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Abstract. Due to the economically sensitive condition of the
chemical and petroleum industries, we cﬁn no longer afford to operate
with the inefficiencies of the past. Over the last 15 years we have
found that on-line optimization implemented with model-predictive
control recognizing process and operating policy constraints, provides
the best means for achieving the profit potential of our plants. Only
model-predictive controllers permit the flexibility required fg handle
the constantly changing performance criteria, in particular the
enforéement of operating' constraints. However, the performance .
criteria of today's problems are becoming harder to quantify, while
optimization systems are driving the processes over a wider range of
operating conditions than ever before. Therefore, there is a need to
improve the model-predictive control techniques so that practical
performance criteria ©based on engineering judgement can be
transparently specified, and that model inaccuracies are considered
explicitly in the problem formulation. In this paper the
state-of-the-art in industrial model-predictive control is presented.
An attempt is made to propose a path of evolutionary development in
process control that will converge to a Unified 'Theory replacing many
of the ad-hoc solutions developed over the last thirty. years. New
tecﬁniques for multi-objective optimization and robust control are
described that have the potential to allow us to improve the current
technology in?ﬂorder to solve the control problem at hand. It is

concluded that the complex control problems of today can only be



" solved through the development of a Unified Theory along the concepts
of model-predictive control. This Unified Theéfy of process control
will then allow for the application of the Integrated Technologies of
- process optimization and control.

Keywords. Model Predictive Control; Dynamic Matrix Coﬁtrol;

optimization; constraints; performance; robustness.

PREFACE

It is the purpose of this paper t6 determine a future direction
for process control research within the context of model-predictive
control methodologies that will allow for the evolution of a

consistent, unified approach to problem solving in our field.

We recognize that history includes many ad-hoc solutions:that did
not pass the test of time. However, we have learned as much from
historical failures in approach as we have from successes. Over the
last thirty or more years there have been many significént
contributions to our technology. Some were not appreciated because of
the truly innovative nature of the contribution and some were overly
praised but did not withstand the scrutiny of time. We wish that our
paper be accepted in the sense of a contribution that is very
dependent on the work of those that came before us. In presenting this
paper we wish to acknowledge this work and credit our contribution to
the fine work done by our predecessors, the large number of whom
preclude individual recognition without the probability of omitting
some. With the benefit of observation of the work of all our
predecessors we therefore propose this forward plan for the
development of a Unified Theory of process control as our contribution

to the field.
e



- INTRODUCTION

In order to ensure a competitive edge in today's economic climate
the chemical and refining process industries need to extract the
maximum profit from their processes in the face of constantly changing
market conditions. An expensive way of realizing the achievable
profits is to modify the process design and install modified equipment
to take account of these changes. One then hopes that the changed
market condition is maintained long enough to recoup the capital cost
and also generate a resultant net profit. Alternatively, or in
conjunction with modified equipment;7 plant profitability can be
achieved with minimum capital costs by applying broad-based technology

to on-line optimize our chemical plants and refineries.

On-line optimization systems relentlessly realize the achievable
performance of the existing equipment by driving the process to its
operating constraints while constantly updating the operating
conditions based on the process economics. Its  successful

implementation generally involves two phases (Garcia, 1982) (Fig. 1):

- Optimization Phase:

Steady-state process representations are used to optimize
the process based on an economic objective function subject to
equipment and operating policy constraints; the process
representations include the effect of disturbances of economic
impact as are feedstock quality, equipment degradation, etc.
which are assumed to occur with larger period than the inherent
residence time of the process; the operating point is wupdated

with a frequency comparable to the disturbance frequency.

- Control Phase:
Dyndmic process representations are used to optimize a

performance objective function which penalizes deviations of



process variables from their optimum wvalues given by the
optimization phase; since the optimal operﬁting point generally
lies at the intersection of constraints, thisf phase has the
responsibility of dynamically enforcing those constraints while
rejecting fast disturﬁances; the control system updates
manipulated variables at a faster frequency than the optimization

phase executions.

One can argue about the justification of the division between the
phases. It is obvious that in cases where the disturbances of economic
impact change faster than the inherent plant dynamics both phases
coalesce therefore requiring frequent dynamic on-line optimizations.
Even in those cases where separation is not advisable, it has been
done because it is not possible with today's hardware to solve on-line
optimization problems with detailed dynamic process representations.

Therefore, the two-phase on-line optimization approach is wideiy used.

Détailed process representations of large collections of
algebraic and differential equations based on first principles avoid
the issue of pre-biasing the solution of the optimjization problem

| caused by theAuse of so-called simple models. Since there -exists no
technique today for choosing, a-priori, the correct degree of detail
for optimization models, large computation requirements are
inevitable. The field of expert systems is beginning to contribute
significantly in providing a framework that allows us to collect the
modelling skill of practitioners as new systems are implemented. Also,
the great iﬁprovements in computing power provided by parallel
processing might make this issue of model rigorrdiséppear in the near
future. More will be said about these two areas of research effort

later.

Since thefbptimization problem is more tractable than the control

phase and conceptually easier to understand, there exists a temptation



"to "implement" only the optimization phase without regard for the
control phase. However, one must recognize thatvoptimization problems
are relatively easy to solve but the results are extremely difficult
to implement. The control phase makes this implementation possible.
Therefore, the achievable préfits of optimization cannot be realized
without géod control and one cannot divorce one technology from the
other. We have chosen to define this synergism of technologies as the
Integrated Technology approach to process control. It is only in this
realm that process control methodologies can even be considered for
industrial application, and therefore, we have a clear way of
assessing current technological advahées and of directing future
research efforts. Let us review the current state of the process

control area in the light of this approach.

Over the last 25 years we have experienced a tremendous evolution
in the techniques used to control our chemical and refining pr;cesses.
If there is a single explanation for the changes observed it is that
the aﬁplications have always been influenced by the control hardware
available for concept implementation. Academicians as well as
gap
between theory and practice, giving what we consider to be an

practitioners have been discussing for years the so called

imprecise picture of the real situation. As we see it, from the
researcher's side there exist two main reasons for the 1lack of
solutions to the real problems. On the one hand, some theoreticians
have either totally ignored the real problem and gone into theoretical
developments that cannot be applied to chemical and refining
processes, or when applicable the solutions have resulted in being
practically impossible to implement with the available hardware . On
the other hand, many researchers (both in industry and academia) have
focused their attention on ad-hoc solutions to problems so that they
fit the capabilities of the most commonly available hardware
implementation?ﬁmodes, therefore necessarily limiting the scope of

their research. While this may have been justified in the past it is



"hard to understand why this is still practiced to the present when
on-line computing power has become relatively inexpensive and provides
a framework for generalized solution conception replacing the ad-hoc

approach.

Howevér, we as practitioners should not ‘bé so quick as to
completely blame theoreticians for such failure. Our greatest sin is
to have led them to believe that ad-hoc solutions were all that were
acceptable to us. Even when these techniques have failed, their
failure was usually excused resulting in the development of ‘"more
advanced" ad-hoc solutions. As a conéequence, this has created a
situation ﬁhere these pseudo-successful ad-hoc solutions have become
the accepted theory. Although no significant economic penalty has been
paid so far for these m;i.sdirected efforts, the current economically
sensitive condition of our industry dictate the need to search for a
Unified Theory of process control in order to ensure a competitive
edge. It is our estimate that the profitability of our industry could
be siénificantly improved through application of the Integrated -
Technology approach of optimization and control.

In recent years we have observed the surge of a new generation of
researchers who have courageously made significant advances and
proposed solutions to control problems which tend to provide some
unification. It is interesting to realize that the catalyst for these
advances has been provided by developments in industry. As early as
the mid-seventies some visionary corporations realized the potential
of a Unified Theory and embarked in the development of their own
control algorithms in order to address the real problem of achieving
improved profitability. By then process control practitioners had
already abandoned the '"modern control theory" approach to
multivariable . control, Except in few notably successful
implementations (Ray, 1981) the Linear Quadratic Optimal Controller

(LQC) so successful in aerospace control applications (Kwakernaak and



" Sivan, 1972) was generally found to be difficult to tune and exhibited
poor robustness to plant changes. Therefore tﬁe interaction problem
was handled by the use of decoupling techniques for multi-loop systems
(Ray, 1981). Independent developments in the USA by Shell 0il Co.
(Cutler and Ramaker, 1979; Prett and Gillette, 1979) and in France by
ADERSA/GERBIOS (Richalet et.al., 1978) brought forth new techniques
based on a linear model prediction: Dynamic Matrix Control (DMC) and
IDCOM, respectively. One can show that in the absence of process
constraints these techniques are mathematically identical to LQC
except that a simpler formulation allows easier on-line tuning and
transparent specification of control éﬁjectives. However, it is the
explicit inclusion of process constraints in the algorithm what has
made these techniques so successful in the industrial environment. The
development of DMC marked the first time a control technique was
devised which could successfully handle process constraints, thus
allowing the realization of achievable profits via implement;tion of
results of on-line constrained optimizations., In fact, in the
partiéular case of fluid catalytic cracking control no technique
previously published had provided the performance required in the face
of constantly changing control objectives and active constraints
(Prett and Gillette, 1979; Morari, 1981).

One significant contribution associated with the introduction of
DMC to the control 1literature was in setting a new tone by
communicating industry's needs in a language that both industry and
academia could wunderstand, i.e. the 1language of mathematics and
control engineering. It was hoped that this would lead to a
renaissance of control research along more wunified 1lines. Such
renaissance has happened and we have witnessed numerous .theoretical
developments in the chemical engineering process control area over the
last seven years which appear to be on the right track for. finally

0] ] l,/ * : 3 .
achieving the ‘desired unification.



Our objective in this paper is to define where we presently are
technologically, and then point out what is necessary to promote a
continuance of the current efforts toward solving the-control problem.
We strongly believe that the model-predictive control methodology
provides the only framework for achieving this. In addition to its
constraint Thandling capabilities, model-predictive control has

performed reliably in applications because of its:

- multivariable features
- stability properties

- inherent deadtime compensation

These properties have been analyzed in the-control literature (Garcia
and Morari, 1982).

But the most important feature of model-predictive controllers,

and in particular of DMC, is that they solve a new problem and thus

produce a new controller at each execution. This makes the algorithm .

capable of taking measures on-line which could not be foreseen at the
design stage therefore having unique constraint handling capabilities.
In this sense, model-predictive controllers must be uniquely
distinguished from other controller designs. For lack of a better
terminology, in this paper we will classify as recursive controllers
those techniques that use a fixed relationship between error and
manipulated variable which is solved for only once, during the

conceptual design phase.

The algorithm as proposed did not explicitly deal with the issue
of model accuracy. The best available model was determined and the
codtrol engineer designed a control system to meet implementation
performance standards. Robustness was achieved by an intuitive process
of relaxing Jéérformance standards to recognize inherent model

inaccuracies. Of course, as time went on, the model might become



'increasingly inaccurate due to changing process conditions. This was
handled by having an expert work force in the field to perform on-line
detuning until such time as a new model determination was demanded.

- However, in today's business environment it is not possible to justify

the field assignment of such expert manpower. For this reason, as well
as for control efficiency, we must begin to deal with the

performance/robustness issues more methodically.

As a result of an increased number of installations of on-line
optimization systems, recent experienqes have indicated that even
though the model-predictive control appfoach is still the best tool
for multivériable constrained control, the traditional approach that
assumes an exact, fixed, linear model does not allow us to achieve the
desired control performance objectives. We are finding that the
performance objective and constraints of modern plants are changing
more frequently than before and are more difficult to tranélate to
solvable mathematical formsf In addition, processes are being operated
over a wider range of conditions than ever before. Since we can no
longer afford the costs associated with maintaining these complex
loops, we have to improve our control methods so that the desired

performance is achieved with minimum demands on manpower.

In this paper we discuss some of the many areas of research
which we are currently exploring in order to solve these problems
while at the same time pointing out where the future developments in

this area should be directed.

The paper is organized as follows. First we give a brief
description of the current state-of-the-art in model- predictive
control as practiced in Shell pointing out the special properties that
make it suitab}e for solving practical control problems. The issue of
specification-g% control performance is discussed next in the light of

the Integrated Technology approach. Finally, in the last part we deal



. with the issue of the effects of model error on performance loss and
'1ist the several methods currently under study to address the problem
at hand. The conclusion will contain an assessment of the process
control area as we see it, indicating where tﬁe technological
breakthroughs need to happen'in the light of the current and future

condition of our petrochemical industry.

ELEMENTS OF MODEL-PREDICTIVE CONTROL: THE LINEAR CASE

The model-predictive control ﬁéthodology consists of the

following elements:

- Linear model relating the manipulated variables and measurable

disturbances to the' outputs of interest

- Prediction of the outputs of interest over the future time

horizon, corrected via feedback

- Computation of future manipulated variable moves to make the
prediction of the outputs and manipulated variables satisfy some

performance criterion.

It is assumed that the model is open-loop stable, and that the
algorithm is implemented in a sampled~data system. Therefore, a
discrete-time model of the process is considered where values of

variables are known only at discrete intervals of time k:
kT £ time £ (k+1)T

where T is the sampling time of the system.

/"
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A "moving horizon" approach is wused where at every sampling
interval the prediction is updated and the future manipulated variable
moves are computed. However, only the manipulated variable move
corresponding to the current sampling interval is implemented. One
step of this approach is illustrated in Fig. 2 where the prediction of
a single manipulated variable m(k) and output variable y(k) is
obtained at the end of the computation phase in order to, for example,

bring the prediction to a target value.

In this section all three elements are discussed based on current
practice. This will allow us to point out where the advantages in the

method may lie as well as where improvements are necessary.

The Model Formulation

Model-predictive control algorithms employ a linear model of the
process to predict the effect of past changes of manipulated variables
and measurable disturbances on the output variables of interest. In

practice an input-output model description is used as follows:

y(k) = £ a, du(k-2) + d(k) (1)
=1 %

where a, is a matrix of unit step response coefficients, Au are the
changes or moves of the system inputs (manipulated variables and
measurable disturbances) and d(k) is a term containing all the
contributions to the outputs that the model cannot describe as are
unmeasurable disturbances. An equivalent model form is Fhe impulse

response model :

7

S
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y(k) = £ h, u(k-2) + d(k) - (2)
g=1 >

where h2 is a matrix of unit impulse-response coefficients, and

'3
a = I h, .
'3 =1 J

The only difference between models (1) and (2) is that the

step-response model contains an implicit integrator.

0f course, the properties of the method should not depend on the
particular model formulation. One could even use a state-space model

as follows:

x(k+1) = A x(k) + B u(k) 3
3y -
y(k) = C x(k) + da(k)

Since the system is stable, successive substitutions of the state x(k)
should yield exactly model (2). In order to obtain (1), we add an

additional state which acts as our integrator as follows:

ax(k+1) | _ A 0| | ax(k) B ]
[ q(k+1) } = { CA I } [ a(k) J + [ cs | du(k) (4)

q(k) + d(k)

y(k)

12



"where Ax denotes a change in the state. The resulting input-output

model of (4) is the step-response model (1).

The Prediction Problem

Any of the model descriptions can be used to predict future
values of the outputs y(k) over a time horizon. For this discussion
only model (1) will be considered. For any future interval of time %

the output prediction is given by:

;(k+£) = 5*(k+z)

+

e

E a4 Am(k+2-1) (5)

+ d(x+2) , g =1,2...P

where the contribution of past inputs to the projection is given by

the term

-* o
vy (k+2) = T a, Au(k+2-1) (6)
i=g+1

and A(k+2) is the prediction of unmodelled effects. Note that equation
(6) contains the effect of all past inputs: both manipulated variables
and measurable disturbances while the summation .in (5) only goes over
future manipulated variable moves. The step-response coefﬁicients 2 :

relate manipulated variable moves to the outputs.

An importdnt term in (5) is the prediction of the unmodelled

effects d(k+2). This term can be obtained by using the most recent

13



" output measurement ym(k). Using equation (1) we-can calculate d(k) as

follows:

d(kx) = ym(k) - I 3 Au(k-2)
=1

The predictions d(k+%) can then be estimated by filtering d(k)
appropriately.

In the particular case of DMC the prediction most commonly used

is
d(k+2) = d(k) for & = 1,2..P. NG

This estimator is satisfactory only when the measurement noise level
is small and the deterministic part of the unmeasured disturbances has
fast dynamics and is infrequent. Otherwise, significant errors in the

prediction could ensue.

One way to resolve this problem is to use optimal filtering
theory (Kwakernaak and Sivan, 1972) to design an observer/estimator
for d(k+L) if some knowledge of the noise dynamics of the process is
at hand or if the deterministic part of the unmeasured disturbance
model is available through some identification method. Such approach
would not only provide the filtering of noise but also good estimation
of slowly varying disturbances. However, one should be aware of the
fact that these techniques are valid only under very stringent
assumptions aﬂéut noise dynamics (namely, zero mean Gaussian noise)

and therefore, one is forced to resort to ad-hoc selection of the

14
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. noise covariances for tuning. In the absence of noise the use of a
model for the disturbances should improve the prediction.

The Structured Singular Value theory of Doyle (1982) gives a
comprehensive controller design method under uncertainties in both
model parameters and disturbance description. One advantage is that
the analysis is not restricted to a Gaussian description of the noise.
Consequently, it seems to be the best approach to date to resolve this
issue of disturbance prediction. This is a topic of current research

in our group.

The Control Problem

Once a2 model prediction of the outputs is obtained the following

generalized control problem is solved:

Find the sequence of M future manipulated variable moves
om(k), Am(k+1), ... Am(k+M-1) so that the prediction of the
manipulated variables and outputs satisfy a set of

performance criteria.

This problem is solved at every sampling time when a new prediction is
updated based on the most recently obtained feedback measurements. The
first move Am(k) is the only one that is implemented although the
others could be used in case of loss of measured variables. However,
the main reason for computing future moves is to allow for the
imposition of desirable performance objectives and constraint handling

on manipulated variables as well as on output variables.

Except for the linear model assumption, this control problem is
general enough to allow the solution of most foreseeable - control
problems of industrial relevance. The challenge consists in being able

to translate the desired performance objectives into an equivalent

15



-mathematical form that allows computation of the moves. One convenient
form that we have used with success is the D&namic Matrix Control
algorithm (Cutler and Ramaker, 1979; Prett and Gillette, 1979) and
more recently the Quadratic Dynamic Matrix Control (QDMC) algorithm
(Garcia 1984). The QDMC formulation solves for performance objectives
expressed as a sum of squared deviations of controlled outputs from
target values and inequality constraints of outputs and manipulated

variables.

In the particular case of QDMC the following quadratic program is

solved on~line:

P -

min 3 I { || I ly(k+e) - yo(k+e)] ||2 + || A, tm(k+e-1) |\2 }
om(k) ... =1

Am(k+M-1)
- “%
s.t y(k+2) = y (k+8)
L
+ ‘z a. Am(k+2-1) (8)
i=1
+ d(k+e)

yL(k+£) s y(k+r) = yH(k+z) , & =1,2..P
mL(k+2-1) S m(k+2-1) € mH(k+2-1) , £ =1,2..M

Al =0, L>M

where the prediction in equation (5) is used and .M £ P. Since a linear
prediction is used, the resulting inequality constraints are linear in
the solution variables Am(k) ... Am(k+M-1) and therefore (8) is indeed

a quadratic program.
a

’e
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Comparison with Classical Approaches -

It is important at this point to reflect on what the predictive
control problem methodology allows us to do and compare it with
standard approaches which might appear similar to the uninformed
observer. 'Here we will compare the QDMC algorithm with the 1QC
methodology on the basis of industrial control applicability. The
observations on LQC should equally apply to mosf other classical
algorithms.

Model-Predictive type controllers (QDMC). QDMC assumes one

objective function to be minimized which reflects some of the desired
performance criteria of the control system. Different objectives for
each of the projections of variables are lumped into one objective
function. The relative importance of each objective is specified by
appropriate selection of weights. These weights are closelyttied up

with the variable scaling.

Additional performance criteria are specified by the use of
inequality constraints in the predictions. These constraints impose
hard bounds on the predictions of the variables in order to keep them
within acceptable operating 1limits. For these hard constrained
variables the corresponding weights in the objective function are

Zero.

Since the problem is solved at each sampling time, the controller
is able to account for different scenario sets of active constraints
which were not foreseen at the design stage. The transfer from one set
of active constraints to the other is done smoothly and optimally by
the quadratic programming algorithm. Therefore, it is in practice an
on-line intelligent system albeit still with some  limited

sqsas o
capabilities. -
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] In terms of numerical solution, a quadratic program can be
customized to efficiently solve problem (8), wﬁich in the absence of
constraints reduces to a simple least-squares problem (Prett and
Gillette, 1979). Although complex by historical standards, a simple

interface allows easy implemeﬁtation of the algorithm,

Recursive type controllers (LQC). The discrete optimal control

algorithm as described in Kwakernaak and Sivan (1972) employs a
state-space model of the process as in (3) in order to solve the

following optimization problem:

. |
mn 4z { || T, yGee) [|Z 4 || Ay m(kre-1) |17}
m(k) ... 2=1
m(k+P-1)
(9)
s.t. x(k+1) = A x(k) + Bm m(k)

y(k) = C x(k)

LQC also minimizes a weighted quadratic objective function of the
model predictions of the outputs and manipulated variable values and
assumes M=P. As formulated, the resulting LQC controller is not suited
for handling non zero targets, measurable disturbances and non zero
mean unmeasurable disturbances since it does not provide integral
action (Garcia and Morari, 1982). However, several modifications can
be made to resolve these issues. For example, one can formulate the
objective function as in QDMC (equation 8) and perform the prediction
using the state-space model (4) and the estimate of d(k+2) in (7). As
a result, the two problems become identical in the absence of process

constraints.

18



The solution of problem (9) (or equivalent) produces a set of
manipulated variable values. By using the LQC method, a set of Riccati
equations can be solved to obtain a simple expression where the
manipulated variable to be implemented is a linear combination of the
states. Such relationship léﬁds itself to a simple implementation
which can be represented in the form of block diagrams and easily
realized with standard hardware. The computational burden consists of
calculating the controller gain matrix, which is done off-line. After

the computation is performed, the controller is fixed.

Even though one can minimize the ;Qme objectives as in QDMC and
influence them by using weights, the LQC formulation does not allow
for the specification of constraints. In fact, the only way
constraints can be handled by LQC or any other recursive type of
controller is to add an intelligent decision maker on top that will
decide which constraints become active and therefore restructure the
control problem accordingly. Such approach has been suggested before
by Arkun and Stephanopoulos (1980).

In this respect most controllers are similar to LQC and
consequently different than model-predictive type controllers. In QDMC
the computed set of moves in the manipulated variables depend not only
on past history of plant dynamics but also on predicted violations of
constraints. This is not possible to represent in any recursive /[
transfer function / block diagram type of formulation. At the same
time one must also realize that if constraints are removed and future
target trajectories are 1linear transfer functions, then QDMC is
essentially no different than any other control method. In these
cases, the manipulated variable moves depend exclusively on past plant
history and therefore it 1is possible to analyze with classical

techniques familiar to most control engineers.
o
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It is in this constraint~free environment that QDMC was found to
have an Internal Model Control structure (Garcia and Morari, 1982) and
therefore enjoy many important properties, in particular, that it does
not require a stability an?lysis. These important properties by
themselves provide enormous incentive for the use of model-predictive
controllers over other designs. However, as explained above, in the
constrained on-line optimization framework the -added feature of
on-line updating of the moves based on predicted process constraint
violations is what allows model-predictive controllers to realize the

achievable profits.

Aftervcomparing the two main methodologies of process control as
we see them, one can now start to see where the important theoretical
developments are necessary in order to solve the real problem at hand.
We have identified two important areas where significant advances in
model-predictive control are needed before we can attempt to solve the

real control problems:

1. Performance Specification:

In the cases above we have assumed that the mathematical
objectives solved represent the true objectives we want the
control system to satisfy. Even then, we have arbitrarily lumped
several unrelated objectives into one single function by
assigning appropriate weights to the individual objectives. In
addition, we have imposed hard constraints even on variables for
which no significant penalty is paid for violations; although
there is provision in QDMC to weight these "soft" constraints
into the objective function in the event of a predicted
vioclation. However, this brings up the more practical issue of
how to distinguish between objectives to be optimized and
constraints to be satisfied and, in turn, which constraints are
hard orﬁg;ft. These decisions need to be based on engineering

judgement and can change during the operation of a unit.

20




Therefore, there is a need to develop on-line systems which
translate the qualitative decision making into quantitative

s

problems to be solved by the control system.

2. Robustness to Modeling-Errors:

Most methodologies for process cbntrol do not handle the
issue of model inaccuracy in a satisfactory way. In the event of
mismatches in the assumed process model .and disturbance
description a "tuning" procedure is employed which consists in
modifying the true performance objectives so that the controller
obtained assuming a perfect model ;ill perform as desired on the
true plant. There is a definite flaw in the design when we know
that model errors exist but insist on design methodologies that
use a perfect model description. The new Structured Singular
Value (SSV) approach of Doyle (1982) was developed to address
this particular issue of design in the face of uncertainties.
Bowever, it assumes a transfer function type of implementation.
fherefore, there is a need to tie these new results with

model-predictive type controllers.

In the rest of this paper we will discuss in some depth these two
issues and show some research efforts currently in place to address

them.

SPECIFICATION OF PERFORMANCE CRITERIA FOR PROCESS CONTROL

The most important step in process control design is to determine
what the control system is meant to do and what performance is
expected from it. Even though we can attach some monetary or economic
value to every criteria, there is usually not enough data to allow us

. . . : . .
to assign costs for every situation. Therefore, it is seldom the case

21



‘that the performance is given by a single criterion (i.e. cost) nor

that it remains invariant with time.

As explained above, we will assume a two-phase approach to
process control as illustrated in Fig. 1. Therefore, the function of
the control phase must be not only to move the process to the new
operating point dictated by the optimizer but also to keep it
operating there despite disturbance changes. In order to achieve this,
there are multiple criteria to be satisfied by the control system. In
this framework we will classify all practical process control criteria

as belonging to one of the following kinds:

- Economic:
These can be associated with either maintaining process
variables at the targets dictated by the optimization phase or

dynamically minimizing an operating cost function.

- Safety and Environmental:
Some process variables must not violate specified bounds for
reasons of personnel or equipment safety, or because of

environmental regulations.

- Equipment:
Physical limitations of equipment must not be exceeded by

the control system even when not directly related to safety.

- Product Quality:

Consumer specifications on products must be satisfied.

- Human Preferences:
There exist excessive levels of variable oscillations or
jaggednesg'that the operator will not tolerate. There can alsc be

preferred modes of operation.
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It will be assumed that every variable needed to evaluate the
practical criteria stated above is measurable or can be inferred by
secondary measurements or operating policy. Then it follows that any
practical criteria can be §tated as being one of two types of

mathematicgl criteria:

~ Objectives: ‘
Functions of wvariables to be optimized dynamically where

optimal means best satisfaction of the criterion.

- Constraints:
Functions of variables to be kept within bounds which in
turn can be of two kinds:
- Hard constraints: no dynamic vioclations of the bounds are
allowed at any time. _
- Soft constraints: violations of bounds can be allowed for

satisfaction of other criteria.

The challenge for the designer consists in the selection of the actual
functions and in the evaluation of trade-offs between criteria for
solving the problem. Also, confusion between constraints and
objectives must be avoided at the design stage. In the following we
explore each of these issues and give examples of proper selection of

performance criteria for practical problems.

Selection of Objective and Constraint Functions

Different methodologies in process control are based on
assumptions about the functionalities of objectives and constraints in
ordér to simplify the solution of the problem. Besides making the
problem mathematically manageable, the main reason for simplification

g/
is to allow implementation in the existing hardware.
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] For example, in QDMC a quadratic objective function is used for
mathematical convenience since it yields a 'simple least-squares
control problem in the absence of constraints. When constraints are
added, a quadratic program results which can Be solved very
efficiently and conveniently with standard software. However, for some
applications a quadratic objective might not be the appropriate
criterion to use. Also, there might be some advantage in using

frequency response objectives instead of time domain objectives.

Although these issues have enough relevance to merit further
discussion and analysis, in our opiniciﬁ" there are other assumptions
which have a more significant impact on performance. For instance, the
most typical assumption made in process control is to ‘"convert"
constraint criteria into objective criteria. The reason is that
problems with constraints are difficult to solve with the available
hardware. On the other hand, conveniently formulated objectives can
yield concise control designs which can be implemented easily with
simple’ blocks. However, the performance of the control system will
generally degrade when a true criterion is compromised for

mathematical convenience.

For example, quality criteria in the form of compositicn
specifications is a constraint criteria. However, in many situations
it is changed into an objective that minimizes deviations from a
target, having the predictable consequences. On the one hand,
composition is kept at a target even when deviations away from the
real bound and into the feasible region are not critical and might
even be necessary in order to satisfy other conflicting criteria. On
the other hand, since the constraint limit is not enforced, violations
can occur and therefore the target must be kept within some tolerance
of the bound. Therefore, there is a performance loss directly related

to the mathema‘i{ical simplification of control criteria.
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) There seems to be a need to develop methods for not only
specifying the correct function to be used as a criterion but also for
making the choice between expressing a practical criterion as either

an objective or as a constraint.

Evaluétion of Trade-offs and the Solution of the Control Problem

Once a satisfactory set of functions is chosen as objectives and
constraints, there remains the problem of evaluating the trade-offs
between criteria. It is obvious that by making a constraint hard it is
understood that it takes precedence over any other objective or soft
constraint. In the case of soft constraints, they can be handled as
objectives when they become active during the operation of the
controller, Since there exist many quantitative as well as
qualitative reasons for the designer to prefer one criterion over
another, the control technique must provide a way to allow the

designer to influence the solution. This can be done in several ways.

Single objective function. One can lump all objectives and all

active soft constraints into a single objective function by using
weights. The importance of each objective is then influenced by the
relative size of the weights. This objective is then optimized subject
to the hard constraints. Such approach is done by QDMC as described in
the previous section. In addition, in QDMC we have been able to add
other objectives that can be expressed as quadratic functions to solve
economic optimization and enforcing targets for manipulated variables
(Prett and Gillette, 1979).

Although computationally convenient, there are some difficulties
with this approach. First, the selection of weights is dependent on
the particular scaling of the variables, therefore making the
enforcement 9&7 an objective difficult. For example, selection of

weights for the satisfaction of a target for a temperature vs. that of
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'e composition will depend on each variable engineering units. Second,
even when there are no scaling problems, the relative importance of
different kinds of objectives cannot be exactly quantified for most
problems (i.e. economic cost vs. variable deviat:.ons) Third, since
the objectives are lumped together there is no guarantee that by
increasing - the corresponding weight of one objective the other
objectives will not be affected, due to an inherent interaction
between objectives through the lumping. And finally, those weights
chosen today may not be appropriate later on when operating conditions

have changed.

Despite these difficulties, the single objective function
approach has worked satisfactorily in many practical cases. The reason
is that it is computationally so simple that one can afford to be
imprecise with the initial weight selection. Then the weights can be
updated on-line according to the observed performance. Such epproach
has been followed in Shell since the initial applications of DMC.
However, its success has been achieved at a high maintenance cost.
Although this was cost effective in the past, it is becoming
increasingly difficult and costly to maintain the current large number
of QDMC loops. Recent technological advances indicate that these
difficulties can be overcome through better formulation of the
problem. This then allows for less control expert personnel being
assigned to the loop maintenance role. Gradually, our technological
advances are allowing for the entry of more advanced loops into the
world of general control loop maintenance. This is of course the

objective of the pursuit of the Unified Theory.

Multiple objective functions. From the above discussion it

follows that the exact mathematical formulation of the control problem

to be solved is a multi-objective optimization algorithm subject to
/, . Pq e . . .

multiple constraints, with the ability to distinguish and to handle

hard and soft constraints. By performing a suitable multi-objective
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"optimization (also known as vector-valued function optimization) the
issue of assigning weights for each criterion can be removed.

One such algorithm solves the following generalized optimization
problem at each sampling time (Nye and Tits, 1985):

min { max £,(x) | g,(x)s0} (10)
X M J :

vhere j=1,2... are the number of .objectives and active soft
constraints, i=1,2... are the number of hard constraints and the
solution vector consists of the manipulated variable moves. This
problem minimizes the maximum of the objectives subject to the hard
constraints. Since each objective has its own level of importance and
satisfaction to the designer, one has to somehow influence the
solution of (10) based on the designer's desires. One way of aéhieving
this is to normalize the set of objectives and soft constraints

conveniently as follows:
fj' = (fj - fgoodj) / (fbadj - fgoodj) (11)

where the '"good" and "bad" values of the objectives and soft
constraints are specified by the designer. Note that values of 0 and 1
correspond respectively to the specified good and bad values. This

implies that these normalized objectives are to be always minimized.

By normalizing individual objectives with respect to’ their good
and bad values all the criteria can be compared on the same basis. For
example, two /gbjectives having the same normalized value equally
satisfy the designer; both would be equally "good" or equally "bad".

Therefore, the problem of selecting weights when the objectives are
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"lumped in one function is replaced by the problem of selecting the
good and bad values for each objective. Even though still requiring
some effort to select, compared to weights these values will make more

engineering sense and will be directly related to the actual problem.

In the original paper where this optimization technique is
presented (Nye and Tits, 1985) the authors make the point that such an
algorithm must be supported with a good man-machine interface so that
the designer can evaluate the trade-offs and influence the solution
accordingly based on engineering judgemgnﬁ. In an on-line environment
(as we propose to use such a techhique) these decisions will
necessaril& need to be automated so as to achieve a maintenance-free
operation. The best technology available at present to achieve such
automation is the expert system technology. As we see it there will be
an intelligent decision maker on top of the optimizer updating the
criteria (Fig. 3). These criteria will be wupdated based on

quantitative as well as qualitative information about the operationm.

Some Examples of Selection of Performance Criteria

In this section two examples of problems where correct

specification of performance criteria is critical are presented.

The surge level control problem. Distillation column trains where

the product _flow(s) of one column feed a downstream unit pose an
interesting situation in control objective specification. It is common
practice to balance the material in these columns by controlling an
accumulator level through manipulation of the outlet flow, Since the
manipulated variable for controlling the level in one columm is in
turn a disturbance to the following wunit, any upset can easily
propagate dowégtream. In olefin plants, for example, there is a

fractionation train as shown in Fig. 4.
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If only one column in this train is considered, the practical

criteria for this problem are:

1) Minimize variations in the outlet draw.

2) Maintain the level within the upper and lower bounds of the
tank 6ver a future time horizon. '

3) Maintain the outlet flow within its upper and lower bounds
over a future time horizon. '

4) Bring the level back to the middle of the tank at the end of

the time horizon.

Satisfaction of these criteria will minimize the propagation of
upsets, will keep the level within the equipment constraints while
manipulating the outlet flow within its limits, and bring the level
back to the middle of the tank in order to guarantee surge capacity

for the next upset.

éeveral issues are of importance here. First, if the control
problem is designed individually for each column in the train, there
might be a loss of performance. Note that the downstream columns will
be perturbed with known inlet flow changes and therefore one could
feedforward the predicted moves. More elegantly, however, one could
solve for the set of criteria for the entire train yielding a

multivariable control problem.

Second, let us consider the traditional control setup for this
problem. Since the level in the tank must not exceed its bounds the
common practice is to design a controller for keeping the level at the
middle of the tank wusually very tightly. As a consequence, any
disturbance change to a column will propagate downstream with equal
intensity or possibly amplified if the loops are not adequately tuned.
In the particu/iar case of an olefins plant, a furnace trip will cause

a severe step decrease in the feed to the first column (Fig. 4) which
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‘can upset the process for several hours. Thus,-a high price is paid
for substituting the true criteria for an alternate criteria of minor
relevance, namely, tight control of the level. In this problem, it is
more important to minimize Putlet flow changes regardless of the

level, except when it violates-the upper and lower bounds.

Finally, from criterion 4) it is obvious that we are assuming
every inlet flow disturbance change to settle faster than the horizon
chosen. Should a dynamic representation of the inlet disturbance be
available, this information would allow the controller to make moves
to conserve surge capacity for future ﬁésets without having to design
the controller to satisfy criterion 4). This illustrates the effect of
model error in forcing the modification of performance criteria. This

issue will be covered in the next section.

A semi-batch reactor control problem. The process discussed here

is the block polymerization of synthetic rubbers (Garcia, 1984). The
final product consists of a polymer composed of several blocks of
different monomers. A sequence of batch operations is performed to
produce the blocks. Since the polymerization proceeds via an anionic
mechanism, ché.in termination follows an Arrhenius type decay whose
rate increases with temperature. Successful polymerization of all
blocks demands that a only a small fraction of the molecules terminate

at every reaction step.

These reactions are carried out in the vessel depicted in Fig. 5.
The heat of reaction is removed by circulating the reactive solution
through exchangers which use refrigerated water. In addition, there is
the capability of manipulating the rate at which monomer is added for
control of the heat release. The initial batch charge and recipe for
the reaction are assumed given. In general, there is a desired

temperature target at which the reaction is to take place.
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Following this description, the criteria to-be satisfied are:

1) The cooling water flow must be within its ‘upper and lower
bounds.

2) The monomer addition fate must be within its upper and lower
boundé.

3) The reaction temperature must be close to the target over the
whole batch. '

4) The fraction of terminated chains must be smaller than a given
bound at the end of the batch.

S) The batch reaction time must be minimized.

It must be noted that satisfaction of these criteria guarantees that
other important properties of the polymer are satisfied, and therefore
these criteria cover all- possible aspects of the problem. The last

criterion is purely economic.

in order to solve this problem, a multi-objective constrained
optimization of the type described in (10) is required. In the absence
of constraints and transforming criterion 1) to an objective
criterion, then an optimal control approach can be wused.
Alternatively, due to computing limitations, the method reported by
Garcia (1984) consists in defining alternate criteria which indirectly
satisfy the true criteria. These alternate criteria are then solved
for by using the standard QDMC algorithm (although with some

modifications due to the nonlinearities in the model). These are:

1) The cooling water flow must be within its upper and lower

bounds.

~2) The monomer addition rate must be within its upper and lower

bounds.

, .
3) The redction temperature must be close to the target over the

whole batch.
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4a) The monomer addition rate must be at its maximum possible

value during the batch.

In order to satisfy these criteria, a control pfoblem can be set
up with the reactor temperatﬁre as the controlled variable. Also, a
target can be imposed on the monomer addition rate equal to its
maximum bound. This forces the controller to add monomer at the
maximum possible rate. The manipulated variables are the cooling water

flow and the monomer addition rate.

Note that satisfaction of alterﬁ;te criterion 4a) indirectly
satisfies criteria 4) and 5), since adding monomer at the maximum rate
possible minimizes the reaction time. This in turn minimizes the chain
termination rate due to the properties of the anionic mechanism. Note
that by doing this we have substituted a constraint criterion by an
objective criterion while having to lump both target criterid 3) and
4a) into one single objective. As a result, there is a need to tune
the weights in the objective function in order to satisfy the true

criteria.

In the following section the important issue of robustness to
model uncertainties is discussed as it affects the satisfaction of

performance specifications.

MODEL INACCURACY CONSIDERATIONS IN PROCESS CONTROL

In previous discussions, we have not explititly dealt with the
issue of accuracy of the model of the process and of the disturbances
in designing model-predictive controllers. An important property of
model-predictive controllers is that no stability problems exist under
perfect mode1,{¢onditions, even in the face of constraints on the

manipulated variables (Garcia and Morari, 1985). However, there exist
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‘inherent limitations in satisfying arbitrary criteria due to specific
process characteristics. As discussed by Garcia and Morari (1982)
system zeroes outside the unit circle and deadtimes impose limitations
on the satisfaction of targets which cannot be removed by any control
system. Since satisfaction of active output constraints can be thought
of as a target satisfaction criteria, oﬁtput constraint criteria
satisfaction will also be limited by the same process characteristics.
As a result, these limitations must be taken ihto account when
formulating the objectives and constraints. The factorization method
(Garcia and Morari, 1982) takes care of this problem for target
criteria and therefore, for most practical cases these limitations do

not impose'additional difficulties in the design.

However, the most important limitation to satisfying control
criteria is imposed by inaccuracies in the model assumed for design.

Models used for design will not be accurate for several reasons:

- The model is assumed linear when the process is nonlinear and
therefore, the model will not describe the process when the
operating point changes beyond a certain amount. This problem is
exacerbated by the presence of optimization systems which
generally increase the frequency of operating point changes.

- The equipment degrades or is changed (e.g. catalyst change,
heat exchanger fouling, tray collapses, etc.).

- Disturbance characteristics are unknown and therefore
assumptions are made at the design stage on their dynamic
behavior.

- Techniques used for identification are not accurate enough or
the measurements are not of enough quality to produce the model

detail wanted.

In the fé&é of significant model inaccuracies the control system

is generally unable to satisfy all of the true performance criteria
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’specified for the process. In this event, the designer (before the
implementation) or the tuner (after implementation) is faced with the

decision to trade one performance criteria for another.

For example, two commonly specified criteria for single variable
control systems are to maximize the setpoint tracking speed while
exhibiting smooth manipulated variable response. The tuning parameter
selection (e.g. controller gain) influences the trade-off between
these criteria. In the absence of model error it is possible to
achieve any desired speed in setpoint tracking behavior (within some
inherent system limitations as are deadtimes and system zeroes outside
the unit circle (see Garcia and Morari, 1982)). However, the faster
the response, the more "power" will the manipulated variable need to
have. In order to satisfy the smoothness criterion on the manipulated
variable the designer can detune the controller until an acceptable
response is obtained. This tuning procedure yields the fastest
tracking speed ©possible for the desired manipulated variable

smoothness in the absence of model error.

Let us now assume that the controller designed as explained above
is installed and a significant change in the process occurs.
Invariably, the fastest speed of tracking achieved by the designer
when the model is perfect will not be achievable in the face of model
error without an increase in manipulated variable jaggedness.
Therefore, the tracking speed must be sacrificed to satisfy the
smoothness criterion. If this slower closed-loop response is
acceptable, the model error has not imposed a restriction on
satisfying the criteria. On the other hand, if the closed-loop
resppnse'is not fast enough for the particular application, then this
inaccuracy forces the tuner to accept a higher level of manipulated

variable jaggedness, or most likely, to take the loop off control.
3
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Controller robustness can then be defined "as the ability of the
control system to satisfy the desired performance criteria of the true
process in the face of inaccuracies in the model used for design. In
the example above, an expert tuner is assumed to be present to ensure
robustness, and therefore this is a drawback in the way controllers
are designed and tuned today. In the particular case of
model-predictive controllers, this issue is amplified by the fact that
it is not possible to foresee at the design stage all possible
scenarios of active constraints and tune appropriately for all of
them. Our goal, that is equally shareq by all practitioners, is to
design a controller that stays on-line ionger while requiring minimal
maintenance. Let us examine the traditional methods used to achieve
robustness and also discuss a new technique aimed at solving these

difficulties.

Traditional Methods of Handling Model Inaccuracies

The single variable tﬁning example discussed above illustrates
the most common procedure used to handle the uncertainty issue. Out of
lack of Dbetter information about the process, most control
methodologies assume the model description of the process to be
accurate at the design stage. The control performance is evaluated
based on this model and a set of tuning parameters is obtained.
However, model inaccuracies will cause a degradation in the expected
design performance when the loop is implemented. The traditional way
of handling . this loss of performance is by modifying the tuning

on-line.

Another interpretation of the traditional tuning precess is to
think of it as a procedure that modifies controller criteria to
guarantee robustness to modelling errors. In the QDMC method, weighted
penalties on ﬂgé manipulated variable moves are added to the objective

function as given in equation 8. Even though in many practical cases
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‘there is a true need to minimize manipulated variable variations, the
main reason for penalizing them in QDMC is to improve the robustness
properties of the algorithm. However, to guarantee robustness on-line

" tuning is required.

It is reasonable to think that if some knowledge of the
uncertainties is available at the design stage, a more robust design
could be obtained by, for example, performing studies on the tuning
parameters. The problem with such a study is that the true process
performance would need to be evaluated. by performing simulations over
all possible process representations ‘generated by the uncertainty
descriptioﬁ. In addition, in the model-predictive environment,
innumerable studies would be required to consider all possible

scenarios of active constraints.

The issue is then to be able to easily measure how model
inaccuracies 1limit the satisfaction of true process performance
criteria (both objective and constraint criteria) given an uncertainty
description. This measure can then be used in two ways. First, to
evaluate the trade-offs at the design stage for the most typical
scenarios of active constraints., This would indicate whether or not
the controller will work for expected uncertainties without having to
perform  extensive simulation  studies. Second, during the
implementation, changing criteria can be evaluated on-line in the face
of inaccuracies. As a result, a design can be produced which will stay
in operation longer with minimum maintenance. These issues are central

in a newly developed robust control theory discussed in the following.

Methods to Solve the Model Uncertainty Problem

We are currently investigating several methods to handle the
s
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"issue of model inaccuracy in the design- of model-predictive
controllers. In this section we give a short deécription of each and

propose how they can be used to solve the problem at hand.

Robust control techniques., We have found recent developments in

the area of control to have promising poésibilities in solving the
model-predictive control problem in the face of uncertainties.
Although its implementation assumes a recursive type of controller
with no constraint handling, the Structured Singular Value (SSV)
approach of Doyle (1982) employs the correct philosophy of approaching
the robustness issue: use an uncertainty-description of the process at
the designv .stage to obtain a controller that will not perform worse
than desired on the true process, therefore, minimizing on-line
tuning. In this discussion we briefly describe this technique as
applied to recursive type controllers and point out what research
topics need to be addressed in order to extend these ideas to

model-predictive controllers.

' The SSV provides a measure of true process performance
satisfaction in the face of model inaccuracies. The result is a
refinement of the Singular Value result (Doyle and Stein, 1981) where
now structured uncertainties can be considered. This means that it
allows the designer to specify wuncertainties in the gains, time
constants, etc. in given elements of the system transfer function
matrix. As a result, a less conservative stability criterion is

obtained.

In Doyle's formulation, performance is described by weighted
frequency response functions that reflect the designer's desired
closed-loop characteristics. The trade-offs are influenced by the
selection of these weights. Model inaccuracy is described in any form
desired as lc';,r/ig as it can be represented in block diagram form

suitable for linear processes. In addition, an uncertainty description
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‘of the disturbance dynamics in frequency response is used making the
method more appealing than LQC where disturbances have to be described

as Gaussian noise.

ks

Under these assumptions, .the method consists of the solution of

two important control problems:

The Analysis Problem: given a controller, one can evaluate a
criterion (the SSV) whose value indicates whether or not the
desired performance is achieved for the true process in the face

of the described model and disturbance uncertainties.

The Synthesis Problem: given the desired performance of the true
process and a description of model and disturbance uncertainties,
a controller transfer function is found so that the SSV criterion

is met.

The first problem involves an optimization procedure to evaluate the
SSV where the second involves another optimization to compute . the

controller.

Even though the methodology has been developed for a recursive
type of control implementation, we see much promise in it,
particularly in the way model and disturbance uncertainties are
described. Of course, this description is not always available.
However, it is our experience that the designer has enough knowledge
about the proéess to be able to specify ranges of values for gains and
time constants. Even such crude description would produce a more
intelligent and consequently more robust design than assuming the

parameters to be accurate.

At preseﬁﬁ, this technique is useful to soclve the analysis

problem of QDMC at the design stage, but only if constraints are
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.removed. Using the nominal model one can design QDMC for a set of
tuning parameters (as is done presently). Then the SSV is computed for
such controller to evaluate whether or not the desired closed-loop
‘properties of the control system (e.g. disturbance rejection,
manipulated variable smoothness, etc.) are satisfied for the given
model and disturbance uncertainty description. Such analysis would
give the designer a tool for tuning his controller, without having to
perform simulation studies. We are currently incorporating such

analysis tool in our design techniques.

Since it is not possible at thelaesign stage to consider all
possible scenarios of active constraints and other criteria, and
therefore, all possible controllers generated by QDMC, the best we can
hope for with the current SSV theory is to perform analysis studies on
the most common operating conditions. This would involve substituting
a constraint criteria for an equivalent objective criteria. For
example, if we expect some variable constraint to be active, it could
be considered as a controlled variable with the target as its bound
and the analysis performed on the resulting controller. This would
hopefully reduce the situations where on-line tuning is required to a

minimum.

However, in an environment of changing criteria that do not
translate easily to frequency response functions (as are inequality
constrained responses in the time domain) this methodology would
likely need - to be modified. As discussed above only the on-line
solution of the problem provides such flexibility. We must realize
that at the design stage there seems to be no comprehensive way of
evaluating all the possible operating scenarios and consequently, case
studies must necessarily be performed.

‘0.
Among the possible modifications, one could remove the weight

selection process by using a multi-objective optimization method that
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‘allows direct evaluation of the performance criteria based on
engineering judgement. The technique described previously seems to be

a convenient tool for this (Nye and Tits, 1985).

But the best extension o% this technique to the model-predictive
framework 'is to solve the synthesis problem on-line for the
manipulated variables moves directly rather than off-line to obtain a
transfer function. This has the potential of producing a controller
which can accept changing objective and constraint criteria. These
criteria are then traded on-line in the face of model inaccuracies to
produce the best moves of the manipulated variables. Although possibly
computationally prohibitive with today's computers, this appears to be

a sound approach to solve the real problems at hand.

Adaptive Control Methods. Much attention has been given in the
literature to adaptive control schemes. These methods handle the model
inaccuracy problem by on-line identifying the process model based on
measurements of inputs and outputs of the plant (Astrom and
Wittenmark, 1973). Besides solving for only an objective criteria,
namely the minimum variance objective function, this is done under the

assumption that a perfect model is obtained at every execution time.

Besides being limited in the criteria that are solved, the
assumption of perfect model can create problems. Even though the model
is updated continuously, on-line experiments have inherent limitations
which do not allow complete identification of all process modes or of
all disturbance characteristics. Therefore, the model updates might
not be good enough to allow the control system to satisfy the

specified objective and therefore a tuning procedure is inevitable.

In the framework of model-predictive control, we have already

v
discussed how to best handle the criteria formulation problem, and

therefore, out of adaptive control theory we will only be concerned
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‘'with the on-line model identification aspects. In light of the robust
control theory described above, two research topics are of interest:
- Use robust control analysis to find out which model parameters
lack enough accuracy to allow the satisfaction of the desired
criteria. Then an on-~line identification procedure can be used to

refine the estimates of such parameters.
~ Develop on-line identification methods that not only find the
nominal model but also identify the uncertainty bounds on plant

and disturbance models.

Current work consists in finding suitable on-line identification

schemes for dealing with these issues.

Nonlinear model description. In case a dynamic nonlinear model of

the plant is available, the model-predictive control problem can be
solved assuming perfect model description. Numerical problems aside,
this seems to be the best approach to take. However, model
inaccuracies will inevitably be present even using nonlinear models
and therefore, a nonlinear robustness analysis is needed. An advantage
of using nonlinear models is that now the parameters can have definite
physical significance as for example, fouling rates, kinetic rate

constants, etc.

We have had good success using nonlinear models for solving
complex control problems. The reactor control problem described in the
previous section was solved by using nonlinear ordinary differential
equations to generate the predictions and step response coefficients
(Garcia, 1984). The solution method assumed linear superposition of
future predictions to compute the moves and therefore was not optimal.

s
Bowever, one can easily formulate a dynamic optimization problem which

solves the problem exactly. In this particular application, computing
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‘power limitations prevented us from using a more rigorous solution

method on-line.

CONCLUSION

In this paper an attempt was made to formalize a rigorous
approach to research in process control. The pursuit of a Unified
Theory was introduced within the context of the need for our industry
to apply an Integrated Technology philo;ophy to maximize the synergism
of separate component technologies suchlas control and optimization.
The field of process control has been pursued in an ad-hoc fashion for
many years. Many so called soclutions have not stood the test of time
nor have they been translatable nor generalizable to cover more than
the immediate application. In technical developments too much
attention has been paid to implementation constraints, such as
hardware capability, leading to the situation we have today wherein
much of our industry is notlcapable of exploiting the rapid growth of
computing power available at the field level. Hence we have the sad
~ state of choosing between ad hoc solutions that really do not meet the
requirements of the application, or so called advanced technology that

really does not address the real problem.

The concept of an Integrated Technology refers to the recognition
that a control system, besides having to perform in the load rejection
mode, will also most probably experience some manipulation of
setpoints which is generalized here in the term Optimization. Whether
this is performed using a rigorods first principles approach or in a
more ad hoc fashion is really beside the point. Our control design
meﬁhodologies must incorporate this fact and hence be able to
recognize and deal with constraints. Ad-hoc approaches to constraint
handling supei{hposed upon so called advanced techniques are no better

than overall ad hoc problem solutions themselves. It 1is time to
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‘recognize this fact and get on with the pursuit of research activities
that will lead to a continually evolving series of problem solutions
growing in technical sophistication. Over time it is~hoped that this
. will lead to a Unified Theory of process control that will be
generally applicable to most all our problems. The authors feel that
the Dynamié Matrix Control technique is an excellent first step down
this path that incorporates many of the requirements discussed. It is
however just a beginning. It is a beginning that at least provides
the framework for evolutionary growth. We must deal with the

following issues:

- Nonlinear model requirements

- Constraint handling

- Detailed performance analysis and multi-objective solution
techniques

- Dynamic problem structuring techniques

- Requirement for low maintenance

and furthermore deal with them in a generalized framework so that long

term we can look to a Unified Theory incorporating all aspects.

While‘involved in this endeavor it is also important for us to
suitably exploit the growing areas of Artificial Intelligence and
Super Computing. The field of Artificial Intelligence will facilitate
the synergism of qualitative and quantitative knowledge bases. Much
of our historic problem with specification of performance requirements
has been due to the qualitative nature of the input information.
Difficulty has been experienced in effecting the appropriate level of
interaction between this and the more quantitative solution techniques
available. This is being rapidly addressed by the new developments in
Artificial Intelligence and process control researchers are well
advised to sté& up to date with this work. One caution in this area

is that there has been a tendency to shroud the old traditional ad-hoc
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‘solutions discussed earlier in the mantle of respectability by framing
them within the context of Artificial Intelligence Systems. This is
considered unacceptable. The real contribution. of Artificial
Intelligence will be as a complementary aid in solving the real
problem and not in facilifating the implementation of ad-hoc

solutions.

The field of super computing is also very exciting as a
prospective aid in implementing our proposed approach. It is
reasonable to expect that within the .next five years low cost high
performing computer power will alidw us to consider removing
artificialAboundaries between the areas of control and optimization

and so allow us to truly achieve an Integraﬁed Technology approach.

REFERENCES

Arkun Y., and G. Stephanopoulos (1980). Studies in the synthesis of
control structures for chemical processes: part iv. design of
steady-state optimizing control structures for chemical process
units. AICHE J., 26, 975.

Astrom, K.J., and B. Wittenmark (1973). On self tuning regulators.
Automatica, 9, 135-199.

Cutler, C. R., and B. L. Ramaker (1979%). Dynamic Matrix Control - a
computer control algorithm. AIChE National Mtg., Houston, TX.

Doyle, J. (1982). Analysis of feedback systems with structure
uncertainties. IEE Proc., 129, 242-250.

Doyle, J., and G. Stein (1981). Multivariable feedback design:

concepts for a classical/modern synthesis. IEEE Trans. Autom.

Control., AC-26, 4-16.

Garcia, C. E. (1982). Studies in Optimizing and Regulatory Control of
Chemical Processing Systems. PhD Thesis, University of Wisconsin,
Madison. .,

Garcia, C. E. (1984). Quadratic Dynamic Matrix control of nonlinear

44

[




processes: an application to a batch reaction process. AIChE
Annual Mtg., San Francisco, CA. -

Garcia, C. E., and M. Morari (1982). Internal Model Céntrol 1. a
unifying review and some new results. Ind. Eng. Chem. Process
Des. Dev., 21, 308-323.

Garcia, C. E., and M. Morari (1985). Internal Model Control 2. design
procedure for multivariable systems. Ind. Eng. Chem. Process Des.
Dev., 24, 472-484,

Kwakernaak, H., and R. Sivan (1972). Linear Optimal Control Systems.
Wiley-Interscience, New York.

Morari, M. (1981). Integrated plant control: a solution at hand or a
research topic for the next decade? Chemical Process Control II,

Sea Island, GA.

Nye, W. T., and A. L. Tits (1985). An application-oriented,
optimization-based methodology for interactive design of
engineering systems. Int. J. Control (submitted).

Prett, D. M., and R. D. Gillette (1979). Optimization and constrained
multivariable control of a catalytic cracking unit. AIChE
National Mtg., Bouston, TX.

Ray, W. H. (1981). Advanced Process Control. Mc-Graw Hill, New York.

Richalet, J. A., A. Rault, J. L. Testud, J. Papon (1978). Model
predictive heuristic control: applications to an industrial
process. Automatica, 14, 413-428.

NOMENCLATURE
a step-respons%h'coefficient matrix with respect to process
| A . .
inputs for £ time interval.
a . step-response c%ﬁfficient matrix with respect to manipulated
mi - : X X
variables for i~ time interval.
A state-space model state matrix.
B state-space model input matrix.
Bm state-space model manipulated variable matrix.
/4
c state-space model output matrix.
a unmodelled contributions to the output
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fj jth objective in a multi-objective optimization problem.

gi ith hard constraint.

hz %mpulse-respgﬁse.coefficient matrix with re;éect to process
inputs for % t1me-§nterval.

k | discrete interval of time.

m process manipulated variable vector.

M number of discrete time intervals when manipulated variables
are allowed to move in the controller computation..

P number of discrete time intervals in the controller horizon.

q integrator state vector.

T sampling time.

u process input vector (manipulated variables and measurable
disturbances).

X vector of system states.

vy’ process output vector.

ym process output measurement.

Yg output setpoint vector.

Greek

A denotes a change in a variable over a time interval:
ax(k) = x(k) - x(k-1).

I‘2 matrix of penaity weights on outputs.

Ag matrix of penalty weights on manipulated variables.

Subscripts

L  variable vector of low limits.
H variable vector of high limits.
Superscriﬁ%s

predicted variable.
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