED and AVQ.

Secondly, we have constructed a realistic emulation environment with the actual
gateway software used in Hughes Network Systems’ HughesNet® networks and a
traffic generator called Spirent. To add the satellite delays, we have created a bi-
directional delay simulator software between the gateway and simulated remote ter-
minals. 400 HTTP connections were emulated, and link utilization, queue size and

packet drop were collected as the performance metrics. 100 HTTP connections and 3
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UDP connections were added, and per-flow throughputs were collected in addition to
the three metrics for the fair bandwidth sharing problem.

Third, we have looked at the first problem in depth: asynchronous queueing and
global synchronization. Asynchronous queueing occurs when a real-queue-based
AQM is used due to its inevitable high delays between the monitoring queue and the
marking queue. Global synchronization occurs when a virtual-queue-based AQM is
used due to its tail-drop nature. We have proposed the solution, AVQRED, to fix both
asynchronous queueing and global synchronization. AVQRED essentially moves the
monitoring queue to the marking queue by creating a virtual queue and avoids global
synchronization by adapting the RED algorithm. We have constructed a mathematical
model to provide intuitive illustrations of the problem and the solution. Both emula-
tion and MATLAB results confirmed the problem and the solution.

Fourth, we have looked at the second problem in depth: fair bandwidth sharing.
The fairness problem arises because existing AQMs do not have an accurate way of
measuring fairness in sharing. The reason for just approximating the fair share is to
avoid complexity added to the AQM algorithms. Our study found that the complexity
does not change much when a fully per-flow aware algorithm is implemented except
that the memory usage becomes higher. However, few extra kilo-bytes of memory
usage are not an issue with gateways these days especially when the return is signifi-
cant. We have enhanced AVQRED to be fully per-flow aware (called PFAVQRED)
to solve the fairness problem. RED, SRED, AVQ, AVQRED and PFAVQRED were

emulated with 500 HTTP and 3 UDP flows. The emulation results showed that
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PFAVQRED provides close to the optimal bandwidth share to each flow while the
per-flow bandwidth usage of the other AQMs varies at least twice as high.

Fifth, we have looked at the third problem in depth: queueing instability with
buffer flow control. The problem is caused by allowing packets to enter the congested
queue and by allowing new connections to burst into the queue. We have proposed
AVQRED with packet drop marking as the solution. We have constructed a mathe-
matical model to provide intuitive illustrations of the problem and the solution. Both
emulation and MATLAB results confirmed the problem and the solution.

In an effort to improve the gateway performance of satellite networks, we have
discovered three problems in existing AQMs and found the solutions for them. The
problems and solutions are based on satellite networks where congested gateways re-
side on the ground station. However, if the gateways are placed on the satellite, the
nature of congestion control changes significantly because there is another layer of
delays (between the satellite and the ground station) to synchronize. Because mesh
satellite networks most likely demand such a configuration, our future research will
focus on solving problems in congestion control caused by the delays between the

satellite and the ground station in mesh satellite networks.
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