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The estimation of external forces exerted on a robotic manipulator with 

harmonic drive gearing without a force/torque sensor is considered. Manipulator 

dynamics, together with motor current feedback are used to estimate external joint 

torques, which are transformed into estimated external end effector forces using 

knowledge of the manipulator’s kinematics. Adaptive control is used to tune the 

parameters of the robot’s modeled dynamics, while adaptive radial basis function 

(RBF) neural networks are used to learn the friction dynamics. Admittance control 

without force sensing is attempted on a two degree of freedom manipulator. Readings 

from a six-axis force/torque sensor mounted on the manipulator are used to validate 

the force estimates during the estimation phase.  
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 Chapter 1: Introduction 

1.1 Motivation 

The most common robotic manipulator control schemes are those that attempt 

to control strictly position. Such schemes ultimately require that a manipulator track a 

time varying joint trajectory specified for each of its degrees of freedom. Position 

control is an intuitive and often effective means by which to accomplish tasks. Its 

major drawback is that a manipulator will attempt to track its desired trajectory even 

if that brings damage to itself and objects in its way.  

As a result, force control schemes have been developed to deal with 

controlling interactions between the manipulator and its environment. Compliance 

control attempts to combine position and force control by enforcing a mass-spring-

damper relationship between external force and the manipulator’s desired position, 

velocity and acceleration.  

Robotic manipulators typically use force/torque sensors to realize force or 

compliance control. However force/torque sensors have several well-known 

drawbacks in the form of their cost, size and the complexity they introduce into a 

manipulator’s mechanical, electrical, and software design. Force/torque sensors 

provide their most accurate and stable results when placed as close as possible to the 

end effector, constraining a system’s mechanical design. The gravitational term of the 

end effector itself must then be compensated for in software. Also there is a need to 

incorporate the sensors’ output signals into the system poses problems electrically as 

well.  
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Another, less common drawback is that force/torque sensors saturate due to 

high water pressure, rendering them ineffective in deep-sea robotic sampling tasks. 

The Space Systems Laboratory (SSL) of the University of Maryland is partnering 

with the Woods Hole Oceanographic Institute (WHOI) to create a system that will 

autonomously collect samples from the floor of the Artic Ocean. The project, part of 

NASA’s Astrobiology Science and Technology Experiment Program (ASTEP), aims 

to be the first expedition to sample the hydrothermal vents in the Gakkel Ridge region 

of the Artic. The system will consist of the SSL’s Subsea Artic Manipulator for 

Underwater Retrieval and Autonomous Interventions (SAMURAI) arm mounted on 

JAGUAR, a WHOI autonomous underwater vehicle (AUV). Figure 1.1 (a) depicts the 

manipulator mounted on the AUV while Figure 1.1 (b) depicts an actual prototype of 

the AUV. For such a system using force estimation instead for compliance control 

can enable safer interaction between the manipulator and its external environment. 

Fig 1.1  (a):   JAGUAR with SAMURAI arm and sample containers (Model by Stephen Roderick, SSL). 

                     (b):   SeaBED, the prototype of JAGUAR (Photograph by Mike Naylor, SSL).     
 

Many space and underwater manipulators, including SAMURAI, use electric 

motors, which provide high speed but low torque. They are therefore geared with 
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harmonic drives. Gearing reduces a motor’s speed but increases its torque. Harmonic 

drives are a popular method of providing gearing as they enable high gear ratios and 

cause little backlash. However, they tend to greatly increase manipulators’ joint 

friction, especially in static situations. Stiction, short for static friction, is a major 

source of error in force estimation due to the difficulty in modeling its behavior. This 

work will attempt to characterize such difficulties while attempting compliance 

control based on force estimation in harmonically driven manipulators. 

1.2 Previous Work 

Force estimation as applied to robotic manipulators has been a topic of interest 

since the early 1990’s. Murakami et. al., (1993) proposed a decoupled disturbance 

observer based approach. Hacksel and Salcudean (1994) presented a coupled force 

observer based on accurate knowledge of a robot’s dynamics. Both observer based 

approaches demonstrated good results on direct drive manipulators with negligible 

unmodeled friction dynamics.        

 More recently, dynamics learning has been used in force estimation. Simpson 

and Hashtrudi-Zaad (2005) used a neural network to learn the entire dynamical model 

of their 3 degree of freedom (DOF) haptic device offline. Their system contained 

little friction however and the dynamics of the system were assumed to be 

unchanging after the initial neural network training. Zhan et al. (1998) showed that 

force sensorless hybrid force/position control was possible in a geared, though not 

harmonically driven, manipulator. They used a simplified model of robot dynamics, 

consisting of a known gravity term and a learned friction term. Adaptive neural 
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networks, discussed shortly, were used for online friction learning though adaptation 

of the modeled dynamics was not performed.     

 Simpson et al.  (2002) used motor current to estimate external forces for 

robots with harmonic drive gearing. The approach involved subtracting modeled 

dynamics from motor torque, assumed to be proportional to motor current, to form 

the estimated external torque. The estimated torque thus obtained contained 

significant unmodeled position-dependent friction. Filtering the estimated external 

torque in the position domain greatly improved the estimates. The technique is based 

on the friction modeling work of Popovic and  Goldberg (1998) which involved using 

spectral analysis in the joint position domain, rather than the time domain, to model 

friction. The filtering was done offline however, when the entire position history of 

the estimated external torque was known. Therefore the force estimates are not 

suitable for use in real-time control.        

 All of these techniques have relied on well-known, unchanging parameters of 

the manipulator’s dynamics. In reality, the parameters of the manipulator’s dynamics 

are usually not known precisely. This is especially true under changing end effector 

load. For these reasons an adaptive control law for robotic manipulators was 

originally developed by Slotine and Li (1987). It relied on knowledge of the 

manipulator’s full dynamical model with no unmodeled dynamics assumed. The 

parameters of the model were tuned online while maintaining closed loop control. 

 In addition to learning parameters of the modeled dynamics, it is often 

desirable to learn unmodeled dynamical terms. A control law involving the use of 

radial basis function (RBF) adaptive networks (a.k.a “neural networks”) to learn a 
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manipulator’s unmodeled friction term, assumed to be velocity-dependent, was 

introduced by Sanner and Slotine (1992). In the work the function approximation 

abilities of such networks were investigated and bounds on tracking error were given 

based on the number of nodes in the network and their inverval. Sanner and Slotine 

(1995) combined the online learning of unmodeled dynamics with the online 

adaptation of modeled dynamics in a stable control law for manipulators. Liu (1997) 

performed further experiments using Sanner and Slotine’s controller on an 

experimental one DOF manipulator. The ability of the controller’s adaptive networks 

to approximate friction under variations in temperature was successfully 

demonstrated. In addition, the adaptive networks were able to learn unmodeled 

dynamics such as joint velocity dependent hydrodynamic forces in dynamic motion 

underwater. The work presented in this thesis builds on the ability of this adaptive 

learning controller to learn both modeled and unmodeled dynamics while maintaining 

closed loop control of the manipulator. A real-time force estimation technique is 

presented that relies on learning the dynamical model using the controller. The 

technique also allows for relearning of the dynamics at certain points in time chosen 

by either an operator or higher-level autonomy. This feature can enable good force 

estimation ability despite changes due to loading, temperature or even more exotic 

disturbances such as unmodeled hydrodynamics. 

 Real-time force estimation leads to the feasibility of performing compliance 

control without a force/torque sensor. Compliance control blends strict force control 

and strict position control by modifying the manipulator’s desired trajectory based on 

external forces. Compliance control was first introduced by Salisbury (1980) in the 
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form of the stiffness controller and Hogan (1985) in the form of the impedance 

controller. Under impedance control a manipulator is viewed as an object that accepts 

deflection in position, velocity and acceleration due to contact and responds by 

exerting force on the environment. The dual to this concept is admittance control, in 

which a manipulator is viewed as accepting force due to contact with the environment 

and responding with modification of its trajectory. The compliance controller used in 

this work is a modification of an admittance control used by Guion (2003) where it 

was termed “position-based impedance control”. Position-based impedance control 

was first introduced by Maples and Becker (1986).  

 

1.3 Objectives 

 

The primary objective of this thesis is to investigate the ability to estimate 

external forces exerted on a highly geared, harmonically driven manipulator with 

considerable friction. The goal will be realized using online adaptation and friction 

learning control applied to a two DOF manipulator both in simulation and hardware 

experiments. The approach relies on modeling manipulator dynamics and using motor 

current to estimate external joint torques, which are transformed into estimated 

external end effector forces using knowledge of the manipulator’s kinematics. The 

secondary objective of this work is to investigate the use of the force estimates to 

demonstrate compliance control on the experimental system without a force/torque 

sensor.  
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1.4 Thesis Outline 

This thesis is divided into five chapters. Chapter 2 discusses the theoretical 

background of the control law used and derives the force estimation technique being 

introduced using control, dynamics, and kinematics. Chapter 3 details the particular 

dynamics and kinematics of the two DOF manipulator used in both the simulations 

and hardware experiments. The details of the hardware, electronics, and software 

used are given as well as a description of how the three aspects are integrated. 

Chapter 4 provides the results of the simulation and hardware experiments performed. 

Chapter 5 describes the compliance controller using force estimation. Chapter 6 

draws conclusions based on the results and outlines future work. 
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Chapter 2: Control, Dynamics, and Force Estimation 

Before discussing the force estimation technique in this chapter a review of 

robot dynamics as well as both position and compliance control will be presented. 

Dynamics and position control will be directly associated with force estimation, 

which will be used in compliance control in Chapter 5. 

 

2.1 Robot Dynamics 

The following well-known equation describes the dynamics of a rigid N link 

robotic manipulator:  

   τ=+++ )q(f)q(gq)q,q(Cq)q(H v
&&&&&             (2-1) 

Equation (2-1) describes the relationship between ττττ , the N×1 vector of input torques 

at the manipulator’s N joints and the vectors q, q& and q&& - the N×1 vectors describing 

the resulting position, velocity and acceleration of the manipulator’s N joints. The 

generalized variable q has been used rather than θθθθ  to allow for the possibility of 

prismatic joints. Here )q(H  is a matrix of size N×N that describes the position 

dependant inertial term. The N×N matrix )q,q(C &  describes the torque due to Coriolis 

and centripetal effects while the N×1 vector )q(g  describes the torque due to gravity. 

Additionally, the )q(f v
&  term is an N×1 vector describing the friction torque at the 

manipulator’s joints, assumed to be strictly a function of velocity and decoupled 

between the joints. 

When external torques are exerted on the manipulator equation (2-1) becomes 
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extv )q(f)q(gq)q,q(Cq)q(H τ+τ=+++ &&&&&                 (2-2)     

where extττττ  is the N×1 vector of external torques experienced at the manipulator’s 

joints. For geared manipulators the following hold for each joint  

      m

1qGq −=               (2-3) 

       mGτ=τ               (2-4) 

where G is a diagonal N×N matrix of gear ratios for each joint,  mq  is the joint 

velocity of the rotor and mττττ  is the motor torque. Using equation (2-2) and 

generalizing the development of Craig (2005) to N degrees of freedom, a torque 

balance at the rotor can be written as 

( ) ext

1

mv

1

mmmm G)q(f)q(gq)q,q(Cq)q(HGqBqI τ+τ=+++++ −− &&&&&&&&  (2-5) 

using relations (2-3), (2-4) this can be rewritten as 

( ) ( )ext

1

v

1

mm G)q(f)q(gq)q,q(Cq)q(HGqGB qGI τ+τ=+++++ −−
&&&&&&&&  (2-6) 

Multiplying both sides by G and arranging terms leads to 

                 ( ) extvm

2
ττ)q(f  (q)g  q)qC(q, q IG)q(H +=++++ &&&&&              (2-7) 

where 1G −−−−  is the diagonal N×N matrix of inverted gear ratios, 2G  is the square of G 

and mI , mB  are the diagonal N×N matrices containing rotor inertias and viscous 

friction coefficients respectively. The term qBG m

2 &  that results in the step from (2-6) 

to (2-7) has been incorporated into the velocity-dependent friction fv. The Equation 

(2-7) is the complete model of the dynamics of the system used in this thesis. 
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Equations (2-1), (2-2) and (2-7) describe the manipulator’s dynamics in joint 

space, another way to frame manipulator dynamics is in Cartesian space, also called 

task space. In that case the dynamical equations will describe the relationship 

between the input torque and the position, velocity and acceleration of the 

manipulator’s end effector in Cartesian space. Due to the fact that the desired 

trajectories used in this thesis were framed in joint space, the task space description 

will not be discussed further. 

 

2.2 Position and Compliance Control 

 As discussed in Chapter 1, position control and compliance control are two 

different classes of control algorithm used with robotic manipulators. Position control 

attempts to track a time varying joint trajectory without controlling contact forces. 

Position control laws typically use position sensor feedback and occasionally velocity 

sensors (tachometers) to form a control law based on the error between desired and 

actual joint trajectory. Often model feedforward is used in such laws when some or 

all of the manipulator’s dynamics is known. Compliance control schemes attempt to 

enforce a mass-spring-damper relationship between the deflection of the 

manipulator’s trajectory and the force due to contact with its environment. The class 

of compliance control algorithms is broken up into two subclasses – impedance 

controllers and admittance controllers. Impedance controllers accept deflection in 

trajectory away from the commanded due to contact and respond with a contact force 

based on the desired system compliance. Admittance controllers work in the opposite 
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way, accepting sensed force as input and outputting the modified desired trajectory 

based on the desired system compliance. 

 Proportional-Derivative control, usually termed PD control, is the most 

fundamental control scheme. Despite the vast amount of literature and research 

related to more advanced robotic control, PD control continues to be widely used in 

practical applications. This is due to the ease of implementation and good results that 

are attainable when the scheme is properly applied. Its simplicity and consequently 

fast rate allows for high bandwidth applications. PD control involves the knowledge 

of four terms related to a manipulator’s position and velocity – the desired and actual 

joint position vectors, )t(qd  and )t(q  respectively, and the desired and actual 

velocity, )t(qd
&  and )t(q&  respectively. Two error terms can then be formed as 

          )t(q)t(q)t(e d−=              (2-8) 

                                                        )t(q)t(q)t(e d
&&& −= .                                     (2-9) 

To simplify the notation, the dependence of all terms on time will henceforth not be 

made explicit, though it should be kept in mind. The PD control law is 

          eKeK dp
&−−=τ                                  (2-10) 

where pK and dK are positive definite matrices ( pK > 0, dK > 0) and typically 

diagonal. This control law can be rewritten as 

       sKd−=τ                        (2-11) 

        ees Λ+= &                                                 (2-12) 
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where pd KKΛ
1−

= . This formulation of the PD control law is useful because it 

introduces the term s, which will be used throughout the remaining theoretical 

development. The reader should note that s is not the Laplace variable. 

 

2.3 Adaptive Control with Friction Learning 

 The next step towards force estimation involves modeling the manipulator’s 

dynamics and learning the parameters of that model. This is a crucial step because 

force estimation can only follow from an accurate model of the manipulator’s 

dynamics. Otherwise the estimator will not be able to distinguish between torque 

needed to move the manipulator through free space and torque due to external force. 

To accomplish this goal, adaptive control is used because of its ability to rapidly learn 

the parameters of a dynamical model in real time while maintaining closed loop 

control. Assuming zero friction and external torque for now, (2-1) can be rewritten as 

    τ=++ )q(gq)q,q(Cq)q(H &&&&           (2-13) 

The following control law for the system described by (2-13) has been shown to yield 

asymptotically convergent tracking of a desired time-varying trajectory )t(qd  

     sK)q(gq)q,q(Cq)q(H Drr −++=τ &&&&           (2-14) 

     eqq dr Λ+= &&                        (2-15) 

     .eqq dr
&&&&& Λ+=                  (2-16) 

where (2-15) and (2-16) define two new terms - the reference velocity and reference 



 

 13 

 

acceleration respectively. The controller attempts to “linearize” the closed loop 

dynamics using knowledge of the manipulator’s open loop behavior.  

 If the exact values of all the system’s physical parameters were known, the 

first three terms on the right hand side of (2-14) could be rearranged as follows 

         a)q,q,q,q(Y)q(gq)q,q(Cq)q(H rrrr
&&&&&&&& =++          (2-17) 

where )q,q,q,q(Y rr
&&&&  is an N×M matrix containing known functions that are 

parameterized by M constants, arranged in the M×1 vector a.  

 When the values in a are not known exactly or unknown, the adaptive control 

law of Slotine and Li (1987) can be applied to the system described by (2-13) 

   sKâ)q,q,q,q(YsK)q(ĝq)q,q(Ĉq)q(Ĥ drrdrr −=−++=τ &&&&&&&&   (2-18) 

  sYâ TΓ−=&                        (2-19) 

where â  is the approximation of a, just as )q(Ĥ , )q,q(Ĉ &  and )q(ĝ are 

approximations of the terms in (2-13). Equation (2-19) gives the adaptation law for â  

where ΓΓΓΓ  is a positive definite M×M matrix of learning gains, typically diagonal. The 

reason this particular adaptation law is used is that it eliminates a term in the 

derivative of the Lyapunov function chosen in the proof of the convergence of the 

error measure s of the system (2-13) under control law (2-18)/(2-19) provided in 

(Slotine and Li, 1988). To gain some intuition into this adaptation law it can be 

rewritten as 

                         s
a

â

T

∂

τ∂
Γ−=&                          (2-20) 
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          (2-21) 

From (2-21) the N×M matrix Y is revealed to be the matrix of partial derivatives of 

the joint torque with respect to the parameter vector a. In effect the adaptation law is 

a gradient descent procedure that demands the estimate of the parameter vector 

change in a particular direction in the M×1 parameter space at each point in time. 

That direction is the result of M dot product operations between the M column 

vectors on the right hand side of (2-21) and the direction of the tracking error, 

represented by the vector s. The result of each dot product is the magnitude of the 

projection of the tracking error onto the direction in joint space that represents the 

greatest change in torque due to a change in a parameter. The adaptation proceeds 

opposite to this direction in parameter space with ΓΓΓΓ  acting as a gain matrix dictating 

the speed of adaptation. The goal of the adaptation law is to reach the point in 

parameter space at which any change in the torque due to a change in the parameter 

vector will be orthogonal to the tracking error – in other words, the point at which the 

estimate of the parameters cannot be changed to improve tracking. 

 Several important properties of (2-13) are used in the proof of the stability of 

the control law (2-18)/(2-19). They are given in Table 2.1. 
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TABLE 2.1 

IMPORTANT PROPERTIES OF MANIPULATOR DYNAMICS 

Property 

1 

Linearity in Parameters (LIP) of dynamics. 

Property 

2 

Symmetry and Positive Definiteness of H(q). 

Property 

3 
Skew Symmetry of )q,q(C)q(H && − . 

  

 Property 1, the LIP property, means that the unknown parameters in the 

dynamics appear only as constants multiplying fixed functions of joint angles, 

velocities or accelerations or are added in as constant but unknown offsets. The LIP 

property allows the manipulator dynamics to be rearranged into the following form 

                  a)q,q,q(Y)q(gq)q,q(Cq)q(H &&&&&&& =++          (2-22) 

where Y is an N×M matrix containing known functions that are parameterized by M 

constants, arranged in the M×1 vector a. The LIP property enables the controller 

introduced in (2-14) to be rearranging into the form on the right hand side of equation 

(2-17). It is especially important because it greatly simplifies adaptive control. The 

property will be further clarified in the dynamical model of the experimental system 

presented in Appendix A.4. Property 2 is a consequence of the kinetic energy qHqT &&  

always being positive, while Property 3, noted by Koditschek (1984), holds in general 

for rigidly linked manipulators. By definition it means that 

                   ( ) ( ))q,q(C)q(H)q,q(C)q(H
T

&&&& −−=−           (2-23) 

 An important remark is made in (Slotine and Li, 1988) about the distinction 

between the convergence of â  to a versus the convergence of the tracking error s to 

zero. It may be possible that the tracking error converges to zero without the 

estimated parameters â  converging to the actual values in a. However, under 
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“persistent excitation” â  converges to a with the tracking error converging to zero. 

Persistent excitation is a term that describes the need to have the desired trajectories 

excite all the terms of the manipulator’s dynamics through a diverse combination of 

accelerations, velocities and positions. Mathematically, the condition is satisfied if the 

matrix Y from the controller in (2-18), evaluated at the desired trajectory, meets the 

following condition 

       IdtYYI 2d

t

t

T

d1

1

1

α≤≤α ∫
δ+

                    (2-24) 

where )q,q,q,q(YY ddddd
&&&&==== , I is the M×M identity matrix and δδδδαααααααα ,, 21  are 

positive constants. From (2-24) persistency of excitation can be thought of as a 

condition calling for Y to span the entire M-dimensional parameter space over some 

time period δδδδ . In practice checking the persistency of excitation of a trajectory via 

(2-24) is a difficult computation. Section 4.1 will discuss the training trajectory 

chosen, through trial and error, to persistently excite the system.  

 Slotine and Li’s adaptive controller can be applied to the geared case (2-7) as 

long as the three properties still hold. Rewriting (2-7) without the friction and external 

torque terms yields  

      ( ) τ=+++ )q(gq)q,q(Cq IG)q(H m

2 &&&&           (2-25) 

Because m

2IG is diagonal (2-25) can be put in an LIP form by simply taking the LIP 

form of (2-22) and adding the rotor inertia terms multiplying the component of q&& . 

Because m

2IG  and H(q) are both symmetric and positive definite their sum is 

symmetric and positive definite as well so Property 2 holds. Since m

2IG  is also a 
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constant matrix, the derivative of m

2IG)q(H ++++  is still )q(H&  so the skew-symmetric 

property, Property 3, holds. Because the gearing does not alter the three properties the 

proof outlined in (Slotine and Li, 1988) can be directly applied to the geared case 

with the new inertia matrix m

2IG)q(H ++++ . As a result, the control law (2-18) and 

adaptation law (2-19) can be applied not only to system (2-13), but also to the geared 

system (2-25). The control and adaptation laws for the geared case are given by 

( ) sKâ)q,q,q,q(YsK)q(ĝq)q,q(Ĉq ÎG)q(Ĥ drrdrrm

2 −=−+++=τ &&&&&&&&  (2-26)

     sYâ TΓ−=&                          (2-27) 

where the Y, a and ΓΓΓΓ  have been redefined because of the gearing. 

 It is important to note that an actual acceleration term is not used in this 

control law. As a practical matter, acceleration estimates tend to be quite noisy, 

especially when derived by twice differentiating encoder measurements of joint 

angles. The estimates often need to be heavily filtered to reduce the noise, which in 

turn adds delay and may cause system instability. Another advantage of this 

controller is that it does not require the inversion of the estimated inertia matrix. 

 Up to this point, the issue of friction has been ignored. A simple yet powerful 

adaptive control law has been given for the geared, frictionless system described by 

(2-25). The next logical step is to extend the adaptive control scheme to (2-7), the 

model that also includes friction.  

An adaptive radial basis function (RBF) neural network will be used to learn 

the viscous friction fv, which is assumed to depend strictly on velocity and be 

decoupled between the joints. The assumption is made that nothing else is known 
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about the shape of this function but that it can be approximated by a sum of the 

outputs of the nodes of the RBF network.  

Each node of the neural network is characterized by a function and a 

coefficient multiplying it.  The coefficients of the nodes are tuned online using a 

learning rule similar to the one used to tune the physical parameters of the known 

dynamics. For an N DOF manipulator the assumption is made (as in (Sanner and 

Slotine, 1992)), that the friction term is continuous and can be approximated by an 

RBF network as  
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                     (2-28) 

where k,iĉ  represents the estimate of the coefficient of node k for the i
th

 joint. Here 

each DOF has a neural network with (kmax  - kmin + 1) nodes. The function g is the 

radial basis function of the neural network, in this case chosen to be the “hat” 

function. It should not be confused with the gravitational term of the robot dynamics. 

             





 <−
=

otherwise,0

1xif,x1
)x(g                      (2-29) 
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       Figure 2.1 Hat basis function                

Note that this function has radial symmetry about its center at zero, hence it qualifies 

as a radial basis function in one dimension. Each node’s function is a shifted and 

scaled version of this basis function. For example, the k
th

 node’s function is g(hx – 

k). The parameter h determines the spacing between the centers of consecutive nodes, 

in effect the input resolution of the network. The center of each node is at h
-1

k and the 

node’s output is zero outside of h
-1

k ± h
-1

. Appendix A.5 describes the number of 

nodes used in this research as well as their spacing. The coefficients of the neural 

network are updated as follows 

  iick,i s)khq(gĉ −γ−=&
           (2-30) 

where cγγγγ is a scalar constant similar to the constant matrix Γ and si is the i
th

 term of s.  

The estimates of the derivatives of a and k,ic  generated by (2-19) and (2-30) 

respectively were numerically integrated every control cycle using the techniques 

shown in Appendix A.1. The use of a deadzone for s in the practical implementation 

of these adaptation laws is discussed when the experimental manipulator’s controller 

is given in Appendix A.5. The final version of the adaptive friction learning control 

law is given in Section 2.5.  The force estimation technique discussed in Section 2.4 

will be broken up into a training and estimation/testing mode. During training the 

adaptation laws (2-19), (2-30) will be enabled while a special training trajectory is 
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tracked. An important caveat is that during training, zero external force is assumed to 

be acting on the manipulator. After the training phase, the control law stops updating 

its estimates of a and k,ic  and the system switches into estimation mode. In practice, 

switching between training mode and estimation mode can be done on the fly by 

simply enabling or disabling the integrations implied by (2-19) and (2-30). If the 

updates were to continue in estimation mode, the friction learning neural networks 

would learn the joint torques needed to overcome the external torque in addition to 

the actual friction torque of the system, causing incorrect estimation.  

    

2.4 Force Estimation 

Before force estimation is presented, the relationship between external forces 

applied at the end effector and external torque at the joints will be discussed. The 

following well-known relationship holds between the joint velocities, q& , and the end 

effector’s Cartesian velocity, the 6×1 vector xA
& : 

q)q(Jx AA &&=                (2-31) 

where the 6×N matrix )q(JA  is called the Jacobian of the manipulator. The left 

superscript “A” that appears twice in (2-31) signifies that the Cartesian velocity xA
&  

and Jacobian )q(JA  are expressed with respect to reference frame A, in this case an 

arbitrary frame. It is important to note that in general the Jacobian is configuration 

dependent, as indicated by its dependence on q. Note that q is not expressed with 

reference to a frame, since it represents relative joint displacements. In (2-31) the 

Cartesian velocity xA
&  is broken up as follows: 
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                       (2-32) 

where pA &  is the 3×1 vector of linear velocity of the manipulator in Cartesian space 

and ω
A  is the 3×1 vector of angular velocity of the manipulator in Cartesian space. 

To compute the 6×N Jacobian it is broken up as follows 
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
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)q(J
)q(J

rot

A

trans

A

A

                                         (2-33) 

where trans

A J  is the 3×N translational part of the Jacobian transforming joint velocity 

into end effector linear velocity and rot

A J  is the 3×N rotational part of the Jacobian 

transforming joint velocity into end effector angular velocity. 

The Jacobian can now be used to describe the relationship between the 16×  

vector of external generalized forces (force and moment) acting on the end effector 

expressed in an arbitrary frame A, ext

A F , and the N 1×  vector of torques seen at the 

manipulator’s joints due to the external generalized force, extτ  as derived in Craig 

(2005) 

           .FJ ext

ATA

ext =τ                                  (2-34) 

The external generalized force vector can be partitioned as follows 
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where ext

A f  is the 13×  external force vector and ext

A n  is the 13×  external moment 

vector. The opposite of (2-34) – namely the transformation from the external torque 
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extτ  to the external generalized force ext

A F  is needed in force estimation. If the 

manipulator in question has six degrees of freedom, N = 6, the solution is to simply 

invert the transpose Jacobian because it is a square 6×6 matrix, to yield 

    .)J(F ext

1TA

ext

A τ= −
                     (2-36) 

When N ≠ 6 the manipulator is either under-constrained (N < 6) or over-constrained 

(N > 6) and this inversion cannot be performed. Instead the pseudo-inverse of the 

transpose Jacobian must be performed. The two cases are treated separately, 

following the example of Sabes (2001), who proves and justifies pseudo-inversion 

using optimization and Singular Value Decomposition (SVD) methods. In the under-

constrained case the “right pseudo-inverse” is used. The right pseudo-inverse of a 

matrix M, denoted with the “plus” symbol, is given as 

              ( ) 1TT MMMM R

−+ =                             (2-37) 

substituting TA J  for M yields 

     ( ) ( ) 1TT JJJJ
−+

=            (2-38) 

where the frame of reference has been dropped to simplify notation. The inversion of 

the N×N matrix JJ T  in this context is acceptable because the transpose Jacobian is 

assumed to have full row-rank of N. Because the Jacobian is configuration dependent 

(it depends on q) this assumption will break down if the manipulator is at or near a 

singular configuration and the pseudo-inverse will no longer be calculable. 

 In the over-constrained case, the “left pseudo-inverse” is used 
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   ( ) T1T

L MMMM
−+ =            (2-39) 

substituting TA J  for M yields 

           ( ) ( ) JJJJ
1TT −+

=              (2-40) 

The inversion of the 6×6 matrix TJJ  in this context is acceptable because the 

transpose Jacobian is assumed to have full column-rank of 6 unless at or near a 

singularity, where pseudo-inversion is not possible. 

 Equation (2-36) can be expanded to hold for all types of manipulators by 

writing 

           ext

TA

ext

A )J(invF τ=                                (2-41) 

where inv( ) is defined as 

     
( ) . 

6  N  ,M

6  N  ,M

6  N  ,M

inv

L

1

R









>

=

<

=
+

−

+

            (2-42) 

To find the external torque, equation (2-7) is rearranged to yield 

 ( ) τ−++++=τ )q(f)q(gq)q,q(CqIG)q(H vm

2

ext
&&&&&    (2-43) 

Because the terms inside the parentheses on the right hand side of (2-43) are not 

known exactly, the estimates provided by the adaptive control laws (2-19) and (2-30) 

are used instead.  

             ( ) actualvm

2

ext )q(f̂)q(ĝq)q,q(Ĉq ÎG)q(Ĥˆ τ−++++=τ &&&&&        (2-44) 

The external torque becomes an estimate due to the use of the estimates of the 
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dynamical terms on the right hand side. Additionally, the term ττττ  is replaced with 

actualττττ  

         mmactual iGK=τ            (2-45) 

which is the actual motor torque at the manipulator’s joints attained by converting the 

measured motor current im to torque using the gear ratios contained in G and the 

motor constants contained in the diagonal matrix Km. The force estimation equation 

can now be written by making use of  (2-41) and (2-44)   

( )( ) .)q(f̂)q(ĝq)q,q(Ĉq ÎG)q(Ĥ)J(invF̂ actualvm

2TA

ext

A τ−++++= &&&&&  (2-46) 

This equation provides the estimate of the external generalized force acting on the 

end effector given knowledge of the manipulator’s kinematics, through the use of the 

Jacobian matrix, and its dynamics, including friction. It also makes use of the 

measurements of motor current, which is a feature often provided by the motor 

drivers, discussed in the next chapter. There are several issues related to the 

implementation of this equation in practice that are discussed in section 3.1.2. 

Namely (2-46) is broken up into a series of steps to filter noise added in by the motor 

current measurements and the calculation of acceleration. 
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Figure 2.2 Block diagram of adaptive, friction learning position controller and force estimation based on learned 

dynamical model. 

 

2.5 Summary 

This chapter began by introducing the general form of a serial link manipulator’s 

dynamics, including friction and gearing. A force estimation scheme was then 

presented based on using an adaptive control law to learn the manipulator’s 

dynamical model. Equations for the adaptation of both the modeled and unmodeled 

parameters were also given. The following table summarizes the geared manipulator 

model, the controller with adaptation laws and the force estimation scheme. These 

equations will be referred to often in subsequent chapters. 
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TABLE 2.2 

SUMMARY OF MANIPULATOR MODEL, CONTROL, AND FORCE ESTIMATION DISCUSSED 

 

Manipulator Dynamical Model: 

    ( ) extvm

2
ττ)q(f  (q)g  q)qC(q, q IG)q(H +=++++ &&&&&                         (2-47) 

 

Adaptive, Friction Learning Control Law: 

    ( ) =−++++=τ sK)q(f̂)q(ĝq)q,q(Ĉq ÎG)q(Ĥ dvrrm

2 &&&&&   

           sK)q(f̂â)q,q,q,q(Y dvrr −+ &&&&&                                                       (2-48) 
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Adaptation Laws in Training Mode: 

    sYâ TΓ−=&
                                                                                             (2-50) 

    iick,i s)khq(gĉ −γ−=&
                                                                              (2-51) 

 

Adaptation Laws in Estimation Mode: 

    0â =&
                                                                                                         (2-52) 

    0ĉ k,i =&
                                                                                                      (2-53) 

 

Force Estimation:  

( )( )actualvm

2TA

ext

A )q(f̂)q(ĝq)q,q(ĈqÎG)q(Ĥ)J(invF̂ τ−++++= &&&&& (2-54) 

    mmactual iGK=τ                                                                                        (2-55) 

 

 

The force estimation technique presented consists of a training phase and testing 

phase. During the training phase, while the training trajectory is being tracked, zero 

external force is assumed. After the training phase is completed, the parameter 

adaptation laws are disabled and the manipulator enters the testing phase. The force 
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estimation can then be used until a user or higher-level autonomy chooses to relearn 

the dynamical model.  

So far the force estimation technique described has been developed for any 

general serial manipulator. The next chapter will describe the dynamics, kinematics, 

and controller of the specific manipulator used as well as both hardware and 

simulation details. The remaining chapters give the results of experiments involving 

force estimation and compliance control using the manipulator. 
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Chapter 3: Manipulator Case Study 

Up until this point the theoretical aspects of this thesis have been discussed. 

Now the focus shifts to describing the set-up of the system that was used both in 

simulations and hardware experiments. The kinematics of the chosen manipulator is 

detailed as well as the hardware used, both mechanical and electrical, and the 

software used. Later chapters will go on to detail the results of the simulations and 

experiments performed on the hardware described here. 

3.1 Manipulator Model 

The manipulator used in this thesis was originally designed by the SSL as part 

of the Defense Advanced Research Projects Agency (DARPA) Modular On-Orbit 

Reconfigurable co-oPerative High-dexterity roBOT (MORPHbots) project (Akin, 

2004). The goal of the project was to design and implement a set of small, light-

weight robotic actuators that could be pieced together as needed by astronauts to 

perform a variety of tasks on-orbit.  

The manipulator originally consisted of a MORPHbots 2 DOF “pitch-roll” 

module shown in Figure 3.1. A force/torque sensor and bar was later mounted onto 

the manipulator for verification of force estimates. The force/torque sensor was 

mounted on top of the second degree of freedom, the “roll”. The final version of the 

manipulator is shown in Figure 3.2. 
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Fig. 3.1 MORPHbots two DOF module. 

 

 

 
Fig. 3.2 The final version of the manipulator used, shown with frame definitions. Frame 1 is the pitch DOF frame, 

Frame 2 is the roll DOF frame. World frame origin is the same as Frame 1's, both at the center of joint 1. JR3 

force/torque sensor shown is used to confirm force estimates. 

3.1.1 Kinematics 

A kinematics model of the manipulator shown in Figure 3.2 was formed using the 

Denavit-Hartenberg (D-H) convention (Craig, 2005). Figure 3.2 shows the two joint 
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frames, Frame 1 and Frame 2, as well as the world frame. The world frame – the 

frame into which the force/torque sensor’s data was transformed and in which all 

force estimates were made, was chosen so that its X-Y plane was parallel to the plane 

of the table top. The D-H parameters of the manipulator are given in Table 3.1. The 

ninety-degree value of the link twist 0α comes about due to the choice of having the 

world frame and manipulator’s 0 frame be the same for simplicity. Note that Frame 0, 

Frame 1 and the world frame all have the same origin – the point of intersection of 

Frame 1’s z axis and Frame 2’s z axis. The origin of the second frame is the center of 

the hole in the bar bolted into the plate atop the force/torque sensor (the hole was 

made for the sensor’s data cable). Figure 3.2 shows the manipulator in the 01 =θ , 

1802 =θ  degrees configuration. 

TABLE 3.1 

MANIPULATOR DENAVIT-HARTENBERG (D-H) PARAMETERS 

i 
1iα −  1ia −  id  

iθ  

1 90
o 

0 0 
2θ  

2 -90
o 

0 
1L  

2θ  

 

The forward kinematics, which is the transformation from joint angle configuration to 

Cartesian end effector position, is derived from this frame assignment. It is given by 

         =pW
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            (3-1) 

where L1 is the distance along the world frame’s z-axis from the world frame’s origin 

to Frame 2’s origin. L2 is the distance from frame 2 to the end effector, in this case 

the end of the bar shown in Figure 3.2. All forces were applied by hand to this point. 
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Because only force estimation was performed, only the translational part of the 

6×N Jacobian was used. The translational Jacobian matrix of a manipulator is in 

general derived by taking the partial derivative of the forward kinematics with respect 

to each joint variable (in this case 1θ  and 2θ ).  
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The inverse of this matrix, used in (2-41) to transform estimated external torque into 

estimated external force, is given as 
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where the right pseudo-inverse is used instead of the true inverse because N < 3. 

3.1.2 Force Estimator 

 The force estimator given by (2-54) was not used directly in practice. Instead, 

the equation was broken up into three parts. The first part involves estimating the 

external torque, formed by multiplying the Y part of the LIP form of the geared 

version for the modeled dynamics given in  (2-25) by the estimated parameter vector 

â , forming the estimate of the torque due to the modeled dynamics. The actual torque 
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at the joints, formed by converting motor current via (2-55), is then subtracted from 

this torque. The estimated torque is given by 
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)kqh(gĉ
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In Section 2.3 it was noted that actual acceleration is not used in the adaptive, 

friction-learning controller. Instead the inertia matrix multiplies the reference 

acceleration signal. But equation (3-4) requires the use of actual acceleration so it is 

calculated by taking the second derivative of the position measurement provided by 

the encoders. Unfortunately this method is well known for yielding very noisy results. 

Digital low pass filtering can improve the signal at the expensive of adding delay. 

Typically higher order filters, which offer better results, are not used because delay 

can easily lead to instability in high bandwidth closed loop control. Fortunately, 

because the acceleration signal is not used directly in the position controller, but 

rather in generating force estimates for the lower bandwidth compliance controller, 

the use of a higher order filter is acceptable. The filter chosen was a fifth order elliptic 

low pass digital filter with 20 Hz cut-off frequency under 3 kHz sampling frequency 

(due to use within 3 kHz control frequency, discussed in section 3.3), 0.01 dB 

passband ripple and 40 dB attenuation in the stopband. Its coefficients were generated 

using the following MATLAB command: [b, a] = ellip(5, .01, 40, 20/1500), where b 

is the vector of coefficients multiplying previous unfiltered samples and a is the 

vector of coefficients multiplying previous filtered samples (refer to the 
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documentation of the filter( ) function in the MATLAB Function Reference for 

further clarification of these vectors and digital filtering in general).  

The next step involves filtering the estimated torque obtained in the first step. 

This is a crucial step because the estimated torque contains significant noise due to 

the motor current measurements. The motor current measurements, provided by the 

motor drivers, contain high frequency noise due to the high switching frequency 

(usually 20+ kHz) of their current-controlling transistors. The filter chosen for this 

step was the same fifth order elliptic filter used for filtering the actual acceleration, 

described in the previous paragraph. In chapters 4 and 5 it will be shown that 

additional thresholding and filtering of the torque were added at this step. 

  In the last step the force estimator is formed using the filtered version of (3-4) 

and the pseudo-inverse of the transposed translational Jacobian given in (3-3) as 

follows 

.ˆ)J(f̂ filtered_ext

T

trans

W

ext

W τ= +
                               (3-5) 

The bandwidth of the force estimate thus obtained is limited to the bandwidth of the 

filter used on the estimated torque, in this case 20 Hz.  Higher bandwidths may be 

possible though this aspect was not investigated to any great extent because the 

chosen bandwidth was deemed acceptable for the compliance control experiments. 

Note again that moment estimation was not performed. 
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3.2 Manipulator Hardware 

3.2.1 Mechanical 

The MORPHbots module used two Kollmorgen 01810-A brushless DC 

motors with integrated Hall effect sensors. The motor torque constant is km = .0855 

N-m/A, the maximum continuous and peak current is rated at 5.28 A and 21.3 A 

respectively. The inertia of the housed motor was given as 510*74.3 − kg*m
2 

in the 

manufacturer’s specifications. 

Position was sensed using RS 40.4/25/1800 incremental encoder discs 

produced by Numerik Jena which provided 1800 encoder counts per revolution 

(CPR). The /1/2/B/040.4/1800/L/S encoder disk reading head increased this 

resolution by a factor of 5 using signal interpolation. The resulting 9000 CPR 

resolution was then quadrupled to 36000 CPR input pulses and sent to the counters on 

the DAQ board, discussed in Section 3.2.2.  

                    
Figure 3.3 Harmonic drive components - from (Harmonic Drive, LLC, 2006). 

 

Harmonic drives were originally developed in the late 1950’s as an efficient 

method of enabling high gear ratios in motors. Harmonic drives have three 

components: a wave generator, a flexspline, and a circular spline shown in Figure 3.3. 

On the input end is the wave generator that is attached to the motor. The circular 
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flexspline conforms to the elliptical outer surface of the wave generator when it is fit 

inside the flexspline. The flexspline is in turn fit inside the circular spline, which is a 

rigid circular steel ring. Both the circular spline and flexspline have teeth that mesh 

with each other. The elliptic shape of the flexspline induced by the wave generator 

causes the teeth to mesh in two opposite regions when the wave generator freely 

rotates inside the flexspline. High gearing ratios are possible because the flexspline 

has two less teeth than the circular spline so for each rotation of the wave generator 

the flexspline is moved by two teeth with respect to the circular spline. The output of 

the harmonic drive is attached to the flexspline with the gear ratio depending on the 

number of teeth in the circular spline (Harmonic Drive, LLC., 2006). Harmonic 

drives are widely used in space and underwater manipulators because they are 

compact, light, powerful, and offer very little backlash. 

The harmonic drive used was model CSD-20-160 by Harmonic Drive, LLC. The 

gear ratio of the pitch DOF was 161:1 while the gear ratio of the roll DOF was 160:1. 

Because of the gearing, the encoder resolution of the manipulator increased to 

161*36000 = 5796000 CPR for the pitch DOF and 160*36000 = 5760000 CPR for 

the roll DOF, which represents a resolution of about a millionth of a radian in both 

joints.  

 

3.2.2 Electronics 

The data acquisition electronics used in this thesis consisted of a National 

Instruments PCI-6025e data acquisition (DAQ) board. It has 16 analog inputs that are 

digitized to 12-bit resolution, 2 analog outputs that can supply +/-10 V to 12-bit 
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resolution, 8 digital I/O lines and 2 24-bit counter/timers. The DAQ board allowed 

information to be passed between the control computer and the external electronic 

components: the encoder electronics and the current drivers. Because the DAQ 

board’s onboard counters accepted signals in a different form than was provided by 

the encoder electronics embedded in the manipulator a special chip was used to 

convert the signals. The details of these signals and the chip’s operation are provided 

in Appendix A.2. 

 A motor driver was used to power each of the two motors.  Though two 

slightly different models were used, both were made by Advanced Motion Controls 

and their behavior was essentially identical. Both models were designed to drive 

brushless motors, meaning that they were capable of brushless motor commutation: 

reading the magnetic state via the Hall effect sensor inputs from the motor and 

controlling the desired level of current in the three phase motors. The B15A8 and 

B30A8 current driver models were used. The B15A8 model is capable of driving +/-

7.5 A of continuous current at a switching frequency of 33 kHz with a DC supply of 

20-60V while the B30A8 model is capable of driving +/-15 A of continuous current 

at a switching frequency of 22 kHz on a DC supply of 20-80V. They were powered at 

30V in this work. Both models have peak current ratings of double their continuous 

current ratings and can operate in open loop mode, current mode and tachometer 

mode though the B30A8 model can also operate in Hall velocity mode. Because the 

drivers’ purpose in this research was to control current, assumed to be proportional to 

the commanded torque through the motors’ torque constant, the drivers were both put 
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into current mode. Importantly, both motor drivers provided real-time measurements 

of the actual current in the motors. 

 

3.2.3 Force/Torque Sensor 

The force/torque sensor used to verify force estimates was a JR3 100M40A 

100 mm diameter, 40 mm thickness with a maximum load of 200 lbs in the Z 

direction (direction perpendicular to sensor face) and 100 lbs in the X and Y 

directions. The moment ratings are about 66 ft-lbs in the Z direction and 33 ft-lbs in 

the X and Y directions       

Because the manipulator is a 2 DOF non-planar type, the 3×1 estimated force 

vector has only two true directions of estimation, which vary according to the 

manipulator's configuration. To ensure that the force/torque sensor's force vector was 

only along those two directions, the following transformation was performed on its 

3×1 force vector:         

      ext

WT1T

ext

W fJ)JJ(Jf −=                (3-6) 

where T1T J)JJ(J −−−−  is a 3×3 matrix with rank at most 2 and ext

W f  is the original 3×1 

force vector provided by the force/torque sensor in the world frame. This matrix is the 

result of transforming the force vector to joint torque using the transpose Jacobian, 

then using the pseudo-inverse of the transpose Jacobian. It can be found by 

multiplying the transpose of (3-2) by (3-3).      

 Before (3-6) can be applied the force/torques sensor's readings must be 

transformed from the sensor (FTS) frame, which depends on both joint positions, to 
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the world frame (W) shown in Fig. 3.2, in which frame all the force estimates made 

later in Chapters 4 and Chapter 5 are set. The transformation is given as 
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     (3-7) 

Equation (3-7) uses the fact that the transformation of forces between frames depends 

strictly on the rotation matrix between the two frames. This does not hold for 

transforming both forces and moments between frames – see (Craig, 2005). The two 

rotation matrices R0

1 , R1

2  used are found directly from the D-H parameters given in 

Table 3.1. Also used is the fact that the rotations between the world frame and Frame 

0 as well as between the force/torque sensor’s frame (FTS) and Frame 2 both equal 

the identity matrix. 

 

3.3 Manipulator Software 

The control program was written in C and run on a Dell Dimension
TM

 8400 

computer containing a 3.6 GHz Pentium
TM

 4 processor and 1 GB of RAM. The 

computer was running distributed Timesys real-time Linux kernel 2.6.16.9. Coding 

was done on an Apple iMac
TM

 G5 with a 2.1 GHz PowerPC processor and 1 GB 

RAM using the Xcode editor. The NI DAQ board was used with Comedi drivers - 

Comedi is a set of Linux open source drivers for various commercial DAQ boards. 
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The Linux driver for the JR3 force/torque sensor was written by Mario Prats at UJI 

(Spain). 

 The control program was broken up into two threads – one a real-time thread 

used to realize the digital controller at the desired 3 kilohertz control frequency and 

the other a data logging thread not operating in real-time. The real-time control thread 

was responsible for reading the DAQ board’s inputs to the computer, generating the 

desired voltage, proportional to desired torque calculated by the control law, and 

sending it back to the DAQ board within the 333 microsecond control period. Error in 

waking from sleeping at the end of the previous cycle was tolerated to within ± 50 

microseconds of the desired time. The real-time kernel enabled the high control 

frequency with tight timing.  

 Data generated by the control thread cannot be saved directly to file because 

of potential buffer overflow that could hang the thread and cause it to miss timing 

deadlines. Instead the control thread would push a structure containing the current 

state information (actual and desired trajectory, sensed and estimated force, etc.) onto 

a queue at 100 Hz. A queue is a first in, first out data structure meaning that data that 

is pushed (added) onto the queue earlier is popped (removed) off of it sooner. The 

data logging thread consisted of an infinite loop that would continuously attempt to 

pop the data off of the queue. Occasionally (every twenty seconds) the control thread 

would also push the current values of the adapted parameters into another queue, 

which the same data logging thread would also continuously check. The 

communication between these threads using the queues is illustrated in Figure 3.4. 

Because the data logging thread operates at a lower priority, if it gets hung due to file 
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buffer overflow the control thread’s higher priority enables it to regain the processor’s 

attention and avoid missing deadlines.  

 

 
Figure 3.4 Data logging using inter-thread communication through queues. 

 

3.4 System Integration 

 The fully integrated system is shown in Figure 3.5. It serves to illustrate the 

relationships between the various components of the experimental set-up. The 

computer, responsible for executing the control code, communicates with the data 

acquisition (DAQ) board via its PCI bus. The DAQ board sends the computer two 

analog input voltages, proportional to actual motor current, and two counter readings 

and receives two analog output voltages, proportional to desired motor current. The 

computer also communicates with the force/torque sensor’s receiver board via the 

PCI bus. These signals are all exchanged during each control cycle.  

The current monitoring feature of the motor drivers feeds the DAQ board’s 

analog input voltages. The voltages from the drivers’ current monitor output lines are 

proportional to the actual current in the motors (1V = 2A). An analog resistor-
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capacitor low pass filter is placed between the drivers and the DAQ board to act as an 

anti-aliasing filter. The DAQ board’s two onboard counters are fed by the output lines 

of the LS7184 chips, described above in Section 3.2.2 and further in Appendix A.2, 

whose inputs are fed by the encoder electronics embedded in the manipulator. 

 Each of the two motor driver receive the output of one of the DAQ board’s 

two digital to analog converter (DAC) output voltages proportional to desired current. 

The motor drivers also receive the input from the Hall effect sensors mounted on the 

motors. From these input signals the motor drivers output voltage into the 

manipulator’s motors at their switching frequency. 

Figure 3.6 shows the actual hardware in the fully integrated state. In the next 

chapter the force estimation ability of the system described in this chapter will be 

demonstrated using both the hardware and a simulation of the model described in this 

chapter.  

 
Figure 3.5: Fully integrated system - block diagram. 
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Figure 3.6: Fully integrated system - hardware.  

 

3.5 Simulation Set-up 

 For the simulation, the dynamics and kinematics of the manipulator were 

described by (A-17) and (3-1) respectively. The same control and adaptation laws 

given in  (A-18) were used during trajectory tracking. Just as in the case of the 

hardware, the parameter values were assumed to be unknown to the controller, i.e. the 

estimated value of the parameter vector a was equal to zero initially.  

 The difference between the simulation and hardware comes about when 

friction is considered. In the case of the hardware, the specifics of the friction 

function of each joint are unknown. The friction is simply assumed to be velocity-

dependent and decoupled between joints. In the case of the simulation, the friction is 
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specified and the accuracy of the adaptive networks’ estimate of it is explicitly 

known. The friction function used in simulation is given here as 
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The friction function, chosen to be the same in both joints, is a version of the well-

known coulomb plus viscous model (Olsson et al., 1998) where the discontinuity 

through zero velocity has been smoothed. The function is plotted in red in Figure 4.4. 

The smoothing was added because, as explained below, the input resolution of the 

networks was worse in simulation than in the hardware control code.  

As in hardware case, 41 nodes were used in the joints’ adaptive networks but 

in the simulation case the range of the joints’ velocity was chosen to be [-1.9 rad/s, 

1.9 rad/s] instead of [-1 rad/s, 1 rad/s] as in the hardware case, due to the use of a 

training trajectory with larger amplitude for the simulation (discussed further in 

section 4.1). This led to having 5.10h ====  in simulation, which is worse input 

resolution than 20h ==== . The poorer resolution was due to the fact that adding more 

nodes to the networks meant greatly increasing the running time of the simulation. 

Appendix A.6 presents the constants used both in the simulation and the 

hardware experiments. 

 

3.6 Summary 

 In this chapter the specific manipulator used in latter chapters’ experiments 

was introduced and its kinematics were given. The specifics of the adaptive, friction-
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learning controller for this manipulator were discussed. The details of the force 

estimator’s practical implementation were given in a three-step procedure intended to 

filter noise due to the current measurements. Filtering of the actual acceleration signal 

for use by the force estimator was also discussed. The hardware, software, and their 

integration were then described. Finally, the details of the simulation were given.  
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Chapter 4: Force Estimation Experiments 

This chapter details the experiments used to demonstrate the force estimation 

technique presented in Chapter 2 with the system described in Chapter 3. The choice 

of training trajectory used to learn the parameters of the manipulator’s modeled 

dynamics, discussed in Appendix A.4, as well as the coefficients of the adaptive 

networks for the unmodeled friction will be discussed. The evolution of both types of 

parameters during the course of this training trajectory will then be presented. Finally 

the results of force estimation during simulation as well as hardware experiments will 

be given for both stationary and dynamic testing trajectories. 

 

4.1 Training Trajectories 

 Different training trajectories were used for the simulation and hardware 

experiments. To keep the running time of the simulation reasonable, the input 

resolution of the adaptive networks was lower than in the hardware experiments. As a 

result, a smoother friction model was used that could be learned more easily by the 

less densely spaced nodes. In the case of the simulation, a training trajectory 

consisting of a single sinusoidal signal was sufficient for both the modeled and 

unmodeled parameters to converge. The simulation trajectory is given as  
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where the initial position of the joints is given as [[[[ ]]]]ππππ−−−−−−−−==== 1.1qT

0
. 

 In the case of the hardware experiments, the nodes of the adaptive networks 

were more densely spaced but the actual friction was known to be less smooth than in 

the simulation. This is because harmonically driven manipulators have a high amount 

of “stiction”, i.e. static friction. As a result, a more persistently exciting training 

trajectory was chosen to enable learning of both the more diverse friction dynamics. 

The first joint’s trajectory was composed of the superposition of two sinusoidal 

signals – each of different amplitude and frequency. The second joint’s trajectory was 

composed of one sinusoidal signal. The desired joint position, velocity, and 

acceleration for both joints were as follows: 
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where the initial position of the joints is given as [[[[ ]]]]ππππ−−−−−−−−==== 1.1q T

0
. The complete 

desired training trajectory was composed of (4-4) to (4-6). Joint 2’s initial position is 

the same as that shown in Figure 3.2, while joint 1’s initial position is rotated 68.8 

degrees clockwise (-1.2 radians about its z-axis) from the position shown in Figure 

3.2. Figure 4.1 depicts (4-4) graphically for the first 40 seconds of the training – the 
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total time this training trajectory was applied for was 600 seconds, which corresponds 

to 60 cycles of joint one’s periodic waveform and 150 cycles of joint two’s periodic 

waveform. 

 
Figure 4.1 Desired joint position versus time for the hardware case.  

 

From Figure 4.1 it can be seen that the first joint’s trajectory is the 

superposition of two sinusoids of differing frequencies – a 0.1 Hz signal and a 0.4 Hz 

signal of smaller amplitude. The superposition forces the first joint to accelerate and 

decelerate under a more diverse set of gravitational loads, helping with the adaptation 

of the three parameters of joint 1 that significantly affect the dynamics (see Appendix 

A.4). The three parameters consisted of two gravitational parameters and one inertial 

parameter. It was determined experimentally that a training trajectory consisting of a 

single sinusoidal frequency for joint 1 did not did not meet the persistent excitation 

condition as stated in chapter two.  
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The second joint’s modeled dynamical parameters were not as hard to adapt 

because only two were significant – its inertia due to gearing and the gravitational 

term that depends on both joints’ position. The situation was further simplified by the 

fact that the gravitational term was also being adapted by the first joint, as can be seen 

from equation (A-29). As a result a simpler training trajectory consisting of a 0.25 Hz 

sinusoidal signal was sufficient for this joint’s parameters to converge to the modeled 

values.  

Note that at the beginning of the trajectory (t = 0), the desired position for 

both joints in both the simulation and hardware cases equaled the initial position and 

the desired velocity was zero. Because the manipulator was assumed to be stationary 

at the beginning of training, using an initial desired velocity of zero ensured that there 

was no initial velocity error, which would have caused a sharp spike in the 

commanded torque via the PD term. 

 

4.2 Parameter Evolution During Training 

 The training trajectories just described were chosen so that the four 

parameters, discussed in Section 3.1.3, converged to within 20% of their theoretical 

values in both the simulation and hardware experiments. The other parameters were 

considered to have converged if their values remained small. Sections 4.2.1 and 4.2.2 

give the adapted parameter vector for the simulation and hardware experiments 

respectively. In both cases the estimated parameter vector as well as the coefficients 

of the adaptive networks were set to zero at the start of training. The estimated 

parameter vector after training in both cases will be compared to (A-17). 
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4.2.1 Parameter Evolution - Simulation 

After the simulation’s training trajectory was tracked for 600 seconds the 

value of the vector was: 

  
T

SIMâ [ ]284.0063.3012.0038.0009.0031.0004.1036.0012.1 −−=     (4-7) 

As can be seen by comparing (4-7) with (A-17), the four parameters discussed in 

Appendix A.4 – the first, third, and last two, converged to within 0%, 3%, 1%, and 

29%. The last parameter, the smallest, did not converge to within 20% of the actual 

value due to error in its hundredth place. The progress of the parameters over the 

course of their adaptation during training is plotted in Figure 4.2. From the figure it 

can be seen that the first and eighth parameters take the longest to converge. 

The progress of the coefficients of the adaptive networks over the course of 

the training trajectory can be seen in Figure 4.3. The second joint’s coefficients 

converge quickly to their correct values while the first joint’s coefficients evolve 

incorrectly at first before eventually converging correctly. The final estimate of the 

each joint’s friction is seen in Figure 4.4. The error in the friction estimate of joint 2 

is less than 5% of the maximum value of the friction over the range of joint velocities 

trained on. The error of joint 1 is less accurate but still less than 10% of the maximum 

value of the friction over the range of joint velocities trained on. The reason for 

poorer friction learning in joint 1 is that the joint is subject to higher gravitational 

dynamics (the eighth term) during training, which it had to adapt along with the other 

shared gravitational term (the ninth term, also being adapted by the first joint). 

Therefore the friction mapping provided by the first joint’s adaptive network did not 
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converge to the actual model until the eighth parameter converged, which can be seen 

from Figure 4.2 to happen late in the training period. 

 
Figure 4.2 Adaptation of the modeled parameters over the course of the training trajectory for the simulation case. 
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Figure 4.3 Adaptation of the unmodeled parameters of the dynamics over the course of the training trajectory for 

the simulation case. 

 

 
Figure 4.4 Mapping from velocity to friction torque learned by each joint’s adaptive network for the simulation 

case. 

 

4.2.2 Parameter Evolution - Hardware Experiment 

 After the training trajectory for the hardware was tracked for 600 seconds the 

value of the vector was: 

T

HWâ [ ]202.0574.3006.0005.0002.0004.0144.1012.0166.1 −−−−= (4-8) 
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As can be seen by comparing (4-8) with (A-17), the parameters the four 

parameters discussed in Appendix A.4  – the first, third, and last two, converged to 

within 15%, 17%, 15%, and 8%. With the exception of the last parameter these 

results are not as close to the parameter vector (A-17) as they were in the simulation 

case. On the other hand the actual value of these parameters is not known – the 

parameter vector these values are being compared to is based on modeling, which is 

merely the best guess at the values based on what is assumed to be known. The inertia 

due to gearing, for example, which accounts for the majority of the first two 

significant parameters, is based on the manufacturer’s specifications of the inertia of 

the housed motors, which may be incorrect by as much as 10-20%.  

The progress of the parameters over the course of their adaptation during training 

is plotted in Figure 4.5. From the figure it can be seen that the parameters converge 

more quickly to near their final values than in the simulation case. This implies that a 

shorter training period could probably have been used in the hardware case, though it 

was kept at 600 seconds for comparison with the simulation. 

The adaptation of the coefficients of the adaptive neural networks describing the 

mapping from joint velocity to friction torque is shown in Figure 4.6. From the figure 

two things are clear: the first is that both functions quickly converge close to their 

final form. Since the coefficients of the networks were saved every twenty seconds 

during training, most of the convergence occurs sometime in the initial twenty 

seconds. It is also clear that the first joint is subject to larger amounts of friction than 

the second. At k = ± 15, which corresponds to a velocity of ± 0.75 rad/s ( ± 15/h, h = 

20) the friction torque for the first joint is about ± 8 Nm while it is only about ± 5 
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Nm for the second joint at the same velocities. This result corresponds well with the 

qualitatively observed behavior: joint 1 appeared to have more friction than joint 2 

when forces were exerted on it manually. The final estimate of the each joint’s 

friction is seen in Figure 4.7. 

 
Figure 4.5 Adaptation of the modeled parameters over the course of the training trajectory for the hardware case. 
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Figure 4.6 Adaptation of the unmodeled parameters of the dynamics over the course of the training trajectory for 

the hardware case. 

 

 
Figure 4.7 Mapping from velocity to friction torque learned by each joint’s adaptive network for the hardware 

case. 

 

4.3 Force Estimation Results for Stationary Testing  

The ability to estimate forces while maintaining a fixed position is shown in 

the next two sections. For the position chosen in the stationary test, the same as the 

one shown in Figure 3.2, which is expressed in joint variables as [[[[ ]]]]ππππ−−−−==== 0q T , the 
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direction of estimation provided by the first joint clearly has components in both the x 

and z directions of the world frame. This because its moment arm, the vector from the 

end of the bar to the joint’s center, is a vector in the x-z plane and its axis of rotation 

is entirely in the y direction. The direction of estimation provided by the second joint 

is the y direction because the second joint’s moment arm is entirely in the x direction 

and its axis of rotation is entirely in the z direction. Therefore the manipulator in that 

configuration can estimate forces in all three directions of the world frame although 

the x and z estimates are coupled because they come from the single estimate of 

external torque acting on the first joint. 

In the case of the hardware experiment, forces were exerted by hand on the 

manipulator’s end effector while it was maintaining the position described above. 

Section 4.3.2 provides the actual forces measured by the force/torque sensor and the 

results of force estimation during this test. In the case of the simulation, described in 

Section 4.3.1, the actual forces from the hardware experiment were logged and fed 

into the simulation of the system maintaining the same position.  

 

4.3.1 Stationary Testing - Simulation 

Force estimates versus actual force, as measured by the force/torque sensor, are 

shown in Figure 4.8 for the case of a stationary desired trajectory in the simulation 

case. The force estimates are can be seen to be very close to the actual force. The 

force estimation error, generally at or below 5 Newtons (N), can be attributed to two 

factors. The first is imperfectly learned parameters of both the modeled dynamics and 

the joint friction. The second factor is more significant – it is the delay in the force 
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estimates due to the filtering of the estimated torque before it is converted to force 

(described in section 3.1.4). The spikes in the error are due to this delay - they can be 

seen to occur during large changes in the actual force, when the derivative of the 

force is close to an impulse. Furthermore, the filter only keeps frequencies at or below 

20 Hz so the high frequencies in the force signal due to the fast change are filtered 

out. When the actual force does not change as quickly, as in the time period around 

10 seconds in the x and z directions, the force error is very small. 
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Figure 4.8 Estimated force versus sensed force and associated error in the case of a stationary testing trajectory for 

the simulation case. 
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4.3.2 Stationary Testing - Hardware Experiment 

Force estimates versus actual force are shown in Figure 4.9 for the case of a 

stationary desired trajectory in the hardware case. The force estimation error is 

generally at or below 7 N. The two sources of error mentioned in Section 4.3.1 for the 

simulation case also apply here with the added comment that the larger amount of 

error versus the simulation case is due to the manipulator being stationary and hence 

being in the region of velocity most affected by stiction. Fortunately in the stationary 

case, when the desired velocity is exactly zero, the commanded torque due to the high 

PD gains discussed in section 3.1.3 is able, for the most part, to overcome the offsets 

in estimated torque caused by stiction. 
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Figure 4.9 Estimated force versus sensed force and associated error in the case of a stationary testing trajectory for 

the hardware case.  
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4.4 Force Estimation Results for Dynamic Testing 

Force estimation was also performed during a non-stationary testing 

trajectory, referred to here as a dynamic testing trajectory both in simulation and with 

the hardware. The trajectory used during this test was the same in both cases, with the 

desired position given as 
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where the dependence of the joint position on time has been made explicit. It is 

shown in Figure 4.10. The trajectory is sinusoidal of frequency 0.05 Hz for both 

joints with initial position [[[[ ]]]]ππππ−−−−−−−−==== 6.0qT

0
.  

In the case of the hardware experiment, forces were exerted by hand on the 

manipulator’s end effector while it was tracking the trajectory described above. 

Section 4.4.2 provides the actual forces measured by the force/torque sensor and the 

results of force estimation during this test. In the case of the simulation, described in 

Section 4.4.1, the actual forces from a hardware experiment were logged and fed into 

the simulation of the system tracking the same trajectory. 

       

4.4.1 Dynamic Testing - Simulation 

Force estimates versus actual force are shown in Figure 4.10 for the case of the 

dynamic desired trajectory associated with (4-10) in the simulation case. The force 

estimation error is generally at or below 10 N due to spikes from the filtering delay, 

slightly larger than in the stationary case for the simulation, shown in Figure 4.8. 

These spikes in the error are larger amplitude in the stationary testing trajectory but 



 

 61 

 

that may be attributed more to the fact that the actual force has larger amplitude and 

changes faster in the dynamic test. Besides these spikes the force estimates are very 

close to actual force and the estimated force during zero actual force is also zero as 

evidenced by the force error at those times. Note also that there is also no velocity 

dependence to the force error, something that will be seen in the hardware case. This 

means that the velocity-dependent friction was well learned by the adaptive networks, 

as was shown in Figure 4.4.  
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Figure 4.10 Estimated force versus sensed force and associated error in the case of a dynamic testing trajectory for 

the simulation case. 
 

4.4.2 Dynamic Testing - Hardware Experiment 

In the case of hardware experiments, force estimation during a dynamic trajectory 

is more challenging than during the stationary case. This is because dynamic 
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trajectories test the accuracy of the viscous friction model obtained during training, 

which in the case of harmonically driven manipulators often represents a significant 

proportion of the overall joint torque. In simulation this did not present a problem 

because the actual friction of each joint was known, so a training trajectory was 

chosen such that both the modeled and unmodeled parameters converged. In 

hardware, each joint’s mapping from velocity to friction torque is unknown so it was 

assumed that if the modeled dynamics’ parameters converged to the neighborhood of 

their theoretical values, then the friction was well represented by the estimate 

provided by the adaptive networks. In other words, if the trajectory was clearly 

persistently exciting for the adaptation of the modeled parameters it was assumed to 

be persistently exciting for the parameters of the unmodeled dynamics.  

Force estimates versus actual force are shown in Figure 4.13 for the case of the 

dynamic desired trajectory associated with (4-9) in the hardware case. The force 

estimation error is generally at or below 10 N due in part to spikes from the filtering 

delay. After observing the figure, two problems are evident that were not present in 

the simulation case. The first is that the force error seems to be velocity dependent, as 

evidenced by its 20 s period, the same as the trajectory being tracked. One possible 

explanation for this dependency is that the constants associated with the motors and 

motor drivers are not perfectly known. On the motor end are the torque constant and 

inertia due to the motor, which becomes significant through the effect of gearing. On 

the motor driver end, the current monitoring is accomplished through reading a 

proportional voltage with the DAQ board. Variations of 10-20% in this proportion or 

the torque constant are not unlikely. Another explanation of this problem is that it is 
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the result of the adaptive networks not learning a fully accurate model of the friction. 

In that case the solution would be to seek a more persistently exciting trajectory or 

train longer with the current trajectory.  

The second problem is that the force estimates are not zero when the actual force 

is zero. This is a more serious problem because the force estimates will be fed back to 

a compliance controller as described in Chapter 5. The problem can be alleviated by 

imposing a threshold upon the estimated external torque before it is converted into 

force (see section 3.1.2). The thresholding is imposed on the filtered torque, after step 

two in the procedure discussed in that section.  

To choose the threshold the evolution of the estimated external torque during 

training must first be examined. Graph A of Figure 4.11 shows the progress of the 

filtered estimated external torque of the first joint over the first 50 seconds of training. 

Ideally, when the actual external torque is zero, the adaptation should drive this 

estimate to zero. However, since the friction is not learned perfectly, there is about 1 

Nm unlearned at velocities with absolute value above 0.002 rad/s and 2 Nm unlearned 

below 0.001 rad/s, as graph B of Figure 4.11 shows. This graph illustrates the error in 

the estimated external torque (simply the estimated external torque since the actual is 

zero) between 300 seconds and 500 seconds of the training, when the modeled 

parameters and networks’ coefficients have converged close to their final values. For 

higher velocities the error is likely due to position-dependent friction that cannot be 

captured by adaptive networks that learn the mapping from velocity to friction torque. 

The higher error near zero velocity is due to stiction that was not captured by the 

adaptive networks. Such networks tend to have difficulty learning discontinuities 
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even when the nodes are densely spaced. A friction model incorporating stiction in 

harmonic drives has been suggested in (Ghandi et al., 2002) based on the dynamic 

model of friction proposed in (Canudas de Wit et al., 1995), but the model contains a 

number of parameters whose values are hard to determine in practice. An adaptive 

version of the dynamic friction model introduced in (Canudas de Wit et al., 1995) has 

been presented in (Misovec and Annaswamy, 1999). 

The thresholding function is shown in graph A of Figure 4.12. It simply 

zeroes any torque with absolute value below the chosen threshold torque, THRESHOLDττττ , 

and decreases the absolute value of any torque above that by the threshold torque. 

The threshold torque was chosen to be velocity dependent, as shown in graph B of 

Figure 4.12, due to the velocity dependent error in graph B of Figure 4.11. 

THRESHOLDττττ  was chosen to be 2 Nm for velocities with absolute value at or below 

0.001 rad/s and 1 Nm for actual velocity with absolute value at or above 0.002 rad/s 

with a linear transition in between. Joint 2’s threshold is the same because its 

estimated external torque is driven down to a similar velocity-dependent error. 
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Figure 4.11 Time evolution of the estimated torque and velocity dependence of the error in the estimated torque 

between (between 300 s and 500 s of training time) for joint 1. 

 

 
Figure 4.12 Velocity dependent thresholding of external estimated torque for hardware experiments. 

 

Figure 4.14 depicts the force estimates versus actual force after the estimated 

external torque is thresholded using the velocity dependent technique described 

above. There is a definite improvement in the force estimates when the actual force is 

zero as can be seen in x and z direction estimates around 16-17 s and the y direction 

estimates around 15 s compared to the same time periods in Figure 4.13. 
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Figure 4.13 Estimated force versus sensed force and associated error in the case of a dynamic testing trajectory  

for the hardware case. 
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Figure 4.14 Thresholded estimated force versus sensed force and associated error in the case of a dynamic testing 

trajectory for the hardware case. 
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4.5 Summary 

 This chapter detailed the training trajectories used in both simulation and 

hardware experiments. The evolution of the modeled dynamics’ parameters as well as 

the coefficients of the adaptive networks learning the unmodeled friction were then 

presented for both the simulation and hardware. Force estimation using the adapted 

parameters was then presented for a stationary testing trajectory in the simulation case 

and sources of error in the estimates were discussed. Briefly, the increased error in the 

experiment stemmed from delays caused by the filtering of the motor current. Force 

estimation for the stationary trajectory in the hardware case had similar error as it was 

able to overcome any unmodeled effects of stiction with high PD gains. 

 In the case of a dynamic testing trajectory, the simulation exhibited slightly 

larger amounts of error can be attributed to the larger amplitude and faster changing 

actual forces that happened to be used in the dynamic test. For the hardware 

experiments the dynamic testing trajectory revealed velocity dependence in the force 

estimation error that was attributed to the adaptive networks not having perfectly 

learned the friction. As a consequence, the problem of having non-zero estimated 

force during periods of zero actual force was identified. The problem was remedied 

by using a velocity-dependent threshold of the estimated external torque that is 

converted to estimated external force. This thresholding greatly reduced the force 

estimation error during zero actual force. 
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Chapter 5: Compliance Control Experiment 

To illustrate the feasibility of using force estimates for force-based control, a 

compliance controller was implemented on the hardware test bed. First, the controller 

will be described then an experiment demonstrating the traditional approach using a 

force sensor will be presented. Finally, the same controller will be used with force 

estimation input instead of force sensing. 

 

5.1 Compliance Controller 

The compliance controller chosen was the “position-based impedance control” 

scheme used in (Guion, 2003). The controller, shown in Figure 5.1, is dual-loop; an 

inner loop controls joint position and an outer loop modifies the nominal desired 

Cartesian position to form the modified desired Cartesian position. The controller 

uses the external force it accepts to deflect the manipulator's trajectory in Cartesian 

space. The modified desired Cartesian position is converted to modified desired joint 

position through inverse kinematics for use by the inner loop. The adaptive friction-

learning controller introduced in Chapter 2 is used as the inner position control loop. 

The compliance controller is the outer loop around the position control loop. The 

desired behavior between external force and the deflection of the trajectory from the 

nominal desired trajectory is represented by the following equation   

x~Kx~Cx~MF sssext ++= &&&
            (5-1) 
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where nd xxx~ −−−−==== , nx  is the nominal desired Cartesian position, and dx  is the 

modified desired Cartesian position due to the enforcement of the desired impedance 

behavior specified by the mass, spring, and damping matrices Ms, Cs, and Ks 

respectively. The difference between (5-1) and the compliance control law used in 

(Guion, 2003) is that the left side of (5-1) is fext  rather than extf fK  which simply 

means that the three matrices on the right hand side of (5-1) have been multiplied by 

1

fK −−−− .  The modified trajectory is formed by rearranging (5-1) as follows                        

       ( ) nssext

1

sd xx~Kx~CFMx &&&&& +−−= −
                     (5-2) 

with the modified desired Cartesian velocity and position formed by integrating (5-2). 

These integrals were performed numerically using the technique given in Appendix 

A.1.           

 Because the modified desired trajectory issued by the compliance control law 

is formed in Cartesian space rather than joint space, the following numerical 

computation of the inverse kinematics was performed to form the input for the joint 

space control law (2-48) to use.           

     ∫=
t

0

dd dtqq &                 (5-3)

     dd x)J(invq && =              (5-4)

     
dt

qd
q d

d

&
&& =               (5-5) 

The integral in (5-3) and derivative in (5-5) were computed numerically also using 

Appendix A.1.          



 

 72 

 

 In training mode the modified desired trajectory due to the compliance control 

was not used – instead the desired trajectory was specified directly in joint space. The 

desired trajectory may also be specified in Cartesian space and converted into joint 

space. During estimation mode, the nominal desired trajectory was still specified in 

joint space although it was converted into Cartesian space for the compliance 

controller as follows          

     )q(kx nn =               (5-6)

     nn qJx && =               (5-7)

     
dt

xd
x n

n

&
&& =               (5-8) 

where k is the manipulator's forward kinematics – the transformation from joint 

position and orientation to end effector Cartesian position and orientation.  

 A block diagram of the compliance and position controllers is shown in Fig. 

5.1. Note that the learning rules shown in the figure are disabled when the force 

estimation based compliance controller is active. Also note that the control law (2-48) 

is unaware of the modification to its desired trajectory by the compliance controller 

block just as the compliance controller block is unaware of the use of force estimation 

instead of actual force sensing. This last point can be made explicit by substituting (2-

54) instead of fext in (5-1) and (5-2). 

In both the sensor based and force estimation based compliance control 

experiments, the three matrices in (5-1) that specify the desired impedance were set to  
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                                    (5-9) 

where ms = 100, cs = 2000, ks = 200 are scalar values. The damping ratio along each 

Cartesian direction for this choice of admittance is 

        7
mk2

c

ss

s ≈=ς            (5-10) 

This high damping ratio will highlight problems encountering at low velocity. 

Typically overdamped behavior ( 1>>>>ςςςς ) is desired in a compliance controller because 

of well-known issues involving instability between a manipulator and the 

environment. The phenomenon, termed “contact instability” can occur when a 

compliance-controlled manipulator comes in contact with a very stiff environment, a 

wall for example. If the nominal desired position is past the border of the wall the 

manipulator will hit the wall and the contact force will deflect the trajectory in an 

attempt to enforce the desired stiffness relationship between the nominal and 

modified desired position. If the manipulator’s damping ratio is not high enough the 

manipulator will move out to the modified desired position too quickly.  

 The problem is that this deflected position is likely to occur before the border 

of the wall, in a place where there is zero contact force, so the trajectory reverts back 

to the nominal and the manipulator moves back into the wall. A cycle of “chattering” 

begins in which the manipulator moves in and out of the wall, alternately making and 

breaking contact in its attempt to enforce the stiffness term of its desired admittance. 

A high damping ratio ensures that the damping term of the desired admittance is large 
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enough relative to the mass and stiffness terms. A large damping term ensures the 

manipulator moves slowly as a result of contact. Therefore when it hits the wall, 

provided the wall has finite stiffness, the manipulator has a chance to settle out into a 

location that maintains contact and therefore enforces its steady state desired stiffness. 

Fig. 5.1 Block diagram of adaptive, friction learning position controller. Compliance control is based on the force 

estimates generated using the controller’s adapted model parameters. Nominal desired trajectory, inputted at the 

top left, is specified in joint space, then converted to Cartesian space for the compliance controller to use. 
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5.2 Force Sensor Based Compliance Control 

In this section compliance control will be demonstrated for the case in which 

force sensed by the force/torque sensor described in section 3.2.3 is used to generate 

the desired compliant behavior specified in (5-1). In the force-based compliance 

control experiment the manipulator was maintaining the same nominal desired joint 

position as in the stationary tests of Chapter 4, [[[[ ]]]]ππππ−−−−==== 0q T . Forces were exerted by 

hand on the manipulator’s end effector to demonstrate the deflection from the 

nominal desired joint position due to the enforcement of the desired impedance. 

Figure 5.2 shows the force sensed during the experiment. Note that the forces shown 

have been transformed by equation (3-6), limiting the full three degree of freedom 

force provided by the sensor to the two configuration-dependent degrees of freedom 

of the manipulator. Figure 5.3 shows the deflection of the nominal trajectory due to 

the forces shown in Figure 5.2. Due to the high damping ratio the modified position 

of both joints gradually returns to the nominal position when there is no contact force, 

as is clearly the case between 30 and 50 seconds and after 80 seconds. 

 
Figure 5.2 Sensed force during force sensor based compliance control. 
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Figure 5.3 Nominal joint position versus modified joint position during force sensor based compliance control. 

 

5.3 Force Estimation Based Compliance Control 

Having demonstrated compliance control using the force/torque sensor, the 

case in which the force estimates are used instead is now presented. The same Figure 

5.4 shows the force estimates versus actual forces during this test. The noise in the 

estimates is immediately evident around zero actual force. The reason for this error is 

that the desired velocity that is modified by the compliance controller is commanding 

the joints to repeatedly pass through the friction discontinuity at zero velocity. The 

modified position for both joints is shown in Figure 5.5 and a close-up of the 

modified velocity of joint 1 during the 130 to 200 second time period of the 

compliance testing is shown in Figure 5.6. The modified velocity during that time 

oscillates about a point close to zero. The noisiness in Figure 5.4 seen during that 

time period may stem from the fact that some of the friction torque is still not being 

captured by the adaptive networks. To combat this problem an additional filter was 
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applied to each joint’s estimated external torque during low velocity, defined to be an 

absolute value of 0.01 rad/s or less. The filter is given by 

∑
+−=

=
k

1nki

ik x
n

1
x                (5-11) 

where kx  is the filter’s output at time stamp k, seen to be the average of the previous 

n values of x, in this case representing the filtered, thresholded estimate of the 

external torque, as discussed in 4.4.2. One second’s worth of previous samples were 

chosen to be averaged  - in the case of 3 kHz sampling this resulted in saving three 

thousand samples, though this number can be reduced if the estimated torque is saved 

at a lower frequency for use in the low bandwidth compliance controller. Note that 

this filtered force was fed back to the compliance controller rather than the forces 

shown in Figure 5.4. 

The price for the reduced noisiness of the filtered estimates is paid in the 

situation where the actual force is changing while the manipulator is still moving very 

slowly or standing still. Eventually the moving average filter will begin to output the 

changes in the force and the manipulator will move in response, leaving the low 

velocity regime and turning the moving average filter off. The delay between the 

filtered output, which changes slowly because of the moving average filter’s low 

bandwidth, and a faster changing actual force is what causes the sharp spikes in force 

estimation error seen in Figure 5.5. 

  The case of this moving average filter being applied to non-zero actual force 

is shown around 120 seconds with reduced noise in the error for all three directions’ 

estimates. In Figure 5.5 both joints’ velocity can be seen to be near zero at that time 
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with the actual forces in all three directions non-zero and constant or slowly 

changing. Reducing the noise reveals poorer estimates in low velocity. They are made 

worse because the thresholding described in section 4.4.2 that was used to improve 

estimates made during zero actual force devalues the estimated external torque by 2 

Nm in low velocity. So in solving the problem of non-zero estimates during zero 

actual force it exacerbates the other problem of estimating non-zero actual forces in 

low velocity.  

 In addition, though the low velocity filtering goes far in reducing the noise in 

the estimates the noise that remains is to blame for the slower convergence to the 

nominal position of the second joint in Figure 5.6, evident between 150 and 200 

seconds. Though it was not implemented, a remedy would be to add additional 

thresholding, this time on the estimated force after it has been transformed from 

estimated torque. The threshold would be different than the one shown in Figure 4.12 

– it would simply zero all force estimates below a certain absolute value and maintain 

the values of estimates above that point. The thresholding function is shown in Figure 

5.8, with the proposed threshold point set at 2 N. 

 

 

 

 



 

 79 

 

 
Figure 5.4 Force estimates versus sensed force during force estimation based compliance control. 
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Figure 5.5 Low velocity filtered and thresholded force estimates versus sensed force during force estimation based 

compliance control. 
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Figure 5.6 Nominal desired position vs. modified desired position during force estimation based compliance 

control. 

 
Figure 5.7 Close up of 130 sec. to 200 sec. time period during which the low velocity estimation problem occurs. 

 

 
Figure 5.8 Suggested estimated force thresholding function. 
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Chapter 6:  Conclusion and Future Work 

6.1 Conclusion 

 This thesis demonstrated the use of an adaptive, friction-learning controller in 

estimating external forces exerted upon a harmonically driven manipulator. Force 

estimation, actual force and estimation error during both stationary and dynamic 

experiments were presented both in simulation and hardware experiments. Force 

estimation errors during the dynamic hardware test, presented in Section 4.4.2, 

appeared to have the same period as the trajectory that was being tracked. This may 

have been caused by imperfectly known constants associated with the motors and 

motor drivers or by the choice of training trajectory that was not sufficiently 

persistently exciting. Thresholding of the estimated external joint torque was used to 

reduce the error of the force estimates during zero actual force. A velocity-dependent 

threshold was used to combat the increased estimation error near zero velocity 

associated with stiction that was not captured by the adaptive neural networks. 

Outside of the near-zero velocity region the threshold attempted to eliminate 

unmodeled position dependence in the joint friction. The price for improved estimates 

of zero actual force was paid in worse estimates of non-zero actual force.  

A first attempt at compliance control based on force estimation in a 

harmonically driven manipulator was then presented. Further problems were 

identified in the near zero velocity region. Filtering the estimated thresholded external 

joint torque in that region led to improved estimates of zero actual force at the 

expense of significant delay and inaccuracy in the estimates of non-zero actual force. 
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The results presented lead to the conclusion that further work needs to be done before 

force estimation is accurate enough for use in feedback controllers. The problem that 

needs to be addressed most urgently is the inaccuracy of estimates in the steady state. 

A friction model that captures more of the effects of stiction will lead to improved 

steady state estimation, greatly reducing or even eliminating the need for 

thresholding. 

 

6.2 Future Work 

 As noted in the conclusion, the next step to be taken is to in better 

incorporating stiction into the friction model. This would greatly improve the 

feasibility of using estimates with compliance control. The most promising avenue is 

to investigate the use of a dynamic friction model, mentioned in Section 4.4.2. Such a 

model may only be necessary in the low velocity regime as noted in the references 

mentioned in that section. 

 Another important extension would be to model the position dependence that 

was identified and dealt with using thresholding. Expanding the adaptive neural 

network to two dimensions, making it a mapping from both position and velocity to 

joint torque, is a logical direction. A practical difficulty arises in finding a persistently 

exciting training trajectory for such a two-dimensional friction model due the need to 

have every position encounter the full range of input velocities. The training period 

necessary to accomplish this may be significantly longer than the training period used 

in this work depending on the position resolution chosen. 
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Though it was noted that the force estimation technique presented is able to 

retrain, that is reenter the training mode after estimation mode, this capability was not 

explored in the research presented. Further work examining the effect of retraining at 

runtime because of end effector loading and temperature variation is needed. Loading 

affects both the modeled parameters and the unmodeled friction while temperature 

has been shown to greatly affect friction. An understanding of how frequently 

retraining would be necessary due to these changes would be invaluable. 
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Appendix A 
 

A.1 Numerical Differentiation and Integration 

 Numerical differentiation and integration were performed numerous times in 

the code given in Appendix B. The iterative version of numerical differentiation used, 

called Euler differentiation, is defined as  

t

])1n[x]n[x(
]n[x

∆

−−
=&                 (A-1) 

where ∆t is the period of the system. The iterative version of numerical integration 

used, called the trapezoidal rule, is defined as 

]).1n[x]n[x(t5.]1n[x]n[x −+∆+−= &&                       (A-2) 

 

A.2 Encoder Signal Conversion 

The MORPHbots module’s encoders provided Channel A/Channel B digital 

output signals that were fed into an LS 7184 microchip that converts the signals to the 

Clock / Up/ Down  signaling convention. The use of the LS7184 chip is necessary 

because the counters on the DAQ board accept the Clock / Up/ Down signaling 

convention rather than the Channel A/Channel B convention of the encoder 

electronics. The timing diagram of the circuit is shown in Figure A.1.  
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Figure A.1: LS7184 Timing Diagram 

 

As seen in Figure A.1, transitions on the Channel A or Channel B input lines are 

converted to inverted pulses on the Clock output lines. The chip can operate in X1, 

X2 or X4 mode depending on which edges of the Channel A/Channel B signals are 

counted as transitions. In X1 mode an inverted pulse is only generated with Channel 

A transitions from low to high. In X2 mode an inverted pulse is also generated when 

Channel A transitions from high to low. In X4 mode the transitions from X1 and X2 

mode are counted as well as the transitions low to high and high to low of Channel B. 

The X4 mode was used because it allows for maximum resolution. When Channel A 

leads Channel B the Up/ Down signal is high while it goes low when the direction of 

motion changes and Channel B leads Channel A. The two 24-bit hardware counters 

on the NIDAQ board increment their counts when Clock  transitions from high to low 

and the Up/ Down  signal is high and decrement their counts when Clock  transitions 

from high to low and the Up/ Down  signal is low.  
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A.3 Newton-Euler Dynamics Algorithm 

 The Newton-Euler recursive dynamics algorithm used to compute the 

dynamics presented in Appendix A.4 is detailed here. It is based on the propagation 

of link velocity and acceleration and the use of Newton’s force equation and Euler’s 

moment equation and the kinematic relationship between joint frames. The force and 

moment equations are given for the center of mass of link i ( iC ) as 

iC

i

ii

i mF ν= &               (A-3) 

i

i

i

C

i

i

i

i

i

C

i

i IIN ii ω×ω+ω= &            (A-4) 

where νννν  refers to linear velocity, ωωωω  refers to the angular velocity and m refers to a 

link’s mass. The term i

C
Ii  refers to the i

th
 link’s inertia expressed in the i

th
 link’s 

center of mass frame. Left superscripts describe the frame of reference and the right 

subscripts describe which joint’s term is being referred to. For example the term j

i F  

would refer to the force experienced at the center of mass of the j
th

 link expressed in 

the i
th

 link’s reference frame. The algorithm works by relating (A-3) and (A-4) to if  

and in , the forces and moments seen at the manipulator’s joints through a force and 

torque balance. From this joint torque is taken as ẑnT

i

i

i ====ττττ , where ẑ refers to the unit 

vector in the z direction. 
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TABLE A.1 

NEWTON-EULER RECURSIVE DYNAMICS ALGORITHM 

Step 1: Velocity/acceleration propagation and computation of force/moment at center of 

mass of each link. 

(i: 0 → N-1) 
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    ẑqẑqRR 1i1ii

i1i

ii

i1i

i1i

1i

++
++

+
+ +×ω+ω=ω &&&&&                                      (A-6) 

    ( )( )i

i

1i

i

i

i

i

i

1i

i

i

i1i

i1i

1i ppR ν+×ω×ω+×ω=ν ++
+

+
+ &&&                              (A-7) 

    ( ) 1i

1i

C

1i

1i

1i

1i

1i

C

1i

1i

1i

C

1i

1i1i1i
pp +

++
+

+
+

++
+

++ ν+×ω×ω+×ω=ν
+++

&&&            (A-8) 

    
1iC

1i

1i1i

1i mF
+

ν= +
++

+ &                                                                          (A-9) 

    1i

1i

1i

C

1i

1i

1i

1i

1i

C

1i

1i
IIN 1i1i

+
+

++
+

+
+

++
+ ω×ω+ω= ++ &                                (A-10) 

 

Step 2: Computation of force/moment and torque at joints. 

(i: N → 1) 

 

    i

i

1i

1i1i

ii

i
FfRf += +

++
                                                                         (A-11)                                                                        

    1i

1ii

1i1i

i

i

i

C

i

1i

1ii

1ii

i

i

i fRpFpnRNn
i +

+
+++

+
+ ×+×++=                           (A-12) 

     ẑn T
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 The full algorithm is given in Table A.1 for an N link manipulator with 

rotational joints (it can be expanded to include prismatic joints as well), taken directly 

from (Craig, 2005). The following terms are used in the algorithm (in addition to the 

terms defined in the previous paragraph): R1i

i

++++  is the rotation from vectors in frame i 

to vectors in frame i + 1, ip  is the position of the i
th

 joint, 
iCp is the position of the i

th
 

link’s center of mass, and q is the joint angle as defined in the Denavit-Hartenberg 

convention (sometimes called θθθθ ). 

The algorithm consists of two steps: the first propagates angular velocity and 

acceleration of the joints as well as the linear velocity and acceleration at both the 

joints and each link’s center of mass from the manipulator’s base outwards to its last 



 

 89 

 

link. These velocities and accelerations are used with Newton’s force equation and 

Euler’s moment equation to generate forces and moments at each link’s center of 

mass. The second step propagates inwards from the last link to the manipulator’s base 

and calculates the force and moment at the joints given the force and moment at each 

link’s center of mass. Torque at the joints is taken as the z direction of the moment 

since the joint frames are assumed to follow the Denavit-Hartenberg and be defined 

with the z direction being the axis of rotation.  

After the algorithm completes both steps the manipulator’s torque at each of 

its joints will be given by vectorizing equation (A-13). This equation, parameterized 

by the physical constants, is an explicit function of joint position, velocity and 

acceleration. The joint torque can then be placed in to the form (2-13) – the equation 

for manipulator dynamics having no friction or gearing. 

The MATLAB code that implements this algorithm to generate the dynamical 

model used in this work is given in Appendix B.1. 

 

A.4 Manipulator Case Study Dynamics 

The manipulator used, described in Chapter 3, consisted of two links though 

they were defined differently for the kinematics and dynamics. The first link in the 

kinematics sense began at the first frame’s origin and ended at the second frame’s 

origin, in the middle of the hole in the bar. The second link was from the second 

frame’s origin to the end of the bar – the point chosen to be the end effector location. 

The first link in the dynamics sense was from the first frame’s origin to the center of 

mass of the second joint’s motor and harmonic drive. This point was assumed to be 
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the center of the cylinder containing the second joint’s motor and harmonic drive 

(best seen in Figure 3.1). The mass and inertia of the first link was assumed to be 

zero. The second link consisted of five components whose inertias were added to 

make up the second link’s total inertia. They were: the motor and harmonic drive 

combination, the plate below the force/torque sensor (the thickest plate in Figure 3.2) 

attaching it to the motor and harmonic drive, the force/torque sensor, the plate above 

the force/torque sensor attaching it to the bar and the bar itself. All parts except the 

bar were modeled as having the inertia of a solid cylinder. The bar was modeled as a 

bar of constant density and the parallel-axis theorem (Craig, 2005) was used to 

change the inertia’s point of reference from halfway along the bar’s length to the 

center of Frame 2. The reason the second link was made to include all of these 

components was because they are all rotate with that joint. The details of the inertias 

used for each component and the dimensions of each modeled part are in the Newton-

Euler dynamics MATLAB code given in Appendix B.1. The resulting dynamics are 

given as 
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Note that this dynamical model is in the form (2-), lacking the inertia due to the 

harmonic drive’s gearing and the friction term.  The inertia due to the gearing is 

found as follows 
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where the first and second joint’s gearing is 161 and 160 respectively and the housed 

inertia of the motors used is 510*74.3 − kg*m
2
. The details of the mechanical aspects 

of the manipulator are given in section 3.2.1. The resulting full dynamical model for 

the manipulator, put into the form of equation (2-), is given as 
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where no assumptions are made on the form of the friction except strict dependence 

upon joint velocity and no coupling between joints. Equation (A-16) can be put into 

LIP form (see section 2.3): )q(fa)q,q,q(Y v
&&&& ++++====ττττ , with Y and a defined as follows  
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Examining a in equation (A-17) reveals that only four parameters in this 

manipulator’s dynamics significantly contribute to the torque seen at its joints. These 

parameters consist of the two parameters of the gravitational term, -3.104 and 0.219, 

and the two parts of the diagonal of the inertia matrix, 1.012 and 0.974, which are 

made significant by the gearing. Training trajectories, discussed in Section 4.1, and 

parameter evolution, discussed in Section 4.2, focus on accurate adaptation of these 

four parameters while keeping the other five parameters’ values small. 

A.5 Manipulator Case Study Controller 

The specific form of the controller used is presented using (A-17) and the 

general form of the adaptive friction learning controller and adaptation laws presented 

in (2-48) through (2-51).  
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           ,sYâ T

∆Γ−=&
 

             iick,i s)khq(gĉ ∆−γ−=&
 

with the adaptive networks’ basis function g defined in Section 2.3 and 

),,,,,,,,(diag 112222121 γγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγγ====ΓΓΓΓ  where 2001 ====γγγγ  and 22 ====γγγγ . In (A-18) the 

adaptation laws use ∆∆∆∆s , a modified version of the tracking error s. The components of 

this modified error are defined as follows 

       N 1,...,i   ),/s(satss iii =φφ−=∆          (A-19) 

where sat( ) is the saturation function defined as follows 





≥

<
= .

1x   ,1

1x  ,x
)x(sat               (A-20) 

Subtracting the saturation function from s forms a deadzone around zero of size φφφφ . 

The deadzone was used in (Liu, 1997) because it assures that the adaptation does not 

cause instability by trying to achieve perfect s = 0 tracking. The value of φφφφ  chosen 

was 0.001 in training. 
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The equation for â&  is broken up as follows  

        11r11 sqâ ∆γ−= &&&
              (A-21) 

                               11r2
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           (A-22) 

       22r13 sqâ ∆γ−= &&&
               (A-23) 

       ( )21r212r224 sq)qsin(sq)qsin(â ∆∆ +γ−= &&&&&
         (A-24) 

      12r12225 sqq)qsin()qcos(â ∆γ−= &&&
              (A-25) 

      12r2226 sqq)qcos(â ∆γ−= &&&
           (A-26) 

                             21r12227 sqq)qsin()qcos(â ∆γ−= &&&
             (A-27) 

     1118 s)qsin(â ∆γ−=&
            (A-28) 

     ( ).s)qsin()qsin(s)qcos()qcos(â 22112119 ∆∆ −γ−=&
(A-29) 

The adaptation laws of the four significant parameters (described in Appendix 

A.4) are given by (A-21), (A-23), (A-28), and (A-29). These laws make use of the 

larger 1γγγγ  adaptation gain while the remaining parameters use the 2γγγγ  gain. The reason 

for this distinction in the gains was that it eased the process of choosing persistently 

exciting training trajectories, described in section 4.1.  

The adaptive networks used in the controller (A-18) are parameterized by four 

constants chosen by the designer: cγγγγ , h, mink , and maxk . As discussed in Section 2.3, 

the center of node k is at k/h, so the constants mink , maxk , and h should be chosen 

such that the range of joint velocity that is desired to be covered by the networks is 
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within [ h/k,h/k maxmin ].  In the case of the given manipulator that range of the 

joints’ velocity was chosen to be [-1 rad/s, 1 rad/s]. Since this is symmetric about zero 

minmax kk −−−−====  and choosing h to be 20 (as in Liu (1997) and Guion (2003)) results in 

20k max ==== . Hence there are 41 nodes in the network since there is a node centered at 

zero.  The learning gain cγγγγ  was chosen to be ten times larger than 1γγγγ  because the 

friction tends to be a major term, if not the dominant term, in the dynamics of 

harmonically driven manipulators, so it should be learned at a higher rate if 

convergence is to take place quickly. 

Two different sets of PD gains were used with controller. In training mode the 

PD gains were smaller, thereby increasing the amplitude of the error signals. The 

larger and therefore less noisy error signals were better suited for adaptation and 

learning because the adaptation laws are based on the tracking error. Their values in 

training mode were 2p I5000K ==== and 2p I300K ====  (with 2I7.16====ΛΛΛΛ  as a result). In 

testing/estimation mode, the PD gains were increased significantly to reduce the 

effect of stiction during stationary trajectories. This turned out to be the most 

effective method of dealing with stiction. Other methods of reducing stiction were 

attempted including: dithering the commanded torque, dithering the desired 

trajectory, and modifying the velocity in the low velocity regime (Hauschild, 2004).  

The PD gains in testing/estimation mode were  

        
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High PD gains can be used when both good position resolution and good velocity 

estimates are available. The hardware, both mechanical and electrical, and software 

used for this manipulator made both things possible. The high gear ratios in both 

joints provided by the harmonic drives as well as the very accurate encoders led to the 

good position resolution. On the software end, the use of a real-time kernel permitted 

a high control frequency, which in turn led to good velocity estimates. The details of 

both the hardware and software are given in the sections 3.2 and 3.3. 

 

A.6 Constants 

TABLE A.2 

CONSTANTS FROM HARDWARE EXPERIMENTS 
Category Name Value Units 

Kinematics 
1L  0.194 m 

Kinematics 
2L  0.259 m 

Controller - Train 
1dK  300 N-m-s/rad 

Controller - Train 
1pK  5000 N-m/rad 

Controller - Train 
1Λ = 1d1p K/K  16.7  

Controller - Train 
2dK  300 N-m-s/rad 

Controller - Train 
2pK  5000 N-m/rad 

Controller - Train 
2Λ = 2d2p K/K  16.7  

Control Gain - Test 
1dK  1700 N-m-s/rad 

Control Gain - Test 
1pK  320000 N-m/rad 

Control Gain - Test 
1Λ = 1d1p K/K  188.2  

Control Gain - Test 
2dK  1700 N-m-s/rad 

Control Gain - Test 
2pK  210000 N-m/rad 

Control Gain - Test 
2Λ = 2d2p K/K  123.5  
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Adaptive Networks h 100  
Adaptive Networks 

mink  -100  
Adaptive Networks 

maxk  100  

Adap’n Gain - 

Train 
1γ  200  

Adap’n Gain - 

Train 
2γ = 1γ /100 2  

Adap’n Gain - 

Train 
cγ  2000  

Adap’n Gain - Test 
1γ  0  

Adap’n Gain - Test 
2γ = 1γ /100 0  

Adap’n Gain - Test 
cγ  0  

Hardware – Elec’l 
1mK  0.0855 N-m/A 

 
Hardware – Elec’l Geared 1CPR  5796000 counts 

Hardware – Elec’l 
2mK  0.0855 N-m/A 

Hardware – Elec’l Geared 2CPR  5760000 counts 

Hardware – Mech’l 
1N  161  

Hardware – Mech’l 
1mI  3.74* 510−  Kg- 2m  

Hardware – Mech’l 
2N  160  

Hardware – Mech’l 
2mI  3.74* 510−  Kg- 2m  

 

 
TABLE A.3 

CHANGED CONSTANTS IN SIMULATION 

Category Name Value Units 

Adaptive Networks h 10.5  
Adaptive Networks 

mink  -20  
Adaptive Networks 

maxk  20  

Adap’n Gain - 

Train 
1γ  1000  

Adap’n Gain - 

Train 
2γ = 1γ /100 10  

Adap’n Gain - 

Train 
cγ  3000  

Adap’n Gain - Test 
1γ  0  

Adap’n Gain - Test 
2γ = 1γ /100 0  

Adap’n Gain - Test 
cγ  0  
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Appendix B 

B.1 Newton-Euler Dynamics Code – MATLAB 

%Leon Aksman 

%Space Systems Lab 

%University of Maryland, College Park 20742 

%copyright 2006 

 

%Dynamics for pitch-roll 2 DOF system 

%Uses Newton-Euler algorithm with MATLAB's Symbolic Math Toolbox 

 

clear 

 

%frame transformations, rotations, translations 

syms L1 real; 

syms theta_1 theta_1_dot theta_1_dot_dot real; 

syms theta_2 theta_2_dot theta_2_dot_dot real; 

T_0_1 = [  cos(theta_1) -sin(theta_1)   0   0; ... 

                      0             0   -1  0; ... 

           sin(theta_1)  cos(theta_1)   0   0; ... 

                      0             0   0   1];            

           

T_1_2 = [cos(theta_2) -sin(theta_2)     0   0; ... 

                    0             0     1   L1; ... 

        -sin(theta_2) -cos(theta_2)     0   0; ... 

                    0             0     0   1];          

 

R_0_1 = T_0_1(1:3, 1:3); P_0_1 = T_0_1(1:3, 4); 

R_1_2 = T_1_2(1:3, 1:3); P_1_2 = T_1_2(1:3, 4); 

 

R_0_2 = R_0_1*R_1_2; 

T_0_2 = T_0_1*T_1_2 

 

 

%position of the centers of mass of the links relative to link frame center                      

syms CM_x_2 CM_z_2 real; 

P_C_1_1 = [0; 0; 0]; 

P_C_2_2 = [CM_x_2; 0; CM_z_2]; 

 

%joint variables 

theta_dot =     [theta_1_dot; theta_2_dot]; 

theta_dot_dot = [theta_1_dot_dot; theta_2_dot_dot]; 

%d_dot =         [0; 0];    %prismatic 

%d_dot_dot =     [0; 0]; 

 

Z = [0; 0; 1]; 

 

%matrix of P_i_i+1 terms 

syms zero real; 

P_2_3 = [zero; zero; zero];             %---- last one is always zero 

P = [P_0_1 P_1_2 P_2_3]; 

 

%matrix of P_C_i+1_i+1 terms 

P_C = [P_C_1_1 P_C_2_2]; 

 

%initial angular velocity and accel., linear accel. 

w = [0; 0; 0]; 

w_dot = [ 0; 0; 0]; 

syms g real; 

v_dot = [0; 0; g];  

 
syms M_MB h_MB R_MB d_MB_2 real; 

 

%inertia of MORPHbot roll motor and harmonic drive relative to frame 2 center 
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%syms M_MB_P h_MB_P R_MB_P real; 

I_MB_1 = [(1/12)*M_MB*h_MB^2 + (1/4)*M_MB*R_MB^2    0           0; ... 

                  0          (1/12)*M_MB*h_MB^2 + (1/4)*M_MB*R_MB^2       0; ... 

                  0                    0                             .5*M_MB*R_MB^2]; 

 

%inertia of link 1 

I_1 = I_MB_1; 

 

 

%inertia of MORPHbot roll motor and harmonic drive relative to frame 2 center 

I_MB_2 = [(1/12)*M_MB*h_MB^2 + (1/4)*M_MB*R_MB^2 + M_MB*d_MB_2^2   0        0; ... 

          0      (1/12)*M_MB*h_MB^2 + (1/4)*M_MB*R_MB^2 + M_MB*d_MB_2^2     0; ... 

          0         0                                            .5*M_MB*R_MB^2]; 

%inertia of bottom plate relative to frame 2 center 

syms M_bp h_bp R_bp d_bp_2 real; 

I_bp_2 = [(1/12)*M_bp*h_bp^2 + (1/4)*M_bp*R_bp^2 + M_bp*d_bp_2^2  0         0; ... 

          0     (1/12)*M_bp*h_bp^2 + (1/4)*M_bp*R_bp^2 + M_bp*d_bp_2^2      0; ... 

          0                 0                                    .5*M_bp*R_bp^2 ]; 

%inertia of force/torque sensor relative to frame 2 center 

syms M_fts h_fts R_fts d_fts_2 real; 

I_fts_2 = [(1/12)*M_fts*h_fts^2 + (1/4)*M_fts*R_fts^2 + M_fts*d_fts_2^2  0   0; ... 

            0   (1/12)*M_fts*h_fts^2 + (1/4)*M_fts*R_fts^2 + M_fts*d_fts_2^2 0; ... 

            0           0                                        .5*M_fts*R_fts^2 ]; 

%inertia of top plate relative to frame 2 center 

syms M_tp h_tp R_tp d_tp_2 real; 

I_tp_2 = [(1/12)*M_tp*h_tp^2 + (1/4)*M_tp*R_tp^2 + M_tp*d_tp_2^2   0      0; ... 

          0     (1/12)*M_tp*h_tp^2 + (1/4)*M_tp*R_tp^2 + M_tp*d_tp_2^2     0; ... 

         0          0                                        .5*M_tp*R_tp^2 ]; 

%inertia of bar relative to frame 2 center 

syms M_bar h_bar l_bar w_bar d_bar_2 real; 

I_bar_2 = [(1/12)*M_bar*(h_bar^2 + l_bar^2)      0                      0; ... 

           0      (1/12)*M_bar*(w_bar^2 + h_bar^2) + M_bar * d_bar_2^2  0; ... 

           0           0     (1/12)*M_bar*(l_bar^2 + w_bar^2) + M_bar * d_bar_2^2]; 

%inertia of link 2 

I_2 = I_MB_2 + I_bp_2 + I_fts_2 + I_tp_2 + I_bar_2; 

 

%the masses of the links 

syms m1 m2 real; 

m1 = M_MB; 

m2 = M_MB + M_bp + M_fts + M_tp + M_bar; 

m = [m1 m2]; 

 

DOFs = 2;       %number of degrees of freedom    

        

%initialization of matices 

F =     ones(3, DOFs)*zero; 

N =     ones(3, DOFs)*zero;    

 

for i = 1:DOFs 

    switch i 

        case 1 

            R = R_0_1'; 

        case 2 

            R = R_1_2'; 

    end     

     

    switch i 

        case 1 

            I = I_1; 

        case 2 

            I = I_2; 

    end   

    

    w_prev = w; 

    w = R*w_prev + theta_dot(i)*Z; 

     

    w_dot_prev = w_dot; 

    w_dot = R * w_dot_prev + cross((R*w_prev), [0; 0; theta_dot(i)]) + [0; 0; 

theta_dot_dot(i)]; 

     

    v_dot_prev = v_dot; 
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    v_dot = R*(cross(w_dot_prev, P(:, i)) + cross(w_prev, cross(w_prev, P(:, i))) + 

v_dot_prev); 

            %+ 2*cross(w_dot, d_dot(i)*Z) + d_dot_dot(i)*Z;         %for prismatic 

joints 

     

    v_C_dot = cross(w_dot, P_C(:, i)) + cross(w, cross(w, P_C(:, i))) + v_dot; 

     

    F(:, i) = m(i)*v_C_dot;     

    N(:, i) = I*w_dot + cross(w, I*w); 

     

end 

 

F = subs(F, zero, 0); 

N = subs(N, zero, 0); 

 

%initialization of force/moment vectors - zeroed because 0 ext. f/t assumed 

f =     ones(3, DOFs + 1)*zero; 

n =     ones(3, DOFs + 1)*zero; 

tau =   ones(DOFs, 1)*zero; 

 

for i = DOFs:-1:1 

    switch i 

        case 1 

            R = R_1_2; 

        case 2 

            R = eye(3);    %last rotation matrix does not matter if 0 ext. f/t assumed  

    end        

     

    f(:, i) = R*f(:, i+1) + F(:, i); 

    n(:, i) = N(:, i) + R*n(:, i+1) + cross(P_C(:, i), F(:, i)) + cross(P(:, i+1),…   

      R*f(:, i+1)); 

     

    tau(i) = n(:, i)'*Z;        %revolute joint 

    %tau(i) = f(:, i)'*Z;       %prismatic joint 

end 

 

%dynamics with gravitational term 

tau = simplify(subs(tau, zero, 0)) 

 
%zero gravity dynamics 

tau_no_g = simplify(subs(tau, g, 0)) 

 

%inertial term 

tau_I = simplify(subs(tau_no_g, theta_1_dot, 0)); 

tau_I = simplify(subs(tau_I, theta_2_dot, 0)) 

 

%coriolis, centripetal term 

tau_C = simplify(tau_no_g - tau_I) 

 

%gravitational term 

tau_g = simplify(tau - tau_no_g) 

 

 

%-----------tau with constants--------- 

 

%g 

tau = subs(tau, g,        9.8); 

 

%CM_x_2 CM_z_2 L1 

tau = subs(tau, CM_x_2,    .0096); %.052 

tau = subs(tau, CM_z_2,   -.058);  %-.003 

tau = subs(tau, L1,        .194); 

 

%M_MB h_MB R_MB 

tau = subs(tau, M_MB,      .842); 

tau = subs(tau, h_MB,      .047); 

tau = subs(tau, R_MB,      .039); 

tau = subs(tau, d_MB_2,   -.099); 

 

%M_bp h_bp R_bp d_bp_2 

tau = subs(tau, M_bp,      .415); 
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tau = subs(tau, h_bp,      .019); 

tau = subs(tau, R_bp,      .006); 

tau = subs(tau, d_bp_2,   -.066); 

 

%M_fts h_fts R_fts d_fts_2 

tau = subs(tau, M_fts,     .639); 

tau = subs(tau, h_fts,     .042); 

tau = subs(tau, R_fts,     .005); 

tau = subs(tau, d_fts_2,  -.036); 

 

%M_tp h_tp R_tp d_tp_2 

tau = subs(tau, M_tp,      .229); 

tau = subs(tau, h_tp,      .011); 

tau = subs(tau, R_tp,      .05); 

tau = subs(tau, d_tp_2,   -.009); 

 

%M_bar h_bar l_bar w_bar d_bar_2 

tau = subs(tau, M_bar,     .204); 

tau = subs(tau, h_bar,     .007); 

tau = subs(tau, l_bar,     .039); 

tau = subs(tau, w_bar,     .298); 

tau = subs(tau, d_bar_2,   .11); 

 

 

tau = simplify(tau) 
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B.2 Control Code – C 

START OF CONTROLLIB.C CODE 

 
/*  

  $Id$ 

   

(c) Copyright 1999-2006 

 Space Systems Lab, University of Maryland, College Park, MD 20740 

  

 Definitions of control law functions using feedback and model based techniques 

   

 HISTORY 

  

 Apr-2006     L Aksman       Created from main.c 

 Jun-2006   L Aksman   Generalized to N DOF 

 */ 

 

#include "main.h" 

#include "ControlLib.h" 

 

/***************************************************************************** 

FUNCTION DECLARATIONS 

*****************************************************************************/ 

 

/* return 1 and print error message if ptr equals NULL, 0 o/w 

   char * parameter is name of variable - used in error message. 

 */ 

int  

equalsNULL(void * ptr, char * name); 

 

/* saturation function */ 

double  

sat(double x); 

 

/***************************************************************************** 

FUNCTION DEFINITIONS 

*****************************************************************************/ 

 

/* Function that controls gathering input, calculating desired torque and output 

for current control cycle. 

 Currently called by Closed_Loop_Control_N_DOF( ). 

 This function also reads the force/torque sensor and generates force 

estimates, saving in Force_Estimation variable. 

 Generalized to N DOFs, calling dynamics and kinematics functions specified in 

Kinematics_Dynamics_Functions variable. 

  

 parameters: 

 des_pos  - desired angular positions for all N DOFs in radians 

 des_vel  - desired angular velocities for all N DOFs in rad/s 

 des_accel - desired angular accelerations for all N DOFs in rad/s^2 

learn_modeled_params - controls whether adaptation/learning of modeled 

dynamical parameters takes place during this cycle 

learn_unmodeled_params  - controls whether adaptation/learning of unmodeled 

dynamical parameters takes place during this cycle 

kin_dyn_fns - pointer to variable holding pointers to kinematics and  

dynamics functions for given manipulator 

dof - array (of size N) of pointers to Single_DOF_Properties 

variables holding information about each DOF 

NOTE: DOFs must be in correct order with those closest 

to base of the manipulator coming first.For example, 

starting at the base, the MORPHbot module has a pitch 

DOF followed by a roll DOF so this array would contain 2 

elements - the Single_DOF_Properties of the pitch at 

index 0 and the Single_DOF_Properties of the roll at 

index 1. 

N - number of DOFs to control 

*/ 
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int  

Control_Law_N_DOF( double       * des_pos,  

     double      

 * des_vel,  

     double      

 * des_accel,  

     BOOLEAN      

 learn_modeled_params,  

     BOOLEAN      

 learn_unmodeled_params, 

     Kinematics_Dynamics_Functions * kin_dyn_fns,  

     Force_Estimation   * force_estimation, 

     Single_DOF_Properties   ** dof,  

     int      

  N) 

{ 

 /* static variables */ 

 static ftsdrv_6DOF_t  force_moment = {{0.}, {0.}}; 

  

 /* non-static variables */ 

 int    volts_bits; 

 int    return_val_write; 

 int    return_val_read; 

 int    rc; 

 int    i; 

 int    j; 

 int    count_i; 

 double    act_accel_unfilt;     

 double    volts_in;     

 double    volts_out; 

 double    torque_thresh; 

 double    torque_external_est_new;  

 double    force_est[3]; 

 double    force_est_thresh[3]; 

 struct timespec  diff; 

 

 /* size N arrays */ 

/* NOTE: assert( ) not used to check calloc( ) failure because it may end the 

program unsafely */ 

 double * dt =   (double *) calloc(N, sizeof(double)); 

 if (equalsNULL((void *) dt, "dt")) return -1; 

 double * dt_prev =  (double *) calloc(N, sizeof(double)); 

 if (equalsNULL((void *) dt_prev, "dt_prev")) return -1;  

 double * act_pos =  (double *) calloc(N, sizeof(double)); 

 if (equalsNULL((void *) act_pos, "act_pos")) return -1; 

 double * act_pos_prev = (double *) calloc(N, sizeof(double)); 

 if (equalsNULL((void *) act_pos_prev, "act_pos_prev")) return -1;  

 double * act_vel =  (double *) calloc(N, sizeof(double)); 

 if (equalsNULL((void *) act_vel, "act_vel")) return -1;  

 double * act_vel_prev = (double *) calloc(N, sizeof(double)); 

 if (equalsNULL((void *) act_vel_prev, "act_vel_prev")) return -1;  

 double * act_accel =  (double *) calloc(N, sizeof(double)); 

 if (equalsNULL((void *) act_accel, "act_accel")) return -1;  

 double * act_accel_prev = (double *) calloc(N, sizeof(double)); 

 if (equalsNULL((void *) act_accel_prev, "act_accel_prev")) return -1;  

 double * des_vel_r =  (double *) calloc(N, sizeof(double)); 

 if (equalsNULL((void *) des_vel_r, "des_vel_r")) return -1;  

 double * des_accel_r =  (double *) calloc(N, sizeof(double)); 

 if (equalsNULL((void *) des_accel_r, "des_accel_r")) return -1;  

 double * error_pos =  (double *) calloc(N, sizeof(double)); 

 if (equalsNULL((void *) error_pos, "error_pos")) return -1;  

 double * error_vel =  (double *) calloc(N, sizeof(double)); 

 if (equalsNULL((void *) error_vel, "error_vel")) return -1;  

 double * pseudo_vel =  (double *) calloc(N, sizeof(double)); 

 if (equalsNULL((void *) pseudo_vel, "pseudo_vel")) return -1;  

 double * Kp =   (double *) calloc(N, sizeof(double)); 

 if (equalsNULL((void *) Kp, "Kp")) return -1;  

 double * Kd =   (double *) calloc(N, sizeof(double));  

 if (equalsNULL((void *) Kd, "Kd")) return -1;  

 double * s =   (double *) calloc(N, sizeof(double)); 

 if (equalsNULL((void *) s, "s")) return -1;  
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 double * s_DELTA =  (double *) calloc(N, sizeof(double)); 

 if (equalsNULL((void *) s_DELTA, "s_DELTA")) return -1;  

 double * s_DELTA_prev = (double *) calloc(N, sizeof(double)); 

 if (equalsNULL((void *) s_DELTA_prev, "s_DELTA_prev")) return -1;  

 double * torque =  (double *) calloc(N, sizeof(double)); 

 if (equalsNULL((void *) torque, "torque")) return -1;  

 double * torque_external = (double *) calloc(N, sizeof(double)); 

 if (equalsNULL((void *) torque_external, "torque_external")) return -1;  

 double * torque_external_est =(double *) calloc(N, sizeof(double)); 

 if (equalsNULL((void *) torque_external_est, "torque_external_est")) return -

1;  

 double * torque_external_est_thresh = (double *) calloc(N, sizeof(double)); 

if (equalsNULL((void *) torque_external_est_thresh, 

"torque_external_est_thresh")) return -1;  

 double * torque_dynamic = (double *) calloc(N, sizeof(double)); 

 if (equalsNULL((void *) torque_dynamic, "torque_dynamic")) return -1;  

 double * torque_viscous = (double *) calloc(N, sizeof(double)); 

 if (equalsNULL((void *) torque_viscous, "torque_viscous")) return -1;  

 double * torque_hinges = (double *) calloc(N, sizeof(double));  

      

 if (equalsNULL((void *) torque_hinges, "torque_hinges")) return -1;  

  

 

 j = 0; 

 torque_thresh = 0.; 

 

 /* update previous values of state */ 

 for (i = 0; i < N; i++) 

 { 

 dof[i]->control_state->counter_val_prev =dof[i]->control_state->counter_val; 

 dof[i]->control_state->act_pos_prev =  dof[i]->control_state->act_pos;

 dof[i]->control_state->act_vel_prev =  dof[i]->control_state->act_vel;

 dof[i]->control_state->act_accel_prev = dof[i]->control_state->act_accel;

  

  /* form previous dt from difference of previous timestamps */ 

  rclDiffTimespecs(&dof[i]->control_state->time_stamp_ts,  

      &dof[i]->control_state->time_stamp_prev_ts,  

      &diff); 

  dt_prev[i] = ((double) rclTimespecToMicroseconds(&diff))*1e-6; 

 } 

 

 for (i = 0; i < N; i++) 

 { 

  count_i = 0; 

  while (count_i < 4)  /* 3 */ 

  { 

   dof[i]->control_state->act_vel = dof[i]->control_state->act_vel_prev; 

      dof[i]->control_state->act_accel = dof[i]->control_state->act_accel_prev; 

  

   /* read the counters*/ 

dof[i]->control_state->counter_val = 

ComediReadCounterWithRollover(daq_device, CTR_SUBDEVICE, 

dof[i]->motor_constants->CTR_CHAN,  

dof[i]->control_state->counter_val_prev); 

    

if (dof[i]->control_state->counter_val == INT_MAX) 

   { 

   printf("ERROR: ComediReadCounterWithRollover() failed. \n"); 

   return -1; 

   } 

 

   /* get current time stamp and time difference*/ 

   rc = clock_gettime(CLOCK_REALTIME,  

    &dof[i]->control_state->time_stamp_ts); 

   rclDiffTimespecs(&dof[i]->control_state->time_stamp_ts,  

       &dof[i]->control_state->time_stamp_prev_ts,  

       &diff); 

   dt[i] = ((double) rclTimespecToMicroseconds(&diff))*1e-6; 

    

   /*convert timespec time stamp to double precision time stamp */ 

   rclDiffTimespecs(&dof[i]->control_state->time_stamp_ts,  
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        &initial, 

        &diff); 

 dof[i]->control_state->time_stamp = ((double) 

rclTimespecToMicroseconds(&diff))*1e-6; 

 

   /* calculate actual position from counter value */ 

dof[i]->control_state->act_pos =  

dof[i]->control_state->counter_val*dof[i]-> 

motor_constants->CONV_COUNTS_TO_RADIANS; 

 

  /* check current position agains soft stop position for this DOF */ 

if (fabs(dof[i]->control_state->act_pos) >=  

    dof[i]->motor_constants->SOFT_STOP_POS) 

   { 

printf("ERROR: Current position is %f radians. Reached soft 

stop for DOF: %s Exiting.\n",   

           

    dof[i]->control_state->act_pos, dof[i]->motor_name); 

    return -1; 

   } 

 

  /* calculate actual velocity from filtered position differencing */ 

 dof[i]->control_state->act_vel = .3*dof[i]->control_state-

>act_vel +  

.7*(dof[i]->control_state->act_pos - dof[i]->control_state-

>act_pos_prev)/dt[i]; 

    

   act_accel_unfilt = (dof[i]->control_state->act_vel –  

dof[i]->control_state->act_vel_prev)/dt[i]; 

 

/* if reading is within the acceleration bounds stop reading 

the counter for this DOF */  

   if (fabs(act_accel_unfilt) <= MAX_ACT_ACCEL) 

   { 

    break; 

   } 

  

   count_i++; 

  } 

 

  /* filter actual acceleration */     

  

dof[i]->control_state->act_accel = 

Filter_Digital_Signal(act_accel_unfilt,  

dof[i]->control_state->act_accel_unfilt, 

      dof[i]->control_state->act_accel_filt); 

   dof[i]->control_state->time_stamp_prev_ts = dof[i]->  

     control_state->time_stamp_ts; 

 } 

  

 /* create some useful arrays */ 

 for (i = 0; i < N; i++) 

 { 

  act_pos[i] =  dof[i]->control_state->act_pos; 

  act_pos_prev[i] =    dof[i]->control_state->act_pos_prev; 

  act_vel[i] =  dof[i]->control_state->act_vel; 

  act_vel_prev[i] = dof[i]->control_state->act_vel_prev; 

  act_accel[i] =  dof[i]->control_state->act_accel; 

  act_accel_prev[i] =  dof[i]->control_state->act_accel_prev; 

 

  /* s_DELTA has not been updated yet so it's still the previous value */ 

  s_DELTA_prev[i] = dof[i]->control_state->s_DELTA; 

 } 

 

 /* ------------------- EXTERNAL FORCE ESTIMATION ----------------------- */ 

/* get dynamical torques from previous state  - adaptation_flag is always FALSE*/ 

/* NOTE: in this case the third and fourth parameters in this function call 

are the previous actual velocities and accelerations rather than des_vel_r_prev, 

des_accel_r_prev because we are not controlling - we simply want the modelled dynamic 

torque from the previous state*/ 

 kin_dyn_fns->Dynamic_Adaptive_Torque_N_DOF(act_pos_prev, act_vel_prev,  
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act_vel_prev, act_accel_prev, s_DELTA_prev, dt_prev, FALSE, torque_dynamic); 

 

 for (i = 0; i < N; i++) 

 { 

  /* read the motor current, convert to get motor torque*/ 

  return_val_read = comedi_data_read(daq_device, AI_SUBDEVICE,  

dof[i]->motor_constants->AI_CHAN, AI_RANGE_1, AREF, 

&volts_bits); 

  volts_in = comedi_to_phys(volts_bits, input_cr, input_max_value); 

  dof[i]->control_state->torque_motor =  

dof[i]->motor_constants->CONV_VOLTS_IN_TO_TORQUE*volts_in; 

          

 

  if (USE_VISCOUS_NN) 

  {   

   torque_viscous[i] =  

kin_dyn_fns->Viscous_Friction_Torque( 

dof[i]->control_state->act_vel_prev, 

s_DELTA_prev[i], dt_prev[i], dof[i], 

FALSE); 

  } 

  if (USE_HINGES) 

  { 

   torque_hinges[i] = kin_dyn_fns->Hinges_Torque( 

dof[i]->control_state->act_vel_prev, 

s_DELTA_prev[i], dt_prev[i], dof[i], 

FALSE); 

  } 

           

            

            

           

/* calculate new estimate of external torque based on subtracting motor 

torque from previous model torque*/      

torque_external_est_new = torque_dynamic[i] + torque_viscous[i] +  

torque_hinges[i] - dof[i]->control_state->torque_motor;  

    

  /* filter the estimate by combining with previous estimate */ 

dof[i]->control_state->torque_external_est = 

Filter_Digital_Signal(torque_external_est_new,  

dof[i]->control_state->torque_ext_est_unfilt, 

             

         dof[i]->control_state->torque_ext_est_filt); 

 } 

 

     /* form torque_external_est array by combining each dof's torque_external_est */ 

 for (i = 0; i < N; i++) 

 { 

  torque_external_est[i] = dof[i]->control_state->torque_external_est; 

 } 

  

/* get estimated force vector by transforming estimated joint torque - stored 

in force_est input parameter */ 

 kin_dyn_fns->Translational_Jacobian_Transpose_Inverse( 

act_pos_prev, torque_external_est, force_est); 

 

/* save actual and estimated force in Force_Estimation type variable 

(estimated moment not implemented) */ 

 for (i = 0; i < 3; i++) 

 { 

  force_estimation->force[i] = force_moment.force[i]; 

  force_estimation->moment[i] = force_moment.moment[i];  

  force_estimation->force_est[i] = force_est[i];   

 } 

  

 /* threshold external joint torque estimate */ 

 for (i = 0; i < N; i++) 

 { 

  #if THRESHOLD_ESTIMATES  

    /* thresholding - zeroed in low external torque, reduced in higher */ 
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   if (fabs(des_vel[i]) < ABS_VEL_MAX_THRESHOLD) 

   { 

    torque_thresh = TORQUE_EST_THRESH_LOW_VEL; 

   } 

else if (fabs(des_vel[i]) < (ABS_VEL_MAX_THRESHOLD +  

ABS_VEL_TRANSITION_WIDTH)) 

   { 

/* linear transition between TORQUE_EST_THRESH_LOW_VEL 

when |velocity| < ABS_VEL_MAX_THRESHOLD  and 

TORQUE_EST_THRESH         when |velocity| > 

ABS_VEL_MAX_THRESHOLD + ABS_VEL_TRANSITION_WIDTH */  

    torque_thresh = TORQUE_EST_THRESH_LOW_VEL 

+ (TORQUE_EST_THRESH -  

TORQUE_EST_THRESH_LOW_VEL)*((fabs(des_vel[

i]) –  

ABS_VEL_MAX_THRESHOLD)/ABS_VEL_TRANSITION_

WIDTH); 

   } 

   else  

   { 

    torque_thresh = TORQUE_EST_THRESH; 

   }   

    

dof[i]->control_state->torque_external_est  =  

dof[i]->control_state->torque_external_est –  

torque_thresh*sat(dof[i]->control_state-> 

torque_external_est/torque_thresh);   

  #endif 

   

  dof[i]->control_state->torque_external_est_LV_filt =  

dof[i]->control_state->torque_external_est; 

   

  /* special low velocity estimated external torque filtering */ 

  #if LV_FILT  

   if (fabs(des_vel[i]) < ABS_VEL_MAX_THRESHOLD) 

   { 

    /* check if just entered low velocity regime */ 

    if (dof[i]->control_state->low_velocity_regime == FALSE) 

    { 

    dof[i]->control_state->low_velocity_regime = TRUE; 

     dof[i]->control_state->moving_average_count = 0; 

    } 

    

if (dof[i]->control_state->moving_average_count == 

MOVING_AVERAGE_WIDTH)  

/* samples vector full,  

start throwing out oldest sample */ 

    { 

     /* shift samples vector left */ 

     for (j = 0; j < (MOVING_AVERAGE_WIDTH - 1); j++) 

     { 

    dof[i]->control_state->moving_average_samples[j] =  

dof[i]->control_state->moving_average_samples[j + 1]; 

     } 

    

    /* insert latest sample at the back of the vector */ 

dof[i]->control_state-> 

moving_average_samples[MOVING_AVERAGE_WIDTH - 1] 

= dof[i]->control_state->torque_external_est; 

    }     

    else /* haven't filled in samples vector fully yet */ 

    { 

    /* add latest sample into current back of the vector */ 

     dof[i]->control_state-> 

moving_average_samples[dof[i]-> 

control_state-> 

moving_average_count] = 

dof[i]->control_state-> 

torque_external_est; 

     dof[i]->control_state->moving_average_count++;
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    } 

 

/* form low velocity (LV) filtered torque estimate from moving average samples */ 

    dof[i]->control_state->torque_external_est_LV_filt = 0.;

    

    for (j = 0; j < dof[i]->control_state-> 

 moving_average_count; j++) 

    { 

     dof[i]->control_state-> 

torque_external_est_LV_filt += dof[i]-> 

control_state-> 

moving_average_samples[j]; 

    } 

    dof[i]->control_state-> 

torque_external_est_LV_filt /= dof[i]-> 

control_state-> 

   moving_average_count; 

}  

   else 

   { 

    dof[i]->control_state->low_velocity_regime = FALSE; 

    dof[i]->control_state->moving_average_count = 0; 

   }   

  #endif 

 } 

  

/* form thresholded torque_external_est array by combining each dof's 

torque_external_est after thresholding */ 

 for (i = 0; i < N; i++) 

 { 

  torque_external_est_thresh[i] = dof[i]->control_state-> 

  torque_external_est_LV_filt;  

 } 

  

/* get estimated force vector by transforming estimated joint torque - stored 

in force_est input parameter */ 

 kin_dyn_fns->Translational_Jacobian_Transpose_Inverse(act_pos_prev, 

 torque_external_est_thresh, 

force_est_thresh); 

 

/* save thresholded estimated force in Force_Estimation type variable   

(thresholded estimated moment not implemented) */ 

 for (i = 0; i < 3; i++) 

 {  

  force_estimation->force_est_thresh[i] = force_est_thresh[i]; 

  

 } 

 /* ------------------- END EXTERNAL FORCE ESTIMATION ------------------- */ 

 

 /* read FTS, store value in force_moment vector passed in as parameter */ 

/* NOTE: this is done after estimated force/moment and actual force/moment are 

stored so that we are comparing both the estimated and actual values from last 

cycle. */ 

 rc = ftsdrvr_ReadPort6DOF(FTS_PORT_NUMBER, &force_moment); 

 if (rc != FTSDRVR__ERRCODE__NO_ERROR) 

 { 

  printf("ERROR: Could not read force/torque sensor properly.  

Exiting. \n"); 

  return -1; 

 } 

 

/* change the FTS's left handed system readings to right handed system  

readings */ 

 force_moment.force[1] *=  -1.; 

 force_moment.moment[1] *= -1.; 

 

 /* compensate for end-effector plate compression */ 

 force_moment.force[0] -=  EE_PLATE_COMPRESSION_FX; 

 force_moment.force[1] -=  EE_PLATE_COMPRESSION_FY; 

 force_moment.force[2] -=  EE_PLATE_COMPRESSION_FZ; 

 force_moment.moment[0] -= EE_PLATE_COMPRESSION_MX; 
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 force_moment.moment[1] -= EE_PLATE_COMPRESSION_MY; 

 force_moment.moment[2] -= EE_PLATE_COMPRESSION_MZ; 

 

/* transform forces from FTS frame to world frame (same as 0), compensates for 

end effector offsets on FTS, transforms 3 axis force to N axis force if N < 3 

(currently does not do the last step to moments)*/ 

 kin_dyn_fns->Force_Transform(act_pos, &force_moment); 

 

/* transform actual force/moment into actual external joint torque via 

transpose Jacobian */ 

kin_dyn_fns->Translational_Jacobian_Transpose(act_pos, force_moment.force,  

  torque_external); 

 for (i = 0; i < N; i++) 

 { 

  dof[i]->control_state->torque_external = torque_external[i]; 

 } 

 

 /* threshold FTS readings */ 

 for (i = 0; i < 3; i++) 

 { 

  if (fabs(force_moment.force[i]) < FTS_FORCE_THRESHOLD) 

  { 

   force_moment.force[i] = 0.; 

  } 

 } 

 

 for (i = 0; i < N; i++) 

 { 

  /*calculate position and velocity errors*/ 

  error_pos[i] = dof[i]->control_state->act_pos - des_pos[i]; 

  error_vel[i] = dof[i]->control_state->act_vel - des_vel[i]; 

 

  /*s_DELTA is used in adaptive control laws*/ 

  if (learn_modeled_params || learn_unmodeled_params) 

  { 

   Kp[i] = dof[i]->control_gains->Kp_LEARNING; 

   Kd[i] = dof[i]->control_gains->Kd_LEARNING; 

  } 

  else 

  { 

   Kp[i] = dof[i]->control_gains->Kp_NOT_LEARNING; 

   Kd[i] = dof[i]->control_gains->Kd_NOT_LEARNING; 

  } 

   

  s[i] = error_vel[i] + (Kp[i]/Kd[i])*error_pos[i]; 

   

  des_vel_r[i] =  des_vel[i] - (Kp[i]/Kd[i])*error_pos[i]; 

            

  des_accel_r[i] = des_accel[i] - (Kp[i]/Kd[i])*error_vel[i]; 

  

   

  s_DELTA[i] = s[i] - PHI*sat(s[i]/PHI); 

  dof[i]->control_state->s_DELTA = s_DELTA[i]; 

 

  /*clear out these terms before they are recomputed */ 

  torque_dynamic[i] =  0.; 

  torque_viscous[i] =  0.; 

  torque_hinges[i] =   0.; 

 } 

 

 /* --------------------- COUPLED DYNAMICS ----------------- */ 

 /*torque due to modelled dynamics - friction not included */ 

 if (USE_DYNAMIC_MODEL) 

 { 

  kin_dyn_fns->Dynamic_Adaptive_Torque_N_DOF(act_pos, act_vel,  

           

    des_vel_r, des_accel_r, s_DELTA, dt, learn_modeled_params, torque_dynamic); 

 } 

 /* --------------------- END COUPLED DYNAMICS ------------- */  

 

 /* ------------------------- PD LAW ------------------------*/ 
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 for (i = 0; i < N; i++) 

 { 

  /*PD torque - based strictly on error terms */ 

  dof[i]->control_state->torque_PD = -Kp[i]*error_pos[i]  

    – Kd[i]*error_vel[i]; 

 } 

 /* ------------------------ END PD LAW ---------------------*/ 

 

 

 /* -------------------  DECOUPLED DYNAMICS ---------------- */ 

 for (i = 0; i < N; i++) 

 { 

  if (USE_VISCOUS_NN)       

       

  {   

           

   /* should this be des_vel_r ? */ 

   torque_viscous[i] =  

kin_dyn_fns->Viscous_Friction_Torque( 

dof[i]->control_state->act_vel, 

s_DELTA[i], dt[i], dof[i], 

learn_unmodeled_params); 

   if (torque_viscous[i] == FLT_MAX) 

   { 

    return -1; 

   } 

  } 

  if (USE_HINGES) 

  { 

   torque_hinges[i] = kin_dyn_fns->Hinges_Torque( 

dof[i]->control_state->act_vel, 

s_DELTA[i], dt[i], dof[i], 

learn_unmodeled_params); 

  } 

 } 

 /* ------------------ END DECOUPLED DYNAMICS -------------- */ 

 

/* combine coupled and decoupled terms to get desired torque, then convert 

that to desired voltage to be outputted */ 

 for (i = 0; i < N; i++) 

 { 

  dof[i]->control_state->torque_model = torque_dynamic[i] +  

torque_viscous[i] + 

torque_hinges[i];    

 

  /*form the total torque that will be commanded by the motor drivers*/ 

  torque[i] = dof[i]->control_state->torque_model + 

     dof[i]->control_state->torque_PD; 

 

  /* voltage limitation */  

  volts_out = torque[i] *  

    dof[i]->motor_constants->CONV_TORQUE_OUT_TO_VOLTS;  

  if (fabs(volts_out) > dof[i]->motor_constants->MAX_VOLTS_OUT_SOFT) 

  {  

   if (volts_out >= 0.)  

   { 

    volts_out = (double) dof[i]->motor_constants-> 

       MAX_VOLTS_OUT_SOFT; 

   } 

   else 

   {  

    volts_out = (double ) -dof[i]->motor_constants-> 

 MAX_VOLTS_OUT_SOFT;  

   } 

 

   printf("WARNING: Maxing out output voltage: %.2f V on DOF:  

%s\n", volts_out,  dof[i]->motor_name);  

  }  

    

  volts_bits = comedi_from_phys(volts_out, output_cr, output_max_value); 

  return_val_write = comedi_data_write(daq_device, AO_SUBDEVICE,  
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dof[i]->motor_constants->AO_CHAN, 

AO_RANGE_0, AREF, volts_bits); 

  if (return_val_write==-1) 

  {  

   printf("ERROR writing to DAC.\n"); 

   return -1; 

  } 

 } 

 

 free(act_pos);  

 free(act_pos_prev); 

 free(act_vel); 

 free(act_vel_prev); 

 free(act_accel); 

 free(act_accel_prev); 

 free(des_vel_r); 

 free(des_accel_r); 

 free(error_pos); 

 free(error_vel); 

 free(pseudo_vel); 

 free(Kp); 

 free(Kd);  

 free(s); 

 free(s_DELTA); 

 free(s_DELTA_prev); 

 free(torque); 

 free(torque_external); 

 free(torque_external_est); 

 free(torque_external_est_thresh); 

 free(torque_dynamic); 

 free(torque_viscous); 

 free(torque_hinges); 

  

 return 0; 

} 

 

/* return 1 and print error message if ptr equals NULL, 0 o/w 

   char * parameter is name of variable - used in error message. 

 */ 

int  

equalsNULL(void * ptr, char * name) 

{ 

 if (ptr == NULL) 

 { 

  printf("ERROR: %s == NULL -> calloc( ) failed. Exiting.\n", name); 

  return 1; 

 } 

  

 return 0; 

} 

 

/* filter input signal based on FILTER_NUM, FILTER_DEN constants defined in main.h . 

   NOTE: filter_num and filter_den are the same (respectively) as b and a in 

      MATLAB's "filter" function. Note that the first element, '1',   

      in a is not actually used in calculations but should be included. */ 

double 

Filter_Digital_Signal(double signal_unfilt_new, double * signal_unfilt,  

double * signal_filt) 

{ 

 const double filter_num[FILTER_NUM_LENGTH] = {FILTER_NUM}; 

 const double filter_den[FILTER_DEN_LENGTH] = {FILTER_DEN}; 

 

 int i; 

 

 /*add in newest unfiltered signal and update delayed versions*/  

 for (i = (FILTER_NUM_LENGTH-1); i > 0; i--) 

 { 

  signal_unfilt[i] = signal_unfilt[i-1]; 

 } 

 signal_unfilt[0] = signal_unfilt_new; 
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 /*update delayed versions of filtered signal */ 

 for (i = (FILTER_DEN_LENGTH-1); i > 0; i--) 

 { 

  signal_filt[i] = signal_filt[i-1]; 

 } 

  

 /*calculate newest filtered velocity based on stored actual velocity and 

   previous filtered velocities */ 

 signal_filt[0] = 0; 

 for (i = 0; i< FILTER_NUM_LENGTH; i++) 

 { 

  signal_filt[0] += filter_num[i]*signal_unfilt[i]; 

 } 

 for (i = 1; i< FILTER_DEN_LENGTH; i++) 

 { 

  signal_filt[0] -= filter_den[i]*signal_filt[i]; 

 } 

  

 /* return latest filtered signal */ 

 return signal_filt[0]; 

} 

 

/* Function that does control cycle timing and data saving.  

 Currently this function also generates desired (N DOF) trajectory in  

joint space. Calls Control_Law_N_DOF() each cycle where control law for the 

cycle is calculated and outputted.  

 

 parameters:  

 kin_dyn_fns - pointer to variable holding pointers to kinematics and  

dynamics functions for given manipulator 

 dof  - array (of size N) of pointers to Single_DOF_Properties  

variables holding information about each DOF 

NOTE: DOFs must be in correct order with those closest to base of the  

      manipulator coming first. For example, starting at the base, the  

      MORPHbot module has a pitch DOF followed by a roll DOF so this array  

      would contain 2 elements - the Single_DOF_Properties of the pitch at     

      index 0 and the Single_DOF_Properties of the roll at index 1. 

 N  - number of degrees of freedom to control  

*/ 

void  

Closed_Loop_Control_N_DOF(Kinematics_Dynamics_Functions * kin_dyn_fns,  

       Force_Estimation   * force_estimation, 

       Single_DOF_Properties  ** dof,  

       int     N) 

{ 

 int    rc; 

 int    i; 

 int    j; 

 int    num_cycles; 

 int    num_cycles_param_evolution; 

 int    cycle_count; 

 int    cycle_count_param_evolution; 

 int    param_count; 

 BOOLEAN    learning_enabled; 

 BOOLEAN    learn_modeled; 

 BOOLEAN    learn_unmodeled; 

 double    cycle_timing; 

 double    run_time; 

 double    total_moving_to_des_pos_initial_time; 

 double    total_moving_to_des_pos_final_time; 

 double    moving_to_des_pos_accel; 

 double    time_i; 

 double    time_i_minus_one; 

 double    v_initial; 

 double    two_pi_f; 

 double    * param_lengths_array; 

 double    * param_array; 

 double    * des_pos_array; 

 double    * des_vel_array; 

 double    * des_accel_array; 

 double    * des_pos_mod_array; 
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 double    * des_vel_mod_array; 

 double    * des_accel_mod_array; 

 double    * act_pos_array; 

 double    * act_vel_array; 

 double    * act_accel_array; 

 double    * torque_PD_array; 

 double    * torque_motor_array; 

 double    * torque_model_array; 

 double    * torque_ext_array;  

 double    * torque_ext_est_array;  

 double    * torque_ext_est_LV_filt_array;  

 double    temp[3]; 

 double    freq_mult[4] = {0.}; 

 double    amp_mult[4] =  {0.}; 

 double    des_pos_cart[3]; 

 double    des_vel_cart[3]; 

 double    des_vel_cart_prev[3]; 

 double    des_accel_cart[3]; 

 double    des_pos_cart_mod[3]; 

 double    des_vel_cart_mod[3]; 

 double    des_accel_cart_mod[3];  

 RclLeonControlData  * LCD_ptr;  

 struct timespec  start; 

 struct timespec  error; 

 struct timespec  current; 

 struct timespec  prev; 

 struct timespec  diff; 

 struct timespec  just_before_sleep; 

 struct timespec  rel_sleep_time; 

 double    * act_pos_initial =    

 (double *) calloc(N, sizeof(double)); 

 assert(act_pos_initial != NULL); 

 double * des_pos =  (double *) calloc(N, sizeof(double));  

 assert(des_pos != NULL); 

 double * des_vel =  (double *) calloc(N, sizeof(double));  

 assert(des_vel != NULL); 

 double * des_accel =  (double *) calloc(N, sizeof(double));  

 assert(des_accel != NULL); 

 double * des_pos_mod = (double *) calloc(N, sizeof(double));  

 assert(des_pos_mod != NULL); 

 double * des_vel_mod = (double *) calloc(N, sizeof(double));  

 assert(des_vel_mod != NULL); 

 double * des_vel_mod_prev = (double *) calloc(N, sizeof(double));  

 assert(des_vel_mod_prev != NULL); 

 double * des_accel_mod = (double *) calloc(N, sizeof(double));  

 assert(des_accel_mod != NULL);  

 double * moving_to_des_pos_initial_time = (double *) calloc(N,  

  sizeof(double)); 

 assert(moving_to_des_pos_initial_time != NULL); 

 double * moving_to_des_pos_final_time = (double *) calloc(N, sizeof(double)); 

 assert(moving_to_des_pos_final_time != NULL); 

 double * pos_halfway_between_initial = (double *) calloc(N, sizeof(double)); 

 assert(pos_halfway_between_initial != NULL); 

 double * pos_halfway_between_final = (double *) calloc(N, sizeof(double)); 

 assert(pos_halfway_between_final != NULL); 

  

 if (N <= 0) 

 { 

  printf("ERROR: Cannot have parameter N <= 0.\n"); 

  exit(-1); 

 } 

 

 printf("--- Starting ---\n"); 

 printf("TRAIN_SECONDS:\t\t%.0f\n", TRAIN_SECONDS); 

 printf("TEST_SECONDS:\t\t%.0f\n", TEST_SECONDS); 

 printf("SAVE_CONTROL_DATA:\t%d\n", SAVE_CONTROL_DATA); 

 printf("SAVE_PARAM_EVOLUTION:\t%d\n", SAVE_PARAM_EVOLUTION); 

 printf("SAVE_LEARNED_PARAMS:\t%d\n", SAVE_LEARNED_PARAMS); 

 printf("LOAD_LEARNED_PARAMS:\t%d\n", LOAD_LEARNED_PARAMS); 

 printf("ESTIMATION_IMPEDANCE:\t%d\n", ESTIMATION_IMPEDANCE);  

 printf("FTS_IMPEDANCE:\t\t%d\n", FTS_IMPEDANCE);   
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 printf("STOP_AFTER_TRAINING:\t%d\n", STOP_AFTER_TRAINING);  

 printf("USE_DYNAMIC_MODEL:\t%d\n", USE_DYNAMIC_MODEL); 

 printf("USE_VISCOUS_NN:\t\t%d\n", USE_VISCOUS_NN); 

 printf("USE_HINGES:\t\t%d\n",  USE_HINGES); 

 printf("----------------\n"); 

 

 if (LOAD_LEARNED_PARAMS) 

 { 

  rc = load_learned_parameters(dof, N); 

  if (rc != 0) 

  { 

printf("ERROR: Failed to load parameters from previous run.  

Exiting.\n"); 

   exit(-1); 

  } 

 } 

 

 /* useful calculation for trajectory generation */ 

 two_pi_f = 2.*PI*FREQUENCY_TRAINING; 

  

 /* calculate number of cycles between saving data given FREQ_SAVING */ 

 num_cycles = (int) (FREQ_SYSTEM/FREQ_SAVING); 

 cycle_count = 0; 

 

 /* calculate number of cycles between saving data given  

   FREQ_SAVING_PARAM_EVOLUTION */ 

 num_cycles_param_evolution = (int) (FREQ_SYSTEM/FREQ_SAVING_PARAM_EVOLUTION); 

 cycle_count_param_evolution = 0; 

  

 /* get the actual initial position */ 

 for (i = 0; i < N; i++) 

 { 

  /* dof[i]->control_state->counter_val should be 0 before this call */ 

  dof[i]->control_state->counter_val =     

ComediReadCounterWithRollover(daq_device, CTR_SUBDEVICE,  

dof[i]->motor_constants->CTR_CHAN,  

             dof[i]->control_state->counter_val); 

  dof[i]->control_state->counter_val_prev =  

dof[i]->control_state->counter_val; 

  dof[i]->control_state->act_pos =    

dof[i]->control_state->counter_val *  

dof[i]->motor_constants-> 

CONV_COUNTS_TO_RADIANS; 

  dof[i]->control_state->act_pos_prev =   

dof[i]->control_state->act_pos;  

  act_pos_initial[i] = dof[i]->control_state->act_pos; 

  des_pos[i] = act_pos_initial[i]; 

 } 

 

 /* convert initial desired joint trajectory to initial desired Cartesian  

   trajectory */ 

 kin_dyn_fns->Forward_Kinematics(des_pos, des_pos_cart);  

  

 /* calculate time to move from actual initial position to desired initial  

   position for each DOF*/ 

 total_moving_to_des_pos_initial_time = 0.; 

 for (i = 0; i < N; i++) 

 { 

  pos_halfway_between_initial[i] = (dof[i]->des_pos_initial –  

    act_pos_initial[i])/2.; 

  moving_to_des_pos_initial_time[i] = 2. *  

sqrt(2.*fabs(pos_halfway_between_initial[i])/MOVING_TO_DES_POS_ACCEL); 

  total_moving_to_des_pos_initial_time +=  

moving_to_des_pos_initial_time[i]; 

 } 

 

 /* calculate time to move from desired initial position to desired final  

   position for each DOF*/ 

 total_moving_to_des_pos_final_time = 0.; 

 for (i = 0; i < N; i++) 

 { 
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  pos_halfway_between_final[i] = (dof[i]->des_pos_final –  

  dof[i]->des_pos_initial)/2.; 

  moving_to_des_pos_final_time[i] = 2. *  

sqrt(2.*fabs(pos_halfway_between_final[i])/ 

MOVING_TO_DES_POS_ACCEL); 

  total_moving_to_des_pos_final_time += moving_to_des_pos_final_time[i]; 

 } 

 

 /* set start time */ 

 rc = clock_gettime(CLOCK_REALTIME, &start); 

 assert(rc == 0 && "Failed clock_gettime(start)"); 

  

 prev = start; 

 run_time = 0; 

 

 /* intialize time stamps */ 

 for (i = 0; i < N; i++) 

 { 

  dof[i]->control_state->time_stamp_ts = start; 

  dof[i]->control_state->time_stamp_prev_ts = start; 

 } 

  

 /* set desired start of next loop */ 

 start.tv_nsec += ((long) PERIOD_SYSTEM__MICROSECS) * 1000L; 

 if (start.tv_nsec > NANOSECONDS_PER_SEC) 

 { 

  start.tv_nsec -= NANOSECONDS_PER_SEC; 

  start.tv_sec += 1; 

 } 

  

 /* --- relative sleeping --- */ 

 rc = clock_gettime(CLOCK_REALTIME, &just_before_sleep); 

 if (rc != 0) 

 { 

  printf("ERROR at %f s: clock_gettime() failed.\n", run_time); 

 }   

 rc = rclDiffTimespecs(&start, &just_before_sleep, &rel_sleep_time); 

 if (rc != 0) 

 { 

  printf("ERROR at %f s: rclDiffTimeSpecs() failed.\n", run_time); 

 }   

 rc = nanosleep(&rel_sleep_time, &error); 

  

 /* --- absolute sleeping --- */ 

 /*rc = clock_nanosleep(CLOCK_REALTIME, TIMER_ABSTIME, &start, &error); */ 

 

 if (rc != 0 && !shouldQuit) 

 { 

  /* when we chose to quit, it throws an error. Presume that signal 

  interrupts nanosleep() Dec 2005, S Roderick */ 

  assert(rc == 0 && "Failed sleeping."); 

 } 

 

 /* get initial time */ 

 rc = clock_gettime(CLOCK_REALTIME, &initial); 

 assert(rc == 0 && "Failed clock_gettime(initial)"); 

 

 learning_enabled =  FALSE; 

 learn_modeled =   FALSE; 

 learn_unmodeled =  FALSE;  

 

 while (!shouldQuit) 

 { 

  /* get clock time coming out of sleep */ 

  rc = clock_gettime(CLOCK_REALTIME, &current); 

  if (rc != 0) 

  { 

   printf("ERROR at %f s: clock_gettime() failed.\n", run_time); 

  }    

 

  /*keep track of time relative to initial time */  
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  rc = rclDiffTimespecs(&current, &initial, &diff); 

  if (rc != 0) 

  { 

   printf("ERROR at %f s: rclDiffTimeSpecs() failed –  

(current - initial).\n", run_time); 

  }  

  run_time = ((double) rclTimespecToMicroseconds(&diff))*1e-6; 

   

  /*get time difference between current cycle start and  

  previous cycle start */  

  rc = rclDiffTimespecs(&current, &prev, &diff); 

  if (rc != 0) 

  { 

   printf("ERROR at %f s: rclDiffTimeSpecs() failed - (current –  

prev).\n", run_time); 

  } 

  prev = current; 

 

  /*leave the control loop if blown deadline*/   

  cycle_timing = ((double) rclTimespecToMicroseconds(&diff))*1e-6; 

  if ((cycle_timing > (PERIOD_SYSTEM__MICROSECS*1e-6 +  

      TIMING_ERROR__MICROSECS*1e-6)) || 

      (cycle_timing < (PERIOD_SYSTEM__MICROSECS*1e-6 –  

      TIMING_ERROR__MICROSECS*1e-6))) 

  { 

   printf("ERROR at %f seconds: blown deadline. Cycle time was:  

%f us instead of: %f us.\n",  

    run_time, (cycle_timing*1e6), PERIOD_SYSTEM__MICROSECS); 

   break; 

  } 

  

  /* ================= generate desired trajectory ================= */ 

  if (run_time <= total_moving_to_des_pos_initial_time)  

      /* GO TO DESIRED INITIAL POSITION */ 

  { 

   

   /* Disable learning of dynamics during this part of the  

trajectory. */ 

   learning_enabled =  FALSE; 

   learn_modeled =  FALSE; 

   learn_unmodeled =  FALSE; 

    

   /* set times initial to beginning of this trajectory phase */ 

   time_i_minus_one = 0.; 

   time_i =   0.; 

    

   for(i = 0; i < N; i++) 

   { 

    if (pos_halfway_between_initial[i] < 0.) 

    { 

     moving_to_des_pos_accel =  

- MOVING_TO_DES_POS_ACCEL; 

    } 

    else 

    { 

moving_to_des_pos_accel =  

 MOVING_TO_DES_POS_ACCEL;  

   

    } 

     

    time_i_minus_one = time_i; 

    time_i += moving_to_des_pos_initial_time[i]; 

     

    /* check to see whether DOF i's trajectory should be  

   changed */ 

    if (run_time >= time_i_minus_one && run_time < time_i) 

    { 

     /*ramp up velocity, followed by ramp down - this  

is used so that there is no jump discontinuity 

in the velocity signal*/ 

     if (run_time <= (time_i_minus_one +  



 

 117 

 

moving_to_des_pos_initial_time[i]/2.))  

/* ramp up part */ 

     { 

      des_pos[i] =  

act_pos_initial[i] +  

0.5*moving_to_des_pos_accel* 

pow(run_time  

- time_i_minus_one, 2.); 

      des_vel[i] =  

moving_to_des_pos_accel* 

(run_time - time_i_minus_one); 

      des_accel[i] = moving_to_des_pos_accel; 

 

     } 

     else /* ramp down part */ 

     { 

      v_initial =  

moving_to_des_pos_accel* 

(moving_to_des_pos_initial_time[i]/2.); 

      

des_pos[i] = act_pos_initial[i] + 

pos_halfway_between_initial[i] +  

v_initial*(run_time – (time_i_minus_one + 

moving_to_des_pos_initial_time[i]/2.))- 

0.5*moving_to_des_pos_accel* 

pow(run_time - (time_i_minus_one + 

moving_to_des_pos_initial_time[i]/2.), 2.); 

des_vel[i] = v_initial - moving_to_des_pos_accel*(run_time - 

(time_i_minus_one + 

moving_to_des_pos_initial_time[i]/2.)); 

   des_accel[i] = -moving_to_des_pos_accel; 

     }       

    } 

    else 

    {     

     /* maintain fixed position */ 

     des_vel[i] = 0.; 

     des_accel[i] = 0.; 

    } 

   } 

  } 

  else if (run_time <= (TRAIN_SECONDS +  

total_moving_to_des_pos_initial_time)) 

   /* EXECUTE TRAINING TRAJECTORY */

  

  { 

   /* Enable the learning of dynamics during this part of the  

    trajectory */ 

   if (learning_enabled == FALSE) 

   { 

    learning_enabled = TRUE; 

    printf("Learning ON.\n");    

  

   } 

   learn_modeled =  TRUE; 

   learn_unmodeled = TRUE; 

 

   for (i = 0; i < N; i++) 

   {  

    if (i == 0) 

    { 

     freq_mult[0] = 1.;   

     amp_mult[0] = .8;  /* 1. */ 

     freq_mult[1]= 4.;     

     amp_mult[1] = .2;  /* .3 */ 

    } 

    else 

    {      

     freq_mult[0] = 2.5; /* 1.5 */ 

     amp_mult[0] = .5; 

     freq_mult[1] = 0.;    
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     amp_mult[1] = 0.;    

    

    } 

     

    /* LOW VELOCITY FRICTION LEARNING */ 

    if (run_time >= (SWITCH_TRAJ_PERIODS/FREQUENCY_TRAINING  

+ total_moving_to_des_pos_initial_time))  

    { 

     learn_modeled =  FALSE; 

     learn_unmodeled = TRUE; 

 

     freq_mult[0] = 1.;   

     amp_mult[0] = 1.; 

     if (i == 1) 

     { 

      amp_mult[0] = .5;  

     } 

     else 

     freq_mult[1]= 0.;     

     amp_mult[1] = 0.;    

    

    }  

     

    des_pos[i] = dof[i]->des_pos_initial; 

    des_vel[i] = 0.; 

    des_accel[i] = 0.; 

    for (j = 0; j < 4; j++) 

    { 

     des_pos[i] += (amp_mult[j]*AMPLITUDE_TRAINING) 

      *cos(freq_mult[j]*two_pi_f*(run_time –  

total_moving_to_des_pos_initial_time)) 

      - (amp_mult[j]*AMPLITUDE_TRAINING); 

     des_vel[i] += -1* 

(amp_mult[j]*AMPLITUDE_TRAINING)* 

(freq_mult[j]*two_pi_f) 

      *sin(freq_mult[j]*two_pi_f* 

(run_time -

total_moving_to_des_pos_initial_time)); 

     des_accel[i] += -1.* 

(amp_mult[j]*AMPLITUDE_TRAINING)* 

(freq_mult[j]*two_pi_f)*(freq_mult[j]*two

_pi_f) 

      *cos(freq_mult[j]*two_pi_f* 

(run_time –  

total_moving_to_des_pos_initial_time)); 

}     

   }   

  } 

  else if (run_time <= (TRAIN_SECONDS +  

  total_moving_to_des_pos_initial_time +   

    total_moving_to_des_pos_final_time)) 

       /* GO TO DESIRED FINAL POSITION */ 

  { 

  /* Disable learning of dynamics during this part of the trajectory. */ 

   if (learning_enabled == TRUE) 

   { 

    learning_enabled = FALSE; 

    printf("Learning OFF.\n"); 

   } 

   learn_modeled =  FALSE; 

   learn_unmodeled =  FALSE; 

    

   /* set times initial to beginning of this trajectory phase */ 

time_i_minus_one = TRAIN_SECONDS +  

total_moving_to_des_pos_initial_time; 

   time_i =  TRAIN_SECONDS +  

total_moving_to_des_pos_initial_time; 

    

   for(i = 0; i < N; i++) 

   { 

    if (pos_halfway_between_final[i] < 0.) 
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    { 

     moving_to_des_pos_accel = - 

MOVING_TO_DES_POS_ACCEL; 

    } 

    else 

    { 

     moving_to_des_pos_accel =  

MOVING_TO_DES_POS_ACCEL; 

    

    } 

     

    time_i_minus_one = time_i; 

    time_i += moving_to_des_pos_final_time[i]; 

     

    /* check to see whether DOF i's trajectory should be  

   changed */ 

    if (run_time >= time_i_minus_one && run_time < time_i) 

    { 

     /*ramp up velocity, followed by ramp down - this  

is used so that there is no jump discontinuity 

in the velocity signal*/ 

     if (run_time <= (time_i_minus_one +  

moving_to_des_pos_final_time[i]/2.))  

/* ramp up part */ 

     { 

      des_pos[i] = dof[i]->des_pos_initial +  

0.5*moving_to_des_pos_accel*pow(run_time –  

time_i_minus_one, 2.); 

      des_vel[i] =  

moving_to_des_pos_accel*(run_time –  

 time_i_minus_one); 

      des_accel[i] = moving_to_des_pos_accel; 

 

     } 

     else /* ramp down part */ 

     { 

      v_initial =  

moving_to_des_pos_accel* 

(moving_to_des_pos_final_time[i]/2.); 

      

     des_pos[i] = dof[i]->des_pos_initial +  

pos_halfway_between_final[i]  

       + v_initial*(run_time –  

(time_i_minus_one + 

moving_to_des_pos_final_time[i]/2.)) 

       - 0.5*moving_to_des_pos_accel* 

pow(run_time -  

(time_i_minus_one +  

moving_to_des_pos_final_time[i]/2.), 2.); 

       

des_vel[i] =  

v_initial 

- moving_to_des_pos_accel*(run_time - 

(time_i_minus_one + 

moving_to_des_pos_final_time[i]/2.)); 

     des_accel[i] = -moving_to_des_pos_accel; 

     }       

    } 

    else 

    {     

     /* maintain fixed position */ 

     des_vel[i] = 0.; 

     des_accel[i] = 0.; 

    } 

   } 

  } 

  else         

           

  /* EXECUTE TESTING TRAJECTORY */ 

  { 

   /* Disable learning of dynamics during this part of the  
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   trajectory */    

   if (learning_enabled == TRUE) 

   { 

    learning_enabled = FALSE; 

    printf("Learning OFF.\n"); 

   } 

   learn_modeled =  FALSE; 

   learn_unmodeled =  FALSE; 

 

   for (i = 0; i < N; i++) 

   { 

    if (STOP_AFTER_TRAINING) 

    { 

    /* ---------- maintain fixed position --------- */ 

     des_vel[i] =   0; 

     des_accel[i] = 0; 

    }  

    else  

    {  

     

    /* -------- generate sinusoidal testing trajectory  

      for all joints ------------ */ 

      

     des_pos[i] =  

AMPLITUDE_TESTING* 

cos(2.*PI*FREQUENCY_TESTING* 

(run_time - (TRAIN_SECONDS +  

total_moving_to_des_pos_initial_time 

+total_moving_to_des_pos_final_time))

)  

        + (dof[i]->des_pos_final –  

AMPLITUDE_TESTING); 

     des_vel[i] =  

-2.*PI*FREQUENCY_TESTING* 

    AMPLITUDE_TESTING *sin(2.* 

PI*FREQUENCY_TESTING*(run_time –  

(TRAIN_SECONDS +  

total_moving_to_des_pos_initial_time + 

                 total_moving_to_des_pos_final_time))); 

     des_accel[i] = -2.*PI*FREQUENCY_TESTING* 

2.*PI*FREQUENCY_TESTING*AMPLITUDE_TESTING 

      *cos(2.*PI*FREQUENCY_TESTING*(run_time –  

(TRAIN_SECONDS + 

total_moving_to_des_pos_initial_time + 

total_moving_to_des_pos_final_time))); 

    } 

   } 

  } 

   

  /* before updating, save current desired position as previous */ 

  for (i = 0; i < 3; i++) 

  { 

   des_vel_cart_prev[i] = des_vel_cart[i]; 

  } 

   

  /* convert desired joint trajectory to desired Cartesian trajectory */ 

  kin_dyn_fns->Forward_Kinematics(des_pos, des_pos_cart);  

  kin_dyn_fns->Translational_Jacobian(des_pos, des_vel, des_vel_cart); 

  for (i = 0; i < 3; i++) 

  { 

   des_accel_cart[i] = (des_vel_cart[i] –  

des_vel_cart_prev[i])/(PERIOD_SYSTEM__MICROSECS*1e-6); 

  } 

   

  /* ======== modify desired trajectory based on impedance model  

========= */ 

  if ((ESTIMATION_IMPEDANCE || FTS_IMPEDANCE) &&  

   run_time > (TRAIN_SECONDS +  

total_moving_to_des_pos_initial_time +  

total_moving_to_des_pos_final_time)) 

  { 



 

 121 

 

  /* apply impedance model to modify desired Cartesian trajectory */ 

   for (i = 0; i < 3; i++) 

   { 

    temp[i] = Cs*(des_vel_cart_mod[i] - des_vel_cart[i]) +  

Ks*(des_pos_cart_mod[i] - des_pos_cart[i]); 

     

    /* get modified desired acceleration based on impedance  

rule */ 

    if (ESTIMATION_IMPEDANCE) 

    { 

     des_accel_cart_mod[i] =  

(Kf*force_estimation->force_est_thresh[i]   

- temp[i])/Ms + des_accel_cart[i];  

    } 

    else if (FTS_IMPEDANCE) 

    { 

     des_accel_cart_mod[i] =  

(Kf*force_estimation->force[i] 

 - temp[i])/Ms + des_accel_cart[i];  

    } 

  

  /* numerically integrate acceleration to get position, velocity */ 

    des_pos_cart_mod[i] +=  

(PERIOD_SYSTEM__MICROSECS*1e-6)* 

des_vel_cart_mod[i] 

                   + .5*pow((PERIOD_SYSTEM__MICROSECS*1e-6), 2)* 

des_accel_cart_mod[i]; 

    des_vel_cart_mod[i] += (PERIOD_SYSTEM__MICROSECS*1e-6)* 

des_accel_cart_mod[i]; 

   } 

    

   /* before updating, save current modified desired joint  

   position as previous */ 

   for (i = 0; i < N; i++) 

   { 

    des_vel_mod_prev[i] = des_vel_mod[i]; 

   } 

    

   /* convert modified desired Cartesian trajectory back to joint  

space */ 

   kin_dyn_fns->Translational_Jacobian_Inverse(des_pos,  

des_vel_cart_mod, des_vel_mod); 

   for (i = 0; i < N; i++) 

   { 

    des_pos_mod[i] +=  (PERIOD_SYSTEM__MICROSECS*1e-6) * .5  

    * (des_vel_mod[i] +  

des_vel_mod_prev[i]); 

    des_accel_mod[i] = (des_vel_mod[i] –  

des_vel_mod_prev[i])/( 

PERIOD_SYSTEM__MICROSECS*1e-6); 

   }  

  } 

  else 

  { 

   /*desired Cartesian position and velocity not modified */ 

   for (i = 0; i < N; i++) 

   { 

    des_pos_mod[i] = des_pos[i]; 

    des_vel_mod[i] = des_vel[i]; 

    des_accel_mod[i] = des_accel[i]; 

   } 

  } 

   

  /* ================= call control code for this cycle ================= 

*/ 

  rc = Control_Law_N_DOF(des_pos_mod, des_vel_mod, des_accel_mod,  

learn_modeled, learn_unmodeled, kin_dyn_fns, 

force_estimation, dof, N); 

  if (rc != 0)  

  { 

   printf("ERROR: Control_Cycle() failed.\n"); 
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   break; 

  } 

 

  /* leave the control loop if at or past desired running time */ 

  if (run_time >= (RUN_SECONDS + total_moving_to_des_pos_initial_time +  

  total_moving_to_des_pos_final_time)) 

  { 

   break; 

  }  

 

  /* count number of cycles since last time cycle_count was zeroed. see  

   if statement below for zeroing */   

  /* making cycle_count increment after  

   total_moving_to_des_pos_initial_time ensures that we don't log  

   anything before that */ 

  if (run_time > total_moving_to_des_pos_initial_time) 

  { 

   cycle_count++; 

   cycle_count_param_evolution++; 

  } 

   

  /* dof variable's data gets changed in Control_Law_N_DOF() - push new  

   data into queue */ 

  if (SAVE_CONTROL_DATA && run_time >total_moving_to_des_pos_initial_time 

     && cycle_count == num_cycles) 

  { 

   /*dynamically allocate memory for saving control information in  

  RclLeonControlData structure*/  

   /*NOTE: array must be freed wherever RclLeonControlData pointer  

  is popped off the queue */ 

   LCD_ptr =       

   (RclLeonControlData *) malloc(sizeof(RclLeonControlData)); 

   assert(LCD_ptr != NULL); 

   des_pos_array =(double *) malloc(N*sizeof(double)); 

   assert(des_pos_array != NULL); 

   des_vel_array =(double *) malloc(N*sizeof(double)); 

   assert(des_vel_array != NULL); 

   des_accel_array =(double *) malloc(N*sizeof(double)); 

   assert(des_accel_array != NULL); 

   des_pos_mod_array =(double *) malloc(N*sizeof(double)); 

   assert(des_pos_mod_array != NULL); 

   des_vel_mod_array =(double *) malloc(N*sizeof(double)); 

   assert(des_vel_mod_array != NULL); 

   des_accel_mod_array = (double *) malloc(N*sizeof(double)); 

   assert(des_accel_mod_array != NULL); 

   act_pos_array =(double *) malloc(N*sizeof(double)); 

   assert(act_pos_array != NULL); 

   act_vel_array =(double *) malloc(N*sizeof(double)); 

   assert(act_vel_array != NULL); 

   act_accel_array =(double *) malloc(N*sizeof(double)); 

   assert(act_accel_array != NULL); 

   torque_PD_array =(double *) malloc(N*sizeof(double)); 

   assert(torque_PD_array != NULL); 

   torque_motor_array = (double *) malloc(N*sizeof(double)); 

   assert(torque_motor_array != NULL); 

   torque_model_array =(double *) malloc(N*sizeof(double)); 

   assert(torque_model_array != NULL); 

   torque_ext_array = (double *) malloc(N*sizeof(double)); 

   assert(torque_ext_array != NULL); 

   torque_ext_est_array = (double *) malloc(N*sizeof(double)); 

   assert(torque_ext_est_array != NULL); 

   torque_ext_est_LV_filt_array =(double *)  

malloc(N*sizeof(double)); 

   assert(torque_ext_est_LV_filt_array != NULL); 

 

   /* save control data in newly allocated arrays */ 

   LCD_ptr->des_pos_array = des_pos_array; 

   LCD_ptr->des_vel_array = des_vel_array; 

   LCD_ptr->des_accel_array = des_accel_array;    

   LCD_ptr->des_pos_mod_array = des_pos_mod_array; 

   LCD_ptr->des_vel_mod_array = des_vel_mod_array;   
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   LCD_ptr->des_accel_mod_array =des_accel_mod_array;   

LCD_ptr->act_pos_array = act_pos_array; 

   LCD_ptr->act_vel_array = act_vel_array; 

   LCD_ptr->act_accel_array = act_accel_array; 

   LCD_ptr->torque_PD_array = torque_PD_array; 

   LCD_ptr->torque_motor_array = torque_motor_array; 

   LCD_ptr->torque_model_array = torque_model_array;   

   LCD_ptr->torque_ext_array = torque_ext_array; 

   LCD_ptr->torque_ext_est_array = torque_ext_est_array; 

   LCD_ptr->torque_ext_est_LV_filt_array =  

torque_ext_est_LV_filt_array; 

   

      for (i = 0; i < N; i++) 

   { 

    LCD_ptr->des_pos_array[i] =  des_pos[i]; 

    LCD_ptr->des_vel_array[i] =  des_vel[i]; 

    LCD_ptr->des_accel_array[i] =  des_accel[i]; 

    LCD_ptr->des_pos_mod_array[i] = des_pos_mod[i]; 

    LCD_ptr->des_vel_mod_array[i] = des_vel_mod[i]; 

    LCD_ptr->des_accel_mod_array[i] = des_accel_mod[i]; 

    LCD_ptr->act_pos_array[i] =  dof[i]-> 

control_state-> 

act_pos; 

    LCD_ptr->act_vel_array[i] =   dof[i]-> 

control_state-> 

act_vel; 

    LCD_ptr->act_accel_array[i] =  dof[i]-> 

control_state-> 

act_accel; 

    LCD_ptr->torque_PD_array[i] =  dof[i]-> 

control_state-> 

torque_PD; 

    LCD_ptr->torque_motor_array[i] = dof[i]-> 

control_state-> 

torque_motor; 

    LCD_ptr->torque_model_array[i] = dof[i]-> 

control_state-> 

torque_model; 

    LCD_ptr->torque_ext_array[i] = dof[i]-> 

control_state-> 

torque_external; 

    LCD_ptr->torque_ext_est_array[i] = dof[i]-> 

control_state-> 

      torque_external_est; 

    LCD_ptr->torque_ext_est_LV_filt_array[i] = dof[i]-> 

control_state-> 

     torque_external_est_LV_filt; 

   }  

   for (i = 0; i < 3; i++) 

   {   

    LCD_ptr->force[i] =force_estimation->force[i]; 

    LCD_ptr->moment[i] = force_estimation->moment[i]; 

    LCD_ptr->force_est[i] = force_estimation->force_est[i]; 

    LCD_ptr->force_est_thresh[i] = force_estimation-> 

  force_est_thresh[i];  

   } 

   LCD_ptr->time_stamp = dof[0]->control_state->time_stamp; 

      

   /* push data onto queue*/ 

   if (!rclIsFullLeonControlDataPtrQueue(&g_queue)) 

   { 

    rc = rclPushLeonControlDataPtrQueue(&g_queue, LCD_ptr); 

    if (rc != 0) 

    { 

     printf("ERROR pushing data to queue.\n"); 

    }  

   } 

   else 

   { 

    printf("ERROR pushing data to queue - queue is  

full.\n"); 
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   }  

    

   cycle_count = 0; 

  } 

 

  /* dof variable's data gets changed in Control_Law_N_DOF() - push new  

   data into queue */ 

if (SAVE_PARAM_EVOLUTION && run_time >  

                     total_moving_to_des_pos_initial_time 

    && cycle_count_param_evolution == num_cycles_param_evolution) 

  { 

   /*dynamically allocate memory for saving control information in  

  RclLeonControlData structure*/  

   /*NOTE: array must be freed wherever RclLeonControlData pointer  

is popped off the queue */ 

   LCD_ptr = (RclLeonControlData *)  

malloc(sizeof(RclLeonControlData)); 

   assert(LCD_ptr != NULL); 

    

   /* param_lengths_array will contain: N,  

          M, 

          DOF 1 NUM_NODES_VISCOUS, 

          DOF 2 NUM_NODES_VISCOUS, ...  

*/           

   param_lengths_array = (double *) malloc((2 + N)* 

    sizeof(double)); 

   assert(param_lengths_array != NULL); 

   param_lengths_array[0] = N; 

   param_lengths_array[1] = M; 

   for (i = 0; i < N; i++) 

   { 

    param_lengths_array[2 + i] = dof[i]-> 

  friction_parameters->NUM_NODES_VISCOUS; 

   }  

 

   /* count the number of parameters */ 

   param_count = M; 

   for (i = 0; i < N; i++) 

   { 

    param_count += dof[i]->friction_parameters-> 

   NUM_NODES_VISCOUS; 

   } 

    

   /* params will contain: M modelled dynamics' adapted  

   parameters, DOF 1 viscous NN parameters, 

 DOF 2 viscous NN parameters, ... */ 

   param_array = (double *) malloc(param_count*sizeof(double)); 

   assert(param_array != NULL);   

 

   /* save the modelled dynamics' adapted parameters */ 

   for (i = 0; i < M; i++) 

   { 

    param_array[i] = a_hat[i]; 

   } 

    

   /*save viscous friction NN parameters */ 

   param_count = M; 

   for (i = 0; i < N; i++) 

   { 

    for (j = 0; j < dof[i]->friction_parameters-> 

NUM_NODES_VISCOUS; j++) 

    { 

     param_array[param_count] = dof[i]-> 

friction_parameters->c_hat_VISCOUS[j]; 

     param_count++; 

    } 

   } 

    

   /* store arrays in RclLeonControlData type pointer */ 

   LCD_ptr->des_pos_array =  param_lengths_array; 

   LCD_ptr->des_vel_array =  param_array; 
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   LCD_ptr->time_stamp = dof[0]->control_state->time_stamp; 

           

    

   /* push data onto queue*/ 

   if (!rclIsFullLeonControlDataPtrQueue( 

&g_queue_param_evolution)) 

   { 

    rc = rclPushLeonControlDataPtrQueue( 

&g_queue_param_evolution, LCD_ptr); 

    if (rc != 0) 

    { 

     printf("ERROR pushing data to parameter  

evolution queue.\n"); 

    }  

   } 

   else 

   { 

    printf("ERROR pushing data to parameter evolution queue  

- queue is full.\n"); 

   }  

    

   cycle_count_param_evolution = 0; 

  } 

 

  /* set desired start of next loop */ 

  start.tv_nsec += ((long) PERIOD_SYSTEM__MICROSECS) * 1000L; 

  if (start.tv_nsec > NANOSECONDS_PER_SEC) 

  { 

   start.tv_nsec -= NANOSECONDS_PER_SEC; 

   start.tv_sec += 1; 

  } 

  /* --- relative sleeping --- */ 

  rc = clock_gettime(CLOCK_REALTIME, &just_before_sleep); 

  if (rc != 0) 

  { 

   printf("ERROR at %f s: clock_gettime() failed.\n", run_time); 

  }   

  rc = rclDiffTimespecs(&start, &just_before_sleep, &rel_sleep_time); 

  if (rc != 0) 

  { 

   printf("ERROR at %f s: rclDiffTimeSpecs() failed - (start –  

just_before_sleep).\n", run_time); 

  }   

  rc = nanosleep(&rel_sleep_time, &error); 

   

  /* --- absolute sleeping --- */ 

  /*rc = clock_nanosleep(CLOCK_REALTIME, TIMER_ABSTIME, &start, &error);  

*/ 

   

  if (rc != 0 && !shouldQuit) 

  { 

   /* when we chose to quit, it throws an error. Presume that  

signal interrupts nanosleep() Dec 2005, S Roderick */ 

   assert(rc == 0 && "Failed sleeping."); 

  } 

 

 }  /**************************** END WHILE *********************************/ 

 

 int volts_bits = comedi_from_phys(0, output_cr, output_max_value); 

 comedi_data_write(daq_device, AO_SUBDEVICE, AO_CHAN_0, AO_RANGE_0, AREF,  

   volts_bits); 

 comedi_data_write(daq_device, AO_SUBDEVICE, AO_CHAN_1, AO_RANGE_0, AREF,  

   volts_bits); 

  

 /* save parameters of NN, gravitational and inertial terms that were learned  

   online */ 

 if (SAVE_LEARNED_PARAMS) 

 { 

  rc = save_learned_parameters(dof, N); 

  if (rc != 0) 

  { 
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   printf("ERROR: Failed to save parameters from previous run.  

        Exiting.\n"); 

   exit(-1); 

  } 

 } 

 

 free(act_pos_initial);  

 free(des_pos); 

 free(des_vel); 

 free(des_accel); 

 free(des_pos_mod);  

 free(des_vel_mod);  

 free(des_vel_mod_prev);  

 free(des_accel_mod);   

 free(moving_to_des_pos_initial_time); 

 free(moving_to_des_pos_final_time); 

 free(pos_halfway_between_initial); 

 free(pos_halfway_between_final);  

} 

 

/*saturation function - return x if |x| < 1, otherwise return sign of x*/ 

double  

sat(double x) 

{ 

 if (fabs(x) < 1) 

 { 

  return x; 

 } 

 else if (x < 0) 

 { 

  return -1; 

 } 

 else return 1; 

} 

 

/*save parameters of NN, gravity and inertia that were learned online in a separate 

file*/ 

int  

save_learned_parameters(Single_DOF_Properties ** dof,  

      int     

 N) 

{ 

 int fclose_return_val, i, j; 

  

 for (i = 0; i < N; i++) 

 { 

  FILE* out_params = fopen(dof[i]->friction_parameters->filename_params,  

  "w"); 

  if (out_params == NULL) 

  { 

   printf("ERROR: failed to open file %s. parameter data will not  

        be saved properly.\n",  

           

   dof[i]->friction_parameters->filename_params); 

   return -1; 

  }   

  else 

  { 

   /* save the modelled dynamics' adapted parameters */ 

   for (j = 0; j < M; j++) 

   { 

    fprintf(out_params, "%lf\n", a_hat[j]);  

/* a_hat is extern - allocated in  

   KinematicsDynamicsLib.c */ 

   } 

   

   /* save the number of viscous NN nodes */ 

   fprintf(out_params, "%d\n", dof[i]->friction_parameters-> 

NUM_NODES_VISCOUS); 

   

   /*save viscous friction NN parameters */ 
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   for (j = 0; j < dof[i]->friction_parameters->NUM_NODES_VISCOUS;  

     j++) 

   { 

    fprintf(out_params, "%lf\n", dof[i]-> 

friction_parameters->c_hat_VISCOUS[j]); 

   } 

    

   /*save hinges parameters */ 

   fprintf(out_params, "%lf\n", dof[i]->friction_parameters-> 

B_pos_HINGES); 

   fprintf(out_params, "%lf\n", dof[i]->friction_parameters-> 

B_neg_HINGES); 

  } 

 

  fclose_return_val = fclose(out_params); 

  if (fclose_return_val != 0) 

  { 

   printf("ERROR: failed to close parameters file %s.\n", dof[i]-> 

   friction_parameters->filename_params);  

   return -1; 

  } 

 }   

  

 return 0; 

} 

 

/*load parameters of NN and adaptive components learned from previous runs */ 

int  

load_learned_parameters(Single_DOF_Properties ** dof,  

      int     

 N) 

{ 

 double * parameters; 

 int  fclose_return_val, i, j, current, num_params; 

 

 for (i = 0; i < N; i++) 

 { 

  FILE* in_params = fopen(dof[i]->friction_parameters->filename_params,  

"r"); 

  if (in_params == NULL) 

  { 

   printf("ERROR: failed to open file %s. parameter data will not  

be loaded properly.\n",  

   dof[i]->friction_parameters->filename_params); 

   return -1; 

  }   

 

  num_params = M + 1 + dof[i]->friction_parameters->NUM_NODES_VISCOUS +  

      2;  

 

  /*dynamically allocate parameters vector */ 

  parameters = (double *) calloc(num_params, sizeof(double)); 

  assert(parameters != NULL); 

   

  /* read the parameters */ 

  for (j = 0; j < num_params; j++) 

  {  

   /* loop through and store the numbers into the array */ 

   fscanf(in_params, "%lf", &parameters[j]); 

  }  

 

  current = 0; 

 

  /* load the modelled dynamics' adapted parameters */ 

  for (j = 0; j < M; j++) 

  { 

   a_hat[j] = parameters[current]; 

   current++; 

  } 

   

  /* read in number of viscous NN nodes */ 
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  /*dof[i]->friction_parameters->NUM_NODES_VISCOUS = (int)  

  parameters[current]; */ /* assumed to be known */ 

  current++;   

   

  /* read in parameters of viscous friction NN */ 

  for (j = 0; j < dof[i]->friction_parameters->NUM_NODES_VISCOUS; j++) 

  { 

   dof[i]->friction_parameters->c_hat_VISCOUS[j] =  

                                       parameters[current]; 

   current++; 

  } 

   

  /* read in parameters of hinges */ 

  dof[i]->friction_parameters->B_pos_HINGES = parameters[current]; 

  current++; 

  dof[i]->friction_parameters->B_neg_HINGES = parameters[current]; 

  current++; 

 

  free(parameters); 

  

  /* close parameters file */ 

  fclose_return_val = fclose(in_params); 

  if (fclose_return_val != 0) 

  { 

   printf("ERROR: failed to close parameters file %s.\n", dof[i]-> 

friction_parameters->filename_params);  

   return -1; 

  } 

   

  printf("DOF: %s parameters loaded successfully.\n", dof[i]-> 

motor_name); 

 } 

 

 printf("\nLoaded parameter values: \n");   

 for (j = 0; j < M; j++) 

 { 

  printf("%lf ", a_hat[j]); 

 } 

 printf("\n"); 

  

 return 0; 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

START OF KINEMATICSDYNAMICS.C CODE 

 
/*  

  $Id: KinematicsDynamicsLib.c 1830 2006-10-16 00:53:31Z laksman $ 

   

(c) Copyright 1999-2006 

 Space Systems Lab, University of Maryland, College Park, MD 20740 

  

 */ 
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#include "KinematicsDynamicsLib.h" 

 

/***************************************************************************** 

FUNCTION DECLARATIONS 

*****************************************************************************/ 

 

/* modelled dynamics adapted parameters */ 

double a_hat[M] = {0.}; 

 

/***************************************************************************** 

FUNCTION DECLARATIONS 

*****************************************************************************/ 

 

/*Used by Viscous_Friction_Torque() 

Evaluates Kth basis function at x given parameter mesh size */ 

double  

gk( double x,  

 double mesh,  

 int  K); 

 

/***************************************************************************** 

FUNCTION DEFINITIONS 

*****************************************************************************/ 

void 

Forward_Kinematics_Pitch( double * pos, 

    double * pos_cart) 

{ 

 double pos_new[2] = {*pos, FIXED_ROLL_ANGLE}; 

 Forward_Kinematics_Pitch_Roll(pos_new, pos_cart); 

} 

 

void 

Forward_Kinematics_Roll(double * pos, 

    double * pos_cart) 

{ 

 double pos_new[2] = {FIXED_PITCH_ANGLE, *pos}; 

 Forward_Kinematics_Pitch_Roll(pos_new, pos_cart);  

} 

 

/* takes position in joint space - converts to position in Cartesian space (no 

orientation) 

 pos -  2 x 1 vector of joint angles in radians 

 pos_cart - 3 x 1 vector of end effector position in Cartesian space 

*/ 

void 

Forward_Kinematics_Pitch_Roll( double * pos, 

     double * pos_cart) 

{ 

 double c1 = cos(pos[0]); 

 double c2 = cos(pos[1]); 

 double s1 = sin(pos[0]); 

 double s2 = sin(pos[1]); 

  

 pos_cart[0] = L2*c1*c2 - L1*s1; 

 pos_cart[1] = L2*s2; 

 pos_cart[2] = L2*s1*c2 + L1*c1; 

} 

 

/* performs transformation: output_vector = translational Jacobian*input_vector, given 

manipulator's angular configuration  

   pos -   1 x 1 vector of joint angles in radians 

   input_vector - 1 x 1 vector 

   output_vector - 3 x 1 vector  

*/ 

void  

Translational_Jacobian_Pitch( double * pos, 

    double  * input_vector, 

    double * output_vector) 

{ 

 double c1 = cos(pos[0]); 

 double s1 = sin(pos[0]); 
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 /* assumes roll angle equals 180 degrees */ 

 output_vector[0] =   (L2*s1 - L1*c1) * input_vector[0]; 

       

 output_vector[1] =    0.; 

  

 output_vector[2] =  (-L2*c1 - L1*s1) * input_vector[0]; 

} 

 

/* performs transformation: output_vector = translational Jacobian*input_vector, given 

manipulator's angular configuration  

   pos -  1 x 1 vector of joint angles in radians 

   input_vector - 1 x 1 vector 

   output_vector - 3 x 1 vector  

*/ 

void  

Translational_Jacobian_Roll(double * pos, 

         double  * input_vector, 

         double * output_vector) 

{ 

 /* assumes pitch equals 0 degrees */ 

 output_vector[0] = -L2*sin(pos[0]) * input_vector[0]; 

  

 output_vector[1] =  L2*cos(pos[0]) * input_vector[0]; 

  

 output_vector[2] =  0.; 

} 

 

 

/* performs transformation: output_vector = translational Jacobian*input_vector, given 

manipulator's angular configuration  

   pos -   2 x 1 vector of joint angles in radians 

   input_vector - 2 x 1 vector 

   output_vector - 3 x 1 vector  

*/ 

void  

Translational_Jacobian_Pitch_Roll( double * pos, 

     double  * input_vector, 

     double * output_vector) 

{ 

 double c1 = cos(pos[0]); 

 double c2 = cos(pos[1]); 

 double s1 = sin(pos[0]); 

 double s2 = sin(pos[1]); 

  

 output_vector[0] = -(L2*s1*c2 + L1*c1)*input_vector[0] - 

L2*c1*s2*input_vector[1]; 

 output_vector[1] =        

       + L2*c2*input_vector[1]; 

 output_vector[2] = (L2*c1*c2 - L1*s1)*input_vector[0] - 

L2*s1*s2*input_vector[1]; 

} 

 

/* performs transformation: output_vector = translational Jacobian tranpose 

*input_vector, given manipulator's angular configuration  

   pos -  1 x 1 vector of joint angles in radians 

   input_vector - 3 x 1 vector 

   output_vector - 1 x 1 vector  

*/ 

void  

Translational_Jacobian_Transpose_Pitch( double * pos, 

      double  * input_vector, 

      double * output_vector) 

{ 

 double c1 = cos(pos[0]); 

 double s1 = sin(pos[0]); 

 

 /* assumes roll angle equals 180 degrees */ 

 output_vector[0] =   (L2*s1 - L1*c1) * input_vector[0] + (-L2*c1 - L1*s1) *  

input_vector[2]; 

} 
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/* performs transformation: output_vector = translational Jacobian*input_vector, given 

manipulator's angular configuration  

   pos -   1 x 1 vector of joint angles in radians 

   input_vector - 3 x 1 vector 

   output_vector - 1 x 1 vector  

*/ 

void  

Translational_Jacobian_Transpose_Roll( double * pos, 

      double  * input_vector, 

      double * output_vector) 

{ 

 /* assumes pitch equals 0 degrees */ 

 output_vector[0] = -L2*sin(pos[0]) * input_vector[0] + L2*cos(pos[0]) *  

            input_vector[1]; 

} 

 

 

/* performs transformation: output_vector = translational Jacobian transpose 

*input_vector, given manipulator's angular configuration  

   pos -  2 x 1 vector of joint angles in radians 

   input_vector - 3 x 1 vector 

   output_vector - 2 x 1 vector  

*/ 

void  

Translational_Jacobian_Transpose_Pitch_Roll(double * pos, 

          

 double  * input_vector, 

          

 double * output_vector) 

{ 

 double c1 = cos(pos[0]); 

 double c2 = cos(pos[1]); 

 double s1 = sin(pos[0]); 

 double s2 = sin(pos[1]); 

 

 output_vector[0] = -(L2*s1*c2 + L1*c1)*input_vector[0] + (L2*c1*c2 –  

L1*s1)*input_vector[2];  

 output_vector[1] = - L2*c1*s2*input_vector[0] + L2*c2*input_vector[1] –  

L2*s1*s2*input_vector[2]; 

} 

 

/* performs transformation: output_vector = inverse(translational 

Jacobian)*input_vector, given manipulator's angular configuration  

   pos -  1 x 1 vector of joint angles in radians 

   input_vector - 3 x 1 vector 

   output_vector - 1 x 1 vector  

*/ 

void  

Translational_Jacobian_Inverse_Pitch( double * pos, 

     double  * input_vector, 

     double * output_vector) 

{ 

 double c1 = cos(pos[0]); 

 double s1 = sin(pos[0]); 

 double L1sq_plus_L2sq = L1*L1 + L2*L2; 

  

 /* assumes roll angle equals 180 degrees */ 

 output_vector[0] =   (L2*s1 - L1*c1)/L1sq_plus_L2sq * input_vector[0] +   

(-L2*c1 - L1*s1)/L1sq_plus_L2sq * input_vector[2] ; 

} 

 

/* performs transformation: output_vector = inverse(translational 

Jacobian)*input_vector, given manipulator's angular configuration  

   pos -   1 x 1 vector of joint angles in radians 

   input_vector - 3 x 1 vector 

   output_vector - 1 x 1 vector  

*/ 

void  

Translational_Jacobian_Inverse_Roll(double * pos, 

     double  * input_vector, 
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     double * output_vector) 

{ 

 /* assumes pitch equals 0 degrees */ 

 output_vector[0] = -sin(pos[0])/L2 * input_vector[0] + cos(pos[0])/L2 *  

    input_vector[1]; 

} 

 

/* performs transformation: output_vector = inverse(translational 

Jacobian)*input_vector, given manipulator's angular configuration  

   pos -  2 x 1 vector of joint angles in radians 

   input_vector - 3 x 1 vector 

   output_vector - 2 x 1 vector  

*/ 

void  

Translational_Jacobian_Inverse_Pitch_Roll( double * pos,     

      double  * input_vector, 

      double * output_vector) 

{ 

 double c1 = cos(pos[0]); 

 double c2 = cos(pos[1]); 

 double s1 = sin(pos[0]); 

 double s2 = sin(pos[1]); 

 double t2 = tan(pos[1]); 

 double L1sq_plus_L2sq = L1*L1 + L2*L2; 

 

 output_vector[0] = -(L1*c1 + L2/c2*s1)/L1sq_plus_L2sq * input_vector[0] -  

(L1*t2)/L1sq_plus_L2sq  * input_vector[1] 

      + (L2*c1/c2 - L1*s1)/L1sq_plus_L2sq * input_vector[2]; 

       

 output_vector[1] =  (-L2*c1*s2 + L1*s1*t2)/L1sq_plus_L2sq * input_vector[0] +  

    (L2*L2*c2 + L1*L1/c2)/(L2*L1sq_plus_L2sq) *input_vector[1] 

        - (L2*s1*s2 + L1*c1*t2)/L1sq_plus_L2sq * input_vector[2]; 

} 

 

/* performs transformation: output_vector = inverse(transpose(translational 

Jacobian))*input_vector, given manipulator's angular configuration  

   pos -   1 x 1 vector of joint angles in radians 

   input_vector - 1 x 1 

   output_vector - 3 x 1 

*/ 

void  

Translational_Jacobian_Transpose_Inverse_Pitch(double * pos, 

        double  * input_vector, 

        double * output_vector) 

{ 

 double c1 = cos(pos[0]); 

 double s1 = sin(pos[0]); 

 double L1sq_plus_L2sq = L1*L1 + L2*L2; 

 

 /* assumes roll angle equals 180 degrees */ 

 output_vector[0] =   (L2*s1 - L1*c1)/L1sq_plus_L2sq * input_vector[0]; 

       

 output_vector[1] =        

        0.; 

  

 output_vector[2] =    (-L2*c1 - L1*s1)/L1sq_plus_L2sq * input_vector[0]; 

} 

 

 

/* performs transformation: output_vector = inverse(transpose(translational 

Jacobian))*input_vector, given manipulator's angular configuration   

   pos -   1 x 1 vector of joint angles in radians 

   input_vector - 1 x 1 

   output_vector - 3 x 1 

*/ 

void  

Translational_Jacobian_Transpose_Inverse_Roll( double * pos, 

       double  * input_vector, 

       double * output_vector) 

{ 

 /* assumes pitch equals 0 degrees */ 
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 output_vector[0] = -sin(pos[0])/L2 * input_vector[0]; 

  

 output_vector[1] =  cos(pos[0])/L2 * input_vector[0]; 

  

 output_vector[2] = 0.; 

} 

 

 

/* performs transformation: output_vector = inverse(transpose(translational 

Jacobian))*input_vector, given manipulator's angular configuration  

   pos -   2 x 1 vector of joint angles in radians 

   input_vector - 2 x 1 vector 

   output_vector - 3 x 1 vector 

*/ 

void  

Translational_Jacobian_Transpose_Inverse_Pitch_Roll(double * pos, 

            double  * input_vector, 

            double * output_vector) 

{ 

 double c1 = cos(pos[0]); 

 double c2 = cos(pos[1]); 

 double s1 = sin(pos[0]); 

 double s2 = sin(pos[1]); 

 double t2 = tan(pos[1]); 

 double L1sq_plus_L2sq = L1*L1 + L2*L2; 

 

 output_vector[0] = -(L1*c1 + L2/c2*s1)/L1sq_plus_L2sq * input_vector[0] 

 +    (-L2*c1*s2 + L1*s1*t2)/L1sq_plus_L2sq * input_vector[1]; 

       

 output_vector[1] =            -(L1*t2)/L1sq_plus_L2sq * input_vector[0] 

 +(L2*L2*c2 + L1*L1/c2)/(L2*L1sq_plus_L2sq) * input_vector[1]; 

  

 output_vector[2] =  (L2*c1/c2 - L1*s1)/L1sq_plus_L2sq * input_vector[0] 

  - (L2*s1*s2 + L1*c1*t2)/L1sq_plus_L2sq * input_vector[1]; 

} 

 

void  

Force_Transform_Pitch( double   * pos,  

   ftsdrv_6DOF_t * force_moment) 

{ 

 double pos_new[2] = {*pos, FIXED_ROLL_ANGLE}; 

 Force_Transform_Pitch_Roll(pos_new, force_moment); 

} 

 

void  

Force_Transform_Roll( double   * pos,  

   ftsdrv_6DOF_t * force_moment) 

{ 

 double pos_new[2] = {FIXED_PITCH_ANGLE, *pos}; 

 Force_Transform_Pitch_Roll(pos_new, force_moment);  

} 

 

/* 1. transform force/moment in FTS frame to force/moment in world frame (same as 0 

frame) */ 

/* 2. compensate end effector dynamics that cause offsets on FTS readings */ 

/* 3. transform compensated world frame 6 axis force/moment readings to compensated 

world frame force/moment  

   only along controllable DOFs 

NOTE: currently only force is currently transformed in step 3. */ 

void  

Force_Transform_Pitch_Roll( double   * pos,  

    ftsdrv_6DOF_t * force_moment) 

{ 

 double c1 = cos(pos[0]); 

 double c2 = cos(pos[1]); 

 double s1 = sin(pos[0]); 

 double s2 = sin(pos[1]); 

 double force_temp[3], moment_temp[3]; 

  

 /* copy force/moment to temp */ 

 int i; 
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 for (i = 0; i < 3; i++) 

 { 

  force_temp[i] = force_moment->force[i]; 

  moment_temp[i] = force_moment->moment[i]; 

 } 

  

 /* transform force/moment from FTS frame to world frame (same as frame 0) */ 

 force_moment->force[0] = c1*c2*force_temp[0] - c1*s2*force_temp[1] -  

  s1*force_temp[2]; 

 force_moment->force[1] = s2*force_temp[0] + c2*force_temp[1];     

 force_moment->force[2] = s1*c2*force_temp[0] - s1*s2*force_temp[1] +  

  c1*force_temp[2]; 

 force_moment->moment[0] =-c1*s2*L_FTS*force_temp[0] - 

   c1*c2*L_FTS*force_temp[1]      

  + c1*c2*moment_temp[0]  

  - c1*s2*moment_temp[1]  

  - s1*moment_temp[2]; 

 force_moment->moment[1] = c2*L_FTS*force_temp[0] -s2*L_FTS*force_temp[1] 

      + s2*moment_temp[0]    + c2*moment_temp[1];     

 force_moment->moment[2] = -s1*s2*L_FTS*force_temp[0]  

-s1*c2*L_FTS*force_temp[1]    

+ s1*c2*moment_temp[0] - s1*s2*moment_temp[1] 

     + c1*moment_temp[2]; 

 

 /* copy force/moment to temp */ 

 for (i = 0; i < 3; i++) 

 { 

  force_temp[i] = force_moment->force[i]; 

  moment_temp[i] = force_moment->moment[i]; 

 } 

 

 /* compensate end effector gravity term (other terms are negligible) */ 

 force_moment->force[0] =  force_temp[0]; 

 force_moment->force[1] = force_temp[1]; 

 force_moment->force[2] = force_temp[2] + 4.2434; 

 force_moment->moment[0] = moment_temp[0] + 0.2207*s2; 

 force_moment->moment[1] = moment_temp[1] - 0.2207*c2*c1; 

 force_moment->moment[2] = moment_temp[2]; 

 

 /* copy values to temp arrays */ 

 for (i = 0; i < 3; i++) 

 { 

  force_temp[i] = force_moment->force[i]; 

 } 

 

 /* transform 3 axis force returned by FTS into 2 axis force in  

   pitch/roll direction */ 

 /* currently only transforms force vector */ 

 force_moment->force[0] =  (pow(L1, 2)*pow(c1, 2) +  

L2*(L2*pow(c2, 2)*pow(s1, 2) +   

L1*c2*sin(2*pos[0]) +  

L2*pow(s2, 2)))*force_temp[0]   

+ (L2*s2*(-L2*c1*c2 + L1*s1))*force_temp[1] 

   + (-L2*c1*c2 + L1*s1)*(L1*c1 + L2*c2*s1)*force_temp[2];  

               

 force_moment->force[1] =   (L2*s2*(-L2*c1*c2 + L1*s1))*force_temp[0] 

    + (pow(L1, 2) + pow(L2, 2)*pow(c2, 2))*force_temp[1] 

             + (-L2*s2*(L1*c1 + L2*c2*s1))*force_temp[2]; 

           

    

 force_moment->force[2] = (-L2*c1*c2 + L1*s1)*(L1*c1 + L2*c2*s1)*force_temp[0] 

    + (-L2*s2*(L1*c1 + L2*c2*s1))*force_temp[1] 

    + (pow((L2*c1*c2 - L1*s1), 2)  

+ pow(L2, 2)*pow(s2, 2))*force_temp[2]; 

  

 for (i = 0; i < 3; i++) 

 { 

  force_moment->force[i] /= (L1*L1 + L2*L2); 

 } 

} 
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void  

Dynamic_Adaptive_Torque_Pitch( double  * act_pos,  

     double  * act_vel, 

     double  * des_vel_r, 

     double  * des_accel_r, 

     double  * s,     

double  * dt,  

     BOOLEAN  adaptation_flag,  

     double  * torque_return) 

{ 

 static double a_sin = 0.;  /* -3.1 */  

 static double old_da_sin = 0.; 

 double da_sin; 

 

 static double a_cos = 0.;  /* -.21 */ 

 static double old_da_cos = 0.; 

 double da_cos; 

  

 static double I = 0.;   /* 1. */ 

 static double old_dI = 0.;  

 double dI; 

  

            

  

 /* ------- gravitational parameters -------- */ 

   /*calculate the gravitational torque that will be returned */ 

  * torque_return = a_sin*sin(*act_pos) + a_cos*cos(*act_pos);  

 /* * torque_return = a_sin * sin(*act_pos); */ 

 

  

 if (adaptation_flag)  

 { 

  /* update the current estimate of m*g*l */ 

  da_sin = -GAMMA_a_sin_PITCH * (*s) * sin(*act_pos); 

  a_sin += .5 * (*dt) * (old_da_sin + da_sin); 

  /*if (a_sin <= 0.)  

  { 

   a_sin = 0.; 

  }*/ 

  old_da_sin = da_sin;   

 

  /* update the current estimate of a_cos */ 

  da_cos = -GAMMA_a_cos_PITCH * (*s) * cos(*act_pos); 

  a_cos += .5 * (*dt) * (old_da_cos + da_cos); 

  /*if (a_cos <= 0.) 

  { 

   a_cos = 0.; 

  }*/ 

  old_da_cos = da_cos;   

  } 

 

 /* ---------- inertia parameter --------- */ 

 /*calculate the inertial torque that will be returned */ 

 *torque_return += I * (*des_accel_r); 

  

 if (adaptation_flag) 

 { 

  /* update I - the current estimate of the inertia */ 

  dI = -GAMMA_I_PITCH * (*des_accel_r) * (*s); 

  I += (*dt) * 0.5 * (dI + old_dI);    

  /*if (I <= 0.) 

  { 

   I = 0.; 

  }*/ 

  old_dI = dI; 

 } 

  

 a_hat[0] = I; 

 a_hat[1] = a_sin;  

 a_hat[2] = a_cos; 
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} 

 

/*returns dynamic torque using model and adaptively learns parameters of model */ 

void  

Dynamic_Adaptive_Torque_Roll( double  * act_pos,  

    double  * act_vel, 

    double  * des_vel_r, 

    double  * des_accel_r, 

    double  * s,  

    double  * dt, 

    BOOLEAN  adaptation_flag,   

    double  * torque_return) 

{ 

 /* inertia parameter */ 

 static double I = 0.; 

  

 static double old_dI = 0.;  

 double dI; 

 

 I = a_hat[0];         

     /* --------- NEW ---------- */ 

 

 /*calculate the inertial torque that will be returned */ 

 *torque_return = I * (*des_accel_r); 

  

 if (adaptation_flag) 

 { 

  /* update I - the current estimate of the inertia */ 

  dI = -GAMMA_I_ROLL * (*des_accel_r) * (*s); 

  I += (*dt) * 0.5 * (dI + old_dI);  

  if (I <= 0.) 

  { 

   I = 0.; 

  } 

 

  old_dI = dI; 

 

  /*printf("%f\n", I); */ 

 } 

  

 a_hat[0] = I;  

} 

 

/*returns inertial torque using model and adaptively learns parameters of model */ 

void  

Dynamic_Adaptive_Torque_Pitch_Roll(  double  * act_pos,  

           double  * act_vel, 

           double  * des_vel_r, 

           double  * des_accel_r, 

     double  * s,  

     double  * dt, 

     BOOLEAN  adaptation_flag,  

     double  * torque_return)  

       

{ 

 

 /* the current and previous versions of the derivative of a_hat */ 

 double da_hat[M]; 

 static double old_da_hat[M] = {0.}; 

  

 /* the 2 x M matrix that is independent of dynamic parameters */ 

 double Y[2][M]; 

 

 /* some useful variables */ 

 double c1 = cos(act_pos[0]); 

 double c2 = cos(act_pos[1]); 

 double s1 = sin(act_pos[0]); 

 double s2 = sin(act_pos[1]); 

  

 int i, j; 
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 /* zero Y */ 

 for (i = 0; i < 2; i++) 

 { 

  for (j = 0; j < M; j++) 

  { 

   Y[i][j] = 0.; 

  } 

 } 

 

 /* decoupled inertial and gravitational elements of Y - BIG TERMS */ 

 Y[0][0] = des_accel_r[0]; 

 Y[0][1] = s1;    

 Y[0][2] = c1*c2; 

 Y[1][2] = -s1*s2; 

 Y[1][3] = des_accel_r[1]; 

 

 /* coupled inertial and Christoffel matrix elements of Y - SMALL TERMS */ 

 Y[0][4] = c2*c2*des_accel_r[0];    

 Y[0][5] = s2*des_accel_r[1];  

 Y[1][5] = s2*des_accel_r[0];     

 Y[0][6] = c2*act_vel[1]*des_vel_r[1];   

 Y[0][7] = c2*s2*act_vel[0]*des_vel_r[1];  

 Y[1][8] = c2*s2*act_vel[0]*des_vel_r[0];  

  

 /* calculate return torque */ 

 for (i = 0; i < 2; i++) 

 { 

  torque_return[i] = 0.; 

 

  for (j = 0; j < M; j++) 

  { 

   torque_return[i] += Y[i][j]*a_hat[j];     

  } 

 } 

 

 if (adaptation_flag) 

 { 

  /* update a_hat - the current estimate of a */ 

  for (i = 0; i < M; i++) 

  { 

   da_hat[i] = 0.; 

    

   for (j = 0; j < 2; j++) 

   { 

    if (i < 4) 

    { 

     da_hat[i] += -GAMMA_a * Y[j][i] * s[j]; 

   

    } 

    else /* off-diagonal inertia and Christoffel terms */ 

    {  

     da_hat[i] += -GAMMA_a2 * Y[j][i] * s[j];  

    } 

   }  

    

   a_hat[i] += dt[0] * 0.5 * (da_hat[i] + old_da_hat[i]); 

   /* dt[i] changed to dt[0] */ 

   old_da_hat[i] = da_hat[i]; 

  } 

 } 

} 

 

/* get the parameters array adapted in Dynamic_Adaptive_Torque_Pitch_Roll( ) */  

double * getAdaptedParams() 

{ 

 return a_hat; 

} 

 

 

double  

Viscous_Friction_Torque(double act_vel,  
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    double     s,  

    double     dt, 

    Single_DOF_Properties * dof,  

    BOOLEAN     learning_flag) 

{ 

 double   torque_viscous, gk1, gk2; 

 int   fres, lattice_min, lattice_max; 

 Friction_Parameters * fp; 

  

 fp = dof->friction_parameters; 

 

 /*determine the lattice points corresponding to the input*/ 

 fres = (int) floor(act_vel*fp->MESH_VISCOUS); 

 lattice_min = fres - fp->MIN_NODE_VISCOUS; 

 lattice_max = lattice_min + 1; 

  

 /*perform a couple of checks to make sure the lattice points are within the  

         NN's range*/ 

 if (lattice_min < 0)  

 { 

  printf("WARNING: Viscous NN lattice min = %d. Out of range of NN.  

\n",lattice_min); 

  /*printf("Input is out of range of neural network. Exiting.\n"); 

  return FLT_MAX; */ 

   

 } 

 if (lattice_max > fp->NUM_NODES_VISCOUS)  

 {  

  printf("WARNING: Viscous NN lattice max = %d. Out of range of NN.  

\n",lattice_max); 

  /*printf("Input is out of range of neural network. Exiting.\n"); 

  return FLT_MAX; */ 

 } 

 

 /* update previous lattice points if a transition has occured */ 

 if (learning_flag && (lattice_min != fp->old_lattice_min_VISCOUS))  

 { 

  fp->c_hat_VISCOUS[fp->old_lattice_min_VISCOUS] += 

 .5 * dt * fp->old_dc_hat_VISCOUS[fp->old_lattice_min_VISCOUS]; 

  fp->c_hat_VISCOUS[fp->old_lattice_max_VISCOUS] += 

 .5 * dt * fp->old_dc_hat_VISCOUS[fp->old_lattice_max_VISCOUS]; 

  fp->old_dc_hat_VISCOUS[lattice_min] = 0.; 

  fp->old_dc_hat_VISCOUS[lattice_max] = 0.;   

 } 

  

 /*calculate the NN torque that will be returned */ 

 gk1 = gk(act_vel, fp->MESH_VISCOUS, lattice_min + fp->MIN_NODE_VISCOUS); 

 gk2 = gk(act_vel, fp->MESH_VISCOUS, lattice_max + fp->MIN_NODE_VISCOUS); 

 torque_viscous = fp->c_hat_VISCOUS[lattice_min] * gk1 +  

  fp->c_hat_VISCOUS[lattice_max] * gk2; 

  

 if (learning_flag) 

 { 

  /*update the derivative of the NN's weights (dc_hat) at the current  

  lattice points*/ 

  fp->dc_hat_VISCOUS[lattice_min] = -dof->control_gains->GAMMA_c_VISCOUS  

              * s * gk1; 

  fp->dc_hat_VISCOUS[lattice_max] = -dof->control_gains->GAMMA_c_VISCOUS  

     * s * gk2; 

   

  /*update the NN weights at the current lattice points by performing  

  numerical integration*/ 

  fp->c_hat_VISCOUS[lattice_min] += .5 * dt * (fp-> 

    old_dc_hat_VISCOUS[lattice_min]+fp->dc_hat_VISCOUS[lattice_min]); 

  fp->c_hat_VISCOUS[lattice_max] += .5 * dt * (fp-> 

    old_dc_hat_VISCOUS[lattice_max]+fp->dc_hat_VISCOUS[lattice_max]); 

   

  /*store the current derivative of c_hat*/ 

  fp->old_dc_hat_VISCOUS[lattice_min] = fp->dc_hat_VISCOUS[lattice_min]; 

  fp->old_dc_hat_VISCOUS[lattice_max] = fp->dc_hat_VISCOUS[lattice_max]; 
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  /*save the current lattice points so that */ 

  /*they can be possibly updated the next time around*/ 

  fp->old_lattice_min_VISCOUS = lattice_min; 

  fp->old_lattice_max_VISCOUS = lattice_max;  

 } 

  

 /*return the NN torque */ 

 return torque_viscous; 

} 

 

/* returns torque predicted by hinge functions at low velocity (as in Peter Guion's 

Master's thesis, 2003) */ 

double  

Hinges_Torque( double     act_vel,  

  double     s,  

  double     dt,  

  Single_DOF_Properties * dof,  

  BOOLEAN     learning_flag) 

{ 

 double    torque_hinges; 

 double    g_pos, g_neg; 

 double    dB_pos = 0.;  

 double    dB_neg = 0.; 

 Friction_Parameters  * fp = dof->friction_parameters; 

  

 /* evaluate hinge functions at act_vel */ 

 if (act_vel <= fp->ABS_VEL_MAX_HINGES && act_vel >= fp->ABS_VEL_MIN_HINGES) 

 { 

  g_pos = 1.; 

  g_neg = 0.; 

 } 

 else if (act_vel >= -1*fp->ABS_VEL_MAX_HINGES &&  

  act_vel <= -1*fp->ABS_VEL_MIN_HINGES) 

 { 

  g_pos = 0.; 

  g_neg = 1.; 

 } 

 else 

 { 

  g_pos = 0.; 

  g_neg = 0.; 

 } 

  

 /*calculate torque that will be returned */ 

 torque_hinges = fp->B_pos_HINGES * g_pos 

         + fp->B_neg_HINGES * g_neg;  

 /*torque_hinges =  fp->B_pos_HINGES * g_pos *  

                       exp(-pow(act_vel/fp->V0_HINGES, 2)) 

      + fp->B_neg_HINGES * g_neg *  

exp(-pow(act_vel/fp->V0_HINGES, 2)); */ 

  

 /*if (torque_hinges != 0.) 

 { 

  printf("B+: %f  B-:%f hinges torque: %f\n", fp->B_pos_HINGES,  

fp->B_neg_HINGES, 

torque_hinges); 

 }*/ 

 

 if (learning_flag) 

 { 

  /*update B_pos, B_neg parameters based on adaptive learning rule */ 

  dB_pos = -dof->control_gains->GAMMA_B_HINGES * s * g_pos; 

  dB_neg = -dof->control_gains->GAMMA_B_HINGES * s * g_neg; 

  /*dB_pos = -dof->control_gains->GAMMA_B_HINGES * s * g_pos *  

exp(-pow(act_vel/fp->V0_HINGES, 2)); 

  dB_neg = -dof->control_gains->GAMMA_B_HINGES * s * g_neg *  

exp(-pow(act_vel/fp->V0_HINGES, 2));  */ 

  fp->B_pos_HINGES += .5 * dt * (fp->old_dB_pos_HINGES + dB_pos); 

  fp->B_neg_HINGES += .5 * dt * (fp->old_dB_neg_HINGES + dB_neg);  

  fp->old_dB_pos_HINGES = dB_pos; 

  fp->old_dB_neg_HINGES = dB_neg; 
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 } 

  

 return torque_hinges; 

} 

 

/*Used by friction learning functions 

Evaluates Kth basis function at x given parameter mesh size */ 

double  

gk( double x,  

 double mesh,  

 int  K) 

{ 

 double r = mesh*x - K; 

  

 if ( (r<-1.) || (r>1.) ) 

 {  

  return(0.); 

 } 

  

 if (r<0.) 

 { 

  return(1+r); 

 } 

 else 

 {  

  return(1-r); 

 } 

} 
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START OF MAIN.H CODE 

 
/*  

  $Id$ 

   

(c) Copyright 1999-2006 

 Space Systems Lab, University of Maryland, College Park, MD 20740 

  

 Contains the defines and extern variables used by main and control libraries 

  

 HISTORY 

  

Apr-2006     L Aksman        Created from main.c 

 */ 

 

#ifndef  __MAIN_H 

#define  __MAIN_H 

 

#ifndef BOOLEAN 

typedef char BOOLEAN; 

#endif 

 

#define _BSD_SOURCE  /* to get usleep() */ 

 

#include "ssl-os.h" 

#include "rcltimes.h" 

#include "comedilib.h"  

#include "ComediCounter.h" 

#include "rclqueue_LEON.h" 

#include "ftsdrvr/h/ftsdrvr.h"  

#include <math.h> 

#include <string.h> 

#include <stdio.h> 

#include <assert.h> 

#include <signal.h> 

#include <limits.h> 

#include <stdlib.h> 

#include <unistd.h> 

#include <time.h> 

#include <sys/types.h> 

#include <errno.h> 

#include <pthread.h> 

#if  !SSL_OS_IS_TIMESYS() 

#include <semaphore.h> 

#endif 

 

/***************************************************************************** 

DEFINES 

*****************************************************************************/ 

 

/* control frequency */ 

#define FREQ_SYSTEM      3000.   

    /* Hz */ 

 

/* control periods within +/- of this will be tolerated */ 

#define TIMING_ERROR__MICROSECS  50.  /*microseconds */ 

 

/* priority model of Timesys 6.1, using POSIX SCHED_RR (round-robin) 

or POSIX SCHED_FIFO (first in first out) 

scheduler, real-time priorities from 1 to 99 (inclusive), with HIGHER 

numbers being more important */ 

#define CONTROL_THREAD__POLICY  SCHED_FIFO 

#define CONTROL_THREAD__PRIORITY  60 

 

/* frequency at which data and parameters are saved */ 

#define FREQ_SAVING    100.  /* Hz */ 

#define FREQ_SAVING_PARAM_EVOLUTION  (1./20.) /* Hz */ 

 

/* running time constants */    

#define TRAIN_SECONDS_DEFAULT   180      
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#define TEST_SECONDS_DEFAULT   50   

 

/* default flag values (1 - ON, 0 - OFF)  

   NOTE: these defaults can be overwritten at runtime by setting them in 

FILENAME_OPTIONS. 

   see setOptions( ) function. */ 

#define ZERO_COUNTERS_DEFAULT   0 /* set the zero point of each DOF */ 

#define SAVE_CONTROL_DATA_DEFAULT  0 /* save control state each cycle in  

     FILENAME_CONTROL */ 

#define SAVE_PARAM_EVOLUTION_DEFAULT  0 /* save evolution of adapted parameters  

    in FILENAME_PARAM_EVOLUTION */ 

#define SAVE_LEARNED_PARAMS_DEFAULT  0 /* save adapted parameters in  

    FILENAME_PARAMS */ 

#define LOAD_LEARNED_PARAMS_DEFAULT  0 /* load parameters from  

    FILENAME_PARAMS */ 

#define ESTIMATION_IMPEDANCE_DEFAULT  0 /* impedance control based on force  

estimation */ 

#define FTS_IMPEDANCE_DEFAULT   0 /* impedance control based on  

  force/torque sensor (FTS) */ 

#define STOP_AFTER_TRAINING_DEFAULT  0 /* Maintain pos. after training or  

continue training traj. */  

#define USE_DYNAMIC_MODEL_DEFAULT  1 /* adapt parameters of system dynamics  

*/ 

#define USE_VISCOUS_NN_DEFAULT  1 /* viscous friction learning neural net  

(NN) */ 

#define USE_HINGES_DEFAULT   1 /* low velocity friction learning */ 

 

/* position defines */ 

#define DESIRED_INITIAL_POS_ROLL  -PI /* radians */ 

#define DESIRED_INITIAL_POS_PITCH  -1.1 /* radians */ 

#define DESIRED_FINAL_POS_ROLL   -PI /* radians */ 

#define DESIRED_FINAL_POS_PITCH  0. /* -.6 *//* radians */ 

#define FIXED_ROLL_ANGLE   -PI /* Angle (radians) of pitch DOF  

during pitch only control. */ 

#define FIXED_PITCH_ANGLE   0. /* Angle (radians) of pitch DOF  

during roll only control. */ 

/* desired sinusoidal trajectory  

defines */ 

#define AMPLITUDE_TRAINING   -1.  /* Desired sinusoidal trajectory  

amplitude (rad) */ 

#define FREQUENCY_TRAINING   .1  /* Desired sinusoidal training  

trajectory frequency (Hz) */ 

#define SWITCH_TRAJ_PERIODS   100 /* Switch training trajectory  

after this many periods */ 

#define AMPLITUDE_TESTING   -.4 /* Desired sinusoidal testing  

amplitude (rad) */ 

#define FREQUENCY_TESTING   .05 /* Desired sinusoidal testing  

trajectory frequency (Hz) */ 

#define MOVING_TO_DES_POS_ACCEL  .1 /* Accel. at which manipulator  

moves to desired initial/final 

pos */ 

#define MAX_ACT_ACCEL    75. /* Unfiltered accel. spikes above  

this cause resampling of ctr */ 

 

/* impedance control constants (multiply identity matrix) */ 

#define Ms  5. /* 100.  20. *//* Desired mass characteristic */  

#define Cs  100. /* 50.   100.*//* Desired damping characteristic */ 

#define Ks  10. /* 6.  25. */ /* Desired spring characteristic */ 

#define Kf  .05 /* .15   .3*//* Multiplies sensed or estimated force */ 

 

/* threshold for external joint torque estimation */ 

#define THRESHOLD_ESTIMATES   1 /* not 0 enables external  

estimated torque thresholding */ 

#define ABS_VEL_MAX_THRESHOLD   .01 /* rad/s */ 

#define ABS_VEL_TRANSITION_WIDTH  .01 /* transition region width from  

   low vel thresh. to normal (rad/s) */ 

#define TORQUE_EST_THRESH_LOW_VEL  2. /*1.75*//* Nm */ 

#define TORQUE_EST_THRESH   1. /* Nm */ 

#define LV_FILT    1 /* not 0 enables low velocity  

moving average filter */ 

#define MOVING_AVERAGE_WIDTH   3000 /* width of moving average filter  
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in cycles */ 

 

/*tuneable parameters for all DOFs */ 

#define PHI    1e-3 /* used in s_DELTA calculation */ 

#define M    9 /* number of physical parameters being  

adapted */ 

#define GAMMA_a   200. /* used in adaptation of pitch-roll  

dynamics.*/  

#define GAMMA_a2   (GAMMA_a/100.) /* off-diagonal inertia and  

Christoffel terms */ 

 

/*tuneable parameters - ROLL DOF */ 

#define Kp_LEARNING_ROLL  5000.  /*10000.*/   

   

#define Kd_LEARNING_ROLL  300.  /*500.*/   

#define Kp_NOT_LEARNING_ROLL  210000.   

#define Kd_NOT_LEARNING_ROLL  1700.   

#define GAMMA_c_VISCOUS_ROLL  2000.    

#define GAMMA_B_HINGES_ROLL  2000.     

#define GAMMA_I_ROLL   100. 

 

/*tuneable parameters  - PITCH DOF*/ 

#define Kp_LEARNING_PITCH  5000.  /*10000.*/     

   

#define Kd_LEARNING_PITCH  300.  /*500.*/ 

#define Kp_NOT_LEARNING_PITCH  320000.    

#define Kd_NOT_LEARNING_PITCH  1700.   

#define GAMMA_c_VISCOUS_PITCH  2000.    

#define GAMMA_B_HINGES_PITCH  2000.   

#define GAMMA_I_PITCH   100.     

#define GAMMA_a_sin_PITCH  100.   

#define GAMMA_a_cos_PITCH  0.    

 

/*Viscous friction NN defines*/ 

#define ABS_VEL_MAX_VISCOUS_ALL 2.2    /* 1.35 */    

/* rad/s  (max speed at 20V  

supply power is 1.3 rad/s) */ 

#define MESH_VISCOUS_ALL  20.  /*100.*/  

/* fitting error is proportional 

to 1/(MESH^2). 20 in Guion, Liu 

*/ 

#define MIN_NODE_VISCOUS_ALL (-1.*ABS_VEL_MAX_VISCOUS_ALL*MESH_VISCOUS_ALL - 1.) 

#define MAX_NODE_VISCOUS_ALL (ABS_VEL_MAX_VISCOUS_ALL*MESH_VISCOUS_ALL + 1.)  

#define NUM_NODES_VISCOUS_ALL ((-1.*MIN_NODE_VISCOUS_ALL) + MAX_NODE_VISCOUS_ALL + 1.) 

 

/*Viscous friction hinges defines */ 

#define ABS_VEL_MIN_HINGES_ALL .002  /* rad/s */ 

#define ABS_VEL_MAX_HINGES_ALL .02  /* rad/s */ 

#define V0_HINGES_ALL   .02   /* rad/s - used for exponential basis  

function*/ 

 

/* useful constants */ 

#define NANOSECONDS_PER_SEC  (1000000000L) 

#define PI    3.14159265358979323846264338 

 

#ifndef TRUE 

#define TRUE    (1==1) 

#define FALSE    (!TRUE) 

#endif 

 

/* physical parameters of manipulator */ 

#define L1    .194  /* meters */ 

#define L2    .259  /* meters */ 

#define L_FTS    .180  /* meters */ 

 

/* force/torque sensor constants */ 

#define FTS_PORT_NUMBER  0 

#define FTS_FORCE_THRESHOLD  4.  /* Newtons */ 

#define EE_PLATE_COMPRESSION_FX -10.  /* Newtons */ 

#define EE_PLATE_COMPRESSION_FY .9  /* Newtons */   

#define EE_PLATE_COMPRESSION_FZ -20.  /* Newtons */ 
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#define EE_PLATE_COMPRESSION_MX -.5  /* Nm */   

#define EE_PLATE_COMPRESSION_MY -1.5  /* Nm */   

#define EE_PLATE_COMPRESSION_MZ -.3  /* Nm */ 

 

/* COMEDI analog input constants*/ 

#define AI_SUBDEVICE   0 

#define AI_CHAN_0   0  /* not used */ 

#define AI_CHAN_1   1  /* roll joint motor torque */ 

#define AI_CHAN_2   2  /* pitch joint motor torque */ 

#define AI_CHAN_3   3  /* torque cell reading */ 

#define AI_RANGE_0   0  /*   -10V to   10V */ 

#define AI_RANGE_1   1  /*    -5V to    5V */ 

#define AI_RANGE_2   2  /*  -0.5V to  0.5V */ 

#define AI_RANGE_3   3  /* -0.05V to 0.05V */ 

 

/* COMEDI analog output constants */ 

#define AO_SUBDEVICE   1 

#define AO_CHAN_0   0  /* roll joint desired torque */ 

#define AO_CHAN_1   1  /* pitch joint desired torque */ 

#define AO_RANGE_0   0  /*   -10V to  10V */ 

 

/* COMEDI counter constants */ 

#define CTR_SUBDEVICE   4 

#define CTR_CHAN_0   0  /* roll joint counter */ 

#define CTR_CHAN_1   1  /* pitch joint counter */ 

 

/* other counter constants */ 

#define GEAR_RATIO_ROLL  160  /*  160:1 */ 

#define GEAR_RATIO_PITCH  161  /*  161:1 */ 

 

#define MAX_COUNT_NO_GEARING_ROLL 36000 

#define MAX_COUNT_NO_GEARING_PITCH 36000 

#define MAX_COUNT_ROLL   (MAX_COUNT_NO_GEARING_ROLL*GEAR_RATIO_ROLL)  

#define MAX_COUNT_PITCH  (MAX_COUNT_NO_GEARING_PITCH*GEAR_RATIO_PITCH) 

#define CONV_COUNTS_TO_RADIANS_ROLL ((2.*PI)/MAX_COUNT_ROLL) 

#define CONV_COUNTS_TO_RADIANS_PITCH ((2.*PI)/MAX_COUNT_PITCH) 

 

/* soft stops */ 

#define SOFT_STOP_POS_ROLL  (5.*PI)  /*roll can make +/- 1.5  

revolutions */ 

#define SOFT_STOP_POS_PITCH  ((75./360.)*2.*PI) /*pitch can go +/- 75 degrees 

*/ 

 

/* motor names */ 

#define ROLL_NAME   "ROLL"      /* MorphBots 2 DOF module's roll */ 

#define PITCH_NAME   "PITCH"     /* MorphBots 2 DOF module's pitch */ 

 

/* motor control constants */ 

#define Kt_ROLL   .0855  /* Nm/amp */ 

#define Kt_PITCH   .0855  /*  Nm/amp */ 

#define MAX_AMPS_MOTOR   5  /* amps */ 

#define MAX_VOLTS_IN   5   /* volts */ 

#define MAX_VOLTS_OUT   10  /* volts */ 

#define MAX_VOLTS_OUT_SW_LIMIT  5  /*  volts */ 

#define AMPS_PER_VOLTS_IN_MOTOR  2  /* amps/volt */ 

#define MAX_TORQUE_OUT_ROLL  (Kt_ROLL*GEAR_RATIO_ROLL*MAX_AMPS_MOTOR) 

#define MAX_TORQUE_OUT_PITCH  (Kt_PITCH*GEAR_RATIO_PITCH*MAX_AMPS_MOTOR) 

#define CONV_TORQUE_OUT_TO_VOLTS_ROLL   (MAX_VOLTS_OUT/MAX_TORQUE_OUT_ROLL) 

#define CONV_TORQUE_OUT_TO_VOLTS_PITCH  (MAX_VOLTS_OUT/MAX_TORQUE_OUT_PITCH) 

#define CONV_VOLTS_IN_TO_TORQUE_ROLL (Kt_ROLL*GEAR_RATIO_ROLL*AMPS_PER_VOLTS_IN_MOTOR) 

#define CONV_VOLTS_IN_TO_TORQUE_PITCH    

     (Kt_PITCH*GEAR_RATIO_PITCH*AMPS_PER_VOLTS_IN_MOTOR) 

 

/*thread and file I/O defines */ 

#define FILENAME_OPTIONS         "/opt/wc/leon/libs/projects/leon/system_options" 

#define FILENAME_CONTROL  "/tmp/datafile_control" 

#define FILENAME_PARAM_EVOLUTION "/tmp/datafile_param_evolution" 

#define FILENAME_PARAMS_PITCH  "/tmp/datafile_parameters_pitch" 

#define FILENAME_PARAMS_ROLL  "/tmp/datafile_parameters_roll" 

#define FILENAME_PARAMS_PITCH_ROLL "/tmp/datafile_parameters_pitch_roll" 

#define FILENAME_TIMING  "/tmp/datafile_timing" 
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#define FILENAME_STICTION    "/tmp/datafile_stiction" 

 

/*COMEDI misc. defines */ 

#define FILENAME_COMEDI_DRIVER   "/dev/comedi0" 

#define AREF      AREF_GROUND 

 

/* stiction test defines */ 

#define COUNT_RESOLUTION_STIC    1000 

#define END_RADIANS_STIC    (2.*PI)  

#define WAIT_TIME_STIC     .5 

#define DELTA_RADIANS_STIC   

 (CONV_COUNTS_TO_RADIANS_STIC*COUNT_RESOLUTION_STIC) 

#define CTR_CHAN_STIC     CTR_CHAN_0 

#define AO_CHAN_STIC     AO_CHAN_0 

#define CONV_COUNTS_TO_RADIANS_STIC   CONV_COUNTS_TO_RADIANS_ROLL 

#define CONV_TORQUE_OUT_TO_VOLTS_STIC   CONV_TORQUE_OUT_TO_VOLTS_ROLL 

 

/* elliptic filter - 20 Hz cut-off (with 3 KHz sampling), .01 passband ripple, 40 dB 

attenuation in stopband */ 

/* MATLAB COMMAND: [b, a] = ellip(5, .01, 40, 20/1500); */ 

#define FILTER_NUM_LENGTH    6 

#define FILTER_DEN_LENGTH    6 

#define FILTER_NUM   

0.00151268696203, -0.00451082296087,  0.00299823910428,   

0.00299823910428, -0.00451082296087,  0.00151268696203 

#define FILTER_DEN          

1.00000000000000, 4.88995895311333,  9.56808351940319, -9.36411094403749,   

4.58381898493027, -0.89783240097174  

 

/***************************************************************************** 

MODULE-LEVEL VARIABLES 

*****************************************************************************/ 

extern double      PERIOD_SYSTEM__MICROSECS; 

extern double      TRAIN_SECONDS;   

extern double      TEST_SECONDS;   

extern double      RUN_SECONDS; 

 

/* flags */ 

extern BOOLEAN      ZERO_COUNTERS; 

extern BOOLEAN      SAVE_CONTROL_DATA; 

extern BOOLEAN      SAVE_PARAM_EVOLUTION; 

extern BOOLEAN      SAVE_LEARNED_PARAMS; 

extern BOOLEAN      LOAD_LEARNED_PARAMS; 

extern BOOLEAN      ESTIMATION_IMPEDANCE; 

extern BOOLEAN      FTS_IMPEDANCE; 

extern BOOLEAN      STOP_AFTER_TRAINING; 

extern BOOLEAN      VELOCITY_MODIFICATION; 

extern BOOLEAN      USE_TRAJ_DITHER; 

extern BOOLEAN      USE_TORQUE_DITHER; 

extern BOOLEAN      USE_DYNAMIC_MODEL; 

extern BOOLEAN      USE_VISCOUS_NN; 

extern BOOLEAN      USE_HINGES; 

 

/* modelled dynamics adapted parameters */ 

extern double a_hat[M]; 

 

/* file I/O variables */ 

extern RclLeonControlDataPtrQueue  g_queue;  

extern RclLeonControlDataPtrQueue  g_queue_param_evolution;  

 

/*COMEDI (open source Linux driver project) variables */ 

extern comedi_t    * daq_device; 

extern comedi_range    * output_cr, * input_cr; 

extern int     output_max_value, input_max_value; 

 

/* user interrupt */ 

extern BOOLEAN     shouldQuit; 

 

/* initial time used by several functions */ 

extern struct timespec    initial; 
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/***************************************************************************** 

STRUCTURE DECLARATIONS 

*****************************************************************************/ 

 

typedef struct  

{ 

 /* input and output */ 

 const int  CTR_CHAN;       

 const int  AI_CHAN;      

 const int  AO_CHAN;      

  

 /* conversion constants */ 

 const double CONV_COUNTS_TO_RADIANS;  

 const double CONV_VOLTS_IN_TO_TORQUE; 

 const double CONV_TORQUE_OUT_TO_VOLTS;  

  

 /* safety */ 

 const double SOFT_STOP_POS;     

 const double MAX_VOLTS_OUT_SOFT;   

} Motor_Constants; 

 

typedef struct 

{ 

 /* PD gains */ 

 const double Kp_LEARNING;       

           

  

 const double Kp_NOT_LEARNING;      

       

 const double Kd_LEARNING;      

 const double Kd_NOT_LEARNING;     

 

 /* Viscous friction learning gains */      

           

          

 const double GAMMA_c_VISCOUS;      

           

      

 const double GAMMA_B_HINGES;      

           

        

} Control_Gains; 

 

typedef struct 

{ 

 struct timespec time_stamp_ts; 

 struct timespec time_stamp_prev_ts; 

 double   time_stamp;  

  

 /* these variables should be zeroed upon initialization */ 

 int    counter_val;      

 int    counter_val_prev;  

 double   act_pos;       

 double   act_pos_prev; 

 double   act_vel;       

 double   act_vel_prev;      

           

       

 double   des_vel_r; 

 double   act_accel;      

           

    

 double   act_accel_prev;  

 double   * act_accel_unfilt;     

 double   * act_accel_filt;   

 double   des_accel_r;  

 double   s_DELTA; 

 double   volts_out; 

 double   * torque_ext_est_unfilt; 

 double   * torque_ext_est_filt; 

 double   * moving_average_samples; 
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 int    moving_average_count; 

 BOOLEAN   low_velocity_regime;  

 double   torque_PD;  

 double   torque_model;  

 double   torque_motor;    

 double   torque_external; 

 double   torque_external_est; 

 double   torque_external_est_LV_filt;     

} Control_State; 

 

typedef struct 

{ 

 double   force[3]; 

 double   moment[3]; 

 double   force_est[3]; 

 /*double  moment_est[3]; *//* not currently being estimated */ 

 double   force_est_thresh[3]; /* thresholded estimated force */ 

 /*double  moment_est_thresh[3];*/ 

/* thresholded estimated moment - not currently being estimated */  

} Force_Estimation; 

 

typedef struct 

{ 

 /*Viscous friction NN parameters */ 

 double   ABS_VEL_MAX_VISCOUS;   /*const */ 

 double   MESH_VISCOUS;     /*const */ 

 int    MIN_NODE_VISCOUS;   

 /*const */ 

 int    MAX_NODE_VISCOUS;   

 /*const */ 

 int    NUM_NODES_VISCOUS;   

 /*const */ 

 double   * c_hat_VISCOUS; /* size is NUM_NODES */ 

 double   * dc_hat_VISCOUS; /* size is NUM_NODES - zeroed */ 

 double   * old_dc_hat_VISCOUS; /* size is NUM_NODES - zeroed */ 

 int    old_lattice_min_VISCOUS;/* zeroed */ 

 int    old_lattice_max_VISCOUS;/* zeroed */ 

 

 /*Hinges parameters */ 

 double   ABS_VEL_MIN_HINGES;  /*const */ 

 double   ABS_VEL_MAX_HINGES;    /*const */ 

 double   V0_HINGES;     

 /*const */ 

 double   B_pos_HINGES;   /* zeroed */ 

 double   B_neg_HINGES;   /* zeroed */ 

 double   old_dB_pos_HINGES;  /* zeroed */ 

 double   old_dB_neg_HINGES;  /* zeroed */ 

 

 /* save file */ 

 char * filename_params; 

} Friction_Parameters; 

 

/* Contains useful constants and variables associated with one particular DOF */ 

typedef struct  

{ 

 char   * motor_name; 

 double    des_pos_initial; 

 double    des_pos_final; 

 Motor_Constants * motor_constants; 

 Control_Gains * control_gains; 

 Control_State * control_state; 

 Friction_Parameters * friction_parameters; 

} Single_DOF_Properties; 

 

/* Contains useful function pointers associated with the coupling of multiple DOFs */ 

typedef struct 

{ 

 /* --- Kinematics --- */ 

 void 

 (*Forward_Kinematics)( double * pos, 

       double * pos_cart); 
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 void  

 (*Translational_Jacobian) ( double * pos, 

        double  * input_vector, 

        double * output_vector); 

 

 void  

 (*Translational_Jacobian_Transpose) (double * pos, 

      double  * input_vector, 

      double * output_vector); 

 

 void  

 (*Translational_Jacobian_Inverse) ( double * pos, 

      double  * input_vector, 

      double * output_vector); 

 

 void  

 (*Translational_Jacobian_Transpose_Inverse) ( double * thetas,  

           

  double * input_vector,  

           

  double * output_vector); 

 

 void  

 (*Force_Transform) (double   * thetas,  

      ftsdrv_6DOF_t * force_moment); 

 

 /* --- Coupled Dynamics --- */ 

 void  

 (*Dynamic_Adaptive_Torque_N_DOF)( double  * act_pos,  

      double  * act_vel, 

      double  * des_vel_r, 

      double  * des_accel_r, 

      double  * s,  

      double  * dt, 

      BOOLEAN  adaptation_flag, 

      double  * torque_return);  

           

 /* --- Decoupled Dynamics --- */ 

 double  

 (*Viscous_Friction_Torque)( double  act_vel,  

     double     s,  

     double     dt, 

     Single_DOF_Properties * dof, 

     BOOLEAN  learning_flag);  

     double  

 (*Hinges_Torque)( double     act_vel,  

    double     s,  

    double     dt,   

    Single_DOF_Properties   * dof,  

    BOOLEAN     learning_flag);

           

           

} Kinematics_Dynamics_Functions; 

 

/***************************************************************************** 

MAIN.c FUNCTION DECLARATIONS 

*****************************************************************************/ 

 

/* opens driver files and sets up I/O options, control properties */ 

int  

controlStart(int control_mode); 

 

/* real time thread that calls controlStart() */ 

void *  

Control_Thread_main(void * arg); 

 

/* created by main thread, not real time thread handles saving to file */ 

void *  

File_Saving_Thread_main(void * arg); 
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/* set options to default values. open options file and set option based on whatever 

options are in there.  

   format of options file:  

   OPTION VALUE 

   ex. 

   FREQ_SYSTEM  1000 

   NOTE: text should be tab delimited (as it is in this example) 

*/ 

void setOptions(char * filename_options); 

 

/* creates child threads which do the actual work of the program */ 

int  

main( int  argc,  

  char * argv[]); 

 

/* sets parameter thread's scheduling policy and priority */ 

int  

setScheduleParams( pthread_t thread,  

     int   sched_policy,  

     int   sched_priority); 

 

#endif 
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START OF MAIN.C CODE 

 

 

 

 

/*  

  $Id$ 

    

(c) Copyright 1999-2006 

 Space Systems Lab, University of Maryland, College Park, MD 20740 

  

 Contains the Main DMU mainline 

  

 HISTORY 

  

 13-Dec-2005 S Roderick Port to Timesys6 

 Jan-2006  L Aksman    Began developing control code 

 Jun-2006  L Aksman Generalized control function to N DOFs 

 Jul-2006  L Aksman New method of creating multiple threads from 

main thread implemented. 

 */ 

 

#include "main.h" 

#include "KinematicsDynamicsLib.h" 

#include "ControlLib.h" 

#include "FrictionTest.h" 

 

/***************************************************************************** 

MODULE-LEVEL VARIABLES 

*****************************************************************************/ 

double PERIOD_SYSTEM__MICROSECS; 

 

double TRAIN_SECONDS;    /* specified by TRAIN_PERIODS in options 

file */ 

double TEST_SECONDS;   

double RUN_SECONDS; 

 

/* flags */ 

BOOLEAN ZERO_COUNTERS; 

BOOLEAN SAVE_CONTROL_DATA; 

BOOLEAN SAVE_PARAM_EVOLUTION; 

BOOLEAN SAVE_LEARNED_PARAMS; 

BOOLEAN LOAD_LEARNED_PARAMS; 

BOOLEAN ESTIMATION_IMPEDANCE; 

BOOLEAN FTS_IMPEDANCE; 

BOOLEAN STOP_AFTER_TRAINING; 

BOOLEAN USE_DYNAMIC_MODEL; 

BOOLEAN USE_VISCOUS_NN; 

BOOLEAN USE_HINGES; 

 

/*global I/O variables */ 

FILE *out; 

FILE *out_param_evolution; 

RclLeonControlDataPtrQueue g_queue; 

RclLeonControlDataPtrQueue g_queue_param_evolution; 
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/* inter-thread variables */ 

BOOLEAN DONE; 

 

/*COMEDI (open source Linux NIDAQ driver) variables */ 

comedi_t * daq_device; 

comedi_range *output_cr, *input_cr; 

int output_max_value, input_max_value; 

 

/* number of controlled DOFs */ 

int N;  

 

/* set to TRUE when want mainline to quit. This is kept outside 

of d_main_t so that it always available in VxWorks once this 

module has been loaded. */ 

BOOLEAN shouldQuit; 

 

BOOLEAN use_NN; 

 

/* initial time used by several functions */ 

struct timespec initial; 

 

/***************************************************************************** 

FUNCTION DECLARATIONS 

*****************************************************************************/ 

 

/* instruct mainline to quit when user hits Ctrl-C */ 

static void  

handleSigint(int in_sig); 

 

/***************************************************************************** 

FUNCTION DEFINITIONS 

*****************************************************************************/ 

 

int  

controlStart(int control_mode)  

{ 

 int  rc;  

 int  i; 

 double * a_hat; 

 char * roll_params; 

 char * pitch_params; 

 char * roll_name; 

 char * pitch_name; 

  

 /* initialize the force/torque sensor (FTS) driver */ 

 rc = ftsdrvr_Initialize(); 

 if (rc != FTSDRVR__ERRCODE__NO_ERROR) 

 { 

  printf("ERROR: force/torque sensor not initialized properly. Exiting.  

\n"); 

  return -1; 

 } 

 

 /* this is not done here. should be done BEFORE FTS is attached to anything */ 

 /* zero offset the FTS */ 

 /*rc = ftsdrvr_SetZeroOffset(FTS_PORT_NUMBER); 

 if (rc != FTSDRVR__ERRCODE__NO_ERROR) 

 { 

  printf("ERROR: force/torque sensor not zeroed properly. Exiting. \n"); 

  return -1; 

 }*/ 

 

 /*open the NIDAQ 6025e device */ 

 daq_device = comedi_open(FILENAME_COMEDI_DRIVER); 

 if (daq_device == NULL)  

 { 

  printf("ERROR: COMEDI error message: %s\n",  

comedi_strerror(comedi_errno())); 

  return -1; 

 } 
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 /* comedi AO setup*/ 

 output_cr =  comedi_get_range(daq_device, AO_SUBDEVICE, AO_CHAN_0,  

AO_RANGE_0); 

 output_max_value = comedi_get_maxdata(daq_device, AO_SUBDEVICE, AO_CHAN_0); 

  

 /* comedi AI setup */ 

 input_cr = comedi_get_range(daq_device, AI_SUBDEVICE, AI_CHAN_1, AI_RANGE_1); 

 input_max_value = comedi_get_maxdata(daq_device, AI_SUBDEVICE, AI_CHAN_1); 

  

 

 /* comedi counter setup */ 

 if (ZERO_COUNTERS) 

 { 

  /* Pitch DOF */ 

  printf("Move pitch DOF to zero position. Hit ENTER when done.\n"); 

 

  char input_char = (char) getchar(); 

  while (input_char != '\n') 

  { 

   input_char = (char) getchar(); 

  }  

  ComediSetupCounterChannelWithZeroing(daq_device, CTR_SUBDEVICE,  

CTR_CHAN_1);  

  printf("Pitch DOF zeroed. \n\n"); 

  

  /* Roll DOF */ 

  printf("Move roll DOF to zero position. Hit ENTER when done.\n"); 

 

  input_char = (char) getchar();  

  while (input_char != '\n') 

  { 

   input_char = (char) getchar(); 

  }  

  printf("Roll DOF zeroed. \n\n"); 

  ComediSetupCounterChannelWithZeroing(daq_device, CTR_SUBDEVICE,  

CTR_CHAN_0); 

 } 

 else 

 { 

  ComediSetupCounterChannelWithoutZeroing(daq_device, CTR_SUBDEVICE,  

  CTR_CHAN_0); 

  ComediSetupCounterChannelWithoutZeroing(daq_device, CTR_SUBDEVICE,  

  CTR_CHAN_1); 

   

  /*int counter_val = 0; 

  double act_pos; 

  while (!shouldQuit) 

  {   

   counter_val = ComediReadCounterWithRollover(daq_device,  

CTR_SUBDEVICE, CTR_CHAN_0, counter_val); 

   act_pos = counter_val * CONV_COUNTS_TO_RADIANS_ROLL; 

   printf("%d    %f\n", counter_val, act_pos);  

   usleep(100000);  

  }*/   

   

 } 

 

 /* motor constants */ 

 Motor_Constants motor_constants_morphBots_roll =  

 { CTR_CHAN_0, 

  AI_CHAN_1, 

  AO_CHAN_0, 

  CONV_COUNTS_TO_RADIANS_ROLL, 

  CONV_VOLTS_IN_TO_TORQUE_ROLL, 

  CONV_TORQUE_OUT_TO_VOLTS_ROLL, 

  SOFT_STOP_POS_ROLL, 

  MAX_VOLTS_OUT_SW_LIMIT  

 }; 

 

 Motor_Constants motor_constants_morphBots_pitch =  

 { CTR_CHAN_1, 
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  AI_CHAN_2, 

  AO_CHAN_1, 

  CONV_COUNTS_TO_RADIANS_PITCH, 

  CONV_VOLTS_IN_TO_TORQUE_PITCH, 

  CONV_TORQUE_OUT_TO_VOLTS_PITCH, 

  SOFT_STOP_POS_PITCH, 

  MAX_VOLTS_OUT_SW_LIMIT  

 }; 

 

 /* control gains */ 

 Control_Gains control_gains_morphBots_roll =  

 { Kp_LEARNING_ROLL, 

  Kp_NOT_LEARNING_ROLL, 

  Kd_LEARNING_ROLL, 

  Kd_NOT_LEARNING_ROLL, 

  GAMMA_c_VISCOUS_ROLL, 

  GAMMA_B_HINGES_ROLL 

 }; 

 Control_Gains control_gains_morphBots_pitch =  

 { Kp_LEARNING_PITCH, 

  Kp_NOT_LEARNING_PITCH, 

  Kd_LEARNING_PITCH, 

  Kd_NOT_LEARNING_PITCH, 

  GAMMA_c_VISCOUS_PITCH, 

  GAMMA_B_HINGES_PITCH 

 };  

 

 /* roll control state variable - calloc( ) is used because it guarantees that 

all member variables will be zeroed*/ 

 Control_State * control_state_morphBots_roll =  

 (Control_State *) calloc(1, sizeof(Control_State)); 

 assert(control_state_morphBots_roll != NULL);  

 

 control_state_morphBots_roll->moving_average_samples =  

(double *) malloc(MOVING_AVERAGE_WIDTH*sizeof(double)); 

 assert(control_state_morphBots_roll->moving_average_samples != NULL); 

    

 control_state_morphBots_roll->act_accel_unfilt =   

(double *) calloc(FILTER_NUM_LENGTH, sizeof(double)); 

 assert(control_state_morphBots_roll->act_accel_unfilt != NULL); 

 control_state_morphBots_roll->act_accel_filt =    

(double *) calloc(FILTER_DEN_LENGTH, sizeof(double)); 

 assert(control_state_morphBots_roll->act_accel_filt != NULL); 

 control_state_morphBots_roll->torque_ext_est_unfilt =  

(double *) calloc(FILTER_NUM_LENGTH, sizeof(double)); 

 assert(control_state_morphBots_roll->torque_ext_est_unfilt != NULL); 

 control_state_morphBots_roll->torque_ext_est_filt =   

(double *) calloc(FILTER_DEN_LENGTH, sizeof(double)); 

 assert(control_state_morphBots_roll->torque_ext_est_filt != NULL); 

 

 

 /* pitch control state variable - calloc( ) is used because it guarantees that  

  all member variables will be zeroed*/ 

 Control_State * control_state_morphBots_pitch =  

 (Control_State *) calloc(1, sizeof(Control_State)); 

 assert(control_state_morphBots_pitch != NULL); 

 

 control_state_morphBots_pitch->moving_average_samples =  

(double *) malloc(MOVING_AVERAGE_WIDTH*sizeof(double)); 

 assert(control_state_morphBots_pitch->moving_average_samples != NULL);  

 control_state_morphBots_pitch->act_accel_unfilt =   

(double *) calloc(FILTER_NUM_LENGTH, sizeof(double)); 

 assert(control_state_morphBots_pitch->act_accel_unfilt != NULL); 

 control_state_morphBots_pitch->act_accel_filt =    

(double *) calloc(FILTER_DEN_LENGTH, sizeof(double)); 

 assert(control_state_morphBots_pitch->act_accel_filt != NULL); 

 control_state_morphBots_pitch->torque_ext_est_unfilt =  

(double *) calloc(FILTER_NUM_LENGTH, sizeof(double)); 

 assert(control_state_morphBots_pitch->torque_ext_est_unfilt != NULL); 

 control_state_morphBots_pitch->torque_ext_est_filt =  

(double *) calloc(FILTER_DEN_LENGTH, sizeof(double)); 
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 assert(control_state_morphBots_pitch->torque_ext_est_filt != NULL); 

  

 

 /* --- ROLL DOF FRICTION PARAMETERS --- */ 

 Friction_Parameters fp_morphBots_roll; 

 /*viscous */ 

 fp_morphBots_roll.ABS_VEL_MAX_VISCOUS = ABS_VEL_MAX_VISCOUS_ALL;  

 fp_morphBots_roll.MESH_VISCOUS =  MESH_VISCOUS_ALL; 

 fp_morphBots_roll.MIN_NODE_VISCOUS =  (int) MIN_NODE_VISCOUS_ALL; 

  

 fp_morphBots_roll.MAX_NODE_VISCOUS =  (int) MAX_NODE_VISCOUS_ALL; 

  

 fp_morphBots_roll.NUM_NODES_VISCOUS =  (int) NUM_NODES_VISCOUS_ALL; 

 fp_morphBots_roll.c_hat_VISCOUS =      

  (double *) calloc(fp_morphBots_roll.NUM_NODES_VISCOUS, sizeof(double)); 

 assert(fp_morphBots_roll.c_hat_VISCOUS != NULL); 

 fp_morphBots_roll.dc_hat_VISCOUS =      

  (double *) calloc(fp_morphBots_roll.NUM_NODES_VISCOUS, sizeof(double)); 

 assert(fp_morphBots_roll.dc_hat_VISCOUS != NULL); 

 fp_morphBots_roll.old_dc_hat_VISCOUS =     

  (double *) calloc(fp_morphBots_roll.NUM_NODES_VISCOUS, sizeof(double)); 

 assert(fp_morphBots_roll.old_dc_hat_VISCOUS != NULL); 

 fp_morphBots_roll.old_lattice_min_VISCOUS = 0; 

 fp_morphBots_roll.old_lattice_max_VISCOUS = 0;  

 /* hinges */ 

 fp_morphBots_roll.ABS_VEL_MIN_HINGES = ABS_VEL_MIN_HINGES_ALL; 

 fp_morphBots_roll.ABS_VEL_MAX_HINGES = ABS_VEL_MAX_HINGES_ALL; 

 fp_morphBots_roll.V0_HINGES =   V0_HINGES_ALL; 

 fp_morphBots_roll.B_pos_HINGES =  0.; 

 fp_morphBots_roll.B_neg_HINGES =  0.; 

 fp_morphBots_roll.old_dB_pos_HINGES =  0.; 

 fp_morphBots_roll.old_dB_neg_HINGES =  0.; 

 /* other */ 

 fp_morphBots_roll.filename_params =  FILENAME_PARAMS_ROLL; 

 /* ------------------------------------ */ 

  

  

 /* --- PITCH DOF FRICTION PARAMETERS --- */  

 Friction_Parameters fp_morphBots_pitch; 

 /* viscous */ 

 fp_morphBots_pitch.ABS_VEL_MAX_VISCOUS = ABS_VEL_MAX_VISCOUS_ALL;  

 fp_morphBots_pitch.MESH_VISCOUS =  MESH_VISCOUS_ALL;   

 fp_morphBots_pitch.MIN_NODE_VISCOUS =  (int) MIN_NODE_VISCOUS_ALL;  

 fp_morphBots_pitch.MAX_NODE_VISCOUS =  (int) MAX_NODE_VISCOUS_ALL;  

 fp_morphBots_pitch.NUM_NODES_VISCOUS = (int) NUM_NODES_VISCOUS_ALL;  

 fp_morphBots_pitch.c_hat_VISCOUS =       

(double *) calloc(fp_morphBots_pitch.NUM_NODES_VISCOUS, 

sizeof(double)); 

 assert(fp_morphBots_pitch.c_hat_VISCOUS != NULL); 

 fp_morphBots_pitch.dc_hat_VISCOUS =       

(double *) calloc(fp_morphBots_pitch.NUM_NODES_VISCOUS, 

sizeof(double)); 

 assert(fp_morphBots_pitch.dc_hat_VISCOUS != NULL); 

 fp_morphBots_pitch.old_dc_hat_VISCOUS =      

(double *) calloc(fp_morphBots_pitch.NUM_NODES_VISCOUS,  

sizeof(double)); 

 assert(fp_morphBots_pitch.old_dc_hat_VISCOUS != NULL); 

 fp_morphBots_pitch.old_lattice_min_VISCOUS =  0; 

 fp_morphBots_pitch.old_lattice_max_VISCOUS =  0; 

 /* hinges */ 

 fp_morphBots_pitch.ABS_VEL_MIN_HINGES = ABS_VEL_MIN_HINGES_ALL; 

 fp_morphBots_pitch.ABS_VEL_MAX_HINGES = ABS_VEL_MAX_HINGES_ALL; 

 fp_morphBots_pitch.V0_HINGES =  V0_HINGES_ALL;  

 fp_morphBots_pitch.B_pos_HINGES =  0.; 

 fp_morphBots_pitch.B_neg_HINGES =  0.; 

 fp_morphBots_pitch.old_dB_pos_HINGES = 0.; 

 fp_morphBots_pitch.old_dB_neg_HINGES = 0.; 

 /* other */  

 fp_morphBots_pitch.filename_params =  FILENAME_PARAMS_PITCH; 

 /* ------------------------------------- */  
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 /* create some strings for names */ 

 roll_params =         

  (char *) malloc((strlen(FILENAME_PARAMS_ROLL) + 1) * sizeof(char)); 

 assert(roll_params != NULL); 

 pitch_params =         

  (char *) malloc((strlen(FILENAME_PARAMS_PITCH) + 1) * sizeof(char)); 

 assert(pitch_params != NULL);  

 strcpy(roll_params,  FILENAME_PARAMS_ROLL); 

 strcpy(pitch_params, FILENAME_PARAMS_PITCH);  

  

 roll_name =         

   (char *) malloc((strlen(ROLL_NAME) + 1) *sizeof(char)); 

 assert(roll_name != NULL);  

 pitch_name =         

  (char *) malloc((strlen(PITCH_NAME) + 1)*sizeof(char)); 

 assert(pitch_name != NULL); 

 strcpy(roll_name,  ROLL_NAME); 

 strcpy(pitch_name,  PITCH_NAME); 

 

 /* create the properties for each DOF from the above structures */  

 Single_DOF_Properties roll =  

 { roll_name,  

  DESIRED_INITIAL_POS_ROLL, 

  DESIRED_FINAL_POS_ROLL, 

  &motor_constants_morphBots_roll,  

  &control_gains_morphBots_roll,  

  control_state_morphBots_roll,   

  &fp_morphBots_roll 

 }; 

 Single_DOF_Properties pitch =  

 { pitch_name,  

  DESIRED_INITIAL_POS_PITCH, 

  DESIRED_FINAL_POS_PITCH, 

  &motor_constants_morphBots_pitch,  

  &control_gains_morphBots_pitch,  

  control_state_morphBots_pitch,  

  &fp_morphBots_pitch 

 }; 

 

 /* pass pointers to necessary kinematics and dynamics functions for pitch DOF  

  of pitch-roll manipulator */ 

 Kinematics_Dynamics_Functions pitch_kin_dyn_fns; 

 pitch_kin_dyn_fns.Forward_Kinematics =  &Forward_Kinematics_Pitch; 

 pitch_kin_dyn_fns.Translational_Jacobian = &Translational_Jacobian_Pitch; 

 pitch_kin_dyn_fns.Translational_Jacobian_Transpose =  

&Translational_Jacobian_Transpose_Pitch; 

 pitch_kin_dyn_fns.Translational_Jacobian_Inverse =    

  &Translational_Jacobian_Inverse_Pitch; 

 pitch_kin_dyn_fns.Translational_Jacobian_Transpose_Inverse =  

  &Translational_Jacobian_Transpose_Inverse_Pitch;  

 pitch_kin_dyn_fns.Force_Transform =  &Force_Transform_Pitch; 

 pitch_kin_dyn_fns.Dynamic_Adaptive_Torque_N_DOF =    

       &Dynamic_Adaptive_Torque_Pitch; 

 pitch_kin_dyn_fns.Viscous_Friction_Torque = &Viscous_Friction_Torque; 

 pitch_kin_dyn_fns.Hinges_Torque =   &Hinges_Torque; 

 

 

 /* pass pointers to necessary kinematics and dynamics functions for roll DOF  

  of pitch-roll manipulator */ 

 Kinematics_Dynamics_Functions roll_kin_dyn_fns; 

 roll_kin_dyn_fns.Forward_Kinematics =  &Forward_Kinematics_Roll; 

 roll_kin_dyn_fns.Translational_Jacobian = &Translational_Jacobian_Roll; 

 roll_kin_dyn_fns.Translational_Jacobian_Transpose =    

   &Translational_Jacobian_Transpose_Roll; 

 roll_kin_dyn_fns.Translational_Jacobian_Inverse =    

   &Translational_Jacobian_Inverse_Roll; 

 roll_kin_dyn_fns.Translational_Jacobian_Transpose_Inverse =   

   &Translational_Jacobian_Transpose_Inverse_Roll;  

 roll_kin_dyn_fns.Force_Transform =  &Force_Transform_Roll; 

 roll_kin_dyn_fns.Dynamic_Adaptive_Torque_N_DOF =  

&Dynamic_Adaptive_Torque_Roll; 
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 roll_kin_dyn_fns.Viscous_Friction_Torque = &Viscous_Friction_Torque; 

 roll_kin_dyn_fns.Hinges_Torque = &Hinges_Torque; 

 

 /* pass pointers to necessary kinematics and dynamics functions for pitch-roll 

manipulator */ 

 Kinematics_Dynamics_Functions pitch_roll_kin_dyn_fns; 

 pitch_roll_kin_dyn_fns.Forward_Kinematics = &Forward_Kinematics_Pitch_Roll; 

 pitch_roll_kin_dyn_fns.Translational_Jacobian =    

  &Translational_Jacobian_Pitch_Roll; 

 pitch_roll_kin_dyn_fns.Translational_Jacobian_Transpose =   

  &Translational_Jacobian_Transpose_Pitch_Roll; 

 pitch_roll_kin_dyn_fns.Translational_Jacobian_Inverse =   

  &Translational_Jacobian_Inverse_Pitch_Roll; 

 pitch_roll_kin_dyn_fns.Translational_Jacobian_Transpose_Inverse =  

  &Translational_Jacobian_Transpose_Inverse_Pitch_Roll;  

 pitch_roll_kin_dyn_fns.Force_Transform =     

  &Force_Transform_Pitch_Roll; 

 pitch_roll_kin_dyn_fns.Dynamic_Adaptive_Torque_N_DOF =   

  &Dynamic_Adaptive_Torque_Pitch_Roll; 

 pitch_roll_kin_dyn_fns.Viscous_Friction_Torque = &Viscous_Friction_Torque; 

 pitch_roll_kin_dyn_fns.Hinges_Torque = &Hinges_Torque; 

 

 Force_Estimation force_estimation;   

  

 N = 1; 

 if (control_mode == 0)   /* roll DOF control mode */ 

 { 

  Single_DOF_Properties * roll_dof[1] = {&roll};  

  Closed_Loop_Control_N_DOF(&roll_kin_dyn_fns,  

    &force_estimation, roll_dof, N); 

 } 

 else if (control_mode == 1)   /* pitch DOF control mode */ 

 { 

  Single_DOF_Properties * pitch_dof[1] = {&pitch};   

  Closed_Loop_Control_N_DOF(&pitch_kin_dyn_fns,  

   &force_estimation, pitch_dof, N); 

 } 

 else if (control_mode == 2)  /* two DOF control mode */ 

 { 

  N = 2; 

  /* order of DOFs is important - pitch comes first since it's closer to  

   the manipulator's base */ 

  Single_DOF_Properties * two_dof[2] = {&pitch, &roll};  

  

  Closed_Loop_Control_N_DOF(&pitch_roll_kin_dyn_fns,  

   &force_estimation, two_dof, N); 

 } 

 else  

 { 

  Stiction_Versus_Position(FILENAME_STICTION); 

 } 

 

 /* free dynamic data - roll dof */ 

 free(fp_morphBots_roll.c_hat_VISCOUS); 

 free(fp_morphBots_roll.dc_hat_VISCOUS); 

 free(fp_morphBots_roll.old_dc_hat_VISCOUS);  

 

 free(control_state_morphBots_roll->act_accel_unfilt); 

 free(control_state_morphBots_roll->act_accel_filt);  

 free(control_state_morphBots_roll->torque_ext_est_unfilt); 

 free(control_state_morphBots_roll->torque_ext_est_filt); 

 free(control_state_morphBots_roll->moving_average_samples); 

 free(control_state_morphBots_roll); 

 free(roll_params); 

 free(roll_name); 

 

 /* free dynamic data - pitch dof */ 

 free(fp_morphBots_pitch.c_hat_VISCOUS); 

 free(fp_morphBots_pitch.dc_hat_VISCOUS); 

 free(fp_morphBots_pitch.old_dc_hat_VISCOUS);  

 free(control_state_morphBots_pitch->act_accel_unfilt); 
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 free(control_state_morphBots_pitch->act_accel_filt);  

 free(control_state_morphBots_pitch->torque_ext_est_unfilt); 

 free(control_state_morphBots_pitch->torque_ext_est_filt); 

 free(control_state_morphBots_pitch->moving_average_samples); 

 free(control_state_morphBots_pitch);  

 free(pitch_params); 

 free(pitch_name); 

 

 /* disable comedi device */ 

 int volts_bits = comedi_from_phys(0, output_cr, output_max_value); 

 comedi_data_write(daq_device, AO_SUBDEVICE, AO_CHAN_0, AO_RANGE_0, AREF,  

   volts_bits); 

 comedi_data_write(daq_device, AO_SUBDEVICE, AO_CHAN_1, AO_RANGE_0, AREF,  

   volts_bits); 

  

 /* commented out because we don't want the counters losing their state between  

   runs */ 

 /*ComediCounterDisarm(daq_device, CTR_SUBDEVICE, CTR_CHAN_0); 

 ComediCounterDisarm(daq_device, CTR_SUBDEVICE, CTR_CHAN_1); */ 

  

 /* close the device drivers */ 

 comedi_close(daq_device); 

 ftsdrvr_Shutdown();  

 

 /* print the adapted parameters */ 

 a_hat = getAdaptedParams(); 

 

 printf("\nAdapted parameter values: \n");   

 for (i = 0; i < M; i++) 

 { 

  printf("%lf ", a_hat[i]); 

 } 

 printf("\n"); 

 

 return 0; 

} 

 

/* real time thread that calls controlStart() 

   NOTE: the returned value is not useful.  

      instead, the passed in parameter arg should be checked for an error 

condition */ 

void *  

Control_Thread_main(void * arg) 

{ 

 int     * rc; 

 int     rc2; 

 int     control_mode; 

 char    input_str[256]; 

 struct sigaction  sa; 

 struct sigaction  saOld;  

 struct sigaction saOld2; 

 sa.sa_flags     = 0; 

 sa.sa_handler   = handleSigint; 

 sigemptyset(&sa.sa_mask); 

 

 /* set the input argument to zero */ 

 rc = (int *) arg; 

 *rc = 0;  

 

 /* set interrupt action to default for now */ 

 if (sigaction(SIGINT, &saOld, &saOld2) == -1) 

 { 

  printf("ERROR: Control_Thread_main: error setting signal handler\n"); 

  *rc = -1; 

  return NULL; 

 } 

 

 /*------------ MODE SELECTION ------------------*/ 

 printf("\nHit ENTER to cycle through available control modes.\n"); 

 printf("Hit any key followed by ENTER when done.\n\n"); 
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 control_mode = 0; 

  

 printf("Control Mode: 1 DOF ROLL\n");  

    

 /* change control modes if ENTER key hit. o/w stop waiting for input */ 

   

 input_str[0] = '\0'; 

 fgets(input_str, 256, stdin);   

 

 while (strlen(input_str) == 1) /* just the newline */ 

 { 

  control_mode++; 

  if (control_mode == 4) 

  { 

   control_mode = 0; 

  }  

   

  /*print new setup based on updated control_mode */ 

  if (control_mode == 0) 

  { 

   printf("Control Mode: 1 DOF ROLL\n"); 

  } 

  else if (control_mode == 1) 

  { 

   printf("Control Mode: 1 DOF PITCH\n"); 

  } 

  else if (control_mode == 2) 

  { 

   printf("Control Mode: 2 DOF ROLL-PITCH\n"); 

  } 

  else  

  { 

   printf("Control Mode: Stiction Test ROLL\n"); 

  } 

 

  /*wait for input */ 

  input_str[0] = '\0'; 

  fgets(input_str, 256, stdin); 

 }  

 /*------------ END MODE SELECTION --------------*/ 

 

 /* change interrupt action */ 

 if (sigaction(SIGINT, &sa, &saOld) == -1) 

 { 

  printf("ERROR: Control_Thread_main: error setting signal handler\n"); 

  *rc = -1; 

  return NULL; 

 } 

 

 rc2 = setScheduleParams(pthread_self(), CONTROL_THREAD__POLICY,  

 CONTROL_THREAD__PRIORITY);   

 if (rc2 == 0) 

 { 

  *rc = controlStart(control_mode); 

 } 

 else 

 { 

  printf("\nERROR: Control_Thread_main: unable set schedule parameters  

(rc=%d,errno=%d)\n", rc2, errno); 

  printf("\n       Note that you must run as root/sudo, else get  

(rc=1,errno=1)\n"); 

  return NULL; 

 }      

  

 return NULL; 

} 

 

/* created by main thread, not real time thread that handles saving to file 

   NOTE: returned value is not useful. instead, parameter arg should be checked for an 

error condition */ 

void *  
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File_Saving_Thread_main(void * arg) 

{ 

 short int   num; 

 int    i; 

 int    j;  

 int    param_count; 

 int    * rc; 

 double    * param_lengths_array; 

 double    * param_array; 

 RclLeonControlData  * LCD_ptr; 

 BOOLEAN    local_DONE = FALSE; 

 

 struct sigaction   sa; 

 struct sigaction   saOld;  

 sa.sa_flags     = 0; 

 sa.sa_handler   = handleSigint; 

 sigemptyset(&sa.sa_mask); 

 

 /* set the input argument to zero */ 

 rc = (int *) arg;  

 *rc = 0; 

  

 /* change interrupt handling */ 

 if (sigaction(SIGINT, &sa, &saOld) == -1) 

 { 

  printf("ERROR: File_Saving_Thread_main: error setting signal  

handler\n"); 

  *rc = -1; 

  return NULL; 

 } 

 

 while(1) 

 {  

  /* DONE is set outside of this thread - it lets it know when to end */ 

  local_DONE = DONE;  

 

  /*if there is something in the data queue, take it out regardless of  

  whether DONE is T or F*/ 

  num = rclNumInLeonControlDataPtrQueue(&g_queue); 

  for (i = 0; i < num; i++) 

  { 

   *rc = rclPopLeonControlDataPtrQueue(&g_queue, &LCD_ptr); 

      

   if (*rc != 0) 

   { 

    printf("ERROR popping element from queue.\n"); 

    return NULL; 

   }  

 

   /* size N arrays */ 

   for (j = 0; j < N; j++) 

   { 

    fprintf(out, "%f ",  LCD_ptr->des_pos_array[j]); 

  

   }    

   for (j = 0; j < N; j++) 

   { 

    fprintf(out, "%f ",  LCD_ptr->des_vel_array[j]); 

  

   } 

   for (j = 0; j < N; j++) 

   { 

    fprintf(out, "%f ",  LCD_ptr->des_accel_array[j]); 

  

   } 

   for (j = 0; j < N; j++) 

   { 

    fprintf(out, "%f ",  LCD_ptr->des_pos_mod_array[j]); 

  

   }    

   for (j = 0; j < N; j++) 
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   { 

    fprintf(out, "%f ",  LCD_ptr->des_vel_mod_array[j]); 

  

   } 

   for (j = 0; j < N; j++) 

   { 

    fprintf(out, "%f ",  LCD_ptr->des_accel_mod_array[j]);

   

   } 

   for (j = 0; j < N; j++) 

   { 

    fprintf(out, "%f ",  LCD_ptr->act_pos_array[j]); 

  

   } 

   for (j = 0; j < N; j++) 

   { 

    fprintf(out, "%f ",  LCD_ptr->act_vel_array[j]); 

  

   } 

   for (j = 0; j < N; j++) 

   { 

    fprintf(out, "%f ",  LCD_ptr->act_accel_array[j]); 

  

   } 

   for (j = 0; j < N; j++) 

   { 

    fprintf(out, "%f ",  LCD_ptr->torque_PD_array[j]); 

  

   }        

        

   for (j = 0; j < N; j++) 

   { 

    fprintf(out, "%f ",  LCD_ptr->torque_model_array[j]);

   

   } 

   for (j = 0; j < N; j++) 

   { 

    fprintf(out, "%f ",  LCD_ptr->torque_motor_array[j]);

   

   }  

   for (j = 0; j < N; j++) 

   { 

    fprintf(out, "%f ",  LCD_ptr->torque_ext_array[j]); 

  

   } 

   for (j = 0; j < N; j++) 

   { 

    fprintf(out, "%f ",  LCD_ptr->torque_ext_est_array[j]);

   

   } 

   for (j = 0; j < N; j++) 

   { 

    fprintf(out, "%f ",  LCD_ptr-> 

torque_ext_est_LV_filt_array[j]); 

} 

   /* size 3 arrays */ 

   for (j = 0; j < 3; j++) 

   {   

    fprintf(out, "%f ",  LCD_ptr->force[j]);  

   

   } 

   for (j = 0; j < 3; j++) 

   {   

    fprintf(out, "%f ",  LCD_ptr->moment[j]);  

   

   } 

   for (j = 0; j < 3; j++) 

   {   

    fprintf(out, "%f ",  LCD_ptr->force_est[j]);  
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   }        

  

   for (j = 0; j < 3; j++) 

   {   

    fprintf(out, "%f ",  LCD_ptr->force_est_thresh[j]); 

    

   }  

   fprintf(out, "%f\n", LCD_ptr->time_stamp); 

 

   free(LCD_ptr->des_pos_array); 

   free(LCD_ptr->des_vel_array); 

   free(LCD_ptr->des_accel_array); 

   free(LCD_ptr->des_pos_mod_array); 

   free(LCD_ptr->des_vel_mod_array); 

   free(LCD_ptr->des_accel_mod_array); 

   free(LCD_ptr->act_pos_array);   

   free(LCD_ptr->act_vel_array); 

   free(LCD_ptr->act_accel_array); 

   free(LCD_ptr->torque_PD_array); 

   free(LCD_ptr->torque_motor_array); 

   free(LCD_ptr->torque_model_array); 

   free(LCD_ptr->torque_ext_array); 

   free(LCD_ptr->torque_ext_est_array); 

   free(LCD_ptr->torque_ext_est_LV_filt_array); 

   free(LCD_ptr); 

  } 

  

  if (SAVE_PARAM_EVOLUTION) 

  { 

   /*if there is something in the param evolution queue, take it  

out regardless of whether DONE is T or F*/ 

   num =rclNumInLeonControlDataPtrQueue(&g_queue_param_evolution); 

   for (i = 0; i < num; i++) 

   { 

    *rc =  

rclPopLeonControlDataPtrQueue(&g_queue_param_evolution, 

&LCD_ptr);       

    if (*rc != 0) 

    { 

     printf("ERROR popping element from param  

evolution queue.\n"); 

     return NULL; 

    }  

     

    /* retrieve parameter arrays store in RclLeonControlData  

   type variable */ 

    param_lengths_array = LCD_ptr->des_pos_array; 

    param_array =   LCD_ptr->des_vel_array; 

    

    /* save param_lengths_array information */ 

    fprintf(out_param_evolution, "%f ",   

param_lengths_array[0]); /* N */ 

    fprintf(out_param_evolution, "%f ",   

param_lengths_array[1]); /* M */  

    param_count = M;    

    for (i = 0; i < N; i++) 

    { 

     fprintf(out_param_evolution, "%f ",   

param_lengths_array[2 + i]);  

/* DOF i NUM_NODES_VISCOUS */  

     param_count +=  param_lengths_array[2 + i]; 

   

    } 

     

    /* save param_array information */ 

    for (i = 0; i < param_count; i++) 

    { 

    fprintf(out_param_evolution, "%f ",  param_array[i]);

        

    } 
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    /* save time stamps */ 

    fprintf(out_param_evolution,  

"%f\n", LCD_ptr->time_stamp); 

    free(LCD_ptr->des_pos_array); 

    free(LCD_ptr->des_vel_array); 

    free(LCD_ptr);     

   }  

  } 

   

  if (local_DONE) 

  {  

   break; 

  } 

 }  

 

 return NULL;  

} 

 

/* set options to default values. open options file and set option based on whatever 

options are in there.  

   format of options file:  

   OPTION VALUE 

   ex. 

   FREQ_SYSTEM  1000 

   NOTE: text should be tab delimited (as it is in this example) 

*/ 

void setOptions(char * filename_options) 

{ 

 FILE * options_file; 

 char str[256]; 

 char * tokens[3]; 

 int  i; 

 

 /* --- set default options --- */ 

 TRAIN_SECONDS =   TRAIN_SECONDS_DEFAULT;   

     

 TEST_SECONDS =    TEST_SECONDS_DEFAULT;   

 

 ZERO_COUNTERS =   ZERO_COUNTERS_DEFAULT; 

 SAVE_CONTROL_DATA =   SAVE_CONTROL_DATA_DEFAULT; 

 SAVE_PARAM_EVOLUTION =   SAVE_PARAM_EVOLUTION_DEFAULT; 

 SAVE_LEARNED_PARAMS =   SAVE_LEARNED_PARAMS_DEFAULT; 

 LOAD_LEARNED_PARAMS =   LOAD_LEARNED_PARAMS_DEFAULT; 

 ESTIMATION_IMPEDANCE =   ESTIMATION_IMPEDANCE_DEFAULT; 

 FTS_IMPEDANCE =   FTS_IMPEDANCE_DEFAULT; 

 STOP_AFTER_TRAINING =   STOP_AFTER_TRAINING_DEFAULT; 

 USE_DYNAMIC_MODEL =   USE_DYNAMIC_MODEL_DEFAULT; 

 USE_VISCOUS_NN =   USE_VISCOUS_NN_DEFAULT; 

 USE_HINGES =    USE_HINGES_DEFAULT; 

 /* --------------------------- */ 

  

 /* open options file */ 

 options_file = fopen(filename_options, "r"); 

  

 i = 1; 

 while (!feof(options_file)) 

 { 

  fgets(str, 256, options_file); 

 

  /* get first token on line - should be the option name */ 

  tokens[0] = strtok(str, "\t"); 

 

  /* get second token on line - should be option value */ 

  tokens[1] = strtok(NULL, "\t"); 

  if (tokens[1] == NULL) 

  { 

   printf("WARNING: Not enough words on line: %d. of options file:  

%s. Ignoring line.\n", i, filename_options); 

   continue; 

  } 
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  /* any other tokens on line  - error */ 

  tokens[2] = strtok(NULL, "\t"); 

  if (tokens[2] != NULL) 

  { 

   printf("WARNING: Extra token '%s' on line: %d. of options file: 

%s. Ignoring token.\n", tokens[2], i, filename_options); 

   continue; 

  } 

   

  /* determine training seconds based on number of periods of various  

   training trajectories */ 

  else if (!strcmp(tokens[0], "TRAIN_PERIODS")) 

  { TRAIN_SECONDS =    

atof(tokens[1])/FREQUENCY_TRAINING; } 

  else if (!strcmp(tokens[0], "TEST_SECONDS"))   

  { TEST_SECONDS =  atof(tokens[1]); } 

  else if (!strcmp(tokens[0], "ZERO_COUNTERS")) 

  { ZERO_COUNTERS = (BOOLEAN) atoi(tokens[1]);  

} 

  else if (!strcmp(tokens[0], "SAVE_CONTROL_DATA")) 

  { SAVE_CONTROL_DATA = (BOOLEAN) atoi(tokens[1]); } 

  else if (!strcmp(tokens[0], "SAVE_PARAM_EVOLUTION")) 

  { SAVE_PARAM_EVOLUTION = (BOOLEAN) atoi(tokens[1]); } 

  else if (!strcmp(tokens[0], "SAVE_LEARNED_PARAMS")) 

  { SAVE_LEARNED_PARAMS = (BOOLEAN) atoi(tokens[1]); } 

  else if (!strcmp(tokens[0], "LOAD_LEARNED_PARAMS")) 

  { LOAD_LEARNED_PARAMS = (BOOLEAN) atoi(tokens[1]); } 

  else if (!strcmp(tokens[0], "ESTIMATION_IMPEDANCE")) 

  { ESTIMATION_IMPEDANCE = (BOOLEAN) atoi(tokens[1]); } 

  else if (!strcmp(tokens[0], "FTS_IMPEDANCE")) 

  { FTS_IMPEDANCE = (BOOLEAN) atoi(tokens[1]);  

}   

  else if (!strcmp(tokens[0], "STOP_AFTER_TRAINING")) 

  { STOP_AFTER_TRAINING = (BOOLEAN) atoi(tokens[1]); } 

  else if (!strcmp(tokens[0], "USE_DYNAMIC_MODEL")) 

  { USE_DYNAMIC_MODEL = (BOOLEAN) atoi(tokens[1]); } 

  else if (!strcmp(tokens[0], "USE_VISCOUS_NN")) 

  { USE_VISCOUS_NN = (BOOLEAN) atoi(tokens[1]); } 

  else if (!strcmp(tokens[0], "USE_HINGES")) 

  { USE_HINGES =  (BOOLEAN) atoi(tokens[1]); } 

  else 

  { 

   printf("WARNING: Token: %s on line: %d of options file: %s is  

not a valid option name. Ignoring token.\n",  

    tokens[0], i, filename_options); 

  } 

    

  i++; 

 } 

 

 fclose(options_file); 

  

 PERIOD_SYSTEM__MICROSECS = (1000000./FREQ_SYSTEM); 

 RUN_SECONDS =   TEST_SECONDS + TRAIN_SECONDS; 

  

 if (ESTIMATION_IMPEDANCE && FTS_IMPEDANCE) 

 { 

  printf("ERROR: ESTIMATION_IMPEDANCE and FTS_IMPEDANCE flags both set in  

options file. Exiting.\n"); 

  exit(-1); 

 } 

  

 if (SAVE_PARAM_EVOLUTION && !SAVE_CONTROL_DATA) 

 { 

  printf("ERROR: SAVE_PARAM_EVOLUTION flag cannot be set without  

SAVE_CONTROL_DATA flag being set. Exiting.\n"); 

  exit(-1); 

 } 

} 

 

/* creates child threads which do the actual work of the program */ 
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int main(int argc, char * argv[])  

{ 

 int   rc; 

 int   rc_control_thread;  

 int   rc_file_saving_thread;  

 int   fclose_return_val; 

 pthread_t control_thread;  

 pthread_t file_saving_thread;    

 

 /* reset inter-thread variables */ 

 DONE =    FALSE; 

  

 struct sigaction   sa; 

 struct sigaction   saOld; 

 sa.sa_flags     = 0; 

 sa.sa_handler   = handleSigint; 

 sigemptyset(&sa.sa_mask); 

 /* sa.sa_sigaction = NULL; */    

/* _Don't_ assign this.  Is a union with sa_handler */ 

 

 rc = 0; 

 

 /* overwrite default options with whichever are specified in options file*/ 

 setOptions(FILENAME_OPTIONS); 

 

 if (sigaction(SIGINT, &sa, &saOld) == 0) 

 { 

  shouldQuit = FALSE; 

 

  if (SAVE_CONTROL_DATA) 

  { 

   /*open the file to be written to later*/ 

   out = fopen(FILENAME_CONTROL, "w"); 

   if (out == NULL) 

   { 

    printf("ERROR: failed to open file: %s. Exiting.\n",  

FILENAME_CONTROL); 

    exit(-1); 

   }     

    

   /* initialize and create the queue used for data saving*/ 

   rc = rclInitLeonControlDataPtrQueue(NULL, &g_queue); 

   if (rc != 0) 

   { 

    printf("ERROR initializing queue.\n"); 

   } 

   rc = rclCreateLeonControlDataPtrQueue(&g_queue);  

   if (rc != 0) 

   {  

    printf("ERROR creating queue.\n"); 

   }  

    

   if (SAVE_PARAM_EVOLUTION) 

   { 

    /* open the second (adapted parameters) file to be  

written to later */ 

    out_param_evolution = fopen(FILENAME_PARAM_EVOLUTION,  

      "w"); 

    if (out == NULL) 

    { 

     printf("ERROR: failed to open file: %s.  

Exiting.\n", FILENAME_PARAM_EVOLUTION); 

     exit(-1); 

    }     

     

    /* initialize and create the queue used for saving  

parameter evolution */ 

    rc = rclInitLeonControlDataPtrQueue(NULL,  

&g_queue_param_evolution); 

    if (rc != 0) 

    { 
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     printf("ERROR initializing param evolution  

queue.\n"); 

    } 

    rc =  

rclCreateLeonControlDataPtrQueue( 

&g_queue_param_evolution);  

    if (rc != 0) 

    {  

     printf("ERROR creating param evolution  

queue.\n"); 

    }  

   } 

    

   /* create not-real-time child thread that is in charge of  

writing data to file */ 

   rc = pthread_create(&file_saving_thread, NULL,  

File_Saving_Thread_main, (void *)  

&rc_file_saving_thread); 

   if (rc != 0) 

   { 

    printf("ERROR creating file saving thread.\n"); 

   } 

    

   /* sleep for a second */ 

   rc = usleep(500000); 

   if (rc != 0) 

   { 

    printf("ERROR usleep() failed.\n"); 

   } 

  } 

 

  /* create real-time child thread that is in charge of control */ 

  rc = pthread_create( &control_thread, NULL, Control_Thread_main,  

(void *) &rc_control_thread); 

  if (rc != 0) 

  {  

   printf("ERROR creating control thread.\n"); 

  } 

 

  /* join the control thread */ 

  rc = pthread_join(control_thread, NULL); 

  if (rc != 0) 

  { 

   printf("ERROR joining control thread.\n"); 

  } 

  if (rc_control_thread != 0) 

  { 

   printf("ERROR in control thread. \n"); 

  } 

 

  if (SAVE_CONTROL_DATA) 

  { 

   /* let the file saving thread know it's time to stop */ 

   DONE = TRUE;   

   

   /* join the file saving thread */ 

   rc = pthread_join(file_saving_thread, NULL); 

   if (rc != 0) 

   { 

    printf("ERROR joining file saving thread.\n"); 

   } 

   if (rc_file_saving_thread != 0) 

   { 

    printf("ERROR in file saving thread.\n"); 

   } 

    

   /* destroy the queue */ 

   rc = rclDestroyLeonControlDataPtrQueue(&g_queue); 

   if (rc != 0) 

   { 

    printf("ERROR destroying queue.\n"); 
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   } 

 

   /*close the file that was written to */ 

   fclose_return_val = fclose(out); 

   if (fclose_return_val != 0) 

   { 

    printf("ERROR: failed to close file: %s. Exiting.\n",  

FILENAME_CONTROL); 

   }  

 

   if (SAVE_PARAM_EVOLUTION) 

   { 

    /* destroy the param evolution queue */ 

    rc =  

rclDestroyLeonControlDataPtrQueue( 

&g_queue_param_evolution); 

    if (rc != 0) 

    { 

     printf("ERROR destroying param evolution  

queue.\n"); 

    } 

 

    /*close the file that was written to */ 

    fclose_return_val = fclose(out_param_evolution); 

    if (fclose_return_val != 0) 

    { 

     printf("ERROR: failed to close file: %s.  

Exiting.\n", FILENAME_PARAM_EVOLUTION); 

    }  

   } 

  } 

 }  

 else 

 { 

  printf("\nERROR: main: error setting signal handler\n"); 

  return -1; 

 } 

 

 /* revert signal handler */ 

 if (sigaction(SIGINT, &saOld, NULL) != 0) 

 { 

  printf("\nERROR: main: reverting signal handler\n"); 

  return -1; 

 } 

 

 printf("\n--- Exiting ---\n"); 

   

 return rc; 

} 

 

/* ================================================== 

Timesys FUNCTIONS 

================================================== */ 

 

/* instruct mainline to quit when user hits Ctrl-C */ 

static void  

handleSigint(int in_sig)  

{ 

 if (in_sig == SIGINT) 

 { 

  shouldQuit = TRUE; 

 } 

} 

 

 

/* returns 0 if sucessful, otherwise 1 */ 

int  

setScheduleParams( pthread_t thread,  

     int   sched_policy,  

     int   sched_priority) 

{ 
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 int      rc2; 

 struct sched_param   thread_param; 

 

 thread_param.sched_priority = sched_priority; 

 rc2 = pthread_setschedparam(thread, sched_policy, &thread_param); 

 if (rc2 != 0) 

 { 

  printf("ERROR: main: Unable setschedparam"); 

 } 

   

 return rc2; 

} 
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