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This dissertation, in three parts, presents self-consistent descriptions for the

motion of relativistic particles and compact objects in an arbitrary curved space-

time from a field theory approach and depicts the quantum and stochastic (part I),

semiclassical (parts I and II), and completely classical regimes (part III).

In the semiclassical limit of an open quantum system description, the particle

acquires a stochastic component in its dynamics. The interrelated roles of noise, de-

coherence, fluctuations and dissipation are prominently manifested from a stochastic

field theory viewpoint and highlighted with our derivations of Langevin equations

for the particle in curved space, which are useful for studying influences imparted by

a stochastic source. We also derive non-local and history-dependent equations for

radiation reaction and self-force in a curved spacetime when the stochastic sources

are negligible.

When the scales of the mass and the field are very different, as for an astro-

physical mass or compact object, the stochastic features of the system are strongly



suppressed and the stochastic description yields a (semiclassical) effective field the-

ory. The appropriate expansion parameter µ is the ratio formed by the size of the

compact object and the background curvature scale. Within an effective field theory

framework we derive the second order self-force and the leading order contributions

to the equations of motion from spin-orbit and spin-spin interactions on a compact

object. The finite size of the compact body affects its motion at O(µ4) and the self-

force at O(µ5). These results are useful for constructing more accurate templates

that the space-based interferometer LISA will need for parameter estimation.

Within a purely classical setting we introduce a new framework that describes

fully relativistic gravitating binary systems, possibly with comparable masses, and

allows for the background geometry to dynamically respond with the motions and

influences of the compact objects and gravitational waves. The approach self-

consistently incorporates mutual action and backreaction on every component in

the total system. We derive the equations of motion and identify the parame-

ter regimes where this new approach is applicable with the aim of establishing a

common framework applicable to the detection ranges of both LIGO and LISA

interferometers.
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Chapter 1

Introduction and overview

The operation of a network of ground-based gravitational wave interferometers

(LIGO [1], VIRGO, GEO600, etc.) and the proposal of a space-based interferometer

LISA (Laser Interferometer Space Antenna) [2] to probe the properties and inter-

actions of strongly gravitating systems has generated a growing theoretical interest

in the gravitational two-body problem. Due to the complexity of the problem there

are two limits that admit (quasi-)analytical approximation techniques. The first,

appropriate for the kinds of binary systems that LIGO is expected to observe, uses

the post-Newtonian (PN) formalism, which assumes that the two bodies, possibly

spinning, are weakly gravitating sources moving at slow velocities under their mu-

tual gravitational influences. Recently, the equations of motion for the two bodies

and the radiation these emit have been computed using the PN formalism to O(v6)

or 3PN order (see [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] and

references therein).

The second limit of interest is the case where one of the bodies is considerably

more massive than the other as occurs when a small black hole or neutron star

orbits a supermassive black hole. In this context, the small compact object can

be approximated reasonably well by a point particle. The motion of the particle

perturbs the background metric (i.e., the metric of the supermassive black hole in
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isolation) which generates metric perturbations that cross the event horizon of the

large hole and propagate far away to a detector. These perturbations also react on

the particle causing it to slowly spiral in toward the large black hole.

The back-reaction of the emitted radiation on the particle results from two

possible types of interactions with the gravitational wave. The first is a reactive

force describing the recoil on the particle as it emits the radiation. In particular,

this interaction is purely local. The second results from the interaction of the particle

with previously emitted radiation that back-scatters off of the background curvature

and later interacts with the particle at a different time and position. This is an

intrinsically non-local process. The effects of both kinds of interactions with the

emitted metric perturbations manifest on the particle as self-force and is responsible

for the slow in-spiral to the supermassive black hole. The equations of motion for

the particle moving on a general vacuum background spacetime were derived within

the last ten years by Mino, Sasaki and Tanaka [20] and Quinn and Wald [21]. We

refer to this equation throughout the remainder as the MSTQW equation.

This work is divided roughly into three parts. In the first part we derive the

equations of motion for a small “particle” (e.g., an atom, a molecule, a piece of dust,

etc.) moving through an arbitrary curved background. In particular we consider the

motion of a scalar and electric point charge as well as a small mass, each separately

interacting with their respective scalar, electromagnetic and gravitational fields.

We describe the motion of the particle using a quantum mechanical worldline while

the field is taken to be linear and quantized. This first principles approach allows

for the particle to be described as an open quantum system upon integrating out
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(a form of coarse-graining) the quantum field. If the worldline can be sufficiently

decohered then the particle will evolve dynamically within a semiclassical limit.

In this regime we recover the well-known radiation reaction equations of Abraham,

Lorenz and Dirac for the scalar and electric point charges but generalized to motions

in a curved spacetime [22, 23]. For the gravitational case we recover the MSTQW

self-force equations, which are devoid of any manifestly local radiation reaction forces

[20, 21].

Despite the strong degree of decoherence, the ongoing particle-field interactions

allow for the coarse-grained quantum field fluctuations to manifest as noise via the

appearance of a classical stochastic forcing term in the particle equations of motion.

The particle equations of motion are now extended to the form of a Langevin equa-

tion, which can depict dissipative dynamics and accommodate stochastic sources.

This suggests that observables involving the worldline coordinates must be calcu-

lated using stochastic correlation functions to average over these fluctuations. The

correlations of the noise provide information about the state of the quantum field,

which is particularly important if the state of the quantum environment is unknown

[24]. The noise is also intimately related to the decoherence of the particle worldlines

that defines this stochastic semiclassical limit in the first place.

This Langevin equation can also be used for stochastic sources, of classical

origin, introduced phenomenologically to model an environment. We show that

such noise can cause the particle to undergo a stochastic-averaged secular motion

in a manner similar to the velocity drifts encountered by a charged particle moving

through an inhomogeneous external electromagnetic field [25].
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In the second part of this work, we introduce an effective field theory (EFT)

approach for studying the extreme mass ratio inspirals (EMRI), which are expected

to be detected with the LISA gravitational wave interferometer [2]. The EFT ap-

proach replaces the compact object with effective point particle degrees of freedom.

This effective particle is constructed to be sufficiently robust to capture all finite size

effects that result from tidally induced moments, spin and intrinsic multipole mo-

ments describing the perturbations of the compact object away from its equilibrium

configuration in isolation. This is the first of two effective theories.

In the second EFT we couple this effective particle to the quantized metric

perturbations off a given background spacetime, which we simply call gravitons

throughout. Integrating out the gravitons yields an effective action given pertur-

batively in powers of µ, which is defined as the ratio of the size of the compact

object to the background curvature length scale. At each order in µ we can assem-

ble Feynman diagrams describing the relevant interactions and terms that must be

calculated to construct the full self-force at that order. In fact, there is in principle

no obstacle to compute the self-force to any order desired.

The EFT comes with two powerful advantages. On the one hand, even though

the dynamics of the short and long distance scales are cleanly separated we never-

theless are able to deduce the role of finite size effects, how they influence the motion

of the effective particle (i.e., the compact object) and at what order in µ this occurs.

On the other hand, being a legitimate quantum field theory, there is a plethora of

well-established methods for regularizing the divergences that ultimately appear in a

theory of point particles and fields. In this regard, using a mixture of distributional
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methods and dimensional regularization we are able to render the theory finite in an

efficient and well-defined manner. Furthermore, our choice of regularization scheme

implies that only logarithmic divergences have observable consequences, which im-

plies the existence of classical renormalization group scaling for the parameters of

the effective particle couplings describing the induced and intrinsic moments of the

compact object [26].

Spin is easily accomodated within our formalism as it represents just another

set of operators on the worldline of the effective particle. As such, we are able to

determine the leading order spin-orbit and spin-spin contributions to the self-force

for both a maximally rotating compact object as well as a co-rotating body.

The third part of this work introduces a new approach for studying gravita-

tionally bound systems. For concreteness we consider two bodies. The first is a

compact object (a neutron star or a black hole) with mass m and the second is a

black hole with mass M . We assume that the first mass is smaller than the second

m < M but not necessarily much smaller. We introduce a formalism in which the

smaller body (described as an effective point particle as in the EFT approach), the

metric perturbations and the background black hole metric evolve self-consistently

with each other. Because of this self-consistency all three variables affect each other

through their mutual backreaction and may provide a way to apply the methods

used in studying the EMRI scenario to a post-Newtonian system, namely, to a bi-

nary system with comparable masses. Since this formalism does not a priori rely

on a slow motion approximation (even though this may be necessary in practical

calculations) nor a flat background then our approach may also be useful for study-
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ing intermediate mass ratio inspirals (IMRI) using numerical techniques1. While

this approach is still developing we present the basic philosophy and equations of

motion, at least formally.

We turn now to a more thorough overview of each of these three parts.

1.1 Stochastic field theory of a particle and quantum fields in curved

space

There are many approaches for deriving the self-force on a (possibly charged)

massive point particle. The first derivation of the electromagnetic self-force is given

by DeWitt and Brehme [23, 27] who use the conservation of stress-energy, both of

the field and the charge, across a worldtube placed around the particle worldline to

derive the self-force on the charge. See [28] for a comparison and criticism of several

other derivations of self-forces given in the literature.

Most approaches study self-force on a classical particle due to a classical field,

with perhaps the notable exception of [20] who do not use a point particle treatment.

However, it is believed that all known classical fields, including the electromagnetic

field and the gravitational field (in particular, the metric perturbations about a back-

ground space) possess a fundamentally quantum nature. The most famous example

of this is provided by the resoundingly successful theory of quantum electrodynam-

ics describing the quantized electromagnetic field interacting with electrons (and

positrons). If an elementary particle, an atom, a molecule, a piece of dust, etc.,

1We thank Alessandra Buonanno for pointing this out to us.
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which we collectively refer to as a “particle” despite the appearance of a small finite

size, is interacting with a fundamentally quantum field then the question arises as to

the circumstances under which the intrinsic fluctuations of the quantum field affect

the motion of the particle in the spacetime. One may also wonder how the quantum

field fluctuations manifest themselves to the particle.

Such questions are best answered with an approach that starts from first prin-

ciples by treating the field and the particle as quantum objects. Specifically, in a

first principles approach the field is described using the theory of quantum fields

and allows for the occurrence of nontrivial quantum field processes that can affect

the motion of the particle. The quantum mechanical particle, on the other hand,

is treated as following a worldline that is free to move with relativistic speeds. By

describing the particle quantum mechanically we must ignore those worldlines in

which the particle number is not constant at any point in the particle’s history [29].

This is a physically reasonable requirement given that the energies involved for the

vacuum to spontaneously create an atom or a piece of dust, say, is very high by

most standards. Furthermore, the relativistic interactions of such “particles” may

cause a transformation to other objects, such as in the electron-positon annihilation

reaction e− + e+ → γ, but only at energies and momenta of order the particle’s rest

mass. Therefore, so long as one is interested in the motion of a well-defined and

localized particle at an energy scale below its rest mass then a quantum mechanical

description of the particle worldline should suffice.

There are two advantages to using an approach that begins from first prin-

ciples. First of all, since quantum theory is the fundamental framework by which
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a system can be studied, a first principles approach begins at the most fundamen-

tal level. Hence, all known physical particle and field interactions can be captured

within the framework and may contribute to the overall dynamics of the particle-field

system. Second, if the particle admits a semiclassical limit then a first principles

approach ought to be able to not only produce that limit but also give the con-

ditions under which the semiclassical limit is well-defined. This gives information

about the viability of using a fully classical description of particles and fields versus

the semiclassical particle limit of a description that is derived self-consistently from

a quantum-based treatment.

In Chapters 2 and 3 we implement a first principles approach using the in-

fluence functional of Feynman and Vernon [30] to describe the evolution and in-

teractions between a quantum mechanical particle worldline zα(λ) and a massless,

linear quantum field Φ. In particular, we study the particle-field interactions within

the open quantum system paradigm in which one subsystem, the quantum field,

acts as a large environment that couples to another subsystem, the particle degrees

of freedom, that is relatively small and easily influenced by interactions with the

environment. As we are interested in the dynamics of the particle and are not nec-

essarily concerned with computing field observables here, we may integrate out, or

coarse-grain, the quantum field so that we are left with full information about the

particle worldline only. Coarse-graining provides a way to self-consistently evolve

the particle with the field so that all quantum processes of both the particle and the

field are accounted for.

Dissipation in an open quantum system depends crucially on how one intro-
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duces coarse-graining into the total particle-field system. For example, if we coarse-

grain the modes of the quantum field (in flat spacetime) with energies higher than

the Planck mass k > mpl, say, then the system of interest consists of the particle

degrees of freedom and those modes of the field for which k < mpl. In this example,

the system will not manifest dissipation. However, by coarse-graining all of the field

degrees of freedom, as we are doing in this work, our system will consist solely of

the particle variables. For this coarse-graining, the system may manifest dissipation

through processes relating to, for example, radiation reaction and self-force. The

Poincare recurrence time, which is the time it takes for energy initially lost by the

system to be returned, is practically infinite when the environment contains ∼> 20

degrees of freedom [31]. The field possesses an infinite number of degrees of free-

dom implying that the energy dissipated by the system will be redistributed to the

environment variables and never (fully) return to the system. As we will elucidate

shortly, the appearance of dissipation is also intimately connected with noise and

decoherence.

The open quantum system paradigm naturally allows for a statistical inter-

pretation for the particle’s motion. Near the semiclassical limit, where the concept

of a particle is sufficiently well-defined from a field theory perspective, the fluctua-

tions of the coarse-grained quantum field manifest as noise in the form of a classical

stochastic force on the particle. This stochastic force, in turn, induces fluctuations

about the average worldline, which is the semiclassical trajectory, so that the parti-

cle acquires a stochastic component to its dynamics. This new result for a particle

in a curved spacetime is provided in Chapter 3 and extends previous work done
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in flat spacetime [29, 32, 33]. Provided that these induced fluctuations are small

the particle remains approximately within the semiclassical limit. Nevertheless, it

is more accurate to refer to this regime of the particle’s evolution as the stochastic

semiclassical limit.

This feature is reminiscent of quantum Brownian motion in which a massive

oscillator is coupled to many oscillators having much smaller masses. Upon coarse-

graining the small oscillators one finds that the large oscillator undergoes a stochastic

evolution due to its interactions with the small quantum fluctuations of the coarse-

grained oscillators [34, 35, 36, 37, 38].

We also demonstrate that the noise (i.e., the classical stochastic force) is in-

timately related to the fluctuations of the coarse-grained quantum field. As such,

the stochastic correlations of the noise provide information about the state of the

fluctuating quantum field. Interestingly, using more sophisticated formalisms than

what is presented in this work, one can develop a BBGKY hierarchy of stochas-

tic correlation functions that relate to certain quantum correlation functions of the

quantum field [39, 40, 24]. In this way, one can probe the quantum information of

the environment by measuring the stochastic correlations of system variables and

observables. For example, the dispersion of a small mass moving in flat spacetime is

given by the stochastic correlation function 〈z̃(τ)z̃(τ)〉stoch, which is related to the

quantum two-point function of the graviton 〈ĥαβ(z̄(τ))ĥγδ(z̄(τ))〉qm evaluated along

the average worldline z̄(τ)

Using the open quantum system paradigm and the influence functional ap-

proach we demonstrate the relationship between the decoherence of the quantum
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particle variables and the fluctuations of the quantum field. The fluctuations of the

quantum field essentially generate the stochastic classical force on the particle that

acts as a source of noise for the worldline coordinates. Decoherence is related to the

suppression of off-diagonal elements of the (reduced) density matrix for the particle

interacting with the coarse-grained quantum field. This, in turn, is related to the

magnitude of the influence functional F , which for an electric point charge e coupled

to the electromagnetic field in a curved space, for example, is

|F [z, z′]| = exp

{
− e2

4~

∫
dτdτ ′

[
uα(τ)− u′α(τ)

]
DH

αβ

(
zα(τ), z′α(τ ′)

)
×
[
uα(τ ′)− u′α(τ ′)

]}
(1.1)

where z and z′ represent two fine-grained worldline histories. The quantity DH
αβ is

the symmetric quantum two-point function of the electromagnetic field evaluated in

the initial state of the field. This quantity describes the fluctuations of the quantum

field. Qualitatively speaking, if DH is large in magnitude then the histories have to

be chosen so that z′ ≈ z. In this way the velocity difference of the two histories may

be small enough to guarantee that the magnitude of the influence functional, and

hence the reduced density matrix for the particle, is O(1) and not small. Therefore,

the decoherent worldline histories are the dominant ones, but their identification

depends upon the quantum field fluctuations, given by DH
αβ(x, x′).

The worldline influence functional formalism, which is used throughout Chap-

ters 2 and 3, allows for a self-consistent description of the interplay between dissi-

pation, noise, decoherence and correlations. As such, when there exists a stochastic

semiclassical limit for the particle one may ask under what conditions is such a limit
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valid and when do higher order quantum effects, from loop corrections say, become

important. We address some of these issues and deduce that a stochastic semiclas-

sical limit is well-defined if there is a minimal amount of additional coarse-graining

for the worldline fine-grained histories (via smearing over the scale of the particle’s

Compton wavelength) and only the leading order fluctuations are taken into ac-

count. By allowing for nonlinear stochastic corrections from higher order terms in

the fluctuation coordinate it seems that a stochastic semiclassical limit is no longer

well-defined.

The noise on the particle dynamics is derived from the quantum field fluctua-

tions using the influence functional formalism and depends on how we introduce the

coarse-graining, the particle-field coupling, etc. For this reason, stochastic correla-

tion functions of worldline quantities contain information about the quantum state

of the field and its correlations. Nevertheless, it is often the case in reality that the

source of noise is simply stipulated and put into the particle equations of motion

by hand. This added noise, or stochastic force, could have a classical origin, (e.g.

high temperature thermal fluctuations of a bath) or it could have no single identi-

fiable origin. Furthermore, one needs to stipulate a two-point correlation function

for the stochastic force, called the noise kernel, in order to compute stochastic cor-

relation functions for particle observables that depend on the stochastic worldline.

Therefore, if the environment is quantum and this noise is simply added then there

is no guarantee for self-consistent backreaction, no guarantee for the existence of

a fluctuation-dissipation relation, nor an ability to extract information about the

actual state of the environment from the assumed noise kernel.
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With these issues in mind we nevertheless introduce a source of noise by adding

a classical stochastic force to the classical particle equations of motion. We find that

expanding to second order in the coordinate fluctuations about some background

trajectory and performing a stochastic average of the resulting expansion implies

that the motion of the particle undergoes a secular drifting motion away from the

classical trajectory. This effect is particularly pronounced in the presence of a non-

homogeneous external field coupled to the particle. This drifting is encountered

frequently in plasma physics where the time-averaged Larmor motion results in a

net velocity drift if the charge is moving in an inhomogeneous external magnetic

field [25, 41].

While we focus mostly in Chapters 2 and 3 on the semiclassical and stochastic

semiclassical limits, respectively, for the particle’s motion there is, in principle, no

obstacle to considering the leading order quantum loop corrections. This issue has

been raised in [42, 43] where they compute the contributions to geodesics from

one-loop quantum graviton corrections. However, their approach is not completely

self-consistent since there is no radiation reaction or self-force taken into account.

Since these effects occur classically then it is likely that they will dominate quantum

corrections for most considerations. In our approach we can nevertheless obtain the

one-loop quantum field corrections to the semiclassical equations of motion, which

do incorporate classical radiative effects.

Another advantage of our open quantum system approach is that we can also

incorporate the effects coming from the finite extent of the “particle” in a self-

consistent manner using effective field theory techniques to replace the small, but
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extended, body by an effective point particle. This effective particle contains world-

line operators that account for moments that are induced by external forces on the

particle. While such effects are necessarily small they can nevertheless be accounted

for in a systematic and self-consistent manner within the influence functional for-

malism.

In Chapter 3 we compute the flux of gravitational waves passing through an

ideal interferometer, say, from a particle undergoing stochastic fluctuations far away

from the detector. Interestingly, we find that the interferometer measures the quan-

tum fluctuations of the metric perturbations, but only locally. That is, the detector

does not measure any information about stochastic sources that are far away, namely

from the fluctuating particle. Rather, we show that only fluctuations in the local

gravitational field are measured within our level of approximation; higher order

quantum corrections are likely to contain information about the source of gravita-

tional waves. Regardless, the ability to measure even the quantum fluctuations of

the local gravitational field is non-existent with current gravitational wave interfer-

ometers and will probably continue to be so for the next generation of detectors, at

least.

The stochastic field theory approach developed in Chapters 2 and 3 is rich

with physical concepts that span quantum, statistical and classical domains and

is a powerful tool for studying the effects of noise, dissipation, fluctuations and

decoherence of a quantum system.
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1.2 Effective field theory approach for the motion of a compact object

in a curved space

The quantization of general relativity is a widely famous problem that has

proved troublesome because of its status as a non-renormalizable quantum field

theory. Namely, the theory breaks down when energies near the Planck scale and

higher are probed. The inability to renormalize the theory at each order in per-

turbation theory does not spell the end for the quantization of gravity, however.

All experiments to date measure processes and interactions occurring with energies

far below the Planck scale. These experimental energies set the scale at which one

should make predictions with a theory. Therefore, quantizing general relativity, in

particular, can be done in a self-consistent manner provided that the energies being

probed and the predictions being made are below the Planck scale.

A framework that allows for determining the small influences that quantum

gravitational corrections have on the leading order classical processes is provided by

effective field theory2. In Chapters 4 and 5 we treat the naively non-renormalizable

quantum field theory of metric perturbations on a given background as an effective

field theory to describe the motion of a compact object in an arbitrary curved

background spacetime. We have in mind that the background is provided by a

supermassive Kerr black hole as we wish to apply this formalism to the case of

extreme mass ratio inspirals.

In the scenario we consider here, the compact object is much smaller than the

2See [44, 45, 46, 47, 48] for excellent introductions to the subject.
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length scale of the background curvature. As such, the small body can be described

as if it was a point particle moving through the spacetime, thereby ignoring any

effects the size of the body might have on its own motion. In fact, this approach is

taken in almost all derivations of the scalar, electromagnetic and gravitational self-

forces [49, 50, 22, 23, 27, 20, 51, 52, 53]. Correspondingly, most of these approaches

have calculated the leading order self-force in an expansion of the particle’s charge

or mass.

We utilize the EFT framework to go beyond the familiar leading order MSTQW

self-force by calculating the self-force to any desired order in µ. Our goal in com-

puting higher order contributions to the self-force is three-fold. First, the self-force

equation through first order is believed to be suitable for the detection of grav-

itational waves with the LISA interferometer [54, 55, 56, 57, 58]. However, for

parameter estimation one needs to calculate the second order contributions so that

the generated templates will describe the detected gravitational waveforms with

suitable precision, which is less than about a quarter of a cycle [59, 60, 61]. Using

a two-time expansion, also referred to as an adiabatic approximation, to describe

the slow (secular) inspiral of the compact object, the authors of [56, 62] observe

that the time-averaged part of the second order self-force is necessary for construct-

ing the LISA measurement templates and for extracting source parameters (mass,

spin, etc.) with the claimed fractional accuracy of ∼ 10−4 [54]. Second, calculating

the second order self-force provides concrete estimates for the error in using the

first order self-force alone. Likewise, calculating the third order self-force provides

concrete estimates for the error in using the self-force through second order alone,
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etc. Third, we wish to obtain the self-force equations and the configurations of the

metric perturbations3 at a sufficiently high order in µ that we can begin to over-

lap and compare with post-Newtonian results, upon expanding our results in the

relative velocity of the binary. Since there is in principle no obstacle to computing

higher order self-force then we feel that this should be an attainable goal, at least

for certain values of mass, relative velocity and orbital separation.

We briefly describe the effective field theory approach here. We recognize

two scales in the scenario of EMRI’s. The first is the size of the compact object

and the second is the curvature length scale of the background geometry. The

ratio of these two largely dissimilar lengths forms a quantity µ that we will use as

an expansion parameter for the perturbation theory as well as a parameter that

indicates the scaling of each kind of particle-field interaction. The EFT approach

begins by “integrating out” the “small” distance features of the system, which occur

at the scale of the compact object. In practice this is done by replacing the compact

object by an effective point particle description. As such, the effective particle

contains many worldline operators (called non-minimal couplings) that account for

the effects of induced moments, spin and intrinsic multipole moments of the compact

object. The coefficients of these non-minimal couplings can be determined through a

matching procedure in which a preferably gauge or coordinate invariant observable

is calculated in the effective theory and matched to the long wavelength limit of

3These are essentially the graviton one-point functions. We will not discuss how to calculate

the emitted radiation or its power/flux in this work. However, see Chapter 6 for some ideas on

doing so within our EFT framework.

17



the corresponding observable in the full theory. Here the full theory describes the

compact object interacting with external influences, e.g. as in Compton graviton

scattering where the compact object is subject to interactions with the incoming

gravitational waves, but otherwise isolated from the supermassive black hole.

The next step is to couple the effective particle to quantized metric pertur-

bations (gravitons) off the background spacetime. By integrating out the gravitons

and considering only classical interactions between the particle and the field, as well

as graviton self-field interactions, we obtain the effective action that generates the

equations of motion for the particle, i.e. the compact object. The effective action

can be expressed in the language of Feynman diagrams, which is an indispensable

tool in effective field theories, and the self-force is simply read off from the resulting

equations of motion.

The effective field theory approach possesses a unique advantage in that the

behavior of small scale perturbations, such as tidal deformations of the compact

object, are separated from yet consistently incorporated systematically into the dy-

namics of the long wavelength, or large distance, sector of the theory where the

compact object is treated as an effective particle that couples to (radiating) metric

perturbations. We will demonstrate this systematic inclusion of finite size effects,

which is the first time this has been done within the EMRI scenario. We also deter-

mine when finite size effects from tidally induced moments first affect the behavior

of the particle’s motion. This allows us to state and prove for the first time and

Effacement Principle for EMRIs. While such corrections are known to be small the

techniques of our effective field theory approach allow us to determine how small
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these are and if these are somehow enhanced.

Replacing the dynamics of the compact object by an effective point particle de-

scription comes with certain important consequences. Perhaps the most well-known

of these is the appearance of divergences that stem from the inclusion of arbitrarily

high frequency modes in the quantum field theory that interact with a point-like

object. The divergent part of a Feynman diagram, which appears in the effective ac-

tion for the particle dynamics and involves the free-field propagator, is a quasi-local

contribution. In a curved spacetime the finite remainder is non-local in time (i.e.,

history-dependent) and must be isolated from the local divergent part; using tech-

niques from distribution theory we are able to do so. This leads us to evaluate the

divergent part of the diagram and so we need to choose a particular regularization

scheme. With the EFT being a quantum theory there is a vast array of methods

and techniques that regularize these ultraviolet divergences. Of these, dimensional

regularization [63] naturally fits within the effective field theory paradigm. As we

discuss in Chapter 4 the use of dimensional regularization (or for that matter any

so-called mass-independent regularization scheme [46]) provides an efficient means

for not only regularizing the singular integrals in the effective action but also for

determining which Feynman graphs are important at a particular order in µ.

While we use dimensional regularization to render the theory finite we need

a representation of the divergent propagator D(x, x′) to do so. We use the mo-

mentum space representation originally developed by Bunch and Parker for a scalar

field in curved spacetime [64]. At a particular point, x′, the authors associate a

tangent space and solve the field equations for the Green’s function iteratively in
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powers of the distance from the origin as expressed in Riemann normal coordinates.

Unfortunately, this approach is rather cumbersome for higher spin fields.

We give a novel derivation of Bunch and Parker’s result in Appendix D us-

ing a diagrammatic approach familiar from perturbative quantum field theory. We

demonstrate that the use of Feynman diagrams to calculate the terms in the momen-

tum space representation of the propagator is more efficient than that given in [64]

and leads to a particularly useful identity that eliminates some of the diagrams that

naively appear. This is particularly useful when considering higher spin tensor fields

including the graviton propagator on a background. Despite the increased efficiency

the calculations are somewhat involved. Nevertheless, we compute the leading or-

der contribution to the quasi-local structure of the graviton propagator, which arises

from the non-trivial curvature of the background spacetime4. To our knowledge, this

has not been given in the literature using momentum space techniques.

Since we know the relevant momentum space divergent structure of a scalar

field in a curved background we introduce a nonlinear scalar field model. This toy

theory is related to general relativity and can be used to calculate the second order

self-force on a non-spinning particle. We find that because our EFT formalism is

based on the Closed-Time-Path (CTP), or in-in, formalism that the self-force is

manifestly causal. This is to be contrasted with the in-out formalism used in [26],

which is more suitable for describing scattering processes than initial value problems.

4Other regularization methods including adiabatic regularization [65], point-splitting regular-

ization [66], Hadamard’s ansatz [67], spacetime dimensional regularization [68], etc. have been

developed for quantized metric perturbations.
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In fact, using the in-out formalism to calculate the second order self-force in curved

spacetime gives rise to acausal equations of motion for the particle.

The effective field theory approach benefits greatly from its ability to include

spin, and other intrinsic multipole moments of the compact object, as a non-minimal

coupling on the effective point particle worldline. We include spin in our formal-

ism following the approaches of [69] for a relativistic top in flat spacetime and its

generalization to curved spaces in [70]. The effects of spin have been included in

a self-force calculation by [51] only through leading order. These authors recover

the familiar equations of spin precession first derived by Papapetrou [71] but are

augmented by the familiar MSTQW self-force.

Using the EFT formalism we also recover the Papapetrou equation to leading

order. However, by knowing how the spin interactions scale with µ we can easily

construct the subleading spin interactions. In particular, for a maximally rotating

body we deduce for the first time that the leading order spin-orbit interaction is a

second order contribution to the self-force while the leading order spin-spin interac-

tion appears at third order in µ. These statements demonstrate some of the power

and flexibility of the EFT approach: if one is interested in determining the effect

of a particular kind of interaction, say the leading order spin-spin diagram, then all

one has to do is construct and compute these relevant Feynman diagrams. That is,

we don’t have to compute all of the second order contributions and all of the third

order contributions to pick out the leading order spin-spin interaction. We simply

write down the appropriate diagram and calculate.

For a co-rotating spinning body where its spin angular velocity is approxi-
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mately equal to the orbital angular velocity, we also show that the leading order

spin-orbit contribution is suppressed to third order. Likewise the leading order

spin-spin interaction is suppressed to fourth order.

Within the nonlinear scalar field model we introduced above, we calculate the

leading order spin-orbit and spin-spin contributions to the self-force. Surprisingly,

these diagrams actually appear at fourth and seventh orders, respectively, because

of the particular way that the spin and the scalar field couple to each other.

1.3 Self-consistent backreaction approach

As mentioned earlier in this Introduction there are two important limits of

the gravitational binary system that admit the use of analytic approximation tech-

niques. The first utilizes the slow motion and weak gravitational fields of the binary

constituents to devise a perturbation theory based on their relative velocity. This

method, called the post-Newtonian (PN) approximation, is perhaps the most stud-

ied approach of the two given its lengthy history, starting from the famous work of

Einstein, Infeld and Hoffman [72], and the large number of researchers. As result,

this approximation has successfully determined the PN potentials that the (non-

spinning) bodies mutually experience through 3PN (or through O(v6) beyond the

Newtonian potential contribution) and the radiation reaction through 3.5PN order.

While most recent successes using PN methods have come from augmenting the PN

expansions with resummation techniques [73, 74, 75] the formalism still relies on the

relative velocity being much smaller than c and the fields experienced by each body
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being weak.

The second regime applicable for analytic approximation techniques is the

extreme mass ratio inspiral. In this scenario, a small compact object moves in a

bounded orbit in the background provided by a supermassive black hole. Here,

the expansion parameter is the mass ratio of the two objects m/M , which for the

detectable frequency bandwidth for LISA is taken between about 10−5 to 10−7.

For the detection of gravitational waves from such a system one needs to know

the leading order corrections to the motion of the small compact object, which is

usually treated as a point particle. The O(m/M) correction is the MSTQW self-

force [20, 21]. However, for parameter estimation a second order calculation of the

self-force is necessary to precisely determine the orbital parameters associated with

the binary [60, 61]. While this method can describe the relativistic motion of the

compact object it relies heavily on the dissimilarity between the values of the two

masses.

In Chapter 6 we introduce a new formalism with the hope of taking some of

the best features of the EMRI approximation methods and applying them to binary

systems with comparable masses. In particular, we begin developing a formalism

with the hope that it can describe binary systems with comparable masses for the

constituents, say m/M ∼ 10−1 − 10−2, while still allowing for the masses to move

with relativistic speeds. We do not wish to invoke a slow motion assumption but

would prefer the system to evolve relativistically. In practical calculations, we may

need to invoke an extra assumption(s), such as slow motion, but we stress that our

formalism does not a priori require a slow motion assumption. Nor does it require
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that both objects experience weak gravitational fields. Being based on techniques

valid for a general curved spacetime we allow for a non-trivial background for the

system to evolve on.

We choose the less massive of the two objects to be represented using effective

point particle degrees of freedom as we discuss and implement in Chapters 4 and 5.

This may allow for the inclusion of some finite size effects into this formalism. Then,

by decomposing the full spacetime metric into a background and its perturbations

we introduce a formalism with the following properties. First, it is fully relativistic.

Second, the effective point particle (i.e., the smaller compact object) moves in a

non-trivial curved background. Third, we elevate the background metric from its

usual status as a dormant field that is given for all time (e.g. Schwarzschild or Kerr

backgrounds in the EMRI scenario) to one that is fully dynamical and interacts

with both the particle and the metric perturbations on the background. In this

way the equations of motion for all three quantities are dynamical and experience

backreaction from each other.

While such self-consistent equations of motion are quite difficult to solve be-

cause of the mutual backreaction we hope to apply these to binaries having com-

parable masses and relativistic velocities. This formalism may then provide a way

to describe systems that fall into the gap provided by the somewhat orthogonal

limits of the PN and EMRI binary systems. While we may not be able to describe

accurately the equal mass case, if our new approach can describe binaries with mass

ratios of order 10−1 − 10−2 then we will have succeeded in our mind’s eye.

One of several difficult questions we have to answer is: How well can this self-
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consistent backreaction formalism describe the behavior of the binary system when

the objects are in the final stages before merger? In other words, how close can the

two bodies be before the formalism breaks down? We begin to answer this question

in Chapter 6 with a crude estimate in terms of a plausible expansion parameter that

carries some information about the breakdown of the theory.

Recently, remarkable progress has been made [76, 77, 78, 79] for studying equal

mass binaries with numerical techniques. Using new gauge conditions and methods

for tracking the motion of black hole punctures these authors are able to com-

pute approximately one orbit of inspiral, to carry the numerical calculation through

the plunge, merger and ringdown phases, and to track the gravitational radiation

emitted by the system. While these methods show promise for equal mass binary

systems there are difficulties evolving intermediate and extreme mass ratio binaries

with sufficient resolution given the current available computing power. However,

for the EMRI scenario [80] evolves the metric perturbations in the Lorenz gauge

and calculates waveforms for a test mass (i.e., in the absence of self-force) following

a circular geodesic in the background spacetime of a supermassive Schwarzschild

black hole. Given that one aim for the self-consistent backreaction approach is to

describe binaries with comparable masses (i.e., with mass ratios of 10−1− 10−2) our

new formalism may provide an approximate analytical framework to numerically

evolve, with sufficient resolution, the inspiral and plunge phases for IMRIs.
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1.4 New results from this thesis work

Using the stochastic field theory approach we derive semiclassical particle

equations of motion for a charged particle and a point mass. These equations are

given in (2.121) for a scalar charge, (2.149) for an electric charge and (2.176) for a

point mass. These equations are the familiar Abraham-Lorenz-Dirac (generalized to

curved spacetime) and Mino-Sasaki-Tanaka-Quinn-Wald equations, respectively. In

the stochastic semiclassical limit we derive corresponding Langevin equations given

by (3.21), (3.35) and (3.51).

In flat spacetime we compute the noise kernel for gravitons in the vacuum

state and find a (τ − τ ′)−4 dependence in (3.63). In (3.67) we also find that the

particle follows a geodesic of an effective stochastic background geometry ηαβ +κξαβ.

When the particle acquires a stochastic component to its dynamics in a curved

background we show in (3.72) that the flux of gravitational radiation emitted by

the particle and measured with a detector far away contains the usual (classical)

gravitational wave flux plus a purely local flux representing the quantum graviton

fluctuations in the detector. As such, the purely local flux carries no information

about the stochastic motion of the particle; higher order quantum corrections will

likely contain information about the source.

In many practical circumstances the particle stochastic dynamics is treated

phenomenologically with a noise term put in by hand to account for the particle’s

interactions with fluctuations in the environment variables. We find in Section 3.3

that this may not yield self-consistent equations of motion or fluctuation-dissipation
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relations. As opposed to deriving the noise kernel, which we do with the influence

functional formalism, one needs to specify the noise kernel befitting the environment

being modeled. The Langevin equations with this source of phenomenological noise

are given formally in (3.74) and (3.75). Despite these cautions we find that the

(phenomenological) noise induces a slowly varying force in the presence of external

fields that results from averaging the (fast) stochastic particle fluctuations. The

equations of motion for the coordinate fluctuations, the noise-induced drifting force

and the (guiding center) background trajectory is given for an electric charge in

flat spacetime in (3.78), (3.80) and (3.81), respectively. The effect is analogous to

the drifts of an electric charge across external field lines due to the time-averaged

(rapid) Larmor oscillations, which is encountered frequently in plasma physics. Most

of these results have been given before in [49] and [50].

In the second part of this dissertation we use the effective field theory approach

to derive the MSTQW equations of self-force (4.114) in Section 4.4. We also derive,

for the first time, an Effacement Principle for EMRIs in Section 4.5 and show that

the internal structure of a black hole and a neutron star affect the particle dynamics

at O(µ4) by causing deviations from the point particle motion that are due to tidally

induced moments from gravitational interactions with the central supermassive black

hole. The self-force is affected by these tidal distortions at O(µ5). For a white dwarf

we find that the order at which finite size effects will affect its dynamics depends

on the distance from the supermassive black hole. The white dwarf may become

tidally disrupted at an orbital distance much further than the innermost stable

circular orbit. Newtonian estimates for the tidal disruption suggest that it is a
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second order process, O(µ2). This work is unpublished but will be found in [81].

We give the diagrams relevant for a second order self-force calculation in

Fig.(5.1). For gravitational self-force the tensor index manipulations are rather

involved so we focus on a toy model describing a nonlinear scalar field on a fixed

vacuum background geometry. This model is constructed to have the same power

counting rules, Feynman diagrams and Effacement Principle as the gravitational

problem. We calculate the second order self-force for this scalar model in (5.51).

We expect the gravitational second order self-force to have a similar form but with

an additional term given in (5.53). The Feynman diagrams relevant for a third order

self-force calculation are shown in Fig.(5.2). These results are in preparation and

will shortly be found in [82].

The self-force on spinning compact objects is described in Section 5.2. For a

maximally rotating body we find that the Papapetrou-Dixon spin precession enters

at O(µ) along with the MSTQW self-force. We also deduce that the leading order

spin-orbit and spin-spin contributions to the self-force occur at O(µ2) and O(µ3),

respectively. These effects enter at one higher power of µ for a corotating compact

object. For the nonlinear scalar model used earlier, we calculate the leading order

spin-orbit and spin-spin contributions to the self-force and find that these are sup-

pressed to O(µ4) and O(µ7), respectively, due to the particular spin-field interactions

used in this example. We do not anticipate this suppression for the gravitational

case. See the forthcoming paper [83] for these calculations and results.

In the third part of this work we detail our motivations for introducing the

self-consistent backreaction approach in Chapter 6. We treat the compact object
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with the lesser mass as an effective point particle. The larger compact object, which

we take to be a black hole, is described by the dynamical background geometry.

We deduce the equations of motion for the gravitational waves in (6.27), for the

background geometry in (6.29) and for the effective particle in (6.31). We develop

a crude estimate in Section 6.2.2 for the validity of the self-consistent backreaction

approach, which indicates that the self-consistent backreaction equations may be

valid near the plunge phase for a mass ratio of about 0.1. These results are as yet

unpublished and will be found in [84].

1.5 Notations and conventions

We collect here the notations and unit conventions that we use throughout

this work. We work with spacetime metrics that have mostly positive signature

(−,+,+,+) and use the conventions of Misner, Thorne and Wheeler [85] for the

curvature tensors. We will frequently use the notation that an unprimed (primed)

index refers to that component of a tensor field or coordinate evaluated at the point

x (x′) or worldline parameter value λ (λ′), as appropriate. For example, the graviton

propagator is denoted Dαβγ′δ′(x, x
′) since it transforms as a rank-2 tensor at both x

and x′; it is in fact a bitensor [86]. Another example is the 4-velocity at parameter

value λ′, which is denoted as żα′(λ′), or simply as żα′ .

A semicolon denotes a covariant derivative that is compatible with the back-

ground metric gµν and a comma denotes the usual partial (coordinate) derivative.
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A covariant derivative with respect to the worldline parameter λ is given by

DF

dλ
= ẋα(λ)F;α (1.2)

where F denotes the pullback of an arbitrary tensor field onto the worldline. Like-

wise, the usual λ-derivative of F is

dF

dλ
= ẋα(λ)F,α. (1.3)

Other notations that appear less commonly throughout the remainder will be ex-

plained as they are introduced.

In Chapters 2, 3 and 6, we use units where c = G = 1 and retain ~ explicitly in

our expressions. In these units, time and length have units of (mass). In Chapters

4 and 5, we use different units where c = ~ = 1 and express Newton’s constant G

in terms of the Planck mass,

G =
1

32πm2
pl

. (1.4)

In these units, time and length have units of 1/(mass).

Unless otherwise specified, Greek indices run from 0 to d − 1 where d is the

number of spacetime dimensions. Latin indices with a caret, which run from 0 to

d−1, represent the component of a tensor field evaluated in a quasi-local coordinate

system such as the Riemann normal coordinates. It should be clear from the context

at what point the tensor component is evaluated in the quasi-local coordinates. In

Section 5.2 capital Latin indices denote the components of a frame field, or tetrad,

on a worldline. These indices also run from 0 to d− 1.
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See Appendix A for the definitions and conventions of the propagators and

quantum two-point functions that we encounter throughout this work. However, we

essentially follow the definitions given in [66] upon changing to the mostly-positive

signature convention.

In Appendix D we refer to the quasi-local expansion, given in powers of the

ratio of the displacement from the origin to the background curvature length scale,

as an adiabatic expansion since this is essentially an expansion in derivatives of the

background metric. We use the notation O(∂n) to denote the nth adiabatic order of

such an expansion.
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Chapter 2

The nonequilibrium dynamics of particles and quantum fields in

curved space: Semiclassical limit

2.1 Introduction and overview

In this chapter we consider the dynamics of particles and linear quantum fields

interacting in a curved spacetime. We consider the particle to be significantly less

massive than the mass scale associated with the background curvature of the space

it moves in. As such, we allow for the particle’s mass to be so small that quantum

effects are no longer negligible but provide small corrections to the particle’s motion.

Under this assumption we may consider the particle to consist of a small extended

object. Such bodies include massive elementary particles, atoms, molecules and

nanoscale or possibly micron sized objects. We collectively refer to such microscopic

bodies as “particles” in this chapter even though these may possess a small but finite

extension. As we will show in Chapter 4 the effect that the finite size of an object

has on its motion is relevant beginning at fourth order in the ratio of the object’s size

to the background curvature length scale. Therefore, we will ignore the structure

that the “particle” may possess throughout this and the next Chapter.

We begin from first principles and treat the particle as a quantum mechanical

object that may move with relativistic speeds. We take the field that the particle
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interacts with to be a linear quantum field on a curved background spacetime. We

wish to study the influence that the quantized field has on the particle. It is therefore

useful to consider the particle degrees of freedom, viz. the coordinates describing

its trajectory through space, as an open quantum system. In this viewpoint, the

dynamics and fluctuations of the field are integrated out through a form of coarse-

graining. There results a self-consistent description of the particle evolving under

the influence of the coarse-grained quantum field fluctuations.

In the open quantum system paradigm the particle degrees of freedom, or vari-

ables, are regarded as the system of interest whereas the (massless1) linear quantum

field is understood to be a “large” environment. Together, the particle plus field

subsystems constitute what we call the total system. We will reserve the word

“system” to refer to the particle degrees of freedom.

In systems that can be treated as open there often exists a scale that naturally

splits the total system (particle and field) into a system (particle) and an environ-

ment (field). Often this division comes from the mass or length scales intrinsic to

the total system. Typically, a system has only a few degrees of freedom while the

environment has considerably more. In fact, if the environment is described by

more than roughly 20 degrees of freedom then the duration of Poincare’s recurrence

time indicates that energy starting in the system will be transferred to the envi-

ronment with a vanishingly small probability that it will ever return to the system

[31]. Therefore, a system interacting with a large environment will typically undergo

dissipation as energy is lost to the many variables composing the environment. We

1We consider only massless fields here but the extension to massive fields is straightforward.
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expect the same consequences in the particle-field total system.

In our considerations, the massless field contains only massless modes while

the particle possesses an intrinsic non-zero rest mass2. We are therefore justified

in regarding the particle variables as the system of interest and the quantum field

as the environment. Furthermore, for a (non-spinning) particle the system contains

only six degrees of freedom (spatial position and 3-velocity) while the environment

contains an infinite number of modes.

Coarse-graining the quantum field fluctuations provides a mechanism for the

quantum mechanical particle worldline coordinates to decohere through its interac-

tions with the environment. This process is called environmentally induced decoher-

ence and allows for the particle to evolve within a semiclassical regime. To obtain

a well-defined semiclassical limit for the particle one needs to also coarse-grain the

quantum mechanical worldline fluctuations as well. Care needs to be given with

regard to the relevant scales of the problem as both worldline and field coarse-

grainings necessarily occur at definite length or mass scales. The scale at which the

fine-grained worldline histories are coarse-grained (e.g. smeared) needs to be chosen

large enough to obtain sufficiently decohered particle histories but small enough not

to lose the salient features of the semiclassical point-particle dynamics.

By coarse-graining these worldline fluctuations, which occur on length scales

near the particle’s Compton wavelength λC = 1/m, the particle moves nearly along

2Interestingly, for a scalar charge in certain cosmological spacetimes it has been shown [87] that

the charge may radiate a percentage of its rest mass to infinity due to the mass non-conserving

particle-field interactions that take place.
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its expected classical trajectory. However, interactions with an intrinsically fluctu-

ating quantum field can manifest as noise via classical stochastic forces exerted on

the particle. As a result, the particle undergoes Brownian-like motion and carries

information about the state of the quantum field that is inducing these fluctuations.

This information is carried through the correlation of the stochastic forcing terms,

which is related to the fluctuations of the quantum field itself through a quantity

called the noise kernel, as we will show in Chapter 3.

Using a cohesive and self-consistent formalism powerful enough to incorporate

classical, statistical and quantum processes inherent to particle-field systems will

be vitally important. For this reason, we start from first principles using the influ-

ence functional3 approach introduced by Feynman and Vernon [30]. The influence

functional appears naturally within a convenient density matrix formulation for the

nonequilibrium dynamics of this particle-field open quantum system.

This chapter is outlined as follows. In Section 2.2 we derive a path integral

representation for the density matrix describing the quantum statistical state of a

quantum mechanical relativistic particle and a quantum field in a curved spacetime.

In doing so we will introduce the influence functional. In Section 2.3 we introduce the

closed-time-path (CTP) generating functional and demonstrate its relation to the

influence functional. From this the (coarse-grained) effective action for the particle

is related to a loop expansion of the CTP effective action. The semiclassical limit

of the particle’s dynamics under the influence of the quantum field is explored in

3This functional is closely related to the closed-time-path generating functional, which we will

discuss below.
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Section 2.4.

2.2 The density matrix, coarse-graining and the influence functional

On a constant-time hypersurface Σi specified by an initial time ti for a given

coordinate system, the quantum statistical state of the system (particle) and en-

vironment (quantum field) is described by a density operator ρ̂(Σi). We allow for

the particle to interact with an arbitrary (bosonic4) tensor field ΦA where A denotes

possible tensor indices. For example, when A = µ the quantity ΦA describes a vector

(spin-1) field and when A = µν it describes a symmetric tensor (spin-2) field.

To facilitate easier computation it is customary to choose the initial density

operator such that the system and the environment are initially uncorrelated

ρ̂(Σi) = ρ̂S(Σi)⊗ ρ̂E(Σi). (2.1)

Physically, this means that all of the field modes of ΦA have been instantaneously

uncorrelated from the particle degrees of freedom through a measurement or some

other method for preparing the state of the field and the particle variables at time

ti. However, this is not a physical state since it requires an infinite amount of energy

to separate all of the field modes from the particle. As a result, the factorized initial

state may give rise to significant transient behavior in physical observables at early

times. This behavior appears, for example, in models of quantum Brownian motion

[37], which describes a harmonic oscillator of mass M interacting with N harmonic

oscillators of an environment, each with mass m� M . A factorized initial state is

4We do not consider fermion fields here.
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seen to impart transient behavior to the diffusion coefficients of the master equation

for the reduced density matrix. This transient behavior originates from the high

frequency oscillators re-correlating with the initially uncorrelated system variables.

These correlations develop on a time scale ∼ 1/ωN where ωN is the highest frequency

in the oscillator environment. For times much longer than this the effects from the

initial factorized state are (usually) negligible. Other initial states, most notably

constructed from the so-called preparation function method [88], allow for the system

and environment variables to be somewhat correlated with varying degrees at time

ti. However, transients remain because the measurement or process that puts the

system and environment into that initial state is still performed instantaneously

[89].

From a physical point of view one cannot perform an instantaneous measure-

ment to prepare the initial state since the uncertainty principle guarantees that the

particle cannot be localized and its momentum determined with arbitrary precision

during an arbitrarily short duration of time. Physically, there will be a natural

minimum scale associated with the localization of the relativistic particle, viz., the

Compton wavelength λC = ~/mc. However, quantum mechanically a particle is

represented by a wavepacket of width Λ centered on the coordinates zµ. So long

as these wavepackets have a width Λ that is larger than the Compton wavelength

while simultaneously much smaller than any other scale in the problem (e.g., the

background curvature scale of the spacetime) then a point-particle representation

works well for scales much larger than Λ. We will assume this kind of construction

for the particle for all time.

37



Keeping these issues in mind, we will assume the factorized form for the initial

state (2.1) throughout this chapter. We will also describe the initial state of the

environment ρ̂E by a Gaussian functional of the initial field configurations ΦAi. In

practice, there may be radiating modes of the field present prior to the measure-

ment/preparation of the state at the initial time. These modes may persist beyond

the initial time and affect the particle’s motion. To ignore such unwanted features

it is physically reasonable to consider the initial time arbitrarily far in the past so

that such contributions to the initial state and the particle-field dynamics can be

safely ignored.

The action for the (closed) total system consists of an action describing the

free evolutions of the system of interest, that of a relativistic point-particle of mass

m, the environment, that of a linear quantum field (to be coarse-grained), and their

mutual interaction

Stot[z
µ(λ),ΦA] = Spp[z

µ(λ)] + SE[ΦA] + Sint[z
µ(λ),ΦA]. (2.2)

The system action is given by the usual action for a relativistic point-particle

Spp[z] = −m
∫
dλ
(
−gαβ ż

αżβ
)−1/2

(2.3)

where żα is the particle’s 4-velocity and λ, which is not necessarily the particle’s

proper time, parameterizes the worldline coordinates. The action for the linear

quantum field is given by

SE[ΦA] =
1

2

∫
d4x g1/2 gµνΦA;µK

ABΦB;ν (2.4)

where KAB is a tensor that describes the appropriate kinetic term for the given
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field. For example, if ΦA is a scalar field then KAB = K = 1 and for a symmetric

rank-2 tensor field KAB = Kαβγδ, the form of which depends on the specific choice

of gauge. The interaction term is linear in the field variable

Sint[z,ΦA] =

∫
d4x g1/2 jA(x; z)ΦA(x) (2.5)

where the current density jA(x; z) is a functional of the worldline coordinates whose

specific form will depend upon the field chosen and the type of interaction under

consideration. For example, if ΦA is a scalar field φ then we may choose jA = j to

describe a monopole coupling. However, the current density may also represent a

derivative interaction if j ∼ Jα
;α for some vector current Jα then

Sint[z, φ] = −
∫
d4x g1/2Jαφ;α. (2.6)

In this way the particle-field interaction in the form given in (2.5) can describe many

types of couplings so long as these are linear in the field variable.

Generally, the quantum field may have gauge degrees of freedom with the

notable exception of the scalar field. Because of this it is necessary to include a

gauge-fixing term into the action to ensure that a well-defined and unique propagator

exists for the field. If the gauge choice is implemented through the constraint

GB(ΦA) ≈ 0 (2.7)

for some appropriately chosen function GB (the ≈ denotes weak equality in the sense

of Dirac [90]) then the procedure of Faddeev and Popov [91] amounts to introducing

the following gauge-fixing term to the field action

Sgf = −α
∫
d4x g1/2GBG

B. (2.8)
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Here, α is some constant that can be chosen rather arbitrarily.

We will be dealing with tree-level fields exclusively in this Chapter and the

next so there is no need to keep track of the ghost fields that would normally appear

in the field action since ghosts first enter at one-loop. In the remainder of this

section we assume that the function GB is approximately linear in the field so that

the gauge-fixing action Sgf is quadratic. Any nonlinear term that might appear in

GB we assume to be small and negligible within the context of the approximations

used below.

Following the work of [29], the density operator (2.1) is unitarily evolved from

the initial time ti to some later time tf by the time-evolution operator

Ûtot(tf , ti) = exp

{
− i

~

∫ tf

ti

dt Ĥtot[z,ΦA]

}
(2.9)

for the system plus environment as specified by the total Hamiltonian Htot. In this

way, the density operator on a constant-time hypersurface at coordinate time tf > ti

is given by

ρ̂(Σf ) = Ûtot(tf , ti)ρ̂(Σi)Û
†
tot(tf , ti). (2.10)

In general, even though the initial state of the total system is factorized the state

at time tf is not because of the correlations that dynamically develop among the

mutually interacting particle and field variables.

We can specify the states of the particle and the field as eigenstates of the

Schrodinger operators ẑ and Φ̂ so that

ẑ|z〉 = z|z〉, (2.11)

Φ̂|Φ〉 = Φ|Φ〉. (2.12)
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Then choosing the direct product states

|zΦ〉 ≡ |z〉 ⊗ |Φ〉 (2.13)

as a basis of the Hilbert space for the total system Htot = Hpp ⊗ HE one can

show that the transition amplitude 〈zΦ; tf |zΦ; ti〉 has the following path integral

representation

〈zΦ; tf |zΦ; ti〉 = 〈zfΦf |Ûtot(tf )Û
†
tot(ti)|ziΦi〉 (2.14)

=

∫ zf

zi

Dz
∫ Φf

Φi

DΦ exp

{
i

~
Stot[z,Φ]

}
(2.15)

≡ K(zf ,Φf , tf ; zi,Φi, ti) (2.16)

where K is the amplitude of the time-evolution operator Ûtot.

At time tf the density matrix follows from the matrix elements of the density

operator (2.10)

ρ(zf ,Φf ; z
′
f ,Φ

′
f ; tf ) =

∫
dzi

∫
dz′i

∫
DΦi

∫
DΦ′

iK(zf ,Φf , tf ; zi,Φi, ti)

×ρ(zi,Φi; z
′
i,Φ

′
i; ti)K

∗(z′f ,Φ
′
f , tf ; z

′
i,Φ

′
i, ti) (2.17)

where a ∗ denotes complex conjugation. The integral
∫
DΦi denotes the path inte-

gral over all field configurations on the constant-time hypersurface Σi. This notation

is to be contrasted with
∫
DΦ, which is a path integral over the field configurations

in the bulk 4d spacetime. Using the definition for K we find the path integral
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representation for the density matrix

ρ(zf ,Φf ; z
′
f ,Φ

′
f ; tf ) =

∫
dzi

∫
dz′i

∫ zf

zi

Dz
∫ z′f

z′i

Dz′ ρS(zi, z
′
i; ti)∫

DΦi

∫
DΦ′

i

∫ Φf

Φi

DΦ

∫ Φ′
f

Φ′
i

DΦ′ ρE(Φi,Φ
′
i; ti)

× exp

{
i

~
(
Spp[z]− Spp[z

′] + SE[Φ]− SE[Φ′]

+ Sint[z,Φ]− Sint[z
′,Φ′]

)}
. (2.18)

To isolate the influence of the field on the dynamics of the particle we trace

over the field configurations on the hypersurface Σf . Tracing out the field variables

is a form of coarse-graining and the resulting partial trace of the density matrix in

(2.18) is called the reduced density matrix for the particle,

ρred(zf , z
′
f ; tf ) ≡

∫
dΦf ρ(zf ,Φf ; z

′
f ,Φ

′
f = Φf ; tf ), (2.19)

which can be written using (2.18) in the following form.

ρred(zf , z
′
f ; tf ) =

∫
dzi

∫
dz′i

∫ zf

zi

Dz
∫ z′f

z′i

Dz′ ρS(zi, z
′
i; ti)

× exp

{
i

~
(
Spp[z]− Spp[z

′]
)}
F [z, z′]. (2.20)

The functional F [z, z′] is the influence functional and is defined as

F [z, z′] ≡
∫
DΦf

∫
DΦi

∫
DΦ′

i

∫ Φf

Φi

DΦ

∫ Φf

Φ′
i

DΦ′ ρE(Φi,Φ
′
i; ti)

× exp

{
i

~
(
SE[Φ]− SE[Φ′] + Sint[z,Φ]− Sint[z

′,Φ′]
)}
. (2.21)

The influence functional contains all the information of the field’s influence on the

particle and treats the worldline histories z and z′ as fixed. In fact, it is not difficult
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to show that F [z, z′] is an ensemble average,

F [z, z′] =
∑
Φ,Φ′

ρE(Φ,Φ′; ti)
〈

z′
Φ′; tf

∣∣Φ; tf
〉

z
(2.22)

where the state

∣∣Φ; tf
〉

z
= T exp

{
i

~
Φ̂A · jA[z]

} ∣∣Φ〉 (2.23)

is evolved from time ti to tf in the presence of the fixed worldline zα(λ). The in-

fluence functional therefore describes the quantum and statistical information con-

tained in the quantum field environment and may be interpreted as the ensemble

average of the overlap at time tf for the field configuration Φ that evolved in the

presence of a particle worldline zα(λ) with the field configuration Φ′ that evolved

with the worldline z′α(λ).

We remark that when the two worldline histories z and z′ are equal that the

influence functional is simply 1. To see this, we observe that

〈
z′

Φ′; tf
∣∣Φ; tf

〉
z

∣∣∣
z′=z

=
〈
Φ′∣∣Φ〉 (2.24)

since the time-evolution operators in the states (2.22) cancel each other. The en-

semble average in (2.22) then becomes

F [z, z′ = z] =
∑
Φ,Φ′

〈
Φ
∣∣ρ̂E(Σi)

∣∣Φ′〉〈Φ′∣∣Φ〉 (2.25)

=
∑
Φ

〈
Φ
∣∣ρ̂E(Σi)

∣∣Φ〉, (2.26)

which is just the trace of the density matrix and equals 1 as claimed. Interestingly,

for field configurations with a non-vanishing renormalized free energy, such as for a
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field constrained by boundaries as in the Casimir effect, the influence functional no

longer satisfies this condition [92].

The linearity of the field action and the Gaussian structure of the initial state

of the field ρ̂E(Σi) allows for the influence functional to be integrated exactly. The

standard methods used to evaluate the influence functional in flat spacetime involve

decomposing the field in terms of the modes that suitably respect the symmetries of

the problem. Namely, the modes used in such a decomposition are the eigenmodes

of the Killing vector field that describes the isometries of the system [66]. However,

in an arbitrary curved spacetime there does not exist a unique mode decomposition

for the field since there are generally no Killing fields to generate such eigenmodes.

Furthermore, the modes may not be explicitly calculable, which presents a serious

drawback for obtaining an explicit expression for the influence functional. We will

therefore need a different method to evaluate the path integrals appearing in (2.21).

For this purpose it will be convenient to write the influence functional using

operator language. In the interaction picture, we can write the influence functional

as

F [z, z′] = TrΦ

[(
T exp

{
i

~
Φ̂A · jA

})
ρ̂E(Σi)

(
T ∗ exp

{
− i

~
Φ̂′

A · j′A
})]

(2.27)

where TrΦ denotes the trace over the field variables and jA denotes the current

density in the interaction action Sint. We use the notation that a · denotes spacetime

integration so that for two functions (possibly tensor-valued) we have

A ·B =

∫
d4x g1/2A(x)B(x). (2.28)

The T and T ∗ denote time-ordering and anti-time-ordering operations on the field

44



operators. From (2.27) we can compute the influence action and expand it in powers

of the current j, which we assume to be proportional to the coupling constant of

the particle-field interactions (e.g., charge e). We find that the influence functional

can be calculated exactly after resumming this coupling constant expansion and is

given by

F [z, z′] = exp

{
i

~
〈
Φ̂A
〉
· j−A −

1

4~
j−A ·G

AB′

H · j−B′ +
i

~
j−A ·G

AB′

ret · j+
B′

}
. (2.29)

It will be convenient to define the influence action Sinf as the logarithm of the

influence functional,

Sinf [z, z
′] = −i~ lnF [z, z′] (2.30)

and evaluates to, using (2.29),

Sinf [z, z
′] =

〈
Φ̂A
〉
· j−A +

i

4
j−A ·G

AB′

H · j−B′ + j−A ·G
AB′

ret · j+
B′ . (2.31)

The currents j−A and j+
A are the difference and average, respectively, of jA and j′A,

j−A = jA[z]− jA[z′] (2.32)

j+
A =

jA[z] + jA[z′]

2
. (2.33)

The functions GAB
H and GAB

ret are the Hadamard two-point function and the retarded

propagator, respectively. These are given in terms of correlations of the field with

respect to the initial state of the field ρ̂(Σi)

GAB′

H (x, x′) =
〈
{Φ̂A(x)− 〈Φ̂A(x)〉, Φ̂B′

(x′)− 〈Φ̂B′
(x′)〉}

〉
(2.34)

=
〈
{Φ̂A(x), Φ̂B′

(x′)}
〉
−
〈
Φ̂A(x)

〉〈
Φ̂B′

(x′)
〉

(2.35)

GAB′

ret (x, x′) = iθ+(x,Σx′)
〈
[Φ̂A(x), Φ̂B′

(x′)]
〉
. (2.36)
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The curly braces in the Hadamard function denote the anti-commutator and the

square brackets in the retarded propagator signify the commutator of the field op-

erators. These two-point functions are evaluated using the interaction picture for

the fields since we calculated the influence functional in this representation. The

expectation values are computed using the initial state of field on the hypersurface

Σi so that

〈Ô〉 = TrΦ

[
ρ̂EÔ

]
, (2.37)

which describes the quantum statistical expectation value of the operator Ô.

The retarded propagator in (2.36) is proportional to the step function distri-

bution θ+(x,Σx′), which is defined to be 1 for all points in the future of x′ and zero

otherwise where the constant time hypersurface Σx′ contains the point x′. This dis-

tribution is a generalization to curved spacetime of the usual step function θ(t− t′).

We will discuss other distributions below, however, the reader is referred to [53] for

a pedagogical introduction to certain distributions in curved space.

For a Gaussian initial state of the field possessing a vanishing expectation

value we can set to zero the one-point function appearing in the exponential of

the influence functional in (2.29) and in the definition of the Hadamard two-point

function in (2.35). If the field’s expectation value is non-zero then there exists a

nontrivial configuration for the field so that even in vacuum there persists a field

structure on the spacetime, which some references call a classical field configuration

[93, 94]. We remark here that the expectation value of a field operator does not

represent a classical field as is sometimes implied. Achieving the classical limit of a
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quantum theory involves processes requiring the quantum variables of the system of

interest to decohere. We will discuss more about decoherence as it applies to open

quantum systems below.

If the initial state of the field ρ̂E(Σi) contains non-Gaussian contributions, one

would have many additional terms involving higher powers of the coupling appearing

in (2.29). Likewise, for nonlinear particle-field interactions (e.g. jA(z) · Φn
A) there

will appear more terms in the influence functional. In such cases, assuming that

the particle-field coupling constant is small and that non-Gaussianities in the initial

state of the field are also small or zero then we can still use (2.29) as a leading order

approximation.

The influence functional (2.29) represents the influence that the quantum field

has on the evolution of the quantum mechanical worldline histories z and z′ of the

particle. Therefore, F [z, z′] contains all of the information regarding the content

of the environment, its dynamics and its interactions with the system. As such,

by computing the influence functional one may describe the environmental effects

on the system in a self-consistent manner. We will show below that the influence

action (2.30) introduces an effective forcing term on the particle that accounts for the

particle-field couplings and the dynamical processes that evolve the coarse-grained

quantum field.
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2.3 The CTP generating functional and the coarse-grained effective

action

The influence functional of Feynman and Vernon [30] is closely related to the

closed-time-path (CTP) formalism of Schwinger and Keldysh [95, 96]. The former

is useful for describing the processes and interactions of systems that occur within

a finite duration of time and is often self-consistently implemented for a quantum

system that is open to external and dynamical influences. The latter utilizes the

so-called “in-in” boundary conditions, which specifies the initial state in the infi-

nite past t → −∞, to compute n-point correlation functions of a quantum field.

We demonstrate in this section that despite these differences the influence action

is equivalent to the effective action obtained from the CTP generating functional

by coarse-graining (or integrating out) the quantum field variables. To show this,

however, we need to define and discuss the CTP generating functional in so much

as it applies to our particle-field total system. We refer the reader to [29, 97] and

references therein for an excellent discussion of the CTP formalism.

The CTP, or “in-in,” generating functional of Schwinger and Keldysh is defined

for our particle-field total system in the following way

Z[Jz, J
′
z, JΦ, J

′
Φ] ≡

∑
z,z′

∑
Φ,Φ′

ρ(z,Φ, z′,Φ′; ti) J ′z ,J ′Φ

〈
z′Φ′; tf

∣∣zΦ; tf〉Jz ,JΦ
. (2.38)

The CTP generating functional represents the ensemble average at time tf over

the configurations of the field and particle variables in the presence of the external

current densities Jz and JΦ, which couple bilinearly to the particle worldine and the

field, respectively. It represents the functional obtained by evolving the state forward

48



in time with currents Jz, JΦ to some state at time tf , evolving that state backward

in time to ti in the presence of different currents J ′z, J
′
Φ and finally summing over

all of the unknown states at tf . If the currents are equal across both paths in time

then the generating functional equals 1. Observe that (2.38) and (2.22) have similar

structures in that they both represent ensemble averages.

The CTP generating functional has the path integral representation

Z[Jz, J
′
z, JΦ, J

′
Φ] =

∫
dzf

∫
dzi

∫
dz′i

∫ zf

zi

Dz
∫ zf

z′i

Dz′∫
DΦf

∫
DΦi

∫
DΦ′

i

∫ Φf

Φi

DΦ

∫ Φf

Φ′
i

DΦ′ ρ(zi,Φi, z
′
i,Φ

′
i; ti)

× exp

{
i

~

(
Spp[z]− Spp[z

′] + SE[Φ]− SE[Φ′]

+ Sint[z,Φ]− Sint[z
′,Φ′] +

∫
dλ (Jα

z zα − J ′αz z
′
α)

+ JA
Φ · ΦA − J ′AΦ · Φ′

A

)}
, (2.39)

which follows from similar steps used in deriving the path integral form of the den-

sity matrix and influence functional in (2.18) and (2.21), respectively. Correlation

functions of the particle worldline coordinates evaluated with respect to the state

ρ̂(Σi) of the particle-field total system can be calculated from derivatives of the

generating functional

〈
T̄ ẑa(λ1) · · · ẑb(λn)

〉
Jz ,J ′z ,JΦ,J ′Φ

≡ 1

Z

δnZ

δiJa
z (λ1) · · · δiJ b

z(λn)
. (2.40)

The superscripts a and b label the unprimed and primed worldline coordinates.

There is a similar expression for correlation functions of the quantum field where

the functional derivatives are taken with respect to Ja
Φ instead. The CTP time-

ordering operator T̄ is defined so that unprimed operators are time-ordered, primed
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operators are anti-time-ordered and all primed operators are ordered to the left of

unprimed operators.

If the initial state of the particle-field total system is factorizable as in (2.1)

we find that the CTP generating functional simplifies

Z[Jz, J
′
z, JΦ, J

′
Φ] =

∫
dzf

∫
dzi

∫
dz′i

∫ zf

zi

Dz
∫ zf

z′i

Dz′ ρS(zi, z
′
i; ti)

× exp

{
i

~

(
Spp[z]− Spp[z

′] + Sinf [z, z
′; JΦ, J

′
Φ]
)

+
i

~

∫
dλ (Jα

z zα − J ′αz z
′
α)

}
(2.41)

where the influence action Sinf [z, z
′; JΦ, J

′
Φ], given by the logarithm of the influence

functional in (2.21) or (2.29), contains all of the information about the dynamics of

the field and its interactions with the particle. For the remainder we will not need

to concern ourselves with the external field currents Ja
Φ so we will set them to zero

so that the influence action reads Sinf [z, z
′]. Expressed solely in terms of particle

variables Z will be called the coarse-grained generating functional,

Zcg[Jz, J
′
z] =

∫
dzf

∫
dzi

∫
dz′i

∫ zf

zi

Dz
∫ zf

z′i

Dz′ ρS(zi, z
′
i; ti)

× exp

{
i

~

(
Spp[z]− Spp[z

′] + Sinf [z, z
′] +

∫
dλ (Jα

z zα − J ′αz z
′
α)
)}

.

(2.42)

We find it convenient to simply the notation and define

∫
CTP

Dza (· · · ) ≡
∫
dzf

∫
dzi

∫
dz′i

∫ zf

zi

Dz
∫ zf

z′i

Dz′ (· · · ) (2.43)
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as the particle integrations satisfying the “in-in” boundary conditions. Then,

Zcg[Jz, J
′
z] =

∫
CTP

Dza ρS(zi, z
′
i; ti) exp

{
i

~

(
Spp[z]− Spp[z

′] + Sinf [z, z
′]
)

+
i

~

∫
dλ (Jα

z zα − J ′αz z
′
α)

}
. (2.44)

Using the coarse-grained generating functional we can calculate CTP time-

ordered n-point correlation functions of the quantum mechanical particle worldline

coordinates as in (2.40). To compute connected correlation functions (i.e., cumulants

of the worldline operators) we can use the logarithm of Z,

Wcg[Jz, J
′
z] ≡ −i~ lnZcg[Jz, J

′
z]. (2.45)

From the definition of the worldline correlation functions (2.40) we remark that the

expectation value of the worldline coordinate operator is given by the functional

derivative,

〈
ẑa
〉

Jz ,J ′z
=

δWcg[Jz, J
′
z]

δJa
z

. (2.46)

Given this we can now compute the coarse-grained effective action by calculating

the Legendre transform of Wcg. We find

Γcg[〈ẑ〉, 〈ẑ′〉] ≡ Wcg[Jz, J
′
z]−

∫
dλ
(
Jα

z

〈
ẑα

〉
− J ′αz

〈
ẑ′α
〉)

(2.47)

and it generates one-particle-irreducible (1PI) correlation functions of the particle

worldline variables subjected to interactions with the coarse-grained quantum field.

The equations of motion for the expectation values in (2.46) can be found from

the variation

δΓcg

δ〈ẑa〉
= Ja

z (2.48)
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where a indicates if the quantity is unprimed or primed. Using (2.44) and (2.45) we

substitute these equations of motion (2.48) into (2.47) giving

Γcg[〈ẑ〉, 〈ẑ′〉] = −i~ ln

∫
CTP

Dza ρS(zi, z
′
i; ti) exp

{
i

~

(
Spp[z]− Spp[z

′] + Sinf [z, z
′]
)

+
i

~

∫
dλ

[
δΓcg

δ〈ẑα〉
(
zα −

〈
ẑα
〉)
− δΓcg

δ〈ẑ′α〉
(
z′α −

〈
ẑ′α
〉)]}

, (2.49)

which is an integrodifferential equation for Γcg. Let us define the fluctuation of the

worldline coordinate away from the expectation value as

z̃a ≡ za −
〈
ẑa
〉
. (2.50)

The integration measure Dza remains unchanged under this shift

Dza = Dz̃a (2.51)

so that the coarse-grained effective action can be written as a CTP path integral

over the worldline fluctuations away from the average

Γcg[〈ẑ〉, 〈ẑ′〉] = −i~ ln

∫
CTP

Dz̃a ρS(zi, z
′
i; ti)

× exp

{
i

~

(
Spp

[
〈ẑ〉+ z̃

]
− Spp

[
〈ẑ′〉+ z̃′

]
+ Sinf

[
〈ẑ〉+ z̃, 〈ẑ′〉+ z̃′

])
+
i

~

∫
dλ

(
δΓcg

δ〈ẑα〉
z̃α − δΓcg

δ〈ẑ′α〉
z̃′α
)}

. (2.52)

Formally expanding in powers of the fluctuation coordinate z̃a we find that the

integrodifferential equation can be perturbatively solved via a loop expansion. We

find

Γcg[〈ẑ〉, 〈ẑ′〉] = Spp

[
〈ẑ〉
]
− Spp

[
〈ẑ′〉
]
+ Sinf

[
〈ẑ〉, 〈ẑ′〉

]
+ (particle−loop terms)

≡ Scgea[〈ẑ〉, 〈ẑ′〉] + (particle−loop terms) (2.53)
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where the particle-loop terms denote quantities of O(~). These higher order terms

can be derived by observing that the formal expansion of the integrand of Γcg in

powers of z̃a results in a nonlinear interacting theory. One can construct Feynman

rules and diagrams for the “interactions” using the usual techniques of a pertur-

bative quantum theory. The first non-trivial subleading contribution in this series

is the term quadratic in z̃a, which gives the propagator at one-loop for the fluc-

tuations of the particle worldline about the expected trajectory. We remark that

such a propagator includes a contribution from the second functional derivative of

the influence action Sinf and therefore is not the free propagator for the worldline

fluctuations. Rather this term includes the effects of the coarse-grained field on the

particle and in this sense one may call the resulting propagator “dressed” by the

field.

The leading order terms in (2.53) collectively define the coarse-grained effective

action Scgea. It describes the evolution of the expectation value under the influence

of the coarse-grained quantum field. The coarse-grained effective action is tree-level

in the particle variables and so it might be tempting to interpret Scgea as giving rise

to the classical equations of motion for the particle coordinates. However, we need

to ensure that the contributions from the O(~) particle-loop corrections are small.

In the next section we will show that this smallness is related to the suppression of

off-diagonal matrix elements of the reduced density matrix for the particle variables.
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2.4 semiclassical limit

In this section we discuss how the particle’s semiclassical limit is identified from

the first principles approach provided by the influence functional and the coarse-

grained effective action. We derive the semiclassical worldline equations of motion

and demonstrate the existence of a divergence in the force on the particle that

results from the well known ultraviolet pathologies inherent to the (coarse-grained)

quantum field. The removal of this divergence is necessary to obtain well-behaved

solutions. We end this section by deriving the self-force equations of motion on

scalar and electric charges as well as on a small mass. We turn now to obtaining

the semiclassical limit.

The reduced density matrix (2.20) depends upon the influence functional in

a linear manner. That is, as a functional, the reduced density matrix is linear in

F . For the particle-field total system that we have been considering all along the

influence functional is integrated to give a closed form expression in (2.29). We

remark that the influence functional contains both a real and an imaginary part.

Since both the retarded propagator and the Hadamard two-point function are real

then the complex norm of F is

∣∣F [z, z′]
∣∣ = exp

{
− 1

4~
j−A ·G

AB′

H · j−B

}
, (2.54)

which depends on the quantum field only through its fluctuations in the given initial

state as indicated by the Hadmard function defined in (2.34) and (2.35). Further-

more, this a Gaussian functional in j−A so that it is peaked around some configuration.

Given that j− = j[z] − j[z′] is very small when z′ approaches z we would expect
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that |F | is peaked about z′ = z. This is true, however, in the limit z′ → z the

Hadamard function diverges on account of the usual pathologies associated with the

ultraviolet behavior of products of quantum fields. For example, in flat spacetime,

the Hadamard function of a scalar field in the vacuum state is

GH(x, x′) =
1

4π2

1

ηαβ(xα − x′α)(xβ − x′β)
=

1

8π2σ(x, x′)
, (2.55)

which diverges like 1/(t − t′)2 when x′ = x. Therefore, a regularization must be

given to GAB′
H in order to make sense of |F | and the reduced density matrix.

Up until now the particle worldlines have been regarded as fine-grained histo-

ries through space and time. By fine-grained histories we mean the set of all possible

trajectories that contribute to the worldline path integrals encountered in this sec-

tion5. However, such worldlines can never be regarded as classical paths in space

since their quantum mechanical fluctuations can be very large indeed. Therefore,

constructing semiclassical worldlines involves coarse-graining the particle worldlines

themselves. Conceptually, the most convenient way to do this is to smear the tra-

jectories over an appropriate length scale. For example, this scale might be the

Compton wavelength of the particle or the particle’s deBroglie wavelength if the

momentum is approximately known. Regardless, we denote this scale by λcg.

After smearing the quantum mechanical fluctuations of the worldlines we see

that the Hadamard function in (2.54) inherits this smearing and can be made finite

and well-behaved since z′ can only equal z within an uncertainty of order λcg. In

this way, |F | takes on its largest values for two worldline histories that lie within

5Actually, only those fine-grained histories that are consistent with a single particle interpreta-

tion are summed over in the worldline path integrals for the reasons mentioned in Section 1.1.
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λcg of each other. Otherwise, the magnitude of the influence functional falls off

rapidly. The reduced density matrix is therefore dominated by those worldlines

that lie within λcg of each other for all times after ti. When the initial state of

the particle-field total system and the interactions and scales involved are such that

the off-diagonal6 elements of the reduced density matrix are suppressed, we say

that the particle worldline coordinates have decohered. The decoherence results

from interactions with the quantum fluctuations of the coarse-grained field since |F |

depends on the field solely through the Hadamard function (2.34).

Decoherence can be quantified by the complex norm of the influence functional,

which is a factor that appears in the coarse-grained effective action in (2.52). If the

worldlines have achieved a sufficient amount of decoherence then the expectation

values of the two (coarse-grained, smeared) particle histories are approximately equal

〈ẑ〉 ≈ 〈ẑ′〉, with an uncertainty of order λcg, and the particle fluctuations z̃a are

suppressed. Under such circumstances the subleading particle-loop corrections in

(2.53) are small indeed and the coarse-grained effective action Γcg gives rise to a

semiclassical limit for the expectation value of the decohered particle worldline.

In the semiclassical limit we can obtain the equations of motion for the particle

worldline from the coarse-grained effective action in (2.53),

0 =
δΓcg

δ〈ẑ〉

∣∣∣∣∣
z′=z

=
δScgea

δ〈ẑ〉

∣∣∣∣∣
z′=z

(2.56)

upon ignoring the very small loop corrections. (See (2.48) with Ja
z = 0.) We

remark that the solution to (2.56) makes the leading order phases in (2.20) and

6By off-diagonal we mean those trajectories for which z and z′ do not lie within about λcg of

each other for all times.
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(2.52) stationary. The equations of motion obtained from the coarse-grained effective

action are causal and real since Γcg describes quantum systems with an initial value

condition [98]. The causality and reality will be demonstrated with an explicit

calculation of the semiclassical particle equations of motion.

Below, it will be convenient to simplify the notation and use a bar over a

semiclassical quantity, such as the worldline coordinates

z̄µ(λ) ≡
〈
ẑµ(λ)

〉
, (2.57)

and over functions and tensors that are evaluated along the semiclassical trajectory.

Using the integrated result for the influence functional in (2.29) it is straight-

forward to show that the semiclassical equations in (2.56) are

māµ(τ) = ~wµA[z̄]

∫ τf

τi

dτ ′Gret
AB′

(
z̄α(τ), z̄α′(τ ′)

)
jB′

[z̄α′(τ ′)] (2.58)

where we parameterize the worldline by the particle’s proper time in the last step

of the calculation. As claimed, the equations of motion are explicitly real and

causal, due to the presence of the retarded field propagator. We observe that the

field manifests itself on the particle through the retarded propagator, which is a

state-independent two-point function.

We will find it useful to employ the more compact notation that we introduced

earlier so that the semiclassical equations of motion are written as

māµ(τ) = ~wµA[z̄α]

∫ τf

τi

dτ ′Gret
AB′

(
z̄α, z̄α′

)
jB′

[z̄α′ ] (2.59)

= ~̄wµA

∫ τf

τi

dτ ′ Ḡret
AB′ j̄B′

. (2.60)
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The acceleration 4-vector is defined by

āµ(τ) =
D ˙̄z

µ

dτ
= ˙̄z

α∇α ˙̄z
µ

(2.61)

and ˙̄z
α
(τ) is the 4-velocity of the semiclassical worldline at proper time τ . The

operator ~wµA is usually proportional to a covariant derivative and is defined by the

functional derivative of the current jA,

~wµAf(z) ≡ δ

δzµ(τ)

∫
d4x g1/2jA(x; z)f(x) (2.62)

where f(x) is an arbitrary C1 function.

The curvature of the background spacetime allows for a force to act on the

particle that depends on the precise history the particle has taken up to that point

in time, which can be seen in (2.58). This history-dependent, or non-Markovian,

feature comes from the backscattering of the field off the curvature. The backreac-

tion of the emitted radiation on the particle at proper time τ results from two types

of interactions with the field. The first is a reactive force describing the recoil on the

particle as it emits the radiation. This is the familiar radiation reaction of Abraham,

Lorenz and Dirac; notably, it is a purely local interaction ∼ δ(τ − τ ′). The second

results from the interaction of the particle with previously emitted radiation that

backscatters off of the background curvature and interacts with the particle at a

later time τ and different position. This is an intrinsically non-local process in time

and space. The effects of both kinds of interactions with the coarse-grained quan-

tum field manifest on the particle as self-force and is responsible for the dissipation

of the particle’s mechanical energy and momentum.
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2.4.1 Hadamard expansion of the retarded propagator

The retarded propagator for a quantum field ΦA is difficult to construct in

an arbitrary curved spacetime. A mode expansion for the field and the retarded

propagator can be constructed if the spacetime possesses a sufficient number of

isometries. For example, the retarded propagator has been calculated exactly for a

scalar field in de Sitter and certain Friedmann-Robertson-Walker (FRW) cosmologies

[87] by utilizing the conformally flat nature of these spacetimes. However, it will be

much more useful for our purposes to know the general structure and form of the

retarded propagator in an arbitrary background spacetime as this will enable us to

determine the structure of the self-force on the particle, which will be necessary for

its regularization. Throughout this subsection we will borrow from the presentation

in [53] to which we refer the reader to for more details.

We use Hadamard’s construction [99] for the retarded propagator Gret
AB′(x, x′),

which is valid only within the normal convex neighborhood N of x. (The normal

convex neighborhood N (x) is the set of all points in the spacetime that can be

connected to x by a unique geodesic.) In curved spacetime, Hadamard’s construction

allows for the Green’s function to be written in the following way

Gret
AB′(x, x′) = UAB′(x, x′)∆1/2(x, x′)δ+

(
σ(x, x′)

)
+ VAB′(x, x′)θ+

(
− σ(x, x′)

)
.

(2.63)

We remark that there are two types of contributions to the propagator. The first

describes propagation along the null cone based at x′ and is called the direct part

of the Green’s function. The second, called the tail part, describes propagation
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within the null cone as a result of the wavefronts bending, or backscattering, off of

the background curvature. In a flat spacetime this backscattering does not occur

as there is no curvature to bend the wavefronts. Therefore, only the direct part

contributes to the familiar flat space propagator.

The bitensors UAB′ and VAB′ are smooth functions at x and x′. The tensor

UAB′ involves products of the bi-tensor g β′
α (x, x′) that parallel transports a tensor

at x′ to x. For example, if ΦA describes a vector field Aµ then

Uαβ′(x, x
′) = gαβ′(x, x

′) (2.64)

and for a scalar field, U(x, x′) = 1. We will see more examples of its form when we

construct the retarded Green’s function for other fields below. The tensor VAB′ sat-

isfies the appropriate homogeneous field equations that are subject to characteristic

data provided along the forward lightcone at x′. This tensor field is quite difficult to

calculate for generic spacetimes so throughout the remainder we consider this object

formally. As such we refer the reader to [53] for details that have been omitted here.

The factor ∆1/2(x, x′) in the direct part of the propagator is the square root

of the van Vleck determinant,

∆(x, x′) = −
det
(
− σαβ′(x, x

′)
)

g1/2(x)g1/2(x′)
. (2.65)

Within the normal convex neighborhood this biscalar is well-defined. However, at

the boundary of N (x) the van Vleck determinant diverges due to the appearance

of caustics (the intersection of two or more geodesics that each connect back to the

point at x).
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The distributions δ+(σ) and θ+(−σ) are defined as θ+(x,Σx′), which we recall

is the generalization of the usual step function to curved spacetime, multiplying

δ(σ) and θ(−σ), respectively. The biscalar σ = σ(x, x′) is Synge’s world function

defined along the (unique) geodesic linking x and x′. Numerically, the world function

equals half of the squared geodesic distance between the two points. Further, σ is

negative, positive and zero for time-like, space-like and light-like separated points,

respectively. For a lightcone centered on x′, which lies on the space-like hypersurface

Σx′ , it follows that δ+(σ) has support only along the forward lightcone while θ+(−σ)

equals one in the causal future of x′ (the interior of the forward lightcone) and

vanishes everywhere else. Fig.(2.1) schematically shows the regions of support for

these distributions.

Given the Hadamard construction of the propagator we need to determine how

it can be used in (2.58). The self-force can be written as two contributions. The first

results from the propagation of the field in the normal convex neighborhood N (z̄α)

of z̄α(τ). The second comes from propagation in the spacetime complementary to

N (z̄α). If τ< is the proper time at which the worldline enters N (z̄α) and τ> is the

proper time that it leaves then we may write the self-force as

~̄wµA

∫ τf

τi

dτ ′ Ḡret
AB′ j̄B′

= ~̄wµA

[∫ τ<

τi

dτ ′ +

∫ τf

τ>

dτ ′ +

∫ τ>

τ<

dτ ′

]
Ḡret

AB′ j̄B′
(2.66)

See Fig.(2.2) for a depiction of these regions and points in the spacetime. Observe

that the last term is a worldline integral of the retarded propagator that is entirely

within the normal convex neighborhood of z̄α(τ).

We observe that τ < τ> since the retarded propagator in the normal convex
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Figure 2.1: The distributions used in Hadamard’s construction of the retarded prop-

agator. The grey regions or lines denote a non-zero value for the distribution and

the dotted lines form the null cone at x′. The space-like hypersurface Σx′ contains

the point x′. (a) The generalized step function θ+(x,Σx′) equals 1 in the future of

Σx′ . (b) The delta function δ+(σ(x, x′)) receives support on the forward lightcone.

(c) The step function θ+(−σ(x, x′)) equals one inside the forward lightcone.
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Figure 2.2: The normal convex neighborhood N of a point z̄α(τ) on the semiclassical

worldline. The boundary ∂N of N is given by the dashed line.
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neighborhood (2.63) is proportional to θ+(z̄(τ),Σz̄(τ ′)). We may therefore write the

self-force as

~̄wµA

∫ τf

τi

dτ ′ Ḡret
AB′ j̄B′

= ~̄wµA

[∫ τ<

τi

dτ ′ +

∫ τ

τ<

dτ ′

]
Ḡret

AB′ j̄B′
. (2.67)

Here, using the Hadamard construction for the propagator in the normal convex

neighborhood, we find that

m āµ(τ) = ~̄wµA

∫ τ

τ<

dτ ′

[
UAB′

(
z̄α, z̄α′)∆1/2

(
z̄α, z̄α′)δ(σ(z̄α, z̄α′)

)
+ VAB′

(
z̄α, z̄α′)]+ ~̄wµA

∫ τ<

τi

dτ ′ Ḡret
AB′ j̄B′

(2.68)

where we have used the fact that for two time-like separated points (e.g., on a

worldline) the generalized step function equals one and the world function σ is

negative in our conventions so that

θ
(
− σ(z̄α, z̄α′)

)
= +1. (2.69)

We remark that the contribution to the self-force in (2.68) from the direct part

of the propagator is divergent since

δ
(
σ(z̄α, z̄α′)

)
= δ(τ − τ ′)

∣∣∣∣dσdτ
∣∣∣∣−1

∼ δ(τ − τ ′)

τ − τ ′
. (2.70)

The divergence comes from the infinitely high frequency modes of the field interact-

ing with a point-like object. To make sense of the self-force will require a method

of regularization to render the divergence finite and possibly the renormalization of

appropriate coupling constants in the theory.
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2.4.2 Quasi-local expansion of the self-force

The presence of the δ(σ) term in the direct part of the retarded propagator

indicates a divergence in the self-force when the two points τ and τ ′ coincide under

the integral in (2.68). This is the usual divergence that results from considering

interactions between a point-particle and arbitrarily large high frequency modes of

the quantum field. To regularize this divergence we use the prescription originally

developed in [32, 33] for particle-field interactions in flat spacetime. Its extension

to curved spacetimes is given in [49, 50].

We introduce a mass (or momentum) scale Λ for the field such that for particle

energies much lower than Λ we expect the semiclassical equations of motion (2.68)

to accurately describe the particle’s behavior. The divergence is regularized by

smearing the direct part of the propagator through the following replacement

δ
(
σ(xα, x′α)

)
→ δΛ(σ) ≡ θ(−σ)

√
8

π
Λ2e−2Λ4σ2

. (2.71)

The usual delta function δ(σ) is recovered in the limit that Λ tends to infinity. The

function δΛ(σ) is smooth, satisfies∫ ∞

−∞
dσ δΛ(σ) = 1 (2.72)

and approximates δ(σ) well only if Λ2σ � 1. This inequality will not hold if σ is

strictly zero so we will assume that σ is small and approaching zero while maintaining

Λ2 significantly larger than 1/σ. For time-like separated points, e.g., points on a

particle worldline, θ(−σ) = 1.

Since Λ serves to provide a minimum resolution for the particle-field interaction

comprising the self-force then the sharp step function θ+(x,Σx′) should be replaced
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by the smooth function θΛ(−s), defined by

θ+(z̄α,Σz̄α′ ) → θΛ(−s) ≡ 21/4
√
π

Γ(1/4)

∫ −s

−∞
ds′ δΛ(σ(s)) (2.73)

when x and x′ are on a particle worldline. For such a pair of points the dominant

contribution to δ(σ) comes from those points that are nearly coincident so that the

proper time difference s ≡ τ ′ − τ is small but still much larger than the resolution

scale 1/Λ. Using results obtained later in this subsection it is easy to show that for

large Λ

θΛ(−s) ∼ θ(−s) +
1

21/4Γ(1/4)

sgn(s)

s3Λ3
e−Λ4s4/2 = θ(−s) +O

(
(sΛ)−3

)
(2.74)

and can be approximated by the first term quite well. We will therefore replace

θ+(z̄α,Σz̄′α) by θ(τ − τ ′) in what follows7.

The small values of σ that we need to consider enables us to perform a quasi-

local expansion in which the self-force is expanded near coincidence for those values

of proper time τ ′ that are near τ . In particular, the condition that σ ≈ 0 implies

τ ′ ≈ τ so that, after smearing the direct part of the propagator, we may expand the

self-force in powers of σµ ≡ σ;µ(z̄α, z̄α′), which measures the displacement along the

unique geodesic connecting z̄(τ) and z̄(τ ′). We will need the quasi-local expansion

of several geometric quantities. The first part of the expansion requires expanding

these in powers of σµ. The second part translates these expansions into a power

series of the proper time difference s = τ ′−τ . We begin with the first part following

[100, 101] and [53].

7We have already implicitly used this result in writing down the tail part in (2.68).
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The expansion of the square root of the van Vleck determinant is

∆1/2
(
z̄α, z̄α′

)
= 1 +

1

12
R̄αβ σ

α σβ − 1

24
R̄αβ;γ σ

α σβ σγ + · · · (2.75)

and its covariant derivative is

∇ν∆
1/2
(
z̄α, z̄α′

)
=

1

6
R̄αβ σ

α
;ν σ

β − 1

24

(
2R̄να;β − R̄αβ;ν

)
σα σβ + · · · (2.76)

where σµ is a shorthand here for σ;µ(z̄α, z̄α′) and R̄ ≡ R(z̄), etc. We also deduce that

the velocity 4-vector at τ ′ parallel propagated to z̄(τ) has the following expansion

gαβ′ū
β′ = −σαβ′ū

β′ − 1

6
σ β

β′ R̄αγβδσ
γσδūβ′ + · · · (2.77)

gαγ′;βū
γ′ =

1

2
ūγ′g ε

γ′R̄αεβδσ
δ + · · · (2.78)

The second part of the quasi-local expansion entails expanding the above series

in terms of the proper time difference s = τ ′−τ . This requires having the quasi-local

expansion of the covariant derivative of Synge’s world function σµ, which we now

derive.

The world function for a geodesic parameterized by λ is defined as

σ
(
x(λ), x(λ′)

)
= −∆λ

∫ λ

λ′
dλ′′ gαβ

dx

dλ′′
dx

dλ′′
(2.79)

where ∆λ = λ′ − λ. Using (C.8) its covariant derivative can be expressed as

σµ
(
x(λ), x(λ′)

)
= −∆λ

dxµ

dλ
(2.80)

where dxµ/dλ is the tangent vector to the geodesic at parameter value λ. Let us

identify the two points x(λ), x(λ′) of this geodesic with the two points z̄(τ), z̄(τ ′)

on the semiclassical worldline,

z̄µ(τ)− z̄µ(τ ′) = xµ(λ)− xµ(λ′) ; (2.81)
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Figure 2.3: The intersection of a spacetime geodesic and the semiclassical worldline

at two points.

see Fig.(2.3). Expanding the left side in terms of s gives

z̄µ(τ)− z̄µ(τ ′) = −s ˙̄zµ(τ)− s2

2
¨̄zµ(τ)− s3

6

...
z̄ µ(τ) + · · · (2.82)

where ˙̄zµ = dz̄µ/dτ . Similarly, the right side has the following expansion in terms

of ∆λ

xµ(λ)− xµ(λ′) = −∆λ ẋµ(λ)− (∆λ)2

2
ẍµ(λ)− (∆λ)3

6

...
x µ(λ) + · · · (2.83)

where ẋµ = dxµ/dλ. Using (2.80) and the geodesic equation

ẍµ(λ) + Γµ
αβẋ

αẋβ = 0 (2.84)

gives

xµ(λ)− xµ(λ′) = σµ +
1

2
Γµ

αβσ
ασβ +

1

6

(
−Γµ

αβ,γ + 2Γµ
ανΓ

ν
βγ

)
σασβσγ + · · · . (2.85)
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Equating the two coordinate differences (2.82) and (2.85) and rearranging terms we

find the quasi-local expansion of σµ in terms of s,

σµ
(
z̄(τ), z̄(τ ′)

)
= −sūµ(τ)− s2

2!
āµ(τ)− s3

3!

Dāµ

dτ
+ · · · (2.86)

= −
∞∑

n=1

sn

n!

(
D

dτ

)n−1

ūµ(τ). (2.87)

Using the identity 2σ = σµσ
µ we also find the quasi-local expansion of the world

function

σ(z̄α, z̄α′) = −s
2

2
− s4

24
a2 + · · · (2.88)

where ā2 = āµā
µ is the norm of the particle’s semiclassical 4-acceleration.

The smeared delta function δΛ(σ) is

δΛ(σ) =

√
8

π
Λ2e−Λ4s4/2 + · · · (2.89)

and its covariant derivative is

∇µδΛ(σ) = σµ

(
∂σ

∂s

)−1
∂δΛ
∂s

(2.90)

=

(
ūµ +

s

2
āµ +

s2

6
w̄ ν

µ

Dāν

dτ
+ · · ·

)
∂δΛ
∂s

(2.91)

where w̄ ν
µ = g ν

µ + ūµū
ν projects vectors onto a direction orthogonal to the semi-

classical 4-velocity.

These expansions in the proper time difference s can be used to expand the

quantities in (2.75)-(2.78). We find for the square root of the van Vleck determinant

∆1/2
(
z̄α, z̄α′

)
= 1 +

s2

12
R̄αβū

αūβ +O(s3) (2.92)

and its covariant derivative is

∇µ∆1/2
(
z̄α, z̄α′

)
= −s

6
R̄µαū

α +O(s2). (2.93)
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The parallel transported 4-velocities in (2.77) and (2.78) are

gαβ′ū
β′ = ūα + s āα +

s2

2

Dāα

dτ
+O(s3) (2.94)

gαγ′;βū
γ′ = −s

2
Rαγβδū

γūδ +O(s2), (2.95)

respectively.

In the next section, we obtain the equations of motion describing the self-force

on a particle interacting separately with a scalar, electromagnetic and gravitational

waves in a curved background spacetime. We use the Hadamard construction of

the retarded propagator and the quasi-local expansions developed in this section to

regularize the ultraviolet divergence in the self-force.

2.4.3 Scalar field

Consider a massless scalar field ΦA = φ(x) propagating in a curved background

spacetime with metric gµν . The action describing this field is

S[φ] =
1

2

∫
d4x g1/2

(
gµνφ,µφ,ν − ξRφ2

)
(2.96)

where ξ is a constant that couples the field to the background curvature. When

ξ = 0 the field is said to be minimally coupled and when

ξ =
1

4

d− 2

d− 1
(2.97)

the field is said to be conformally coupled. The particle-field interaction is taken to

be in the form of a monopole coupling

Sint[z, φ] = q

∫
dτ φ

(
z(τ)

)
(2.98)

=

∫
d4x g1/2j(x; z)φ(x) (2.99)
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where the current density is defined as

j(x; z) = q

∫
dτ

δ4
(
x− z(τ)

)
g1/2

. (2.100)

The variation of the coarse-grained effective action (2.53) gives the semiclassi-

cal equations of motion for the particle (2.58). We find for this particular example,

moā
µ(τ) = q ~wµ[z̄α]

∫ τf

τi

dτ ′Dret

(
z̄α, z̄α′

)
(2.101)

where the operator ~wµ is defined using (2.62)

~wµ[z̄α] = q
(
aµ + wµν [z̄α]∇ν

)
(2.102)

and

wµν [z̄α] = gµν + ūµūν (2.103)

projects vectors onto a direction orthogonal to the semiclassical 4-velocity. Using

these expressions we can write the equations of motion as[
mo − q2

∫ τf

τi

dτ ′Dret

(
z̄α, z̄α′

)]
āµ(τ) = q2wµν [z̄α]∇ν

∫ τf

τi

dτ ′Dret

(
z̄α, z̄α′

)
. (2.104)

The Hadamard construction for the retarded propagator

Dret(x, x
′) = ∆1/2(x, x′)δ+

(
σ(x, x′)

)
+ V (x, x′)θ+

(
− σ(x, x′)

)
(2.105)

and (2.68) allow for the equations of motion to be written as[
mo − q2

∫ τ

τ<

dτ ′
(
∆̄1/2δ(σ̄) + V̄

)
− q2

∫ τ<

τi

dτ ′Dret

(
z̄α, z̄α′

)]
āµ(τ)

= q2wµν [z̄α]∇ν

[∫ τ

τ<

dτ ′
(
∆̄1/2δ(σ̄) + V̄

)
+

∫ τ<

τi

dτ ′Dret

(
z̄α, z̄α′

)]
.

(2.106)
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The integrals over the direct part of the propagator are divergent, which we regular-

ize by smearing δ(σ) via the replacement in (2.71). Focusing on the contributions

from the direct part we see that there are two such diverging terms. The first comes

from the self-force

Iµ
1 ≡ q2wµν [z̄α]∇ν

∫ τ

τ<

dτ ′ ∆̄1/2δΛ(σ̄). (2.107)

and the second comes from the integral of the retarded propagator, i.e. the retarded

field φret = Dret · j,

I2 ≡ −q2

∫ τ

τ<

dτ ′ ∆̄1/2δΛ(σ̄). (2.108)

Passing the covariant derivative through the first integral we find that

Iµ
1 = q2wµν [z̄α]

([
∆̄1/2δΛ(σ̄)

][
∇ν(τ − τ ′)

]
+

∫ τ

τ<

dτ ′∇ν

(
∆̄1/2δΛ(σ̄)

))
(2.109)

where the [· · · ] denotes the coincidence limit8 of the quantity inside the brackets. It

should be clear from context when we are referring to a coincidence limit and when

the square brackets are simply delimiters. From (2.87) it follows that

[
∇ν(τ − τ ′)

]
= −

[
∇ν(σ̄

αūα)
]

= −ūν (2.110)

thereby implying that

wµν [z̄α]
[
∇ν(τ − τ ′)

]
= 0. (2.111)

By writing (2.109) as

Iµ
1 = q2wµν [z̄α]

∫ τ

τ<

dτ ′
{

(∇ν∆̄
1/2)δΛ(σ̄) + ∆̄1/2∇νδΛ(σ̄)

}
(2.112)

8The coincidence limit is the limit τ ′ → τ along the unique geodesic connecting z̄(τ ′) to z̄(τ).
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and using the quasi-local expansions developed in Section 2.4.2 we find that

Iµ
1 =

q2

2
g(1)(r)ā

µ +
q2

3
g(2)(r)w

µν [z̄α]
Dāν

dτ
+
q2

6
c(1)(r)w

µν [z̄α]R̄ναū
α +O(Λ−1)

(2.113)

where r ≡ τ − τ< is the elapsed proper time since the intersection of the particle

worldline with the normal convex neighborhood of z̄(τ).

The r-dependent coefficients are defined by

c(n)(r) = −
∫ τ

τ<

dτ ′
sn

n!
δΛ
(
σ(s)

)
= (−1)n+1 2(n−1)/4

π1/2n!
Λ1−n γ

(
1 + n

4
,
r4Λ4

2

)
, (2.114)

which is divergent for n = 0, and

g(n)(r) =

∫ τ

τ<

dτ ′
sn

n!

∂δΛ
(
σ(s)

)
∂s

= (−1)n 2(n+6)/4

π1/2n!
Λ2−n γ

(
1 +

n

4
,
r4Λ4

2

)
, (2.115)

which diverges for n = 0, 1. In these expressions,

γ(a, b) ≡ Γ(a)− Γ(a, b) (2.116)

where Γ(a, b) is the incomplete gamma function. As Λ or the elapsed proper time r

goes to infinity it follows that γ(a, r4Λ4/2) → Γ(a). These coefficients are normalized

so that both c(1)(r) and g(2)(r) approach 1 in this limit. On an elapsed time scale

r ∼> 1/Λ the coefficients for any n equal approximately their limiting value. We

remark also that for each n these coefficients vanish at τ = τ< when r = 0 since

Γ(a, 0) = Γ(a). More will be said below concerning these properties and their
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Figure 2.4: Time-dependence of the first few coefficients appearing in (2.114) and

(2.115). The functions c(0) and g(1) have been divided through by Λ so that they

can be displayed on the same plot with c(1) and g(2).

74



implication for the validity of the quasi-local expansion. See Fig.(2.4) for a plot of

the first few coefficients.

The terms in (2.113) proportional to inverse powers of Λ are irrelevant in the

sense that these vanish when the limit Λ → ∞ is taken. We will therefore ignore

such terms since they can be made arbitrarily small with a sufficiently large value

for Λ. Only those terms that diverge as a positive power of Λ and are marginal ∼ Λ0

will be relevant for obtaining finite semiclassical equations of motion.

The second divergence (2.108), which appears in the effective mass of the

particle, can be found following similar steps. There is no derivative that operates on

the integral so we may expand the integrand directly using the quasi-local expansions

to find that

I2 = q2c(0)(r) (2.117)

plus irrelevant terms proportional to inverse powers of Λ that do not give a contri-

bution as Λ →∞.

Taken together (2.113) and (2.117) imply that the mass of the particle is shifted

by an infinite amount

δm ≡ −q2c(0)(r) +
q2

2
g(1)(r). (2.118)

Absorbing this divergence into the bare mass mo renders the particle’s mass finite

so that the renormalized mass

m ≡ mo − δm (2.119)

is time-dependent, which is typical of renormalization in initial value problems.
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However, given that the quasi-local expansion is valid for rΛ � 1 we see that the

renormalized mass is effectively constant within the normal convex neighborhood of

z̄(τ).

The semiclassical particle equations of motion can now be written as[
m− q2

∫ τ

τ<

dτ ′ V̄ − q2

∫ τ<

τi

dτ ′Dret

(
z̄α, z̄α′

)]
āµ(τ)

=
q2

3
g(2)(r)w

µν [z̄α]
Dāν

dτ
+
q2

6
c(1)(r)w

µν [z̄α]R̄ναū
α

+ q2wµν [z̄α]

[∫ τ

τ<

dτ ′ V̄;ν +

∫ τ<

τi

dτ ′Dret
;ν

(
z̄α, z̄α′

)]
(2.120)

where we have used (2.111) in the last line. Equivalently, we write this in a more

useful form that does not depend on the decomposition of the propagator into con-

tributions inside and outside of the normal convex neighborhood of z̄(τ). Namely,[
m− q2 lim

ε→0

∫ τ−ε

τi

dτ ′Dret

(
z̄α, z̄α′

)]
āµ(τ)

=
q2

3
g(2)(r)w

µν [z̄α]
Dāν

dτ
+
q2

6
c(1)(r)w

µν [z̄α]R̄ναū
α

+ q2wµν [z̄α] lim
ε→0

∫ τ−ε

τi

dτ ′Dret
;ν

(
z̄α, z̄α′

)
(2.121)

where the integrals of the retarded propagator are evaluated in the limit that τ ′ → τ

so as to avoid the divergence that renormalizes the particle’s mass. Eq.(2.121) is

the main result of this section, which was first derived using axiomatic techniques

by Quinn [22]. We remark that the time derivative of the 4-acceleration contributes

to the local radiation reaction while the tail part of the retarded propagator (the

contribution of which is integrated up until an infinitesimal before the divergence

is encountered) accounts for the non-local interactions with the radiated field emit-

ted at some proper time prior to τ . There also appears a local conservative force
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proportional to R̄αβū
β that vanishes in a vacuum background spacetime.

We remark that the inertia of the point charge is time-dependent

dmeff

dτ
= q2ūµ lim

ε→0

∫ τ−ε

τi

dτ ′Dret
;µ

(
z̄α, z̄α′

)
(2.122)

and depends on the entire past history of the particle’s interaction with the scalar

field. This feature is observed in [87] wherein the time-dependence of the particle’s

effective mass is explicitly calculated for the particle and scalar field in de Sitter

and certain FRW cosmologies. The monopole particle-field coupling that we have

considered in this section allows for the particle’s rest mass to be transferred to and

from the field since there is no symmetry that guarantees that the particle’s mass

is a conserved quantity in time. In fact, we can see this from the action for the

particle-field total system since

S[z, φ] =

∫
dτ
[
−mo + qφ

(
z(τ)

)]
+ S[φ] (2.123)

where the (divergent) effective mass is clearly given by

meff (τ) = mo − qφ
(
z(τ)

)
, (2.124)

which agrees with (2.121) after renormalizing the particle’s bare mass by the diver-

gence from the direct part of the field.

Detweiler and Whiting [52] also obtain the finite equations of motion in (2.121)

by decomposing the covariant derivative of the retarded field φret = Dret · j into a

singular piece φS
µ , containing the diverging contribution that renormalizes the mass,

and a regular piece φR
µ , which contributes to the self-force and is regular on the

worldline. A more detailed discussion of their technique is given in [53]. From the
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previous section we can construct these quantities within our regularization scheme

to find that for Λ →∞

φS
µ = −q

√
8

π
Λ2 ūµ + q

(
1

2
g(1)(r)− c(0)(r)

)
āµ (2.125)

φR
µ = −q 1− 6ξ

12
R(z̄) ūµ +

q

3

Dāµ

dτ
+
q

6
Rµα(z̄) ūα + φtail

µ (z̄) (2.126)

where

φtail
µ = q lim

ε→0

∫ τ−ε

τi

dτ ′Dret
;µ

(
z̄α, z̄α′

)
(2.127)

is the (history-dependent) tail part of the scalar field. Notice that the first term of

the singular part does not contribute to renormalizing any physical parameters (at

the level of the equations of motion) since φS
µ is projected onto a direction orthogonal

to ūµ. Likewise, the first term of the regular part does not contribute to the self-

force on the particle nor is the regular part equal to the contribution from the tail,

in general.

In a flat spacetime, the tail term in (2.121) vanishes since there is no curvature

available to bend the wavefronts of the past-emitted radiation back onto the particle

at the present time. As such, (2.121) reduces to the familiar Abraham-Lorenz-Dirac

equation for a scalar charged particle interacting with a scalar field

m āµ =
q2

3
wµν [z̄α]

dāν

dτ
. (2.128)

This equation was derived in the open quantum system formalism in [33].
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2.4.4 Electromagnetic field

In this section we will study the dynamics of a point charge e interacting with

a quantum vector field ΦA(x) = Aµ(x) in a curved background spacetime. The

actions describing the dynamics of the field (environment) and its interaction with

the particle (system) are

S[Aµ] = −1

4

∫
d4x g1/2FµνF

µν

Sint[z, Aµ] =

∫
d4x g1/2jµ(x; z)Aµ(x) (2.129)

where the current density is

jµ(x; z) = e

∫
dτ

δ4(x− z)

g1/2
gµ

α(x, z)uα (2.130)

and Fµν = ∇µAν − ∇νAµ is the antisymmetric field strength tensor. Electromag-

netism is a gauge theory so we must choose a gauge in order to construct a well-

defined retarded propagator. We choose the Lorentz gauge so that the gauge-fixing

action is

Sgf [Aµ] = −1

2

∫
d4x g1/2G2 (2.131)

where G = ∇µA
µ is the gauge-fixing function.

If the particle worldline is sufficiently decohered and if the particle’s own quan-

tum mechanical fluctuations are smeared over a sufficiently small length scale then

the semiclassical equations of motion for the particle (2.58) follow by varying the

coarse-grained effective action (2.53)

moā
µ = e ~wµα[z̄]

∫ τf

τi

dτ ′Dret
αβ′

(
z̄α, z̄α′

)
ūβ′(τ ′) (2.132)
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where the operator ~wµα is derived from the functional derivative of the current

density jα integrated over a suitable test function

δ

δzµ(τ)

∫
d4x g1/2jα(x; z)f(x) = ~wµα[z] f(z) (2.133)

and equals

~wµα[z] = −ewµαβ[z]∇β = −2e gµ[α(z)uβ]∇β (2.134)

where T [ab] = 1
2
(T ab − T ba).

Hadamard’s construction (2.63) implies the following form for the retarded

propagator of the vector field in the Lorentz gauge

Dret
αβ′(x, x

′) = gαβ′(x, x
′)∆1/2(x, x′)δ+

(
σ(x, x′)

)
+ Vαβ′(x, x

′)θ+

(
− σ(x, x′)

)
(2.135)

where gαβ′(x, x
′) is the bi-vector that parallel transports tensors along the unique

geodesic connecting x and x′. This representation for the propagator in the normal

convex neighborhood of x allows us to write the semiclassical equations of motion

(2.132) as

m0ā
µ(τ) = −e2wµαβ[z̄α]∇β

[∫ τ

τ<

dτ ′
(
gαγ′ū

γ′∆̄1/2δ(σ̄) + V̄αγ′ū
γ′
)

+

∫ τ<

τi

dτ ′Dret
αγ′

(
z̄α, z̄α′

)
ūγ′

]
(2.136)

The direct part of the retarded propagator gives rise to a divergence when the two

points are light-like separated. The self-force in (2.136) requires the retarded Green’s

function to be evaluated along the particle’s trajectory, which is time-like, so that
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the only contribution to the self-force from the direct part occurs at coincidence,

when the two points are equal.

Introduce a regulator Λ through the replacement (2.71) such that for particle

energies much lower than this scale an effective description of the particle dynamics

can be given without recourse to information about the high energy physics that is

being ignored. The regularized direct part of the self-force is

Iµ
3 ≡ −e2wµαβ[z̄α]∇β

∫ τ

τ<

dτ ′ gαγ′ū
γ′∆̄1/2δΛ(σ̄) (2.137)

Passing the covariant derivative through the integral gives

Iµ
3 = −e2wµαβ[z̄α]

([
gαγ′ū

γ′∆̄1/2δΛ(σ̄)
][
∇α(τ − τ ′)

]
+

∫ τ

τ<

dτ ′∇α

(
gαγ′ū

γ′∆̄1/2δΛ(σ̄)
))

(2.138)

From (2.110) and the coincident limits τ ′ → τ (equivalently, letting s → 0 in the

quasi-local expansions in Section 2.4.2) of the quantities in the first term of Iµ
3 we

find that

−e2wµαβ[z̄α]
[
gαγ′ū

γ′∆̄1/2δΛ(σ̄)
][
∇α(τ − τ ′)

]
= e2wµαβūαūβ = 0. (2.139)

This gives for the divergent part of the self-force

Iµ
3 = −e2wµαβ[z̄α]

∫ τ

τ<

dτ ′
{
gαγ′;αū

γ′∆̄1/2δΛ(σ̄) + gαγ′ū
γ′
(
∇α∆̄1/2

)
δΛ(σ̄)

+ gαγ′ū
γ′∆̄1/2∇αδΛ(σ̄)

}
(2.140)

and can be integrated using the quasi-local expansions developed in Section 2.4.2.

We find that

Iµ
3 = e2g(1)(r) ā

µ +
2e2

3
g(2)(r)w

µα[z̄α]
Dāα

dτ
− e2

6
c(1)(r)w

µα[z̄α]R̄αβū
β (2.141)
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where the time-dependent coefficients g(1), g(2) and c(1) are defined in (2.114) and

(2.115) and we have dropped irrelevant terms that vanish in the limit Λ →∞.

Putting this into the semiclassical equations of motion we find that (2.136)

becomes

[
mo − e2g(1)(r)

]
āµ(τ) =

2e2

3
g(2)(r)w

µα[z̄α]
Dāα

dτ
− e2

6
c(1)(r)w

µα[z̄α]R̄αβū
β

−e2wµαβ[z̄α]∇β

[∫ τ

τ<

dτ ′ V̄αγ′ū
γ′ +

∫ τ<

τi

dτ ′Dret
αγ′

(
z̄α, z̄α′

)
ūγ′

]
(2.142)

which shows that the mass of the point charge must be renormalized because of the

infinite and time-dependent shift

δm = e2g(1)(r) (2.143)

that implies defining

m = mo − δm (2.144)

as the physical rest mass for the charge.

Passing the covariant derivative through the first integral in (2.136) gives

−e2wµαβ[z̄α]∇β

∫ τ

τ<

dτ ′ V̄αγ′ū
γ′ = −e2wµαβ[z̄α]

[
V̄αγ′ū

γ′
][
∇β(τ − τ ′)

]
−e2wµαβ[z̄α]

∫ τ

τ<

dτ ′ V̄αγ′;βū
γ′ (2.145)

where the coincident limit of the smooth function Vαγ′ is given by [53]

[Vαγ′ ] = −1

2
Rαγ +

1

12
gαγR (2.146)

from which we deduce that

−e2wµαβ[z̄α]
[
V̄αγ′ū

γ′
][
∇α(τ − τ ′)

]
=

e2

2
wµα[z̄α]R̄αβū

β (2.147)
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after also using (2.110). Putting this into the semiclassical equations of motion

(2.142) gives

māµ(τ) =
2e2

3
g(2)(r)w

µα[z̄α]
Dāα

dτ
+
e2

6

(
3− c(1)(r)

)
wµα[z̄α]R̄αβū

β

−e2wµαβ[z̄α]

[∫ τ

τ<

dτ ′ V̄αγ′;βū
γ′ +

∫ τ<

τi

dτ ′Dret
αγ′;β

(
z̄α, z̄α′

)
ūγ′

]
. (2.148)

It is useful to write this in a form that does not depend on the contributions of the

propagator that come from propagation in the normal convex neighborhood at z̄(τ)

or outside of this region. To this end we may write

māµ(τ) =
2e2

3
g(2)(r)w

µα[z̄α]
Dāα

dτ
+
e2

6

(
3− c(1)(r)

)
wµα[z̄α]R̄αβū

β

−e2wµαβ[z̄α] lim
ε→0

∫ τ−ε

τi

dτ ′Dret
αγ′;β

(
z̄α, z̄α′

)
ūγ′ . (2.149)

This is the main result of this section. As with the scalar field example we see that

there is a local radiation reaction term proportional to the derivative of the acceler-

ation as well as a history-dependent contribution to the self-force that depends on

the entire past history of the particle and the field. There is also a local conservative

forcing term proportional to the Ricci curvature tensor.

In the limit that Λ → ∞ we recover the equations of motion first derived in

[23] and [27], namely,

māµ(τ) =
2e2

3
wµα[z̄α]

Dāα

dτ
+
e2

3
wµα[z̄α]R̄αβū

β

−e2wµαβ[z̄α] lim
ε→0

∫ τ−ε

τi

dτ ′Dret
αγ′;β

(
z̄α, z̄α′

)
ūγ′ (2.150)

and is a generalization to curved spacetime of the well-known Abraham-Lorenz-Dirac

equations, which in flat spacetime reads

māµ(τ) =
2e2

3
wµα[z̄α]

Dāα

dτ
(2.151)
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and describes purely local radiation reaction on the motion of the particle.

2.4.5 Linear metric perturbations

In this section we study the motion of a small point mass mo moving through

a linearized quantum metric perturbation field with

ΦA(x) = h̄µν(x) ≡ κhµν(x) (2.152)

in a curved vacuum background spacetime with Rµν = 0. The constant κ2 = 32π

is a convenient normalization for the metric perturbation. The field and interaction

actions describing the particle-field dynamics are

S[h̄µν ] =
1

2

∫
d4x g1/2

[
2hαβ;γh

αγ;β − hαβ;γh
αβ;γ − 2h;α

(
hαβ

;β −
1

2
h;α
)]

(2.153)

Sint[z, h̄µν ] =
κ

2

∫
d4x g1/2hµνT

µν(x; z) (2.154)

where

T µν(x; z) = mo

∫
dτ

δ4
(
x− z(τ)

)
g1/2

gµ
α(x, z)gν

β(x, z)uαuβ (2.155)

is the particle’s stress-energy tensor. It will be convenient to define the current

density jµν in terms of the stress tensor as

jµν(x; z) =
κ

2
T µν(x; z) (2.156)

so that the interaction is given in the standard form

Sint[z, h̄µν ] =

∫
d4x g1/2jµν(x; z)hµν(x) (2.157)
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that we have been using throughout this Chapter.

It is assumed that the leading order particle motion describes a geodesic on

the background vacuum spacetime so that the acceleration the particle experiences

from interactions with the metric perturbations is of the order of the (infinitesimally

small) mass mo. This assumption will be used repeatedly throughout the remainder

of this example.

We choose the Lorenz gauge for the trace-reversed metric perturbation ψµν =

hµν − 1
2
gµνh using the gauge-fixing action

Sgf [hµν ] = −
∫
d4x g1/2GµGµ (2.158)

where Gµ = ∇νψµν is the gauge-fixing function.

If the quantum field fluctuations of the metric perturbations provide a strong

enough mechanism for decoherence then varying the coarse-grained effective action

(2.53) gives the semiclassical equations of motion for the particle worldline (2.58),

which are

moā
µ(τ) =

1

2
κmo ~w

µαβ[z̄α]

∫ τf

τi

dτ ′Dret
αβγ′δ′

(
z̄α, z̄α′

)
ūγ′ūδ′ (2.159)

where the operator ~wµαβ is computed from the variation of the current density jµν

with respect to the worldline coordinates

δ

δzµ(τ)

∫
d4x g1/2jαβ(x; z)f(x) = ~wµαβ[z]f(z)

where f(x) is a suitable function and

~wµαβ = κmow
µαβγ∇γ = κmo

(
1

2
uαuβwµγ − wµ(αuβ)uγ

)
∇γ (2.160)

=
1

2
κmo

(
−gµαuβuγ + gµγuαuβ − gµβuαuγ − uµuαuβuγ

)
∇γ. (2.161)
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As before, the quantity wµα = gµα+uµuα projects vectors in the direction orthogonal

to uα.

It is more convenient to use the retarded Green’s function associated with

the trace-reversed perturbation ψµν rather than the original metric perturbation

hµν itself since Hadamard’s construction of the retarded propagator (2.63) can be

applied directly to the former. In terms of ψµν then, (2.159) becomes

moā
µ =

1

2
κmo ~w

µαβ[z̄]

∫ τf

τi

dτ ′

(
Ďret

αβγ′δ′

(
z̄α, z̄α′

)
− 1

2
gαβg

ρσĎret
ρσγ′δ′

(
z̄α, z̄α′

))
ūγ′ūδ′ .

(2.162)

Using the tensor

Pαβγδ =
1

2

(
gαγgβδ + gαδgβγ − gαβgγδ

)
, (2.163)

which relates hαβ and ψαβ through

hαβ = P γδ
αβ ψγδ, (2.164)

we see that this can be written more compactly as

moā
µ =

1

2
κmoP

ρσ
αβ ~w

µαβ[z̄]

∫ τf

τi

dτ ′ Ďret
ρσγ′δ′

(
z̄α, z̄α′

)
ūγ′ūδ′ . (2.165)

Hadamard’s construction for the retarded propagator (for the trace-reversed metric

perturbations) implies [53]

Ďret γ′δ′

αβ (x, x′) = 2g γ′

(α g δ′

β) ∆1/2(x, x′)δ+
(
σ(x, x′)

)
+ V γ′δ′

αβ (x, x′)θ+

(
− σ(x, x′)

)
(2.166)
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while (2.68) allows us to write the semiclassical equations of motion for the small

mass mo in the form

moā
µ =

1

2
κ2m2

oP
ρσ

αβw
µαβγ[z̄α]∇γ

[∫ τ

τ<

dτ ′
(
gργ′(z̄

α, z̄α′)ūγ′gσδ′(z̄
α, z̄α′)ūδ′∆̄1/2δ(σ̄)

+ V̄ρσγ′δ′

)
+

∫ τ<

τi

dτ ′ Ďret
ρσγ′δ′

(
z̄α, z̄α′

)]
. (2.167)

As with the other particle-field examples we have so far considered, the direct part

of the retarded propagator gives rise to a divergence when the two points are light-

like separated. The self-force in (2.167) requires the retarded Green’s function to

be evaluated along the particle’s trajectory, which is time-like, so that the only

contribution to the self-force occurs at coincidence when the two points are equal.

Introduce a regulator Λ through the replacement (2.71) such that for particle

energies much lower than this scale an effective description of the particle dynamics

can be given without recourse to information about the high energy physics that is

being ignored. The first term on the right side of (2.167) has the divergent integral,

Iµ
4 ≡ 1

2
κ2m2

oP
ρσ
αβw

µαβγ[z̄α]∇γ

∫ τ

τ<

dτ ′ gργ′(z̄
α, z̄α′)ūγ′gσδ′(z̄

α, z̄α′)ūδ′∆̄1/2δΛ(σ̄).

(2.168)

After passing the derivative through the integral it follows that

Iµ
4 =

κ2m2
o

2
P ρσ

αβw
µαβγ[z̄α]

([
gργ′(z̄

α, z̄α′)ūγ′gσδ′(z̄
α, z̄α′)ūδ′∆̄1/2δΛ(σ̄)

]
×
[
∇γ(τ − τ ′)

]
+

∫ τ

τ<

dτ ′∇γ

(
gργ′(z̄

α, z̄α′)ūγ′gσδ′(z̄
α, z̄α′)ūδ′∆̄1/2δΛ(σ̄)

))
(2.169)

while from (2.110) and (2.160) it follows that the first term, which involves the
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coincident limit, vanishes since

wµαβγūαūβūγ = 0. (2.170)

The quasi-local expansions from Section 2.4.2 imply that

Iµ
4 =

1

2
κ2m2

ow
µαβγ[z̄α]

∫ τ

τ<

dτ ′∇γ

{
gαγ′

(
z̄α, z̄α′

)
ūγ′gβδ′

(
z̄α, z̄α′

)
ūδ′∆̄1/2δΛ(σ̄)

}
(2.171)

vanishes9 in a vacuum background spacetime (with Rµν = 0).

Therefore, from (2.167) the semiclassical particle equations of motion describ-

ing the self-force on the small mass

moā
µ(τ) =

1

2
κ2m2

oP
ρσ

αβw
µαβγ[z̄α]∇γ

[∫ τ

τ<

dτ ′ V̄ρσγ′δ′

+

∫ τ<

τi

dτ ′ Ďret
ρσγ′δ′

(
z̄α, z̄α′

)]
ūγ′ūδ′ (2.172)

can be written solely in terms of the non-local contributions from the particle-field

interactions. Passing the covariant derivative through the first integral gives a term

proportional to

wµαβγ[z̄α]
[
V̄αβγ′δ′ū

γ′ūδ′
][
∇γ(τ − τ ′)

]
= −wµαβγ[z̄α]Rα(δ|β|ε)ūγū

δūε,

(2.173)

which vanishes upon using the coincidence limit of V̄αβγ′δ′ [53],

[
V̄αβγ′δ′

]
= Rα(γ|β|δ). (2.174)

9Actually, there are higher order terms proportional to inverse powers of Λ. However, these

will vanish when Λ →∞ and so we ignore their contribution to the particle equations of motion.
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Then (2.172) can be written in terms of the propagator for ψµν everywhere along

the worldline except at coincidence

moā
µ(τ) =

1

2
κ2m2

oP
ρσ

αβw
µαβγ[z̄α] lim

ε→0

∫ τ−ε

τi

dτ ′ Ďret
ρσγ′δ′

(
z̄α, z̄α′

)
ūγ′ūδ′ . (2.175)

In terms of the propagator for the hµν metric perturbations we use (2.164) to show

that the self-force on the small mass is given to first order in the metric perturbations

by

moā
µ(τ) =

1

2
κ2m2

ow
µαβγ[z̄α] lim

ε→0

∫ τ−ε

τi

dτ ′Dret
αβγ′δ′(z̄

α, z̄α′)ūγ′ūδ′ . (2.176)

This is the main result of this section. Eq. (2.176) describes the motion of a

small mass that interacts with the metric perturbations generated in the past. In

particular, there are no local forcing terms on the particle. The self-force is entirely

non-local and depends upon the specific path that the particle has taken through

the spacetime.

The equations of motion (2.176) are the self-force equations derived first by

Mino, Sasaki and Tanaka [20] using the method of matched asymptotic expansions.

Independently, Quinn and Wald [21] used axiomatic techniques to derive the same

equations. As a result, (2.176) is called the MSTQW self-force equation.

In this section we have derived the MSTQW self-force as the semiclassical

limit of a particle-field total system described from a first principles fully quantum

theory. As such, our approach is much richer since there is no need to restrict to

the semiclassical limit. We can use the techniques and formalisms developed here

to calculate quantum correlation functions of the quantum mechanical worldline

coordinates. We may also self-consistently include the effects that the quantum
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fluctuations of the field have on the motion of the particle. We discuss this latter

feature and its implications in the next Chapter.
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Chapter 3

The nonequilibrium dynamics of particles and quantum fields in

curved space: Stochastic semiclassical limit

In the previous Chapter we derive the equations of motion for a point particle

moving through a curved background spacetime and interacting with a linear quan-

tum field from a first principles open quantum system point of view. We assume

that environment-induced decoherence is sufficiently provided by the coarse-grained

quantum field fluctuations so that only minimal smearing of the particle worldlines

(over a scale of order the particle’s Compton wavelength, say) allows for a semiclas-

sical description of the particle’s evolution.

Nevertheless, even under these assumptions the quantum fluctuations of the

field may still influence the classical motion of the particle through the particle-

field interactions that are ongoing. This coupling can manifest as noise through the

appearance of classical stochastic forces that cause the particle to be perturbed away

from its expected semiclassical motion. In this section we demonstrate how such

a stochastic semiclassical limit can be obtained from the first principles worldline

influence functional formalism developed in Section 2.2.
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3.1 The self-force Langevin equations and the noise kernel

In Sections 2.3 and 2.4 we showed that the variation of the coarse-grained

effective action in (2.53) gives the semiclassical equations of motion for the particle

worldline provided that the quantum field fluctuations have sufficiently decohered1

the particle worldline histories.

As such, the imaginary part of the influence action, which is proportional to

the Hadamard function representing the fluctuations of the coarse-grained quan-

tum field, plays a peripheral role in the semiclassical limit. However, (2.40) and

(2.44) imply that the Hadamard function is vital for determining the particle’s sym-

metric two-point correlation function 〈{ẑ(τ), ẑ(τ ′)}〉, for example. This quantity

represents the fluctuations of the worldline coordinates and contains two types of

contributions. The first comes from the quantum mechanical fluctuations intrin-

sic to the initial state of the particle. The second describes fluctuations that are

induced by the particle’s interaction with the coarse-grained quantum field fluctua-

tions of the environment. For linear quantum Brownian motion systems the intrinsic

fluctuations decay with time and can be viewed as transient fluctuations while the

induced fluctuations persist through time [24]. While the particle dynamics in Spp

are not linear it is reasonable to expect that the induced fluctuations will be an

important contribution so that when the worldline is sufficiently decohered these in-

duced fluctuations manifest as noise in the particle’s motion. This scenario is called

1From here on whenever we speak of the particle worldline being sufficiently decohered we

will implicitly assume that a minimal amount of smearing has been performed to achieve truly

decoherent histories of the particle worldline.
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the stochastic semiclassical limit to which we now turn.

To see how the stochastic semiclassical limit arises we invoke the relation used

by Feynman and Vernon [30],

exp

{
− 1

4~
j−A ·D

AB′

H · j−B′

}

= N

∫
Dξ(x) exp

{
− 1

~
ξA · (DAB′

H )−1 · ξB′ − i

~
ξA · j−A

}
(3.1)

where N is a normalization factor that is independent of the worldline coordinates

and ξA(x) is an auxiliary field. Essentially, (3.1) is a functional Fourier transform

of the exponential of the imaginary part of the influence action.

Now the reduced density matrix (2.20) becomes

ρr(zf , z
′
f ; tf ) = N

∫
dzi dz

′
i

∫ zf

zi

Dz
∫ z′f

z′i

Dz′ ρS(zi, z
′
i; ti)

∫
DξA Pξ[ξA]

× exp

{
i

~
Ssea[z, z

′; ξA]

}
(3.2)

where the stochastic effective action (SEA) is defined as

Ssea[z, z
′; ξA] = ReScgea[z, z

′]− ξA · j−A . (3.3)

The function ξA(x) can be interpreted as a classical stochastic, or noise, field [33, 24]

with an associated (Gaussian) probability distribution functional

Pξ[ξA(x)] = exp

{
− 1

~
ξA · (DAB′

H )−1 · ξB′

}
. (3.4)

The fact that this is Gaussian is a direct consequence of the quadratic field action

S[Φ] and the field’s linear coupling to the particle current density in Sint[z,Φ].

With respect to Pξ[ξA] this implies that ξA has zero-mean and its symmetric two-

point correlation function is proportional to the Hadamard function encoding the
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information about the fluctuations in the quantum field

〈
{ξA(x), ξB′

(x′)}
〉

ξ
= ~DAB′

H (x, x′) (3.5)

where 〈. . .〉ξ = N
∫
DξA Pξ (. . .). In general, for systems with a nonlinear coupling

to the environment or for non-Gaussian initial states of the envronment the inter-

pretation of Pξ as a probability distribution is not always possible. It may take

on negative values in which case Pξ should be interpreted as a pseudoprobability

distribution in a similar vein as the Wigner function [24].

Expanding the stochastic effective action around the classical solution z̄µ and

evaluating the resulting reduced density matrix using the stationary phase approx-

imation2 results in the following stochastic equations of motion for the worldline

fluctuations z̃µ ≡ zµ − z̄µ

∫
dτ ′ z̃α′ δ

2ReScgea

δzα′δzµ

∣∣∣∣∣
z=z′=z̄

= ηµ[z̄α] (3.6)

where the stochastic forcing term is

ηµ

[
z̄α
]

= ~w A
µ

[
z̄α
]
ξA
(
z̄α
)
. (3.7)

Eq. (3.6) describes the dynamics of small perturbations z̃ around the semiclassi-

cal solution z̄ that originate from the classical, stochastic manifestation ηµ of the

quantum field fluctuations.

We can obtain a stochastic version of (2.58) if we add (2.56) to the left side of

2We can do this since we demonstrated earlier that the semiclassical limit is equivalent to a

stationary phase approximation of the reduced density matrix.
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(3.6) so that

ηµ[z] =
δScgea

δ〈ẑµ〉

∣∣∣∣∣
z′=z

+

∫
dτ ′ z̃α′ δ

2ReScgea

δzα′δzµ

∣∣∣∣∣
z=z′=z̄

≈ δReScgea

δzµ

∣∣∣∣∣
z′=z

, (3.8)

which is accurate through first order in an expansion in the fluctuation coordinates

z̃. Computing the functional derivative in the last equality gives another form of

the stochastic equations of motion in terms of the full worldline zµ

maµ = ~wµA[z]

∫ τf

τi

dτ ′Dret
AB′(zα, zα′)jB′

[zα′ ] + ηµ[z]. (3.9)

This equation is only valid to linear order in the fluctuations z̃ and is the same

order as the stochastic force ηµ[z̄] because we are neglecting higher order particle-

loop quantum corrections. In practice, (3.9) is expanded to linear order in z̃ and

(2.58) is invoked to obtain the particle fluctuation dynamics. We point out that (3.9)

is a stochastic equation of motion because observables involving z̃ must be computed

via the stochastic correlation functions 〈. . .〉ξ. In fact, both the deterministic and

the stochastic components of the self-force can push the particle away from its mean

trajectory with respect to a fixed background spacetime.

The stochastic correlation functions of the force ηµ can be evaluated using

the ξA correlators above. Evaluating these correlation functions along the classical

trajectory z̄ we find that the mean of the stochastic force is zero and the symmetric

two-point function of the stochastic force, which we refer to as the noise kernel, is

〈
{ηµ[z̄], ην′ [z̄]}

〉
ξ

= ~ ~w A
(µ [z̄] ~w B′

ν′) [z̄]DH
AB′(z̄α, z̄α′) .

(3.10)

It follows that the noise term ηµ, which is generally multiplicative and colored,
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depends on the particle’s initial conditions through the semiclassical trajectory and

on the field’s initial conditions via the initial state used to evaluate the Hadamard

function. For most kinds of fields (with the notable exception of the linearized metric

perturbation) the operator ~wµA[z] enforces the noise kernel to be gauge invariant.

For equal proper times τ ′ = τ the Hadamard function diverges implying that a

suitable regularization procedure must be used in order to make sense of the noise

kernel (3.10) near coincidence.

The noise kernel in (3.10) demonstrates that the stochastic force ηµ is O(~1/2)

as are the worldline fluctuations z̃. This shows that the Langevin equation (3.6)

is at an order between the tree-level and the one-loop O(~) equations of motion

and therefore contains information about the lowest order3 quantum fluctuations of

the coarse-grained field, even if the environment is weakly nonlinear. This is the

reason why we do not need to include the ghost fields in these considerations since

the ghosts first appear at one-loop order and hence provide no contribution to the

semiclassical or the stochastic semiclassical dynamics of the particle.

In the next Sections we derive from (3.9) the Langevin equations describing the

self-force on a particle interacting separately with a linear scalar, electromagnetic

and metric perturbation quantum field in a curved space.

3Lowest order in the coupling constant, that is. We consider a linear quantum field (or more

generally, a quantum field in the Gaussian approximation), which has no non-trivial vertices and

hence no loop contributions to the field two-point functions.
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3.1.1 Scalar field

In this subsection we study the effects of the quantum field fluctuations (man-

ifesting as classical stochastic forces) in the stochastic semiclassical limit of a point

scalar charge interacting with a scalar field φ(x).

Varying the stochastic effective action around the classical trajectory z̄µ to

linear order in the worldline fluctuations z̃µ and performing a stationary phase ap-

proximation in the reduced density matrix gives the Langevin equation (3.9) valid

for this particle example,

m0a
µ(τ) = ~wµ[z]

∫ τ

τi

dτ ′Dret(z
α, zα′) + ηµ[z] (3.11)

where the stochastic force ηµ is related to the stochastic field ξ(x) through

ηµ[z] = ~wµ[z]ξ(z) = q
(
aµ + wµν∇ν

)
ξ(z). (3.12)

The retarded propagator diverges and must be regularized. The steps used to regu-

larize the semiclassical equations of motion are exactly the same that regularize the

divergence here. We may therefore simply write down the regularized and renor-

malized scalar ALD-Langevin equation using (2.121) and (3.9) to find[
m− q2 lim

ε→0

∫ τ−ε

τi

dτ ′Dret

(
zα, zα′

)]
aµ(τ)

=
q2

3
g(2)(r)w

µν [zα]
Daν

dτ
+
q2

6
c(1)(r)w

µν [zα]Rναu
α

+ q2wµν [zα] lim
ε→0

∫ τ−ε

τi

dτ ′Dret
;ν

(
zα, zα′

)
+ ηµ[z]. (3.13)

We must remember that these equations are only valid through linear order in the

fluctuations z̃ about the mean worldline coordinates z̄ since higher orders correspond

to quantum corrections that we are neglecting.
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It will be useful to define the effective mass of the particle as

meff (τ ; z] ≡ m− qφtail(zα) (3.14)

and to define the self-force 4-vector on the particle as

fµ(τ ; z] ≡ q2

3
g(2)(r)w

µν [zα]
Daν

dτ
+
q2

6
c(1)(r)w

µν [zα]Rναu
α + qwµν [zα]φtail

ν (zα).

(3.15)

In providing these definitions we have also defined the tail part of the retarded field

φtail(zα) ≡ q lim
ε→0

∫ τ−ε

τi

dτ ′Dret

(
zα, zα′

)
(3.16)

and its coviarant derivative as

φtail
ν (zα) ≡ q lim

ε→0

∫ τ−ε

τi

dτ ′Dret
;ν

(
zα, zα′

)
. (3.17)

Expanding (3.13) in orders of the fluctuations amounts to doing the same for the

time-dependent effective mass (3.14) and the self-force (3.15). Through first order

in the particle fluctuations we formally find

meff (τ ; z] = meff (τ ; z̄]− q

∫
dτ ′ z̃ν′

[
δ

δz̄ν′
φtail(zα)

]
z=z̄

+O(z̃2) (3.18)

fµ[z] = fµ[z̄] +

∫
dτ ′ z̃ν′

[
δ

δz̄ν′
fµ[zα]

]
z=z̄

+O(z̃2). (3.19)

Calculating the functional derivative in the mass equation gives

meff (τ ; z] = meff (τ ; z̄]− q z̃νφtail
ν (z̄)− q2 lim

ε→0

∫ τ−ε

τi

dτ ′ z̃ν′∇ν′Dret(z̄
α, z̄α′).

(3.20)

Notice that the linear terms in z̃ vanish in flat spacetime since there is no tail part

of the propagator.
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Simplifying the self-force fluctuations is slightly more involved. The calculation

amounts to performing the variational derivative on fµ but keeping in mind to

expand out the covariant derivatives, which depend on the worldline coordinates.

We do not give the result explicitly here since the expressions are rather long and

complicated.

Combining the linearized effective mass and self-force into (3.13) and using

the fact that z̄ satisfies the semiclassical equations of motion (2.121) results in the

following equations describing the particle fluctuations about the expected worldline,

mµα[z̄] ¨̃zα + γµα[z̄] ˙̃zα + κµα[z̄] z̃α − q2 lim
ε→0

∫ τ−ε

τi

dτ ′
(
z̃α ~wµ[z̄α] D̄ret

;α + z̃α′ ~wµ[z̄α] D̄ret
;α′

)
= rµα[z̄]

...
z̃

α
+ ηµ[z̄]. (3.21)

Here we use overdots to denote d/dτ . The coefficients mµα, γµα and κµα repre-

sent a time- and history-dependent inertia for the fluctuations, damping factor and

“spring” constant, respectively. Specifically, these are given by the following expres-

sions. The effective inertia is

mµν [z̄] =
[
m− qφtail(z̄α)

]
ḡµν − q2g(2)(r)w̄µαΓ̄α

βν ū
β (3.22)

while the damping factor γµν is defined as

γµν [z̄] = 2
[
m− qφtail(z̄α)

]
ḡµαΓ̄α

βν ū
β − 2e2

3
g(2)(r)ū(µḡ

β)
ν

Dāβ

dτ

−q
2

6
c(1)(r)

[
w̄ α

µ R̄αν + 2ū(µḡ
α)
νR̄αβū

β
]
− e2

3
g(2)(r)w̄µα

[
2Γ̄α

βν,γū
βūγ

+2Γ̄α
βν

˙̄uβ + Γ̄α
βγ,ν ū

βūγ + Γ̄α
βν ā

β + 2Γ̄α
βγΓ̄

β
δν ū

γūδ
]
− 2qū(µḡ

α)
νφ̄

tail
α (z̄α).

(3.23)
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The spring constant is given by

κµν [z̄] =
[
m− qφtail(z̄α)

](
ḡµαΓ̄α

βγ,ν ū
βūγ + āαḡµα,ν

)
− q2

6
c(1)(r)w̄

α
µ R̄αβ,ν ū

β

−q
2

3
g(2)(r)w̄µα

[
ḡαβ ḡβγ,ν

Dāγ

dτ
+ Γ̄α

βγ,δν ū
βūγūδ + 2Γ̄α

βγ,ν
˙̄uβūγ

+ Γ̄α
βγΓ̄

β
δε,ν ū

γūδūε + Γ̄α
βγ,ν ū

βāγ
]

(3.24)

and the local radiation reaction term rµα[z̄] is

rµν [z̄] =
q2

3
g(2)(r)wµν [z̄

α]. (3.25)

The dynamical equation (3.21) for the fluctuations about the semiclassical par-

ticle trajectory is the main result of this section. This is a linear integro-differential

equation for z̃ with a third derivative term and contains time-dependent coefficients

that depend on the non-Markovian behavior of the mean trajectory. Furthermore,

because of the integration over past times the last term on the left side of (3.21) de-

pends on the history of the fluctuations as well. Notice that this term vanishes in a

flat spacetime so that the fluctuations then obey a third-order differential equation,

which is Markovian in the sense that given a mean trajectory z̄µ the fluctuations do

not depend on their own past history. In fact, the tensor coefficients are

mµν [z̄] = mηµν (3.26)

γµν [z̄] = −q
2

3

(
ūµ
dāν

dτ
− ηµν ā

2

)
(3.27)

κµν [z̄] = 0 (3.28)

rµν [z̄] =
q2

3
g(2)(r)wµν [z̄

α] (3.29)

in flat spacetime using Lorentzian coordinates and the integral in (3.21) vanishes

identically.
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The notation in (3.21) has been chosen suggestively since the left side resembles

a damped simple harmonic oscillator with time-dependent mass, damping factor,

and spring constant. Notice also that mµα[z̄] is not diagonal implying that the

inertia of the fluctuations is not isotropic. This feature is exhibited in the other

coefficients and suggests that the fluctuations of the trajectory in one direction are

linked with the fluctuations in the other spacetime directions.

3.1.2 Electromagnetic field

We now study the effects of the quantum field fluctuations (manifesting as

classical stochastic forces) in the stochastic semiclassical limit of a point charge

interacting with a vector field Aµ(x).

Varying the stochastic effective action around the classical trajectory z̄µ to

linear order in the worldline fluctuations z̃µ and performing a stationary phase ap-

proximation in the reduced density matrix gives the Langevin equation (3.9) valid

for this particle example,

m0a
µ(τ) = ~wµα[z]

∫ τ

τi

dτ ′Dret
αβ′(z

α, zα′) + ηµ[z] (3.30)

where the stochastic force ηµ is related to the stochastic field ξα(x) through

ηµ[z] = ~wµα[z]ξα(z) = −ewµαβ[z]∇βξα(z). (3.31)

As before, the retarded propagator diverges and must be regularized. The steps

used to regularize the semiclassical equations of motion are exactly the same that

regularize the divergence here. We may therefore simply write down the regularized
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and renormalized ALD-Langevin equation

maµ(τ) =
2e2

3
wµα[zα]

Daα

dτ
+
e2

3
wµα[zα]Rαβu

β

−e2wµαβ[zα] lim
ε→0

∫ τ−ε

τi

dτ ′Dret
αγ′;β

(
zα, zα′

)
uγ′ + ηµ[z]. (3.32)

It will be convenient to define the (deterministic part of the) self-force 4-vector as

fµ[z] =
2e2

3
g(2)(r)w

µα[z]
Daα

dτ
+
e2

6

(
3− c(1)(r)

)
wµα[z]Rαβ(z)uβ

+ewµαβ[z] lim
ε→0

∫ τ−ε

τi

dτ ′Dret
αγ′;β

(
zα, zα′

)
uγ′ . (3.33)

We remark that these equations are only valid through linear order in the fluctua-

tions z̃ about the semiclassical worldline coordinates z̄.

Expanding the self-force in orders of the fluctuations using

fµ[z] = fµ[z̄] +

∫
dτ ′ z̃ν′

[
δ

δzν′
fµ[zα(τ)]

]
z=z̄

+O(z̃2) (3.34)

and computing the linearization of those terms in the ALD-Langevin equation (3.32)

involving the covariant τ derivatives (e.g. aµ) gives the following equation for the

dynamics of the fluctuations

mµν [z̄]¨̃z
ν + γµν [z̄] ˙̃z

ν + κµν [z̄]z̃
ν − e2 lim

ε→0

∫ τ−ε

τi

dτ ′
(
z̃σ ~w α

µ [z̄α]D̄ret
αγ′;σū

γ′

+ z̃σ′ ~w α
µ [z̄α]D̄ret

αγ′;σ′ū
γ′ + 2z̃σR̄ λ

σ[µα] D̄
ret
λγ′ū

αūγ′ + ~w α
µ [z̄α]D̄ret

αγ′
˙̃zγ′
)

= rµν [z̄]
...
z̃

ν
+ ηµ[z̄]. (3.35)

Here we use overdots to denote d/dτ . We have also used the semiclassical ALD

equation (2.149) in deriving (3.35). The tensor coefficients are given by the following

expressions. The effective inertia of the fluctuations is

mµν [z̄] = m ḡµν − 2e2g(2)(r)w̄µαΓ̄α
βν ū

β, (3.36)
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the damping factor is

γµν [z̄] = 2m ḡµαΓ̄α
βν ū

β − 4e2

3
g(2)(r)ū(µḡ

β)
ν

Dāβ

dτ
− 2e2

3
g(2)(r)w̄µα

[
2Γ̄α

βν,γū
βūγ

+2Γ̄α
βν

˙̄uβ + Γ̄α
βγ,ν ū

βūγ + Γ̄α
βν ā

β + 2Γ̄α
βγΓ̄

β
δν ū

γūδ
]

−e
2

6

(
3− c(1)(r)

) [
w̄ α

µ R̄αν + 2ū(µḡ
α)
νR̄αβū

β
]
− 2eḡ [α

µ ḡβ]
νĀ

tail
αβ

(3.37)

where the tail part of the retarded field is given by

Aα(z̄α) = e lim
ε→0

∫ τ−ε

τi

dτ ′Dret
αγ′(z̄

α, z̄α′)ūγ′ (3.38)

and the tail of the covariant derivative is

Aαβ(z̄α) = e lim
ε→0

∫ τ−ε

τi

dτ ′Dret
αγ′;β(z̄α, z̄α′)ūγ′ . (3.39)

The spring constant is defined as

κµν [z̄] = m
[
ḡµαΓ̄α

βγ,ν ū
βūγ + āαḡµα,ν

]
− e2

6

(
3− c(1)(r)

)
w̄ α

µ R̄αβ,ν ū
β

−2e2

3
g(2)(r)w̄µα

[
ḡαβ ḡβγ,ν

Dāγ

dτ
+ Γ̄α

βγ,δν ū
βūγūδ + 2Γ̄α

βγ,ν
˙̄uβūγ

+Γ̄α
βγΓ̄

β
δε,ν ū

γūδūε + Γ̄α
βγ,ν ū

βāγ

]
(3.40)

and the local radiation reaction is given by

rµν [z̄] =
2e2

3
g(2)(r)wµν [z̄]. (3.41)

Notice that (3.35) is a linear integro-differential equation for z̃ with a third

derivative term and contains time-dependent coefficients that depend on the semi-

classical trajectory, which possesses non-Markovian features. Furthmore, (3.35) de-

pends on the entire past history of the worldline fluctuations because of the integral
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over z̃. This integral also contains a term involving ˙̃z, which suggest that the dissi-

pation of these fluctuations is a non-Markovian process as well. We remark that the

integration is over the tail part and its derivative so that this history dependence

disappears in flat spacetime. In fact, the tensor coefficients are

mµν [z̄] = mηµν (3.42)

γµν [z̄] = −2e2

3

(
ūµ
dāν

dτ
− ηµν ā

2

)
(3.43)

κµν [z̄] = 0 (3.44)

rµν [z̄] =
2e2

3
g(2)(r)wµν [z̄

α] (3.45)

in flat spacetime using Lorentzian coordinates.

The effective mass mµν for the fluctuations is not diagonal, generally speak-

ing, implying that the inertia of the fluctuations is not isotropic. This feature is

exhibited in the other three tensor coefficients and suggests that the fluctuations in

one direction are linked with the fluctuations in the other spacetime directions.

3.1.3 Linear metric perturbations

In this last example we study some attributes and consequences of the quantum

field fluctuations of linear metric perturbations manifesting as classical stochastic

forces on the motion of a small point mass mo.

Assuming sufficiently strong decoherence, expanding the stochastic effective

action about the semiclassical worldline and performing a stationary phase approxi-

mation in the resulting reduced density matrix gives rise to the stochastic semiclas-
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sical equations of motion

moa
µ(τ) = ~wµαβ[z]

∫ τ

τi

dτ ′Dret
αβγ′δ′(z

α, zα′)uγ′uδ′ + ηµ[z] (3.46)

where the stochastic force ηµ is related to the stochastic field ξµν(x) through

ηµ[z] = ~wµαβ[z] ξαβ(z) = −κmow
µαβγ[z]∇γξαβ(z). (3.47)

As before, the retarded propagator diverges and must be regularized. The steps used

to regularize the semiclassical equations of motion are exactly the same that regu-

larize the divergence here. We may therefore simply write down the corresponding

regularized and renormalized MSTQW-Langevin equation

moa
µ = ~wµαβ[z] lim

ε→0

∫ τ−ε

τi

dτ ′Dret
αβγ′δ′(z

α, zα′)uγ′uδ′ + ηµ[z] (3.48)

where the (deterministic part of the) self-force 4-vector is

fµ[z] = mow
µαβν [z] lim

ε→0

∫ τ−ε

τi

dτ ′Dret
αβγ′δ′;ν(z

α, zα′)uγ′uδ′ . (3.49)

We remark that these stochastic equations are only valid up to linear order in the

particle fluctuations z̃ about the semiclassical worldline z̄.

Expanding the self-force fµ in orders of the fluctuations using

fµ[z] = fµ[z̄] +

∫
dτ ′ z̃ν′

[
δ

δzν′
fµ[zα(τ)]

]
z=z̄

+O(z̃2) (3.50)

and computing the linearization of those terms involving the covariant τ derivatives

(e.g. aµ) gives the equation of motion for the worldline fluctuations

mµν [z̄]¨̃z
ν + γµν [z̄] ˙̃z

ν + κµν [z̄]z̃
ν −m2

oP
δε

αβ lim
ε→0

∫ τ−ε

τi

dτ ′
(
z̃σ ~w αβ

µ [z̄α]D̄ret
δεγ′δ′;σū

γ′ūδ′

+ z̃σ′ ~w αβ
µ [z̄α]D̄ret

δεγ′δ′;σ′ū
γ′ūδ′ − 2z̃σR̄ λ

σγ (δD̄
ret
ε)λγ′δ′ū

γ′ūδ′

+ 2~w αβ
µ [z̄α]D̄ret

δεγ′δ′ū
(γ′ ˙̃zδ′)

)
= ηµ[z̄]. (3.51)
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We have also used the equations of motion for the semiclassical worldline (2.176) in

this derivation.

The tensor coefficients mµν , γµν and κµν are defined in the following way. The

effective inertia for the fluctuations is

mµν [z̄] = moḡµν (3.52)

and the damping factor is

γµν [z̄] = 2m0ḡµαΓ̄α
βν ū

β +moh̄
tail
αβγ

[
2ū(µū

αūβ ḡγ)
ν + ḡ (α

µ ūβ)ḡγ
ν

− ḡ (α
µ ū|β|ḡγ)

ν + ḡ (α
µ ḡβ)

ν ū
γ
]

(3.53)

where the (history-dependent) tail of the retarded field is

htail
αβ (z̄α) = κm0 lim

ε→0

∫ τ−ε

τi

dτ ′Dret
αβγ′δ′(z̄

α, z̄α′)ūγ′ūδ′ (3.54)

and the tail of the covariant derivative of the propagator is defined as

htail
αβγ(z̄

α) = κm0 lim
ε→0

∫ τ−ε

τi

dτ ′Dret
αβδ′ε′;γ(z̄

α, z̄α′)ūδ′ūε′ . (3.55)

The spring constant is given by

κµν [z̄] = moḡµαΓ̄α
βγ,ν ū

βūγ. (3.56)

Note that the mass tensor is proportional to the metric indicating that the effective

inertia of the fluctuations are isotropic in all of the spacetime directions.

As with the electromagnetic case earlier, (3.51) is a linear differential equation

for z̃. The important difference is that the third derivative of z̃ gives no contribution

at this order. Hence, only the initial position and velocity of the fluctuations are
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sufficient to obtain a unique solution. This is unlike the electromagnetic case dis-

cussed earlier since one needs to introduce an external force to obtain unambiguous,

runaway-free solutions.

In flat spacetime the stochastic semiclassical equations of motion (3.51) are

considerably simplified (in Lorentzian coordinates)

mo
¨̃zµ = ηµ[z̄] (3.57)

since the tail term vanishes identically. At this order in the mass and in Λ (since

the finite terms are proportional to Λ0) there is no dissipation term appearing in

(3.57). This implies that the two-point functions composed of ˙̃z and z̃ could grow

unbounded in time in the strict point-particle limit Λ →∞. However, if Λ is large

but finite then dissipation effects from the neglected O(Λ−1) terms could begin to

appear on a time scale ∼ Λ. Likewise, dissipation from higher order terms arising

from the nonlinearities of the full metric perturbation field equations may begin to

appear on a time scale ∼ m0 � Λ.

The structure of the flat spacetime stochastic semiclassical equations of mo-

tion in (3.57) provides a simple system to study some effects of the coarse-grained

fluctuations of the quantized metric perturbations. For example, we can compute

the noise kernel of the stochastic force,

〈
{ηµ[z̄α], ην [z̄

α′ ]}
〉

ξ
= ~ ~w αβ

(µ [z̄] ~w γ′δ′

ν′) [z̄α′ ]DH
αβγ′δ′(z̄

α, z̄α′). (3.58)

We may write the Hadamard function for the metric perturbations in terms of the

Hadamard function for a scalar field in the same vacuum state, for example, using
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the relation

DH
αβγ′δ′(σ) = Pαβγ′δ′D

H(σ) (3.59)

where σ is the world function and Pαβγ′δ′ is defined in (2.163). A particle satisfying

the semiclassical MSTQW equations of motion in flat spacetime is a geodesic as can

be seen directly from (2.176). Therefore, the world function (2.88) is

σ(z̄α, z̄α′) = −s
2

2
, (3.60)

where s = τ ′ − τ , and the covariant derivative of the world function (2.87) is

σµ(z̄α, z̄α′) = −sūµ(τ). (3.61)

The second covariant derivative equals the background metric ηµν [53]. Using the

expression for the scalar Hadamard function evaluated in the vacuum state [66]

(which is a Gaussian state)

DH(σ) =
1

4π2σ
(3.62)

we find that the noise kernel evaluated along a geodesic of flat spacetime, which is

a solution to the semiclassical equations of motion, equals

〈
{ηµ[z̄α], ην [z̄

α′ ]}
〉

ξ
=

44

π

~m2
o

(τ − τ ′)4
. (3.63)

We remark that there is a tail that falls off as the fourth power of the proper time

difference and is divergent when τ ′ = τ .

Interestingly, we can write (3.57) as a geodesic equation in a background space-

time possessing a stochastic metric. To show this we observe that the stochastic
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force

ηµ[z̄] = −κmow
αβγ

µ [z̄]∇γξαβ(z̄) (3.64)

can be written in terms of a stochastic metric perturbation field by defining

h̃αβ(x) ≡ κ ξαβ(x). (3.65)

Using the semiclassical MSTQW equations of motion (2.176) in a flat background,

namely moā
µ = 0, we see that (3.57) can be written as

mo

(
¨̄zµ + ¨̃zµ + wµαβγ[z̄] h̃αβ;γ(z̄)

)
= 0 (3.66)

which is equivalent to

mo

(
z̈µ + wµαβγ[z] h̃αβ;γ(z)

)
= O(z̃2) (3.67)

in Lorentzian coordinates where the components of the connection are zero. From

(2.161) it follows that the second term in the above equation is the first order

correction to the connection components (in an expansion in mo) of a spacetime

with an effectively stochastic metric given by

gµν = ηµν + h̃µν = ηµν + κξµν . (3.68)

The stochastic motion of the particle through linear order in the worldline fluctua-

tions is therefore a geodesic in this effectively stochastic spacetime. We remark that

we started with quantized linear metric perturbations interacting with a quantum

mechanical relativistic point mass. Provided that the particle worldline is decohered

through its interaction with coarse-grained quantum fluctuations of ĥµν we can iden-

tify a stochastic semiclassical limit for the particle’s motion through the introduction

109



of an auxiliary field ξαβ that interacts with the particle and can be interpreted as

a stochastic field with an associated probability distribution Pξ. Up to an overall

constant, this stochastic field is effectively a classical stochastic metric perturbation

that adds to the flat background metric to generate a total metric given by (3.68).

3.2 Implications for gravitational wave observables

The motion of compact objects (e.g. black holes and neutron stars) in a

binary system are candidate sources for detecting the gravitational waves these

systems emit. While influences from quantized linear metric perturbations on such

a background are expected to be negligibly small we investigate in this Section

the flux of gravitational waves emitted by a massive particle moving in a curved

background. By calculating the flux of radiation passing through an interferometer,

say, we may learn about the stochastic semiclassical limit for the particle’s motion.

From the MSTQW-Langevin equation and using (3.47) and the definition of

the tail part of the retarded metric perturbations (3.54) we may write (3.48) as

moa
µ(τ) = mow

µαβγ[z]∇γ

(
hret

αβ(z) + κξαβ(z)
)

(3.69)

where we recall that the direct part of the retarded propagator gives no contribution

to the self-force at this order in the small mass mo. From the above form it is

tempting to define a (classical) stochastic metric perturbation4

h̃αβ(x) = hret
αβ(x) + κξαβ(x), (3.70)

4Note that this is not the same as the stochastic metric perturbation κξαβ defined in (3.65).
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which not only interacts with the particle but radiates far away to a gravitational

wave detector.

With such an identification, the flux of the emitted gravitational radiation at

frequency ω passing through a detector that is far from the particle is

F =
ω2

κ2

〈
〈h̃TT

µν h̃
TTµν〉ξ

〉
(3.71)

=
ω2

κ2

(〈
hret,TT

µν (x)hTTµν
ret (x)

〉
+ ~κ2

〈
DTT

H (x, x)
〉)

(3.72)

and is expressed in the transverse-traceless gauge [102]. The outer brackets denote

an average over one period of the gravitational wave’s oscillation whereas the in-

ner brackets 〈. . .〉ξ denote the stochastic average. The effect of the coarse-grained

quantum field fluctuations is to impart a small quantum correction to the emitted

flux of radiation. We remark that the coincidence limit of the Hadamard function

appears so that the flux is formally divergent. In order to have a well-defined flux

one needs to regularize DH to obtain a finite result. In a certain sense, detection

of this O(~) correction would provide a direct observation of perturbative quantum

gravity but such a detection is likely hopeless with the current and next-generation

gravitational wave interferometers.

While this identification of a stochastic metric perturbation h̃µν is appealing

we wish to emphasize that the metric perturbation considered in this paper is a

quantum variable. The identification of a classical stochastic metric perturbation

h̃µν is therefore only formal and is suggested from the observation that the retarded

field hret
µν is independent of the state of the quantum field. However, the (c-number)

stochastic field ξµν contains some information about the state since its two-point
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function depends upon the quantum state of the metric perturbations

〈
{ξαβ(x), ξγ′δ′(x

′)}
〉

ξ
= ~DH

αβγ′δ′(x, x
′). (3.73)

For this reason the radiated flux (3.72) receives a small quantum correction.

Nevertheless, we observe that the leading order quantum contribution to the

flux is purely local. It carries no information at leading order in mo about the

system that generated the metric perturbations h̃αβ. All of that information is

contained in the contribution from the retarded gravitational waves. Therefore, a

detector measuring the flux of gravitational waves will detect the usual classical

gravitational wave flux plus small corrections from the local quantum fluctuations

of the metric perturbations in the region around the detector; the stochastic motion

of the particle is not registered by the detector at this order.

3.3 Phenomenological noise and self-consistency

The noise ηµ[z̄] in the Langevin equations describing the stochastic motion of

the particle in the previous sections are obtained from coarse-graining the environ-

ment comprised of a linear quantum field in a curved spacetime. Our derivations of

the equations of motion for the semiclassical and stochastic semiclassical worldlines

assume a closed system to begin with. This treatment has the distinct advantage

that it can preserve the self-consistency between the system and the environment in

considering the effects of backreaction. For example, the noise kernel is intimately

related to the quantum fluctuations of the field via the Hadamard function DH
AB′ .

Without a self-consistent treatment of the environment’s influence on the particle
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such a relation could not be unambiguously made. However, in many practical cir-

cumstances the stochastic dynamics of a system is treated phenomenologically with

a noise term put in by hand to account for these (quantum) fluctuations. Quite gen-

erally, for a tensor field ΦA(x) this description follows by stipulating the stochastic

equations of motion

maµ = F ext
µ + fµ[z] + η+

µ (3.74)

where F ext
µ is some external force and fµ is the self-force on the particle arising from

its (non-local and history-dependent) interaction with the retarded field Φret
A .

We denote the phenomenological noise η+
µ put in by hand by a + superscript

to distinguish them from noise derived from first-principles considerations, as we

have been dealing with until now. This add-on stochastic force could have a clas-

sical origin (e.g. high temperature thermal fluctuations of a bath) or it could have

no known single identifiable origin. Furthermore, since the η+
µ is not derived from

an initially closed system it is likely to be inconsistent with the dynamics of the

trajectory by failing to satisfy a fluctuation-dissipation relation for worldline dis-

placements around an equilibrium trajectory [37]. In a phenomenological treatment

one also needs to specify the noise kernel 〈η+
µ (τ)η+

ν′(τ
′)〉η+ befitting the model, rather

than deriving it.

While one may argue that a different choice of noise kernel corresponds to a

different initial state for the quantum environment there does not seem to be a clear

way to determine that state or to otherwise extract accurate information about the

environment one is trying to model. In the self-consistent approach developed in this
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Chapter the stochastic two-point functions of the worldline coordinates correspond

to quantum two-point functions of the worldline operators so that the stochastic

correlations of the worldline contain (most) of the information of the corresponding

quantum correlations of ẑ [24].

Ignoring these cautionary statements in this Section and the next, we remark

that the analysis of the previous sections carry over for a phenomenological source

of noise. Given any kind of noise the equations of motion for the fluctuations around

the mean trajectory of the particle moving through a (classical) field subjected to

the self-force from radiation reaction is given by

mµν [z̄]¨̃z
ν + γµν [z̄] ˙̃z

ν + κµν [z̄]z̃
ν + lim

ε→0

∫ τ−ε

τi

dτ ′K
[
z̄α, z̃α

]
= rµν [z̄]

...
z̃

ν
+ η+

µ

(3.75)

where the kernel K is a functional of the semiclassical worldline and its stochastic

fluctuations and the tensor coefficients mµν , etc., are given in the previous Sections

for the appropriate field under consideration.

3.4 Secular motions from stochastic fluctuations in external fields

It is interesting to observe that when a source of noise acts as a stochastic

force on the particle in the presence of an external field that these classical fluc-

tuations can give rise to a force that drifts the particle away from its semiclassical

trajectory. In particular, the stochastic force on the particle causes it to undergo

rapid motions that enables the particle to experience different values of the generally

inhomogeneous external fields. Averaging over the stochastic fluctuations results in
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a noise-induced force that depends on the correlations of the stochastic force and

the gradients of the external fields. As we will show, the noise-induced force is a

second-order effect in terms of the worldline fluctuations. In this discussion we do

not need to worry about quantum corrections from higher-order loops in the coarse-

grained effective action Γcg, as the noise here is not necessarily of a quantum origin.

Therefore, we can expand (3.74) beyond the linear order in the fluctuations of the

particle trajectory.

In order to highlight the essential physics of this noise-induced force we con-

sider the non-relativistic motion of an electrically charged particle moving in an

external electromagnetic field in a flat background spacetime. Doing so allows us to

focus on this particular issue rather than being distracted by the more complex and

subtle technical details that arise in the fully relativistic problem in curved space-

time. We further justify these simplifying assumptions be remarking that the analo-

gous drifting forces commonly encountered in plasma physics are for nonrelativistic

charges moving in flat space (e.g., grad-B drift, curvature drift, etc.) [25, 103, 41].

To find the noise-induced force in the electromagnetic case, we begin with

the non-relativistic limit of (3.74) describing the motion of an electric point charge

moving in an external electromagnetic field and coupled to a phenomenological

stochastic force η+(z)

mai = e
(
Ei(z) + εijkujBk(z)

)
+ fi[z] + η+

i (z) (3.76)

where the external force Fext is taken to be the usual Lorentz force. (In this Section,

the Latin indices take on the values from 1 to 3 and εijk is the Levi-Civita totally
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antisymmetric tensor with ε123 = 1.) The self-force fi = 2e2/3c3 ȧi contains no

tail term here since there is no background curvature to backscatter the emitted

radiation. Substituting z = z0 + δz in (3.76) and expanding in powers of the

fluctuations gives

m (a0i + δai) = eEi(z0) + eδza∂aEi(z0) +
e

2
δzaδzb∂a∂bEi(z0) + eεijku0jBk(z0)

+eεijkδujBk(z0) + eεijku0jδz
a∂aBk(z0) + eεijkδujδz

a∂aBk(z0)

+
e

2
εijku0jδz

aδzb∂a∂bBk(z0) +
2e2

3c3
ȧ0i +

2e2

3c3
δ̇ai

+η+
i (z0) + δza∂aη

+
i (z0) + · · · . (3.77)

We assume that the variations of the external fields occur over distances much

larger than |δz|. The worldline fluctuations are assumed very fast compared to the

averaged motion so we expect that |δu| � |u| and similarly for the accelerations.

This allows us to make the approximation

mδai − eεijkδu
jBk(z0) ≈ η+

i (z0) (3.78)

where the stochastic force η+
i drives the worldline fluctuations. We assume that the

typical time scale of the fluctuations ∆t is much larger than the time for light to

cross the “classical” size of the particle ∼ 2e2/3mc2 so that the radiation reaction

term, which is proportional to δ̇a, can be neglected. The equation of motion for z0

then becomes, after taking the stochastic expectation value of (3.77),

ma0i ≈ e
(
Ei(z0) + εijku

j
0B

k(z0)
)

+
2e2

3c3
ȧ0i +

e

2

〈
δzaδzb

〉
∂a∂bEi(z0)

+eεijk
〈
δujδza

〉
∂aB

k(z0) +
e

2
εijku

j
0

〈
δzaδzb

〉
∂a∂bB

k(z0) +
〈
δza∂aη

+
i (z0)

〉
.

(3.79)
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The terms involving the stochastic averages are defined as the noise-induced drift

force so that

F drift
i =

e

2

〈
δzaδzb

〉
∂a∂bEi(z0) + eεijk

〈
δujδza

〉
∂aB

k(z0)

+
e

2
εijku

j
0

〈
δzaδzb

〉
∂a∂bB

k(z0) +
〈
δza∂aη

+
i (z0)

〉
(3.80)

and

m a0 = eE(z0) + eu0×B(z0) +
2e2

3c3
ȧ0 + Fdrift[z0]. (3.81)

The first three terms of the drift force (3.80) are a result of the variation of the

external fields with position and from the curvature of the external electromagnetic

field lines. The last term of the drift results from the worldline fluctuation away

from z0 coupling to the variation of the stochastic force. If the stochastic force is

independent of position then this term will vanish identically and any contribution

to the noise-induced drift will result from variations in the applied electric and

magnetic fields. The stochastic fluctuations therefore manifest as a slowly varying

force causing the particle to move away from its semiclassical trajectory.

To solve (3.81) we need the solution to (3.78) for the fluctuations in terms of

the stochastic force η+. The solution is easily found to be

δui =
1

m
(K−1) a

i

∫ t

ti

dt′Kabη
b(z0) (3.82)

where the homogeneous solution is ignored since we are interested in the effect of

the noise on the evolution of the guiding center (or background) trajectory z0. The
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integrating factor Kab is

Kab = exp

{
− e

m
εabm

∫ t

ti

dt′Bm(z`′

0 )

}

= δab −
e

m
εabm

∫ t

ti

dt′Bm(z`′

0 )

+
e2

2m2
εarmε

r
bn

∫ t

ti

dt′
∫ t′

ti

dt′′Bm(z`′

0 )Bn(z`′′

0 ) + · · · . (3.83)

Integrating δu over time gives the worldline fluctuations δz. The terms in δz not

involving the stochastic force are ignored so that the noise-induced force becomes

F drift
i =

∫ t

ti

dt1

∫ t1

ti

dt2

∫ t

ti

dt3

∫ t3

ti

dt4

(
Fimn + Fimnp∂

p
)〈
η+m(z0(t2))η

+n(z0(t4))
〉

η+

(3.84)

where the kernels Fimn and Fimnp are given by

Fimn =
e

2m2
∂a∂b

(
Ei(z0) + εijku

j
0B

k(z0)
)
(K−1

1 )brK2rm(K−1
3 )asK4sn

+
2e

m2
εijk∂aB

k(z0)δ(t− t1)(K
−1
1 )jrK2rm(K−1

3 )asK4sn (3.85)

Fimnp =
4

m
δ(t− t1)δ(t1 − t2)δim(K−1

3 ) s
p K4sn (3.86)

and where a subscript on the integrating factor K refers to the designated time, e.g.

K1 = K(t1), etc. This expression for the drift force (3.84) is then used to solve for

the worldline coordinates z0 in (3.81). This is a difficult task given the nonlinear

and non-Markovian behavior of the dynamics. The history-dependent contribution

coming from the drift force requires a knowledge of z0 and the stochastic correlation

function for all times in the past as exhibited in (3.84).

This noise-induced force is quite similar to the motion of an electron in an

inhomogeneous external magnetic field, for example. If the external field does not
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change much on the scale of a Larmor radius (the radius at which the electron under-

goes a helical motion about a magnetic field line) then the charge’s velocity receives

a contribution from time-averaging over the rapid Larmor oscillations. Analogously,

the rapid Larmor oscillations corresponds to the rapid worldline fluctuations δz and

the time-average is similar to the stochastic average.

If the applied fields vary over a distance much larger than the Larmor radius

then the usual drifts that occur in plasma physics [25, 41] can still be deduced from

(3.81). However, these drifts have been lumped into determining the motion of z0

in order to isolate the new noise-induced force apart from the usual plasma physics

drifts (e.g. the grad-B drift, curvature drift, etc.).

If one replaces the phenomenological noise kernel in (3.84) with that in (3.10)

then the background acceleration a0 will have a contribution proportional to ~.

However, we cannot make this naive replacement because the approximations used

in deriving the Langevin equations (3.9) are valid only to linear order in the fluc-

tuations z̃. In particular, Fdrift results from expanding the Langevin equation with

phenomenological noise (3.76) to second order. For the self-consistent derived noise

ηµ, we can no longer ignore the effects of loop contributions in the effective action

Γcg that we have so far neglected in the Gaussian approximation of the influence

functional and in the (stochastic) semiclassical limit. In fact, a stochastic semiclas-

sical limit for the particle’s evolution may no longer exist so that the question of the

existence of a drift force becomes one concerning the one-loop quantum corrections

to the background motion.
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3.5 Similarities with stochastic semiclassical gravity

The features of the particle dynamics seen in the above discussions are typical

of nonequilibrium open quantum systems. History-dependent behavior is present in

the equations of motion for the system and if a renormalization procedure is required

it is usually a time-dependent prescription, as we saw earlier from renormalizing the

bare mass of a point charge. Furthermore, the noise kernel is generically non-local in

time and is determined by the quantum fluctuations of the coarse-grained environ-

ment variables. This formalism does not allow for arbitrary noise kernels since this

would destroy the self-consistency between the system and environment evolution.

A particular example that contains these features is stochastic semiclassical gravity,

which we will briefly describe and compare with below.

Stochastic semiclassical gravity (SSG) is a self-consistent theory of the stochas-

tic dynamics of a classical spacetime containing quantum matter fields. SSG goes

beyond semiclassical gravity, for which the geometry is driven by the expectation

of the (renormalized) stress tensor, in that the quantum field fluctuations also con-

tribute to the spacetime dynamics through a classical stochastic source. The space-

time is therefore driven by both the quantum expectation value of the renormalized

stress tensor and a classical stochastic stress-tensor-like object, ξab. For an intro-

duction and review of this subject see [104, 105] and also [106] for a discussion of

the domain of validity of SSG.

As an open quantum system, the quantum field fluctuations are coarse-grained

using the CTP formalism (see Section 2.3) to study the self-consistent evolution of
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the (classical) geometry. The quantum fluctuations manifest themselves as stochas-

tic noise thereby imparting a stochastic nature to the spacetime. The resulting

Einstein-Langevin equation for the linearized metric perturubations hαβ is

G
(1)
αβ [g + h] = κ

〈
T̂

(1)
αβ [g + h]

〉
ren

+ κ ξαβ[g]. (3.87)

The superscript (1) denotes that those quantities contain all terms to first order in

the metric fluctuations hαβ. It should be noted that the counterterms needed to

cancel the divergences coming from the stress tensor expectation value have been

absorbed into the definition of 〈T̂ (1)
αβ 〉ren. The renormalized stress tensor expectation

value (evaluated in a Gaussian state) contains an integration over the past history

of the metric fluctuations and so the dynamics is generally non-Markovian. This

is like what is seen in the self-force Langevin equations (3.9) where the tail term

is analogous to the expectation value of the renormalized stress tensor in (3.87).

The (covariantly conserved) stochastic source tensor ξαβ has zero mean and its

correlator is given in terms of the Hadamard function of the stress tensor fluctuations

t̂αβ = T̂αβ − 〈T̂αβ〉

〈
{ξαβ(x; g], ξγδ(x

′; g]}
〉

ξ
= ~

〈
{t̂αβ(x; g], t̂γδ(x

′; g]}
〉
.

(3.88)

The correlator of the stress tensor fluctuations on the right side does not vanish on

a space-like hypersurface. This reflects the fact that the quantum field correlations

are themselves non-local. Compare this with the correlator in (3.5) which is also

non-local.
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SSG also suffers from runaway solutions since the finite contributions to the

counterterms needed to cancel the divergences appearing from the expectation value

of the stress tensor are quadratic in the curvature. This makes SSG a theory with

derivatives higher than two, similar to the radiation reaction terms in the self-force

equations derived above, which were of third order in the τ derivatives. One can fix

the usual pathologies associated with higher-order derivative theories by reducing

the order of the Einstein-Langevin equation through an iterative process to second

order thereby yielding well-behaved solutions. However, one needs to be careful to

use order reduction at scales that are consistent with the derivation of the Einstein-

Langevin equation.

Finally, the symmetrized quantum two-point functions of the metric fluctua-

tions hαβ can be written in terms of intrinsic fluctuations, representing the dispersion

in the initial conditions, and induced fluctuations, encoding the information about

the fluctuations of the quantum matter [106]. Just like with the particle motion,

one cannot simply use any noise kernel for modeling stochastic metric fluctuations.

One needs to do a careful analysis that ensures the self-consistency of the metric and

quantum matter dynamics and the existence of fluctuation-dissipation relations.

3.6 The quantum regime and the validity of the quasi-local expansion

and order reduction

In most of Chapter 2 and this Chapter we use real-time path integral methods

(including the influence functional and the CTP generating functional) and various
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approximations to obtain the equations of motion for the particle, both for its semi-

classical and stochastic semiclassical limits. In this Section, the domain of validity

of the quasilocal expansion and the semiclassical treatment will be discussed and

compared with the relevant scales for weak and strong radiation damping.

We introduce a regulator Λ for controlling the ultraviolet divergences appear-

ing in the direct part of the self-force such that Λ2σ � 1 with σ small and approach-

ing zero. After expanding σ near coincidence (see Section 2.4.2 for more details) the

time scale of the quasi-local expansion ∆τ = |s| is governed by ∆τ � Λ−1. Recall

that for elapsed times larger than ∼ Λ−1 the time-dependent coefficients c(n) and

g(n) in (2.114) and (2.115), respectively, rapidly approach their limiting values.

The semiclassical and stochastic semiclassical limits are obtained here by using

the Gaussian approximation to compute the reduced density matrix, which amounts

to working at the tree-level in both the particle and the field sectors. This implies

that ∆τ should be much longer than the time scale for creating particle pairs,

∆τ � ~/m = λC where λC is the particle’s Compton wavelength.

Another relevant scale appears when trying to find unique, physical solutions

to the self-force equations that contain a term with a third derivative of the particle’s

position. As is well known, this term is responsible for the problematic existence

of pre-accelerated, acausal and runaway solutions. These kinds of solutions can

be eliminated if the self-force is weak compared to other external forces acting on

the particle. In particular, an asymptotic expansion in powers of r0 ∼ 2e2/3mc2,

called the Landau approximation or order-reduction [107], can be employed to obtain

physical solutions that require only an initial position and velocity. The Landau
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approximation converts the ALD equation (of third order) to the so-called Landau-

Lifshitz equation (of second order). See [108, 109] for an interesting discussion of

these equations and order-reduction. The quantity r0 is often called the “classical”

size of the charge [107].

Using order-reduction, the lowest order solution is found by simply ignoring

the self-force so that the radiation damping is assumed weak. The time-scale of the

dynamics is then determined mostly by the external force acting on the particle so

that if F ext
µ varies on a scale λext then ∆τ ∼ λext. In curved spacetime the self-force

will be weak if r0 � ∆τ and the scale associated with the spacetime curvature λR

is much greater than r0.

For the electron, λC = 137r0 � r0 and one might choose to set Λ−1 ∼ λC to

justify ignoring the effects of electron-positron pair production from appearing in

the semiclassical particle dynamics. For an ionized atom, for example, its physical

size R0 dwarfs its “classical” size r0 and Compton wavelength λC so that one might

choose Λ−1 ∼ R0 in order to ignore any effect resulting from the object’s finite spatial

extent and describe the object effectively as a point particle. Our approach would

need to be augmented if we wished to include the effects of extended charged bodies.

One way to do this is to include all possible terms into the point-particle action Spp[z]

that are consistent with reparametrization and general coordinate invariance. This

approach provides a model-independent way to parametrize the contributions to

the dynamics from the body’s size. The couplings of these extra terms can then be

determined by matching this effective theory to the theory describing the body on

microscopic scales. See [26] which takes a similar approach to construct a framework
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to derive the post-Newtonian equations describing the motions of neutral (spinning)

extended bodies interacting gravitationally. See also Chapters 4 and 5 where we use

the effective field theory approach to study the self-force problem exclusively in the

gravitational context.

Recently, in the context of plasma physics, Koga [110] has investigated the

validity of the Landau approximation (and hence the assumption of weak radiation

damping) for the classical ALD equation in flat space by numerically integrating

the Landau-Lifshitz equation forward in time and, using the final position, velocity,

and acceleration from that, integrating the ALD equation backward in time. If the

initial position and velocity of the particle differ significantly from the backward-

evolved solution of the ALD equation at the initial time then one can assume the

Landau approximation has broken down. Koga does this for a counter-propagating

electron and ultraintense laser beam (intensity ∼ 1022 W/cm2). He finds that the

Landau approximation is valid so long as the laser wavelength λ0 is greater than the

Compton wavelength. For λ0 much smaller than λC , he finds disagreement between

the solutions of the Landau-Lifshitz and ALD equations. This may imply that the

radiation damping is no longer weak but at this scale these equations cannot be

fully trusted since quantum effects may become important. It may be interesting to

study the effects of strong radiation damping within our formalism or even using the

closely related CTP formalism to incorporate the effects of quantum loop corrections

to the (quantum) particle dynamics.
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Chapter 4

Effective field theory approach for extreme mass ratio inspirals: First

order self-force

In Chapters 2 and 3 we derive the leading order scalar, electromagnetic and

gravitational self-force on a particle moving in an arbitrary curved background space-

time from first principles. We treat the particle as a quantum mechanical worldline

interacting with a linear quantum field. The mass and size of the particle is assumed

to be sufficiently small that quantum fluctuations manifest as classical stochastic

forces. However, the particle must be heavy and large enough that the particle

worldline is decohered from its interactions with the coarse-grained quantum fluc-

tuations of the field.

On the other hand, when the particle has a mass representative of astrophysical

objects, which are typically measured in terms of the solar mass, the open quantum

system description developed in the previous Chapters yields to an effective field

theory description for the classical motion of the particle subsystem [111]. Quan-

tum loop corrections from the field and the intrinsic quantum mechanical worldline

fluctuations are very strongly suppressed due to the large separation in the mass

scales.

In this Chapter and the next we use the methods of effective field theory

(EFT) to derive the self-force on a compact object moving through an arbitrary
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curved background spacetime. We have in mind that the background is provided

by a supermassive black hole such that its curvature length scale R is much larger

than the size of the compact object rm. In particular, the Schwarzschild and Kerr

solutions are appropriate backgrounds for studying the extreme mass ratio inspiral

(EMRI) of a small black hole or neutron star when µ ≡ rm/R is small. The small-

ness of µ implies that it is a good expansion parameter to construct our perturbation

theory with. These binary systems are expected to be good candidates for detecting

gravitational wave signatures using the space-based gravitational wave interferom-

eter LISA [2]. However, our formalism is general enough to describe the motion

of a compact object through an arbitrary background, including those spacetimes

sourced by some form of stress-energy and those possessing a cosmological constant.

We begin the Chapter with a brief review of the effective field theory ap-

proach for post-Newtonian binary systems introduced in [26] and developed further

in [112, 70, 113, 114]. A collection of effective field theories are constructed to de-

scribe the motion of two slowly moving compact objects in a flat background. In

particular, the compact objects are treated as effective point particles, the worldlines

of which carry non-minimal operators describing the moments from companion-

induced tidal deformations as well as possible spin degrees of freedom and other

intrinsic moments. The use of point particles to source the metric perturbations

(or gravitons) about the flat background spacetime implies the appearance of diver-

gences. The EFT approach is a quantum field theory by construction. As a result,

there exists a well-established bank of tools and techniques for regularizaing these

divergences and renormalizing the parameters and coupling constants of the theory.
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Being an effective theory it is renormalizable precisely because the divergences can be

absorbed into renormalizing the many coupling constants of the non-minimal world-

line operators. The use of dimensional regularization is particular useful in effective

field theories because the renormalization group equations are mass-independent for

this scheme, thereby allowing for the calculation of the fewest possible Feynman

diagrams at any particular order in the (relative) velocity of the binary system [46].

After a brief discussion of the EFT for post-Newtonian binaries, we identify

the scales involved in the extreme mass ratio inspiral scenario. In particular, we

allow for the compact object to move with relativistic speeds in strong field regions

of the background space. This is to be contrasted with the post-Newtonian EFT of

[26] wherein the bodies move slowly through a weak gravitational field.

We then construct an effective point particle description for the motion of the

compact object. In particular, we introduce all possible terms into the point particle

action that are consistent with general coordinate invariance and reparameteriza-

tion invariance (and invariance under SO(3) rotations for a non-spinning spherically

symmetric compact object). In doing so we capture the effects of tidal deformations

induced by the background curvature as well as the effects from spin and other

intrinsic moments. By implementing a matching procedure using coordinate invari-

ant observables we can match the observables of the effective point particle theory

with the long wavelength limit of observables in the full “microscopic” theory to

determine the values of the coupling constants of the non-minimal terms. As we

show in Section 4.5 this allows us to deduce the order at which finite size effects

affect the motion of the compact object through the statement of an Effacement
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Principle. To our knowledge this has not been given in the literature before for the

EMRI scenario.

We spend a significant amount of time developing the EFT approach in detail

in Section 4.4 in order to clearly outline the steps involved in constructing the effec-

tive theory. We introduce the CTP, or in-in, generating functional as the foundation

for our calculations. Unlike in [26] we do not base our EFT on the in-out formal-

ism. In a flat background spacetime the in-out formalism is acceptable to use since

the in- and out-vacua, used to define the vacuum transition amplitude that defines

the generating functional, are equivalent up to an irrelevant phase. However, the

in-out formalism is constructed to describe scattering processes and not real-time

evolution. In the presence of a non-vanishing background curvature, as occurs in the

EMRI scenario, this handicap becomes evident as we show in Section 5.1.2. In the

in-out approach the equations of motion for the effective particle are not causal. The

remedy is to start with the CTP generating functional, which, being an initial value

formulation of quantum field theory, guarantees real and causal particle equations

of motion [98].

The power counting rules are derived in Section 4.4.2. Power counting is a gen-

eralization of dimensional analysis but is crucial for determining how the Feynman

rules scale with the expansion parameter µ. The Feynman rules and their scaling

with µ are derived in Section 4.4.3. Once the scaling of the Feynman rules are

known we determine all of the tree-level Feynman diagrams that appear at a par-

ticular order. Those diagrams containing graviton loops are safely ignored. We also

assemble the diagrams that include the non-minimal worldline operators describing
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the finite size of the compact object. Significantly, this lets us determine the order

in µ at which finite size effects enter the particle equations of motion. The power

counting rules allow for the EFT approach to be an efficient and systematic frame-

work for calculating the self-force to any order in perturbation theory. Furthermore,

by knowing how each Feynman diagram scales with µ we can study a particular

physical interaction that is of interest by focusing our attention on a single diagram

or on a few diagrams without having to calculate every contribution that appears

at that order and at lower orders. For example, the leading order spin-spin interac-

tion contributes to the self-force at third order in µ and can be calculated from the

appropriate Feynman diagram.

In Section 4.4.4 we propose a method for regularizing the divergences that

appear in the effective action. Our approach utilizes a mixture of distributional and

momentum space techniques within the context of dimensional regularization. We

know from previous work and from Chapter 2 that the finite part of the self-force is

generally non-local and history dependent. However, the ultraviolet divergences are

quasi-local and independent of the history of the effective point particle’s motion. To

isolate the quasi-local divergence from the non-local finite part we use the method

of Hadamard’s partie finie, or finite part, from distribution theory. (See Appendix

E for a brief review of the definitions and concepts of distribution theory relevant

in this work.) Upon isolating the divergence from the non-local, finite remainder

we then use the momentum space representation for the propagator to calculate

the divergent contributions. Through second order in µ we find that only power

divergences appear, which can be immediately set to zero when evaluated using
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dimensional regularization [63].

To regularize the theory we use the momentum space representation of the

propagator in a curved background1, which was first derived for a scalar field by

Bunch and Parker in [64]. Their method is straightforward but not efficient for

higher spin fields, including metric perturbations (i.e. gravitons in a curved space).

In Appendix D we develop a novel method, which is applicable for any tensor field,

for computing the momentum space representation of the Feynman propagator. We

also show that the method is sufficiently general to do the same for any quantum two-

point function, including the retarded propagatorDret(x, x
′). Our method makes use

of diagrammatic techniques borrowed from perturbative quantum field theory. In

Riemann normal coordinates, we expand the field action in terms of the displacement

from the point x′. The series can be represented in terms of Feynman diagrams,

which allows for an efficient evaluation of each term in the expansion. Furthermore,

we prove that some of the diagrams are zero to all orders. This identity is not

recognized by Bunch and Parker even though its relation to certain steps made in

their calculations is evident.

We then derive the first order self-force equation of MSTQW [20, 21]. While

we have already derived this equation in Section 2.4.5 we find it beneficial to show

clearly how the effective field theory approach is implemented in detail, including

the regularization of divergences, for an actual calculation of the effective action and

the self-force. This is particularly useful when calculating the second order self-force

1See also the work of [115] who consider a somewhat different approach for a scalar field with

a classical background configuration in λφ4 theory in a curved spacetime.
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in the next Chapter.

4.1 Effective field theory approach for post-Newtonian binaries

Before proceeding to construct an effective field theory for extreme mass ratio

inspirals we briefly summarize the original work of [26], which introduces effective

field theory techniques to the long-studied field of the gravitational problem of binary

inspirals.

The aim of [26] is to describe the motion of two slowly moving bodies through a

weak gravitational field using effective field theory techniques in order to generate a

perturbative expansion in powers of the relative velocity. One of the many benefits

of using an effective field theory approach is that the method is systematic and

efficient so that there is in principle no obstacle to calculating to any order in the

velocity. The obvious intent of such a program is to go beyond the current 3PN

calculations2 and continue to higher orders (e.g., 4PN) to obtain more accurate

gravitational waveforms.

The authors in [26] start by replacing the compact objects with effective point

particles. These are described by an action consisting of the usual point particle

action plus all possible terms that are consistent with general coordinate invariance

and reparameterization invariance of the worldline. Then, the in-out generating

functional is formed to derive the effective action

exp
{
iSeff [z]

}
=

∫
Dhµν exp

{
iSpp[x, η + h] + iS[η + h]

}
(4.1)

2See [116] for the 2PN potential equations of motion using the EFT approach developed in [26].
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where Spp is the effective point particle action and S[η + h] is the Einstein-Hilbert

action for the spacetime metric.

Before integrating out the metric perturbations the authors observe that it

is useful to separate the metric perturbations into potential H and radiation h̄

contributions

hµν = Hµν + h̄µν . (4.2)

This is suggested by the fact that the slowly moving bodies see a nearly instanta-

neous gravitational potential but manage to radiate gravitational waves due to their

mutual accelerations. However, this decomposition is actually required in order that

the ensuing Feynman diagrams all scale homogeneously with the relative velocity,

v. In this way, the perturbative expansion in v is consistent and can be constructed

to any order.

Integrating out the potential gravitons using perturbation theory yields a the-

ory of point particles interacting with potentials. The radiation gravitons and the

particle worldlines are non-dynamical at this stage and can be treated as external

sources. In this effective theory, valid at the orbital scale of the binary, the authors

derive the Einstein-Infeld-Hoffman potential [72] as a check of their method.

The last effective theory the authors construct involves integrating out the

radiation gravitons. This yields a theory of point particles interacting with gravita-

tional waves. As such, the authors derive the famous power spectrum for quadrupo-

lar gravitational radiation by calculating the first non-vanishing contribution to the

imaginary part of the effective action; the real part of the effective action generates
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equations of motion while the imaginary part is related to the power of the emitted

gravitational radiation3.

With using an effective field theory approach it is not too surprising that some

of the parameters of the theory undergo classical renormalization group (RG) scal-

ing. In fact, the appearance of such RG scaling is used by the authors to show that

there are no finite size effects up to v6 order. In their words, “whenever one encoun-

ters a log divergent integral at order v6 in the potential, one may simply set it to

zero. Its value cannot affect physical predictions.” This therefore resolves the prob-

lem of the undetermined regularization parameters that appears from regularizing

the singular integrals encountered in the traditional PN expansion techniques.

4.2 Extreme mass ratio inspiral as an EFT

Consider the motion of a compact object (a black hole or a neutron star with

a mass m ranging from a few to ∼ 100 solar masses) moving through the spacetime

of a supermassive black hole (with mass M ∼ 105−7M�). We have in mind that

the compact object moves in a stationary background provided by the supermassive

black hole, such as the Schwarzschild or Kerr spacetimes. Such spacetimes are

appropriate for a description of the extreme mass ratio inspiral (EMRI) in which

the compact object is bound by the gravitational pull of the supermassive black

hole. By emitting gravitational waves the binary system loses energy until the

3The appearance of non-local tail terms in the post-Newtonian equations of motion suggest

that one may need to use the in-in, or CTP, formalism in order to guarantee causal dynamics in

the EFT approach.

134



compact object eventually plunges into the supermassive black hole. The emission

of gravitational radiation from such a system is expected to be detected with the

anticipated construction and launch of the LISA space-based interferometer [2].

It is believed that most supermassive black holes lurking in the middle of

galaxies, which are thought to host the prime sources of gravitational wave emissions

detectable by LISA, are spinning and clean in the sense that most, if not all, of the

surrounding material has already fallen into the black hole4. Because of this the

Kerr background is perhaps the most astrophysically relevant spacetime for the

extreme mass ratio inspiral. The Kerr solution is vacuous (Rµν = 0), stationary and

stable under small perturbations [117] and possesses two Killing fields. The first

is time-like ξα and describes time-translation invariance everywhere outside of the

ergoregion. The second is space-like ψα and describes the axial rotation invariance of

the spacetime. There are also the Ernst [118] and Preston-Poisson [119] spacetimes

to consider. These solutions represent a black hole immersed in an external magnetic

field. Astrophysically speaking, the external magnetic fields that a black hole at the

center of a galaxy experiences are relatively weak and unlikely to significantly affect

the motion of the compact object until a very high order in the perturbation theory.

The length scales involved with the EMRI are two-fold. The smallest scale is

set by the size of the compact object itself, denoted rm. For an astrophysical black

hole its size is rbh = 2GNm ∼ m/m2
pl where m−2

pl = 32πGN in units where ~ = c = 1

(in this and the next Chapter only)5. For a neutron star with a mass ≈ 1.4M� and

4Active galactic nuclei are the notable exception.
5We follow the conventions of [85] so that the metric has mostly positive signature (−,+,+,+)
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a radius of ≈ 10 km it follows that rns ≈ 4.8GNm ∼ m/m2
pl. Therefore, it is to be

expected that the size of the compact object, be it a black hole or a neutron star,

is of the order of its mass.

The second relevant scale is the radius of curvature of the background space-

time, R. We take R to be related to the following curvature invariant

R =
(
RµανβR

µανβ
)−1/4

. (4.3)

The Riemann tensor has units of (mass)2 implying that the units of R are (mass)−1,

which is a unit of length, as expected. For a (possibly rotating) stationary super-

massive black hole the radius of curvature is

R ∼

√
m2

plr
3

M
(4.4)

where r is the typical orbital distance for the compact object away from the central

black hole. For example, r is the geometric mean of the semi-major and semi-minor

axes of a compact object in an inclined elliptical orbit. In an approximately circular

orbit r is the orbital radius and for a particle moving faster than the escape velocity

r is the impact parameter.

In the strong field regime where r ∼ M/m2
pl the curvature scale is also ∼

M/m2
pl implying that r/R ∼ m/M . Hence, the mass M sets the scale for the long

wavelength sector of the effective theory. In what follows, we will denote the large

distance scale by R instead of M to keep our constructions easily applicable to other

spacetimes that may not possess a supermassive black hole mass.

and we follow the Green’s functions conventions of [66], after changing their definitions to the

mostly positive signature. See Appendix A for more details.
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The typical variation in time and space of the background is ∼> R. The

wavelength λ of radiated metric perturbations from the compact object in a bound

orbit is

λ ∼

√
m2

plr
3

M
∼ R, (4.5)

which shows that the wavelength of the gravitational waves does not provide a

separate scale independently from R.

This is to be contrasted with the EFT approach for the post-Newtonian (PN)

expansion introduced in [26]. As discussed in Section 4.1, there are three effective

field theories that can be constructed. The first is the description of the compact

object as an effective point particle. The remaining two EFTs rely on the small

velocity assumption and allows the metric perturbations to be classified as two types:

potential and radiation modes. The slow velocity assumption therefore induces a

scale separation that is manifest in the structure of the total metric perturbation

about flat space.

Our construction of an EFT does not rely on the slow motion of the bodies

nor on the assumption that they move through a weakly curved region of space-

time. Quite the contrary, we allow for the compact object to move relativistically

through the strong field region of the supermassive black hole background space-

time. As a result, the metric perturbations generated by the motion of the compact

object cannot be partitioned naturally into an instantaneous potential and radiation

contributions.

The expansion parameter we will use to construct an EFT for the EMRI comes
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from the ratio of the body’s size to the curvature scale

rm

R
∼ m

m2
plR

≡ µ, (4.6)

that is, the ratio of the two relevant length scales involved, which is very small.

For the EMRI’s thought to be detected with the LISA space-based gravitational

interferometer µ takes values between 10−5 and 10−7, which corresponds to LISA’s

observable frequency bandwidth. Being so small almost entirely over the dynamical

time scales of the inspiral, µ is a good parameter for building a perturbation theory

within the context of effective field theory.

Utilizing the dissimilar magnitudes of the compact object’s size and the back-

ground curvature scale, we can construct two kinds of effective field theories. The

first describes the compact object, in isolation from other external sources, as an

effective point particle. By allowing for all possible worldline self-interaction terms

that are consistent with the symmetries of the theory we can account for the tidal

deformations, spin and intrinsic moments that the compact object may experience

when it does interact with external sources. The second EFT is valid at scales

∼> R and results from integrating out the metric perturbations (or gravitons as we

will often call them in this Chapter). The resulting theory is that of an effective

point particle undergoing self-force in the background spacetime, which evolves self-

consistently with the emitted gravitational waves. Using a matching procedure we

can establish the values of the coupling constants appearing in the effective point

particle action.
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4.3 EFT of an isolated, compact object

The smallest length scale in the EMRI scenario is the size of the compact

object rm. In applying the EFT formalism we first construct an effective point

particle theory for the small mass m. This allows for a point particle description of

the compact object’s motion through the background spacetime while taking into

account any tidally induced moments, or finite size effects, that might affect its

motion. This effective point particle description is the first of two effective field

theories that we will construct in this Chapter.

In the full theory describing the motion of a neutron star and the dynamics of

the spacetime metric it moves in, the total action is given by

Stot = S[g] + Sns[g; ρ, p . . .]. (4.7)

The quantities in the neutron star action, ρ, p, . . ., are the appropriate hydrodynamic

variables necessary to describe the internal dynamics of the neutron star whatever

its equation of state. If the compact object under consideration is a small black hole

then there is only the dynamics of vacuum spacetime to consider, which is described

entirely by the Einstein-Hilbert action

S[g] = 2m2
pl

∫
d4x g1/2R (4.8)

where R is the Ricci curvature scalar of the spacetime and g is the absolute value

of the metric’s determinant.

The effective point particle description of the compact object is constructed

by “integrating out” the short distance degrees of freedom at the scale rm ∼ m/m2
pl.
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In doing so we introduce an effective point particle action Spp to describe the motion

of the compact object so that the total action becomes

Stot = S[g] + Spp[z, g]. (4.9)

Here zα(λ) are the coordinates of the particle worldline and λ is its affine parame-

terization.

Being a description of the extended compact object the effective point particle

action should include all possible terms that are consistent with the symmetries of

the theory, which are general coordinate invariance and worldline reparameterization

invariance. For the discussion here, we will assume that the compact object is

perfectly spherical so that it carries no permanent moments. For example, this

implies excluding spinning compact objects in our construction, at least for now6.

Hence, Spp should also be invariant under SO(3) transformations. Regarding these

considerations the most general such action is

Spp[z, g] = −m
∫
dτ + cR

∫
dτ R + cV

∫
dτ Rµν ż

µżν

+cE

∫
dτ EµνE

µν + cB

∫
dτ BµνB

µν + · · · , (4.10)

which is effectively an expansion in powers of the compact body’s radius rm over

the wavelength of the gravitational waves λ. This can be interpreted as a multipole

expansion where the multipoles carry information about the induced moments that

the background curvature imparts to the compact object. We showed earlier that

in the strong field region of a supermassive black hole the wavelength of the metric

6We will introduce spin and determine the influence it has on the effective particle’s motion in

Section 5.2.
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perturbations is the same order as the curvature scale of the background spacetime,

λ ∼ R. This implies that the above multipole expansion is equivalently given in

powers of µ so that each term has a definite scaling with µ, which we will later

confirm.

The tensors Eµν and Bµν are the electric- and magnetic-type tensors of the

Weyl curvature, defined as

Eµν = Cµανβ ż
αżβ (4.11)

Bµν = εµαβλC
αβ

νρż
λżρ (4.12)

where żα is the particle’s 4-velocity. When contracted with żα these vanish,

Eµν ż
ν = Bµν ż

ν = 0. (4.13)

The electric-type tensor is symmetric Eµν = Eνµ whereas the magnetic-type tensor

is not Bµν 6= Bνµ.

We will find it beneficial to write (4.10) as an integration over an arbitrary

affine parameter λ instead of the proper time τ of the worldline

Spp[z, g] = −m
∫
dλ
(
−gαβ ż

αżβ
)1/2

+ cR

∫
dλ
(
−gαβ ż

αżβ
)1/2

R

+cV

∫
dλ

Rµν ż
µżν

(−gαβ żαżβ)1/2
+ cE

∫
dλ

EµνE
µν

(−gαβ żαżβ)3/2

+cB

∫
dλ

BµνB
µν

(−gαβ żαżβ)3/2
+ · · · . (4.14)

Doing so will guarantee that we derive the correct equations of motion for the parti-

cle’s trajectory. After the relevant calculations and variations have been performed

we will then parameterize the worldline with the proper time.
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The terms in the effective point particle action (4.10) proportional to the Ricci

curvature vanish at leading order in µ. The equations of motion for the full metric

Rµν −
1

2
gµνR = T pp

µν [z, g] = O(µ), (4.15)

where T pp
µν is the stress-energy tensor of the effective point particle, can be used to

set the cR and cV terms to zero to leading order. Equivalently, for the cR term for

example, we can redefine the metric gµν in terms of a new metric g′µν through the

field redefinition [26]

gµν(x) = g′µν(x)

[
1 +

ξ

2m2
pl

∫
dτ
δ4(x− z(τ))

g′1/2

]
. (4.16)

This conformal transformation implies that the Einstein-Hilbert action is, to linear

order in the arbitrary parameter ξ,

2m2
pl

∫
d4x g1/2R(g) = 2m2

pl

∫
d4x g′1/2R(g′) + ξ

∫
dτ R. (4.17)

The term in Spp linear in R then appears with the constant cR + ξ, which can be set

to zero since ξ is arbitrary. That is, choose ξ = −cR and the term proportional to the

Ricci scalar no longer contributes to Spp. One can find a similar field redefinition to

remove the term proportional to cV . Using the metric field equations or, equivalently,

performing a field redefinition of the metric one can remove all occurrences of the

Ricci tensor in the effective point particle action. It follows that the non-minimal

couplings in Spp contain terms that depend only on the Riemann curvature tensor.

These field redefinitions allow for the effective point particle action (4.10) to

be written as

Spp[z, g] = −m
∫
dτ + cE

∫
dτ EµνE

µν + cB

∫
dτ BµνB

µν + · · · , (4.18)
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In a later section we will show that the non-minimal couplings in Spp are entirely

negligible for calculating the self-force of MSTQW that the linear metric perturba-

tions impart on the compact object. The first order (MSTQW) self-force is sufficient

for computing gravitational waveforms and generating templates for LISA to detect

gravitational waves from EMRIs7. We can confidentally ignore the finite size correc-

tions in deriving the leading order self-force and describe the extended body simply

as a point particle to a sufficiently high accuracy. However, for precisely determin-

ing the masses, spins, etc. of the binary constituents one must use more accurate

higher-order templates, which can be computed by knowing the higher order con-

tributions to the self-force [61, 121, 122]. In Section 4.5 we determine the order in

µ that tidally induced moments will affect the motion of the compact body.

In the next section we derive the equations of motion for the compact object

using the EFT approach. These equations, which describe the self-force on the

mass m, were previously found by Mino, Sasaki and Tanaka [20] using matched

asymptotic expansions and independently by Quinn and Wald [21] using axiomatic

methods. In principle, we can compute the formal equations of motion to higher

orders in µ thereby extending the work of [20] and [21], which we will do in next

Chapter through second order in µ.

7Actually, this is more than sufficient as recent work suggests that the less accurate “kludge”

waveforms may be adequate for the detection phase of at least a certain class of EMRIs [120, 58].
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4.4 EFT derivation of MSTQW self-force equation

In the previous Section, we outlined the construction of an effective field theory

that replaces the extended compact object by an effective point particle. This

allows for tidal deformations to be described and parameterized through the induced

multipole moments that are characterized by the curvature-dependent non-minimal

terms in Spp. This effective point particle description is valid for distances large

compared to the size of the body rm ∼ m/m2
pl. This is similar to a multipole moment

expansion in which the compact object is treated as a point particle with multipolar

operators defined on the particle’s worldline. A familiar example is provided by

the dipole approximation in electromagnetism in which two charges separated by a

distance can be approximated by a single particle with a dipole moment. Radiation

with wavelengths much longer than the charge separation interacts with an effective

point particle carrying a vector operator on its worldline. In this section we will

construct an EFT for the motion of the effective particle by integrating out the

metric perturbations at the scale of the radius of curvature R and find that many

such multipolar operators reside on the particle’s worldline to describe the extended

nature and induced moments of the compact object.

Denote the background metric by gµν so that the total metric is given by the

background plus the perturbations generated by the presence and motion of the

compact object

gfull
µν = gµν +

hµν

mpl

. (4.19)

The metric perturbations hµν are presumed to be small so that |hµν | � mpl. We
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will occasionally make use of a slight shorthand notation

h̄µν ≡
hµν

mpl

(4.20)

for the dimensionless ratio of the metric perturbation to the Planck mass. From

(4.9) the total action describing the interactions of the metric perturbations and

the particle is given by the sum of the Einstein-Hilbert and effective point particle

actions,

Stot[g + h̄, z] = S[g + h̄] + Spp[g + h̄, z]. (4.21)

We expand the Einstein-Hilbert action to quadratic order in hµν and find that

S[g0 + h̄] = 2mpl

∫
d4x g1/2

(
2h− hαβ

;αβ

)
+

1

2

∫
d4x g1/2

(
2hαβ;γh

αγ;β − hαβ;γh
αβ;γ − 2h;α

(
hαβ

;β −
1

2
h;α
))

+O(h3) (4.22)

where the trace of the metric perturbations is h = gµνh
µν . We have also used the

fact that the background metric is vacuous. The first term is an integral over a total

derivative and can be written in terms of a surface integral

∫
V

d4x g1/2
(
2h− hαβ

;αβ

)
=

∫
∂V

dΣα g
1/2
(
h;α − hαβ

;β

)
, (4.23)

which we take to vanish at the boundary of the integration region8. The expanded

8Strictly speaking there are other boundary terms in the Einstein-Hilbert action that we should

include. See [123] for a discussion of these terms and related details. Since these play no essential

role here we will not worry about these terms in this work.
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Einstein-Hilbert action is then

S[g + h̄] =
1

2

∫
d4x g1/2

(
2hαβ;γh

αγ;β − hαβ;γh
αβ;γ − 2h;α

(
hαβ

;β −
1

2
h;α
))

+O(h3). (4.24)

The remaining contribution at this order is the kinetic term for hµν and provides the

propagator corresponding to some appropriate boundary conditions (e.g., retarded,

Feynman, etc.). However, the propagator is ill-defined because of the underlying

gauge symmetry of the action, which is expressed as an invariance of the action un-

der infinitesimal coordinate transformations on the background spacetime. General

relativity is a gauge theory in this respect and so one must break the gauge sym-

metry by choosing a particular gauge, or constraint, for the metric perturbations.

Below we will use the gauge-fixing procedure developed by Faddeev and Popov [91].

For notational convenience, we write the expansion of the Einstein-Hilbert

action in the following way,

S[g + h̄] = S(2) + S(3) + · · · (4.25)

where the term S(n) denotes those terms proportional to n powers of hµν . In par-

ticular, the n = 2 term is the kinetic term for the metric perturbations.

We also need to expand the point particle action in powers of hµν . Using (4.14)

we find the following expansion

Spp[z, g + h̄] = −m
∫
dλ
(
−gαβ ż

αżβ
)1/2

+
m

2mpl

∫
dλ

hαβ(x) żαżβ

(−gαβ żαżβ)1/2

− m

8m2
pl

∫
dλ
hαβ(x)hγδ(x) ż

αżβ żγ żδ

(−gαβ żαżβ)3/2
+O(h3). (4.26)
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As with the Einstein-Hilbert action, we introduce the following convenient notation

Spp[z, g + h̄] = S(0)
pp + S(1)

pp + S(2)
pp + · · · (4.27)

where each term is proportional to the indicated powers of the metric perturbation.

4.4.1 The closed-time-path effective action

The construction of an effective field theory for the motion of the effective point

particle in a curved spacetime begins with the CTP, or in-in, generating functional

Z[jµ, j′µ, Jµν , J ′µν ] =

∫
CTP

Dza
µ

∫
CTP

Dha
µν exp

{
iS[g + h̄]− iS[g + h̄′]

+ iSpp[z, g + h̄]− iSpp[z
′, g + h̄′]

+ i

∫
dλ(jµzµ − j′µz′µ)

+ i

∫
d4x g1/2(Jµνhµν − J ′µνh′µν)

}
, (4.28)

which is first introduced in Section 2.3. Using the in-in formalism, the particle

equations of motion are guaranteed to be real and causal because the CTP generating

functional is an initial value formulation of quantum field theory that remains valid

in non-trivial backgrounds [98]. On the contrary, the in-out generating functional

describes scattering processes via transition amplitudes between states in the far past

and future and makes no claim, nor is able, to generate real and causal dynamics in

curved backgrounds.

In presenting (4.28) we use the notation of Section 2.3 for the particle coor-

dinates and fields. However, it is much more convenient to relabel the unprimed

and primed variables with a lowercase Latin index a, b, c, ... from the beginning of

147



the alphabet. These indices equal 1 and 2 for an unprimed and primed variable,

respectively. We introduce the so-called CTP metric cab that lowers and raises these

indices where

cab =

 1 0

0 −1

 = cab. (4.29)

For a current “contracted” with a scalar field, for example, the notation implies

JaΦ
a ≡ cabJaΦb (4.30)

= J1Φ1 − J2Φ2 = J1Φ1 − J2Φ2 = JΦ− J ′Φ′. (4.31)

Lastly, we write the actions involving the unprimed and primed variables as a single

term so that the Einstein-Hilbert action, for example, can be written as

S[g + h̄a] ≡ S[g + h̄1]− S[g + h̄2] = S[g + h̄]− S[g + h̄′]. (4.32)

The difference between a power of the field and a CTP index a, b should be clear

from context. Having established this new notation we write the CTP generating

functional using this more compact and convenient form,

Z[ja
µ, J

a
µν ] =

∫
CTP

Dza
µ

∫
CTP

Dha
µν exp

{
iS[g + h̄a] + iSpp[z

a, g + h̄a]

+ i

∫
dλ jµ

a z
a
µ + i

∫
d4x g1/2Jµν

a ha
µν

}
. (4.33)

Notice the similarity in appearance to the in-out generating functional.

Calculating derivatives of the generating functional with respect to the external

current Jµν
a generates time-ordered correlation functions of the quantum metric

perturbations ĥa
µν

〈
0, in|T̄ ĥa1

µ1ν1
(x1) · · · ĥan

µnνn
(xn)|0, in

〉
full

=
1

Z

δnZ

δiJµ1ν1
a1 (x1) · · · δiJµnνn

an

(4.34)
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where T̄ is the CTP time-ordering operator defined in Section 2.3. For example, the

full graviton Feynman propagator is calculated from the generating functional by

iDF
αβγδ(x, x

′) =
〈
0, in|T ĥ1

αβ(x)ĥ1
γδ(x

′)|0, in
〉

=
1

Z

δ2Z[za(λ), Jµν
a ]

δiJαβ
1 (x) δiJγδ

1 (x′)

∣∣∣∣
Jµν

a =0

. (4.35)

The effective point particle worldline zα(λ) acts as a fixed source in computing these

field correlation functions. As a result, (4.34) describes the full correlation functions

and includes the effects from (nonlinear) particle-field interactions.

We mentioned earlier that in writing down a well-defined propagator for the

metric perturbations we must break the gauge symmetry that is preserved by in-

finitesimal coordinate transformations on the background spacetime. We follow the

approach of Faddeev and Popov [91] and introduce a gauge-fixing action

Sgf = m2
pl

∫
d4x g1/2GαG

α (4.36)

that picks the gauge Gα[hµν ] ≈ 0 for the metric perturbations. The ≈ denotes

weak equality in the sense of Dirac [90]. As we discuss later we will be dealing

with tree-level interactions only so there is no need to introduce ghost fields into the

gravitational action.

We choose the Lorenz gauge for the trace-reversed metric perturbations, de-

fined as

ψαβ ≡ hαβ −
1

2
gαβh, (4.37)

so that the gauge-fixing function is

Gα[hµν ] = ψ ;β
αβ = h ;β

αβ − 1

2
h;α ≈ 0. (4.38)
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In this gauge, the kinetic term in (4.24) is considerably simplified to

S(2) =
1

2

∫
d4x g1/2

(
hαβ;γh

αβ;γ − 1

2
h;αh

;α − 2hαβR γ δ
α β hγδ

)
, (4.39)

which applies to both the h1
αβ and h2

αβ metric perturbations (equivalently, the un-

primed and primed fields, respectively).

The generating functional can now be written as

Z[jµ
a , J

µν
a ] = eiS

(0)
pp [za]

∫
CTP

Dza
µ

∫
CTP

Dha
µν exp

{
iS(2)[ha] + iS(1)

pp [za, ha] + iS(2)
pp [za, ha]

+
∞∑

n=3

(
iS(n)[ha] + iS(n)

pp [za, ha]
)

+ i

∫
dλ jµ

a z
a
µ + i

∫
d4x g1/2Jµν

a ha
µν

}
. (4.40)

We have factored out the lowest order point particle contribution since it is indepen-

dent of the metric perturbations. If the particle is regarded as a test body then it

produces no perturbations about the background metric and its motion is therefore

a geodesic of the background spacetime.

Perturbation theory in the CTP formalism is quite similar to that in the in-out

formalism. The fact that the metric perturbations couple linearly to the external

current Jµν
a implies that every occurrence of the field in (4.40) can be replaced by a

functional derivative of the external current,

ha
µν(x) → −i δ

δJµν
a (x)

. (4.41)

This rule allows for the generating functional to be written as

Z[jµ
a , J

µν
a ] =

∫
CTP

Dza
µ exp

{
iS(0)

pp [za] + i

∫
dλ jµ

a z
a
µ

+
∞∑

n=1

iS(n)
pp

[
za,−i δ

δJa

]
+

∞∑
n=3

iS(n)

[
−i δ
δJa

]}
Z0[J

µν
a ] (4.42)
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since the interaction terms can be taken outside of the path integral. The quantity

Z0 is the free field generating functional for the metric perturbations

Z0[J
µν
a ] =

∫
CTP

Dha
µν exp

{
iS(2)[ha] + i

∫
d4x g1/2Jµν

a ha
µν

}
(4.43)

and is calculated by integrating the quadratic terms to give

Z0[J
µν
a ] = exp

{
− 1

2
Jαβ

a ·Gab
αβγ′δ′ · J

γ′δ′

b

}
. (4.44)

Upon defining the interaction Lagrangian as

∫
d4xLint

[
za,−i δ

δJa

]
=

∞∑
n=1

iS(n)
pp

[
za,−i δ

δJa

]
+

∞∑
n=3

iS(n)

[
−i δ
δJa

]
(4.45)

we find that the generating functional can be written in the form

Z[jµ
a , J

µν
a ] =

∫
CTP

Dza
µ exp

{
iS(0)

pp [za] + i

∫
dλ jµ

a z
a
µ + i

∫
d4xLint

[
za,−i δ

δJµν
a

]}

× exp

{
− 1

2
Jαβ

a ·Gab
αβγ′δ′ · J

γ′δ′

b

}
. (4.46)

Notice that this is expressed as a certain functional derivative operator acting on a

Gaussian functional of the external currents Jµν
a .

We are interested in this dissertation with calculating the self-force on a com-

pact object and are not concerned with the full correlation functions (4.34) of the

metric perturbations generated by the moving mass m. The only correlation func-

tions we will be using in this construction are the free field graviton two-point

functions, constructed without reference to the effective point particle worldlines

za(τ). Therefore, throughout the remainder we set the external current in (4.46)

to zero, Jµν
a = 0. Computing the (partial) Legendre transform with respect to the
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particle current gives the effective action

Seff ≡ Γ[〈ẑµ
a 〉] = −i lnZ[jµ

a , J
µν
a = 0]−

∫
dλ ja

µ〈ẑµ
a 〉. (4.47)

and is the quantity of interest that we calculate in the next Section.

Before continuing to the next Section we remark that our construction, up

through (4.46), is fully self-consistent. From (4.46) we can calculate not only the

semiclassical equations of motion for the compact object (i.e., the self-force equa-

tions) but we can also determine the configuration for the metric perturbations by

calculating the (real and causal) equations of motion for the graviton one-point

function 〈ĥa
µν〉. To see this, we keep the external graviton current Jµν

a arbitrary and

perform the full Legendre transform with respect to both particle and field currents.

Then the equations of motion for the worldline and the graviton one-point functions

are

0 =
δΓ

δ〈ẑa
µ〉

∣∣∣∣∣
z1=z2,h1=h2,ja,Ja=0

and 0 =
δΓ

δ〈ĥa
µν〉

∣∣∣∣∣
z1=z2,h1=h2,ja,Ja=0

(4.48)

Likewise, we could compute the flux of gravitational radiation from the (0i) com-

ponents of the expectation value of the stress tensor, which is computed from the

variation of −i lnZ with respect to the background metric upon setting jµ
a = 0. We

will reserve ourselves to only study the self-force in this disseration. In future work

we will compute the graviton one-point functions and the gravitational wave flux in

this manner [81, 82, 83].
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4.4.2 Power counting rules

All of the terms following the kinetic term S(2) in (4.40) represent self inter-

actions of the field and various particle-field interactions. Each of these interaction

terms may be represented by a Feynman diagram. In turn, these diagrams may be

assigned a rule that tells us how to assemble the appropriate diagrams that con-

tribute to the effective action Seff at a specific order in µ. To write down all of the

relevant diagrams at a particular order we need to know how each of the interaction

terms in (4.40) scale with µ. The scaling rules that we will develop here are called

power counting rules and are essentially a generalization of dimensional analysis.

We first develop the power counting rules for the parameters of the effective field

theory; we ignore for now the non-minimal point particle couplings in Spp (e.g., cR,V ,

cE,B, . . .).

As discussed previously, the curvature scale R describes the length scale of

temporal and spatial variations of the curvature in the background spacetime. This

implies that each of the spacetime coordinates scale according to

xµ ∼ R. (4.49)

From the kinetic term for the metric perturbations we deduce that if S(2) ∼ 1 then

1 ∼ R4h2

(
1

R

)2

∼ R2h2 (4.50)

and the metric perturbation scales with R as

hµν ∼
1

R
. (4.51)
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Table 4.1: Power counting rules

xµ hµν L m/mpl

R 1/R mR
√
µL

The particle-field interactions, indicated by the terms S
(n)
pp , contain inverse

powers of the Planck mass mpl. To see how these factors of the Planck mass are

involved with the power counting we remark that the presumed existence of a ro-

tational Killing field ψα in the background spacetime allows for us to define the

conserved angular momentum of a geodesic, chosen to lie in the equatorial plane for

convenience, as

L = mgαβψ
αẋβ = mr2dφ

dλ
(4.52)

where ẋβ is the 4-velocity of the geodesic, λ is an affine parameter on the geodesic,

and the second equality follows from evaluating L in polar coordinates (e.g. Boyer-

Lindquist coordinates for the Kerr background) . The leading order angular mo-

mentum of the effective point particle is determined by the leading order motion,

which is a geodesic of the background spacetime. Therefore, L is the leading order

(conserved) angular momentum and scales as

L ∼ mr2

R
∼ mR (4.53)

in the strong field region of the supermassive black hole background.
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(a)

b

a

(b)

b

a1 a2

(c)

b

. . . . .
n gravitons

a1 an

Figure 4.1: Particle-field vertices. Diagram (a) gives the Feynman rule for iS
(1)
pp and

diagram (b) gives the rule for iS
(2)
pp . The last diagram in (c) is the coupling of n

gravitons to the particle worldline. The labels a1, a2, . . . and b are CTP indices and

take values of 1 and 2.

With this estimation of the particle’s angular momentum we find that the ratio

m

mpl

∼ m

m2
plR

mpl

m
(mR) ∼ µ

mpl

m
L (4.54)

implies the following scaling

m

mpl

∼
√
µL. (4.55)

The four scaling laws in (4.49), (4.51), (4.53) and (4.55) determine the power count-

ing rules for identifying the appropriate Feynman diagrams that enter into the eval-

uation of the effective action. We list these power counting rules in Table (4.1).

Having in hand the power counting rules for the various parameters in the

theory we turn our attention to power counting the interactions terms in (4.40).

We begin with the diagrams for the two interaction terms S
(1)
pp and S

(2)
pp shown

in Figs.(4.1a) and (4.1b). The curly line denotes a two-point function Dab of the

metric perturbation (i.e. of a graviton). The straight line denotes the effective point
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a1 a1

a2
a3

(a) (b)

a2
an

n gravitons

. . . . .

Figure 4.2: Graviton self-interaction vertices. Diagram (a) gives the Feynman rule

for iS(3) and diagram (b) gives the rule for the interaction of n gravitons. The ai

labels are CTP indices.

particle. We remark that from the point of view of the gravitons, the particle acts

as an external source that couples to the metric perturbations. As such, the straight

line does not represent the physical propagation of the compact object. However,

the straight line does invoke an intuitive picture of the particle-field interactions,

which proves to be very useful when calculating the effective action.

The power counting of S
(1)
pp and S

(2)
pp is given below

Fig. (4.1a) = i
m

2mpl

∫
dτ hαβẋ

αẋβ ∼ m

mpl

dτ h ∼
√
µL (4.56)

Fig. (4.1b) = −i m

8m2
pl

∫
dτ hαβhγδẋ

αẋβẋγẋδ ∼ m

m2
pl

dτ h2 ∼ µ. (4.57)

The power counting of n gravitons interacting with the effective particle, as shown

in Fig.(4.1c), is easily shown to be

Fig. (4.1c) = iS(n)
pp ∼ m

mn
pl

dτ hn ∼ µ

(
L

µ

)1−n
2

. (4.58)

The self-interaction vertices that result from the nonlinearity of the Einstein-

Hilbert action are given in Fig.(4.2). The first diagram gives the cubic self-interaction
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Table 4.2: Power counting rules for interaction terms

iS
(n)
pp iS(n)

µ

(
L

µ

)1−n/2 (
L

µ

)1−n/2

term S(3) and scales as

Fig. (4.2a) = iS(3) ∼ m2
pld

4x ∂2 h
3

m3
pl

∼
√
µ

L
(4.59)

while the second diagram gives the self-interaction of n gravitons,

Fig. (4.2b) = iS(n) ∼ m2
pld

4x ∂2 h
n

mn
pl

∼
(
L

µ

)1−n
2

. (4.60)

From Table (4.2) we see that the power counting indicates that every type of inter-

action term involving any number of gravitons scales as Lp where p ≤ 1.

4.4.3 Feynman rules and calculating the effective action

We now turn to calculating the effective action Seff [za] from (4.40). Taking

the logarithm of both sides it follows from standard quantum field theory arguments

[66, 93, 94] that

iSeff [z
a] = −im

∫
dτa +

 sum of all

connected diagrams

 . (4.61)

By “connected diagrams” we mean those contiguous diagrams constructed using the

Feynman rules for the interaction terms in (4.40). However, we are only interested

in those connected diagrams that contribute at the classical level since the quantum
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corrections due to graviton loops on the motion of an astrophysical body are utterly

negligible. In fact, treating the particle as an open quantum system as in Chapters 2

and 3 we find that the influence functional calculated by coarse-graining the (linear)

metric perturbations has a magnitude of

∣∣F [z, z′]
∣∣ = exp

{
− 1

64m2
pl

Tαβ
− ·DH

αβγ′δ′ · T
γ′δ′

−

}
(4.62)

(See Section 2.4.5 for more details.) The mass of the compact object is typically

between 1−100 solar masses. We deduce that the worldline of a solar mass compact

object will fluctuate by

δz ∼ 10−35M ∼ 10−24cm (4.63)

where the last estimate assumes a 105M� supermassive black hole. (In arriving at

this estimate we expand the argument of |F about z′ = z and keep the leading order

contribution.) Therefore, the effective point particle worldline is truly decoherent9

since the worldline fluctuations are grossly suppressed. We will simply represent the

quantum expectation value of the worldline coordinates 〈ẑa〉 by their semiclassical

values za.

A diagram with ` graviton loops scales as L1−`, in units where ~ = 1. There-

fore, those diagrams that scale linearly with L correspond to classical processes and

9There will always be non-zero worldline fluctuations, the existence of which will be necessary

for computing the semiclassical equations of self-force. However, these fluctuations are so small

that only tree-level processes are relevant.
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provide the dominant contributions to the effective action so that

iSeff [z
a] = −im

∫
dτa +

 sum of all O(L)

connected diagrams



+

 higher order graviton

loop corrections

 . (4.64)

In this manner we have a systematic method of computing the self-force equations

order by order in µ.

The relationship between the connected diagrams, the interaction terms and

the power counting is provided by the Feynman rules so that given a diagram at a

given order in µ we can translate these into mathematical expressions. The Feynman

rules are the following:

1. A vertex is represented by a factor of the particle-field interaction iS
(n)
pp or the

field self-interaction iS(n) as appropriate,

2. Each endpoint and vertex is labeled by a CTP index and can be classified as

being of type-1 or type-2. An extra minus sign is associated with each vertex

labeled by a 2 (type-2),

3. Include a factor of the graviton two-point function Dab connecting vertices of

type a and b,

4. Sum over all CTP indices,

5. Include a symmetry factor.
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a b

Figure 4.3: The diagram contributing to the first-order self-force of MSTQW.

We will show how these rules are implemented as we continue through the remainder

of the Chapter.

To derive the MSTQW self-force equation we only need those diagrams that

contribute at O(µL). From the Feynman rules for the diagrams in Figs. (4.1) and

(4.2) it follows that there is only one such diagram at this order, which is shown in

Fig.(4.3). Therefore, the effective action to first order in µ is

iSeff [z
a] = −im

∫
dτa + Fig.(4.3) +O(µ2L) (4.65)

where

Fig.(4.3) = i2
(

1

2!

)(
m

2mpl

)2 2∑
a,b=1

∫
dτ

∫
dτ ′ żα

a ż
β
a D

ab
αβγ′δ′

(
zα

a , z
α′

b

)
żγ′

b ż
δ′

b ,

(4.66)

which can be written in terms of the point particle stress tensor (2.155) as

Fig.(4.3) = −1

2

∫
dτ

∫
dτ ′

2∑
a,b=1

Tαβ
a (zα

a )Dab
αβγ′δ′(z

α
a , z

α′

b )T γ′δ′(zα′

b ). (4.67)

Using (B.13) we find that this can be expressed alternatively in terms of the retarded

propagator and the Hadamard two-point function

Fig.(4.3) = i

∫
dτ

∫
dτ ′ Tαβ

− Dret
αβγ′δ′T

γ′δ′

+ − 1

4

∫
dτ

∫
dτ ′ Tαβ

− DH
αβγ′δ′T

γ′δ′

− . (4.68)

Observe that (4.63) implies the contribution from the real part of iSeff , which is

proportional to the Hadamard function, comes from those worldlines with z2 ≈ z1.
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It is therefore reasonable to isolate the dominant contribution to the effective action

and expand in powers of the difference variable zα
1 − zα

2 . Defining the difference and

semi-sum (or averaged) coordinates

zα
− = zα

1 − zα
2 (4.69)

zα
+ =

zα
1 + zα

2

2
(4.70)

and implementing the identities in Appendix A we find that such an expansion gives

iSeff [z
a] = −im

∫
dτ zµ

−gµαa
α
+

+
m2

2m2
pl

∫
dτ

∫
dτ ′ zµ

−w
αβν

µ [zα
+]∇νD

ret
αβγ′δ′(z

α
+, z

α′

+ )żγ′

+ ż
δ′

+ +O(z2
−)

(4.71)

where the 4-acceleration is

aµ
+(τ) =

Dżµ
+

dτ
, (4.72)

τ is the proper time associated with the worldline described by the semi-sum coor-

dinates zα
+ so that

gαβ(z+)żα
+ż

β
+ = −1 (4.73)

and the tensor wµαβν [z] is given in (2.160) and (2.161).

We remark that the CTP generating functional and the effective action Seff

provide causal dynamics for the effective particle’s motion since the retarded prop-

agator is the only two-point function that appears in (4.71). The reason for this

stems from the fact that the in-in formalism describes quantum field theory as an

initial value problem. This is to be compared to the in-out approach in which
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the field theory satisfies certain boundary conditions that are more appropriate for

scattering then for real time evolution. As such, the in-in formalism is capable of

handling non-equilibrium dynamical systems in a manifestly causal way. We will

see an explicit example of these different approaches when we calculate the second

order self-force equations in the next Chapter. Interestingly, however, the difference

in using the in-out versus the in-in formalisms is not made manifest at first order in

µ.

Continuing, we observe that the retarded propagator in (4.71) is divergent

when τ ′ = τ . In order to have a finite and well-behaved force on the compact object

from the metric perturbations we will need to regularize this divergence and possibly

renormalize the appropriate couplings of the theory.

4.4.4 Regularization of the leading order self-force

The EFT approach is founded in the theory of quantum fields in curved space-

time [66, 124]. The renormalization of divergences in this context has received much

attention over the decades and a considerable body of techniques has been devel-

oped to remove these divergences in a systematic and self-consistent manner. We

therefore find it natural to renormalize the divergence in (4.66) using these methods,

even if they are somewhat unfamiliar in classical gravitational problems.

Of these approaches the method of dimensional regularization [63] is particu-

larly useful. This regularization scheme preserves the general coordinate and gauge

symmetries of the theory but is also a natural choice to use within an effective field
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theory framework [44, 46, 47, 48]. The reason for the latter can be seen from the

problems that can develop when a simple cut-off regularization is used for the di-

vergent integrals appearing, for example, in the Fermi effective field theory of weak

interactions. We refer the reader to [46] for the particular details of this theory. In

this EFT the mass of the W-boson MW is very large compared to the other masses

(e.g., quarks) and typical momenta in the problem so that the action describing

the low-energy theory is an expansion in powers of 1/MW . As a result one finds

divergent diagrams at each order that scale like

∼
(

Λ

MW

)p

(4.74)

when using a momentum cut-off Λ to regulate the divergence and p is an integer.

Since Λ represents the scale at which high energy physics becomes relevant then it

is natural to choose Λ ∼MW , which is the scale of the heavy W-bosons. Therefore,

all of the (power) divergences at each order contribute at O(1) and the perturbative

expansion in the effective field theory breaks down unless if these are resummed [46]

in a particular manner. This feature does not occur with dimensional regularization

since the dimensional parameter µreg (which is equivalent to Λ in the above example)

never shows up as an explicit power µp
reg but appears only in logarithms. This is

true of any so-called mass-independent renormalization scheme [46].

The smearing prescription developed and implemented in Chapter 2 to regu-

larize the divergent direct part of the retarded propagator cannot be used within

our effective field theory because it is a mass-dependent regularization scheme. This

is easily seen by looking at the shift in the mass of the electric point charge (2.143)
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in which the divergence is

δm

m
= e2

g(1)(r)

m
∼ e2

Λ

m
(4.75)

in the units G, c = 1. It is natural to take Λ of order the “classical radius” of the

charge ro ∼ e2/m, which defines the length scale at which the vacuum polariza-

tion induced by the charge’s presence becomes relevant (i.e., pair creation becomes

important at this scale and marks roughly the length scale important for quantum

electrodynamical processes [107].). Then δm/m is a first order contribution thereby

causing the perturbative expansion inm to break down since the high-energy physics

no longer provides a small correction to low-energy processes. Therefore, the smear-

ing regularization is unsuitable to use within an effective field theory framework.

We will use the dimensional regularization scheme below because of its prac-

tical ease and because it allows for the effective field theory to be renormalized in

a manner consistent with the associated perturbation series in µ 10. Because we

are applying a quantum field theoretical renormalization scheme to a classical grav-

itational problem we will provide below a somewhat pedagogical discussion of our

steps as they apply to the regularization and renormalization of the effective action.

The renormalization of the retarded propagator Dret
αβγ′δ′(x, x

′) happens as fol-

lows. The divergent structure of the propagator comes from the inclusion of arbi-

trarily high frequency modes in the field. We may therefore focus attention on the

neighborhood surrounding x′ = x. There are several approaches one may take, in-

cluding point-splitting regularization and Hadamard’s expansion (see [66, 124] and

10The expansion parameter µ = rm/R should not be confused with the dimensional parameter

µreg that appears in dimensional regularization.
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references therein), but we will focus on dimensional regularization as it applies to

the momentum space representation developed by Bunch and Parker [64].

Our reason for using this approach is two-fold. On the one hand [64] uti-

lizes momentum space techniques that are familiar from flat spacetime interacting

quantum field theory. On the other hand, dimensional regularization is a powerful

scheme for regularizing and renormalizing, if need be, divergences in a manner that

is self-consistent with the effective field theory approach (see the above discussion).

We turn now to describing this scheme as we will apply it to regularizing the effective

action through first order in µ.

At the point x we may associate a tangent space that is spanned by wave, or

momentum, vectors kµ. These momenta provide a representation of the two-point

functions via a Fourier transform. Any quasi-local coordinate system constructed

around x may be used to generate this Fourier transform. For example, the momen-

tum space representation derived using Fermi normal coordinates gives a different

representation compared to using Riemann normal coordinates or retarded coor-

dinates, etc. We find it convenient to use Riemann normal coordinates (RNC) to

coordinatize the normal convex neighborhood about the point x, which we will take

to be the origin of these coordinates. See Appendix C for a brief review of Riemann

normal coordinates and the Taylor series expansion of some relevant tensors.

The spacetime is locally flat around x and so expanding the propagator in

powers of the displacement from x, which we denote by yâ, naturally introduces

derivatives of the background metric ∂αgµν and, consequently, the curvature tensors

of the background spacetime at x. The spacetime region over which the Fourier
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transform is valid is presumed small compared to the background curvature scale

R. Therefore, the expansion parameter in this Taylor series is yâ/R. We use the

standard terminology that the nth adiabatic order of an expansion, denoted O(∂n),

refers to the number of derivatives acting on the background metric. For example,

the curvature tensors are second adiabatic order O(∂2) quantities.

Using this adiabatic expansion we can construct the sought after expansion of

the propagator. For example, the momentum space representation for the Feynman

propagator of a massless scalar field in d spacetime dimensions is [64]

DF (x, x′) =

∫
ddk

(2π)d
eikâyâ

[
1

k2 − iε
+

(
1
3
− ξ
)
R

(k2 − iε)2
− 2

3

Râb̂k
âkb̂

(k2 − iε)3
+O(k−5)

]
(4.76)

where yâ is the displacement of x′ from x in RNC and ξ is a constant representing the

coupling of the scalar field to the scalar curvature. In d = 4 dimensions we see that

these terms scale as k2, k0 and k0, respectively, in the high frequency limit. The first

term is a power divergence and the last two terms are logarithmically divergent. As

we will see later the ability to distinguish between power and logarithmic divergences

has a great advantage in renormalizing the self-force at higher orders in µ since all

power divergences vanish in dimensional regularization [63].

For our purpose of renormalizing the divergence in the effective action (4.71)

we need the momentum space representation for the Feynman propagator of metric

perturbations to second adiabatic order11. In Appendix D we give a novel derivation

of this using diagrammatic techniques of perturbative quantum field theory, which

11We are unaware of any such momentum representation for the Feynman propagator of metric

perturbations to O(∂2) using Riemann normal coordinates or any other normal coordinate system.

See however [125].
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allows for a more efficient computation of the quasi-local structure of the propagator,

especially for higher spin fields.

Let us assume that the divergent part of the retarded propagator is known

and is given by the quantity Ddiv where we are temporarily dropping the spacetime

indices as well as the ret label. The propagator is divergent in the limit when x′ → x

and can be written as the sum of a regular and a divergent contribution [66],

D = Dren +Ddiv (4.77)

where the finite, renormalized propagator is defined by finite remainder

Dren ≡ D −Ddiv = Pf(D) (4.78)

where Pf stands for the pseudofunction of the quantity in paranetheses and is well-

behaved as a (regular) distribution when x′ = x. Generically, quantum two-point

functions and propagators are regarded as distributions and therefore only make

sense when integrated against a test function. Let us therefore define j(λ) to be

such a testing function so that we can form the (divergent) integral

∫ ∞

−∞
dλ′D(z(λ), z(λ′))j(λ′) (4.79)

where we evaluate the propagator on the particle worldline zα(λ). We refer the

reader to Appendix E for our notations and definitions regarding distribution theory

as well as to the excellent text by Zemanian [126] for further study.

The divergent integral in (4.79) can be written as

∫ ∞

−∞
dλ′D(z(λ), z(λ′))j(λ′) = lim

ε→0

[
I(ε) +H(ε)

]
(4.80)
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where I(ε) is the divergent part of the integral and H(ε) is the finite part. These

are related to the renormalized and divergent propagators through

lim
ε→0

I(ε) =

∫ ∞

−∞
dλ′Ddiv(z(λ), z(λ′))j(λ′) (4.81)

H(0) = Fp

∫ ∞

−∞
dλ′D(z(λ), z(λ′))j(λ′) (4.82)

=

∫ ∞

−∞
dλ′Dren(z(λ), z(λ′))j(λ′) (4.83)

where Fp denotes the finite part of the divergent integral, in the sense of Hadamard

[99], in (4.79). These relations follow from the fact that the renormalized propagator

in (4.78) is a pseudo-function and, by definition, generates the finite part of (4.79).

In general, as we discuss in Appendix E, the divergent part can be written in

terms of its power divergent terms as well as powers of logarithms

I(ε) =
N∑

p=1

ap

εp
+

M∑
p=1

bp lnp ε. (4.84)

as ε → 0. To identify the divergent part of the integral in (4.79) we need to

identify a representation for Ddiv. The divergent part of the propagator can be

explicitly realized using any suitable representation that allows for a clear separation

of the divergent parts from the finite terms. Below, we use a momentum space

representation for the graviton propagator initially introduced by Bunch and Parker

for a scalar field in [64]. Keeping only those terms that are divergent, and therefore

contribute to Ddiv and I(ε), amounts to expanding the propagator D through second

adiabatic order when using Riemann normal coordinates. Throwing away all higher

adiabatic order terms in the expansion, which are finite as can be verified by power

counting the momentum integrals, results in the divergent structure shown in (4.84).

168



We may therefore write

Ddiv = DBP
(n) (4.85)

where the superscript BP stands for the Bunch-Parker momentum space represen-

tation with all of the unnecessary finite terms removed and the subscript (n) signifies

the highest adiabatic order kept in the expansion. We remark that if a derivative

operates on the propagator then we will need to expand out to one higher adiabatic

order to compensate for the extra momentum factor that the derivative implies.

Returning to (4.80), the finite part of the integral is defined via the pseudo-

function of the propagator in (4.78) so that

Fp

∫ ∞

−∞
dλ′D(z(λ), z(λ′))j(λ′) = lim

ε→0

(∫ λ−ε

−∞
+

∫ ∞

λ+ε

)
dλ′D(z(λ), z(λ′))j(λ′)

−
∫ ∞

−∞
dλ′DBP

(n) (z(λ), z(λ′))j(λ′). (4.86)

We may then write the worldline integral of the full propagator D as

∫ ∞

−∞
dλ′D

(
z(λ), z(λ′)

)
f(λ′)

= Fp

∫ ∞

−∞
dλ′D

(
z(λ), z(λ′)

)
j(λ′) +

∫ ∞

−∞
dλ′DBP

(n)

(
z(λ), z(λ′)

)
j(λ′). (4.87)

Using these expressions, we find that the first order self-force in (4.71) is given

by

Fig.(4.3) = i
m2

2m2
pl

∫ ∞

−∞
dτ zµ

−w
αβν

µ [zα
+]∇ν

{
Fp

∫ ∞

−∞
dτ ′Dαβγ′δ′

(
z+(τ), z+(τ ′)

)
żγ′

+ ż
δ′

+

+

∫ ∞

−∞
dτ ′DBP

(n)αβγ′δ′

(
z+(τ), z+(τ ′)

)
żγ′

+ ż
δ′

+

}
(4.88)

where we parameterize the worldline by the particle’s proper time.
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Focus on the divergent contribution that arises from the second term,

I ν
µ (τ) = w αβν

µ [zα
+]

∫ ∞

−∞
dτ ′DBP

(n)αβγ′δ′

(
z+(τ), z+(τ ′)

)
żγ′

+ ż
δ′

+ . (4.89)

The particle worldline is a geodesic of the background spacetime at leading order so

that the d-velocity at τ ′ is related to that at proper time τ through

żγ′

+ (τ ′) = gγ′

µ

(
z+(τ ′), z+(τ)

)
żµ
+(τ) (4.90)

where gγ′
µ is the bi-vector of parallel transport, which parallel transports a vector

at z+(τ) to another point z+(τ ′) along the unique geodesic connecting these points,

namely, the leading order worldline of the effective particle’s motion. The divergent

integral (4.89) can then be written as

I ν
µ (τ) = w αβν

µ [zα
+]żρ

+ż
σ
+

∫ ∞

−∞
dτ ′DBP

(n)αβγ′δ′

(
z+(τ), z+(τ ′)

)
× gγ′

ρ

(
z+(τ ′), z+(τ)

)
gδ′

σ

(
z+(τ ′), z+(τ)

)
. (4.91)

The integrand is now a rank-4 tensor at z+(τ) and a scalar at z+(τ ′), which we can

simply call

DBP
(n)αβγδ

(
z+(τ), z+(τ ′)

)
= DBP

(n)αβγ′δ′

(
z+(τ), z+(τ ′)

)
gγ′

µ

(
z+(τ ′), z+(τ)

)
× gδ′

ν

(
z+(τ ′), z+(τ)

)
. (4.92)

In Appendix D we derive the momentum space representation of the Feynman

propagator for metric perturbations. We calculate only those terms that give rise

to power or logarithmic divergences in d = 4 spacetimes. The divergent part of the
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propagator DBP
(n) in RNC is found from (D.122)

DBP
(n)âb̂ĉd̂

(y) =

∫
Cret,k

eik·y

{
Pâb̂ĉd̂(η)

k2 + iε
− 1

(k2 + iε)2

(
Râĉb̂d̂ +Râd̂b̂ĉ

)
−1

3

kŝkt̂

(k2 + iε)3

[
ηâĉRb̂ŝd̂t̂ + ηâd̂Rb̂ŝĉt̂ + ηb̂ĉRâŝd̂t̂ + ηb̂d̂Râŝĉt̂

+
4

(d− 2)2

(
ηâb̂Rĉŝd̂t̂ + ηĉd̂Râŝb̂t̂

)]
+O(∂3, k−5)

}
(4.93)

where we have ignored those terms that fall off as k−5 in the integrand since these

give finite contributions that we are not interested in. The divergent integral (4.89)

is simply

I n̂
m̂ (τ) = w âb̂n̂

m̂ [z+]żĉżd̂Pâb̂ĉd̂

∫ ∞

−∞
dτ ′
∫
Cret,k

eik·y 1

k2

=
1

2

d− 3

d− 2
w n̂

m̂ [zα
+]

∫ ∞

−∞
dτ ′
∫
Cret,k

eik·y 1

k2
(4.94)

where we have used żb̂żĉżd̂Râĉb̂d̂ = 0. The diagram Fig.(4.3) that gives the O(µ)

self-force therefore contains only a simple power divergence that scales as k2 in the

high frequency limit in 4 spacetime dimensions. We regularize this divergence below

using dimensional regularization.

In Riemann normal coordinates, yâ describes the coordinate of point x′ relative

to the origin at x. Since a geodesic connects these two points we can use the

definition of yâ to find its relation to the 4-velocity at x. From (C.1) and (C.9) we

have that

yâ = −eâ
α

(
z+(τ)

)
σα
(
z+(τ), z+(τ ′)

)
(4.95)

= eâ
α

(
z+(τ)

)
uα

+(τ)
(
τ − τ ′

)
(4.96)
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and

k · y = kây
â = kâe

â
α

(
z+(τ)

)
uα

+(τ)
(
τ − τ ′

)
= kαu

α
+(τ)

(
τ − τ ′

)
. (4.97)

Passing the proper time integral through the momentum integral in (4.94) we find

that integrating over τ ′ gives a delta function that enforces kα and uα
+(τ) to be

orthogonal,

I n̂
m̂ (τ) =

1

2

d− 3

d− 2
w n̂

m̂ [zα
+]

∫
Cret,k

eikαuα
+τ (2π)δ

(
kαu

α
+

) 1

−k2
0 + k2

(4.98)

where k is the d − 1 dimensional spatial momentum. The condition kαu
α
+ imposes

a relationship between k0 and k,

k0 = k · v(t) (4.99)

where v = u+/u
0
+ = dz/dz0 is the particle’s (d− 1)-velocity measured with respect

to coordinate time. Writing

δ
(
kαu

α
+

)
=

1

u0
+

δ
(
k0 − k · v

)
(4.100)

and integrating over k0 therefore gives

I n̂
m̂ (τ) =

1

2

d− 3

d− 2
w n̂

m̂ [zα
+]

1

u0(τ)

∫
k

1

(ηij − vivj)kikj + iε
(4.101)

where here i, j = 1, · · · , d− 1 are spacetime indices for the spatial directions.

To calculate the d − 1 dimensional k integral we should first diagonalize the

matrix ηij − vivj so that the denominator of the momentum integral is over 1/k · k

multiplying a velocity-dependent factor. Without loss of generality we may assume

that the (d − 1)-velocity v points along one of the coordinate directions, say y1.
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Then v = (v, 0, . . . , 0) and the matrix is automatically diagonal

ηij − vivj = ηij − v2ηi1ηj1, (4.102)

which gives for the denominator of the integrand in (4.101)

(ηij − vivj)kikj = (1− v2)k2
1 + k2

2 + · · ·+ k2
d−1. (4.103)

By rescaling the k1 momentum so that k1 → k1/
√

1− v2 we find that

I n̂
m̂ (τ) =

2(d− 1)

d− 2

∫
k

1

k2 + iε
(4.104)

after recalling that u0 = 1/
√

1− v2. Since this result is independent of the particle’s

velocity then this should hold in any local coordinate system about zα(τ).

The momentum integral in (4.104) can be integrated by giving a small mass

mg to the graviton so that∫
dd−1k

(2π)d−1

1

(k2 +m2
g)

α
=

2π(d−1)/2

(2π)d−1Γ
(

d−1
2

) ∫ ∞

0

dk
kd−2

(k2 +m2
g + iε)α

(4.105)

=
1

(4π)(d−1)/2

Γ
(
α+ 1−d

2

)
Γ(α)

(m2
g)

d−1
2
−α, (4.106)

for some positive integer α. Strictly speaking, the integral in (4.105) does not

converge for d = 4. However, by analytically continuing to other values for d we

find that the integral converges. In this way, the divergence is renormalized via the

analytic continuation and a finite result is obtained upon choosing d = 4. For α = 1

and d = 4− ε the integral is12

∫
dd−1k

(2π)d−1

1

k2 +m2
g

= −mg

4π
+O(ε). (4.107)

12Observe that the difference from four dimensional spacetime ε = 4−d is not the same quantity

as the iε that enforces the appropriate boundary conditions on the Feynman propagator.
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This procedure to render the initially divergent integral (4.105) finite is called di-

mensional regularization. This particular regularization scheme has the attractive

feature that power divergences, such as the one encountered in (4.104), vanish in

the limit that the graviton mass mg goes to zero. From (4.104) and (4.107) we find

that

I ν
µ (τ) = 0 (4.108)

when evaluated using dimensional regularization. We therefore conclude that the

divergent part of the diagram in Fig.(4.3) is zero,

I(ε) = i
m2

2m2
pl

∫
dτ zµ

−w
αβν

µ [z+]∇ν

∫ ∞

−∞
dτ ′DBP

(n)αβγ′δ′

(
z(τ), z(τ ′)

)
żγ′ żδ′

= 0. (4.109)

The remaining finite part of Fig.(4.3) is

Fig.(4.3) = i
m2

2m2
pl

∫
dτ zµ

−w
αβν

µ [z+]∇νFp

∫ ∞

−∞
dτ ′Dret

αβγ′δ′

(
z(τ), z(τ ′)

)
żγ′ żδ′ .

(4.110)

Notice that we have not had to renormalize any parameters of the theory at this

order since dimensional regularization set the power divergence to zero.

Having regularized the leading order contribution to the self-force diagram in

Fig.(4.3) we now compute the equations of motion from (4.110). This is simply

found from the variational principles

δSeff [z
a]

δzµ
−(τ)

∣∣∣∣∣
z−=0

= 0 (4.111)
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and gives

maµ(τ) =
m2

2m2
pl

wµαβν [zα]∇νFp

∫ ∞

−∞
dτ ′Dret

αβγ′δ′(z
α, zα′) żγ′ żδ′ . (4.112)

Using the definition of Hadamard’s finite part of the integral in (4.86) and the fact

that the retarded propagator is zero for τ ′ > τ we see that the finite part is given

by

Fp

∫ ∞

−∞
dτ ′Dret

αβγ′δ′(z
α, zα′) żγ′ żδ′ = lim

ε→0

∫ τ−ε

−∞
dτ ′Dret

αβγ′δ′(z
α, zα′) żγ′ żδ′ (4.113)

after recalling that the divergent part of the integral is zero. Inserting this into

the equations of motion gives the equation for the self-force on the effective point

particle moving in a vacuum background spacetime

maµ(τ) =
m2

2m2
pl

wµαβν [zα] lim
ε→0

∫ τ−ε

−∞
dτ ′∇νD

ret
αβγ′δ′(z

α, zα′) żγ′ żδ′ (4.114)

which was originally derived by Mino, Sasaki and Tanaka [20] and by Quinn and

Wald [21]. The tensor wµαβν is defined in (2.160) and (2.161).

4.4.5 The procedure for computing the self-force to all orders

In this section we have developed the power counting and the Feynman rules

necessary for computing the effective action order by order in µ. Along the way, we

encounter the usual ultraviolet divergence in the retarded propagator for the metric

perturbations. Utilizing a mixture of distributional methods and momentum space

techniques in curved spacetime we regularize the effective action at O(µ) and find

the resulting self-force equation of MSTQW. Before proceeding to the next section,

let us formulate a recipe that is applicable for higher order self-force calculations.
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The steps required to compute the self-force at any order in µ, say the nth

order, are given by the following:

1. Draw all diagrams that appear at O(µn) using the power counting rules in

Section 4.4.2,

2. Write down the mathematical expressions that correspond to the Feynman

diagrams using the Feynman rules outlined in Section 4.4.3. These expressions

are the O(µn) contributions to the effective action,

3. Expand the effective action in powers of the coordinate difference zα
− = zα

1 −zα
2

using the fact that zα
2 ≈ zα

1 for astrophysically relevant binaries. Keep only

those contributions through O(z−). The effective action should be manifestly

causal at the end of this step,

4. Distribution theory allows for the O(µn) terms in the effective action to be

written in terms of a (generally non-local) finite part, which contributes to the

history-dependent self-force, and a (quasi-local) divergent part,

5. Apply dimensional regularization to the momentum space representation of the

retarded propagator. All power divergences are zero in this scheme so that

logarithmic divergences are the only terms that renormalize the parameters of

the theory,

6. Vary the resulting finite part of the effective action with respect to the differ-

ence coordinate zα
− to find the O(µn) contribution to the self-force equation.
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In the next Chapter we apply these steps to calculate the self-force at higher

orders in µ. While this approach is perhaps overpowering for the linear order cal-

culation of the MSTQW equation we see the efficient handling of divergences using

this procedure is significantly beneficial for higher order self-force calculations.

4.5 Effacement Principle for EMRIs

While it is intuitive to expect finite size corrections to be negligibly small

whenever computing the linear order self-force one may be concerned with such cor-

rections at higher orders. Specifically, at what order in µ are the tidal deformations

of the small body important for computing the self-force? In this section we answer

this question using coordinate invariant arguments and demonstrate for the first

time, to the best of our knowledge, that such finite size effects from a spherically

symmetric compact object moving in a background curved spacetime unambigu-

ously enter the self-force at O(µ5) and as deviations from the leading order geodesic

motion at O(µ4). This is the statement of the Effacement Principle for extreme

mass ratio inspirals.

To begin we write down the effective point particle action that includes all

possible terms consistent with general coordinate invariance and worldline reparam-

eterization invariance,

Spp[z(τ)] = −m
∫
dτ + cE

∫
dτ EµνE

µν + cB

∫
dτ BµνB

µν + · · · (4.115)

where we have already used a field redefinition to remove those terms involving a

Ricci curvature tensor. The terms involving the square of the Riemann curvature
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(and higher powers) represent the influence of the finite size of the body as it moves

through space. This is seen by noting that the equations of motion no longer have

vanishing acceleration maµ 6= 0 so that the effective point particle does not move

along a geodesic of the background spacetime. Such deviation from geodesic motion

is typical of tidally distorted bodies and is discussed in more detail in Section 4.3.

The coefficients cE,B are parameters that depend upon the structure of the

extended body. We must therefore match the effective point particle theory onto

the full theory in order to encode this “microscopic” or “high-energy” structure onto

the long wavelength effective theory. The matching procedure involves calculating

some (coordinate invariant) observable in both the effective theory and in the full

theory13. By expanding the observable of the full theory in the long wavelength

limit, where the effective theory is applicable, we can simply read off the values

of cE,B as well as any other coefficients in (4.115). Instead of preferring a detailed

matching calculation we will perform an order of magnitude estimation to determine

the scaling behavior of cE,B for a spherically symmetric compact object.

The symmetries of the effective point particle action are shared with observ-

ables computed from the full theory in the long wavelength limit. The matching

procedure requires calculating these observables in order to fix the coefficients in the

effective theory. Below, we will power count the scattering cross-section for graviton

Compton scattering shown in Fig.(4.4), which simply represents the scattering of

13Strictly speaking, one can use any quantity for the matching but it is simpler to draw coordi-

nate invariant conclusions by matching with a coordinate invariant quantity, such as a scattering

amplitude, a cross-section, etc.
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b

a1
a2

Figure 4.4: Graviton scattering off the background of a static and spherically sym-

metric extended body (e.g., a Schwarzschild black hole, a non-spinning neutron star,

etc.).

metric perturbations in the spacetime generated by the isolated, compact object.

We first compute the cross-section in the effective point particle theory de-

scribed by Spp in (4.115). The scattering amplitude is computed by expanding the

terms in Spp proportional to cE and cB to second order in the metric perturbations,

Spp[z(τ)] = · · ·+ cE

∫
dτ
(
E(0)

µν E
(0)µν + 2E(1)

µν E
(0)µν + E(1)

µν E
(1)µν + 2E(2)

µν E
(0)µν

)
+cB

∫
dτ
(
B(0)

µν B
(0)µν + 2B(1)

µν B
(0)µν +B(1)

µν B
(1)µν + 2B(2)

µν B
(0)µν

)
+ · · · . (4.116)

where the superscript denotes the number of metric perturbations appearing in that

function so that B
(2)
µν is proportional to h2, for example. From the power counting

rules developed in Section 4.4.2 we find that the scattering amplitude associated

with Fig.(4.4) scales as

iA ∼ · · ·& cE,B

m2
pl

(
1

R2

)2

& · · · (4.117)

where the 1/R2 comes from the two spacetime derivatives in the Riemann tensor.
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While the cross-section includes contributions from other terms in the effective par-

ticle action it will contain one term proportional to c2E,B,

σpp ∼ |iA|2 ∼ · · ·&
c2E,B

m4
pl

1

R8
& · · · (4.118)

where the pp subscript indicates that this is the cross-section computed in the ef-

fective point particle theory and the & is to be read “and a term with the form

of.”

We turn now to the scattering cross-section in the full theory. A cross-section

represents an effective scattering area and the only scale present in the full theory

of the isolated compact object is set by the size of the compact object rm ∼ m/m2
pl.

It follows that

σfull = r2
mf
(rm

R

)
(4.119)

where f is a dimensionless function. In the long wavelength limit where rm/R� 1

the cross-section will contain a term proportional to R−8,

σfull ∼ · · ·& r2
m

(rm

R

)8

& · · · . (4.120)

Since quantities computed in the effective theory ought to match those computed

in the long wavelength limit of the full theory we conclude that

cE,B ∼ m2
plr

5
m ∼

m5

m8
pl

(4.121)

upon identifying the R−8 terms in both σpp and σfull.

Using (4.121) we can estimate the order in µ that the non-minimal terms

appearing in the effective point particle action (4.115) will affect the motion of
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cE,B

(a) (b)

a

cE,B

b

Figure 4.5: Lowest order contributions to (a) deviation from geodesic motion due

to the tidal deformations of the compact object and (b) the self-force from the

interaction of gravitational radiation with these deformations.

the compact object. The first diagram that the finite size terms (proportional to

cE,B) will contribute is shown in Fig.(4.5a). This describes the deviation from the

leading order geodesic motion experienced by the effective point particle due to the

inclusion of the non-minimal couplings to the background spacetime. This diagram

scales with µ as

Fig. 4.5a ∼ cE,Bdτ

(
1

R2

)2

∼ µ4L (4.122)

and enters at fourth order.

This diagram does not couple to metric perturbations; it persists in the absence

of gravitational radiation. As a result, while Fig.(4.5a) will affect the motion of the

particle it is not a correction to the self-force. To find the order at which the tidal

deformations affect the self-force we power count the diagram in Fig.(4.5b) to find

that

Fig. 4.5b ∼ cE,Bdτ

(
1

R2

)2
h

mpl

√
µL ∼ µ5L. (4.123)

Finite size effects therefore enter the self-force at fifth order in µ. The tidal defor-

mations of the compact object are negligibly small until O(µ4) at which point the
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deviation from geodesic motion dominates the contribution from the self-force.

We recapitulate our results from this Section. We compute for the first time

the order in µ at which finite size effects from tidally induced moments enter the

dynamics of the compact object. We do so using a coordinate invariant matching

procedure that relates the parameters of the effective point particle theory to the

full theory describing the tidal deformations of the compact object in isolation. We

find that in a vacuous background finite size effects will first enter the dynamics

of the compact object’s motion at O(µ4) in the form of deviation from the leading

order geodesic motion. The metric perturbations couple to the compact object’s

induced moments at O(µ5) thereby representing a correction to the self-force on the

point particle.
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Chapter 5

Effective field theory approach for extreme mass ratio inspirals:

Higher order self-force and spin effects

5.1 Second and higher order self-force

The effective field theory approach provides a systematic way to compute the

self-force to any order in µ. Having derived the first-order self-force equation of

MSTQW it is natural to continue the calculation to second order. But there is an

important reason for computing the second order self-force.

It has been argued [61] that the first order self-force does not provide suf-

ficiently accurate gravitational waveforms for determining the source parameters

(mass, spin, distance to source, etc.) with the claimed fractional accuracy of ∼ 10−4

[54] for the LISA mission [2]. The error in using the first order self-force to compute

the waveform is about 1 cycle over the roughly 105 cycles expected to be observed

within the one year that LISA will be operational. While this is sufficient for detec-

tion purposes [54, 55, 56, 57, 58] this error will strongly suppress the signal-to-noise

ratio used in a coherent matched filter search through the full 105 cycles. However,

such a coherent search is not computationally possible over the estimated year-long

waveform as this will require computing about 1040 templates [55]. Nevertheless,

breaking up the search over about 3-week intervals and stitching together the result-
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ing templates over the full waveform will allow for a modest estimation of the source

parameters [55]. Using these estimations one can then restrict the parameter space

and search through increasingly longer and more accurate templates. In this way

the source parameters can be determined with LISA’s claimed precision. However,

in this “measurement” stage, the longer time intervals for a more coherent matched

filter search will require more precise knowledge of the gravitational waveform than

can be provided by the first order self-force calculations. This is particularly true

when the compact object is moving in the deep strong field region of the supermas-

sive black hole background where the phase of the waveform can receive a relatively

significant correction compared with the first order predictions [61]. It is even pos-

sible that such higher order corrections might affect the detection templates in the

last 104 cycles or so1. Therefore, a second order self-force calculation is absolutely

necessary to ensure the construction of sufficiently accurate waveform templates for

realizing the desired precision for parameter estimation.

In this section we will discuss some aspects of the calculation for the second

order self-force on a compact object. We do not explicitly evaluate the diagrams

relevant for such a computation here; this will be done in a separate paper [82]. How-

ever, we will determine the second order self-force on a compact object interacting

with and sourcing a nonlinear scalar field on the background spacetime. The toy

theory that we develop has the same Feynman diagrams (at the topological level)

that appears in the gravitational EFT. The nonlinear scalar model can therefore be

used as a reliable indicator of what is to occur with the gravitational calculation

1We thank Cole Miller for this suggestion.
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and may shed some insight on the qualitative features of higher order self-force cor-

rections. For example, both theories share a similar divergent structure that can

be renormalized in the same manner with the same consequences. Although the

particular form of the (finite) self-force may differ among these two theories we are

interested in the mechanics of the regularization and renormalization as they appear

in the second order self-force calculation.

5.1.1 Second order Feynman diagrams and renormalization

The diagrams relevant for the second order self-force are found using the power

counting rules in Section 4.4.2 to construct all possible connected diagrams that scale

as µ2L. This is the first step outlined in Section 4.4.5. There are only two such

diagrams and these are given in Fig.(5.1). We see that the second order self-force is

comprised of two types of interactions.

The first, shown in Fig.(5.1a), is a nonlinear particle-field interaction. It de-

scribes the emission of a graviton that is later absorbed by the particle. Upon

absorption, another graviton is emitted and absorbed at some later time. This con-

secutive emission and absorption of gravitons results from the S
(2)
pp interaction term

in (4.40).

The second type of interaction, shown in Fig.(5.1b), comes from the nonlinear

structure of the gravitational field equations. A graviton emitted from the particle

undergoes a scattering event off of the background curvature thereby producing two

gravitons, both of which are reabsorbed by the particle. The graviton scattering
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(a)

(b)

a b

d

a b c

c

Figure 5.1: Diagrams contributing to the second order self-force. The diagram in

(a) describes the leading order nonlinear particle-field interaction while the bottom

diagram in (b) results from the nonlinear structure of general relativity. These

diagrams are the only two that enter the effective action at O(µ2L).

in the bulk spacetime is a result of the S(3) interaction term in (4.40). Therefore,

the nonlinear nature of general relativity first appears in the self-force as a second

order effect. We remark that this scattering is not the same phenomenon as the

backscattering of waves off the background curvature. The latter describes the

bending of wavefronts due to the failure of the wave equation to satisfy Huygen’s

principle in a curved background and appears in the first order self-force equations

of motion (4.114) through the appearance of the history-dependent integration over

the retarded propagator. This history dependence occurs precisely because of this

effect. The former process describing graviton scattering is a legitimate scattering

event viewed from a tree-level quantum field theory perspective. Notice that the

gravitons connecting the particle worldline to the bulk spacetime event (marked

with the CTP label “d” in Fig.(5.1b)) undergo backscattering off of the background
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curvature.

We will not explicitly write down the terms in the effective action Seff that

correspond to these diagrams. The permutation of the indices that appear on the

graviton propagators in the diagrams is rather involved. However, we do not need

to know the specific forms of these contractions in order to have some qualitative

understanding of the divergences that appear here at second order nor to obtain a

schematic form for the equations of motion. Therefore, let us schematically write

down the contributions to the effective action from Fig.(5.1). The first diagram is

Fig.(5.1a) ∼
(
m

mpl

)2
(
m

m2
pl

)
2∑

a,b,c,d=1

(−1)a+b+c+d

∫
dτ

∫
dτ ′
∫
dτ ′′

×Dab

(
z(τ), z(τ ′)

)
Dcd

(
z(τ ′), z(τ ′′)

)
(5.1)

where we are choosing to parameterize the worldline with the particle’s proper time

in order to make the notation as compact as is usefully possible.

The second contribution is

Fig.(5.1b) ∼
(
m

mpl

)3(
1

mpl

) 2∑
a,b,c,d,e,f=1

(−1)a+b+c+d+e+f

∫
dτ

∫
dτ ′
∫
dτ ′′

×
∫
d4x∇Dab

(
(xµ, z(τ)

)
∇Dcd

(
xµ, z(τ ′)

)
Def

(
xµ, z(τ ′′)

)
(5.2)

The covariant derivatives act on the graviton two-point functions with respect to

the bulk spacetime coordinate xµ and not the worldline coordinate zα(τ). Both of

these diagrams potentially contain high frequency divergences that are typical of

particle-field interactions. The benefit of using an effective field theory approach

is that we know the theory is renormalizable at length scales much larger than the

size of the compact object. This is so because we have included all possible terms
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in the effective point particle action that are consistent with the general coordinate

and worldline reparameterization invariances. Therefore, any divergence that might

appear has to be renormalized by either the mass m of the compact object or by

any of the infinite number of parameters that are introduced with the non-minimal

couplings, such as cR,V or cE,B, etc.

While there are only two topologically distinct diagrams at second order we

remark that the actual number of diagrams, and corresponding integrals, is larger

because of the permutations of the index structure that appears on the graviton two-

point functions, Dab
αβγ′δ′(x, x

′). Keeping track of these index permutations can be

somewhat involved. To avoid obscuring the important issues, including divergences

and renormalization, with tedious index shuffling that appears at higher orders

in the self-force calculation we will focus on a nonlinear scalar field propagating

in a vacuum background spacetime. Since the scalar field possesses no spacetime

indices we will find the calculations to be more transparent to the application and

interpretation of the divergent structures appearing at second order in the effective

action. In the next Section we explicitly calculate the second order corrections to

the self-force in such a model.

5.1.2 A scalar field model

We introduce a toy model describing a relativistically moving compact object

with mass m interacting with a nonlinear scalar field φ propagating on a background

vacuum spacetime. We assume that the stress tensor of the scalar field provides a
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small correction to the background so that the leading order geometry is vacuous.

After integrating out the “microscopic” structure at the scale of the compact

object we are left with an effective point particle coupled to the scalar field. The

total action of the particle-field system is taken to be

Stot[z, φ] = Sφ[φ] + Spp[z, φ] (5.3)

where the field action is

Sφ[φ] =
1

2

∫
d4x g1/2gαβe2φ/mplφ,αφ,β. (5.4)

This action can be obtained from the usual action for a minimally coupled massless

scalar field on a curved background by performing the conformal transformation

gαβ → e2φ/mplgαβ (5.5)

to a vacuum spacetime and then rescaling the resulting action. In this way we end

up with the theory given in (5.4).

The effective point particle action is given by

Spp[z, φ] = −m
∫
dλ
(
−gαβ ż

αżβ
)1/2

eφ/mpl + · · · (5.6)

The structure of the point particle action can also be generated from the conformal

transformation (5.5) of the effective point particle action in (4.115). This guarantees

the appearance of nonlinear particle-field interactions, which is important for recon-

structing the same diagrams, in a topological sense, that appear in the gravitational

second order self-force, Fig.(5.1).
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We will proceed as before and expand the total action in powers of φ. We find

Stot[z, φ] = S
(2)
φ + S

(3)
φ +

∞∑
n=4

S
(n)
φ + S(0)

pp + S(1)
pp + S(2)

pp +
∞∑

n=3

S(n)
pp (5.7)

where an integer superscript denotes the number of scalar fields in that term, e.g.

S
(n)
φ ∼ φn. The first term in the expansion of the field action is the kinetic term

that gives the propagator on the curved background,

S
(2)
φ =

1

2

∫
d4x g1/2gαβφ,αφ,β. (5.8)

Since the scalar field is not a gauge field there is no need to worry about gauge-

fixing. The propagator is already uniquely defined once global boundary conditions

are imposed. The cubic self-interaction term is given by

S
(3)
φ =

1

mpl

∫
d4x g1/2gαβφ,αφ,β φ (5.9)

and arises from the nonlinear nature of the field. The nth order term in the expansion

of Sφ[φ] is given by

S
(n)
φ =

2n−3

(n− 2)!mn−2
pl

∫
d4x g1/2gαβφ,αφ,β φ

n−2. (5.10)

The term S
(0)
pp is the familiar free point particle action

S(0)
pp = −m

∫
dλ
(
−gαβ ż

αżβ
)1/2

. (5.11)

We will demonstrate below that the finite size terms in (5.6) first enter the particle

dynamics at fourth order. For this reason we ignore the nonminimal terms in this

section. The subleading terms of the point particle action describing particle-field
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interactions are

S(1)
pp = − m

mpl

∫
dλ
(
−gαβ ż

αżβ
)1/2

φ

S(2)
pp = − m

2m2
pl

∫
dλ
(
−gαβ ż

αżβ
)1/2

φ2. (5.12)

Using these expansions, we construct the effective action in the same way we

discussed in Section 4.4.1. We find that the in-in (or CTP) generating functional is

Z[jµ
a ] = exp

{
iS(0)

pp [za] + i

∫
dλ jµ

a z
a
µ

}
exp

{
i

∫
d4xLint

[
za,−i δ

δJa

]}

× exp

{
− 1

2
Jαβ

a ·Dab
αβγ′δ′ · J

γ′δ′

b

}∣∣∣∣∣
Ja=0

(5.13)

where the interaction∫
d4xLint[za, φa] =

∞∑
n=1

S(n)
pp [za, φa] +

∞∑
n=3

S
(n)
φ [φa] (5.14)

contains all of the information regarding the field self-interactions and the particle-

field interactions. The effective action is calculated from the Legendre transform of

the generating functional and is equal to

iSeff [z
a] = −im

∫
dλ
(
−gαβ ż

αżβ
)1/2

+

 sum of all O(L)

connected diagrams



+

 higher order graviton

loop corrections

 . (5.15)

For the same reasons discussed earlier we may ignore the negligibly small quantum

corrections. We therefore need to determine the tree-level diagrams that appear at

second order in µ. To accomplish this we need to power count the interaction terms

to determine their scaling with µ and the typical angular momentum of the system

L.
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The structure of the kinetic term for the field S
(2)
φ is the same as for the metric

perturbations S(2) in (4.39). We therefore conclude that if xµ ∼ R then

φ ∼ 1

R
. (5.16)

Again, the similar structure also implies that the angular momentum L and the

ratio m/mpl scale in the same way as for the gravitational problem, namely,

L ∼ mR (5.17)

m

mpl

∼
√
µL. (5.18)

These scalings are identical to those in Section 4.4.2. We therefore conclude that the

Feynman diagrams we derived for the gravitational self-force are the same diagrams,

topologically speaking, that appear in the nonlinear scalar field model. Furthermore,

we can use this equivalence to show that the interaction terms in (5.13) have the

same power counting as their gravitational counterparts. It follows that finite size

effects first enter the particle dynamics at fourth order in µ in this scalar theory for

spherically symmetric black holes and neutron stars.

The first order self-force diagram is given in Fig.(4.3). The effective action at

this order is easily shown to be

iSeff [z
a] = −im

∫
dλ
(
−gαβẋ

αẋβ
)1/2

+ (i3)

(
1

2!

)(
− m

mpl

)2 2∑
a,b=1

(−1)a+b

×
∫
dλ

∫
dλ′
(
− gαβ ż

α
a ż

β
a

)1/2

Dab

(
zα

a , z
α′

b

)(
− gγ′δ′ ż

γ′

b ż
δ′

b

)1/2

+ · · · .

(5.19)

Using the methods introduced in Sections 4.4.3 and 4.4.4 we regularize the diver-
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gences and obtain a well-defined self-force at O(µL), which is given by

Fig. (4.3) = − i
2

m2

m2
pl

∫ ∞

−∞
dτ Fp

∫ ∞

−∞
dτ ′ zµ

−(τ)
(
a+µ + w ν

µ [zα
+]∇ν

)
Dret

(
zα
+, z

α′

+

)
.

(5.20)

The variation with respect to the difference coordinate zµ
− results in the first order

self-force equation[
1− m

m2
pl

lim
ε→0

∫ τ−ε

−∞
dτ ′Dret(z

α, zα′)

]
aµ(τ)

=
m

m2
pl

wµν [zα] lim
ε→0

∫ τ−ε

−∞
dτ ′∇νDret(z

α, zα′). (5.21)

Notice the similarity to the self-force equation for the linear scalar field interacting

with a scalar charge in (2.121). We remark in passing that at the first non-trivial

order the particle couples to the field via a monopole interaction

S(1)
pp ∼

∫
dτ φ

(
z(τ)

)
. (5.22)

As a result, the mass of the particle can be transferred to the radiated field and vice

versa. This feature has been demonstrated in [87] for a linear scalar field theory

coupled to a scalar charged particle. In fact, defining the time-dependent effective

mass as

meff (τ) ≡ m− m2

m2
pl

lim
ε→0

∫ τ−ε

−∞
dτ ′Dret

(
z(τ), z(τ ′)

)
(5.23)

we find that its rate of change with proper time is

dmeff (τ)

dτ
= −m2

m2
pl

żν(τ) lim
ε→0

∫ τ−ε

−∞
dτ ′∇νDret

(
z(τ), z(τ ′)

)
, (5.24)
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which is dependent on the entire past history of the particle-field interaction. This

time dependence does not occur in the gravitational theory on account of mass

conservation.

The diagrams relevant for the second order self-force are given in Fig.(5.1).

Their contribution to the effective action is

iSeff [z
a(λ)] = · · ·+ Fig. (5.1a) + Fig. (5.1b) + · · · . (5.25)

Using the Feynman rules established in Section 4.4.3 we write down the correspond-

ing expression for the first diagram

Fig.(5.1a) = (i)3

(
1

2!

)(
− m

mpl

)2
(
− m

m2
pl

)
2∑

a,b,c=1

(−1)a+b+c+1

∫
dλ

∫
dλ′
∫
dλ′′

× j(zα
a )Dab(z

α
a , z

α′

b )j(zα′

b )Dbc(z
α′

b , z
α′′

c )j(zα′′

c ) (5.26)

where the current density is defined by

j(zα
a ) =

√
−gαβ żα

a ż
α
a . (5.27)

The factor of (−1)a+b+c+1 comes from the Feynman rule that one must include a

factor of (−1) for each vertex in the diagram that is of type-2 when summing over

the CTP indices. We also remark that we are not using the CTP metric to contract

the Dab and Dbc factors, though we can by writing

2∑
b=1

(−1)b+1DabDbc = D b
a Dbc = Daec

ebDbc (5.28)

where in the last two equalities we are implicitly summing over b using the repeated

index summation convention and the CTP metric to contract the two-point func-
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tions. All three expressions are equivalent. The second diagram is given by

Fig.(5.1b) = (i)4

(
2

3!

)(
− m

mpl

)3(
1

mpl

) 2∑
a,b,c,d=1

(−1)a+b+c+d

∫
dλ

∫
dλ′
∫
dλ′′

∫
d4x g1/2gαβ

×∇αDda(x
µ, zα

a )j(zα
a )∇βDdb(x

µ, zα′

b )j(zα′

b )Ddc(x
µ, zα′′

c )j(zα′′

c ).

(5.29)

The derivative on the propagator is to be taken with the coordinate xµ that sits in

the bulk background spacetime; the derivative is not to be taken on the spacetime

coordinates evaluated along the particle’s worldline, zµ(λ). The factor of 2 in the

symmetry factor comes from the two derivatives that can be associated with two of

the three graviton lines in Fig.(5.1b).

Let us focus our attention on evaluating the diagram in Fig.(5.1a) first. Fol-

lowing the steps outlined in Section 4.4.5 we expand to linear order in the difference

coordinate zα
− = zα

1 − zα
2 and find

Fig.(5.1a) = −i m
3

2m4
pl

∫
dτ zµ

−
(
a+µ + w ν

µ [zα
+]∇ν

) ∫
dτ ′
∫
dτ ′′

×
[
Dret(z

α
+, z

α′

+ )Dret(z
α′

+ , z
α′′

+ ) +Dret(z
α
+, z

α′

+ )Dret(z
α
+, z

α′′

+ )
]
(5.30)

upon parameterizing the worldline by the particle’s proper time. We also ignore the

higher order corrections in z−. The retarded propagators possess an ultraviolet di-

vergence when evaluated at coincidence under the integral. Using the distributional

methods introduced in Section 4.4.4 we can isolate this quasi-local divergent part

and separate it from the non-local and history dependent finite part. The retarded

195



propagator can be written in terms of a divergent and a finite, or renormalized, part

Dret = Dren +DBP
(n) = Pf(Dret) +DBP

(n) (5.31)

where the renormalized propagator is defined as

Dren ≡ Dret −DBP
(n) (5.32)

and we are temporarily dropping the spacetime indices in these expressions. We

describe the divergent part using the Bunch-Parker momentum space representation

of the propagator.

To regularize this divergence we define the divergent integral appearing in

(5.30) as

I(τ) ≡
∫
dτ ′
∫
dτ ′′
[
Dret(z

α
+, z

α′

+ )Dret(z
α′

+ , z
α′′

+ ) +Dret(z
α
+, z

α′

+ )Dret(z
α
+, z

α′′

+ )
]
.

(5.33)

Using (5.31) we expand out the products and write I(τ) in terms of finite parts Fp

(in the sense of Hadamard) and divergent parts so that

I(τ) = Fp

∫
dτ ′ Fp

∫
dτ ′′
[
Dret(z

α
+, z

α′

+ )Dret(z
α′

+ , z
α′′

+ ) +Dret(z
α
+, z

α′

+ )Dret(z
α
+, z

α′′

+ )
]

+Fp

∫
dτ ′
∫
dτ ′′
[
Dret(z

α
+, z

α′

+ )DBP
(n) (zα′

+ , z
α′′

+ ) +Dret(z
α
+, z

α′

+ )DBP
(n) (zα

+, z
α′′

+ )
]

+

∫
dτ ′ Fp

∫
dτ ′′
[
DBP

(n) (zα
+, z

α′

+ )Dret(z
α′

+ , z
α′′

+ ) +DBP
(n) (zα

+, z
α′

+ )Dret(z
α
+, z

α′′

+ )
]

+

∫
dτ ′
∫
dτ ′′
[
DBP

(n) (zα
+, z

α′

+ )DBP
(n) (zα′

+ , z
α′′

+ ) +DBP
(n) (zα

+, z
α′

+ )DBP
(n) (zα

+, z
α′′

+ )
]
.

(5.34)

Conveniently, all of the divergent terms are zero when evaluating the integrals using

dimensional regularization. To demonstrate this, let us evaluate the first term in
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the last line of (5.34). Power counting the momentum factors in the momentum

space representation for the retarded propagator in (D.89) we see that the fourth

adiabatic order term ∼ k−2 and is therefore irrelevant. Hence, the only contribution

comes from the leading order term, which scales as k2 in the ultraviolet limit in 4d

spacetime dimensions, yielding

∫
dτ ′
∫
dτ ′′DBP

(n) (zα
+, z

α′

+ )DBP
(n) (zα′

+ , z
α′′

+ )

=

∫
dτ ′DBP

(n) (zα
+, z

α′

+ )

∫
dτ ′′

∫
Cret,k

eikâyâ(τ ′,τ ′′) 1

k2
(5.35)

where the displacement expressed in Riemann normal coordinates is

yâ(τ ′, τ ′′) = −eâ
α′(τ

′)uα′

+ (τ ′)(τ ′ − τ ′′). (5.36)

We remark that the integral over τ ′′ and the momentum integral have the same

structure as the integral in (4.94) implying that the values of the integrals are the

same. Therefore, in dimensional regularization this integral vanishes

∫
dτ ′
∫
dτ ′′DBP

(n) (zα
+, z

α′

+ )DBP
(n) (zα′

+ , z
α′′

+ ) = 0. (5.37)

All of the other divergent terms in (5.34) can be calculated in a similar manner

and all give zero. It then follows that (5.34) can be written solely in terms of the

Hadamard finite part,

I(τ) ≡ Fp

∫
dτ ′ Fp

∫
dτ ′′
[
Dret(z

α
+, z

α′

+ )Dret(z
α′

+ , z
α′′

+ ) +Dret(z
α
+, z

α′

+ )Dret(z
α
+, z

α′′

+ )
]
.

(5.38)

Observe that combining distributional methods, which isolate the history-dependent

finite part from the quasi-local divergences, with dimensional regularization makes

197



extracting the finite part relatively easy, even at higher orders. Compare this with

the approach in [122, 127, 128, 129].

Using these results we find that the contribution to the effective action from

Fig.(5.1a) is given by

Fig.(5.1a) = −i m
3

2m4
pl

∫
dτ zµ

−
(
a+µ + w ν

µ [zα
+]∇ν

)
Fp

∫
dτ ′ Fp

∫
dτ ′′

×
[
Dret(z

α
+, z

α′

+ )Dret(z
α′

+ , z
α′′

+ ) +Dret(z
α
+, z

α′

+ )Dret(z
α
+, z

α′′

+ )
]
(5.39)

and can be written in the equivalent but alternative form

Fig.(5.1a) = −i m
3

2m4
pl

∫
dτ zµ

−
(
a+µ + w ν

µ [zα
+]∇ν

)
× lim

ε→0
lim
ε′→0

[∫ τ−ε

−∞
dτ ′
∫ τ ′−ε′

−∞
dτ ′′Dret(z

α
+, z

α′

+ )Dret(z
α′

+ , z
α′′

+ )

+

∫ τ−ε

−∞
dτ ′
∫ τ−ε′

−∞
dτ ′′Dret(z

α
+, z

α′

+ )Dret(z
α
+, z

α′′

+ )
]
(5.40)

since the divergent part vanishes in dimensional regularization.

Let us now compute the diagram in Fig.(5.1b) from (5.29),

Fig.(5.1b) = − m3

3m4
pl

2∑
a,b,c,d=1

(−1)a+b+c+d

∫
dλ

∫
dλ′
∫
dλ′′

∫
d4x g1/2gαβ

×∇αDda(x
µ, zα

a )j(zα
a )∇βDdb(x

µ, zα′

b )j(zα′

b )Ddc(x
µ, zα′′

c )j(zα′′

c ).

(5.41)

Normally, we would next expand to linear order in the difference coordinate z−.

However, upon integrating by parts and relabeling the CTP indices and the worldline
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parameter integration variables we find that

2∑
a,b,c,d=1

(−1)a+b+c+d

∫
dλ

∫
dλ′
∫
dλ′′

∫
d4x g1/2gαβ

×∇αDda(x
µ, zα

a )j(zα
a )∇βDdb(x

µ, zα′

b )j(zα′

b )Ddc(x
µ, zα′′

c )j(zα′′

c ) (5.42)

= −1

2

2∑
a,b,c,d=1

(−1)a+b+c+d

∫
dλ

∫
dλ′
∫
dλ′′

∫
d4x g1/2

×Dda(x
µ, zα

a )j(zα
a )2Ddb(x

µ, zα′

b )j(zα′

b )Ddc(x
µ, zα′′

c )j(zα′′

c ). (5.43)

From the wave equation (B.9) satisfied by the two-point functions

2Dab(x, x
′) = icabg

−1/2(x)δd(x− x′) (5.44)

and noting that the CTP metric is related to the Kronecker delta through

cab = (−1)b+1δab (5.45)

we see that (5.42) becomes

= −1

2

2∑
a,b,c=1

(−1)a+b+c+1

∫
dλ

∫
dλ′
∫
dλ′′

× j(zα
a )Dab(z

α
a , z

α′′

b )j(zα′

b )Dbc(z
α′

b , z
α′′

c )j(zα′′

c ) (5.46)

since the 2Ddb factor is proportional to δdb. This implies that this diagram actually

describes the interaction of two gravitons, not three. Furthermore, these two gravi-

tons interact with the particle alone since there is no remaining integration in the

bulk spacetime. That is, the diagram no longer contains any graviton scattering off

the background curvature. Therefore, the diagrams in Fig.(5.1) are proportional to

each other in this nonlinear scalar theory.

Combining our results for the second order contributions to the effective action
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we find that

iSeff [z
a] = · · ·+ i

m3

3m4
pl

∫
dτ zµ

−
(
a+µ + w ν

µ [zα
+]∇ν

)
× Fp

∫
dτ ′ Fp

∫
dτ ′′
[
Dret(z

α
+, z

α′

+ )
(
Dret(z

α′

+ , z
α′′

+ ) +Dret(z
α
+, z

α′′

+ )
)]

+O(µ3). (5.47)

The contribution of (5.47) to the equations of motion for the effective point particle

can be found by varying the effective action with respect to the difference coordinate

z−

δSeff

δzµ
−(τ)

∣∣∣∣∣
z−=0

= 0 (5.48)

which gives

meff (τ)a
µ(τ) = fµ(τ) (5.49)

where meff (τ) is the time and history-dependent effective mass of the particle and

fµ(τ) is the self-force on the compact object arising from interactions with gravitons

emitted by the particle at some time in the past.

The effective mass has a contribution at first order, see (5.23), and so it is not

surprising that meff receives corrections at second order as well. The total effective

mass through second order is given by

meff (τ) = m− m2

m2
pl

Fp

∫
dτ ′Dret(z

α, zα′)

− m3

3m4
pl

Fp

∫
dτ ′ Fp

∫
dτ ′′

[
Dret(z

α, zα′)
(
Dret(z

α′ , zα′′) +Dret(z
α, zα′′)

)]
+O(µ3). (5.50)
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As mentioned before, an effective mass does not appear in the gravitational case

since mass is a conserved quantity. However, in this scalar field model there exists

a monopole particle-field coupling that allows for the particle to exchange energy

with the scalar field by changing its rest mass.

The self-force on the effective point particle through second order in µ is de-

duced from (5.47) to be

fµ(τ) = wµν [zα]∇ν

{
m2

m2
pl

Fp

∫
dτ ′Dret(z

α, zα′)

+
m3

3m4
pl

Fp

∫
dτ ′ Fp

∫
dτ ′′
[
Dret(z

α, zα′)
(
Dret(z

α′ , zα′′) +Dret(z
α, zα′′)

)]
+O(µ3)

}
. (5.51)

We remark that both (5.50) and (5.51) are entirely finite and are made so using

well-established regularization techniques from the theory of interacting quantum

fields. Furthermore, no parameters of the theory (i.e., the mass, cR,V , etc.) are

renormalized since all of the divergences encountered so far behave as a power in a

cut-off momentum and are thus zero in dimensional regularization.

We are aware of only one other calculation of the second order self-force, which

is given by Rosenthal in [122, 127, 128, 129]. Interestingly, to do the calculation,

Rosenthal enforces a so-called Fermi gauge for the metric perturbations, which is

defined to be the gauge for which the first order self-force is zero. While we are using

the Lorenz gauge, it will be fruitful to find the appropriate gauge transformation

that relates the Fermi and the Lorenz gauges so that a direct comparison of our

(future) results for the gravitational self-force can be made with Rosenthal’s.

For the gravitational case, we expect our second order self-force expression
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to be similar in form to (5.51) but with an additional term that comes from using

the wave equation as we did in (5.44). In this case, the wave equation for metric

perturbations on a curved background contains the following curvature-dependent

term

2R µ ν
α β D

ab
αβγ′δ′ . (5.52)

The second order self-force should therefore contain a term that is schematically

given by

∼
∑

a,b,c,d

(−1)a+b+c+d

∫
dτ

∫
dτ ′
∫
dτ ′′

∫
d4x g1/2

×Dda(x
µ, zα

a )Ddb(x
µ, zα′

b )Ddc(x
µ, zα′′

c ) Riem(x)(· · · ) (5.53)

where (· · · ) denotes velocity-dependent factors, Riem denotes the Riemann cur-

vature tensor and we ignore the tensor indices. We remark that (5.53) describes

the contribution to the self-force from the nonlinear nature of General Relativity

as evidenced by the presence of graviton scattering in the bulk curved background

geometry. In particular, this term is not proportional to Fig.(5.1a) and should there-

fore include qualitatively different effects than the self-force for the nonlinear scalar

model in (5.51).

5.1.3 Third order self-force Feynman diagrams

Computing the self-force at higher orders in µ proceeds in a manner similar

to the second order calculation in the nonlinear scalar toy model we considered in

the preceding Section. According to the steps outlined in Section 4.4.5 we need to
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Figure 5.2: The connected diagrams relevant for a calculation of the third order

self-force.

construct the distinct Feynman diagrams that appear at the order in µ of interest.

Here, we will consider the third order diagrams.

The third order Feynman diagrams that scale as µ3L and contribute to the

classical regime of the effective action are the connected, or contiguous, diagrams.

We show all such diagrams relevant for a third order calculation of the self-force

Fig.(5.2). The calculations of these diagrams will not be given here but are displayed

for future reference.

5.2 Self-force on a spinning compact body

In the previous sections we developed an effective field theory approach for

determining the equations of motion for a compact object moving through the

background vacuum spacetime of a supermassive black hole. The treatment, so

far, deals only with spherically symmetric compact objects such as a Schwarzschild
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black hole. We have not yet considered bodies that possess intrinsic, or permanent,

multipole moments. An important example of a permanent moment is the internal

angular momentum, or spin, of the compact body. A spinning body fails to retain a

spherical shape but instead distorts and deforms according to the centripetal forces

experienced by the rotating parts of the body.

The space-based gravitational wave interferometer LISA [2] requires accurate

and sufficiently precise gravitational waveforms to construct the templates necessary

for the detection of gravitational radiation and the estimation of various parameters

associated with the source. Spinning bodies participating in an extreme mass ratio

inspiral are thought to constitute the most likely candidates for detection and yet

not much is known about the subleading effects of spin on the compact body’s

motion. However, the self-force on a spinning point particle was first derived by

Mino, Sasaki and Tanaka [51] shortly after their seminal work deriving the self-force

on a non-spinning particle [20]. Their result describes the usual spin precession in a

curved background along with the MSTQW expression for the first order self-force.

In this Section we develop an effective field theory approach that incorporates

spin and can be extended to describe permanent multipole moments associated

with the compact object. Divergences are encountered as before because we are

using an effective point particle to describe the motion of the compact body. Using

the methods developed in Section 2.71 we can regularize these divergences and

renormalize the coupling constants of the theory if necessary. Our approach is

designed to be systematic and easily extendable to higher orders in µ.

The approach and treatment describing spinning particles in flat spacetime
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was developed using orthonormal basis vectors in [69]. The generalization to spin-

ning particles in a curved spacetime has been given recently in [70] for the purpose

of studying binary systems with spinning constituents within an effective field the-

ory approach for the post-Newtonian approximation. We will follow closely the

treatments given in [70, 114].

5.2.1 Preliminaries

Introduce an orthonormal basis, or tetrad, eµ
I at the point x in a curved space-

time where a Greek index, µ here, labels the spacetime component of a 4-vector and

an uppercase Latin index, I here where I = 0, . . . , 3, denotes the frame components.

The basis satisfies the following relationships

gµν = eµ
I e

ν
Jη

IJ (5.54)

ηIJ = eµ
I e

ν
Jgµν (5.55)

and can be transported to another point in the spacetime in several ways. The

particular method appropriate for the description of spinning particles is that of

Fermi-Walker transport [85]

ėI
µ ≡

Deµ
I

dλ
= ΩµνeνI (5.56)

where Ωµν is an anti-symmetric tensor since

Ωµν = ηIJeµI
DeνJ

dλ
(5.57)

upon using (5.55). In order to derive the dynamical equations of motion for the

particle and the spin degrees of freedom we need to construct an action using the
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generalized coordinates and velocities of both the particle (zµ, żµ) and of the tetrad

(eI
µ, ė

I
µ).

The action must respect the symmetries of the system. Here those symmetries

require the action to be invariant under worldline reparameterizations, general coor-

dinate transformations and locally Lorentz transformations. This last symmetry is

required since the tetrad, as 4-vectors, transform as elements of SO(3, 1). As such,

the Lagrangian is generally given by

L = L[zµ, żµ = uµ,Ωµν ] (5.58)

where we regard Ωµν as an (angular) velocity since it is proportional to ėµ
I in (5.57).

Therefore, neglecting parity violating terms the Lagrangian can be a function of

only four scalars

L = L(a1, a2, a3, a4) (5.59)

where the scalar quantities an are

a1 = uαuα (5.60)

a2 = ΩαβΩαβ (5.61)

a3 = uαΩαβΩβγuγ (5.62)

a4 = ΩαβΩβγΩγδΩ
δα. (5.63)

The antisymmetric tensor Sµν and the momentum of the particle pµ can be defined

through the variation of the Lagrangian so that [69]

δL = −pµδuµ −
1

2
SµνδΩµν (5.64)
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where the momenta are given by

pµ = − δL

δuµ

(5.65)

Sµν = − δL

δΩµν

. (5.66)

once an appropriate Lagrangian is specified. Taking into account the Lagrangian’s

dependence on the an we see that [70]

pµ = −2uµ∂L

a1

− 2ΩµαΩαβu
β ∂L

∂a3

(5.67)

Sµν = −4Ωµν ∂L

∂a2

− 2
(
uµΩναuα − uνΩµαuα

) ∂L
∂a3

+ 8ΩµαΩαβΩβν ∂L

∂a4

. (5.68)

The equations of motion for the momenta can be derived from a variational

principle. For the spin equations of motion let us keep zµ(λ) constant so that

δuµ = 0. Then the variation of the action is

δS = −
∫
dλSµνδΩµν , (5.69)

which gives, upon computing the variation of the angular velocity from (5.57),

DSµν

dλ
= SµλΩ ν

λ − Ωµ
λS

λν (5.70)

= pµuν − uµpν . (5.71)

The last line follows from (5.67) and (5.68). The equations of motion for the particle

worldline are found from the variation

δS = −
∫
dτ
(
pµδuµ + Sαβ ∂Ωαβ

∂xµ

δxµ

)
(5.72)

from which it follows that [70]

Dpµ

dτ
= −1

2
Rµ

γαβS
αβuγ (5.73)
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The equations of motion in (5.70) and (5.73) (or equivalently with (5.71), taken

together form the Papapetrou-Dixon equations [71, 130].

As it stands we must add a set of constraints to the Papapetrou-Dixon equa-

tions in order to describe the physical degrees of freedom correctly and unambigu-

ously. There are many constraints that can be chosen but we will not discuss the

different possibilities here. See, however, [69, 131, 132] for discussions of these dif-

ferent gauges. We impose the covariant constraint

Sµνpν ≈ 0 (5.74)

where the ≈ signifies weak equality in the sense of Dirac [90]. This is a second class

constraint implying that the number of spin degrees of freedom is reduced from the

original 6 to 3, which is expected on physical grounds. Furthermore, this constraint

can be imposed from a Lagrangian [69]. The condition, or any other similar kind

of constraint, is called a spin supplementary condition or SSC. It follows [70] that

these constraints will be preserved by the evolution of the system if

pµ = muµ − 1

2m
RβνρσS

µβSρσuν (5.75)

There is another gauge freedom in the theory coming from the worldline reparame-

terization. A sensible choice for the worldline parameter is given by eµ
0 = uµ. From

[70] we see that the spin and the angular velocity are proportional to leading order

in the spacetime curvature

Sµν =
I

(−gαβuαuβ)1/2

(
Ωµν +

I

2m
Rµν

αβΩαβ + · · ·
)

(5.76)

where I is the moment of inertia. We remark that a SSC different from (5.74) will
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give rise to a different relationship among the spin angular momentum Sµν and the

angular velocity Ωµν .

In this work we will not study the time evolution of the spin but will instead

treat Sµν as being fixed with a given time dependence. See [83] for the case where

the spin evolves dynamically with the field and the particle’s motion.

For our purposes here we take the point particle action to be

S[z] = −m
∫
dλ (−gαβ ż

αżβ)1/2 +
1

2

∫
dλSIJΩIJ (5.77)

where we are ignoring for now the non-minimal terms describing finite size effects.

Following [69, 70] we see that the introduction of the tetrad eµ
I (λ), which describes

the rotating frame of the compact object, allows for the spin to be included co-

variantly into the particle action. The angular velocity is determined in terms of

the tetrad by (5.57) and the spin angular momentum SIJ = eI
µe

J
νS

µν is canonically

conjugate to ΩIJ .

In order to study the influence that the compact object’s spin has on its motion

we need to generate the graviton-spin vertices, which describe the interactions of the

spinning particle with the metric perturbations. At this point our treatment diverges

from that given in [70] since we must expand about a curved background whereas [70]

expands about flat spacetime in preparation for a post-Newtonian approximation

within the effective field theory framework.

The graviton-spin vertices are calculated by expanding that part of the action

(5.77) that depends on spin around the background spacetime. Write the full metric
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as

gfull
µν = gµν +

hµν

mpl

(5.78)

and expand the full tetrad

(efull)J
µ = eJ

µ +
1

2mpl

hµνe
νJ − 1

8m2
pl

h σ
µ hσνe

νJ + · · · (5.79)

where eJ
µ is the tetrad in the background spacetime. The expansion of the full tetrad

can be derived from (5.55). Using these expansions in (5.77) we find that

S = −
∫
dτ pµuµ +

∞∑
n=0

S
(n)
spin[z, SIJ ] (5.80)

where the first few graviton-spin interaction terms are given by

S
(0)
spin =

1

2
SµνΩµν (5.81)

S
(1)
spin =

1

2mpl

Sµνhαµ;νu
α (5.82)

S
(2)
spin =

1

4m2
pl

Sαβuγh δ
β

(1

2
hαδ;γ + hγδ;α − hγα;δ

)
(5.83)

To determine the order in µ at which these interactions become important we will

need to develop the spin power counting rules. Once these are determined we may

then draw all of the Feynman diagrams that contribute to the effective action at a

given order.

5.2.2 Power counting rules and Feynman diagrams

From the leading order term in (5.76) we see that the spin angular momentum

is proportional to the angular velocity

Sµν ≈ I

(−gαβuαuβ)1/2
Ωµν (5.84)
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where I is the moment of inertia. The compact objects discussed in this work include

neutron stars and black holes so that the size of the body is of the order of its mass.

For such objects the moment of inertia can be estimated from

I ≈ mr2
m ∼

m3

m4
pl

. (5.85)

The spin angular momentum therefore scales as

S ≈ IΩ ∼ m3

m4
pl

vrot

rm

(5.86)

where we have dropped the spacetime indices in this expression. The velocity at

which the body is rotating about its rotational axis is denoted by vrot.

The magnitude of vrot depends upon the spin of the body itself. If the body

is rotating at or near its maximal velocity then vrot ∼ 1 and

S ∼ m2

m2
pl

∼ µL. (5.87)

If the compact object is rotating at a rate that is similar to its orbital velocity so

that the body is nearly tidally locked with the large black hole companion then

vrot

rm

∼ v

r
. (5.88)

From this and the relativistic motion of the compact object it follows that vrot ∼ µ.

Therefore, for the corotating scenario

S ∼ µ2L. (5.89)

Generally, we will assume that the spin angular momentum scales with µ as some

power s

S ∼ µsL (5.90)
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a1 an

bb

Figure 5.3: The graviton-spin interaction vertices describing the coupling of one,

two and n gravitons, respectively, to the spin angular momentum operator. The

blob represents an insertion of SIJ .

where s = 1 for the maximally rotating case and s = 2 for the co-rotating configu-

ration.

With the power counting of the spin complete we can now power count the

graviton-spin interaction terms S
(n)
spin. Figs. (5.3a) and (5.3b) show the first two

non-trivial vertices. These scale with µ and the orbital angular momentum as

Fig.(5.3a) = iS
(1)
spin ∼ µs+1/2L1/2 (5.91)

FIg.(5.3b) = iS
(2)
spin ∼ µs+1. (5.92)

Generally, for a vertex describing the interaction of n gravitons with a single spin

operator, shown in Fig.(5.3c), we find the scaling rule

Fig.(5.3c) = iS
(n)
spin ∼ µs+n/2L1−n/2. (5.93)

As before, we observe that these vertices scale as a power of L smaller than or equal

to L1.
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S IJ

Figure 5.4: The leading order contribution to the particle equations of motion for

a maximally rotating spinning body. This diagram is just the usual spin precession

described by the Papapetrou-Dixon equations. For a co-rotating compact object

this diagram first enters at second order in µ.

5.2.3 Feynman diagrams

In this Section we write down the Feynman diagrams for the first few orders in

µ that are relevant for computing the self-force on the effective point particle. The

compact object spins at two natural scales, vrot ∼ 1 (maximal rotation) and vrot ∼ µ

(co-rotation). Because the spin effects of a co-rotating body are suppressed relative

to the maximally rotating body then the diagrams that we will need to calculate at

a given order in µ will be affected by which scenario is under consideration. We will

discuss the diagrams relevant for a maximally rotating body first.

The first diagram appears at O(µ) and is shown in Fig.(5.4). This diagram is

the familiar spin precession since

S
(0)
spin =

1

2

∫
dτ SµνΩµν ∼ µL (5.94)

upon using (5.57) to show that Ωµν ∼ 1/R. In fact, S
(0)
spin gives the leading order

equations of motion for the spin and is part of the Papapetrou-Dixon equations

(5.70) and (5.73), along with the MSTQW self-force.

The inclusion of spin at first order for describing the motion of a particle in a

curved spacetime has been given previously by [71, 133] and within the context of
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S IJ

ba

Figure 5.5: The first non-trivial contribution of spin to the self-force on the effective

particle appears at second order for a maximally rotating compact object. For a

corotating body this same diagram appears at third order.

self-force using the method of matched asymptotic expansions [51]. However, this

effect is somewhat trivial since the spin does not interact with the metric perturba-

tions hµν and therefore only describes the precession of the spinning particle as it

moves through the background spacetime.

At second order in µ there is only one diagram and this is shown in Fig.(5.5).

Diagramatically, this appears the same as the first order self-force diagram in Fig.(4.3)

for a non-spinning particle. However, the insertion of the spin angular momentum

operator SIJ ∼ µL increases the order of the diagram by one. Being a second or-

der diagram we must calculate its contribution to the second order self-force if the

compact object is rotating at a maximal speed,

Fig.(5.5) ∼ µs+1L (5.95)

for s = 1.

The diagram in Fig.(5.5) represents the leading order spin-orbit contribution to

the self-force. This can be seen because the spin angular momentum is influencing

the orbital motion of the particle by coupling to a non-spinning vertex operator,

specifically S
(1)
pp , via the metric perturbations.
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d

S IJ S IJ

a b

Figure 5.6: The third order diagrams that contribute to the self-force on a maximally

rotating compact object. The diagram in (a) represents a spin-spin interaction while

the remaining diagrams are subleading spin-orbit corrections. For a co-rotating body

(a) appears at fifth order and the remaining diagrams contribute at fourth order.

At third order there appear several spin-orbit diagrams along with a new kind

of diagram; see Fig.(5.6). This new diagram, given in Fig.(5.6a) contains only two

insertions of the spin angular momentum. We may interpret this as the leading

order spin-spin contribution to the self-force. Notice that the spin-orbit diagram in

Fig.(5.6b) contains a vertex from graviton scattering in the bulk spacetime.

The co-rotating spinning compact object has diagrams that enter at different

orders since the spin angular momentum scales at a higher order than if the body

were spinning at a maximal rotational velocity. The first non-trivial diagram is

given in Fig.(5.4), which enters at second order in µ. The second diagram is given

in Fig.(5.5) and is the leading order spin-orbit interaction, which appears at third

order µ. The spin-spin interaction in Fig.(5.6a) is a fifth order contribution and

215



provides a very small correction to the particle’s motion. In fact, the spin-spin

interaction is dominated by the leading order finite size diagram in Fig.(4.5), which

appears at fourth order. The remaining diagrams in Fig.(5.6) are sub-leading spin-

orbit interactions.

The EFT approach that we have developed in this Chapter allows us to derive

the self-force at higher orders in µ with the inclusion of graviton-spin interactions.

Since the approach is systematic at every step there is no obstacle to calculating

at higher orders. We have not computed the momentum space representation of

the propagator for metric perturbations beyond second adiabatic order in this work.

Therefore, unfortunately, we can not compute the higher order diagrams in the

gravitational case here but must settle for the nonlinear scalar model instead. We

refer the reader to [83] for the calculations and results for the gravitational case.

To evaluate these diagrams we need to determine how the nonlinear scalar

field interacts with the spin angular momentum of the compact object. We deduce

the scalar-spin interaction vertices in the next Section.

5.2.4 Nonlinear scalar field interacting with a spinning particle

We use the same nonlinear scalar field model introduced in Section 5.1.2. To

generate the scalar-spin interaction vertices we utilize the conformal transformation

in (5.5)

gµν → e2φ/mplgµν (5.96)
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so that (5.55) becomes

eµ
I e

ν
Jη

IJ = e2φ/mplgµν (5.97)

= gµν

(
1 +

2φ

mpl

+
2φ2

m2
pl

+ · · ·

)
. (5.98)

Calculating the angular velocity Ωµν perturbatively in powers of the field from (5.57)

we find that the scalar-spin interactions are

S[z, φ] = −
∫
dτ pµuµ +

∞∑
n=0

S
(n)
spin[z, SIJ , φ] (5.99)

where the interaction terms are

S
(0)
spin =

1

2
SµνΩµν (5.100)

S
(1)
spin =

2

mpl

Sµνuµφ;ν (5.101)

S
(2)
spin =

8

m2
pl

Sµνuµφ;νφ. (5.102)

At this point we observe an interesting feature of spin interactions in this nonlinear

scalar theory. From the spin supplementary condition Sµνpν = 0 we see that

Sµνpν = 0 ⇒ Sµνuν =
1

2m2
SµνS α

ν SγδRαβγδu
β (5.103)

upon using (5.75). The scalar-spin interaction terms then become

S
(0)
spin =

1

2
SµνΩµν (5.104)

S
(1)
spin =

1

m2mpl

Sµ
βu

βφ;ν (5.105)

S
(2)
spin =

4

m2m2
pl

Sµ
βu

βφ;νφ (5.106)

where we have defined the tensor

Sµ
β ≡ SµνS α

ν SγδRαβγδ (5.107)
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for notational convenience. Notice that all subleading interaction terms are changed

in the same way by the SSC. The order at which the subleading spin interactions,

S
(n)
spin with n > 0, appear are increased by two so that Fig.(5.4) is actually a fourth

order diagram for a maximally rotating body. Likewise, the spin-spin interaction

in Fig.(5.6) is actually a seventh order diagram in this theory. The reason for this

comes from the fact that all of the subleading terms in (5.98) are proportional to the

background metric. In turn, the spin tensor necessarily contracts with the particle’s

4-velocity thereby accounting for this increase in the order of the diagram. We do

not anticipate this happening with identical implications in the gravitational case,

although this is investigated in [83].

Choosing other SSC’s will obviously affect the order at which the spin-orbit

and spin-spin diagrams enter the effective action. For example, if we choose

Sµνuν = 0 (5.108)

then all of the scalar-spin vertices are zero and the only contribution from spin to

the particle’s motion is via the familiar spin precession. However, the center of mass

implied by this SSC describes a particle undergoing rapid helical motions (with a

frame-dependent radius) centered on the worldline picked out by (5.74) [130, 134].

The difference between these two SSC’s is third order in the spin.

The power counting rules in this theory are the same as in Section 5.2.2 and

the interactions have the same structure as their gravitational counterpart using the

SSC Sµνpν = 0. Therefore, the diagrams generated by the scalar-spin interactions

S
(n)
spin are the same as in the gravitational case. We turn now to computing two of
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these diagrams in the nonlinear scalar model for the case of a maximally spinning

compact object.

5.2.4.1 Leading order spin-orbit interaction

For a maximally rotating body the leading order spin-orbit interaction occurs

naively at fourth order in µ and is given by the diagram in Fig.(5.5). The Feynman

rules imply that

Fig.(5.5) = (i)2

(
1

m2mpl

)(
− m

mpl

) 2∑
a,b=1

(−1)a+b

∫
dλ

∫
dλ′[

j(zα
a )Sα′β′ubα′∇β′Dab(z

α
a , z

α′

b )

+ Sαβuaβj(z
α′

b )∇αDab(z
α
a , z

α′

b )

]
. (5.109)

This can be simplified by noticing that Dab(z
α
a , z

α′

b ) is symmetric under the inter-

change of the CTP indices and the λ integrations. Therefore, we may write the

diagram as

Fig.(5.5) =
1

mm2
pl

2∑
a,b=1

(−1)a+b

∫
dλ

∫
dλ′ Sαβuaβ∇αDab(z

α
a , z

α′

b )j(zα′

b ).

(5.110)

Passing the λ-dependent factors through the λ′ integral leaves

Fig.(5.5) =
1

mm2
pl

2∑
a,b=1

(−1)a+b

∫
dλSαβuaβ∇α

∫
dλ′Dab(z

α
a , z

α′

b )j(zα′

b ).

(5.111)
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Next, we expand in powers of the coordinate difference z− through first order and

find that

Fig.(5.5) = − 2

mm2
pl

∫
dτ zµ

−

[
Sαβu+β

(
a+µ + w ν

µ [zα
+]∇ν

)
− w σν

µ [z+]∇νSα
σ

]
×∇α

∫
dτ ′Dret(z

α
+, z

α′

+ ) (5.112)

where

wµσν = −2gµ[σuν] (5.113)

satisfies the identity uµw σν
µ = 0.

We see that the retarded propagator is acted upon by a covariant derivative

so let us focus on the divergent integral

Iα(τ) ≡ ∇α

∫
dτ ′Dret(z

α
+, z

α′

+ ) (5.114)

=

∫
dτ ′∇αDret(z

α
+, z

α′

+ ) (5.115)

and apply the methods of Section 4.4.4 to regularize the divergence. Writing the

integrand schematically as

∇Dret = ∇Dren +∇Ddiv = Pf(∇Dret) +∇DBP
(n) (5.116)

so as to isolate the non-local finite part of the propagator from the quasi-local

divergent part we see that we are led to a similar calculation we performed in

Sections 4.4.4 and 5.1.2 to regularize the first order self-force.

We will turn now to calculating the divergent part of the integral Iα(τ). In

Riemann normal coordinates the derivative brings down a factor of the momentum
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from the exponential. Therefore, we need to evaluate the integral

Iα(τ) = i

∫
dτ ′
∫

ret,k

e−ikαuα(τ ′)(τ−τ ′)

[
kâ

k2
+O(k−5)

]
(5.117)

where we have used the momentum space representation for the scalar retarded

propagator given in (D.89). The O(k−5) contribution comes from the fourth adia-

batic order term in (D.89). In 4d spacetime the leading order term in the momentum

integral scales as k2 for high frequencies indicating that the integral Iα(τ) diverges

as a power. We expect the integral to vanish when evaluated with dimensional

regularization. We sketch this calculation for the sake of being complete.

The proper time integral enforces the orthogonality between the momentum

and velocity 4-vectors so that

Iα(τ) = i
(
δ0
âv

i + δi
â

) ∫ dd−1k

(2π)d−1

ki

(δjl − vjvl)kjkl

(5.118)

upon ignoring the ultraviolet finite terms. Diagonalizing the matrix δjl − vjvl by

assuming that v = (v, 0, . . . , 0) we find

Iα(τ) = i
(
δ0
âv

i + δi
â

) ∫ dd−1k

(2π)d−1

ki

(1− v2)k2
1 + k2

2 + · · ·+ k2
d−1

. (5.119)

From here we know that the integral vanishes since the integrand is odd under

ki → −ki thereby implying

Iα(τ) = 0. (5.120)

Notice that we did not need to regularize this integral using dimensional regulariza-

tion to show that it vanishes.
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The renormalized contribution from this diagram to the effective action is

therefore

Fig.(5.5) = − 2

mm2
pl

∫
dτ zµ

−

[
Sαβu+β

(
a+µ + w ν

µ [zα
+]∇ν

)
− w σν

µ [z+]∇νSα
σ

]
×∇αFp

∫
dτ ′Dret(z

α
+, z

α′

+ ). (5.121)

The contribution to the self-force is

fµ(τ) = · · · − 2

mm2
pl

[
Sαβuβw

ν
µ [zα]∇ν − w σν

µ [zα]∇νSα
σ

]
× Fp

∫
dτ ′∇αDret(z

α, zα′) + · · · (5.122)

and to the effective mass is

meff (τ) = · · ·+ 2

mm2
pl

SαβuβFp

∫
dτ ′∇αDret(z

α, zα′) + · · · (5.123)

where Sαβ is given in (5.107).

5.2.4.2 Leading order spin-spin interaction

For a maximally rotating body the leading order spin-spin diagram in Fig.(5.6a)

appears at O(µ3). The Feynman rules indicate that this diagram equals

Fig.(5.6a) = (i)2

(
1

2!

)(
2

mpl

)2 2∑
a,b=1

(−1)a+b

∫
dλ

∫
dλ′

uaαSαβ∇βubγ′Sγ′δ′∇γ′Dab(z
α
a , z

α′

b ). (5.124)

Summing over the CTP indices and expanding in powers of the difference coordinate

z− results in the following

Fig.(5.6a) =
4

m2
pl

∫
dτzµ

−w
αν

µ [zα
+]S β

α ∇ν

∫
dτ ′∇β∇γ′Dret(z

α
+, z

α′

+ )Sγ′δ′u+δ′ .

(5.125)
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The factor Sγ′δ′uδ′ in the integrand of the τ ′ integral can be simplified using the

bi-vector of parallel propagation so that

Sγ′δ′u+δ′∇β∇γ′Dret = Sγδu+δg
γ′

γ (zα
+, z

α′

+ )∇γ′∇βDret (5.126)

= Sγδu+δ∇β∇γDret. (5.127)

Then we can define the singular integral as

Iβγ(τ) =

∫
dτ ′∇β∇γ′Dret(z

α
+, z

α′

+ ), (5.128)

which captures the divergent part of the spin-spin diagram. In Riemann normal

coordinates, the momentum space representation of the propagator in (D.89) gives

Ib̂ĉ(τ) = (i)2

∫
dτ ′
∫
Cret k

eikαuα(τ−τ ′)

[
kb̂kĉ

k2
+

1

15
Rl̂k̂m̂n̂R

l̂k̂m̂n̂ 1

k6
− 8

15
Rl̂k̂m̂âR

l̂k̂m̂
b̂

kâkb̂

k8

]
(5.129)

where we include the fourth adiabatic order contribution to the divergent part of

the propagator. Integrating over the proper time

Ib̂ĉ(τ) = − 1

u0(τ)

∫
dd−1k

(2π)d−1

km̂kn̂

(δ îĵ − v îvĵ)kîkĵ

(
δ0
b̂
vm̂ + δm̂

b̂

)(
δ0
ĉv

n̂ + δn̂
ĉ

)
+O(k−1)

(5.130)

shows that the first term in the ultraviolet sector behaves as k3 while the last two are

actually finite terms that scale as k−1. We therefore ignore the O(∂4) contributions

to the integral and invoke the familiar result that a power divergent integral in

dimensional regularization vanishes. Therefore, none of the parameters in the theory

are renormalized by the leading order spin-spin interaction.

223



The finite contribution to the effective action is then

Fig.(5.6a) =
4

m2
pl

∫
dτzµ

−w
αν

µ [zα
+]S β

α ∇ν Fp

∫
dτ ′∇β∇γ′Dret(z

α
+, z

α′

+ )Sγ′δ′u+δ′ .

(5.131)

The self-force is corrected by the leading order spin-spin interaction to include the

term

fµ(τ) = · · ·+ 4

m2
pl

w αν
µ [zα]S β

α Fp

∫
dτ ′∇ν∇β∇γ′Dret(z

α, zα′)Sγ′δ′uδ′

+ · · · (5.132)

in the particle’s equations of motion. We observe that since there is no term pro-

portional to the acceleration then the particle’s mass does not get affected by this

diagram. This implies that the spin-spin interaction is a mass conserving diagram

because of the vector coupling of each vertex ∼ Sαβuβ.

The appearance of six spin operators (recall that S ∼ SSSR) implies that

the leading order spin-spin diagram first contributes at seventh order in µ. Hence,

because of the couplings in this scalar model the spin-spin diagram is strongly sup-

pressed relative to those diagrams with spin-orbit couplings, finite size couplings

and the usual interactions with spin absent. We do not anticipate this strong sup-

pression for the gravitational case since the spin couples nontrivially to the metric

perturbations.
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Chapter 6

Self-consistent backreaction approach in gravitating binary systems

In this Chapter we introduce a new approach for studying gravitationally

bound binary systems that uses techniques valid in a general curved spacetime.

Our aim is to describe the motion of a binary system composed of compact objects

with comparable masses that are not restricted to slow motion or weak field ap-

proximations. By comparable masses we mean a binary system having a mass ratio

of about 10−1 to 10−2. Our new approach may be relevant for numerical studies of

intermediate mass ratio inspirals (IMRIs). A binary system in this mass range is

not described very well with the PN approximation nor with the perturbative tech-

niques developed for the EMRI scenarios1. On the one hand, the PN approximation

is most useful for comparable masses moving slowly through weak gravitational

fields. While the PN formalism can handle extreme mass ratios one must calculate

to very high order in the velocity in order to capture the relativistic features of the

small compact object as it enters the strong field region of the larger body. On the

other hand, the EMRI approximation is capable of handling relativistic speeds and

motion in a strongly curved region of the spacetime but only if the masses are very

dissimilar.

Before discussing our new approach in detail and to provide it with better

context in relation to other methods we first discuss the PN and EMRI perturbation

1Throughout the remainder we simply refer to this approach as EMRI perturbation theory.
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theory frameworks.

6.1 A brief review of other formalisms

There are two major analytical approaches available for studying the gravita-

tional two-body problem: the post-Newtonian (PN) approximation and the EMRI

perturbation theory. We briefly describe these formalisms below and include some

discussion about their strengths and weaknesses. We begin with the quadrupole

formalism, which is included here for its historical significance as a first step toward

the PN expansion.

6.1.1 Quadrupole formalism

The quadrupole-moment formalism was originally developed by Einstein [135,

136] in order to describe the slow motion of (weakly gravitating) Newtonian sources.

While it was believed that the quadrupole formalism was valid only for slowly mov-

ing bodies with weak internal gravity it was shown much later by [107, 137, 138, 139]

that the quadrupole formalism is viable even when the strength of the source’s in-

ternal gravity is not small, such as for a black hole and a neutron star. Despite

this, the slow motion requirement remains necessary. Nevertheless, the quadrupole

formalism provides good order-of-magnitude estimates for many sources of gravita-

tional waves [140] but it does not generate waveforms that are accurate enough for

detecting gravitational waves in ground-based interferometers. One must augment

this formalism with corrections beyond the Newtonian regime that are calculated
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within the post-Newtonian expansion.

6.1.2 Post-Newtonian approximation

The post-Newtonian (PN) approximation is based upon the assumption that

two weakly gravitating objects orbit about each other at nonrelativistic speeds on

a flat background2. The strict weak field requirement can be lifted by approaching

the problem with more sophistication. In particular, the PN expansion can be

constructed within an annulus about each compact object where the PN-expanded

metric is matched onto the near-field perturbed metric generated by the strongly

gravitating compact object [142, 139].

Iteratively solving for the metric perturbations and the motions of the masses

yields approximate expressions in powers of the relative velocity for observables of

the binary and the gravitational radiation it emits. These observables include the

phase of the emitted gravitational radiation, the energy and angular momentum they

carry, the innermost stable circular orbit, etc. To date, the metric, the equations of

motion for the masses and the gravitational radiation have been computed to order

v6 beyond the Newtonian solution, also denoted as 3PN3.

For the purpose of detecting and providing accurate estimations for the pa-

rameters of the gravitational wave sources, waveform templates used in the anal-

ysis of LIGO data are required to be at least as accurate as the 3PN templates

[143, 144, 145, 146]. Unfortunately, it is not known how large the higher order PN

2See [141] for the original introduction of post-Newtonian corrections to the quadrupole results.
3See the references listed at the beginning of Chapter 1 and references therein.
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corrections are. The knowledge of these corrections is important to estimate the

errors in using the templates.

The PN expansion is valid in the near zone around the source of the gravita-

tional waves. Upon applying the PN approximation far away from the source in the

radiation zone one encounters, in the widely used harmonic coordinates, logarithmic

divergences because retardation effects cannot be neglected so far from the sources.

As a result, the PN metric is matched to a metric describing the propagation of

gravitational waves away from the system. This matching is done in a buffer zone

between the near and radiation zones. In this way, one can describe the generation

and propagation of gravitational waves by slowly moving, weakly gravitating bodies

in the PN framework [139, 142]. The metric in the radiation zone is usually calcu-

lated using the post-Minkowski (PM) approximation. (Although see [147, 148, 149]

who use a mixture of PM methods and multipolar expansions (called the multipolar

post-Minkowski approximation) to compute the metric perturbations over all weak-

field regions of the spacetime, not just the radiation zone, so long as the sources

move slowly.)

The PM approximation entails expanding Einstein’s equations in powers of

Newton’s constant G and solving iteratively for each order of the metric perturba-

tions. In particular, there is no constraint on the velocities of the sources. This

method is valid in those regions of spacetime that are weakly gravitating so the

PM expansion is not useful for black hole binaries. However, as mentioned earlier,

one can use the PM expansion far from such a system to match onto the perturbed

metric of the near wave zone computed using the PN expansion.
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6.1.3 Extreme mass ratio inspiral perturbation theory

The extreme mass ratio inspiral (EMRI) scenario consists of two bodies with

largely dissimilar masses. One body, e.g. a black hole, has a mass M so much larger

than the other m that the dominant geometry of the spacetime is determined by the

large black hole. Despite having a very much smaller mass than the first, the smaller

body nevertheless perturbs the background black hole spacetime. Parts of the metric

perturbations radiate away, carrying energy in the form of gravitational waves, and

in so doing cause the smaller mass to slowly inspiral toward the large black hole. The

mechanism responsible for this inspiral is the self-force the smaller mass experiences

as a result of metric perturbations back-scattering off of the background spacetime

and encountering m at a later event in its orbit. The EMRI perturbation theory

possesses the advantage of treating the relativistic motion of the small body in

a strongly curved spacetime. Accurate waveforms can be generated using quasi-

analytic techniques. For detecting gravitational waves LISA only requires knowing

the self-force and the radiation through first order in the mass of the small body.

For parameter estimation the self-force and the gravitational radiation will likely

need to be calculated to second order [61].

6.2 Self-consistent backreaction approach

We have two motivations for developing a new formalism. The first comes

from a desire to bring into a common framework both types of scenarios that are

separately studied within a post-Newtonian scheme and within an extreme mass
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ratio perturbation theory. By construction, the formalism should also describe bi-

nary systems that are not moving slowly, moving in weak field regions, or have

equal/dissimilar masses. As such, these binaries fall into a region of parameter

space that is not well-described by PN techniques or EMRI perturbation theory.

The second motivation comes from our desire to have a fully self-consistent formal-

ism that is able to account for the backreaction on all of the dynamical variables.

For this reason, we call this new framework a self-consistent backreaction (SCB)

approach.

We attempt to develop the SCB approach so that it is valid for comparable

mass binary systems. However, we have little expectation of being able to accurately

provide a description of equal mass binaries although this is still an open question

in our framework. Let the compact object with the lesser mass of the two bodies be

given by m. The larger mass, which we take to be a black hole, is denoted by M .

We describe the compact object with mass m as an effective point particle, which

is discussed in detail in Chapter 4, and the larger black hole by the background

geometry. By splitting the spacetime into a background and its perturbations we

develop a formalism with the following properties. First, it is a fully relativistic the-

ory; we avoid building into our approach a slow motion or weak field approximation.

Second, the effective point particle, representing the motion of the smaller compact

object, moves in a general curved spacetime described by the background metric

of the larger black hole. Third, and most importantly, we elevate the background

metric to a fully dynamical variable. In this way, we allow for all three quanti-

ties (effective particle, metric perturbations and background geometry) to interact
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dynamically with mutual backreaction from each other.

This allowance for dynamical backreaction is a crucial and attractive feature

of SCB. It is crucial for the self-consistency of our approach and attractive because

we allow for the background to respond to the effective stresses and energies arising

from the motion of the compact object, its interactions with the metric perturba-

tions, the propagation of the gravitational waves far away from the system, etc.

This is to be contrasted with other approaches, including the PN and EMRI formal-

ism, that choose a fixed background that never deviates from its originally specified

form. While this may be convenient for calculations, especially if the fixed back-

ground metric possesses some isometries, it is not required for developing a fully

self-consistent theory of masses, gravitational waves and background geometry.

While the SCB formalism is difficult to extrude analytical solutions from it

may provide a framework useful for studying intermediate mass ratio inspirals with

numerical techniques. The IMRI scenario is troublesome to numerically evolve be-

cause the relevant time scales are more separated than for the equal mass case. In

the latter, the radiation reaction and orbital time scales are approximately the same.

In the former, the effects of radiation reaction accrue over a longer time than the

orbital period of the binary. Therefore, IMRIs cannot be numerically evolved with

sufficient resolution for long enough times to track the inspiral accurately given the

currently available computational resources. Since the SCB approach may describe

the inspiral and (possibly) plunge phases of IMRIs we are inclined to suggest that

our new formalism may provide a sufficiently accurate framework for studying these

systems numerically.
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We turn now to the technical development of the self-consistent backreaction

approach for gravitational binary systems.

6.2.1 Equations of motion in the self-consistent backreaction ap-

proach

Let us begin by representing the smaller compact object as an effective point

particle theory, a detailed discussion of which is given in Section 4.3. We subse-

quently introduce the effective point particle action

Spp[g, z] = −m
∫
dτ + cR

∫
dτ R + cV

∫
dτ Rαβ ż

αżβ

+cE

∫
dτ EαβE

αβ + cB

∫
dτ BαβB

αβ + · · · (6.1)

where we recall that the tensors Eαβ and Bαβ are the electric and magnetic parts of

the Weyl tensor. For practical calculations it may be easier to replace the E2 and

B2 terms with

cR2

∫
dτ RαβγδR

αβγδ + cR2u2

∫
dτ RαβγµR

αβγ
νu

µuν

+ cR2u4

∫
dτ RαµβνR

α β
ρ σu

µuνuρuσ (6.2)

The price we pay is the introduction of an extra curvature-squared term in the

effective particle action. We assume that the smaller compact object is spherically

symmetric and does not spin or possess other intrinsic moments, however, there is

no obstacle in including these features into the effective point particle action. The

metric of the full spacetime is gµν .

In Chapters 4 and 5 the fact that the background spacetime was vacuous
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allowed for the terms proportional to the Ricci curvature in (6.1) to be set to zero

via a field redefinition of the background metric. We will address this issue below

after we have derived the equations of motion in the SCB approach. For now, we

retain these terms with the proviso that they may eventually be removed using a

suitable field redefinition.

The equations of motion for the (free) effective particle moving in a curved

background spacetime under no external influences are derived in the usual way by

varying the action in (6.1). We find that

(
m− cRR + · · ·

)
aµ(τ) = cRw

µν [g, z]R;ν + · · · (6.3)

where we have included explicitly those terms proportional to cR in the effective

point particle action (6.1). The effective particle does not follow a geodesic, which

is not surprising since the induced moments from tidal interactions cause the particle

to deviate from geodesic motion. The appearance of a spacetime dependent effective

mass

meff = m− cRR + · · · (6.4)

is interesting. Heuristically speaking, the work required to deform the compact

object is stored as potential energy, which then affects the inertia of the particle,

as is demonstrated from the appearance of the curvature-dependent terms in meff .

Generally, we can write the free particle equations of motion (6.3) in a more compact

way

mµν(g, z)aν(τ) = fµ(g, z; cR, cV , . . .) (6.5)
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where mµν is the effective mass of the particle, which is generally space and time

dependent, and fµ accounts for all of the forces on the particle arising from the

finite size effects of the tidally distorted compact object.

A stress-energy tensor is associated with the effective point particle action

(6.1) through

T pp
µν (g, z) =

2

g1/2

δSpp[g, z]

δgµν

(6.6)

The explicit expression for the stress tensor in terms of the usual point particle

action −m
∫
dτ and the additional infinite number of non-minimal terms in Spp is

quite involved. Regardless, the stress tensor in (6.6) describes the stress-energy of

the compact object including all of the induced moments from tidal interactions

with the larger companion black hole.

The full metric gµν can be separated into a background part4 γµν and its

perturbations hµν so that

gµν = γµν + hµν (6.7)

We remark that this decomposition is arbitrary; we are just as free to choose the Kerr

metric for γµν as we are the flat metric ηµν or the Ernst metric [118]. As is widely

known, calculations and physical insight can be made more efficient and transpar-

ent, respectively, for an appropriately chosen background. This decomposition then

implies that the Einstein equation

Gµν(g) = 8πT pp
µν (g, z) (6.8)

4We work in units where c = G = 1 use the same notation as [150] even though it differs slightly

from the notation used throughout this dissertation.
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can be written as

Gµν(γ)− 8πT pp
µν (γ, z) = −∆Gµν(γ, h) + 8π∆T pp

µν (γ, h, z) (6.9)

where the quantities5 ∆G and ∆T pp contain all of the dependence on hµν and are

not necessarily small with respect to the background Einstein or stress tensors G(γ)

and T pp(γ).

The SCB approach will be self-consistent from the point of view that the

quantity ∆G − 8π∆T pp is both conserved on the background metric and invariant

under coordinate transformations that preserve the structure of the background

geometry. The former is straightforward to demonstrate.

Given a solution (γ, z) to (6.9) we know that G(γ) and 8πT pp(γ, z) are sepa-

rately conserved with respect to the background geometry upon using the Bianchi

identities for the Einstein tensor and the conservation equation for the effective point

particle stress tensor, which gives rise to the particle equations of motion that we

have yet to discuss. It therefore follows from (6.9) that the quantity ∆G− 8π∆T pp

is also conserved with respect to the background geometry whereas ∆G and 8π∆T pp

are not separately conserved, in general.

We next demonstrate that ∆G− 8π∆T pp is invariant under coordinate trans-

formations that change the perturbed metric but not the background. Since ∆G and

∆T pp are not necessarily small with respect to G(γ) and T pp(γ) it follows that these

coordinate transformations are not necessarily infinitesimal as is usually required

for the normal sense of gauge invariance. As such the coordinate transformations,

5Throughout the remainder of this Chapter, we will ignore spacetime indices on tensor quantities

with impunity. It should be clear from context which objects are scalar, vector, etc.
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which were first introduced in [150], are called generalized gauge transformations.

We discuss these transformations to prepare for a proof that ∆G−8π∆T pp is gauge

invariant in this broader sense.

An arbitrary coordinate transformation can be written in the following way

x̄µ = xµ + ξµ (6.10)

where ξµ is not necessarily infinitesimal or small. Under this coordinate change the

tensor transformation rule for the full metric

gµν(x) =
∂x̄α

∂xµ

∂x̄β

∂xν
(6.11)

can be written as

γµν(x) + hµν(x) = γµν(x̄) + h̄µν(x̄) +
[
γµα(x̄) + h̄µα(x̄)

]
ξα

,ν

+
[
γαν(x̄) + h̄αν(x̄)

]
ξα

,µ +
[
γαβ(x̄) + h̄αβ(x̄)

]
ξα

,µξ
β
ν (6.12)

where the derivatives of ξ are with respect to x and we have used (6.7). In the limit

that ξα is small we recover the usual infinitesimal coordinate transformation for the

metric perturbations

h̄µν(x̄) ≈ hµν(x)− γµν,αξ
α − γµα(x)ξα

,ν − γαν(x)ξ
α
,µ (6.13)

Define the functions

A(γ, z) = G(γ)− 8πT pp(γ, z) (6.14)

∆A(γ, h, z) = ∆G(γ, h)− 8πT pp(γ, h, z) (6.15)

which are convenient quantites to use for proving gauge invariance for some function

on the right side of (6.14). The quantity ∆A is said to be gauge invariant under the
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transformation (6.10) if, when solving for h̄ as a function h in (6.12), ∆A satisfies

∆A(γ, h̄, z) = ∆A(γ, h, z) (6.16)

We prove that this is true following the derivation given in [150]. Under the gener-

alized gauge transformation (6.12) the background metric does not change so that,

defining

∆A(γ, h, z) ≡ ∆G(γ, h)− 8π∆T pp(γ, h, z), (6.17)

we have (6.9)

A(γ(x̄), z̄)−∆Ā(γ(x̄), h̄(x̄), z̄) = 0 (6.18)

Regarding the left side as a function of x̄α and evaluating at x̄α = xα this becomes

A(γ(x), z)−∆Ā(γ(x), h̄(x), z) = 0. (6.19)

Comparing with (6.9) in the original coordinates it follows that

∆Ā(γ(x), h̄(x), z) = ∆A(γ(x), h(x), z) (6.20)

Expressing A in terms of the metric and its derivatives implies that ∆Ā can be

calculated by substituting h̄ directly into ∆A so that

∆Ā(γ, h̄, z) = ∆A(γ, h̄, z) (6.21)

Comparing with (6.20) gives

∆A(γ, h̄, z) = ∆A(γ, h, z) (6.22)
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and is the statement of gauge invariance with respect to the background geometry

under the transformations in (6.10).

Let us now construct the perturbative expansion of (6.9). If there exists a

valid expansion of the Einstein tensor of the form

∆A = ∆1A+ ∆2A+ · · · (6.23)

then it is easy to see from (6.8) that the expansion of ∆A through nth order

(∆A)(n) ≡ ∆1A+ ∆2A+ · · ·+ ∆nA (6.24)

is conserved with respect to the background geometry. It can also be shown using

similar arguments above that (∆A)(n) is gauge invariant only through the nth order.

This implies, for example, that ∆1A taken by itself is gauge invariant through first

order while ∆2A is not gauge invariant at any order. It is the combination ∆1A+∆2A

that is gauge invariant through second order.

In discussing the gauge transformations for which (6.23) is invariant we observe

that for any ξµ in (6.10) the metric perturbations may change by a large amount. It

therefore makes comparing the expansion for ∆A in (6.23) very difficult. Therefore,

we should restrict to gauge transformations such that h and h̄ are of the same order

[150]. This allows for a straightforward comparison of the terms in ∆A and ∆Ā.

The expansion in (6.23) can be generated from an expansion in the metric

perturbations

h = h(1) + h(2) + · · · (6.25)

from a series of terms that are proportional to a power of an appropriate expansion
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parameter λ, say; the superscript denotes the power of λ. Expanding (6.8) in powers

of the h(n) we find

G(γ) = 8πT pp(γ, z)−∆1G(γ, h(1))−∆2G(γ, h(1))−∆1G(γ, h(2))

+8π∆1T
pp(γ, h(1), z) + 8π∆2T

pp(γ, h(1), z) + 8π∆1T
pp(γ, h(2, z)

(6.26)

where we are using the notation that ∆pG(γ, h(n)) is of order λpn.

In order to solve (6.9) or (6.26) we need to further specify the decomposition

of the full spacetime into a background geometry and its perturbations. We can

always specify a fixed metric for the background but for the reasons we mentioned

earlier we wish to impart dynamics to the background geometry so that all degrees

of freedom in the problem are interacting with each other.

One can further specify the metric decomposition using averaging techniques

[151, 152, 153]. However, we do not want to “coarse-grain” any information about

the metric perturbations or the background metric, which is what would happen

upon averaging over the high frequency modes of the gravitational waves. Fortu-

nately, we do not need to use averaging techniques to describe this system with

complete dynamical information[150].

Making a more deliberate choice for the metric decomposition will involve

giving some dynamics to the gravitational waves, which we have yet to do. It is

natural that metric perturbations satisfy some wave equation on the background

geometry, particularly a linear wave equation. Then the solutions to this wave

equation should possess propagating modes that reach detectors at null infinity.
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Further, we require the wave equation to be gauge invariant to ensure the consistency

of the backreaction equation that will ultimately describe the backreaction on the

dynamical background geometry. A suitable choice for the (linear) wave equation

that is also gauge invariant is

∆1G(γ, h(1)) = 8π∆1T
pp(γ, h(1)) (6.27)

Similarly, the second order perturbations can be chosen to solve a gauge invariant

wave equation

∆1G(γ, h(2))− 8π∆1T
pp(γ, h(2), z) = −∆2G(γ, h(1)) + 8π∆2T

pp(γ, h(1), z) (6.28)

The Einstein equation in (6.26) then implies the following backreaction equations

for the background geometry

G(γ) = 8πT pp(γ, z), (6.29)

which is also gauge invariant through second order.

The equations of motion in (6.27), (6.28) and (6.29) determine the dynamical

responses of the gravitational variables due to their respective sources. We also need

to develop the particle equations of motion, which we derive from (6.5)

ma(γ, z) + ∆m(γ, h, z)a(γ, z) +m(γ, z)∆a(γ, h, z) + ∆m(γ, h, z)∆a(γ, h, z)

= f(γ, z) + ∆f(γ, h, z) (6.30)

where we recall that ma = mµνaν involves a contraction of spacetime indices. The
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expansions in (6.23) and (6.25) imply

ma(γ, z) = f(γ, z) + ∆1f(γ, h(1), z) + ∆2f(γ, h(1), z) + ∆1f(γ, h(2))

−∆1m(γ, h(1), z)a(γ, z)−∆2m(γ, h(1), z)a(γ, z)

−∆1m(γ, h(2), z)a(γ, z)−m(γ, z)∆1a(γ, h
(1), z)

−m(γ, z)∆2a(γ, h
(1), z)−m(γ, z)∆1a(γ, h

(2), z)

−∆1m(γ, h(1), z)∆1a(γ, h
(1), z) + · · · (6.31)

The right side of this equation describes several processes: the force on the particle

from the tidal deformations due to the background curvature (which is provided

in part by the larger companion black hole) f(γ, z); the first and second order

interactions of these induced moments with the gravitational waves ∼ ∆nf
µ; the

self-force through second order ∼ ∆na
µ; and the corrections to the effective mass

∼ ∆nm
µν

The important results of this Section are the equations of motion for the

gravitational waves (6.27) and (6.28), the dynamical background geometry (6.29),

(??) and the effective point particle (6.31). These are the relevant equations of the

SCB approach. We observe that these equations describe a rich collection of physical

processes that range from self-force, to backreaction on the background geometry

and to the accomodation of all possible finite size effects from the compact object.

The equations of motion derived in this Section are relevant for describing the

self-consistent dynamics of a compact body, gravitational waves and the background

geometry that these evolve in. The SCB formalism is self-consistent in the sense that

the effective stress tensor for the gravitational waves is conserved with respect to
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the background metric and is gauge-invariant with respect to the generalized gauge

transformations introduced earlier. The wave equation is also gauge invariant.

6.2.2 Validity of perturbation theory in SCB

In developing the self-consistent background equations of motion given in

(6.27), (6.29) and (6.31) in the previous section we assumed the existence of a

perturbative expansion for the gravitational waves in (6.25) so that

h = h(1) + h(2) + · · · (6.32)

One nice feature of this approach is that we are not restricted to any particular

expansion, just those that are compatible with the formalism to ensure that the

appropriate quantities remain conserved and gauge invariant. While we have not

yet investigated the set of parameters that might be useful for perturbatively solving

this theory6 we assume in this Section that the expansion parameter µ used in

Chapters (4) and (5) is acceptable.

We recall that the parameter µ is defined to be the ratio of the size of the

small body to a particular curvature invariant relating the curvature length scale to

the background Riemann curvature tensors,

µ ≡ rm

R
= rm

(
RαβγδR

αβγδ
)1/4

(6.33)

We wish to obtain estimates for the values of µ in relation to the mass ratio m/M

6An interesting candidate parameter is the ratio of the reduced mass to the total mass of the

binary system. Since this quantity never exceeds 1/4 in the equal mass case it may be useful for

describing binary systems with comparable masses.
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of the binary constituents and to an invariant measure of their separation L. To

do this we will assume that µ is parameterized by m/M and L so that given values

for these we can identify a value for µ. To be specific, we are not treating µ as a

function of spacetime coordinates even though the Riemann tensor in (6.33) does.

The parameter µ is a (constant) number that is given at a particular scale, say

the orbital scale of the binary system. This is the same interpretation implicitly

assumed for µ in Chapters (4) and (5). We want to estimate below how µ might

change with the scale of the orbital dynamics.

In particular, we wish to estimate the maximum value that m/M can take

in the second order SCB equations of motion before third order perturbations are

needed. We provide a tolerance that will set a reasonable, yet somewhat arbitrary,

boundary for our specifications. We require µ3 ∼< 10−3 so that the third order

corrections to the SCB equations of motion will be ∼< 0.1% of the background

quantities.

The invariant separation L between the horizon of the larger black hole and

the “surface” of the compact object will also be an important quantity to factor

into such an estimation. For example, it is not difficult to find a regime for which

m/M = 1 and µ3 ∼< 10−3 for L much larger than the size of either the larger black

hole or the smaller compact object. In such a case the scale of the system is for an

equal mass binary in the weak field limit of the background geometry and is not

very interesting. We are more interested in how small L can be and how large m/M

can be and still satisfy our tolerance of µ3 ∼< 10−3.

The effective point particle treatment will surely break down when L is of
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order the size of the compact object rm. Therefore, we require

L ∼> rm (6.34)

for all values of the mass ratio m/M .

We can obtain a crude estimate for the case where there is no backreaction from

m by considering the fixed geometry of the Schwarzschild solution describing the

larger black hole. We will assume that the test mass possesses a fictitious boundary

with radius rm = 2m. Let r denote the radial coordinate distance from the center

of the large black hole in Schwarzschild coordinates so that it measures the area of

concentric spheres centered on the black hole. Define

α ≡ r

rM

=
r

2M
(6.35)

β ≡ m

M
=
rm

rM

(6.36)

denote the radial coordinate distance from the larger black hole measured in units

of its horizon radius and the mass ratio, respectively.

The least proper distance from the horizon of the large black hole, at r = 2M ,

to the edge of the fictitious horizon on the test mass is easily shown to be

L

rM

=
1

rM

∫ r−2m

2M

dr′

(
1− r′

2M

)−1/2

(6.37)

= 2
√
α− β − 1 (6.38)

and the curvature scale R for the Schwarzschild background is

rM

R
= 121/4α−3/2 (6.39)
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Figure 6.1: A log plot of µ3 versus L, the shortest radial proper distance between

the edge of the horizon of M and the edge of the fictitious horizon given to the test

mass.

From the expression for LSchw we solve for α and plug into µ = rm/R to find

µ = (12)1/4β

[
β + 1 +

1

4

(
L

rM

)2]−3/2

(6.40)

We give a log plot of µ3 versus L in Fig.(6.1). Notice that µ3 ∼< 10−3 for the

equal mass case implies that the second order SCB equations of motion are valid

when L ∼> 5rM = 10M . However, when β = 0.1 we find that µ3 ∼< 10−3 when

L ∼> 1.25rM = 3.5M . This implies that the SCB equations are valid until near the

point of plunge and/or merger. However, we have not included backreaction in this

estimation. Until we can do so we may assume that our estimations in Fig.(6.1) are

valid within about an order of magnitude. Clearly, this will need some improvement.
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6.2.3 Further directions for the SCB approach

While there are several formally interesting and attractive features associated

with the SCB approach there are still many issues to understand. One of these is

the identification of an appropriate expansion parameter(s) to build the perturba-

tion theory in (6.25). We discussed in the previous section using µ as a parameter

but there are other choices to consider. One of the more interesting that we wish to

investigate further is the parameter formed from the ratio of the reduced mass to the

total mass of the binary, which we denote by the symbol ν. A perturbation theory

built using ν may be viable for the comparable mass case and even, perhaps, the

equal mass case. We find it intriguing that ν ≤ 1/4 where the equality holds when

the masses are equal. Estimating the mass ratio that corresponds to ν satisfying the

tolerance ν3 ∼< 10−3 implies that m/M ∼< 0.13. Provided that this estimate holds

for real perturbative solutions then it would seem to follow that using the SCB ap-

proach to second order in ν is applicable for binary systems with comparable masses.

However, much work is needed to determine the appropriate way to implement an

expansion in ν. For instance, preliminary work with a simplified model, suggests

that one obtains more accurate solutions by expanding the theory in ν in the center

of mass frame, which may be difficult to identify in the SCB approach.

Our estimates for determining the largest value of the mass ratio m/M that

might still render the perturbation theory in SCB applicable (using µ as an expansion

parameter) are somewhat crude and leave much room for improvement. To get a

better sense of how µ depends on the mass ratio we may be able to use the Misner
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wormhole initial data [154], which describes the metric of two equal mass black holes

with a wormhole topology at the instant when both black holes are stationary, and

the Brill-Lindquist initial data [155, 156], which describes the metric of electrically

charged black holes and electromagnetic fields at the instant when all the black holes

are stationary. The Brill-Lindquist solution is not constrained to the equal mass

situation and we may be able to provide stronger constraints on the relationships

between µ, m/M and L than with the Misner initial data alone.

Another very important issue to face is solving the equations of motion of

SCB for practical calculations, which can be used for obtaining physical predictions,

particularly in the study of gravitational wave sources. Since all of the degrees of

freedom are interacting non-trivially and non-linearly with other degrees of freedom

it is not an easy matter to apply SCB to even the simplest examples. Therefore,

we will likely be forced to introduce additional assumptions, including perhaps a

weak field assumption or a slow motion for the compact object, that may disturb

the internal consistency of SCB.

In most instances where one computes the backreaction on the quantity of

interest one makes heavy use of assumed symmetries for the solution. Unfortu-

nately, the general gravitational two-body problem lacks any symmetries that can

be exploited. The two most famous examples, perhaps, of the use of symmetries to

solve backreaction problems in gravity are those studied by Brill and Hartle [151]

and York [157]. Brill and Hartle investigate the spherically symmetric gravitational

geon solution and determine the spherically symmetric backreaction on the space-

time from the effective stress energies of the metric perturbations. York determines
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the backreaction on a spherically symmetric black hole from the expectation value

of the stress tensor for a free conformal scalar field in a thermal state. In both cases,

spherical symmetry is crucial for obtaining a solution to the backreaction equation.

For the general gravitational two-body problem we do not have such isometries to

take advantage of and so we will need to address this important issue further to

make practical advances using the SBC approach.
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Chapter 7

Discussions and future work

In this dissertation we have studied the self-consistent interactions and dynam-

ics of particles and fields on a curved background spacetime using field theoretical

approaches and formalisms for the purposes of determining the role and influence of

stochastic sources on particle motion, developing an efficient framework to calculate

the self-force systematically to all orders in perturbation theory, and providing a

means to encompass nearly both domains of LIGO and LISA sources. Before con-

cluding this work we provide some discussions to collect and restate our results, and

propose fruitful directions that may be worth pursuing.

7.1 Main results

In this section we present the main results given in this dissertation.

7.1.1 Stochastic field theory approach

In Chapter 2 we introduce the influence functional formalism to describe the

interactions and nonequilibrium dynamics of a quantum mechanical particle with

a linear quantum field in a curved spacetime. The particle degrees of freedom are

treated as an open quantum system that couple to the environment variables of the

coarse-grained quantum field. We demonstrate the existence of a semiclassical limit
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in which we recover the familiar radiation reaction equations of Abraham, Lorenz,

and Dirac (ALD), generalized to a curved background, for a scalar and electric

charge [22, 23]. We also recover the self-force equations of MSTQW for a small

point mass.

Due to the presence of particle-field interactions we find that there exists a

stochastic semiclassical limit for the worldline degrees of freedom. In this regime we

find that the field manifests as noise through the appearance of classical stochastic

forces. These forces, in turn, induce fluctuations in the particle’s worldline. As

such, we find that the particle satisfies ALD- and MSTQW-Langevin equations in

the stochastic semiclassical limit. We show that the two-point correlation function

of the stochastic force, called the noise kernel, is intimately related to the quantum

fluctuations of the field. We find that the noise is an O(~1/2) quantity demonstrat-

ing that the stochastic semiclassical limit is between the semiclassical limit and

the regime where 1-loop quantum field effects are relevant. We also demonstrate

the intricate connection between noise, fluctuations and decoherence of the particle

worldline histories.

Within the influence functional approach and the open quantum system paradigm

the noise is determined self-consistently with the environment, viz., the coarse-

grained quantum field fluctuations. However, one must be somewhat cautious if the

noise cannot be derived but is instead specified to model the effect that an environ-

ment has on the evolution of the particle worldline. In such a situation, the specified

noise may not faithfully represent nonequilibrium state of the environment for all

time. Furthermore, such stipulated, or added, noise gives no reliable information
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concerning the state of the environment. When specifying the noise in this way one

must also provide a noise kernel so that the calculation of worldline observables can

proceed using stochastic averages.

Having issued these warnings, we consider the effect that second order stochas-

tic fluctuations have on the motion of the particle. We find that the resulting

stochastic-averaged equations of motion describe the motion of a background trajec-

tory that evolves self-consistently (through second order) with the induced stochas-

tic worldline fluctuations. This background trajectory drift is not the same as the

semiclassical trajectory that we derived. This is so because the averaged contribu-

tions from the second order fluctuations are non-zero and therefore contribute to

the self-consistent background trajectory. It would be interesting to calculate this

effect for a simple scenario of a charged particle moving non-relativistically in flat

spacetime, for example, in the presence of a magnetic field with a non-zero gradient.

If such a drift motion exists and can be measured then this may provide important

information about the fluctuations in the environment.

This drift effect comes from expanding the Langevin equations with the added

noise to second order in the worldline fluctuations and then performing a stochastic

average. However, in the influence functional approach we cannot derive this drift

effect since the stochastic semiclassical limit seems to be only well-defined through

the first order in the worldline fluctuations. Through second order we may need to

include the effects of the intrinsic quantum mechanical worldline fluctuations and

possibly the 1-loop quantum field corrections. It would be interesting to investigate

further the relationship between the stochastic semi-classical limit, the leading order
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particle and field quantum corrections, and the noise-induced drifting motion.

7.1.2 Effective field theory approach

In Chapters 4 and 5 we develop an effective field theory approach for systemat-

ically deriving the self-force on a compact object. As such, the EFT is a realization

of the open quantum system paradigm of Chapter 2 to systems with a large scale

separation that renders the induced fluctuations from the coarse-grained quantum

field utterly negligible1. We replace the compact object by an effective point particle,

which is capable of accounting for various finite size effects. The leading order effect

first occurs at O(µ4) for a non-spinning body. This finite size correction causes a

deviation from the background motion that is not caused by interactions with gravi-

tons but is to the torques that develop on the tidally deformed compact object. On

the other hand, the self-force is affected by the induced moments of the compact

object at O(µ5).

We deduce the diagrams relevant for a calculation of the self-force at second,

third and fourth orders. At this time, we are unable to compute the Feynman

diagrams for the gravitational case since we lack the momentum space representation

of the retarded propagator at the appropriate adiabatic order. As a result, we

introduce a nonlinear scalar field model (related to general relativity in a specific

way) that has the same power counting rules and the same Feynman diagrams, in

1See [111] who show that the stochastic nature of the quantum field persists in EFT descrip-

tions but are strongly suppressed until the high energy threshold is approached, at which point a

stochastic description of the system becomes important.
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a topological sense, as the gravitational case.

Using this scalar model we show that the second order self-force is manifestly

real and causal, which is to be expected since we are using the CTP, or in-in,

formalism. Furthermore we find that the self-force contains only a power divergence

that we can safely set to zero using dimensional regularization. We observe that no

parameters in the theory have actually been renormalized at this order. While we

have not yet calculated the third order diagrams simple power counting arguments

indicate that these diagrams also contain simple power divergences and are therefore

trivial. We expect the first non-trivial renormalization to occur at fourth order in

the perturbation theory since this is the first order that a logarithmic divergence

appears in the effective action. This divergence should renormalize cE,B, which are

the non-minimal couplings that parameterize the leading order finite size effects from

tidally induced moments on the compact object. We expect that these qualitative

statements concerning the divergent integrals carry over to the gravitational case

provided that the momentum space representations of the scalar and the graviton

propagators have a similar structure in a vacuum background spacetime.

Renormalizing the divergent part of the singular integrals requires a represen-

tation for the divergent part of the retarded propagator. In Appendix D we intro-

duced a novel approach that utilizes the diagrammatic techniques of perturbation

theory to compute the momentum space representation of the graviton propagator

on an arbitrary background through second adiabatic order. We also demonstrate

the validity of our method by reproducing the original result of Bunch and Parker

for a scalar field.

253



We finally introduce spin into the EFT approach, thereby allowing for a de-

scription of the self-force on a rotating compact body. For a black hole and a neutron

star the spin angular momentum results in a quadrupole moment for the compact

object in the form Q ∝ S2. This is our first example of incorporating an intrinsic

multipole moment into the EFT.

We also determine that for a maximally rotating compact object the leading

order spin-orbit interaction appears at second order while the leading order spin-

spin interaction is a third order contribution. For a co-rotating body these diagrams

are suppressed by one order in µ so that the leading order spin-orbit and spin-spin

diagrams enter at third and fourth orders, respectively. Furthermore, the leading

order spin diagram describing spin precession becomes a second order effect for a

co-rotating body.

We calculate the leading order spin-orbit and spin-spin diagrams using the

nonlinear scalar model and find that these contributions are manifestly causal. The

spin-orbit diagram contains a trivial power divergence while the spin-spin diagram

diverges logarithmically. We demonstrate that this latter divergence renormalizes a

coupling constant of a non-minimal spin-dependent worldline operator. The renor-

malization gives rise to a classical renormalization group equation for that parame-

ter and allows for us to determine how this parameter varies with the regularization

scale.

Along the way, we find that the scalar model has a peculiar feature that we

believe will not appear in the gravitational case. We find that the leading order spin-

orbit and spin-spin diagrams for a maximally rotating object, which naively appear
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at third and fourth orders, respectively, are suppressed. This suppression manifests

upon implementing the spin supplementary conditions but is really a result of the

form of the scalar-spin interaction terms. Since these interactions only involve the

spin tensor, the 4-velocity and the background metric then only interaction terms

involve the factor Sαβuβφ;α. The imposition of the spin supplementary conditions

introduces two extra factors of the spin tensor into each sub-leading scalar-spin

vertex. For the gravitational case the metric perturbation hµν couples non-trivially

to the spin tensor and should prevent such a suppression.

7.1.3 Self-consistent backreaction approach

In Chapter 6 we introduce a new approach to describe gravitational binary

systems of compact objects. This formalism does not rely a priori on the assump-

tions of slow motion or weak fields as is the case with the PN approximation. This

is intentional as our aim is to use techniques borrowed from the extreme mass ratio

inspiral scenario and to apply them to systems that are traditionally described using

the PN approximation. In particular, we want to describe the relativistic motion

of the binaries even as they move in strong field regions of the spacetime. In this

way, we hope to describe binary systems that have comparable masses, with mass

ratios of the order 10−1 to 10−2, say. One important question for this formalism

becomes the estimation for when the formalism breaks down. We anticipate that it

will breakdown at the point of merger and perhaps somewhat before then. We give

loose bounds on the masses and their separation for determining the boundary of
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applicability of this backreaction approach.

We assume that one of the compact objects is smaller in mass than the other.

The smaller body is described using an effective point particle description discussed

at length in Chapter 4. By expanding to second order in the metric perturbations

we retain some features of the finite size of the smaller compact object. We then find

equations of motion describing the mutual interactions and dynamics of the effective

point particle, the metric perturbations and the background metric. This last equa-

tion is the new feature of our approach since we regard the background metric as no

longer stipulated but is allowed to evolve dynamically with the other degrees of free-

dom in the system. In particular, since the background metric contains information

about the larger black hole then allowing for the self-consistent determination of the

metric allows for the larger black hole to evolve self-consistently with the mutual

backreaction from the smaller compact object and the metric perturbations.

7.2 Further developments and future directions

Here we propose some future directions based on work that we have presented

in this dissertation.

7.2.1 Stochastic theory approach

We have been silent about fluctuation-dissipation relations throughout most

of our discussion about noise, fluctuations and dissipation in the particle’s stochas-

tic semi-classical limit. It is relatively straightforward to deduce (generalized)
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fluctuation-dissipation relations [158, 29, 159] for particle-field interactions in a flat

spacetime. This is because one typically represents the retarded and Hadamard

two-point functions using a mode decomposition and then establishes a fluctuation-

dissipation relation using the mode structure of the two-point functions. However,

in an arbitrary curved spacetime the luxury of a (unique) mode decomposition can-

not be afforded. Nor can a mode decomposition generally be expressed analytically.

While it is likely that a fluctuation-dissipation relation exists for a particle moving

in a quantum field in a curved background it is not clear how to derive the relation.

Nevertheless, perhaps using well-known techniques from quantum field theory in

curved spacetime [66, 124] we may be able to use an adiabatic expansion for the

modes in certain spacetimes to obtain approximate fluctuation-dissipation relations.

We feel that this problem is an important one and should be studied further until

a consensus can be reached on the construction of fluctuation-dissipation relations

for particle-field systems in curved spacetime.

Upon introducing noise by hand into the motion for the particle we find in

Chapter 2 that a secular motion develops that is generated by the interactions of

the worldline fluctuations with gradients in an external field, be it electromagnetic

or gravitational in origin. To gain some insight into these equations it may prove

beneficial to study a simple scenario that can be solved analytically, or at least

mostly so. For example, the motion of an electric point charge through a non-

homogeneous magnetic field in flat spacetime may be a sufficiently simple nontrivial

system one could imagine. The solution of such a system would clarify the role of

second order stochastic fluctuations and the influence it has on the averaged motion
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of the particle.

We cannot derive this noise-induced secular motion within the influence func-

tional formalism because the secular motion results from second order fluctuations

whereas the stochastic semiclassical limit is well-defined when first order fluctuations

act on the particle worldline. Nevertheless, using our first principles approach we can

consider the next-to-leading order corrections, which likely result from the intrinsic

quantum fluctuations of the particle worldline. This may help to clarify the interpre-

tation of such second order fluctuations. Furthermore, if these next-to-leading order

corrections affect the particle motion in a similar manner as the phenomenologically

added noise then there may be observable consequences that might be measured in

experiments designed to detect the secular, or drifting, motion.

In [42, 43] the authors compute the 1-loop quantum field corrections to a

geodesic of a background spacetime. The background is taken to be a solution to

the semiclassical Einstein equations in which the quantum expectation value of a

quantum field’s stress tensor sources the spacetime curvature. In these works the

authors seem to ignore the radiative effects of self-force on the small mass. It would

be interesting to apply our influence functional approach, which is not restricted

to semiclassical or stochastic limits but is valid for describing open quantum sys-

tems, to a generalization of their problem and compute the 1-loop quantum field

corrections to the leading order motion, including self-force effects. Doing so within

a background solution of semiclassical gravity would provide a useful comparison

with [42, 43]. Furthermore, since the radiative corrections from the self-force on the

particle are history-dependent it would be interesting to see if the 1-loop corrections
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have any potentially observable consequences.

7.2.2 Effective field theory approach

There are several things that we wish to derive and investigate within the

effective field theory approach of Chapters 4 and 5. In order to calculate the self-

force at second order in µ and higher we will need to have a momentum space

representation for the retarded propagator that is carried out to a sufficiently high

adiabatic order. In doing so, we will be able to regularize the singular integrals that

appear in the effective action. We will also be able to determine which non-minimal

couplings in the effective point particle action exhibit a classical renormalization

group flow. Furthermore, we can confirm our prediction that finite size effects

appear first at fourth order in the equations of motion but at fifth order in the

self-force for a non-spinning particle.

It is also useful to calculate the higher order spin contributions to the self-force.

In particular, we will have finite and concrete expressions for the leading order spin-

orbit and spin-spin interactions in the gravitational self-force. Being a second order

contribution for a maximally rotating body, the leading order spin-orbit diagram

may be especially important for obtaining templates for LISA that are sufficiently

accurate for parameter estimation.

In Chapter 4 we outlined the matching procedure, which relied on using the

cross-section for graviton scattering in a curved background. We are not restricted

to using the cross-section alone; one can use whatever set of observables that he/she
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wishes. To obtain the precise numerical coefficients appearing in the matching

procedure we need to know the long wavelength expansion of the cross-section. (Of

course, this depends upon the identity of the compact object.) We are unaware

at this time of any such expressions for the cross-section and are therefore unable

to precisely determine the numerical values of the non-minimal coupling constants

that appear in the effective point particle action. Such a state of affairs needs to be

remedied in order to successfully match the effective theory onto the compact object.

See, however, [160, 161] who estimate LIGO’s ability to constrain the equation of

state for a (polytropic) neutron star by describing its tidal deformations using Love

numbers. The ` = 2 Love number is the ratio of the induced quadrupole moment

to the perturbing (tidal) gravitational field. As such, the Love numbers should

be related to the nonminimal coupling constants cE,B, etc. for our effective point

particle.

Throughout our discussion in Chapters 4 and 5 we made the explicit assump-

tion that the background spacetime is vacuous, Rµν = 0. Lifting this requirement

may have some interesting consequences for cosmological scenarios (e.g., de Sitter

and Friedmann-Roberson-Walker spacetimes) and semiclassical gravity, in which the

expectation value of the stress tensor of a quantum field provides the leading order

source of curvature for the spacetime. For example, in a non-vacuous spacetime

the non-minimal parameters cR,V appearing in the effective point particle action

can no longer be removed. In fact, in the effective point particle action one simply

replaces all occurrences of the Ricci tensor by the stress tensor that sources the

background curvature. Using the matching calculations it is then easy to estimate
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that cR,V ∼ m3/m4
pl. Finite size effects therefore enter the particle equations of mo-

tion at second order in µ and in the self-force at third order. Hence, the existence

of background stress-energy induces moments on the compact object that enhance

their effects on the particle’s motion. We feel that further study in this direction

will provide some interesting and useful results for studying the motion of extended

bodies in cosmology and semiclassical gravity.

Within this work we have only developed the EFT approach in so much as it

systematically produces the self-force on a compact object to any order in µ. For a

more complete framework, we need to calculate the metric perturbations that the

compact object generates as well as the flux of gravitational radiation. Until we

calculate these quantities using the CTP formalism our framework will be incom-

plete. Computing the metric perturbations in our theory is equivalent to calculating

the graviton one-point function (i.e., the expectation value of the quantized metric

perturbations). It is likely that we can calculate this using the (1PI CTP) effec-

tive action Γ[〈ĥµν〉] (which can be derived by introducing a small adjustment from

our current presentation in Chapters 4 and 5). By varying Γ with respect to the

graviton one-point function we should then be able to obtain the manifestly real

and causal equations of motion for the metric perturbations that are also consistent

with the particle equations of motion derived in this work. Unfortunately, the 1PI

CTP effective action is not robust enough to calculate the flux of radiation emitted

to infinity and registered by a gravitational wave interferometer. Since the flux in-

volves the graviton two-point functions it seems likely to us that a 2PI CTP effective

action will yield equations of motion for the two-point functions that are real, causal
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and consistent with the particle and the graviton one-point function equations of

motion. With these issues settled our framework will be sufficiently complete and

we should be able to compute the gravitational radiation and the emitted flux to

any order in µ within an effective field theory approach. We intend to pursue this

in an upcoming series of papers [81, 82, 83].

7.2.3 Self-consistent backreaction approach

In Chapter 6 we lay the foundations for a new approach that describes the self-

consistent motion of a black hole, represented as a dynamical background geometry,

a compact object and the metric perturbations. All of these variables undergo

mutual backreaction to ensure the self-consistency of the formalism. A major aim

of this approach is to describe binary systems with comparable masses and thereby

establish a common framework for the sources expected to be observed with the

LISA and LIGO interferometers. As such, this would be useful for studying those

gravitational wave sources that are not covered well by either post-Newtonian or

EMRI perturbation theory techniques.

There are several important issues to resolve in order to make this framework

more user-friendly for practical calculations. The identification of an expansion

parameter is important for building a definite perturbation theory. It is interesting

that the theory does not seem to pick out a preferred expansion parameter, as

happens with the PN and EMRI perturbation theories, but is obliged to describe

any perturbative expansion that respects the gauge invariance and conservation of
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the appropriate quantities, viz. the effective stress energy of the gravitational waves.

We would also like to improve the estimates given in Chapter 6 for the validity of

the self-consistent backreaction approach for binaries near the plunge and merger

phases using the Misner and Brill-Lindquist initial data for including some amount

of backreaction into these estimates.

Another very important issue to address is the generation of solutions using

the self-consistent backreaction formalism. Due to the mutual backreaction between

all of the variables in the system it is not surprising that obtaining solutions to even

simple examples is difficult. It is likely, however, that one may need to make ad-

ditional approximations to generate solutions. As such, one may worry about the

effect that additional assumptions has on the self-consistency and mutual backreac-

tion that we have built the SCB approach around. Despite this our new formalism

may be useful for numerically studying intermediate mass ratios with sufficient reso-

lution. However, more research into the basic framework and the domain of validity

of the SCB approach will be necessary to know for sure.
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Appendix A

Conventions and definitions relating to the quantum two-point

functions

In this Appendix we collect some definitions, identities and relations for the

quantum two-point functions that are relevant for this work.

Assume the existence of a massive and real scalar field propagating in a curved

spacetime with arbitrary coupling ξ to the background curvature. While we develop

here the two-point functions for scalar fields many of the results in this Appendix

can be generalized in a straightforward manner to higher spin fields.

The positive and negative frequency Wightman functions are defined as

G+(x, x′) =
〈
φ̂(x)φ̂(x′)

〉
(A.1)

G−(x, x′) =
〈
φ̂(x′)φ̂(x)

〉
, (A.2)

respectively. The angled brackets represent the quantum expectation value so that

〈
Ô
〉
≡ Tr

[
ρ̂(Σi)Ô

]
(A.3)

and ρ̂(Σi) is the density matrix of the quantum field given on a hypersurface Σi at

constant coordinate time x0 = ti.

The Feynman, Dyson, Hadamard and commutator (also known as the Pauli-
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Jordan function or the causal function) two-point functions are, respectively,

iGF (x, x′) =
〈
T φ̂(x)φ̂(x′)

〉
(A.4)

iGD(x, x′) =
〈
T ∗ φ̂(x)φ̂(x′)

〉
(A.5)

GH(x, x′) =
〈
{φ̂(x), φ̂(x′)}

〉
(A.6)

iGC(x, x′) =
〈
[φ̂(x), φ̂(x′)]

〉
(A.7)

where T is the time-ordering operator and T ∗ is the anti-time-ordering operator.

The Jordan two-point function is simply the field commutator and is independent

of the particular state used to evaluate it. Given the Wightman functions in (A.1)

and (A.2) we write the above two-point functions in the form

iGF (x, x′) = θ(t− t′)G+(x, x′) + θ(t′ − t)G−(x, x′) (A.8)

iGD(x, x′) = θ(t′ − t)G+(x, x′) + θ(t− t′)G−(x, x′) (A.9)

GH(x, x′) = G+(x, x′) +G−(x, x′) (A.10)

iGC(x, x′) = G+(x, x′)−G−(x, x′). (A.11)

We remark that the Feynman, Dyson and Hadamard functions are not all indepen-

dent since

iGF + iGD = GH = G+ +G−. (A.12)

From these we may also define the retarded and advanced propagators by

Gret(x, x
′) = −θ(t− t′)GC(x, x′) (A.13)

Gadv(x, x
′) = θ(t′ − t)GC(x, x′). (A.14)
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In terms of the other two-point functions, these propagators satisfy the following

identities

−iGret = iGF −G− = G+ − iGD (A.15)

iGadv = iGD −G− = G+ − iGF (A.16)

and

GF = −1

2

(
Gret +Gadv

)
− i

2
GH (A.17)

GD = +
1

2

(
Gret +Gadv

)
− i

2
GH . (A.18)

These latter identities may be used to show that

iGD(x, x′) =
(
iGF (x, x′)

)∗
= −iG∗

F (x, x′). (A.19)

Under the interchange of x and x′ the two-point functions satisfy

GF (x, x′) = GF (x′, x) (A.20)

GD(x, x′) = GD(x′, x) (A.21)

GH(x, x′) = GH(x′, x) (A.22)

GC(x, x′) = −GC(x′, x) (A.23)

G+(x, x′) = G−(x′, x) (A.24)

Gret(x, x
′) = Gadv(x

′, x). (A.25)

implying that the Feynman and Dyson propagators are symmetric along with the

Hadamard function, the commutator is antisymmetric, and the Wightman functions

and retarded/advanced propagators are a sort of transpose of each other. Further-
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more,

G+, G−, GF , GD ∈ C (A.26)

Gret, Gadv, GH , GC ∈ R (A.27)

and so the retarded propagator and the Hadamard function, in particular, are purely

real.

Both Wightman functions, the Hadamard function and the commutator satisfy

a homogeneous equation

(
−2 +m2 + ξR

)
G±

H,C = 0 (A.28)

while the Feynman and Dyson propagators satisfy

(
−2 +m2 + ξR

)
GF = −ig−1/2(x)δd(x− x′) (A.29)(

−2 +m2 + ξR
)
GD = +ig−1/2(x)δd(x− x′) (A.30)

and the retarded and advanced propagators are solutions to

(
−2 +m2 + ξR

)
Gret,adv = +g−1/2(x)δd(x− x′). (A.31)
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Appendix B

The closed-time-path formalism

The closed-time-path (CTP) generating functional (see Sections 2.3 and 4.4.1

for more details) for a real, massive field in a curved spacetime is

Z[J1, J2] =

∫
CTP

Dφa exp

{
i

~

(
S[φ1]− S[φ2] + Ja · φa

)}
(B.1)

which can be integrated giving

Z[J1, J2] = N exp

{
− 1

2~
Ja ·Gab · J b

}
(B.2)

where N is a constant, the · denotes spacetime integrating so that

A ·B ≡
∫
ddx g1/2A(x)B(x) (B.3)

for two (possibly tensor-valued) functions A and B, and the field action is

S[φ] = −1

2

∫
ddx g1/2

(
gµνφ,µφ,ν +m2φ2 + ξRφ2

)
(B.4)

for some constant ξ. The CTP indices a, b = 1, 2 are raised and lowered with the

CTP metric

cab =

 1 0

0 −1

 = cab (B.5)

so that for two functions A and B

AaBa = cabAaBb = A1B1 − A2B2. (B.6)
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The two-point functions Gab are defined by

Gab(x, x
′) = caccbd

δ2Z

δiJc(x)δiJd(x′)

∣∣∣∣∣
Ja=0

(B.7)

so that in terms of the Feynman propagator, etc, these are

Gab(x, x
′) =

 iGF (x, x′) G−(x, x′)

G+(x, x′) iGD(x, x′)

 . (B.8)

The two-point functions satisfy the equation

(
−2 +m2 + ξR

)
Gab(x, x

′) = −icabg
−1/2(x)δd(x− x′) (B.9)

so that the Wightman function are homogeneous solutions of the equations of mo-

tion.

Defining the semi-sum and difference currents

J+ =
J1 + J2

2
(B.10)

J− = J1 − J2 (B.11)

to be the average and differences of the currents Ja, respectively, we find using

the identities in the previous Appendix that the CTP generating functional can be

written in the form

Z[Ja] = N exp

{
− 1

2~
Ja ·Gab · J b

}
(B.12)

= N exp

{
− 1

4~
J− ·GH · J− + iJ− ·Gret · J+

}
. (B.13)

If the field propagates in a flat spacetime then we may express these two-point

functions using a momentum space representation that is valid everywhere within
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the space, which is given by

Gab(x, x
′) =

∫
Cab

dk0

2π

∫ ∞

−∞

dd−1k

(2π)d−1
e−ik0(t−t′)+ik·(x−x′) 1

−(k0)2 + k2 +m2
. (B.14)

More compactly, we write this as

Gab(x, x
′) =

∫
Cab

dk0

2π

∫ ∞

−∞

dd−1k

(2π)d−1
eikα(xα−x′α) 1

k2 +m2
(B.15)

upon using the flat metric ηµν = diag(−1, 1, 1, 1) to form the contractions. Each of

the two-point functions have the same momentum space representation but a dif-

ferent contour that enforces the boundary conditions appropriate to Gab. Fig.(B.1)

displays these contours.
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Figure B.1: Contours for the momentum space representation of the in-in two-point

functions in flat spacetime for a massive scalar field.
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Appendix C

Riemann normal coordinates

Consider a point P ′ having arbitrary coordinates x′α in the space-time. We

will take this point to be fixed and serve as the origin of the Riemann normal

coordinates (RNC). Assign a tetrad eα′

â (x′) at this point P ′. For any other point

P with coordinates xα within the normal convex neighborhood N (P ′) of P ′ (i.e.,

the set of points that can be connected to P ′ by a unique geodesic) we define the

Riemann normal coordinates of P to be

yâ = −eâ
α′(x

′)σα′(x, x′) (C.1)

where eâ
α′ = ηâb̂gα′β′e

β′

b̂
is the tetrad dual to eα′

â . We use a latin index (â, b̂, . . . =

0, . . . , d−1) to denote tensor components expressed in RNC. For example, the Ricci

tensor in Riemann normal coordinates is

Râb̂(x
′) = eα′

â (x′)eβ′

b̂
(x′)Rα′β′(x

′). (C.2)

The bi-scalar, σ(x, x′), appearing in (C.1) is Synge’s world function. Numerically,

this is equal to half of the squared geodesic distance between P and P ′ as measured

along the unique geodesic connecting these points. The covariant derivative of σ

with respect to xα (xα′) is denoted with an unprimed (primed) Greek index so that

σα(x, x′) = σ;α(x, x′) (C.3)

σα′(x, x′) = σ;α′(x, x′). (C.4)
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The world function satisfies important identities that we merely state here (proofs

and derivations may be found in [53]),

σασα = σα′σα′ = 2σ (C.5)

σα
µ′σ

µ′ = σα (C.6)

σα′

µσ
µ = σα′ . (C.7)

Geometrically, σα is proportional to the tangent vector at P along the geodesic

connecting P and P ′

σα(x, x′) = (λ− λ′)tα(P ) (C.8)

and points from P to P ′. Similarly, σα′ is proportional to the tangent vector at P ′

along the geodesic connecting P and P ′ and points from P ′ to P ,

σα′(x, x′) = −(λ− λ′)tα
′
(P ′) (C.9)

if λ (λ′) is the value of the affine parameter at P (P ′) and tα
′
is the unit vector at

P ′. See Fig.(C.1) at the end of this appendix for a schematic.

Riemann normal coordinates have the useful property that the locally Lorentz

invariant quantity ηâb̂y
âyb̂ gives the geodesic distance between the points P and P ′.

ηâb̂y
âyb̂ = ηâb̂e

â
α′e

b̂
β′σ

α′σβ′ = gα′β′σ
α′σβ′ = 2σ (C.10)

where we have used (C.5) in the last equality.

The transformation from the original coordinates to RNC, and vice versa, can

be found by letting xα → xα + dxα. From the definition of yâ in (C.1),

dyâ = −eâ
α′σ

α′

βdx
β. (C.11)
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Given this we can construct the metric at P in Riemann normal coordinates through

the usual transformation rule for tensors,

gâb̂(y) =
dxα

dyâ

dxβ

dyb̂
gαβ(x). (C.12)

The metric at P can be written as a Taylor series in yâ. This is equivalent to

an expansion in derivatives of the background metric. To see this we write the

expansion through O(y4) of the metric [162, 163, 64],

gm̂n̂ = ηm̂n̂ −
1

3
Rm̂ân̂b̂y

âyb̂ − 1

6
Rm̂ân̂b̂;ĉy

âyb̂yĉ

+

(
− 1

20
Rm̂ân̂b̂;ĉd̂ +

2

45
Râm̂b̂l̂R

l̂
ĉn̂d̂

)
yâyb̂yĉyd̂ +O(y5). (C.13)

The curvature tensors involve two derivatives of the metric. Therefore, with each

power of yâ there appears a power of ∂âgb̂ĉ. Because of this we will often refer to a

series in yâ, such as the metric above, as an adiabatic expansion. The validity of the

O(yn) expansion requires a typical component of |yâ∂b̂gĉd̂| to be much smaller than

1. Hence, the scale at which the expansion in RNC is valid is much smaller than

the scale at which the metric changes, which is approximately the curvature scale

of the background space-time. This supports our vocabulary. We will denote the

nth adiabatic order of an expansion by O(∂n) to represent the number of derivatives

acting on the metric.

We will also collect here the adiabatic expansions of the inverse metric, the

metric determinant, its logarithm and the connection components. The inverse
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metric is easily found from (C.13)

gm̂n̂ = ηm̂n̂ +
1

3
Rm̂ n̂

â b̂
yâyb̂ +

1

6
Rm̂ n̂

â b̂;ĉ
yâyb̂yĉ

+

(
1

20
Rm̂ n̂

â b̂;ĉd̂
− 1

15
Rm̂

âb̂l̂
Rl̂ n̂

ĉ d̂

)
yâyb̂yĉyd̂ +O(∂5) (C.14)

The determinant of the metric is

g = |detgm̂n̂| (C.15)

= 1− 1

3
Râb̂y

âyb̂ − 1

6
Râb̂;ĉy

âyb̂yĉ

+

(
1

18
Râb̂Rĉd̂ −

1

90
R k̂

l̂âb̂
Rl̂

ĉd̂k̂
− 1

20
Râb̂;ĉd̂

)
yâyb̂yĉyd̂ +O(∂5) (C.16)

and its logarithm is

ln g = −1

3
Râb̂y

âyb̂ − 1

6
Râb̂;ĉy

âyb̂yĉ

−
(

1

90
R k̂

l̂âb̂
Rl̂

ĉd̂k̂
+

1

20
Râb̂;ĉd̂

)
yâyb̂yĉyd̂ +O(∂5). (C.17)

The components of the connection are

Γâ
b̂ĉ

= −2

3
Râ

(b̂ĉ)m̂
ym̂ +O(∂3). (C.18)

In all of these expansions, the (tensor) coefficients of the yâ polynomials are evalu-

ated at the origin of the Riemann normal coordinates, which is taken to reside at

P ′.
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Figure C.1: The normal convex neighborhood N (P ′) (dashed oval) of the point P ′.

Any point P within N (P ′) can be connected to P ′ by a unique geodesic γ. The

covariant derivative of Synge’s world function σα′ is proportional to the tangent

vector at P ′ of the geodesic γ.
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Appendix D

Momentum space representation of quantum two-point functions in

Riemann normal coordinates

In this Appendix we derive the momentum space representation of the quan-

tum two-point functions for metric perturbations, including the Feynman propa-

gator, in an arbitrary curved space-time using a qausi-local expansion in Riemann

normal coordinates. We use a novel method borrowed from perturbative quantum

field theory that is based on diagrammatic techniques to streamline the original

calculation of Bunch and Parker [64]. We first discuss the role of the state of the

field, the local structure of the two-point functions and the relationship between the

two-point functions calculated as true expectation values versus matrix elements of

a transition amplitude. We then derive the momentum space representation of the

two-point functions for a scalar field through fourth adiabatic order and compare our

expression for the Feynman propagator with the result of Bunch and Parker to show

that our method reproduces their result. We then calculate the momentum space

representation of the two-point functions for metric perturbations through second

adiabatic order, which is needed to regularize and renormalize the first and higher

order diagrams that enter the self-force equations derived in Chapters 4 and 5. In

doing so our approach is seen to be relatively efficient for computing the momentum

space representation of two-point functions of fields with nontrivial tensor and spin
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structure.

D.1 The state of the field and the ultraviolet structure of the two-

point functions

Throughout this Appendix we will be mostly concerned with the following two-

point functions of a quantum field Φ̂A where A capital Latin index represent the

spacetime indices appropriate to the field under consideration: the Feynman GF
AB′

and Dyson GD
AB′ propagators and the positive G+

AB′ and negative G−
AB′ frequency

Wightman functions. For simplicity in this discussion let us assume that the field is

scalar so that ΦA(x) = φ(x) and the four two-point functions introduced are denoted

by GF , GD, G+ and G−, respectively.

Each of these two-point functions satisfy the equation of motion for a massive

scalar field

(
−2 +m2 + ξR

)
Gab(x, x

′) = −icab g
−1/2(x) δd(x− x′) (D.1)

where the Feynman and Dyson propagators are sourced by a point source of unit

strength in d dimensions of spacetime while the Wightman functions satisfy the

homogeneous equation. The arbitrary parameter ξ couples the field directly to the

background spacetime curvature. We use the CTP indices a, b = 1, 2 to denote these

two-point functions by Gab as defined in (B.7) and (B.8).

The equations of motion (D.1) do not specify the state(s) used to evaluate

these two-point functions. For example, both

iGF (x, x′) =
〈
in, 0

∣∣T φ̂(x)φ̂(x′)
∣∣0, in〉 (D.2)
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and

iGF (x, x′) =
〈
out, 0

∣∣T φ̂(x)φ̂(x′)
∣∣0, in〉 (D.3)

satisfy (D.1) where |0, in〉 and |0, out〉 are the in- and out-vacua defined in the

asymptotic past and future, respectively, of the spacetime. There are in fact many

solutions to (D.1). To generate the solution with the correct state of interest requires

imposing boundary conditions on that solution. For example, in flat spacetime one

uses the iε-prescription to obtain the time-ordering of the fields that defines the

Feynman propagator. In curved spacetime the issue is more subtle on account of

the backscattering of field modes due to the curvature of the space and other global

features specific to the state of the field [66, 124].

The reason why both (D.2) and (D.3) satisfy the equations of motion is because

(D.1) is a local equation and is only concerned with the behavior of the Feynman

propagator at x alone. In fact, this holds for any of the two-point functions Gab

satisfying (D.1). Therefore, so long as a two-point function Gab is a solution to

(D.1) then the particulars of the state(s) used to construct that two-point function

are irrelevant from the point of view of the local structure of Gab.

We can also show that the local structure of the two-point functions are all the

same. To show this we use an approach very similar to the one developed by Bunch

and Parker [64] using momentum space techniques for the Feynman propagator in

Reimann normal coordinates. See Appendix C for a brief survey of Riemann normal

coordinates (RNC).

We express the equation of motion for the two-point functions (D.1) in RNC
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and rescale Gab so that

Gab(x, x
′) = g−1/4(x)Ḡab(x, x

′)g−1/4(x′) (D.4)

to find an equivalent equation for the rescaled two-point functions expressed as

an expansion in powers of derivatives of the background metric, which we call an

adiabatic expansion. We find through second adiabatic order

(
− ηmn∂m∂n +m2

)
Ḡab +

(
ξ − 1

6

)
R Ḡab +O(∂3) = −icab δ

d(y) (D.5)

In RNC, the origin of this coordinate system is at x′α and the point xα is represented

by ya and the partial derivatives in the above equation are with respect to y. Writing

the two-point functions as an adiabatic expansion

Ḡab(x, x
′) = Ḡ

(0)
ab (x, x′) + Ḡ

(1)
ab (x, x′) + Ḡ

(2)
ab (x, x′) +O(∂3) (D.6)

shows that the leading order term solves the flat space equations of motion

(
− ηmn∂m∂n +m2

)
Ḡ

(0)
ab = −icab δ

d(y) (D.7)

implying the following momentum space representation

Ḡ
(0)
ab (x, x′) =

∫
Cab

dk0

2π

∫ ∞

−∞

dd−1k

(2π)d−1
eik·y −i

k2 +m2
(D.8)

which agrees with (B.15) and where the contours Cab are defined in Fig.(B.1).

Let us therefore introduce a momentum space associated with the point x′ and

introduce a Fourier transform for the full two-point function so that

Ḡab(x, x
′) =

∫
Cab

dk0

2π

∫ ∞

−∞

dd−1k

(2π)d−1
eik·yḠab(k) (D.9)

≡
∫
Cab,k

eik·yḠab(k) (D.10)
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where Cab denotes the appropriate contour to use for the particular two-point func-

tion. Letting

Ḡab(k) = Ḡ
(0)
ab (k) + Ḡ

(1)
ab (k) + Ḡ

(2)
ab (k) +O(∂3) (D.11)

we see that order by order in the derivative of the metric we can solve iteratively

for the Ḡn
ab(k). At leading order we know that

Ḡ
(0)
ab (k) =

−i
k2 +m2

(D.12)

while at first order Ḡ
(1)
ab (k) vanishes and the second order contribution is nontrivial,

Ḡ
(2)
ab (k) = (−i)2

(
1
6
− ξ
)
R

(k2 +m2)2
(D.13)

We remark that neither the zeroeth order nor the second order contributions involve

the CTP indices. In fact, this is true at every order in this expansion since the

leading order term is independent of a, b. It then follows that all of the two-points

functions Ḡab have the same quasi-local structure in a momentum representation.

After computing the momentum space two-point functions Ḡ
(n)
ab we finally integrate

over the momentum as in (D.10) with the contour appropriate for the particular

two-point function being calculated. In fact, the contour Cab is the only object that

distinguishes among the two-point functions of this quasi-local momentum space

representation.

We therefore conclude that we can obtain the momentum space representation

of any of the two-point functions Gab(x, x
′), computed with any state(s), from the

structure of the Feynman propagator in (D.2). The advantage of choosing this

particular two-point function to use in our calculations below is that (D.2) is easily
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calculated from the in-out generating functional, which is sufficiently simple to use in

our diagrammatic approach below for deriving those terms in the two-point functions

that are relevant for renormalizing the self-force in Chapters 4 and 5.

The arguments presented in this section are not limited to scalar fields and can

be extended to higher spin fields, including perturbations of a background metric

hαβ(x), which are relevant for this work.

D.2 Scalar field Feynman propagator

To demonstrate that our diagrammatic technique is viable and correct we

develop the momentum space representation of the in-out Feynman propagator and

compare with the original result of Bunch and Parker [64].

A massive scalar field propagating in a d-dimensional curved space-time with

a metric gµν can be described by the action

S[φ] = −1

2

∫
ddx g1/2

(
gµνφ,µφ,ν +m2φ2 + ξRφ2

)
+

∫
ddx g1/2J(x)φ(D.14)

where ξ is a constant that couples the field to the background curvature. When

ξ = 0 the field is said to be minimally coupled and when

ξ =
1

4

d− 2

d− 1
(D.15)

the field is said to be conformally coupled. Here, J(x) is an external current that

will be used below to generate correlation functions of the scalar field.
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It will prove convenient to rescale the fields and external current so that

φ(x) = g−1/4(x)φ̄(x) (D.16)

J(x) = g−1/4(x)J̄(x) (D.17)

in terms of which the action is

S[φ̄] = −1

2

∫
ddx

{
gµν

[
−1

4
g−1g,µφ̄+ φ̄,µ

] [
−1

4
g−1g,νφ̄+ φ̄,ν

]
+m2φ̄2 + ξRφ̄2

}
+

∫
ddx J̄φ̄. (D.18)

Multiplying out the terms in brackets and noting that

g−1g,µ = (ln g),µ (D.19)

we find

S[φ̄] = −1

2

∫
ddx

{
gµν

[
φ̄,µφ̄,ν +m2φ̄2 + ξRφ̄2 − 1

4
φ̄
[
(ln g),µφ̄,ν + (ln g),νφ̄,µ

]
+

1

16
(ln g),µ(ln g),νφ̄

2

]}
+

∫
ddx J̄φ̄. (D.20)

Integrating by parts once and observing the following relations

g−1g,µν = (ln g),µν + (ln g),µ(ln g),ν (D.21)

g−1/4
[
(g1/4),µg

µν
]
,ν

=
1

4
(ln g),µνg

µν +
1

4
(ln g),µg

µν
,ν +

1

16
(ln g),µ(ln g),νg

µν

(D.22)

the action is simplified to

S[φ̄] = −1

2

∫
ddx
{
gµνφ̄,µφ̄,ν + g−1/4

[
(g1/4),µg

µν
]
,ν
φ̄2 +m2φ̄2 + ξRφ̄2

}
+

∫
ddx J̄φ̄. (D.23)
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We remark that the original form of the kinetic term g1/2gµνφ,µφ,ν in (D.14) has

been converted into two pieces. The first is a kinetic-type term for φ̄ that reads

gµνφ̄,µφ̄,ν . The second is a curvature-induced effective mass term,

g−1/4
[
(g1/4),µg

µν
]
,ν
φ̄2. (D.24)

Categorizing these two kinds of terms will be convenient for determining the nontriv-

ial contributions to the momentum space representation of the quantum two-point

functions.

The action in (D.23) is coordinate-invariant. To proceed we choose to work in

Riemann normal coordinates within the normal convex neighborhood about a point

x′. The adiabatic expansions of some relevant tensors (e.g., the metric, its determi-

nant, etc.) are given in Appendix C. However, we will also need the expansion of

the Ricci scalar appearing in (D.23)

R(x) = R(x′) +R;ây
â +

1

2
R;âb̂y

âyb̂ +O(∂5). (D.25)

Using these expansions the action (D.23) can be written as an adiabatic expansion,

S[φ̄] = −1

2

∫
ddy

[
ηm̂n̂φ̄,m̂φ̄,n̂ +m2φ̄2

]
+

∫
ddy J̄φ̄+ Sint[φ̄] (D.26)

where the interaction Sint contains the sub-leading terms in the expansion

Sint[φ̄] = −1

2

∫
ddy

∞∑
A=2

[
Km̂n̂

(A)(y, x
′)φ̄,m̂φ̄,n̂ +M(A)(y, x

′)φ̄2
]

(D.27)

The kernels Km̂n̂
(A) and M(A), where the subscript A in parentheses indicates the adi-

abatic order, represent interactions with respect to the flat space “non-interacting”

scalar field theory, which is described by the “free” field action

S0[φ̄] = −1

2

∫
ddy

[
ηm̂n̂φ̄,m̂φ̄,n̂ +m2φ̄2

]
. (D.28)
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The interaction terms in Sint are quadratic in the field φ̄ and suggest that these

perturb the leading order propagator of the “free” theory (associated with S0[φ̄]).

The fact that there are not higher powers of the field results from the original

action (D.14) describing a free scalar field in a curved space-time, which can only

be quadratic in the field.

Furthermore, the interactions in (D.27) naturally split into two classes. The

first describes perturbations of the kinetic part of S0, being proportional to a product

of φ̄,m̂φ̄,n̂. These terms cannot be transformed into a φ̄2 type term by integration

by parts or other manipulations without introducing terms linear in φ̄,m̂, which are

not convenient for our purposes here. The second describes a curvature-induced

effective mass (as observed in the nearly flat region about x′) that shifts the value

of the leading order mass m appearing in the background action S0.

The interaction kernels for the kinetic part of Sint are, through fourth adiabatic

order,

Km̂n̂
(2) =

1

3
Rm̂ n̂

â b̂
yâyb̂ (D.29)

Km̂n̂
(3) =

1

6
Rm̂ n̂

â b̂;ĉ
yâyb̂yĉ (D.30)

Km̂n̂
(4) =

(
1

20
Rm̂ n̂

â b̂;ĉd̂
− 1

15
Rm̂

âb̂l̂
Rl̂ n̂

ĉ d̂

)
yâyb̂yĉyd̂ (D.31)

which is found from the adiabatic expansion of the inverse metric,

∞∑
A=2

Km̂n̂
(A)(y, x

′) = gm̂n̂ − ηm̂n̂. (D.32)

The kernels for the curvature-induced effective mass part of Sint are found
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from expanding

∞∑
A=2

M(A)(y, x
′) = ξR + g−1/4

[
(g1/4),m̂g

m̂n̂
]
,n̂

(D.33)

which through fourth adiabatic order are

M(2)(y, x
′) =

(
ξ − 1

6

)
R (D.34)

M(3)(y, x
′) = ξR;ây

â − 1

12

(
R;â + 2R ;b̂

âb̂

)
yâ (D.35)

M(4)(y, x
′) =

1

2
ξR;âb̂y

âyb̂ +
(
− 1

40
R;âb̂ −

1

20
R ;l̂

âl̂ ;b̂
− 1

20
R ;l̂

âl̂;b̂
− 1

40
2Râb̂

+
1

12
Râl̂R

l̂
b̂
− 1

15
Rl̂r̂R

l̂ r̂
â b̂
− 1

90
R r̂

l̂ŝâ
Rl̂ ŝ

b̂ r̂
− 1

90
R r̂

l̂ŝâ
Rl̂ŝ

b̂r̂

)
yâyb̂.

(D.36)

These expressions can be simplified by recalling that the Einstein tensor is diver-

genceless, implying

R ;b̂

âb̂
=

1

2
R;â (D.37)

With

R ;l̂

âl̂;b̂
=

1

2
R;âb̂ −Rl̂ ŝ

â b̂
Rl̂ŝ +Râl̂R

l̂
b̂

(D.38)

and using the first Bianchi identity Râ[b̂ĉd̂] = 0 to show that

Rl̂ ŝ
b̂ k̂

=
1

2
Rl̂ŝ

b̂k̂
(D.39)
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we find simplified expressions for the mass interactions

M2(y, x
′) =

(
ξ − 1

6

)
R (D.40)

M3(y, x
′) =

(
ξ − 1

6

)
R;ây

â (D.41)

M4(y, x
′) =

[
1

2

(
ξ − 1

6

)
R;âb̂ +

1

120
R;âb̂ −

1

40
2Râb̂ +

1

30
Râl̂R

l̂
b̂

− 1

60
Rl̂r̂R

l̂ r̂
â b̂
− 1

60
R r̂

l̂ŝâ
Rl̂ŝ

b̂r̂

]
yâyb̂

≡ aâb̂y
âyb̂ (D.42)

D.2.1 Generating functional

Per the discussion in Section D.1 we need only to find a momentum space rep-

resentation for the in-out Feynman propagator to determine the ultraviolet behavior

of the in-in two-point functions Gab.

We therefore construct the generating functional of in-out correlation functions

Z[J̄ ] =
〈0, out|0, in〉J̄
〈0, out|0, in〉J̄=0

(D.43)

where the vacuum-vacuum persistence amplitude in the presence of the external

current J̄ is

〈0, out|0, in〉J̄ =

∫
Dφ̄ exp

[
i

∫
ddxLint

(
φ̄
)]

exp

[
iS0[φ̄] + i

∫
ddxJ̄φ̄

]
(D.44)

The free action S0 is given in (D.28) and the interaction Lagrangian can be deduced

from (D.27).

In terms of correlations of the scalar field the in-out Feynman propagator is

GF (x, x′) = 〈0, out|T φ(x)φ(x′)|0, in〉. (D.45)
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The rescaled field φ̄ has an associated propagator

ḠF (x, x′) = 〈0, out|T φ̄(x)φ̄(x′)|0, in〉 (D.46)

that is related to GF through the rescaling,

GF (x, x′) = g−1/4(x)ḠF (x, x′)g−1/4(x′). (D.47)

and is implied by (D.16).

The field dependence in Lint(φ̄) can be replaced by derivatives with respect to

the external current by expanding the exponential exp i
∫
ddxLint in powers of the

field so that the nth term is

φ̄n(x) exp

[
i

∫
ddx′ J̄ φ̄

]
=

(
δ

δiJ̄(x)

)n

exp

[
i

∫
ddx′ J̄ φ̄

]
. (D.48)

This replacement allows for the exponential factor exp i
∫
ddxLint to be pulled out

of the path integral. The remaining Gaussian integral is easily evaluated using

standard techniques giving

Z[J̄ ] = exp

[
i

∫
ddxLint

(
δ

δiJ̄(x)

)]
exp

[
1

2

∫
dduddu′ J̄(u)Ḡ0(u, u

′)J̄(u′)

]
(D.49)

where Ḡ0 is the leading order (flat space-time) Feynman propagator, which has the

following momentum-space representation

Ḡ0(x− x′) =

∫
ddk

(2π)d
eik·(x−x′) −i

k2 +m2 + iε
(D.50)

in d space-time dimensions. The iε is added to impose the usual Feynman boundary

conditions.
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The normalized generating functional in (D.43) generates (time-ordered) cor-

relations of the field φ̄ by computing derivatives of Z[J̄ ] with respect to the current

J̄ . The full propagator, which is actually the free field propagator in a curved

space-time, is defined as

ḠF (x, x′) =
δ2Z[J̄ ]

δiJ̄(x)δiJ̄(x′)

∣∣∣∣
J̄=0

. (D.51)

To find the propagator perturbatively about (D.50), we first expand exp i
∫
ddxLint

from (D.49) in adiabatic powers (i.e., in powers of derivatives of the metric) and

then compute (D.51) setting J̄ to zero at the end of the calculation.

Such a procedure can be tedious, particularly at higher adiabatic orders and

for higher spin fields. Nevertheless, the terms in the ensuing expansion give rise

to a diagrammatic interpretation. Knowing which diagrams enter at a particular

adiabatic order in the expansion allows us to compute their contribution to the full

propagator (D.51).

The diagrams relevant for the calculation of ḠF (x, x′) are those that are con-

nected [93]. The (disconnected) vacuum bubble diagrams that might appear from

perturbatively evaluating 〈out, 0|0, in〉J̄ are conveniently cancelled by the denomi-

nator in (D.43).

D.2.2 Feynman rules

Turn now to the Feynman rules for this diagrammatic approach. Let the lead-

ing order, or free, propagator Ḡ0(x, x
′) be represented by a straight line connecting

the points x and x′ as depicted in Fig.(D.1a). The interaction terms given in (D.27)
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x ’x

(a)

(b)
x ’x

(c)

x x ’

i /2 K(A)
mn i /2  M(A)

i G0 (x,x’)

Figure D.1: Feynman rules for computing the free scalar field propagator in a curved

space-time. (a) The rule for the leading order (flat space-time) propagator. (b) and

(c) show the kinetic and mass vertices that appear in Sint[φ̄].

represent vertices that cause the field to undergo self-interaction and are naturally

classified as kinetic Km̂n̂
(A) and mass M(A) vertices, as discussed earlier. The kinetic

and mass vertices are shown in Fig.(D.1b) and Fig.(D.1c), respectively. We can

calculate a given diagram with any appropriate number of vertices and lines using

the following Feynman rules:

1. A factor of − i
2
Km̂n̂

(A)(y, x
′) for each kinetic vertex.

2. A factor of − i
2
M(A)(y, x

′) for each mass vertex.

3. Spacetime integration for each vertex.

4. A factor of Ḡ0 if a line connects to a mass vertex.

5. A factor of ∂âḠ0 if a line connects to a kinetic vertex (the derivative is with

respect to the coordinate integrated in Rule 3.)
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6. Symmetry factor S.

To show how these rules are used to compute diagrams let us compute the first few

corrections to the free propagator Ḡ0.

D.2.2.1 Second adiabatic order

The diagrams that contribute to the second adiabatic order correction to the

free propagator Ḡ0 are determined by using the Feynman rules to construct all

possible connected diagrams that are O(∂2). At this order there are only two such

diagrams and these correspond to Fig.(D.1b) and Fig.(D.1c) with A = 2. One of

these contributions is given by

VM(∂2) ≡ mass vertex at O(∂2) (D.52)

= 2

∫
ddy Ḡ0(x, y)

[
− i

2

(
ξ − 1

6

)
R(x′)

]
Ḡ0(y, x

′). (D.53)

A propagator factor of Ḡ0 is associated with each external line in the diagram and

the vertex gives a factor of −i/2M(2). The overall factor of 2 is a symmetry factor

that counts the number of ways to connect the propagator lines to the vertex.

Using the Fourier transform of the leading order propagator

Ḡ0(x) =

∫
ddk

(2π)d
eik·xḠ0(k) ≡

∫
k

eik·xḠ0(k) (D.54)

where

Ḡ0(k) =
−i

k2 +m2 − iε
(D.55)

we find

VM(∂2) = −i
∫

k

∫
q

∫
ddy eik·x−iq·x′e−i(k−q)·yḠ0(k)Ḡ0(q)

(
ξ − 1

6

)
R. (D.56)
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Integrating over yâ gives a delta function (2π)dδd(kâ − qâ) and imposes momentum

conservation through the vertex when qâ is integrated giving

VM(∂2) = i

∫
k

eik·y
(

1

6
− ξ

)
R Ḡ2

0(k). (D.57)

At second adiabatic order, the only other contribution comes from the kinetic

vertex, which is given by Fig.(D.1b) with A = 2,

VK(∂2) ≡ kinetic vertex at O(∂2)

= 2

∫
ddy

(
∂m̂Ḡ0(x, y)

) [
− i

2

1

3
Rm̂ n̂

â b̂
(x′)yâyb̂

] (
∂n̂Ḡ0(y, x

′)
)
.

(D.58)

A factor of ∂âḠ0 is associated with each external line connected to a kinetic vertex.

The partial derivative originates from the derivative acting on the field in (D.27).

The kinetic vertex −i/2Km̂n̂
(2) connects the propagators and the overall factor of 2 is

a symmetry factor.

To calculate this diagram we observe that x′ = 0 in RNC since it lies at the

origin of these coordinates. Furthermore, Ḡ0(y) is Lorentz invariant implying that it

can be a function of the invariant yâyâ only. A derivative acting on this propagator

will therefore be proportional to yâ,

∂n̂Ḡ0(y) =
∂

∂yn̂
Ḡ0(y) ∝ yn̂. (D.59)

It follows that when this is contracted with the kinetic vertex the entire diagram

vanishes because

Rm̂ n̂
â b̂
yâyb̂∂n̂Ḡ0(y) ∝ Rm̂ n̂

â b̂
yâyb̂yn̂ = 0. (D.60)
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Therefore, VK(∂2) = 0.

Adding VM(∂2) and VK(∂2) gives the subleading correction to the flat space

propagator

V (∂2) = VM(∂2) + VK(∂2) (D.61)

= i

∫
k

eik·y
(

1

6
− ξ

)
R Ḡ2

0(k), (D.62)

D.2.2.2 Third adiabatic order

At third adiabatic order there are again only two diagrams that contribute.

The first comes from the mass vertex with A = 3,

VM(∂3) = 2

∫
ddy Ḡ0(x, y)

[
− i

2

(
ξ − 1

6

)
R;ây

â

]
Ḡ0(y, x

′). (D.63)

Noting that Ḡ0(y, x
′) = Ḡ0(y) (since x′ is the origin of RNC) we find from the

Fourier transform of the propagator that yâ becomes a momentum derivative of the

propagator,

yâḠ0(y) = i

∫
q

eiq·y ∂

∂qâ
Ḡ0(q). (D.64)

Next, integrate yâ and impose momentum conservation through the vertex by inte-

grating the qâ momentum to find

VM(∂3) = −
∫

k

eik·y
(

1

6
− ξ

)
R;âḠ0(k)

∂

∂kâ

Ḡ0(k) (D.65)

The second contribution comes from the A = 3 kinetic vertex and equals

VK(∂3) = 2

∫
ddy ∂m̂Ḡ0(x, y)

[
− i

2

1

6
Rm̂ n̂

â b̂;ĉ
yâyb̂yĉ

]
∂n̂Ḡ0(y, x

′) (D.66)
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i /2 K(2)
mn i /2  M(2)

i /2  M(4)
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(c) (d)

(e) (f)

i /2  M(2)i /2  M(2)

i /2  M(2) i /2 K(2)
mn

i /2 K(4)
mn i /2 K(2)

mn i /2 K(2)
mn

Figure D.2: The six diagrams contributing to the fourth adiabatic order contribution

to the propagator.

This also vanishes due to the Lorentz invariance of the leading order propagator,

Rm̂ n̂
â b̂;ĉ

yâyb̂yĉ∂n̂Ḡ0(y, x
′) ∝ Rm̂ n̂

â b̂;ĉ
yâyb̂yĉyn̂ = 0. (D.67)

Therefore, VK(∂3) = 0 just as with the second order kinetic vertex.

The total third adiabatic order correction is therefore the sum of these two

diagrams

V (∂3) = VM(∂2) + VK(∂2) (D.68)

= −
∫

k

eik·y
(

1

6
− ξ

)
R;âḠ0(k)

∂

∂kâ

Ḡ0(k) (D.69)

D.2.2.3 Fourth adiabatic order

At fourth adiabatic order there are six diagrams, as shown in Fig.(D.2). The

first comes from M(4) and the second comes from a product of two M(2) vertices.
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The calculations proceed similarly as with the previous orders and we find

VM(∂4) ≡ Fig. D.2a + Fig. D.2b (D.70)

= i

∫
k

eik·y

{(
1

6
− ξ

)2

R2 Ḡ3
0(k) + aâb̂(x

′) Ḡ0(k)
∂

∂kâ

∂

∂kb̂

Ḡ0(k)

}
.

(D.71)

At fourth order, the remaining diagrams in Fig.(D.2) are all zero. These vanish

on account of the Lorentz invariance of the leading order propagator. Furthermore,

all cross-terms in the O(∂4) correction are zero since they are proportional to lower

order kinetic vertices. Therefore, only the mass vertices contribute at this order and

V (∂4) = iVM(∂4) (D.72)

= i

∫
k

eik·(x−x′)

{(
1

6
− ξ

)2

R2 Ḡ3
0(k) + aâb̂(x

′) Ḡ0(k)
∂

∂kâ

∂

∂kb̂

Ḡ0(k)

}
(D.73)

D.2.3 Free field propagator in curved space-time

Putting together the contributions from all of the diagrams through fourth

adiabatic order allows us to compute the momentum-space representation of the

free field propagator on a background curved space-time. From the definition of the

full propagator in (D.51) we have that

iḠF (x, x′) = iḠ0(x, x
′) + iVM(∂2) + iVM(∂3) + iVM(∂4) +O(∂5) (D.74)
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are the lowest order non-zero contributions. Multiplying both sides by i and substi-

tuting in the expressions for the iVM(∂n) gives, in momentum-space,

ḠF (k) = Ḡ0(k) +

(
1

6
− ξ

)
R Ḡ2

0(k) + i

(
1

6
− ξ

)
R;â Ḡ0(k)

∂

∂kâ

Ḡ0(k)

+

(
1

6
− ξ

)2

R2 Ḡ3
0(k) + aâb̂(x

′) Ḡ0(k)
∂

∂kâ

∂

∂kb̂

Ḡ0(k) +O(∂5)(D.75)

This agrees with the original derivation by Bunch and Parker [64]. These authors

also demonstrate the equivalence of this momentum-space representation to the

DeWitt-Schinger proper time representation, which we will not discuss here.

D.2.4 Kinetic vertices do not contribute to the propagator

In the previous section, we give explicit calculations through fourth adiabatic

order showing that the diagrams containing any kinetic vertex Km̂n̂
(A) do not con-

tribute to the curved space-time free field propagator. We want to show that this

is true at all adiabatic orders.

The coordinate transformation from the coordinates xα to the RNC for the

inverse metric is

gâb̂(y) =
dyâ

dxα

dyb̂

dxβ
gαβ(x) = σ µ′

α eâ
µ′σ

ν′

β eb̂
ν′g

αβ (D.76)

and the kinetic vertices are defined from (D.32) as

∞∑
A=2

K âb̂
(A)(x

′, y) = gâb̂ − ηâb̂ (D.77)

All of the diagrams involving the kinetic vertices have the property that there always

appear a derivative of the leading order propagator contracted with a K âb̂
(A). This
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is clear from the Feynman rules. Since the leading order propagator is Lorentz

invariant then its derivative is proportional to yâ and its contraction with a kinetic

vertex is responsible for the vanishing of the first four adiabatic contributions to the

full propagator.

To prove that all kinetic vertices vanish to all adiabatic orders we need only

to contract the sum of the kinetic vertices (D.77) with yb̂ since we know that the

kinetic vertices will multiply the derivative of a Lorentz invariant propagator. Let

us therefore compute gâb̂yb̂. We find

gâb̂yb̂ = −σ µ′

α eâ
µ′σ

ν′

β eb̂
ν′g

αβeλ′

b̂
σλ′ = yâ = ηâb̂yb̂ (D.78)

where we have used the relations (C.6), (C.7) and the orthonormality of the tetrad

eb̂
ν′e

λ′

b̂
= g λ′

ν′ . (D.79)

It then follows that
(
gâb̂ − ηâb̂

)
yb̂ = 0, which implies that the kinetic vertices, when

contracted with a derivative of the leading order propagator, will all vanish

∞∑
A=2

K âb̂
(A)(y, x

′)∂b̂Ḡ0(y) ∝
∞∑

A=2

K âb̂
(A)(y, x

′)yb̂ = 0. (D.80)

This is not a proof that each term in the sum is zero when contracted with yb̂.

Rather, this demonstrates that their sum vanishes, which is enough to show that

the kinetic vertices give no contribution to the full propagator for the following

reason. All of the kinetic vertices can be collected into a single vertex

Kâb̂(y, x′) ≡
∞∑

A=2

K âb̂
(A)(y, x

′) (D.81)

We may then compute Feynman diagrams with Kâb̂ and keep track of the original

kinetic vertices at all adiabatic orders through this sum. Because each of the dia-
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grams that contain Kâb̂ is zero, for the reason just shown, then the kinetic vertices

K âb̂
(A) do not contribute to the free field curved space-time propagator. Therefore,

only mass vertices contribute to the subleading terms.

This result can be indirectly seen in the original paper of Bunch and Parker.

Their approach involves expanding the equation of motion for the rescaled scalar

propagator Ḡ and then solving this iteratively in powers of derivatives of the back-

ground metric (i.e., an adiabatic expansion). In solving the propagator at each

adiabatic order Bunch and Parker observe that the Lorentz invariance of the lead-

ing order flat space-time propagator causes all terms involving derivatives of Ḡ0 to

cancel completely through fourth adiabatic order. In the language of perturbative

quantum field theory these terms correspond to the kinetic vertices and so do not

contribute to the full propagator, as we have shown. However, Bunch and Parker

do not show that this cancellation happens at all adiabatic orders no do they make

the claim. This is one benefit of our approach; at all orders, only the mass vertices

contribute to the free field curved space-time propagator.

D.3 Momentum space representation of in-in two-point functions

Having the momentum space representation of the in-out Feynman propaga-

tor we recall our arguments from Section D.1. The in-in two-point functions can

therefore be written down immediately. Using the notation of (D.10) we find that
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the rescaled two-point functions (D.4) are

Ḡab(x, x
′) = iδab

∫
Cab,k

eik·y

[
Ḡ0(k) +

(
1

6
− ξ

)
R Ḡ2

0(k)

+ i

(
1

6
− ξ

)
R;â Ḡ0(k)

∂

∂kâ

Ḡ0(k) +

(
1

6
− ξ

)2

R2 Ḡ3
0(k)

+ aâb̂(x
′) Ḡ0(k)

∂

∂kâ

∂

∂kb̂

Ḡ0(k) +O(∂5)

]
(D.82)

where

Ḡ0(k) =
1

k2 +m2 + iε
(D.83)

and the contours Cab are given in Appendix A.

We remark that Ḡab are not the actual two-point functions of the field φ(x)

since we rescaled the field in (D.16). Nevertheless, we can deduce Gab from Ḡab using

the relation in (D.47) and the RNC expansion of the metric determinant (C.16)

Gab(x, x
′) = g−1/4(x)Ḡab(x, x

′) (D.84)

where we have also used that g(x′) = 1 in RNC since x′ lies at the origin in these

coordinates. The metric determinant factor contains powers of the coordinate sep-

aration yâ, which can be replaced with

yâ → −i ∂
∂kâ

(D.85)

Integrating by parts appropriately using the identities

Ḡ0(k)
∂

∂kâ

Ḡ0(k) =
1

2

∂

∂kâ

Ḡ2
0(k) (D.86)

Ḡ0(k)
∂

∂kâ

∂

∂kb̂

Ḡ0(k) =
1

3

∂

∂kâ

∂

∂kb̂

Ḡ2
0(k)−

2

3
ηâb̂Ḡ3

0(k) (D.87)
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we determine Gab from the expression for Ḡab given above.

Through third adiabatic order for an arbitrary curved spacetime we find

Gab(x, x
′) =

∫
Cab,k

eik·y

[
Ḡ0(k) +

(
1

3
− ξ

)
R Ḡ2

0(k)−
2

3
Râb̂k

âkb̂Ḡ3
0(k)

− i(1− 2ξ)R;âk
âḠ3

0(k) + 2iRâb̂;ĉk
âkb̂kĉḠ4

0(k) +O(∂4)

]
(D.88)

and if the background curvature is such that Rµν = 0 (i.e. a vacuum spacetime) then

the in-in two-point functions have the following momentum space representation

through fourth adiabatic order

Gab(x, x
′) =

∫
Cab,k

eik·y

[
Ḡ0(k) +

1

15
Rl̂k̂m̂n̂R

l̂k̂m̂n̂Ḡ3
0(k)

− 8

15
Rl̂k̂m̂âR

l̂k̂m̂
b̂
kâkb̂Ḡ4

0(k) +O(∂5)

]
(D.89)

D.4 Propagator for metric perturbations

We proceed as in the last section and compute, using Riemann normal coor-

dinates, the momentum space representation of the Feynman propagator for metric

perturbations in a vacuum background spacetime (Rµν = 0). However, we will

only derive the propagator to second adiabatic order as this is what is required to

regularize the leading order self-force in Chapter 4.

We write the action for the linear metric perturbations (4.24) in an equivalent

form

S[hµν ] =
1

2

∫
ddx g1/2

(
gµνPαβγδ(g)hαβ;µhγδ;ν − 2R α β

(µ ν)P
µνγδ(g)hαβhγδ

)
(D.90)
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which is given in the Lorenz gauge and where

Pαβγδ(g) =
1

2

(
gαγgβδ + gαδgβγ − 2

d− 2
gαβgγδ

)
, (D.91)

which depends on the metric through its inverse. Expanding the covariant deriva-

tives of the metric perturbations using

hαβ;µ = hαβ,µ − Γλ
µαhλβ − Γλ

µβhαλ, (D.92)

redefining the fields

hαβ(x) = g−1/4(x)h̄αβ(x) (D.93)

and appropriately integrating by parts we find that the action (D.90) can be written

in a form that is suitable for an adiabatic expansion in Riemann normal coordinates,

S[h̄µν ] =
1

2

∫
ddx

{
gµνPαβγδh̄αβ,µh̄γδ,ν + g−1/4

[(
g1/4

)
,µ
gµνPαβγδ

]
,ν
h̄αβh̄γδ

−gµνPαβγδ

[(
− 1

4
(ln g),µh̄αβ + h̄αβ,µ

)(
Γσ

νγh̄σδ + Γσ
νδh̄γσ

)
+
(
− 1

4
(ln g),ν h̄γδ + h̄γδ,ν

)(
Γλ

µαh̄λβ + Γλ
µβh̄αλ

)]
+gµνPαβγδ

(
Γλ

µαh̄λβ + Γλ
µβh̄αλ

)(
Γσ

νγh̄σδ + Γσ
νδh̄γσ

)
−2P µνγδR α β

(µ ν) h̄αβh̄γδ

}
. (D.94)

We only keep those terms in the action that contribute through second adiabatic

order. The connection components are O(∂2) quantities implying that the ΓΓ terms

can be ignored. Furthermore, ∂mgab, ∂mg and ∂mP
abcd are all second adiabatic order

quantities.

Expanding the action using Riemann normal coordinates we find that

S[h̄µν ] = S0[h̄µν ] + Sint[h̄µν ] (D.95)
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where the “non-interacting” theory is described by

S0[h̄mn] =
1

2

∫
ddy ηmnP abcd(η)h̄ab,mh̄cd,n (D.96)

and the interaction is given by three kinds of terms,

Sint[h̄mn] =
1

2

∫
ddy

∞∑
A=2

[
Kmnabcd

(A) (y, x′)h̄ab,mh̄cd,n

+
(
L′mabcd

(A) (y, x′)h̄ab,mh̄cd + L′′mabcd
(A) (y, x′)h̄abh̄cd,m

)
+Mabcd

(A) (y, x′)h̄abh̄cd

]
(D.97)

As in the previous section, the interaction terms naturally split into different kinds.

The first is a kinetic-type interaction and couples the derivative of the fields. The

second is a mass-type interaction and is proportional to h̄h̄. The third type of inter-

action involves a single derivative of the metric perturbation and appears because

the graviton is a higher spin field compared to the scalar field of the last section in

which such terms do not appear. Let us investigate these three types of contributions

to the propagator.

D.4.1 Kinetic vertex

The kinetic vertex can be found from

∞∑
A=2

Kmnabcd
(A) (y, x′) = gmnP abcd(g)− ηmnP abcd(η) (D.98)

Their contribution to the propagator is simply

V K
abcd(∂

2) = 2

∫
ddy
(
∂mḠ

0
abij(x, y)

)[
− i

2
Kmnijkl

(2) (y, x′)

](
∂nḠ

0
klcd(y, x

′)
)

(D.99)
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which is found to equal

V K
abcd(∂

2) = iPabij(η)K
mnijkl
(2) st(x

′)Pklcd(η)

∫
k

eik·y

[
8

k8
kmknk

skt

− 2

k6

(
η s

n kmk
t + η t

n kmk
s + ηstknkm

)]
(D.100)

upon using similar manipulations as in the scalar propagator example earlier. Per-

forming the contractions that precede the momentum integral gives our final results

for the kinetic vertex

V K
abcd(∂

2) =
i

3

∫
k

eik·y k
skt

k6

[
ηacRbsdt + ηadRbsct + ηbcRasdt + ηbdRasct

+
4

(d− 2)2

(
ηabRcsdt + ηcdRasbt

)]
(D.101)

and includes a dependence on the Riemann curvature.

D.4.2 Mass vertex

Through second adiabatic order the mass vertices are

∞∑
A=2

Mabcd
(A) (y, x′) = −

(
Pmnab(η)R c d

(m n) + Pmncd(η)R a b
(m n)

)
(D.102)

Their contribution to the propagator is trivial and we find that the corresponding

diagram is

V M
abcd(∂

2) = 2

∫
ddy Ḡ0

abij(x, y)

[
− i

2
M ijkl

(2) (y, x′)

]
Ḡ0

klcd(y, x
′) (D.103)

where the overall factor of 2 is a symmetry factor. We can write the flat space

graviton propagator Ḡ0
abcd in terms of the corresponding propagator for a scalar

field Ḡ0 by noting that (D.96) implies

D̄abcd
0 (x, x′) = P abcd(η)D̄0(x, x

′) (D.104)
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Using RNC to construct a momentum space representation for Ḡ0 ,

D̄0(x, x
′) =

∫
ddk

(2π)d

eik·y

k2 + iε
(D.105)

≡
∫

k

eik·y

k2 + iε
(D.106)

we find that the second adiabatic order mass vertex is

V M
abcd(∂

2) = −iPabij(η)M
ijkl
(2) (x′)Pklcd(η)

∫
k

eik·y 1

(k2 + iε)2
(D.107)

where the factor multiplying the integral is independent of ya and is given by

Pabij(η)M
ijkl
(2) (x′)Pklcd(η) = −

(
Racbd +Radbc

)
(D.108)

where d is the space-time dimension.

D.4.3 Single-derivative vertices

The self-interaction terms in (D.97) that are linear in a derivative of the metric

perturbation are given by

∞∑
A=2

L′mijkl
(A) (y, x′) =

2

3
ηmnP ijuv(η)

(
Rs

(nu)wη
(k
v η

l)
s +Rs

(nv)wη
(k
u η

l)
s

)
yw +O(∂3)

≡ L′mijkl
(2) w(x′)yw +O(∂3). (D.109)

and

∞∑
A=2

L′′mijkl
(A) (y, x′) =

2

3
ηmnP kluv(η)

(
Rs

(nu)wη
(i
v η

j)
s +Rs

(nv)wη
(i
u η

j)
s

)
yw +O(∂3)

≡ L′′mijkl
(2) w(x′)yw +O(∂3). (D.110)
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The first vertex L′(A) contributes the following to the curved space propagator,

V ′L
abcd(∂

2) =

∫
ddy
(
∂mD̄

0
abij(x, y)

)[
− i

2
L′mijkl

(2) wy
w

]
D̄0

klcd(y, x
′)

+(−i)2

∫
ddy D̄0

abij(x, y)

[
i

2
L′mijkl

(2) wy
w

](
∂mD̄

0
klcd(y, x

′)
)
(D.111)

We find after an integration by parts that

V ′L
abcd(∂

2) =
i

2
Pabij(η)L

′mijkl
(2) m(x′)Pklcd(η)

∫
k

eik·y 1

(k2 + iε)2
(D.112)

Similar expressions hold for the L′′(2) vertex so that the sum of these two contributions

is

V L
abcd(∂

2) = V ′L
abcd(∂

2) + V ′′L
abcd(∂

2) (D.113)

=
i

2
Pabij(η)L

ijkl
(2) (x′)Pklcd(η)

∫
k

eik·y 1

(k2 + iε)2
(D.114)

where the vertex L(2) is defined as

Lijkl
(2) (x′) = L′mijkl

(2) m(x′) + L′′mijkl
(2) m(x′) (D.115)

The factor in front of the momentum space integral evaluates to zero

Pabij(η)L
ijkl
(2) (x′)Pklcd(η) = 0 (D.116)

since it is depends only on the Ricci curvature.

Putting all of these results together we find that the propagator through second

adiabatic order is

−iD̄abcd(x, x
′) = −iD̄0

abcd + V K
abcd(∂

2) + V M
abcd(∂

2) + V L
abcd(∂

2) +O(∂3) (D.117)
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where

V K
abcd(∂

2) + V M
abcd(∂

2) + V L
abcd(∂

2) =

∫
k

eik·y

{
i

(k2 + iε)2

(
Racbd +Radbc

)]

+
i

3

kskt

(k2 + iε)3

[
ηacRbsdt + ηadRbsct + ηbcRasdt + ηbdRasct

+
4

(d− 2)2

(
ηabRcsdt + ηcdRasbt

)]}
(D.118)

Therefore, the momentum space representation of the Feynman propagator for met-

ric perturbations through second adiabatic order is

D̄F
abcd(k) =

∫
k

eik·y

{
Pabcd(η)

k2 + iε
− 1

(k2 + iε)2

(
Racbd +Radbc

)
−1

3

kskt

(k2 + iε)3

[
ηacRbsdt + ηadRbsct + ηbcRasdt + ηbdRasct

+
4

(d− 2)2

(
ηabRcsdt + ηcdRasbt

)]
+O(∂3)

}
(D.119)

However, this is the expression for the barred propagator, which is related to the

original propagator through (D.93). Realizing that g−1/4(x′) = 1 when evaluated in

Riemann normal coordinates we find that

DF
abcd(x, x

′) = g−1/4(x)D̄F
abcd(x, x

′) (D.120)

where, from Appendix C,

g−1/4(x) = 1 +
1

12
Rmny

myn +O(∂3) = 1 +O(∂3) (D.121)

and so the full propagator for free metric perturbations on a background spacetime
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does not change,

Dabcd(x, x
′) =

∫
k

eik·y

{
Pabcd(η)

k2 + iε
− 1

(k2 + iε)2

(
Racbd +Radbc

)
−1

3

kskt

(k2 + iε)3

[
ηacRbsdt + ηadRbsct + ηbcRasdt + ηbdRasct

+
4

(d− 2)2

(
ηabRcsdt + ηcdRasbt

)]
+O(∂3)

}
(D.122)

This is the expression that we use to regularize the leading order self-force for a

particle moving in a background vacuum spacetime in Chapter 4. We are unaware

that the momentum space representation of the Feynman graviton propagator in

(D.122) is given in the literature. The momentum space representation for the in-in

two-point functions are obtained by using the appropriate contour Cab with the k0

integral.
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Appendix E

Distributions, pseudofunctions and Hadamard’s finite part

We give a brief review of distribution theory in this Appendix. We present

only the basic structure, concepts and definitions that we use in this work. The

reader is referred to the excellent text on the subject [126] for more information.

Consider the set of functions φ that are infinitely smooth C∞ and have compact

support on any finite interval. These functions, called testing or test functions form

a set D. A functional f is a mapping that associates a complex number to every

testing function in D. A distribution is a linear and continuous functional on the

space of test functions D and is frequently denoted by the symbols 〈f, φ〉 and f .

For a locally integrable function f(t) we can associate a natural distribution

through the convergent integral

〈
f, φ
〉
≡
∫ ∞

−∞
dt f(t)φ(t) (E.1)

for some testing function φ ∈ D. Notice that we are using the same symbol to

denote both the distribution and the function that generates the distribution. This

is an example of a regular distribution. All distributions that are not regular are

singular distributions and will be our main concern in the rest of this Appendix. An

example of a singular distribution is the well known delta functional δ. As this is

not generated by a locally integrable function δ(t) (even as the limit of a sequence

of locally integrable functions [126]) it must be a singular distribution.
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Often, a singular distribution gives rise to a singular integral, which can be

written in terms of its divergent and finite parts. For the purposes of clarity and

illustration it is best to consider a simple example. Let us compute the integral

〈θ(t)
t
, φ
〉

=

∫ ∞

0

dt
φ(t)

t
(E.2)

for φ(t) a testing function in D and θ(t) the step, or Heaviside, function. This

integral is obviously divergent since 1/t is not a locally integrable function at the

origin. Nevertheless, we may extract the finite part (in the sense of Hadamard [99])

of the integral by isolating the divergences from the finite terms.

To this end we write

φ(t) = φ(0) + t ψ(t) (E.3)

where ψ(t) is a continuous function. Putting this into (E.2) and integrating gives

〈θ(t)
t
, φ
〉

= lim
ε→0+

[
φ(0) log b− φ(0) log ε+

∫ b

ε

dt ψ(t)

]
(E.4)

where we assume that the testing function φ(t) vanishes for t ≥ b for some real

number b. The finite part of (E.2) is defined to be the remainder upon subtracting

off the divergent contribution(s). In this case, dropping the log ε term gives the

finite part of the integral

Fp

∫ ∞

0

dt
φ(t)

t
= φ(0) log b+

∫ ∞

0

dt ψ(t) (E.5)

where the symbol Fp denotes the finite part of the integral in the sense of Hadamard

[99]. Therefore the divergent part of the integral is given by the logarithm−φ(0) log ε.
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A distribution that generates the finite part of the integral is called a pseud-

ofunction, which we now calculate for this example. Inserting (E.3) into the finite

part (E.5) gives

Fp

∫ ∞

0

dt
φ(t)

t
= lim

ε→0+

[∫ ∞

ε

dt
φ(t)

t
+ φ(0) log ε

]
. (E.6)

Since

φ(0) =

∫ ∞

−∞
dt δ(t)φ(t) = 〈δ, φ〉 (E.7)

it follows that the finite part can be written as an integral of a distribution with a

testing function

Fp

∫ ∞

0

dt
φ(t)

t
= lim

ε→0+

∫ ∞

ε

dt

[
1

t
+ δ(t) log ε

]
φ(t), (E.8)

which defines the pseudo-function,

Pf
θ(t)

t
=
θ(t)

t
+ δ(t) log ε. (E.9)

Therefore, the finite part of the integral generates a pseudo-function (a regular

distribution) that yields a finite value when integrated with a testing function

∫ ∞

−∞
dt Pf

1

t
φ(t) = Fp

∫ ∞

−∞
dt
φ(t)

t
. (E.10)

Consider another example [126] and compute the finite part of the integral

∫ b

a

dt
φ(t)

(t− a)k
(E.11)

for a < b with a, b real and for k a negative integer. Writing

φ(t) = φ(a) + (t− a)φ(1)(a) + · · ·+ (t− a)k−1φ
(k−1)(a)

(k − 1)!
+ (t− a)kψ(t) (E.12)
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and inserting into the integral one can show that

lim
ε→0

∫ b

a+ε

dt
φ(t)

(t− a)k
= lim

ε→0

[
I(ε) +H(ε)

]
(E.13)

where

I(ε) =
k−2∑
n=0

φ(n)(a)

n!(k − 1− n)

1

εk−1−n
− φ(k−1)(a)

(k − 1)!
log ε (E.14)

is the divergent part of the integral and

H(ε) =

∫ b

a+ε

dt ψ(t)−
k−2∑
n=0

φ(n)(a)

n!(k − 1− n)(b− a)k−1−n
+
φk−1(a)

(k − 1)!
log(b− a) (E.15)

is the finite remainder. The finite part of the integral is defined as H(ε) in the limit

that ε→ 0

Fp

∫ b

a

dt
φ(t)

(t− a)k
= lim

ε→0
H(ε) = H(0). (E.16)

The pseudo-function, which we recall is a regular distribution, generating the finite

part can be shown to be

Pf
θ(t− a)θ(b− t)

(t− a)k
=

φ(t)

(t− a)k
−

k−2∑
n=0

(−1)n

n!(k − 1− n)

δ(n)(t− a)

εk−1−n

+
(−1)k−1

(k − 1)!
δ(k−1)(t− a) log ε (E.17)

upon following similar steps in our first example. The distribution δ(n)(t) is the nth

derivative of the delta functional and is defined by the distributional identity

〈
δ(n), φ

〉
= (−1)n

〈
δ, φ(n)

〉
. (E.18)

We remark that the divergent part of the integral I(ε) contains k − 1 power

divergences and one logarithmic divergence. Quite generally, the value that the
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distribution assigns to a testing function will have a divergent part consisting of

both power divergences and powers of logarthmically diverging terms so that

I(ε) =
N∑

p=1

ap

εp
+

M∑
p=1

bp logp ε (E.19)

for some appropriate integers N,M . This form for I(ε) is related to the so-called

Hadamard’s ansatz [99] and appears often in regularizing divergent quantities in-

volving two-point functions of a quantum field in curved spacetime [66, 124].
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