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In energy harvesting communications, users transmit messages using energy

harvested from nature. In such systems, transmission policies of the users need

to be carefully designed according to the energy arrival profiles. When the energy

management policies are optimized, the resulting performance of the system depends

only on the energy arrival profiles. In this dissertation, we introduce and analyze the

notion of energy cooperation in energy harvesting communications where users can

share a portion of their harvested energy with the other users via wireless energy

transfer. This energy cooperation enables us to control and optimize the energy

arrivals at users to the extent possible. In the classical setting of cooperation, users

help each other in the transmission of their data by exploiting the broadcast nature

of wireless communications and the resulting overheard information. In contrast to

the usual notion of cooperation, which is at the signal level, energy cooperation we

introduce here is at the battery energy level. In a multi-user setting, energy may be

abundant in one user in which case the loss incurred by transferring it to another

user may be less than the gain it yields for the other user. It is this cooperation that



we explore in this dissertation for several multi-user scenarios, where energy can be

transferred from one user to another through a separate wireless energy transfer

unit.

We first consider the offline optimal energy management problem for several

basic multi-user network structures with energy harvesting transmitters and one-way

wireless energy transfer. In energy harvesting transmitters, energy arrivals in time

impose energy causality constraints on the transmission policies of the users. In the

presence of wireless energy transfer, energy causality constraints take a new form:

energy can flow in time from the past to the future for each user, and from one user

to the other at each time. This requires a careful joint management of energy flow in

two separate dimensions, and different management policies are required depending

on how users share the common wireless medium and interact over it. In this

context, we analyze several basic multi-user energy harvesting network structures

with wireless energy transfer. To capture the main trade-offs and insights that arise

due to wireless energy transfer, we focus our attention on simple two- and three-user

communication systems, such as the relay channel, multiple access channel and the

two-way channel.

Next, we focus on the delay minimization problem for networks. We consider

a general network topology of energy harvesting and energy cooperating nodes.

Each node harvests energy from nature and all nodes may share a portion of their

harvested energies with neighboring nodes through energy cooperation. We consider

the joint data routing and capacity assignment problem for this setting under fixed

data and energy routing topologies. We determine the joint routing of energy and



data in a general multi-user scenario with data and energy transfer.

Next, we consider the cooperative energy harvesting diamond channel, where

the source and two relays harvest energy from nature and the physical layer is

modeled as a concatenation of a broadcast and a multiple access channel. Since the

broadcast channel is degraded, one of the relays has the message of the other relay.

Therefore, the multiple access channel is an extended multiple access channel with

common data. We determine the optimum power and rate allocation policies of the

users in order to maximize the end-to-end throughput of this system.

Finally, we consider the two-user cooperative multiple access channel with

energy harvesting users. The users cooperate at the physical layer (data cooperation)

by establishing common messages through overheard signals and then cooperatively

sending them. For this channel model, we investigate the effect of intermittent

data arrivals to the users. We find the optimal offline transmit power and rate

allocation policy that maximize the departure region. When the users can further

cooperate at the battery level (energy cooperation), we find the jointly optimal

offline transmit power and rate allocation policy together with the energy transfer

policy that maximize the departure region.
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CHAPTER 1

Introduction

1.1 Overview

In energy harvesting communications, users transmit messages using energy har-

vested from nature [1–3]. In such systems, transmission policies of the users need to

be carefully designed according to the energy arrival profiles. Energy management

problem for various energy harvesting commmunication setting has been adressed

in different works [4–19]. When the energy management policies are optimized as in

[4–19], the resulting performance of the system depends only on the energy arrival

profiles. In this dissertation, we introduce and analyze the notion of energy cooper-

ation in energy harvesting communications where users can share a portion of their

harvested energy with the other users via wireless energy transfer [20–22]. This

energy cooperation enables us to control and optimize the energy arrivals at users

to the extent possible. In the classical setting of cooperation [23], users help each

other in the transmission of their data by exploiting the broadcast nature of wireless

communications and the resulting overheard information. In contrast to the usual

notion of cooperation, which is at the signal level, energy cooperation we introduce

1



here is at the battery energy level. In a multi-user setting, energy may be abundant

in one user in which case the loss incurred by transferring it to another user may be

less than the gain it yields for the other user. It is this cooperation that we explore

in this dissertation for several multi-user scenarios, where energy can be transferred

from one user to another through a separate wireless energy transfer unit.

Wireless energy transfer has been recently proposed as a promising technique

for a wide variety of wireless networking applications [24–29]. In future wireless net-

works, nodes are envisioned to be capable of harvesting energy from the environment

and transferring energy to other nodes, rendering the network energy self-sufficient

and self-sustaining with a significantly prolonged lifetime. Wireless energy trans-

fer is a relatively new concept for wireless communications; however, it has been

considered in other contexts earlier: Wireless powering of engineering systems by

microwave power transfer technology has been used in many applications [30–32]

for a long time, such as space missions [31] and optical communications [32]. While

microwave power transfer is viewed as the key technology for large-scale cellular net-

works [24], recent advances in wireless energy transfer technology supports feasibility

of wireless network design in smaller scales. In [33, 34], wireless energy transfer with

strong inductive coupling has been demonstrated with relatively high efficiency over

relatively long distances with small device sizes. Another related line of research in

medical implanting applications has been presented in [27–29] where wireless nodes

are powered by wireless energy transfer, which also use the wirelessly transferred

energy for communications. RFID technology is another prominent example along

this direction, where nodes harvest received energy and use the harvested energy

2



(via reflection) for communication [35]. Relying on the possibility of efficient wire-

less energy transfer, in this dissertation, we investigate the optimum communication

schemes in multi-user systems with nodes that have energy harvesting and energy

transfer capabilities.

In communication systems with wireless energy transfer, energy and informa-

tion flow simultaneously. Motivated by this nature of such systems, the trade-off

between energy and information transmission has been addressed in several recent

works [36–42]. Among these works, the one that is most pertinent to our work

is [41], where multi-user communication systems with simultaneous energy and in-

formation transmission are studied. Our problem formulations capture different

trade-offs than those studied in [36–42] since in our model wireless energy transfer

is maintained by a separate wireless energy transfer unit, and the harvested energy

source is independent of the received signal energy.

We first consider the offline optimal energy management problem for several

basic multi-user network structures with energy harvesting transmitters and one-way

wireless energy transfer. As extensively emphasized in [4–19], in energy harvesting

transmitters, energy arrivals in time impose energy causality constraints on the

transmission policies of the users. In the optimal policy, due to the concavity of

the throughput in powers, energy needs to be allocated as constant as possible over

time subject to energy causality constraints. In the presence of wireless energy

transfer, energy causality constraints take a new form: energy can flow in time from

the past to the future for each user, and from one user to the other at each time.

This requires a careful joint management of energy flow in two separate dimensions,

3



and different management policies are required depending on how users share the

common wireless medium and interact over it. In this context, we analyze several

basic multi-user energy harvesting network structures with wireless energy transfer.

To capture the main trade-offs and insights that arise due to wireless energy transfer,

we focus our attention on simple two- and three-user communication systems.

Next, we focus on the delay minimization problem for networks. We consider a

general network topology of energy harvesting and energy cooperating nodes. Each

node harvests energy from nature and all nodes may share a portion of their har-

vested energies with neighboring nodes through energy cooperation. The delay on

each link depends on the information carrying capacity of the link, and in partic-

ular, it decreases monotonically with the capacity of the link for a fixed data flow

through it; see e.g., [43, eqn. (5.30)]. The capacity, in turn, is a function of the

power allocated to the link, and in particular, it is a monotonically increasing func-

tion of the power, for instance, through a logarithmic Shannon type capacity-power

relationship; see e.g., [44, eqns. (9.60) and (9.62)]. In addition, the delay on a link

is a monotonically increasing function of the data flow through it, for a fixed link

capacity [43, eqn. (5.30)]. We consider the joint data routing and capacity assign-

ment problem for this setting under fixed data and energy routing topologies [43,

Section 5.4.2]. Our work is related to and builds upon classical and recent works

on data routing and capacity assignment in communication networks [43, 45–53],

and recent works on energy harvesting communications [4–6, 9, 54] and energy co-

operation [24, 26, 36–38, 55–67] in wireless networks. Inspired by joint routing and

resource allocation problems in the classical works such as [45–48, 51, 53], we study

4



joint routing of energy and data in a general multi-user scenario with data and en-

ergy transfer. We specialize in the objective of minimizing the total delay in the

system, which has not been addressed in the context of energy harvesting wireless

networks with energy cooperation.

Next, we consider the energy harvesting diamond channel [68], where the

source and two relays harvest energy from nature and the physical layer is mod-

eled as a concatenation of a broadcast and a multiple access channel. Since the

broadcast channel is degraded, one of the relays has the message of the other relay.

Therefore, the multiple access channel is an extended multiple access channel with

common data [69]. We determine the optimum power and rate allocation policies

of the users in order to maximize the end-to-end throughput of this system.

Finally, we consider the two-user cooperative multiple access channel where

both of the users harvest energy from nature. The users cooperate at the physical

layer (data cooperation) by establishing common messages through overheard signals

and then cooperatively sending them. For this channel model, we investigate the

effect of intermittent data arrivals to the users. We find the optimal offline transmit

power and rate allocation policy that maximize the departure region. When the

users can further cooperate at the battery level (energy cooperation), we find the

jointly optimal offline transmit power and rate allocation policy together with the

energy transfer policy that maximize the departure region.

5



1.2 Outline

In Chapter 2, we investigate three channel models with energy harvesting and en-

ergy cooperation. First, we examine additive Gaussian two-hop relay channel with

one-way energy transfer from the source node to the relay node where the objective

is to maximize the end-to-end throughput. Next, we consider the Gaussian two-way

channel with one-way energy transfer, and the two-user Gaussian multiple access

channel with one-way energy transfer. For these two channel models, we determine

the two-dimensional simultaneously achievable throughput regions. For all three

cases, we use a Lagrangian approach and determine the optimum transmit powers

and energy transfer policies via the KKT optimality conditions. In particular, we

develop a two-dimensional directional water-filling algorithm which optimally con-

trols the energy flow in time and among users. As observed in [6], energy harvesting

setting gives rise to a directional water-filling algorithm, where energy can flow only

from the past to the future due to the energy causality constraints. In addition, with

wireless energy transfer, at any give time, energy can flow from one user to the other

depending on the direction of wireless energy transfer. Therefore, the directionality

of energy flow in two separate dimensions requires careful management of energy

over time and users. Solutions obtained in each setting yield new insights on energy

cooperation at the battery energy level in the presence of wireless energy transfer.

In Chapter 3, we consider the delay minimization problem in an energy har-

vesting communication network with energy cooperation. For fixed data and energy

routing topologies, we determine the optimum data rates, transmit powers and

6



energy transfers, subject to flow and energy conservation constraints, in order to

minimize the network delay. We start with a simplified problem where data flows

are fixed and optimize energy management at each node for the case of a single

energy harvest per node. This is tantamount to distributing each node’s available

energy over its outgoing data links and energy transfers to neighboring nodes. For

this case, with no energy cooperation, we show that each node should allocate more

power to links with more noise and/or more data flow. In addition, when there is

energy cooperation, our numerical results indicate that, energy is routed from nodes

with lower data loads to nodes with higher data loads. We then extend this setting

to the case of multiple energy harvests per node over time. In this case, we optimize

each node’s energy management over its outgoing data links and its energy transfers

to neighboring nodes, over multiple time slots. For this case, with no energy coop-

eration, we show that, for any given node, the sum of powers on the outgoing links

over time is equal to the single-link optimal power over time. Then, we consider the

problem of joint flow control and energy management for the entire network. We

determine the necessary conditions for joint optimality of a power control, energy

transfer and routing policy. We provide an iterative algorithm that updates the data

flows, energy flows and power distribution over outgoing data links sequentially. We

show that this algorithm converges to a Pareto-optimal operating point.

In Chapter 4, we consider the energy harvesting diamond channel, where the

source and two relays harvest energy from nature and the physical layer is modeled

as a concatenation of a broadcast and a multiple access channel. Since the broadcast

channel is degraded, one of the relays has the message of the other relay and the

7



multiple access channel can be modeled as an extended multiple access channel with

common data. We find the optimal offline transmit power and rate allocations that

maximize the end-to-end throughput. For the broadcast side, we show that there

exists an optimal source power allocation which is equal to the single-user optimal

power allocation for the source energy arrivals. We then show that the fraction

of the power spent on each broadcast link depends on the energy arrivals for the

relays. For the multiple access side with no cooperation, with fixed source rates,

we show that the problem can be cast as a multiple access channel with both data

and energy arrivals and can be formulated in terms of data transmission rates only.

We use a dual decomposition method to solve the overall problem efficiently. Then,

we focus on the diamond channel with cooperative multiple access capacity region

and find the optimal rates and powers using a decomposition into inner and outer

maximization problems.

In Chapter 5, we consider an energy harvesting two-user cooperative Gaussian

multiple access channel. The users cooperate at the physical layer (data cooperation)

by establishing common messages through overheard signals and then cooperatively

sending them. We study two scenarios within this model. In the first scenario, the

data packets arrive intermittently over time. We find the optimal offline transmit

power and rate allocation policy that maximizes the departure region. We first show

that there exists an optimal policy, in which the single-user rate constraints in each

time slot are tight, yielding a one-to-one relation between the powers and rates.

Then, we formulate the departure region maximization problem as a weighted sum

rate maximization in terms of rates only. Next, we propose a sequential convex

8



approximation method to approximate the problem at each step and show that it

converges to the optimal solution. Then, we solve the approximate problems using

an inner outer decomposition method. In the second scenario, the users cooperate

at the battery level (energy cooperation) by wirelessly transferring energy to each

other in addition to the data cooperation. We find the jointly optimal offline trans-

mit power and rate allocation policy together with the energy transfer policy that

maximize the departure region. We provide necessary conditions for energy transfer,

and prove some properties of the optimal transmit policy, thereby shedding some

light on the interplay between energy and data cooperation.

In Chapter 6, we provide conclusions to this dissertation.
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CHAPTER 2

Energy Cooperation in Energy Harvesting Communications

2.1 Introduction

In this chapter, we study the offline optimal energy management problem for sev-

eral basic multi-user network structures with energy harvesting transmitters and

one-way wireless energy transfer. First, we examine additive Gaussian two-hop re-

lay channel with one-way energy transfer from the source node to the relay node

where the objective is to maximize the end-to-end throughput. Next, we consider

the Gaussian two-way channel with one-way energy transfer, and the two-user Gaus-

sian multiple access channel with one-way energy transfer. For these two channel

models, we determine the two-dimensional simultaneously achievable throughput re-

gions. For all three cases, we use a Lagrangian approach and determine the optimum

transmit powers and energy transfer policies via the KKT optimality conditions. In

particular, we develop a two-dimensional directional water-filling algorithm which

optimally controls the energy flow in time and among users. As observed in [6],

energy harvesting setting gives rise to a directional water-filling algorithm, where

energy can flow only from the past to the future due to the energy causality con-
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straints. In addition, with wireless energy transfer, at any give time, energy can flow

from one user to the other depending on the direction of wireless energy transfer.

Therefore, the directionality of energy flow in two separate dimensions requires care-

ful management of energy over time and users. Solutions obtained in each setting

yield new insights on energy cooperation at the battery energy level in the presence

of wireless energy transfer.

2.2 Two-Hop Relay Channel with One-Way Energy Transfer

In this section, we consider a two-hop relay channel consisting of a source node,

a relay node and a destination node as shown in Fig. 2.1. The two queues at the

source and the relay nodes are the data and energy queues. The energies that arrive

at the source and the relay nodes are saved in the corresponding energy queues. The

data queue of the source always carries some data packets to be delivered to the

destination. The data packets sent from the source node cause a depletion of energy

from the source energy queue and an increase in the relay data queue. These data

packets are then served out of the relay data queue with a cost of energy depletion

from the relay energy queue. The relay operates in a full-duplex mode, i.e., it can

receive and send data within a single slot; in addition, the relay can receive energy as

well in the same slot. Therefore, the data and energy queues of the relay are updated

simultaneously in every slot. We assume that the data and energy buffer sizes are

unlimited. In addition, energy expenditure is only due to data transmissions; any

other energy costs, e.g., processing, circuitry, are not considered in this chapter.
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Figure 2.1: Two-hop relay channel with energy harvesting source and relay nodes,
and one-way energy transfer from the source node to the relay node.

There is a separate wireless energy transfer unit at the source node. Information

and energy transfer channels are orthogonal to each other. In this setting, the source

node may wish to share a portion of its energy with the relay node so that the relay

can forward more data.

The channels from the source to the relay and from the relay to the destination

are additive white Gaussian noise (AWGN) channels. The received signals yr and

yd at the relay and the destination, respectively, are given by yr =
√
hsxs + ns and

yd =
√
hrxr +nr, where hs and hr are the channel coefficients for the source-to-relay

and relay-to-destination channels, respectively. ns and nr are Gaussian noises each

with zero-mean and unit-variance. We assume that hs = hr = 1 without loss of

generality as otherwise the energy arrivals can be properly scaled.

Time is slotted and there are a total of T equal length slots. Without loss of

generality, we assume that the slots are of unit length. At times t = 1, . . . , T , the

source harvests energy with amounts E1, E2, . . . , ET and the relay harvests energy

with amounts Ē1, Ē2, . . . , ĒT . Without loss of generality, we assume E1 > 0, Ē1 > 0.

The normalized energy transfer efficiency is α where α = α′ hr
hs

and α′ is the actual
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energy transfer efficiency. We assume 0 ≤ α ≤ 1. This means that when the source

transfers δi amount of energy to the relay through the wireless energy transfer unit

in slot i, αδi amount of energy enters the energy queue of the relay in the next slot.

Similarly, when the source uses power Pi for data transmission, the data queue of

the relay is increased by 1
2

log (1 + Pi) bits in the next slot. The source and relay

slots are indexed by one slot delay, so that, the slot subscripts are aligned at the

source and the relay; see Fig. 2.2. Power policy of the source is the sequences Pi

and δi, and the power policy of the relay is the sequence P̄i.

As the energy that has not arrived yet cannot be used for data transmission

or energy transfer, the power policies of the source and the relay are constrained by

the causality of energy in time. These constraints yield the following feasible set:

F =
{

(δ,P, P̄) :
k∑

i=1

Pi ≤
k∑

i=1

(Ei − δi),
k∑

i=1

P̄i ≤
k∑

i=1

(Ēi + αδi),

Pk, P̄k, δk ≥ 0, ∀k
}

(2.1)

where vectors P, P̄ and δ denote sequences Pi, P̄i and δi, respectively. F is the

feasible set due to energy causality in harvested and transferred energies and is

valid for the two-way and multiple access system models as well. For the two-hop

relay channel model, we have an additional constraint: The relay transmits data

that arrives from the source. Therefore, the power policies of the source and the
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Figure 2.2: Slotted system model: The queues of the relay are updated with one slot
delay with respect to the queues of the source so that the slot indices are aligned.

relay need to satisfy the following data causality constraints at the relay:

k∑

i=1

1

2
log (1 + P̄i) ≤

k∑

i=1

1

2
log (1 + Pi), k = 1, . . . , T (2.2)

We formulate the end-to-end throughput maximization problem in the next section.

2.3 End-to-end Throughput Maximization for the Relay Channel

The optimal offline end-to-end throughput maximization problem with wireless en-

ergy transfer subject to energy causality at both nodes and data causality at the

relay node is:

max
P̄i, Pi, δi

T∑

i=1

1

2
log (1 + P̄i)

s.t.
k∑

i=1

1

2
log (1 + P̄i) ≤

k∑

i=1

1

2
log (1 + Pi), ∀k

(δ,P, P̄) ∈ F (2.3)
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It can be shown that (2.3) is equivalent to a convex optimization problem (see [20]),

by a change of variables from P̄i, Pi, δi to r̄i = 1
2

log
(
1 + P̄i

)
, ri = 1

2
log (1 + Pi) , δi.

Thus, (2.3) can be solved using standard techniques [70]. The Lagrangian function

for the problem in (2.3) is:

L =−
T∑

i=1

log (1 + P̄i) +
T∑

k=1

µk

(
k∑

i=1

Pi − (Ei − δi)
)

+
T∑

k=1

ηk

(
k∑

i=1

P̄i − (Ēi + αδi)

)

+
T∑

k=1

λk

(
k∑

i=1

log (1 + P̄i)−
k∑

i=1

log (1 + Pi)

)
−

T∑

k=1

σkPk −
T∑

k=1

ψkP̄k −
T∑

k=1

ρkδk

(2.4)

We first argue that Pi and P̄i are non-zero in an optimal policy since E1 > 0

and Ē1 > 0. As (2.3) reduces to the problem in [12, 13] for fixed δi, the pow-

ers Pi and P̄i are positive and non-decreasing for positive initial energy. Hence,

it suffices to show that δ1 < E1 in an optimal policy. Assume δ1 = E1. Then,

P1 = 0 and from (2.2) P̄1 = 0. For now, assume that P2 > 0. Then, we must

also have P̄2 > 0. For some 0 < ε � 1, define a new energy transfer sequence

δ
′
1 = E1−ε, δ′2 = δ2+ε, and new source and relay power allocations P

′
1 = ε, P

′
2 = P2−ε

and P̄
′
1 = ε, P̄

′
2 = P̄2 − ε while keeping the source and relay power levels and energy

transfer values in the remaining slots unchanged. Note that this power allocation

is feasible: For the source energy causality constraint over the first slot we have,

P
′
1 = ε = E1 − (E1 − ε) = E1 − δ′1. Together with the fact that

∑k
i=1 P

′
i =

∑k
i=1 Pi

and
∑k

i=1 δ
′
i =

∑k
i=1 δi,∀k ≥ 2, we have

∑k
i=1 P

′
i ≤

∑k
i=1 Ei − δ

′
i,∀k, since the

original source power allocation and energy transfer profile are feasible. Similarly

for the relay energy causality constraint over the first slot we have, P̄
′
1 = ε ≤
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Ē1 + α(E1 − ε) for small enough ε. Together with the fact that
∑k

i=1 P̄
′
i =

∑k
i=1 P̄i

and
∑k

i=1 δ
′
i =

∑k
i=1 δi,∀k ≥ 2, we have

∑k
i=1 P̄

′
i ≤

∑k
i=1 Ēi+αδ

′
i,∀k, since the orig-

inal relay power allocation and energy transfer profile are feasible. The data causal-

ity constraint trivially holds for the first slot since, 1
2

log (1 + P
′
1) = 1

2
log (1 + P̄

′
1).

Similarly, 1
2

log (1 + P
′
2) = 1

2
log (1 + P2 − ε) ≤ 1

2
log (1 + P̄2 − ε) since P̄2 ≤ P2

due to data causality of the original allocation in the second slot. Therefore,

∑k
i=1

1
2

log (1 + P̄
′
i ) ≤ 1

2

∑k
i=1 log (1 + P

′
i ),∀k, and data causality is satisfied in all

slots. Hence, this new allocation satisfies the energy and data causality constraints

in (2.3) and achieves higher end-to-end throughput due to the concavity of the ob-

jective function with respect to P̄i. Therefore this contradicts optimality. On the

other hand, if P2 = 0, then P̄2 = 0 also. We then go until the first slot k where

Pk > 0. For that slot, we have P̄k > 0 and we use the above construction with P2

and P̄2 replaced with Pk and P̄k, respectively. This discussion implies, Pi and P̄i are

non-zero for all i in an optimal policy, and we have σi = ψi = 0, ∀i.

The KKT conditions for this problem are:

−1 +
∑T

k=i λk
1 + P̄i

+
T∑

k=i

ηk = 0, ∀i (2.5)

−∑T
k=i λk

1 + Pi
+

T∑

k=i

µk = 0, ∀i (2.6)

T∑

k=i

µk − α
T∑

k=i

ηk − ρi = 0, ∀i (2.7)
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with the additional complementary slackness conditions as:

λk

(
k∑

i=1

log (1 + P̄i)−
k∑

i=1

log (1 + Pi)

)
= 0, ∀k (2.8)

µk

(
k∑

i=1

Pi − (Ei − δi)
)

= 0, ∀k (2.9)

ηk

(
k∑

i=1

P̄i − (Ēi + αδi)

)
= 0, ∀k (2.10)

ρkδk = 0, ∀k (2.11)

From (2.5), (2.6) and (2.7) we get:

P̄i =
1−∑T

k=i λk∑T
k=i ηk

− 1, ∀i (2.12)

Pi =

∑T
k=i λk∑T
k=i µk

− 1, ∀i (2.13)

ρi =
T∑

k=i

µk − α
T∑

k=i

ηk, ∀i (2.14)

Next, we obtain necessary optimality conditions for (2.3).

2.3.1 Necessary Optimality Conditions

The first necessary optimality condition for (2.3) is that the source has to send as

many bits as the relay can send and the relay has to finish up all the data in its

data buffer. In other words, in the optimal policy, no data should be left in the data

queue of the relay at the end.

Lemma 2.1 The optimal power sequences P ∗i , P̄ ∗i must satisfy the constraint
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∑T
i=1

1
2

log(1 + P̄ ∗i ) =
∑T

i=1
1
2

log(1 + P ∗i ).

Proof: Suppose the stated constraint is satisfied with strict inequality. Then, we can

increase δT , increase P̄T and decrease PT without violating the energy constraints

and improve the overall throughput which contradicts the optimality of P̄ ∗i , P ∗i , δ∗i .

�

We note that if the relay energy profile is sufficient to forward all the bits in

the optimal source data stream with respect to the source energy profile, that is, if

the separable policy in [12, 13] yields a policy that satisfies the necessary condition

in Lemma 2.1, then it is the optimal solution for (2.3) and no energy transfer is

needed.

The second observation about the optimal policy is that the source has to ex-

haust the energies that have been harvested throughout the communication session

either for data transmission or in the form of wireless energy transfer.

Lemma 2.2 The optimal power profiles P ∗i , P̄ ∗i and energy transfers δ∗i must satisfy

∑T
i=1 P

∗
i =

∑T
i=1(Ei − δ∗i ).

Proof: Suppose this constraint is satisfied with strict inequality. Then, we can

increase δT and P̄T then decrease PT to achieve a larger throughput and satisfy the

constraints of (2.3). This contradicts the optimality of P ∗i , P̄
∗
i , δ

∗
i . �

Next, we observe that if there is a non-zero energy transfer from the source to

the relay, then the relay has to exhaust all of its energy in the optimal policy.
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Lemma 2.3 For the optimal power sequences P ∗i , P̄ ∗i and energy transfer sequence

δ∗i , if δ∗i 6= 0 for some i, then
∑T

i=1 P̄
∗
i =

∑T
i=1(Ēi + αδ∗i ).

Proof: Suppose this constraint is satisfied with strict inequality. Using a similar

argument as in Lemma 2.2, we can decrease δT and increase P̄T to achieve a larger

throughput and satisfy the constraints of problem (2.3). This contradicts the opti-

mality of P ∗i , P̄
∗
i , δ

∗
i . �

Finally, we note that, in the optimal policy, the total energy expenditure at

the relay must be higher than the total energy expenditure at the source.

Lemma 2.4 The optimal power sequences P ∗i and P̄ ∗i must satisfy
∑T

i=1 P
∗
i ≤

∑T
i=1 P̄

∗
i , and with equality if and only if P ∗i = P̄ ∗i for all i.

Proof: We will give a proof based on majorization theory and Schur convexity [71].

We denote the optimal source and relay rate allocation vectors as r∗ = [r∗1, . . . , r
∗
T ]

and r̄∗ = [r̄∗1, . . . , r̄
∗
T ], where r∗i = 1

2
log (1 + P ∗i ) and r̄∗i = 1

2
log (1 + P̄ ∗i ), for i =

1, . . . , T . First, we note that the optimal rate allocations of both the source and the

relay are monotone non-decreasing sequences by [4, Lemmas 1 and 4], i.e., r∗i ≤ r∗i+1

and r̄∗i ≤ r̄∗i+1, for i = 1, . . . , T . Second, we note the data causality constraint at

the relay
∑k

i=1 r̄
∗
i ≤

∑k
i=1 r

∗
i , for all k < T , and the equality

∑T
i=1 r̄

∗
i =

∑T
i=1 r

∗
i by

Lemma 2.1. These imply that r∗ is majorized by r̄∗, which is denoted by r∗ � r̄∗;

see [71, Definition 1.A.1]. Since P ∗i = 22r∗i − 1 and g(x) = 22x − 1 is strictly convex,

∑T
i=1 P

∗
i =

∑T
i=1 22r∗i − 1 is a strictly Schur convex function of r∗ [71, Proposition

3.C.1]. Then, since r∗ � r̄∗, we have that
∑T

i=1 P
∗
i =

∑T
i=1 22r∗i −1 ≤∑T

i=1 22r̄∗i −1 =
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∑T
i=1 P̄

∗
i [71, Proposition 4.B.1]. Moreover, due to the strict convexity of g(x), and

the resulting strict Schur convexity, equality is possible only when r∗i = r̄∗i for all i.

�

An immediate application of Lemma 2.4 is that if
∑T

i=1 Ēi <
∑T

i=1Ei, i.e., if

the total energy of the relay is less than the total energy of the source, then the

relay cannot forward the source data stream only with its own energy. In this case,

we must have δ∗i 6= 0 for some i, i.e., some energy transfer is strictly needed. We

state this in the following lemma.

Lemma 2.5 If the data buffer of the relay is empty at some slot k, k ≤ T , then

∑k
i=1 P

∗
i ≤

∑k
i=1 P̄

∗
i , and with equality only when P ∗i = P̄ ∗i for all i = 1, . . . , k.

Proof: If the data buffer of the relay is empty at some slot k, k ≤ T , then we

must have
∑k

i=1 r
∗
i =

∑k
i=1 r̄

∗
i . Together with the data causality constraints at

the relay
∑k̃

i=1 r̄
∗
i ≤

∑k̃
i=1 r

∗
i , for k̃ = 1, . . . , k − 1, we conclude that the subvector

r∗k = [r∗1, . . . , r
∗
k] is majorized by the subvector r̄∗k = [r∗1, . . . , r

∗
k], i.e., r∗k � r̄∗k. Then,

∑k
i=1 P

∗
i =

∑k
i=1 22r∗i − 1 ≤∑k

i=1 22r̄∗i − 1 =
∑k

i=1 P̄
∗
i , and with equality iff r∗k = r̄∗k

due to the strict Schur convexity. �

Necessary conditions in Lemmas 2.1 through 2.5 do not provide detailed struc-

tural properties for the optimal policy for an algorithmic solution. In the next

sections, we consider specific scenarios to gain insight on the optimal policy. In par-

ticular, we examine cases that correspond to practically interesting settings, such as

the case of only one of the nodes harvesting energy.
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2.3.2 Specific Scenario: Relay Energy Higher at the Beginning Lower

at the End

We consider the scenario where the relay energy arrival profile is higher at the

beginning, intersects the energy arrival profile of the source once, and remains lower

until the end of the communication, as shown in Fig. 2.3. In particular, we assume

that there exists ĩ ∈ [0, T ] such that
∑i

k=1 Ēk ≥
∑i

k=1 Ek, for all i = 1, . . . , ĩ, and

∑i
k=1 Ēk ≤

∑i
k=1 Ek, for all i = ĩ + 1, . . . , T . In Fig. 2.3, ĩ = 3. We note that this

case also covers the setting where the relay is not energy harvesting, and only the

source harvests energy during the communication session.

For this case, we propose the following solution. Form a new energy arrival

profile as: min{∑i
k=1

Ēk+αEk

α+1
,
∑i

k=1 Ek} as shown in Fig. 2.3, and maximize the

throughput with respect to this profile. In particular, use
∑i

k=1Ek for i = 1, . . . , ĩ,

and
∑i

k=1
Ēk+αEk

α+1
for i = ĩ + 1, . . . , T ; and perform energy transfer only at slots

ĩ + 1, . . . , T . The resulting power sequences are matched for the source and the

relay. More specifically, we propose

P ∗i = P̄ ∗i =

min

{∑ni
j=ni−1

Ēj+αEj

α+1
,
∑ni

j=ni−1
Ej

}

ni − ni−1

(2.15)

where

ni = arg min
ni−1≤k≤T

{
min{∑k

j=ni−1

Ēj+αEj

α+1
,
∑k

j=ni−1
Ej}

k − ni−1

}
(2.16)
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Figure 2.3: Optimal power sequence and energy transfer when the relay energy
profile is higher at the beginning and lower at the end with crossing only once.

We next show that there exist λi, µi, ηi, ρi ≥ 0 that satisfy (2.5)-(2.11) and

yield the solution in (2.15)-(2.16) via (2.12)-(2.14). In particular, ρi = 0 and ηi = µi
α

for i = ĩ+ 1, . . . , T . Since α
∑T

k=i ηk =
∑T

k=i µk for all i = ĩ+ 1 . . . , T , we have from

(2.12) and (2.13)

P̄ ∗i + αP ∗i =
1∑T
k=i ηk

− (1 + α), i = ĩ+ 1, . . . , T (2.17)

Hence, P̄ ∗i = 1

(1+α)
∑T

k=i ηk
− 1, which implies that λT = 1

1+α
and λi = 0 for i =

ĩ + 1, . . . , T − 1. Moreover, ηi = µi
α
> 0 whenever

∑i
k=1

Ēk+αEk

α+1
is active for some

i = ĩ + 1, . . . , T . As in [6, 7], we can show that such ηi = µi
α

that yield the power

sequence in (2.15)-(2.16) are uniquely found for i = ĩ+ 1, . . . , T .

It remains to find the Lagrange multipliers for i = 1, . . . , ĩ. We observe that

ηi = 0 and ρi =
∑ĩ

k=i µk for i = 1, . . . , ĩ. That is, the relay power constraint is

not active in the first ĩ slots, i.e.,
∑i

k=1 P̄
∗
k <

∑i
k=1 Ēk, i = 1, . . . , ĩ. To justify this
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claim, we note that since P ∗i = P̄ ∗i for i = ĩ+1, . . . , T , we have
∑ĩ

i=1
1
2

log (1 + P ∗i ) =

∑ĩ
i=1

1
2

log (1 + P̄ ∗i ). By Lemma 2.5, selecting Pi = P̄i for i = 1, . . . , ĩ is the minimum

energy consuming policy at the relay. Since by assumption
∑i

k=1 Pk ≤
∑i

k=1 P̄k for

i = 1, . . . , ĩ, Pi = P̄i is feasible and hence optimal, which in turn implies that

∑i
k=1 P̄

∗
k <

∑i
k=1 Ēk for i = 1, . . . , ĩ. As a consequence,

∑T
k=i ηk =

∑T
k=ĩ+1 ηk, i.e.,

constant for all i = 1, . . . , ĩ. As P̄ ∗i ≤ P̄ ∗
ĩ+1

, we can specify 0 ≤ λi ≤ 1
1+α

recursively,

with λi > 0 only when
∑i

k=1Ek constraint is active, as follows

λi = 1− P̄ ∗i
T∑

k=ĩ+1

ηk −
T∑

k=i+1

λk (2.18)

Moreover, µi > 0 for slots where
∑i

k=1 Ek constraint is active and µi =
∑T

k=i λk
P ∗i

−
∑T

k=i+1 µk. Note that if δ∗i 6= 0 for some i, the optimal source and relay power

sequences are unique while there may exist infinitely many δ∗i that yield the same

optimal power levels.

A particular case covered is when only the source has energy replenishments

and the relay has all its energy available initially, i.e., Ē1 > 0 and Ēi = 0 for

i > 1. If Ē1 >
∑T

i=1 Ei, the relay can forward all the bits sent from the source and

the optimal policy is trivial. If Ē1 <
∑T

i=1Ei, the optimal policy is obtained by

forming a common energy profile via energy transfer and matching the power and

rate sequences. Another special case is when ĩ = 0, i.e., when Ēi < Ei for all i. In

this case, min{∑i
k=1

Ēk+αEk

α+1
,
∑i

k=1Ek} =
∑i

k=1
αĒk+Ek

α+1
for all i and matching the

relay and source power sequences is optimal with δ∗i = Ei − Ēi+αEi

α+1
. When ĩ = T ,

we have Ēi > Ei, ∀i. The source optimizes the throughput according to {Ei}Ti=1
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Figure 2.4: Optimal power sequences and energy transfer when the source energy is
available at the beginning.

and the relay power is matched with the source.

2.3.3 Specific Scenario: Source Energy Available at the Beginning

We consider the scenario where the source has all of its energy available at the

beginning (i.e., E1 > 0 only), and the relay harvests energy throughout the com-

munication. Let the relay energy profile not be satisfactory to forward the optimal

source data stream which has constant rate 1
2

log (1 + E1

T
). Assume δi 6= 0 for some

i. Since the source is not energy harvesting, the total energy of the source will then

be E1 − δi yielding an optimal transmission power of E1−δi
T

. Hence, the throughput

of the source is independent of the slot index i the energy is transferred. However,

transferring the energy at slot j < i can only increase the relay transmit powers

after that slot; therefore, energy transfer has to be performed as early as possible,

i.e., at the first slot. Hence, the jointly optimal policy is δ∗1 6= 0 and δ∗i = 0 for the

remaining slots as shown in Fig. 2.4. Note that the power sequences of the source
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and the relay are not matched. δ∗1 is found by solving a fixed point equation as:

f(Ē1 + δ∗1, Ē2, . . . , ĒT ) =
T

2
log

(
1 +

E1 − δ∗1
T

)
(2.19)

where f(Ē1, Ē2, . . . , ĒT ) is the maximum number of bits corresponding to the energy

arrival sequence Ē1, Ē2, . . . , ĒT .

2.4 Gaussian Two-Way Channel with One-Way Energy Transfer

In this section, we consider a two-way channel as shown in Fig. 2.5. The two queues

at the nodes are the data and energy queues. The energies that arrive at the nodes

are saved in the corresponding energy queues. The data queues of both users always

carry some data packets. The physical layer is a memoryless Gaussian two-way

channel [72] where the channel inputs and outputs are x1, x2 and y1, y2, respectively.

The input-output relations are y1 = x1 +x2 +n1 and y2 = x1 +x2 +n2 where n1 and

n2 are independent Gaussian noises with zero-mean and unit-variance. In slot t, the

first and second users harvest energy in amounts Et and Ēt, respectively. There is

a separate wireless energy transfer unit at the first user, that transfers energy from

the first user to the second user with efficiency 0 ≤ α ≤ 1. The power policy of

user 1 is composed of the sequences Pi and δi, and the power policy of user 2 is the

sequence P̄i.

For the Gaussian two-way channel with individual power constraints P1 and

P2, rate pairs (R1, R2) with R1 ≤ 1
2

log (1 + P1), R2 ≤ 1
2

log (1 + P2) are achievable

[72]. For a fixed energy transfer vector δ, and feasible power control policies P and
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Figure 2.5: Two-way channel with one-way energy transfer.

P̄, the set of achievable rates is:

Cδ(P, P̄) =
{

(R1, R2) : R1 ≤
T∑

i=1

1

2
log (1 + Pi), R2 ≤

T∑

i=1

1

2
log (1 + P̄i)

}
(2.20)

The notation shows the dependence of the region on the energy transfer vector δ.

This region is shown in Fig. 2.6 for different values of δ. Each of these regions are

rectangles of the form Ri ≤ Ci where Ci is the maximum throughput achieved for

user i found by maximizing (2.20) constrained to the feasibility constraints F . As

δ is increased, energy is transferred from user 1 to user 2 therefore C1 decreases

while C2 increases. By taking the union of the regions over all possible energy

transfer vectors and power policies for the users, we obtain the capacity region of

the Gaussian two-way channel as:

C(E, Ē) =
⋃

(δ,P,P̄)∈F

Cδ(P, P̄) (2.21)

We determine the capacity region of the Gaussian two-way channel in the next

section, by solving weighted rate maximization problems which trace the boundary
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Figure 2.6: Capacity region of the Gaussian two-way channel.

of the capacity region.

2.5 Capacity Region of the Gaussian Two-Way Channel

In this section, we characterize the capacity region as well as the optimal power

allocation and energy transfer policies. We start by noting that the capacity re-

gion is convex in the following lemma. The proof of this lemma is provided in

Appendix 2.10.1.

Lemma 2.6 C(E,E) is a convex region.

Since C(E, Ē) is convex, each boundary point can be found by solving the

following weighted rate maximization problem:

max
P̄i, Pi, δi

T∑

i=1

θ1
1

2
log (1 + Pi) + θ2

1

2
log (1 + P̄i)

s.t. (δ,P, P̄) ∈ F (2.22)
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The problem in (2.22) is a convex optimization problem as the objective function is

concave and the feasible set is a convex set [70]. We write the Lagrangian function

for (2.22) as:

L =−
T∑

i=1

[
θ1 log (1 + Pi) + θ2 log (1 + P̄i)

]
+

T∑

k=1

µk

(
k∑

i=1

Pi − (Ei − δi)
)

+
T∑

k=1

ηk

(
k∑

i=1

P̄i − (Ēi + αδi)

)
−

T∑

k=1

σkPk −
T∑

k=1

ψkP̄k −
T∑

k=1

ρkδk (2.23)

We note that P̄i are always non-zero in the optimal policy as Ē1 > 0. Therefore,

we have ψk = 0,∀k. However, Pk = 0 may be optimal at some slots k and for some

values of θ1, θ2 in which case
∑k

i=1 δi =
∑k

i=1 Ei as energy should not be wasted

in an optimal policy. In the particular case of θ1 = θ2,
∑k

i=1 δi <
∑k

i=1Ei,∀k and

Pi > 0,∀i [22]. The KKT conditions for this problem are:

− θ1

1 + Pi
+

T∑

k=i

µk − σi = 0, ∀i (2.24)

− θ2

1 + P̄i
+

T∑

k=i

ηk = 0, ∀i (2.25)

T∑

k=i

µk − α
T∑

k=i

ηk − ρi = 0, ∀i (2.26)

with the additional complementary slackness conditions as:

µk

(
k∑

i=1

Pi − (Ei − δi)
)

= 0, ∀k (2.27)

ηk

(
k∑

i=1

P̄i − (Ēi + αδi)

)
= 0, ∀k (2.28)
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ρkδk = 0, ∀k (2.29)

σkPk = 0, ∀k (2.30)

From (2.24), (2.25) and (2.26) we get:

Pi =

(
θ1∑T
k=i µk

− 1

)+

, ∀i (2.31)

P̄i =
θ2∑T
k=i ηk

− 1, ∀i (2.32)

ρi =
T∑

k=i

µk − α
T∑

k=i

ηk, ∀i (2.33)

We will give the solution for general θ1, θ2 > 0 in the sequel. Before that, we

note that in the extreme case when θ2 = 0, the problem reduces to maximizing the

first user’s throughput only and hence any energy transfer is strictly sub-optimal,

i.e., δ = 0 is optimal. This corresponds to point 1 in Fig. 2.6. Similarly, when θ1 = 0,

the problem reduces to maximizing the second user’s throughput only and the first

user must transfer all of its energy to the second user, i.e., δ = E is optimal. This

corresponds to point 3 in Fig. 2.6. When θ1, θ2 > 0, we obtain the points between

points 1 and 3 in Fig. 2.6. In this case, for a given energy transfer profile δ1, . . . , δT ,

the optimization problem can be separated into two optimization problems, each

only in terms of the power control policy of the corresponding user. For fixed δ, the

optimal power policies of the two users can be found by [4].

Next, we provide the necessary optimality condition for a non-zero energy

transfer.
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Lemma 2.7 For the optimal power sequences P ∗i , P̄
∗
i and energy transfer sequence

δ∗i , if δ∗i 6= 0 and P ∗i 6= 0 for a slot i, then

1 + P ∗i
1 + P̄ ∗i

=
θ1

θ2α
(2.34)

Proof: From (2.31), (2.32) and (2.33), we have

1 + P ∗i
1 + P̄ ∗i

=
θ1

∑T
k=i ηk

θ2(α
∑T

k=i ηk + ρi − σi)
(2.35)

If there is a non-zero energy transfer, δ∗i 6= 0, we have from (2.29), ρi = 0 and if

P ∗i 6= 0 we have from (2.30), σi = 0. Therefore, (2.34) must be satisfied if δ∗i 6= 0

and P ∗i 6= 0. �

In order to devise an algorithmic solution, we apply a change of variable P̃i = P̄i

α

and re-write the optimization problem in terms of Pi, P̃i, δi as follows:

max
P̃i, Pi, δi

T∑

i=1

θ1
1

2
log (1 + Pi) + θ2

1

2
log (1 + αP̃i)

s.t.
k∑

i=1

Pi ≤
k∑

i=1

(Ei − δi), ∀k

k∑

i=1

P̃i ≤
k∑

i=1

(
Ēi
α

+ δi

)
, ∀k

Pk, P̃k, δk ≥ 0, ∀k (2.36)
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The optimal power allocation for this transformed problem is:

P ∗i = (θ1νi − 1)+ , ∀i (2.37)

P̃ ∗i = θ2ν̃i −
1

α
, ∀i (2.38)

where νi and ν̃i in slot i are defined by

νi =
1∑T
k=i µk

and ν̃i =
1∑T
k=i ηk

(2.39)

The power level expressions in (2.37)-(2.38) lead to a directional water-filling

interpretation [6]. In particular, we note that energy has to be jointly allocated

in time and user dimensions together. This calls for a two-dimensional directional

water-filling algorithm where energy is allowed to flow in two dimensions, from left

to right (in time) and from up to down (among users). We, next, explain this

algorithm.

2.5.1 Two-Dimensional Directional Water-filling Algorithm

We utilize right permeable taps for users to account for the energy which is saved

in their individual batteries to be used in the future and down permeable taps to

account for energy that is transferred from user 1 to user 2; see Figs. 2.7 and 2.8.

The base levels for users 1 and 2 are 1 and 1
α

, respectively, as shown in Fig. 2.7.

Moreover, to facilitate the water flow interpretation, we scale the energy arrivals

of user 2 by 1
α

as in the transformed problem (2.36). Then, we fill the scaled
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Figure 2.7: The proper scaling of the energy arrivals for a two slot system.

energies into slots to get the initial water levels. If the resulting water levels are

not monotonically increasing in time for both users, then water has to flow through

the horizontal taps until the levels are balanced. However, the water flow through

the vertical taps follow a different rule: If water level of user 1, νi is higher than θ1
θ2

times the water level of user 2, ν̃i at some slot, then water flows through the vertical

taps till νi
ν̃i

= θ1
θ2

is satisfied. If user 1’s energy is run out before this proportionality

is satisfied, then the water flow stops. This follows from Lemma 2.7. Once the

balanced water levels are found, P ∗i will be found from (2.37) and P̃ ∗i from (2.38).

Then, P̄ ∗i = αP̃ ∗i will give the optimal relay power allocation.

While finding the balanced water levels, the two dimensions of the water flow

(i.e., in time and among users) are coupled and therefore it is not easy to determine
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Ē1

0 21

Ē2
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Figure 2.8: Two-dimensional directional water-filling with right/down permeable
meter taps for θ1 = θ2 and α = 1.

beforehand which taps will be open or closed in the optimal solution. In particular,

the water flow of user 2 from time slot i to time slot i + j, j > 0, may become

redundant if some energy is transferred from user 1 in time slot i+j. To circumvent

this difficulty, we let each tap (right/down permeable) have a meter measuring the

water that has already passed through it and we allow that tap to let the water

flow back if an update in the allocation necessitates it. This way, we keep track of

the source of the energy and whether it is transferred to future time slots or to the

other user.

One can possibly propose many different procedures to obtain a solution for

the balanced water levels and hence an optimal policy. For instance, the following

particular procedure could be followed to obtain a solution: First, we fill energy
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into the slots with all taps closed. Then, we open only the right permeable taps and

perform directional water-filling (over time) for both users individually [6]. Then,

we open the down taps one by one in a backward fashion. Water is allowed to flow

from user 1 to user 2 only and only if the ratio of the water levels of user 1 and user

2 is higher than θ1
θ2

. If water flows down through a tap, the amount is measured

by the meter. Water levels in the slots connected by the bi-directional horizontal

taps need to be equal. Whenever water flows down through a down permeable tap,

the water levels must equalize in the transformed setting, or equivalently, they must

satisfy the proportionality relationship in (2.34) in the original setting. When the

water levels are properly balanced, the optimal solution is obtained. This procedure

is depicted in Fig. 2.8 for the case of θ1 = θ2 and α = 1. The advantage of this

particular algorithm is that the initial temporal directional water-filling is simple

and follows from [6].

The balanced water levels in the two-dimensional directional water-filling al-

gorithm can alternatively be obtained by iteratively allowing the water to flow from

a single tap at a time provided that all taps are visited infinitely often. In particular,

we open only one of the horizontal and vertical taps at a time and we keep track

of transferred energy in each tap by means of meters. Whenever a horizontal tap

is opened, the two water levels are equalized if the directionality of the tap allows

water to flow; otherwise, they are equalized to the extent possible according to the

meter readings. Similarly, if a vertical tap is opened, water flows till the ratio of

user 1’s water level to user 2’s water level equals θ1
θ2

if this ratio is higher than θ1
θ2

;

otherwise, this ratio is made closer to θ1
θ2

to the extent possible according to the
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meter readings. This iterative algorithm is given in Algorithm 1. We note that

if we go through all the possible taps sufficiently many times, our algorithm will

converge to the balanced water levels and hence to an optimal solution. This is due

to the fact that each iteration strictly increases the objective function in view of the

strict concavity of log(.) function and that bounded real monotone sequences always

converge.

An example run of the first algorithm proposed above (non-iterative) is given

in Fig. 2.8 for θ1 = θ2 and α = 1. Initially, we open the right permeable taps and

the water levels are equalized for the first user. Then, we open the down permeable

taps. In the second slot there is no need for energy transfer because E1+E2

2
< Ē2. In

the first slot there will be some non-zero energy transfer since E1+E2

2
> Ē1, and some

water flows through the first down permeable tap. Since user 1’s right permeable

tap has a positive meter at that point, some water is allowed to flow from right to

left thereby equalizing the water levels of user 1’s first and second slots and user 2’s

first slot.

2.5.2 A Specific Run of the Algorithm

In order to show more specifically how the algorithm runs, further explain the partic-

ular sequence of steps followed in the first two-dimensional water-filling algorithm

proposed above (non-iterative), and justify the need to use metered taps to keep

track of the water flow, we next provide a numerical example where E = [0, 12, 0]

mJ, Ē = [6, 6, 0] mJ and α = 1. Let T1i, T2i denote the horizontal taps of the
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Algorithm 1 Two dimensional directional water-filling (iterative algorithm)

Initialize
1: for i = 1 : N do
2: U1[i] = 1 + Ei, U

2[i] = 1+Ēi

α
. Fill energy into slots

3: end for

Define procedure
4: procedure WF(i, j,K, L) . Water-filling from slot i to slot j, from user K to

user L
5: if K = L then Tap = TK [i], c = 1
. If among the same user, the horizontal tap

6: else Tap = Q[i], c = θ1
θ2

. Otherwise the vertical tap
7: end if
8: if UK [i] ≥ cUL[j] then . If higher water level

9: t = min (U
K [i]−cUL[j]

1+c
, UK [i]− 1), Tap = Tap + t . Find water flow,

update tap
10: UK [i] = UK [i]− t, UL[j] = UL[j] + t

. Equalize water levels
11: else if Tap > 0 then . If meter is positive

12: t = min
(
UL[j]− 1

α
,Tap, cU

L[j]−UK [i]
1+c

)

. Find amount of water that can flow
13: UK [i] = UK [i] + t, UL[j] = UL[j]− t

. Equalize as meter allows
14: Tap = Tap− t
15: end if
16: end procedure

Main Algorithm
17: while diff < ε do
18: for i = 1 : N − 1 do
19: WF(i, i+ 1, 1, 1) . User 1 horizontal tap
20: end for
21: for i = N : 2 do
22: WF(i, i, 1, 2) . Vertical tap
23: WF(i− 1, i, 2, 2) . User 2 horizontal tap
24: end for
25: Pi = (U1[i]− 1)

+
and P̄i = αU2[i]− 1

26: thrk =
∑T

i=1 θ1
1
2

log (1 + Pi) + θ2
1
2

log (1 + P̄i)
27: diff = thrk − thrk−1

28: k = k + 1
29: end while

Return
30: P ∗i = Pi and P̄ ∗i = P̄i
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first and second users connecting the ith and i + 1st slots, and let Qi denote the

ith vertical tap. The optimal solution is P = [0, 4.8, 4.8] and P̄ = [4.8, 4.8, 4.8],

which is obtained by spreading the energy as equally as possible in two dimensions

among the users and time slots, subject to energy causality. We next consider two

sub-optimal orderings of tap openings.

Assume that we open the horizontal taps first and keep the vertical taps closed.

This yields the transient water levels P = [0, 6, 6] and P̄ = [4, 4, 4]. Now, if we open

the vertical taps, water is transferred in the second and third slots and the balanced

final levels are P = [0, 5, 5] and P̄ = [4, 5, 5]. This profile is not optimal since the

second user changes its power level when the battery is non-empty, violating [4,

Lemma 2].

Now, assume that we open the vertical taps first and keep the horizontal taps

closed. Energy is transferred in the second slot and the new transient water levels

will be P = [0, 9, 0] and P̄ = [6, 9, 0]. Then, when we open the horizontal taps, we

will have P = [0, 4.5, 4.5] and P̄ = [5, 5, 5]. This profile is not optimal either, as after

energy transfer, the source power level is less than the relay power level, violating

Lemma 2.7.

We now show how the first proposed (non-iterative) two-dimensional direc-

tional water-filling algorithm works. First, we open the horizontal taps to get

P = [0, 6, 6] and P̄ = [4, 4, 4] with the water meters reading [0, 6] and [2, 2]. Recall

that the taps with positive meter readings allow bi-directional energy transfer. Next,

we open the vertical taps in a backward fashion. Once Q3 is opened, water flows to

the second user and since T21, T22 are bi-directional it starts to fill all the slots of the
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second user. A balance is established when P = [0, 4.8, 4.8] and P̄ = [4.8, 4.8, 4.8],

which is the optimal solution.

2.6 Multiple Access Channel with One-Way Energy Transfer

In this section, we consider the multiple access channel scenario shown in Fig. 2.9. In

the multiple access channel, the received signal is y = x1+x2+n where x1 and x2 are

signals of user 1 and user 2, respectively, and n is a Gaussian noise with zero-mean

and unit-variance. For the Gaussian two-user multiple access channel with individual

power constraints P1 and P2, rate pairs (R1, R2) with R1 ≤ 1
2

log (1 + P1), R2 ≤

1
2

log (1 + P2), R1 +R2 ≤ 1
2

log (1 + P1 + P2) are achievable [44]. For a fixed energy

transfer vector δ, and feasible power control policies P and P̄, the set of achievable

rates is a pentagon defined as [10]:

Cδ(P, P̄) =
{

(R1, R2) : R1 ≤
T∑

i=1

1

2
log (1 + Pi),

R2 ≤
T∑

i=1

1

2
log (1 + P̄i),

R1 +R2 ≤
T∑

i=1

1

2
log (1 + P̄i + Pi)

}
(2.40)

For each feasible (P, P̄, δ), the region is a pentagon. We obtain the capacity region

by taking the union of these regions over all feasible power allocations and energy

transfer profiles:

C(E, Ē) =
⋃

(δ,P,P̄)∈F

Cδ(P, P̄) (2.41)
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We determine the capacity region of the Gaussian multiple access channel in the

next section.

Receiver

energy

queue

energy

δiEi Ēi

User 2User 1 data queuedata queue

queue

Figure 2.9: Multiple access channel with one-way energy transfer.

2.7 Capacity Region of the Gaussian Multiple Access Channel

In this section, we characterize the capacity region as well as the optimal power

allocation and energy transfer policies. First, we note in the following lemma that

the capacity region is convex. We prove this lemma in Appendix 2.10.2.

Lemma 2.8 C(E,E) is a convex region.

Since the region is convex, each boundary point is a solution to maxR∈CM θR

[73] for some θ = [θ1, θ2]. We examine two cases separately, θ1 ≥ θ2 and θ1 < θ2.
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2.7.1 θ1 ≥ θ2

In this case, the boundary points between 1, 2 and 3 in Fig. 2.10 are found by solving

the following problem:

max
P̄i, Pi, δi

T∑

i=1

(θ1 − θ2)
1

2
log (1 + Pi) + θ2

1

2
log (1 + P̄i + Pi)

s.t. (δ,P, P̄) ∈ F (2.42)

The problem in (2.42) is a convex optimization problem as the objective function is

concave and the feasible set is a convex set [70]. We write the Lagrangian function

for (2.42) as:

L =−
T∑

i=1

[
(θ1 − θ2) log (1 + Pi) + θ2 log (1 + P̄i + Pi)

]
+

T∑

k=1

µk

(
k∑

i=1

Pi − (Ei − δi)
)

+
T∑

k=1

ηk

(
k∑

i=1

P̄i − (Ēi + αδi)

)
−

T∑

k=1

σkPk −
T∑

k=1

ψkP̄k −
T∑

k=1

ρkδk (2.43)

The KKT conditions are:

−θ1 − θ2

1 + Pi
− θ2

1 + Pi + P̄i
+

T∑

k=i

µk − σi = 0, ∀i (2.44)

− θ2

1 + Pi + P̄i
+

T∑

k=i

ηk − ψi = 0, ∀i (2.45)

T∑

k=i

µk − α
T∑

k=i

ηk − ρi = 0, ∀i (2.46)
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Figure 2.10: Capacity region of the Gaussian multiple access channel for α = 1 and

α < 1.

We claim that in this case, δi = 0, ∀i is optimal. Therefore, the first user

should not transfer any energy. To prove this claim, we first note that the first

term in the objective function in (2.42) is a monotone concave function of Pi and

the second term is a monotone concave function of Pi + P̄i. Assume δk > 0 for

some slot k and let Pi, P̄i, δi satisfy the constraints in (2.1). We first consider the

case α = 1. Now for some 0 < ε � 1, define a new energy transfer value in

slot k as δ
′

k = δk − ε, while keeping the energy transfer levels in the remaining

slots unchanged. Also define new source and relay power allocations in slot k as

P
′

k = Pk + ε, P̄
′

k = P̄k − ε, while keeping the source and relay power levels in the

remaining slots unchanged. It can be verified that this new allocation satisfies the

constraints in (2.1) and P
′

k + P̄
′

k = Pk + P̄k together with P
′

k > Pk. This implies

that by giving any transferred energy back to user 1, we can increase the objective

function in (2.42). Therefore, in an optimal policy, energy transfer is not needed
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for α = 1. We note that if P̄
′

k = 0, we can set δ
′

k = 0 and δ
′
m = δm + δ

′

k where

m > k is the first slot after k such that P̄m > 0. As the transferred energy at

slot k is not used at slots k, . . . ,m − 1, the change in the energy transfer does not

violate energy constraints. We can now use our construction on this modified energy

transfer sequence and conclude that δk = 0. Finally, if k = T this allocation cannot

be optimal since transferred energy is wasted. We conclude that if energy transfer

is not needed for α = 1, then it is also not needed for the general case of α < 1

due to the inefficiency of wireless energy transfer. We also remark that for θ2 = θ1

and α = 1, transferring no energy is sufficient but not necessary; there may exist

multiple different optimal energy transfer profiles, including the one with no energy

transfer.

Since energy transfer is not needed, optimal power control policies for the two

users are the same as those in the energy harvesting multiple access channel with

no energy transfer and can be found by the generalized backward directional water-

filling algorithm described in [10]. That is, the capacity region boundary from point

1 to point 3 in Fig. 2.10 is found by the algorithm in [10]. Specifically, for θ1 = θ2,

we have ηk = µk for all k and the sum-rate optimal power policies are obtained

by applying single-user directional water-filling algorithm to the sum of the energy

profiles of the two users [10].
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2.7.2 θ1 < θ2

Here, we consider the remaining parts of the boundary, namely the points from point

3 to point 4 in Fig. 2.10. In this case, we need to solve the following optimization

problem:

max
P̄i, Pi, δi

T∑

i=1

(θ2 − θ1) log (1 + P̄i) + θ1 log (1 + P̄i + Pi)

s.t. (δ, P̄, P) ∈ F (2.47)

which is a convex optimization problem and the corresponding KKT conditions are:

− θ1

1 + Pi + P̄i
+

T∑

k=i

µk − σi = 0, ∀i (2.48)

−θ2 − θ1

1 + P̄i
− θ1

1 + Pi + P̄i
+

T∑

k=i

ηk − ψi = 0, ∀i (2.49)

T∑

k=i

µk − α
T∑

k=i

ηk − ρi = 0, ∀i (2.50)

We do not have an analytical closed form solution for (2.48)-(2.50). Since (2.47) is a

convex optimization problem, standard numerical methods for convex optimization

may be employed. We find that the solution of (2.47) has a simple form in some

special cases, which we investigate next.

When α = 1, we find that the optimal solution of (2.47) requires all the energy

of user 1 transferred to user 2. To verify this fact, we use contradiction. Assume

that Pk > 0 for some slot k. Then σk = 0 due to the slackness condition. Note from

(2.48)-(2.49) that
∑T

i=k ηi − ψk >
∑T

i=k µi, as θ2 > θ1. Combining this with (2.50),

43



we get ψk+ρk < 0, which is a contradiction. Thus, in the optimal solution, we must

have Pk = 0,∀k. Therefore, user 1 should not transmit any data, and instead should

transfer all of its energy to user 2 by the end of T slots. This policy corresponds to

point 4 in Fig. 2.10. On the other hand, sum-rate optimal point, point 3, achieves

the same throughput as point 4. This implies that when α = 1, points 2, 3 and

4 in Fig. 2.10 lie on the 45o line. In particular, the optimal throughput of user

2, which is obtained by single-user throughput maximization subject to harvested

energies of user 2 plus the harvested energies of user 1, coincides with the optimal

sum-throughput.

When α < 1, points 3 and 4 in Fig. 2.10 are not on the same line. We observe

that when θ2
θ1

is sufficiently large, user 1 transfers all of its energy to user 2. In order

to verify this claim, we note that, if user 1 transfers some but not all of its energy

at the end of T slots, then PT > 0 and σT = 0. In this case, from (2.48)-(2.50) and

as ρT ≥ 0, we have

1 + P̄T
1 + P̄T + PT

≥ α(θ2 − θ1)

(1− α)θ1

(2.51)

Since 1+P̄T

1+P̄T +PT
< 1, we conclude that if α(θ2−θ1)

(1−α)θ1
≥ 1, then (2.51) cannot be satisfied

which forces all of the energy of user 1 to be transferred to user 2 so that σT > 0.

Note that α(θ2−θ1)
(1−α)θ1

≥ 1 is equivalent to θ2
θ1
≥ 1

α
. Hence, if θ2

θ1
≥ 1

α
, in the optimal

solution, user 1 transfers all of its energy to user 2. This implies that the capacity

region boundary intersects the horizontal line in Fig. 2.10 with slope less than or

equal to 1
α

.
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2.8 Numerical Results

In this section, we provide numerical examples for studied multi-user settings and

illustrate the resulting optimal policies. In all examples, we assume that the slot

length is 1 second, noise spectral density is N0 = 10−19 W/Hz and the available

bandwidth is 1 MHz.

2.8.1 Numerical Example for the Gaussian Two-Hop Relay Channel

We first consider the two-hop relay channel with energy harvesting and energy trans-

fer in Section 2.2. In our first numerical study, the source and the relay have the

energy arrival profiles E = [2; 3; 5; 4] mJ and Ē = [5; 1; 2; 1] mJ, respectively, and

the wireless energy transfer efficiency is α = 0.5. We note that for these energy

harvesting profiles the relay energy profile is higher at the beginning and lower at

the end with crossing only once in the third slot. Therefore, the resulting optimal

rate profiles are matched in the optimal policy. An optimal energy transfer vector

is δ = [0; 0; 1.33; 3.33] mJ and the resulting optimal power allocation vectors after

the energy transfer are P̄ = P = [2; 3; 4; 6.33] mW. We note that while the optimal

energy transfer profile is not unique, resulting optimal powers are unique.

Next, we change the energy arrival profiles for the source and the relay as E =

[12; 0; 0; 0] mJ and Ē = [5; 1; 0; 2] mJ, respectively, with energy transfer efficiency

α = 0.5. Note that the source node is not energy harvesting. In this case, we find

the optimal energy transfer vector as δ = [2.67; 0; 0; 0] mJ and the resulting optimal

power vectors are P̄ = P = [2.33; 2.33; 2.33; 2.33] mW. Note that the optimal power
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sequences for the source and the relay match in this specific example, which does

not hold in general.

2.8.2 Numerical Example for the Gaussian Two-Way Channel

In this section, we consider the Gaussian two-way channel model in Section 2.4. The

energy arrival profiles of user 1 and user 2 are E = [5; 10; 5] mJ and Ē = [2; 1; 1]

mJ, respectively, and the wireless energy transfer efficiency is set to α = 0.7. Path

loss of each link is set to 10 dB. We found the capacity region by running the

two-dimensional directional water-filling algorithm for all θ1, θ2 ≥ 0. We plot the

resulting capacity region in Fig. 2.11, where we also plot the capacity region when

energy transfer is not allowed. Note that when energy transfer is not allowed, the

capacity region is the rectangle with single-user optimal rates subject to the indi-

vidual energy arrivals. We observe that the availability of wireless energy transfer

significantly improves the capacity region.
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Figure 2.11: Capacity region of the two-way channel with energy transfer.

2.8.3 Numerical Example for the Gaussian Multiple Access Channel

In this section, we consider the Gaussian multiple access channel model in Sec-

tion 2.6. The energy arrival profiles of user 1 and user 2 are E = [5; 2; 5] mJ and

Ē = [1; 3; 1] mJ, respectively, and wireless energy transfer efficiency is α = 0.5. The

path loss in user 1 to user 2 channel is set to 10dB, while user 1 to receiver and user

2 to receiver links have 100dB path losses. We plot the resulting capacity region

in Fig. 2.12 and we compare it with the region when no energy transfer is allowed.

Note that when no energy transfer is allowed, the region is found by the backward

directional water-filling algorithm in [10]. We observe in Fig. 2.12 that the boundary

of the capacity regions when energy transfer is allowed and not allowed match when
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Figure 2.12: Capacity region of the multiple access channel with energy transfer.

the priority of user 1 is higher than the priority of user 2. However, the availability

of wireless energy transfer significantly improves the capacity region when priority

of user 2 is higher than the priority of user 1.

2.9 Concluding Remarks

Energy cooperation made possible by wireless energy transfer is a fundamental shift

in terms of the energy dynamics of a wireless network, yielding new performance

limits. In this chapter, we studied the communication performance of simple two-

and three-node wireless networks in a deterministic setting where nodes harvest

energy from the environment and wireless energy transfer is possible from one user

to another in one-way and with efficiency α. We first considered the Gaussian two-
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hop relay channel and studied the end-to-end throughput maximization problem.

We showed that if the relay energy profile is higher first and then lower, the rates of

the source and the relay nodes need to be matched in the optimal policy. We also

showed that if the source is not energy harvesting, then transferring energy in the

first slot is optimal. Next, we studied the capacity region of the Gaussian two-way

channel. We showed that the boundary of the capacity region is achieved by policies

that are given by a generalized version of two-dimensional directional water-filling

algorithm. Finally, we studied the Gaussian multiple access channel. We showed

that no energy transfer is needed if the priority of the first user is higher, and all of

the energy needs to be transferred to the second user if the priority of the second

user is sufficiently high. These results reveal new insights on how energy is optimally

allocated in multi-user scenarios when wireless energy transfer is available as a new

degree of freedom in network design. We remark that the analysis for finding the

optimal policies in each multi-user setting can be extended for the cases when bi-

directional energy transfer is allowed. In the two-hop relay setting, if bi-directional

energy transfer is allowed, perfectly matching the energy profiles of the source and

the relay nodes would be feasible and hence optimal: In this case, we collect energy

arrivals of the source and the relay in a single energy queue and perform a single-user

optimization. We then divide resulting power allocation equally for the source and

the relay. Similarly, [56] recently presented the extension of the analysis for two-way

and multiple access channels when bi-directional energy transfer is allowed.
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2.10 Appendices

2.10.1 Proof of Lemma 2.6

Consider two feasible power policies and energy transfer profiles (P1, P̄1, δ1) and

(P2, P̄2, δ2). Let us consider a new policy as a convex combination of these two

policies, i.e., (P3, P̄3, δ3) = λ(P1, P̄1, δ1) + (1− λ)(P2, P̄2, δ2) for 0 < λ < 1. First

we show that this new policy is feasible:

k∑

i=1

P3i =
k∑

i=1

λP1i + (1− λ)P2i (2.52)

≤ λ
k∑

i=1

(Ei − δ1i) + (1− λ)
k∑

i=1

(Ei − δ2i) (2.53)

=
k∑

i=1

(Ei − δ3i), k = 1, . . . , T (2.54)

We use similar arguments for P̄3i, δ3i and show that the policy (P3, P̄3, δ3) is feasible.

Now, consider the upper corner points of the achievable rate regions for (P1, P̄1, δ1)

and (P2, P̄2, δ2). Since log(1 + p) is concave in p, we have

T∑

i=1

log(1 + P3i) >
T∑

i=1

λ log(1 + P1i) + (1− λ)
T∑

i=1

log(1 + P2i) (2.55)

T∑

i=1

log(1 + P̄3i) >
T∑

i=1

λ log(1 + P̄1i) + (1− λ)
T∑

i=1

log(1 + P̄2i) (2.56)

This means that the new policy (P3, P̄3, δ3) achieves a higher throughput for both

users than the line connecting the two upper corner points under policies (P1, P̄1, δ1)

and (P2, P̄2, δ2). Therefore, the region C(E, Ē) is a convex region.
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2.10.2 Proof of Lemma 2.8

Consider two feasible power policies and energy transfer profiles (P1, P̄1, δ1) and

(P2, P̄2, δ2). Let us consider a new policy as a convex combination of these two

policies, i.e., (P3, P̄3, δ3) = λ(P1, P̄1, δ1) + (1− λ)(P2, P̄2, δ2) for 0 < λ < 1. Since

the constraints in set F are linear in the power vectors, it can be shown as in the

proof of Lemma 2.6 in Appendix 2.10.1 that this new policy is feasible.

Now, let Si be the pentagon created by the policy (Pi, P̄i, δi), for i = 1, 2, 3.

Choose t1 ∈ S1 and t2 ∈ S2 to form t3 = λt1 + (1− λ)t2 for 0 ≤ λ ≤ 1. We need to

show that t3 ∈ S3. We proceed as follows:

t31 = λt11 + (1− λ)t21 (2.57)

≤ λ
T∑

i=1

log(1 + P1i) + (1− λ)
T∑

i=1

log(1 + P2i) (2.58)

≤
T∑

i=1

log(1 + λP1i + (1− λ)P2i) (2.59)

=
T∑

i=1

log(1 + P3i) (2.60)

Similarly, we show t32 ≤
∑T

i=1 log(1 + P̄3i). Finally

t31 + t32 = λ(t11 + t21) + (1− λ)(t21 + t22) (2.61)

≤ λ
T∑

i=1

log(1 + P1i + P̄1i) + (1− λ)
T∑

i=1

log(1 + P2i + P̄2i) (2.62)

≤
T∑

i=1

log
(
1 + λ(P1i + P̄1i) + (1− λ)(P2i + P̄2i)

)
(2.63)

51



=
T∑

i=1

log(1 + P3i + P̄3i) (2.64)

These inequalities show that t3 ∈ S3 since it satisfies the boundary conditions of S3.

Therefore, the region C(E, Ē) is a convex region.
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CHAPTER 3

Optimal Energy and Data Routing in Networks with Energy

Cooperation

3.1 Introduction

In this chapter, we consider an energy harvesting communication network with en-

ergy cooperation as shown in Fig. 3.1. We focus on the delay minimization problem

for this network. We consider the joint data routing and capacity assignment prob-

lem for this setting under fixed data and energy routing topologies [43, Section 5.4.2].

We divide our development in this chapter into three parts. In the first part, we as-

sume that the data flows through the links are fixed, and each node harvests energy

only once. In this setting, we determine the optimum energies allocated to outgoing

data links of the nodes and the optimum amounts of energies transferred between

the nodes. In the second part, we extend this setting to the case of multiple energy

harvests for each node. In the last part, we optimize both data flows on the links

and energy management at the nodes. We determine the jointly optimal routing of

data and energy in the network as well as distribution of power over the outgoing

data links at each node.
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Figure 3.1: System model.

In the first part of the chapter, in Section 3.3, we focus on the optimal energy

management problem at the nodes with a single energy harvest at each node. First,

we consider the case without energy cooperation. We show that this problem can be

decomposed into individual problems, each one to be solved for a single node. We

show that more power should be allocated to links with more noise and/or more data

flow, resembling channel inversion type of power control [74]. Next, we consider the

case with energy cooperation, where nodes transfer a portion of their own energies

to neighboring nodes. In this case, we have the joint problem of energy routing

among the network nodes and energy allocation among the outgoing data links at

each node. For this problem, we develop an iterative algorithm that visits all energy

links sufficiently many times and decreases the network delay monotonically. We

numerically observe that energy flows from nodes with lightly loaded data links to

nodes with heavily loaded data links.
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In the second part of the chapter, in Section 3.4, we extend our setting to

the case of multiple energy harvests at each node, by allowing time-varying energy

harvesting rates over large time frames. We incorporate the time variation in the en-

ergy harvests and solve for the optimal energy management at each node and energy

routing among the nodes. First, we focus on the case without energy cooperation.

We show that the sum powers on the outgoing data links of a node over time slots

is equal to the single-link optimal transmit power of that node over time and can

be found using [4–6]. When the optimal sum powers are known, we show that the

problem reduces to a problem with a single energy arrival and can be solved using

our method. Next, we focus on the case with energy cooperation. We show that

this problem can be mapped to the original problem with no energy cooperation by

constructing an equivalent directed graph.

In the last part of the chapter, in Section 3.5, we consider the problem of

determining the jointly optimal data and energy flows in the network and the power

distribution over the outgoing data links at all nodes. We determine a set of neces-

sary conditions for the joint optimality of a power control, energy transfer and data

routing policy. We then develop an iterative algorithm that updates the data flows,

energy flows and distribution of power over the outgoing data links at each node in

a sequential manner. We show that this algorithm converges to a Pareto-optimal

operating point.
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3.2 Network Flow and Energy Model

We use directed graphs to represent the network topology, and data and energy

flows through the network. All nodes are energy harvesting, and are equipped with

separate wireless energy transfer units. Information and energy transfer channels

are orthogonal to each other.

3.2.1 Network Data Topology

We represent the data topology of the network by a directed graph. In this model,

a collection of nodes, labeled n = 1, . . . , N , can send and receive data across com-

munication links.In particular, a node can be either a source node, a destination

node or a relay node. A data communication link is represented as an ordered pair

(i, j) of distinct nodes. The presence of a link (i, j) means that the network is able

to send data from the start node i to the end node j. We label the data links as

l = 1, . . . , L. The network data topology can be represented by an N × L matrix,

A, in which every entry Anl is associated with node n and link l via

Anl =





1, if n is the start node of data link l

−1, if n is the end node of data link l

0, otherwise

(3.1)

We define Od(n) as the set of outgoing data links from node n, and Id(n) as the

set of incoming data links to node n. We define N -dimensional vector s whose
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nth entry sn denotes the non-negative amount of exogenous data flow injected into

the network at node n. On each data link l, we let tl denote the amount of flow

and we call the L-dimensional vector t the flow vector. At each node n, the flow

conservation implies:

∑

l∈Od(n)

tl −
∑

l∈Id(n)

tl = sn, ∀n (3.2)

The flow conservation law over all the network can be compactly written as:

At = s (3.3)

We define cl as the information carrying capacity of link l. Then, we require tl ≤

cl, ∀l.

3.2.2 Network Energy Topology

All nodes are equipped with energy harvesting units. In this section, we describe

the energy model for the case of a single energy harvest per node. We present the

extension to the case of multiple energy harvests in Section 3.4. Here, each node

n harvests energy in the amount of En. We use N -dimensional vector E to denote

the energy arrival vector for the system. In the energy cooperation setting, there

are energy links similar to data links. An energy link is represented as an ordered

pair (i, j) of distinct nodes where the presence of an energy link means that it is

possible to send energy from the start node to the end node. Energy links are
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labeled as q = 1, . . . , Q. Energy transfer efficiency on each energy link is denoted

with 0 < αq ≤ 1 which means that when δ amount of energy is transferred on link

q from node i to node j, node j receives αqδ amount of energy. We assume that the

directionality and the position of energy transfer links are fixed whereas the amount

of energy transferred on these links are unknown. The network energy topology can

be represented by an N ×Q matrix, B, in which every entry Bnq is associated with

node n and energy link q via

Bnq =





1, if n is the start node of energy link q

−αq, if n is the end node of energy link q

0, otherwise

(3.4)

On each energy link q, we let yq be the amount of energy transferred. We call the

L-dimensional vector y the energy flow vector. We denote by Oe(n) and Ie(n),

respectively, the sets of outgoing and incoming energy links at node n.

3.2.3 Communication Model and Delay Assumptions

Following the M/M/1 queueing model in [43], we represent the delay on data link l

as:

Dl =
tl

cl − tl
(3.5)
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where tl is the flow and cl is the information carrying capacity of link l, with tl ≤

cl, ∀l. This delay expression is a good approximation for systems with Poisson

arrivals at the entry points, exponential packet lengths and moderate-to-heavy traffic

loads [43]. In view of energy scarcity in the network, moderate-to-heavy traffic load

assumption generally holds. The packet arrival and packet length assumptions are

made for convenience of analysis. Moreover, we assume that the slot length is

sufficiently large to enable convergence to stationary distributions. In particular,

we assume that the slot length is sufficiently longer than the average delay yielded

by the M/M/1 approximation. Each node n, on the transmitting edge of data link l,

with channel noise σl, enables a capacity cl by expanding power pl. These quantities

are related by the Shannon formula [44, eqn. (9.60)] as:

cl =
1

2
log

(
1 +

pl
σl

)
(3.6)

where all logs in this chapter are with respect to base e. At each node n, the total

power expanded on data and energy links are constrained by the available energy,

i.e.,

∑

l∈Od(n)

pl +
∑

q∈Oe(n)

yq ≤ En +
∑

q∈Ie(n)

αqyq, ∀n (3.7)
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Using L-dimensional vector p = (p1, . . . , pL) and F = A+ where (A+)nl = max{Anl, 0},

the energy availability constraints can be compactly written as:

Fp + By ≤ E (3.8)

We note that we use power and energy interchangeably in (3.8) and in the rest of

the chapter by assuming slot lengths of 1 unit.

3.3 Capacity Assignment Problem for Single Time Slot

In this section, we consider the capacity assignment problem for the case of a single

energy harvest per node. We assume that the flow assignments, tl, on all links are

fixed and are serviceable by the harvested energies and energy transfers. The total

delay in the network is:

D =
∑

l

tl
cl − tl

(3.9)

The capacity assignment problem, with the goal of minimizing the total delay in

the network is:

min
cl,pl,yq

∑

l

tl
cl − tl

s.t. Fp + By ≤ E

tl ≤ cl, ∀l (3.10)
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By using the capacities cl in (3.6), we write the problem in terms of the link powers

pl and energy transfers yq only as:

min
pl,yq

∑

l

tl
1
2

log
(

1 + pl
σl

)
− tl

s.t. Fp + By ≤ E

pl ≥ σl
(
e2tl − 1

)
, ∀l (3.11)

We solve the problem in (3.11) in the rest of this section. We first identify some

structural properties of the optimal solution in the next sub-section. The following

analysis relies on the standing assumption that this problem has at least one feasible

solution. To see if this problem is feasible, one can replace the objective function

of (3.11) with a constant and solve a feasibility problem, which turns out to be a

linear program.

3.3.1 Properties of the Optimal Solution

First, we note that the objective function can be written in the form
∑

i fi(g(xi))

where fi(xi) = ti
xi−ti and g(xi) = 1

2
log (1 + xi). Since f is convex and non-increasing

and g is concave, the resulting composition function is convex [70]. The constraint

set is affine. Therefore, (3.11) is a convex optimization problem. The Lagrangian

function is:

L =
∑

l

tl
1
2

log
(

1 + pl
σl

)
− tl

+
∑

n

λn


 ∑

l∈Od(n)

pl +
∑

q∈Oe(n)

yq − En −
∑

q∈Ie(n)

αqyq



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−
∑

l

βl
[
pl − σl

(
e2tl − 1

)]
−
∑

q

θqyq (3.12)

where λn and βl are Lagrange multipliers corresponding to the energy constraints

of the nodes in (3.8) and the feasibility constraints tl ≤ cl, respectively. The KKT

optimality conditions are:

h′l(pl) + λn(l) − βl = 0, ∀l (3.13)

λm(q) − αqλk(q) − θq = 0, ∀q (3.14)

where hl(pl) , tl

(
1
2

log
(

1 + pl
σl

)
− tl

)−1

, n(l) is the beginning node of data link l,

m(q) and k(q) are the beginning and end nodes of energy link q, respectively. The

additional complementary slackness conditions are:

λn


 ∑

l∈Od(n)

pl +
∑

q∈Oe(n)

yq − En −
∑

q∈Ie(n)

αqyq


 = 0, ∀n (3.15)

βl
[
pl − σl

(
e2tl − 1

)]
= 0, ∀l (3.16)

θqyq = 0, ∀q (3.17)

We now identify some properties of the optimal power allocation in the fol-

lowing three lemmas.

Lemma 3.1 If the problem in (3.11) is feasible, then βl = 0, ∀l.

Proof: If the problem in (3.11) is feasible, its objective function must be bounded.

Equality in the second set of constraints in (3.11) for any l implies that the objective
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function is unbounded. Therefore, we must have strict inequality in those constraints

for all l, and from (3.16), we conclude that βl = 0,∀l. �

Lemma 3.2 At every node n, the optimal power allocation amongst outgoing data

links satisfies

h′l(pl) = h′m(pm), ∀l,m ∈ Od(n) (3.18)

Proof: From (3.13) and Lemma 3.1 we have,

h′l(pl) = −λn(l), ∀l (3.19)

For outgoing data links l and m that belong to the same node n,

h′l(pl) = −λn = h′m(pm) (3.20)

which gives the desired result. �

Lemma 3.3 If some energy is transferred through energy link q across nodes (i, j),

then,

h′l(pl) = αqh
′
m(pm), ∀l ∈ Od(i), ∀m ∈ Od(j) (3.21)

Proof: If some energy is transferred through energy link q, then yq > 0, and from
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(3.17), θq = 0. From (3.14), we have,

λi = αqλj (3.22)

Writing (3.13) for nodes i and j, we have,

h′l(pl) = −λi, ∀l ∈ Od(i) (3.23)

h′m(pm) = −λj, ∀m ∈ Od(j) (3.24)

and the result follows from combining (3.22), (3.23) and (3.24). �

In the following two sub-sections, we separately solve the problem for the cases

of no energy transfer and with energy transfer.

3.3.2 Solution for the Case of No Energy Transfer

In the case of no energy transfer, we have yq = 0, ∀q, and the problem becomes only

in terms of pl as stated below:

min
pl

∑

l

tl
1
2

log
(

1 + pl
σl

)
− tl

s.t.
∑

l∈Od(n)

pl ≤ En, ∀n

pl ≥ σl
(
e2tl − 1

)
, ∀l (3.25)
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This problem can be decomposed into N sub-problems as:

min
pl

∑

n

∑

l∈Od(n)

tl
1
2

log
(

1 + pl
σl

)
− tl

s.t.
∑

l∈Od(n)

pl ≤ En, ∀n

pl ≥ σl(e
2tl − 1), ∀l (3.26)

Since the constraint set depends only on the powers of node n, there is no interaction

between the nodes. Every node will independently solve the following optimization

problem:

min
pl

∑

l∈Od(n)

tl
1
2

log
(

1 + pl
σl

)
− tl

s.t.
∑

l∈Od(n)

pl ≤ En

pl ≥ σl
(
e2tl − 1

)
, ∀l ∈ Od(n) (3.27)

The feasibility of (3.27) requires En ≥
∑

l∈Od(n) σl(e
2tl − 1) which we assume holds.

Similar to (3.11), (3.27) is a convex optimization problem with the KKT optimality

conditions:

h′l(pl) + λ = 0, ∀l ∈ Od(n) (3.28)
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with the complementary slackness condition:

λ


 ∑

l∈Od(n)

pl − En


 = 0 (3.29)

The Lagrange multipliers for the second set of constraints in (3.27) are not included,

because similar to Lemma 3.1, they will always be satisfied with strict inequality.

From (3.28), we have

−λ = h′l(pl) (3.30)

=
−tl
2σl

[
1

2
log

(
1 +

pl
σl

)
− tl

]−2(
1 +

pl
σl

)−1

(3.31)

After some algebraic manipulations shown in Appendix 3.8.1, we have

pl(λ) = σl
(
e2(W (zl)+tl) − 1

)
(3.32)

where zl =
√

tle
−2tl

2λσl
and W (·) is the Lambert W function defined as the inverse of

the function w → wew [75]. Next, we prove some monotonicity properties for the

optimal solution, as a function of the qualities of the channels and the amounts of

data flows through the channels.

Lemma 3.4 For fixed tl, pl is monotone increasing in σl.

Proof: By differentiating (3.32) and using the following property [75]

dW (x)

dx
=

W (x)

x(1 +W (x))
(3.33)
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it can be verified as shown in Appendix 3.8.2 that

∂pl
∂σl

= e2tl
e2W (zl)

1 +W (zl)
− 1 > 0 (3.34)

where the inequality follows from e2tl > 1, ∀tl > 0, and e2z

1+z
> 1, ∀z > 0, proving

the lemma. �

This lemma shows that, for fixed data flows, more power should be allocated

to channels with more noise power, similar to channel inversion power control [74].

Lemma 3.5 For fixed σl, pl is monotone increasing in tl.

Proof: By differentiating (3.32), it can be verified as shown in Appendix 3.8.3 that

∂pl
∂tl

=
σl(W (zl) + 2tl) e

2(W (zl)+tl)

tl(1 +W (zl))
> 0 (3.35)

proving the lemma. �

This lemma shows that, for fixed channel qualities (i.e., fixed noise powers),

more power should be allocated to links with more data flow.

Finally, we solve (3.27) as follows: From the total energy constraint, we have

∑
l pl(λ

∗) = En. We perform a one dimensional search on λ to find λ∗ that satisfies

∑
l pl(λ

∗) = En, where pl(λ
∗) is given in (3.32). Once λ∗ is obtained, the optimal

power allocations are found from (3.32).
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3.3.3 Solution for the Case with Energy Transfer

Now, we consider the case with energy transfer, i.e., yq ≥ 0 for some q. Assume that

some energy yq > 0 is transferred from node i to node j on energy link q. Writing

(3.32) for the outgoing data links of node i and node j, we have,

pl(λi) = σl
(
e2(W (zil)+tl) − 1

)
, ∀l ∈ Od(i) (3.36)

pl(λj) = σl
(
e2(W (zjl)+tl) − 1

)
, ∀l ∈ Od(j) (3.37)

where zil =
√

tle
−2tl

2λiσl
and zjl =

√
tle
−2tl

2λjσl
. From (3.22), we have λi = αqλj. The energy

causality constraints on node i and node j are:

∑

l∈Od(i)

pl(λ
∗
i ) = Ei − yq (3.38)

∑

l∈Od(j)

pl(λ
∗
j) = Ej + αqyq (3.39)

Equations (3.22), (3.38) and (3.39) imply

αq
∑

l∈Od(i)

pl(αqλ
∗
j) +

∑

l∈Od(j)

pl(λ
∗
j) = αqEi + Ej (3.40)

which can be solved by a one-dimensional search on λ∗j .

We solve (3.11) by iteratively allowing energy to flow through a single link at

a time provided all links are visited infinitely often. Since we do not know which

energy links will be active in the optimal solution, we may need to call back any
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Algorithm 2 Algorithm to solve capacity assignment problem for single time slot

Initialize . No energy transfer

1: for i = 1 : N do
2: Find λi such that

∑
l∈Od(i) pl(λi) = Ei, pl is (3.32)

3: end for

Main Algorithm

4: for q = 1 : Q do . All energy links
5: Set (i, j)← (origin,destination) of energy link q
6: if λi < αqλj then . Perform energy transfer

Find λ∗j such that
αq
∑

l∈Od(i) pl(αqλ
∗
j) +

∑
l∈Od(j) pl(λ

∗
j) = αqEi + Ej

Set Tapq = Ei −
∑

l∈Od(i) pl(αqλ
∗
j) . Update tap level

. Update battery levels
Set Ei =

∑
l∈Od(i) pl(αqλ

∗
j), Ej =

∑
l∈Od(j) pl(λ

∗
j)

7: else if λi > αqλj then . Recall some energy
8: while Tapq ≥ 0, λi > αqλj, Ej ≥ 0 do
. Recall ε energy
Set Ei = Ei + ε, Ej = Ej − αqε,Tapq = Tapq − ε
Find λi, λj such that
Ei =

∑
l∈Od(i) pl(λi), Ej =

∑
l∈Od(j) pl(λj)

9: end while
10: end if
11: end for
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transferred energy in the previous iterations. To perform this, we keep track of

transferred energy over each energy link by means of meters as in [55]. Initially,

we start from the no energy transfer solution and compute λn for every node n

as described in the previous section. At every iteration, we open only one energy

link q at a time, and whenever energy flows through link q, (3.40) must be satisfied

with Ei and Ej in (3.40) replaced with the battery levels of nodes i and j at the

current iteration. In particular, if λi < αqλj, we search for λ∗j that satisfies (3.40).

If no solution to (3.40) can be found, this means λi > αqλj, and then previously

transferred energy must be called back to the extent possible according to the meter

readings. The algorithmic description is given above as Algorithm 2. From the

strict convexity of the objective function, we note that each iteration decreases

the objective function as described similarly in [55, Section V.A]. Our algorithm

converges since bounded real monotone sequences always converge, and the limit

point is a local minimum because, the iterations can only stop when λi = αqλj for

the energy links where yq > 0 which are the KKT optimality conditions from (3.22).

This local minimum is also the unique global minimum due to the convexity of the

problem.

3.4 Capacity Assignment Problem for Multiple Time Slots

In this section, we consider the capacity assignment problem for the scenario where

the energy arrival rates to the nodes can change over time. We assume that the time

is slotted and there are a total of T equal-length slots. In slots i = 1, . . . , T , each
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node n harvests energy with amounts En1, En2, . . . , EnT , and the arriving energies

can be saved in a battery for use in future time slots. The subscript i denotes the

time slot, and the quantities tli, cli, pli, σli and yqi denote the flow, capacity, power,

noise power, and energy transfer in slot i. We assume that the flow allocation and

channel noises do not change over time, i.e., tli = tl and σli = σl,∀i, ∀l. We further

assume that the slots are long enough so that the M/M/1 approximation is valid at

every slot i. In particular, slot length is sufficiently larger than the average delay

resulting from the M/M/1 approximation. Then, the average delay on link l at time

slot i is given as,

Dli =
tl

cli − tl
(3.41)

where cli = 1
2

log
(

1 + pli
σl

)
. As the energy that has not arrived yet cannot be used for

data transmission or energy transfer, the power policies of the nodes are constrained

by causality of energy in time. These constraints are written as:

k∑

i=1

( ∑

l∈Od(n)

pli +
∑

q∈Oe(n)

yqi

)
≤

k∑

i=1

(
Eni +

∑

q∈Ie(n)

αqyqi

)
, ∀n, ∀k (3.42)

The capacity assignment problem with fixed link flows to minimize the total delay

over all links and all time slots can be formulated as:

min
pli,yqi

T∑

i=1

∑

l

tl
1
2

log
(

1 + pli
σl

)
− tl
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s.t.
k∑

i=1

( ∑

l∈Od(n)

pli +
∑

q∈Oe(n)

yqi

)
≤

k∑

i=1

(
Eni +

∑

q∈Ie(n)

αqyqi

)
, ∀n, ∀k

pli ≥ σl(e
2tl − 1), ∀l, ∀i (3.43)

The problem in (3.43) is convex and the Lagrangian function can be written as:

L =
T∑

i=1

∑

l

hl(pli) +
∑

n

T∑

k=1

λnk




k∑

i=1


 ∑

l∈Od(n)

pli +
∑

q∈Oe(n)

yqi − Eni −
∑

q∈Ie(n)

αqyqi






−
∑

q

T∑

i=1

θqiyqi (3.44)

where hl(pli) , tl

[
1
2

log
(

1 + pli
σl

)
− tl

]−1

. The Lagrange multipliers for the second

set of constraints for (3.43) are not included here because similar to before, they

will always be satisfied with strict inequality. The KKT optimality conditions are:

h′l(pli) +
T∑

k=i

λn(l)k = 0, ∀l, ∀i (3.45)

T∑

k=i

λm(q)k − αq
T∑

k=i

λr(q)k − θqi = 0, ∀q, ∀i (3.46)

where n(l) is the beginning node of data link l, m(q) and r(q) are the beginning and

end nodes of energy link q. The additional complementary slackness conditions as:

λnk

[
k∑

i=1

( ∑

l∈Od(n)

pli +
∑

q∈Oe(n)

yqi − Eni −
∑

q∈Ie(n)

αqyqi

)]
= 0, ∀n, ∀k (3.47)

θqiyqi = 0, ∀q, ∀i (3.48)
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Now, we extend Lemmas 3.2 and 3.3 to the case of multiple energy arrivals

over time.

Lemma 3.6 At every node n, the optimal power allocation amongst outgoing data

links satisfies

h′l(pli) = h′m(pmi), ∀l,m ∈ Od(n), ∀i (3.49)

Proof: From (3.45), we have,

h′l(pli) = −
T∑

k=i

λn(l)k (3.50)

For outgoing data links l and m that belong to the same node n,

h′l(pli) = −
T∑

k=i

λnk = h′m(pmi), ∀i (3.51)

from which the result follows. �

Lemma 3.7 If some energy is transferred through energy link q across nodes (a, b)

at time slot i,

h′l(pli) = αqh
′
m(pmi), ∀l ∈ Od(a), ∀m ∈ Od(b) (3.52)

Proof: If some energy is transferred through energy link q at time slot i, then
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yqi > 0, and from (3.48), θqi = 0. From (3.46), we have,

T∑

k=i

λak = αq

T∑

k=i

λbk (3.53)

Then, we have,

h′l(pli) = −
T∑

k=i

λak = −αq
T∑

k=i

λbk = αqh
′
m(pmi), ∀l ∈ Od(a), ∀m ∈ Od(b) (3.54)

where the first equality follows from writing (3.45) for node a, the second equality

follows from (3.53), and the third equality follows from writing (3.45) for node b. �

In the following two sub-sections, we separately solve the problem for the cases

of no energy transfer and with energy transfer.

3.4.1 Solution for the Case of No Energy Transfer

In this case, we have yqi = 0,∀i, ∀q. The problem becomes only in terms of pli as

follows:

min
pli

T∑

i=1

∑

l

tl
1
2

log
(

1 + pli
σl

)
− tl

s.t.
k∑

i=1

∑

l∈Od(n)

pli ≤
k∑

i=1

Eni, ∀n, ∀k

pli ≥ σl(e
2tl − 1), ∀l, ∀i (3.55)
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The problem can be decomposed into N sub-problems as:

min
pli

T∑

i=1

∑

n

∑

l∈Od(n)

tl
1
2

log
(

1 + pli
σl

)
− tl

s.t.
k∑

i=1

∑

l∈Od(n)

pli ≤
k∑

i=1

Eni, ∀n, ∀k

pli ≥ σl(e
2tl − 1), ∀l, ∀i (3.56)

Since the constraint set depends only on the powers of node n, there is no interaction

between the nodes. Every node will independently solve the following optimization

problem:

min
pli

T∑

i=1

∑

l∈Od(n)

tl
1
2

log
(

1 + pli
σl

)
− tl

s.t.
k∑

i=1

∑

l∈Od(n)

pli ≤
k∑

i=1

Eni, ∀k

pli ≥ σl(e
2tl − 1), ∀l ∈ Od(n), ∀i (3.57)

Solving (3.57) entails finding the optimal energy management policy for each link l,

over all time slots i. We define bli = pli−σl(e2tl−1) and Gni = Eni−|Od(n)|σl(e2tl−

1). Then, (3.57) becomes:

min
bli

T∑

i=1

∑

l∈Od(n)

tl
1
2

log
(
e2tl + bli

σl

)
− tl

s.t.
k∑

i=1

∑

l∈Od(n)

bli ≤
k∑

i=1

Gni, ∀k
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bli ≥ 0, ∀l ∈ Od(n), ∀i (3.58)

For feasibility of (3.58) we need Gni ≥ 0 which we assume holds. Now, we state an

important property of the optimal policy which is proved in Appendix 3.8.4.

Lemma 3.8 The optimal total power allocated to outgoing data links at each slot

i,
∑

l∈Od(n) bli, is the same as the single-link optimal transmit power with energy

arrivals Gni.

From Lemma 3.8 we have that the sum powers in outgoing data links are given

by the single-link optimal transmit powers which can be found by the geometric

method in [4] or by the directional water-filling method in [6]. Once the sum powers

are obtained, individual link powers are found by solving x(si) which is defined in

(3.92) in Appendix 3.8.4. The problem in x(si) includes a single energy harvest and

is in the form of (3.27), therefore, we use the method proposed in Section 3.3.2 to

find the individual link powers.

3.4.2 Solution for the Case with Energy Transfer

From (3.45) and some algebraic manipulations we have

pli = σl
(
e2(W (zil)+tl) − 1

)
(3.59)

where zil =

√
tle
−2tl

2(
∑T

k=i λn(l)k)σl
and W (·) is the Lambert W function. The Lagrangian

structure of this problem is more complicated compared to the previous case since
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the power allocation at time i depends on {λn(l)k}Tk=i. Therefore, here, we offer an

alternative solution.

In the scenario described above, the nodes have the capability to save their

energies to use in future slots. We note that saving energy for use in future slots

is equivalent to transferring energy to future slots with energy transfer efficiency of

α = 1. In light of this observation, an equivalent representation of (3.43) can be

obtained by modifying the network graph where each time slot is treated as a new

node with a single energy arrival and saving energy for future slots is represented

by energy transfer links of efficiency 1. The modification to the network graph is

performed in the following way. First, we make T replicas of the network graph

including all the nodes and the existing data and energy transfer links. Each replica

will denote the network at one time slot. We let each replica node receive one

energy harvest which amounts to the energy harvested by that node in that time

slot. We keep the existing energy and data links but we add new energy links

between different replicas of the same node. For every node n, we add energy links

of efficiency 1 between replicas k and k + 1, where k = 1, . . . , T − 1. Relabeling the

nodes, we obtain a new graph where all nodes have one energy harvest. Essentially,

we have reduced this problem to the case in Section 3.3.3 and we use the solution

provided in that section.

We finally remark that our framework can easily be extended to address vari-

ations in channel fading coefficients and energy transfer efficiencies by allowing the

noise powers σl and energy transfer efficiencies αl to vary from slot to slot, i.e.,
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defining cli = 1
2

log
(

1 + pli
σli

)
and replacing αl with αli.

3.5 Joint Capacity and Flow Optimization

In this section, we consider the joint optimization of capacity and flow assignments,

in contrast to capacity assignment only with fixed flows, as considered in the previous

sections. We focus on the case with a single energy harvest per node as in Section 3.3.

The delay minimization problem with joint capacity and flow allocation can be

formulated as:

min
pl,yq ,tl

∑

l

tl
1
2

log
(

1 + pl
σl

)
− tl

s.t. Fp + By ≤ E

pl ≥ σl(e
2tl − 1), ∀l

At = s (3.60)

where we optimize not only the powers pl and energy transfers yq, but also the data

flows tl. In (3.60), the first set of constraints are the energy constraints, the second

set of constraints are the capacity constraints on individual links, and the last set

of constraints are the flow conservation constraints at all nodes.

We assume that the exogenous arrivals s is serviceable by the energy harvests

and energy transfers. This means that problem (3.60) has a bounded solution and

furthermore no data link is operating at the capacity, i.e., the capacity constraints

are never satisfied with equality unless tl = pl = 0. We solve the problem in (3.60)
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in the remainder of this section. Here, the constraint set is convex, however, the

objective function is not jointly convex in pl and tl [43], therefore, (3.60) is not

a convex optimization problem. We study the necessary optimality conditions by

writing the Lagrangian function as follows:

L =
∑

l

tl
1
2

log
(

1 + pl
σl

)
− tl

+
∑

n

λn

[ ∑

l∈Od(n)

pl +
∑

q∈Oe(n)

yq − En −
∑

q∈Ie(n)

αqyq

]

−
∑

l

βl[pl − σl(e2tl − 1)] +
∑

n

νn

[ ∑

l∈Od(n)

tl −
∑

l∈Id(n)

tl − sn
]

−
∑

q

θqyq −
∑

l

γltl (3.61)

The KKT optimality conditions are:1

−tl
2σl

[
1

2
log

(
1 +

pl
σl

)
− tl

]−2(
1 +

pl
σl

)−1

+ λn(l) − βl = 0, ∀l (3.62)

1

2
log

(
1 +

pl
σl

)[
1

2
log

(
1 +

pl
σl

)
− tl

]−2

+ νn(l) − νm(l) − γl + 2βlσle
2tl = 0, ∀l

(3.63)

λk(q) − αqλz(q) − θq = 0, ∀q (3.64)

where n(l) and m(l) are the source and destination nodes of data link l, k(q) and

z(q) are the source and destination nodes of energy link q, respectively. The com-

1With the objective function of (3.60), there is an uncertainty when tl = pl = 0. Nonetheless,
we argue as in [43, page 441] that the objective function of (3.60) is differentiable over the set

of all pl with 1
2 log

(
1 + pl

σl

)
> tl and ∂L

∂pl
= 0, ∂L∂tl = 0 and ∂L

∂yq
= 0 are necessary conditions for

optimality.
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plementary slackness conditions are:

λn


 ∑

l∈Od(n)

pl +
∑

q∈Oe(n)

yq − En −
∑

q∈Ie(n)

αqyq


 = 0, ∀n (3.65)

νn


 ∑

l∈Od(n)

tl −
∑

l∈Id(n)

tl − sn


 = 0, ∀n (3.66)

θqyq = γltl = 0, ∀q, ∀l (3.67)

βl
[
pl − σl(e2tl − 1)

]
= 0, ∀l (3.68)

λn, βl, θq, γl ≥ 0, ∀l, ∀q, ∀n (3.69)

We note that νn < 0 is allowed since the Lagrange multiplier ν corresponds to an

equality constraint. Lemma 3.9, proved in Appendix 3.8.5, states the necessary

optimality conditions.

Lemma 3.9 For a feasible set of flow variables {tl}Ll=1, transmission power alloca-

tions {pl}Ll=1 and energy transfers {yq}Qq=1 to be the solution to the problem in (3.60),

the following conditions are necessary.

1) For every node n, there exists a constant λn > 0 such that

tl
2σl

[
1

2
log

(
1 +

pl
σl

)
− tl

]−2(
1 +

pl
σl

)−1

≤ λn, ∀l ∈ Od(n) (3.70)

and with equality if pl > 0.
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2) For every node n, there exists a constant ν̃n ≥ 0 such that

∑

l∈Fn,d

1

2
log

(
1 +

pl
σl

)[
1

2
log

(
1 +

pl
σl

)
− tl

]−2

= ν̃n, ∀d = 1, . . . , D (3.71)

where Fn,d is a data path that starts from node n and ends at destination node d

and for which pl > 0,∀l ∈ Fn,d. The condition in (3.71) is valid for all such data

paths that start from node n and end at any destination node.

3) For all energy transfer links q, and ∀l ∈ Od(n),∀k ∈ Od(m) such that pl > 0 and

pk > 0 where n and m are the origin and destination nodes of energy transfer link q

tl
2σl

[
1

2
log

(
1 +

pl
σl

)
− tl

]−2(
1 +

pl
σl

)−1

≥ αq
tk

2σk

[
1

2
log

(
1 +

pk
σk

)
− tk

]−2(
1 +

pk
σk

)−1

(3.72)

where (3.72) is satisfied with equality if yq > 0.

From Lemma 3.9, the structure of the optimal solution is as follows: We define

hl(pl, tl) as the objective function of the problem in (3.60),

hl(pl, tl) , tl

[
1
2

log
(

1 + pl
σl

)
− tl

]−1

. We see from (3.70) that nodes should allo-

cate more power on links where the quantity
∣∣∣∂hl∂pl

∣∣∣ is large and less power on links

where this quantity is small. Similarly, from (3.71), we see that less flow should be

allocated on paths where the quantity
∑

l∈Fn,d

∂hl
∂tl

is large and more flow on paths where

this quantity is small. Finally, (3.72) tells us the necessary conditions for energy

transfer. We describe our solution to the problem in (3.60) in the next section.
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3.5.1 Algorithmic Solution for the Joint Capacity and Flow Opti-

mization Problem

In this section, we propose an iterative algorithm. There are three steps to each

iteration as summarized below. We start from a feasible point (t0,p0).

1. Energy Management Step: We fix a stepsize ξp > 0. Each node computes

∂hl
∂pl

for their own outgoing data links where pl > 0. Every node performs the

following iteration:

pk+1
l =





pkl + ξp, if l = arg maxl∈Od(n)

∣∣∣∂hl∂pl

∣∣∣

pkl − ξp, if l = arg minl∈Od(n)

∣∣∣∂hl∂pl

∣∣∣

pkl , otherwise

(3.73)

where k denotes the iteration number, and the derivatives are computed at

the current iteration, i.e., for (tk,pk).

2. Data Routing Step: We fix a stepsize ξt > 0. Each node n computes
∑

l∈Fn,d

∂hl
∂tl

for the data paths originating from source node n and ending at any desti-

nation. Assume the path F∗n maximizes
∑

l∈Fn,d

∂hl
∂tl

and the path G∗n minimizes
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∑
l∈Fn,d

∂hl
∂tl

for each n. Every node performs the following iteration:

tk+1
l =





tkl − ξt, if l ∈ F∗n

tkl + ξt, if l ∈ G∗n

tkl , otherwise

(3.74)

3. Energy Routing Step: This step is the same as described in Section 3.3.3.

Specifically, every node goes through its energy transfer links and makes the

comparison
∣∣∣∂hl∂pl

∣∣∣ ≷ αq

∣∣∣∂hm∂pm

∣∣∣ where m is the receiving node of energy link

q. If
∣∣∣∂hl∂pl

∣∣∣ < αq

∣∣∣∂hm∂pm

∣∣∣, then some energy is transferred through link q. If

∣∣∣∂hl∂pl

∣∣∣ > αq

∣∣∣∂hm∂pm

∣∣∣, then some energy must be called back, as explained in Section

3.3.3.

4. Go back to step 1, or terminate if sufficiently many iterations are performed.

We describe our Algorithm in tabular form as Algorithm 3 below. We note

that our algorithm reduces to the one in [53] in the case of no energy harvesting or

energy transfer. Next, we discuss the convergence and optimality properties of our

algorithm.

3.5.2 Convergence and Optimality Properties of the Proposed Algo-

rithm

Every iteration of the algorithm decreases the objective function and the iterations

are bounded. Using the fact that real monotone bounded sequences converge, we
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Algorithm 3 Algorithm to solve joint capacity and flow assignment problem for
single time slot

Initialize

1: Generate initial point

Energy management step

2: for n = 1 : N do . All nodes
Find arg maxl∈Od(n)

∂hl
∂pl

, perform (3.73) as long as pl ≥ σl(e
2tl−1) is still satisfied

3: end for

Data routing step

4: for n = 1 : N do . All Nodes
Find path F∗n that maximizes and G∗n that minimizes

∑
l∈Fn,d

∂hl
∂tl

where d ∈ Od(n)

5: for l ∈ F∗n do tk+1
l = tkl − ξt

6: end for
7: for l ∈ G∗n do tk+1

l = tkl + ξt as long as pl ≥ σl(e
2tl − 1) is still satisfied

8: end for
9: end for

Energy routing step

10: for q = 1 : Q do . All energy links
11: Set (i, j)← (origin,destination) of energy link q

12: Set λi =
∣∣∣∂hi∂pi

∣∣∣ and λj =
∂hj
∂pj

13: Use steps 6 : 10 of Algorithm 2
14: end for

15: Repeat until convergence
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conclude that the algorithm converges. Assume (t∗,p∗,y∗) is a convergence point of

the algorithm. Next, we show that this point satisfies the KKT optimality conditions

stated in Lemma 3.9.

Lemma 3.10 (t∗,p∗,y∗) satisfies the conditions stated in Lemma 3.9.

Proof: When the algorithm converges, we must have pk+1
l = pkl . From (3.73), this

is only possible when ∂hl
∂pl

is constant for l ∈ Od(n) which is equivalent to (3.70).

Similarly, we must have tk+1
l = tkl and from (3.74), this is only possible when

∑
l∈Fn,d

∂hl
∂tl

is constant over all paths, which is equivalent to (3.71). Using a similar argument we

conclude that energy transfers satisfy (3.72). This means that (t∗,p∗,y∗) satisfies

Lemma 3.9. �

Now, we remark that even though we cannot claim global optimality of the

solution, we have the following Pareto-optimality condition.

Remark 3.1 Assume that (t∗,p∗,y∗) satisfies the conditions stated in Lemma 3.9,

then the vector of link delays is Pareto-optimal, i.e., there does not exist another

pair of feasible allocations (t̂, p̂, ŷ) such that

hl(p̂l, t̂l) ≤ hl(p
∗
l , t
∗
l ), ∀l (3.75)

with at least one inequality being strict.

This remark means that at the Pareto-optimal point, the average delay cannot

be strictly reduced on one link without it being increased on another. The proof of
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this remark follows similar lines as the proof in [53, Thm. 4] and is omitted here for

brevity. We note that, in particular, any local optimal point is Pareto-optimal due

to the fact that local optimal points satisfy KKT conditions in Lemma 3.9.

3.6 Numerical Results

In this section, we give simple numerical results to illustrate the resulting optimal

policies. We study three network topologies shown in Figs. 3.2, 3.3 and 3.4. For all

examples, we assume σl = 0.1 units ∀l. The slot length is of 1 unit for convenience,

so that we use power and energy; rate and data interchangeably.

3.6.1 Network Topology 1

We first consider the network topology in Fig. 3.2 with one source, one destination

and three relays in between. The data and energy links are shown and labeled as

in Fig. 3.2, where lis represent data links and yqs represent energy links. The fixed

data flows are t = [t1, . . . , t7] = [2, 1, 0.5, 0.125, 2.125, 0.375, 0.5] units. We con-

sider two time slots. The energy arrival vector is E = [(E11, E12), . . . , (E41, E42)] =

[(15, 10), (8, 6), (5, 9), (1, 6)] units and energy transfer efficiencies areα = [α1, α2, α3] =

[0.6, 0.5, 0.5].

The optimal energy transfer vector is found as y = [(y11, y12), (y21, y22), (y31, y32)] =

[(0, 3.75), (3.93, 9.52), (2.35, 9.81)] units and power allocation vector after energy

transfer is p = [(p11, p12), . . . , (p71, p72)] = [ (7.5, 7.5), (3.13, 3.13), (0.62, 1),

(0.13, 0.22), (9.17, 11), (0.45, 0.74), (0.48, 0.73)] units. Lemmas 3.6 and 3.7 can be
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Figure 3.2: Network topology 1.

verified numerically: h′l(pli) equalizes for different outgoing links of the same node,

for example, on links l1 and l2 (Lemma 3.6); and where some energy is transferred,

h′l(pli) is proportional to the energy transfer efficiency of that energy transfer link, for

example, h′2(p22)/h′3(p32) = α1 (Lemma 3.7). Lemma 3.8 can also be verified numer-

ically: after the energy transfers, the sum powers of the links are the optimal single-

link powers. For example, node 1 has harvested (15, 10) energies and transferred

(0, 3.75) of them. Equivalently node 1 has harvested (15, 6.25) and the single-link

optimal powers for these harvests are (10.625, 10.625) which is (p11 + p21, p12 + p22).

It is interesting to note that node 4 has transferred more energy than it initially

had, which means that most of the transferred energy has been routed from other

nodes. This is due to the high data flow on link l5 which leads to a higher energy

demand at node 2.
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3.6.2 Network Topology 2

We next consider the star topology in Fig. 3.3 where five sources are communicating

with one destination similar to a multiple access scenario. The data flows are t =

[0.5, 2, 0.5, 0.5, 2] units. We consider a single time slot. The energy arrivals to all the

nodes are the same, i.e., En = 15 units, ∀n. The wireless energy transfer efficiencies

are αq = 0.5,∀q.

The optimal energy transfer vector is found as y = [11.92, 0, 9.66, 16.29, 0]

units and the power vector after energy transfer is p = [3.07, 20.96, 5.33, 3.53, 23.15]

units. This system is symmetric in terms of energy arrivals, channel noises and

energy transfer efficiencies, and furthermore t1 = t3 = t4 and t2 = t5. In this

scenario, one might expect p1 = p3 = p4 and p2 = p5. However, in the optimal

solution p5 > p2. The reason for this asymmetry is as follows. Due to the high data

loads on links l2 and l5, there is no incentive for these nodes to share their energy.

Then, in the optimal solution, y2 = y5 = 0 and nodes 2 and 5 act as energy sink

nodes where energy is collected and not sent out. We see that node 5 has two nodes

transferring energy to it while node 2 has only one node transferring energy. Then,

p5 > p2.

3.6.3 Network Topology 3

In this last numerical example, we demonstrate the joint optimization of flow allo-

cation and capacity assignment. We consider the diamond network topology shown

in Fig. 3.4 where one source is communicating with one destination with two re-
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Figure 3.3: Network topology 2.

lays in between. The only exogenous data arrival to the network occurs at node

1 with the amount t = 2 units. The energy arrivals are [E1, E2, E3] = [2, 0.5, 1.5].

Energy transfer efficiencies are given as α1 = α2 = 0.8. In this topology, there are

six unknowns to be determined, i.e., p1, p2, t1, t2, y1, y2. By exhaustively searching

over these parameters, we can obtain the minimum achievable delay region as shown

in Fig. 3.5(top). In the diamond network, there are two paths of data flow. One

is the top path which includes links l1 and l3 and the other is the bottom path

which includes links l2 and l4. In Fig. 3.5(top), we plot the delay on bottom path

versus the delay on top path. Any delay which is to the interior of this curve is

achievable whereas other delays are not. All points on this boundary are Pareto-

optimal points. We observe that energy cooperation enhances the achievable delay

region. In Fig. 3.5(bottom), we demonstrate the convergence of our algorithm to a
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Figure 3.4: Network topology 3.

Pareto-optimal point. We start our algorithm from two different initial points and

observe that they converge to a point which is on the boundary of the achievable

delay region, demonstrating Remark 3.1.
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Figure 3.5: (top) Achievable delay regions with and without energy cooperation.

(bottom) Convergence of our algorithm.
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3.7 Concluding Remarks

In this chapter, we considered the energy management and energy routing problems

for delay minimization in energy harvesting networks with energy cooperation. In

this network, there are data links where data flows and energy links where energy

flows. We determined the jointly optimal data and energy flows in the network and

the energy distribution over outgoing data links at all nodes. We established neces-

sary conditions for the solution, and proposed an iterative algorithm that updates

powers, data routing and energy routing sequentially and converges to a Pareto-

optimal operating point. In the special case of fixed data flows and no energy

cooperation, we showed that each link should allocate more power to links with

more noise and/or more data flow. In the case with multiple energy harvests, and

no energy cooperation, we showed that the optimal sum powers on the outgoing

data links of each node at every slot must be equal to the optimal single-link trans-

mit powers. Our numerical results indicate that when data flows are fixed, energy

is routed from nodes with lower data loads to nodes with higher data loads; while

in the more general problem, where data flows are optimized also, allocation of data

and energy flows are performed in a balanced fashion.
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3.8 Appendix

3.8.1 Derivation of (3.32)

Starting from (3.31), we have

λ =
tl

2σl

[
1

2
log

(
1 +

pl
σl

)
− tl

]−2(
1 +

pl
σl

)−1

(3.76)

We let rl , 1
2

log
(

1 + pl
σl

)
− tl, then 1 + pl

σl
= e2(rl+tl). With these definitions, we

rewrite (3.76):

λ =
tl

2σl
r−2
l e−2(rl+tl) (3.77)

Or equivalently,

rle
rl =

√
tle−2tl

2λσl
(3.78)

From here, rl = W (zl) where zl ,
√

tle
−2tl

2λσl
and W (·) is the Lambert W function

defined as the inverse function of w → wew [75]. From the definition of rl,

1

2
log

(
1 +

pl
σl

)
− tl = rl = W (zl) (3.79)

and

pl = σl
(
e2(W (zl)+tl) − 1

)
(3.80)
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which is (3.32).

3.8.2 Derivation of (3.34)

From (3.32), we have

pl = σl
(
e2(W (zl)+tl) − 1

)
(3.81)

with zl =
√

tle
−2tl

2λσl
. Our aim is to find ∂pl

∂σl
. To this end, define vl , e2(W (zl)+tl) − 1.

Now we have,

∂pl
∂σl

=
(
e2(W (zl)+tl) − 1

)
+ σl

∂vl
∂zl

∂zl
∂σl

(3.82)

The first partial derivative on the right hand side of (3.82) is,

∂vl
∂zl

= e2(W (zl)+tl)2
W (zl)

zl(1 +W (zl))
(3.83)

where we have used (3.33). The second partial derivative in (3.82) is,

∂zl
∂σl

= −1

2

√
tle−2tl

2λσl

1

σl
= −1

2

zl
σl

(3.84)

Using (3.83) and (3.84) in (3.82), we have

∂pl
∂σl

= e2tl
e2W (zl)

1 +W (zl)
− 1 (3.85)
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which is (3.34).

3.8.3 Derivation of (3.35)

Starting from (3.32), we have

pl + σl = σle
2(W (zl)+tl) (3.86)

with zl =
√

tle
−2tl

2λσl
. Our aim is to find ∂pl

∂tl
. Taking logarithm of (3.86), and differen-

tiating both sides with respect to tl, we have

1

2

1

σl + pl

∂pl
∂tl

=
∂W (zl)

∂zl

∂zl
∂tl

+ 1 (3.87)

∂W (zl)
∂zl

is evaluated from (3.33) and ∂zl
∂tl

is

∂zl
∂tl

=
1

2

√
tle−2tl

2λσl

1

tl
−
√
tle−2tl

2λσl
= zl

(
1

2tl
− 1

)
(3.88)

Using (3.33) and (3.88) in (3.87), we obtain

∂pl
∂tl

= 2(σl + pl)

[
W (zl)

1 +W (zl)

(
1

2tl
− 1

)
+ 1

]
(3.89)

= σle
2(W (zl)+tl)

W (zl) + 2tl
tl(1 +W (zl))

(3.90)

which is (3.35).
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3.8.4 Proof of Lemma 3.8

Assume that sum powers at each slot si ,
∑

l bli is given for each i. Consider the

inner optimization in (3.58) for a fixed slot, say slot i. For convenience, we drop

the slot index i, and denote si by s, and bli by bl. We define a function x(s) as the

minimization over bl for fixed s as follows:

x(s) = min
bl

∑

l

tl
1
2

log
(
e2tl + bl

σl

)
− tl

s.t.
∑

l

bl = s, bl ≥ 0, ∀l (3.91)

which is the inner optimization in (3.58) for fixed i, and is also equivalent to:

x(s) = min
bl

∑

l

tl
1
2

log
(
e2tl + bl

σl

)
− tl

s.t.
∑

l

bl ≤ s, bl ≥ 0, ∀l (3.92)

Now, we claim that x(s) is non-increasing and convex in s. Since increasing s

can only expand the feasible set, x(s) is non-increasing in s. To prove the convexity:

Let s1, s2 ∈ R+. Let 0 ≤ λ ≤ 1 and λ̄ = 1−λ. Let b1 be the solution of the problem

with s1, and b2 be the solution of the problem with s2. Note that b1 and b2 exist

and are unique due to convexity. The vector λb1 + λ̄b2 is feasible for the problem
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with λs1 + λ̄s2 since the constraints are linear. Then,

x(λs1 + λ̄s2) ≤
∑

l

tl
1
2

log
(
e2tl + λb1l+λ̄b2l

σl

)
− tl

(3.93)

≤
∑

l

λtl
1
2

log
(
e2tl + b1l

σl

)
− tl

+
λ̄tl

1
2

log
(
e2tl + b2l

σl

)
− tl

(3.94)

= λx(s1) + λ̄x(s2) (3.95)

where (3.93) follows because the minimum value of the problem can be no larger

than the objective value of any feasible point, (3.94) follows from the convexity of

1
log(a+x)

, and (3.95) follows from the fact that b1 solves the problem with s1 and b2

solves the problem with s2. Now, the optimization problem in (3.58) can be written

as:

min
si

T∑

i=1

x(si)

s.t.
k∑

i=1

si ≤
k∑

i=1

Gi, ∀i, ∀k (3.96)

The problem in (3.96) is in the same form as the problems in [5, eqn. (2)], [6,

eqns. (6)-(8)] and [9, eqn. (15)] and is equivalent to the problem in [4, eqn. (3)],

where a concave non-decreasing function of powers is maximized subject to energy

harvesting constraints. In addition, [5, 6, 9] have additional finite battery constraints

which we do not have here. References [4, 5] showed that the solution to this

problem is invariant to the specific form of the function as long as it is convex (in

minimization problems) or concave (in maximization problems). We follow the proof
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in [9, Appendix B] and conclude that s, the optimal solution of (3.96), is given by

the single-link optimal transmit powers.

3.8.5 Proof of Lemma 3.9

We show that the conditions in (3.70)-(3.72) are equivalent to (3.62)-(3.64) therefore

proving the necessity statement of the lemma.

1) Writing (3.62) for node n and the data links l ∈ Od(n) connected to it

tl
2σl

[
1

2
log

(
1 +

pl
σl

)
− tl

]−2(
1 +

pl
σl

)−1

= λn − βl ≤ λn (3.97)

Now, we claim that when pl > 0, βl = 0. Assume pl > 0 and βl > 0. From (3.68),

this means that pl = σl(e
2tl−1) and the delay at link l becomes tl

0
which is unbounded

for tl > 0. Then, we must have tl = 0, but this means pl = 0, as otherwise power

has been consumed on a link with zero flow. This is a contradiction to pl > 0. Thus,

βl = 0 when pl > 0 and (3.70) is satisfied with equality.

2) We choose any origin destination pair (n, d) and identify a path starting from

node n and ending at destination node d, and in which all link powers and therefore

flows are strictly positive. We denote this path by Fn,d. We write the conditions

(3.63) on links on this path and sum them to get

∑

l∈Fn,d

1

2
log

(
1 +

pl
σl

)[
1

2
log

(
1 +

pl
σl

)
− tl

]−2

=
∑

l∈Fn,d

νm(l) − νn(l) − 2βlσle
2tl + γl (3.98)

98



=
∑

l∈Fn,d

νm(l) − νn(l) (3.99)

= νd − νn (3.100)

= −νn (3.101)

where (3.99) follows from βl = γl = 0 since pl > 0, tl > 0, (3.100) follows from

telescoping the sum
∑

l∈Fn,d
νn(l) − νm(l), and (3.101) follows from setting νd = 0

since it is a destination node and there are no flow conservation constraints at that

node. We let ν̃n = −νn and get (3.71).

3) For energy link q between nodes n and m, k(q) = n and z(q) = m in (3.64). From

(3.64), we have λn = αqλm + θq ≥ αqλm since θq ≥ 0. Then,

tl
2σl

[
1

2
log

(
1 +

pl
σl

)
− tl

]−2(
1 +

pl
σl

)−1

= λn (3.102)

≥ αqλm (3.103)

= αq
tk

2σk

[
1

2
log

(
1 +

pk
σk

)
− tk

]−2(
1 +

pk
σk

)−1

(3.104)

where (3.102) and (3.104) are from using part 1 of Lemma 3.9 for node n and m,

respectively. Equality is achieved when yq > 0, since in this case θq = 0 from (3.67).
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CHAPTER 4

Cooperative Diamond Channel with Energy Harvesting Nodes

4.1 Introduction

In this chapter, we consider the cooperative energy harvesting diamond channel [68],

see Fig. 4.1. We model the physical layer as a concatenation of a Gaussian broadcast

channel and a Gaussian multiple access channel. Since the broadcast channel iss

degraded, one of the relays has the message of the other relay. Therefore, the

multiple access channel is an extended multiple access channel with common data

[69], which we also call the cooperative multiple access channel. Our aim is to

determine the optimum power and rate allocation policies of the users in order to

maximize the end-to-end throughput of this system.

Prior work of particular relevance to our work in this chapter are [12–15, 76],

where two-hop communication is considered with energy harvesting nodes for half-

or full-duplex relay settings. Recently, in [61, 77], two-hop communication systems

with two parallel relays are studied. In [77], two parallel half-duplex relays with

various combinations of different transmission modes are considered. Due to the

half-duplex nature of the relays, broadcast and multiple access operations are not
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simultaneously possible. In [61], all four links of the broadcast and multiple access

channels are restricted to be orthogonal, and no storage of data is allowed at the

relays due to strict delay constraints. The setting in this chapter can be viewed as a

generalization of [61] to general broadcast and multiple access channels, and general

data storage at the relays.

In the setting of the diamond channel, see Fig. 4.1, when the transmission

rates of the source in the broadcast side are fixed, the problem can be viewed as

an energy harvesting multiple access channel where data packets as well as the

harvested energies arrive at the transmitters intermittently over time. Of particular

relevance to this specific problem, are references [10, 78, 79] where optimal scheduling

problems on a multiple access channel are investigated. In [78], minimum energy

scheduling problem over a multiple access channel where data packets arrive over

time is solved. In [10], a multiple access channel with energy arrivals is considered

but it is assumed that the users are infinitely backlogged, i.e., the data packets do

not arrive over time. In [79], an energy harvesting multiple access channel with

additional maximum power constraints on each user is considered. These previous

works either consider data arrivals or energy arrivals but not both; in our current

work, we need to consider both constraints due to the two-hop nature of the diamond

channel.

In the first part of the chapter, in Section 4.3, we focus on the broadcast

half of the diamond network. We first show that there exists an optimal source

power allocation policy which is equal to the single-user optimal power policy for

the source energy arrivals and does not depend on the relay energy arrivals. This
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Figure 4.1: Cooperative diamond network with energy harvesting nodes.

is a generalization of [7, 9], which proved the optimality of a single-user power

allocation for the capacity region of a broadcast channel; our work shows that the

result remains the same even when the broadcast channel is concatenated with a

multiple access channel. Our result is also a generalization of the separation result

proved in [12, 13], which showed that, in a single relay channel, the source can

optimize its transmit power irrespective of the relay’s energy arrivals; our work

shows that this result remains the same for the case of two relays forming a multiple

access second hop. Next, we show that even though the total power can be selected

as the single-user optimal power, the fraction of the power spent on each broadcast

link depends on the energy arrivals of the relays. Specifically, we show that the

optimal source rate allocation can be found by solving an optimal broadcasting

problem with slot-dependent user priorities and these priorities can change only at

instants when one of the relay data buffers is empty.
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In the second part of the chapter, in Section 4.4, we turn our attention to

the multiple access side of the diamond network. As mentioned before, this is a

cooperative multiple access channel with common data. To take the full advantage

of cooperation arising from common data, the relays need to use commonly gener-

ated codebooks. For simplicity of operation, the relays may choose to ignore the

constructed common data, and operate the second hop as a regular multiple access

channel. Therefore, we first consider a regular Gaussian multiple access channel for

the second hop of the diamond channel. In this setting, first we note that when the

transmission rates of the source in the broadcast side are fixed, the overall prob-

lem becomes a multiple access channel with both data and energy arrivals. Then,

we show that this problem can be formulated in terms of data transmission rates

only, instead of formulating over both transmission powers and data rates. In the

multiple access channel with only energy arrivals, it was observed in [10], that the

optimal sum rate is equal to the single-user optimal rate with both user energies

merged. This may naturally suggest that, with the presence of the data causality

constraints, the optimal sum rate is given by the single-user optimal rate with both

data and energy causality constraints merged. In Section 4.4.1, we show that this

suggestion is not entirely valid, but a majorization relationship exists between these

two solutions. In Section 4.4.2, we solve the overall diamond channel problem with

non-cooperative multiple access channel, using a dual decomposition method.

In the third part of the chapter, in Section 4.5, we recover the original setting

of the diamond channel by focusing on the cooperative (extended) multiple access

capacity region. With the extended multiple access capacity region, we find the
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overall solution using a decomposition into inner and outer maximization problems.

The outer problem consists of finding the optimal source transmission rates in the

broadcast side. The inner problem consists of finding the optimal relay rate and

power allocations when the transmission rates of the source in the broadcast side

are fixed. We solve the overall problem by iterating between the two sides.

4.2 System Model

We consider the energy harvesting diamond channel shown in Fig. 4.1. The har-

vested energies are saved in the corresponding batteries. The physical layer is mod-

eled as a concatenation of a broadcast channel and a multiple access channel. In the

broadcast channel, relay 1 is the stronger receiver: the channel noises have variances

σ2
1 ≤ σ2

2. The Gaussian broadcast channel capacity region with transmitter power

p is given by [44]

CBC(p) =

{
r1 ≤ f

(
αp

σ2
1

)
, r2 ≤ f

(
(1− α)p

αp+ σ2
2

)}
(4.1)

where α is the fraction of power spent for the message of user 1, and f(x) , 1
2

log(1+

x). The function g(r1, r2) is the minimum energy required to transmit at rates

(r1, r2):

g(r1, r2) , σ2
122(r1+r2) + (σ2

2 − σ2
1)22r2 − σ2

2 (4.2)
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and is strictly convex in (r1, r2). Since relay 2 is degraded with respect to relay 1,

relay 1 can decode the messages intended for relay 2. Therefore, the second hop is

an extended multiple access channel with common data. The capacity region for

this channel with transmitter powers (p1, p2) and Gaussian noise power σ2
3 is given

as [68, 69, 80]:

CEMAC(p1, p2) =

{
r1 ≤ f((1− β)p1/σ

2
3),

r1 + r2 ≤ f
(

(p1 + p2 + 2
√
βp1p2)/σ2

3

)}
(4.3)

If the presence of common data is ignored, the second hop becomes a regular Gaus-

sian multiple access channel whose capacity region is given as [44]:

CMAC(p1, p2) =

{
r1 ≤ f(p1/σ

2
3), r2 ≤ f(p2/σ

2
3),

r1 + r2 ≤ f((p1 + p2)/σ2
3)

}
(4.4)

There are N equal length slots of duration τ seconds and τ = 1 is assumed

without loss of generality. We refer to relay 1 as the top and relay 2 as the bottom

relay and use subscripts t and b to denote their parameters; subscript s denotes the

source node’s parameters. In slot i, the source, top and bottom relays harvest energy

with amounts Esi, Eti, Ebi, respectively. We denote the transmission power of the

source as psi and source rates to the top (bottom) relay as rti (rbi), the transmission

power of the top (bottom) relay to the destination as p̄ti (p̄bi) and data rates of the

top (bottom) relays to the destination as r̄ti (r̄bi). We denote these power and rate
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sequences with the vectors ps, p̄t, p̄b, rt, rb, r̄t, r̄b. The energy that has not yet been

harvested cannot be used, leading to the following energy causality constraints at

all transmitters:

k∑

i=1

p̄ti ≤
k∑

i=1

Eti, ∀k (4.5)

k∑

i=1

p̄bi ≤
k∑

i=1

Ebi, ∀k (4.6)

k∑

i=1

psi ≤
k∑

i=1

Esi, ∀k (4.7)

The relays cannot forward data that has not yet arrived, leading to the following

data causality constraints at the relays:

k∑

i=1

r̄ti ≤
k∑

i=1

rti, ∀k (4.8)

k∑

i=1

r̄bi ≤
k∑

i=1

rbi, ∀k (4.9)

The rate allocations must be achievable for each channel:

(rti, rbi) ∈ CBC(psi), ∀i (4.10)

(r̄ti, r̄bi) ∈ CEMAC(p̄ti, p̄bi), ∀i (4.11)

where we will use CMAC(p̄ti, p̄bi) in (4.11), if we operate the second hop as a regular

multiple access channel.
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We aim to maximize the end-to-end throughput:

max
ps,p̄t,p̄b,rt,rb ,̄rt ,̄rb,α

N∑

i=1

r̄ti +
N∑

i=1

r̄bi

s.t. (4.5)-(4.11) (4.12)

In this chapter we will solve the problem in (4.12). We will separately focus on

the broadcast and the multiple access sides of the problem in the following sections.

4.3 Broadcast Channel Side

First, we will focus on the broadcast side of the problem. We consider the source

which is broadcasting data to the two relays, and focus on the source power (psi)

and rate (rti, rbi) allocations. We first prove some properties of the optimal solution

which hold regardless of the existence of the multiple access link.

Lemma 4.1 Either the source energy or both of the relay energies must be consumed

fully.

Proof: The proof follows by contradiction. If any excess energy is left, then we can

increase the rates, which contradicts optimality. �

Lemma 4.2 There exists an optimal source profile (p∗s, r
∗
t , r
∗
b) that is on the bound-

ary of the broadcast capacity region in each slot, i.e.,

r∗ti = f

(
αip
∗
si

σ2
1

)
, r∗bi = f

(
(1− αi)p∗si
αp∗si + σ2

2

)
, ∀i. (4.13)
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Proof: In slots where the constraints r∗ti ≤ f
(
αip
∗
si

σ2
1

)
and r∗bi ≤ f

(
(1−αi)p

∗
si

αp∗si+σ
2
2

)
are satis-

fied with strict inequality, we can increase r∗ti or r∗bi without violating any feasibility

constraints as we can always increase the right hand sides of the data feasibility

constraints in (4.8) and (4.9). �

Using Lemma 4.2 we can remove the broadcast capacity region constraints

from the problem and let psi = g(rti, rbi). The corresponding energy causality con-

straints for the source node can now be written as:

k∑

i=1

g(rti, rbi) ≤
k∑

i=1

Esi, ∀k (4.14)

The optimization problem can now be written as:

max
p̄t,p̄b,rt,rb ,̄rt ,̄rb

N∑

i=1

r̄ti +
N∑

i=1

r̄bi

s.t. (4.5)-(4.6), (4.8)-(4.9), (4.11), (4.14) (4.15)

The following theorem states a key structural property of the optimal policy,

and is proved in Appendix 4.8.1.

Theorem 4.1 There exists an optimal total source power sequence g(r∗ti, r
∗
bi) which

is the same as the single-user optimal transmit power sequence for the energy arrivals

Esi.

Theorem 4.1 tells us that there exists a solution to the problem in (4.15) in which

g(r∗ti, r
∗
bi) = Pi, where Pis are the single-user optimal transmit powers for the en-
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ergy arrivals Esi. This constraint can always be relaxed to g(rti, rbi) ≤ Pi. Using

Theorem 4.1, the optimization problem becomes:

max
p̄t,p̄b,rt,rb ,̄rt ,̄rb

N∑

i=1

r̄ti +
N∑

i=1

r̄bi

s.t. (4.5)-(4.6), (4.8)-(4.9), (4.11), g(rti, rbi) ≤ Pi (4.16)

We note that the single-user optimal transmit powers Pis can be found by the

directional water filling algorithm in [6] or the staircase water filling algorithm in [54].

Theorem 4.1 generalizes the results of [7, 9] to the case of concatenated networks,

and the results of [12, 13] to the case of multiple relays. While the source power

does not depend on the energy arrival profile of the relays, the fraction of the total

power spent on each broadcast link depends on the energy arrival profile of the

relays. In the following lemmas, we show how to find the distribution of power over

the broadcast links.

Lemma 4.3 There exists a positive real vector µ , {µi}Ni=1, µi ∈ [0, 1] such that

(r∗ti, r
∗
bi) simultaneously solves the problem in (4.16) and the following optimization

problem:

max
rti,rbi

N∑

i=1

µirti +
N∑

i=1

rbi

s.t. g(rti, rbi) ≤ Pi (4.17)

Lemma 4.4 µi can increase (decrease) only when the bottom (top) data buffer is
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empty.

The proofs of Lemma 4.3 and Lemma 4.4 are given in Appendix 4.8.2.

In a single-hop broadcasting problem as in [7–9], the capacity region can

be traced by solving the following optimization problem: maxr1i,r2i µ1

∑N
i=1 r1i +

µ2

∑N
i=1 r2i for some µ1, µ2 ∈ R+. Here, µ1, µ2 are called user priorities and are

constant throughout slots. Lemmas 4.3 and 4.4 show us that the existence of a mul-

tiple access layer affects the broadcast layer by introducing variable user priorities

in time. The user priorities can change only when one of the data buffers is empty:

the priority of the first user can increase only when the bottom data buffer is empty,

and can decrease only when the top data buffer is empty. From [7], the solution to

(4.17) is:

rti =
1

2
log(1 + min{Pci, Pi}) (4.18)

rbi =
1

2
log

(
1 +

(Pi − Pci)+

Pci + σ2
2

)
(4.19)

where, if µi ≥ 1, all of the power is allocated to the top relay only. If µi < 1, we

define

Pci ,

(
µiσ

2
2 − σ2

1

1− µi

)+

(4.20)

In other words, given (µi, Pi), the rate pairs (rti, rbi) can uniquely be determined

from (4.18) and (4.19). We denote the unique rate pairs found from (4.18) and

(4.19) for fixed (µi, Pi) by rti(µi, Pi) and rbi(µi, Pi). Let us define the function z(µ)
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which is a maximization over (p̄t, p̄b, r̄t, r̄b) for fixed µ:

z(µ) = max
p̄t,p̄b ,̄rt ,̄rb

N∑

i=1

r̄ti +
N∑

i=1

r̄bi

s.t.
k∑

i=1

r̄ti ≤
k∑

i=1

rti(µi, Pi), ∀k

k∑

i=1

r̄bi ≤
k∑

i=1

rbi(µi, Pi), ∀k

(4.5)-(4.6), (4.11) (4.21)

Then, the original problem in (4.12) is equivalent to:

max
µ∈[0,1]N

z(µ) (4.22)

4.4 Non-Cooperative Multiple Access Channel Side

In this section, we consider the regular multiple access channel by ignoring the

presence of common data. We note that the problem in (4.21) is a throughput max-

imization problem in an energy harvesting multiple access channel with data arrivals

as shown in Fig. 4.2. For notational convenience, we denote dti = rti(µi, Pi), dbi =

rbi(µi, Pi). When µ is fixed, the data arrivals to the multiple access side are fixed

and the data causality constraints can be written as

k∑

i=1

r̄ti ≤
k∑

i=1

dti, ∀k (4.23)

k∑

i=1

r̄bi ≤
k∑

i=1

dbi, ∀k (4.24)
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We start this section by reformulating the problem in terms of the rates only.

We consider the following energy causality constraints on the rates:

k∑

i=1

σ2
3(22r̄ti − 1) ≤

k∑

i=1

Eti, ∀k (4.25)

k∑

i=1

σ2
3(22r̄bi − 1) ≤

k∑

i=1

Ebi, ∀k (4.26)

k∑

i=1

σ2
3(22(r̄ti+r̄bi) − 1) ≤

k∑

i=1

Eti + Ebi, ∀k (4.27)

and the corresponding throughput maximization problem:

max
r̄ti,r̄bi

N∑

i=1

r̄ti +
N∑

i=1

r̄bi

s.t. (4.23)-(4.27) (4.28)

The following lemma, proved in Appendix 4.8.3, shows that this is an equivalent
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representation for the problem in (4.21).

Lemma 4.5 The problems in (4.21) and (4.28) are equivalent.

We solve the problem in (4.28) in the remainder of this section. We denote

the optimal solution to (4.28) by (r̄∗ti, r̄
∗
bi). We have the following lemma.

Lemma 4.6 The optimal sum rate for relays is non-decreasing in time, i.e., r̄∗ti +

r̄∗bi ≤ r̄∗t,i+1 + r̄∗b,i+1,∀i.

Proof: The proof follows by contradiction. Assume that there is a slot k such that

r̄∗tk + r̄∗bk > r̄∗t,k+1 + r̄∗b,k+1. We will show that this policy cannot be optimal. There

can be three cases, case 1: r̄∗tk > r̄∗t,k+1, r̄
∗
bk ≤ r̄∗b,k+1, case 2: r̄∗bk > r̄∗b,k+1, r̄

∗
tk ≤

r̄∗t,k+1 and case 3: r̄∗bk > r̄∗b,k+1, r̄
∗
tk > r̄∗t,k+1. Assume that the first case happens.

Consider the modified policy r̂tk = r̂t,k+1 =
r̄∗tk+r̄∗t,k+1

2
. This modified policy is feasible

and transmits the same amount of data as r̄∗ti, r̄
∗
bi, but due to the convexity of the

functions 22(r̄ti+r̄bi) and 22r̄ti , consumes less energy. This additional energy can be

used to transmit more data and therefore the policy (r̄∗ti, r̄
∗
bi) cannot be optimal. For

the second case, we set r̂bk = r̂b,k+1 =
r̄∗bk+r̄∗b,k+1

2
and for the third case we modify

both r̄∗tk, r̄
∗
t,k+1 and r̄∗bk, r̄

∗
b,k+1 to reach a similar contradiction. �

4.4.1 Relaxed Problem and Majorization

Without the data causality constraints of (4.23) and (4.24) it was observed in [10],

that the optimal sum rate is equal to the single-user optimal rate with the energies

merged as Eti +Ebi. This may naturally suggest that, with the presence of the data
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causality constraints, the optimal sum rate is given by the single-user optimal rate

with both data and energy causality constraints. In this section, we show that this

suggestion is not entirely valid, but a majorization relationship exists between these

two solutions. Consider the following problem:

max
qi

N∑

i=1

qi

s.t.
k∑

i=1

σ2
3(22qi − 1) ≤

k∑

i=1

Eti + Ebi, ∀k

k∑

i=1

qi ≤
k∑

i=1

dti + dbi, ∀k (4.29)

This problem can be solved using the geometric approach in [4] or the directional

waterfilling with both data and energy arrivals in [6]. We note that the problem in

(4.29) is a relaxed version of (4.28) where the energy arrivals and data arrivals are

merged to a single-user. I.e., we sum up (4.23) and (4.24) to obtain a single data

arrival constraint and remove (4.25) and (4.26). We denote the solution to (4.29)

by q∗i . Now, we show two weak majorization results whose proofs are provided in

Appendix 4.8.4 and 4.8.5 respectively.

Lemma 4.7 We must have
∑k

i=1 r̄
∗
ti + r̄∗bi ≤

∑k
i=1 q

∗
i ,∀k.

Lemma 4.8 If at any slot k, we have
∑k

i=1 r̄
∗
ti+r̄

∗
bi =

∑k
i=1 q

∗
i , then

∑k
i=1 22(r̄∗ti+r̄

∗
bi) ≥

∑k
i=1 22q∗i . If, in addition, we have σ2

3

(∑k
i=1 22q∗i − 1

)
=
∑k

i=1Eti + Ebi, then we

must have r̄∗ti + r̄∗bi = q∗i for i = 1, . . . , k.

In some special instances of the problem, Lemmas 4.7 and 4.8 can be utilized,

by enforcing the constraint r̄ti + r̄bi = q∗i ,∀i, replacing r̄bi = q∗i − r̄ti and solving a
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single-user problem.

4.4.2 Iterative Solution

In this section, we will solve the overall problem by utilizing a dual decomposition

method. After applying Lemma 4.5, the problem in (4.16) is equivalent to:

max
r̄ti,r̄bi,rti,rbi

N∑

i=1

r̄ti +
N∑

i=1

r̄bi

s.t. (4.8), (4.9), (4.25)-(4.27), g(rti, rbi) ≤ Pi (4.30)

Defining a new variable as wi = r̄ti + r̄bi, we formulate the following equivalent

optimization problem:

max
r̄ti,r̄bi,rti,rbi,wi

N∑

i=1

wi

s.t. (4.8), (4.9), (4.25), (4.26), g(rti, rbi) ≤ Pi

k∑

i=1

σ2
3(22wi − 1) ≤

k∑

i=1

Eti + Ebi, ∀k

wi = r̄ti + r̄bi, ∀i (4.31)

which can be relaxed to:

max
r̄ti,r̄bi,rti,rbi,wi

N∑

i=1

wi

s.t. (4.8), (4.9), (4.25), (4.26), g(rti, rbi) ≤ Pi
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k∑

i=1

σ2
3

(
22wi − 1

)
≤

k∑

i=1

Eti + Ebi, ∀k

wi ≤ r̄ti + r̄bi, ∀i (4.32)

since at slots where the last inequality is not satisfied with equality, r̄ti and r̄bi

can be decreased until equality is satisfied without changing the throughput. The

problem in (4.32) is convex since the objective function is linear and the constraints

are convex. Define the following sets:

Rs = {(rti, rbi) ∈ (R+ × R+) : g(rti, rbi) ≤ Pi, ∀i} (4.33)

Rt = {r̄ti ∈ R+ :
k∑

i=1

σ2
3(22r̄ti − 1) ≤

k∑

i=1

Eti, ∀k} (4.34)

Rb = {r̄bi ∈ R+ :
k∑

i=1

σ2
3(22r̄bi − 1) ≤

k∑

i=1

Ebi, ∀k} (4.35)

Rw = {wi ∈ R+ :
k∑

i=1

σ2
3(22wi − 1) ≤

k∑

i=1

Eti + Ebi, ∀k} (4.36)

Now, we write the partial Lagrangian function for the problem in (4.32) correspond-

ing to the constraints (4.8), (4.9) and wi ≤ r̄ti + r̄bi as follows:

L =
N∑

i=1

wi +
N∑

k=1

λ1k

(
k∑

i=1

rti −
k∑

i=1

r̄ti

)

+
N∑

k=1

λ2k

(
k∑

i=1

rbi −
k∑

i=1

r̄bi

)
+

N∑

i=1

νi (r̄ti + r̄bi − wi) (4.37)
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Now, the dual function is [70]:

K(λ1,λ2,ν) = max
(rti,rbi)∈Rs,r̄ti∈Rt,r̄bi∈Rb,wi∈Rw

L(rt, rb, r̄t, r̄b,w) (4.38)

= max
(rti,rbi)∈Rs

[
N∑

i=1

rti

N∑

k=i

λ1k +
N∑

i=1

rbi

N∑

k=i

λ2k

]

+ max
r̄ti∈Rt

[
N∑

i=1

r̄ti

(
νi −

N∑

k=i

λ1k

)]

+ max
r̄bi∈Rb

[
N∑

i=1

r̄bi

(
νi −

N∑

k=i

λ2k

)]

+ max
wi∈Rw

N∑

i=1

(1− νi)wi (4.39)

Denote the collection of Lagrange multiplier vectors as γ , (λ1,λ2,ν). For fixed

γ, we define the following subproblems:

K1(γ) = max
(rti,rbi)∈Rs

N∑

i=1

rti

N∑

k=i

λ1k +
N∑

i=1

rbi

N∑

k=i

λ2k (4.40)

K2(γ) = max
r̄ti∈Rt

N∑

i=1

r̄ti

(
νi −

N∑

k=i

λ1k

)
(4.41)

K3(γ) = max
r̄bi∈Rb

N∑

i=1

r̄bi

(
νi −

N∑

k=i

λ2k

)
(4.42)

K4(γ) = max
wi∈Rw

N∑

i=1

(1− νi)wi (4.43)

Slater’s condition holds for the problem in (4.30) [70]. Therefore, there is no

duality gap and the optimal values of the dual problem and the primal problem are
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the same. This implies that (4.30) is equivalent to the following problem:

min
γ≥0

K(γ) (4.44)

or equivalently:

min
γ≥0

H(γ) (4.45)

where H , K1 + K2 + K3 + K4. We observe that for fixed γ we can solve the

subproblems independently. We solve the problem in (4.45) by separately solving

the outer minimization and inner maximization problems.

4.4.2.1 Inner Maximization

Here, we focus on the inner problems (4.40)-(4.43). We start by analyzing (4.40).

We define ai =
∑N

k=i λ1k and bi =
∑N

k=i λ2k. Then (4.40) becomes:

max
rti,rbi

N∑

i=1

airti +
N∑

i=1

birbi

s.t. g(rti, rbi) ≤ Pi (4.46)

Since the constraint set depends only on index i, (4.46) is solved individually for

each i as follows:

max
rti,rbi

airti + birbi
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s.t. g(rti, rbi) ≤ Pi (4.47)

The problem in (4.47) is a single-user throughphut maximization problem in a broad-

cast channel setting as in [7] with user priorities as ai and bi. Therefore, the solution

to (4.47) is given by rti(ai/bi, Pi) and rbi(ai/bi, Pi) with the definitions as given in

(4.18)-(4.20).

Now, we examine (4.41). We define ci , νi−
∑N

k=i λ1k and with this definition

(4.41) becomes:

max
r̄ti

N∑

i=1

cir̄ti

s.t.
k∑

i=1

σ2
3(22r̄ti − 1) ≤

k∑

i=1

Eti, ∀k (4.48)

We reformulate the problem in (4.48) in terms of powers as:

max
p̄ti

N∑

i=1

ci
2

log

(
1 +

p̄ti
σ2

3

)

s.t.
k∑

i=1

p̄ti ≤
k∑

i=1

Eti, ∀k (4.49)

The problem in (4.48) is a convex optimization problem and by a Lagrangian analysis

similar to [6] we obtain:

p̄ti =

(
ci∑N
k=i πk

− 1

)+

= ci

(
1∑N
k=i πk

− 1

ci

)+

(4.50)

where πk is the Lagrange multiplier corresponding to the energy causality constraint
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at slot k in (4.49). The solution to (4.50) is given by directional waterfilling on

rectangles of width ci and base level 1/ci as explained in [81, Fig. 2]. In slots where

ci < 0, no power should be allocated and those slots can be treated as if they are

not there.

The problems in (4.42) and (4.43) have the same structure and are solved

similarly. In (4.42), the fading levels are di , νi −
∑N

k=i λ2k and energy arrivals are

Ebi and in (4.43), the fading levels are (1− νi) and energy arrivals are Eti + Ebi. If

the fading levels are negative in any slot, those slots can be skipped. Denote the

solutions to K1(γ) by (r∗ti(γ), r∗bi(γ)) and the solutions to K2(γ),K3(γ),K4(γ) by

r̄∗ti(γ), r̄∗bi(γ) and w∗i (γ), respectively.

4.4.2.2 Outer Minimiziation

The outer minimization problem is the problem of finding optimal γ in (4.45). For

this problem we will use the normalized subgradient method, which is defined as

γ l+1 =

(
γ l − ζl

vl

‖vl‖

)+

(4.51)

where γ l+1 is the lth iterate, vl is any subgradient of h at γ l and ζl > 0 is the

lth step size. The (+) operator is used to enforce the constraints that γ ≥ 0. For

completeness, first we define the subgradient of a function: v is a subgradient of H

at x if [70, Eq. (6.20)]

H(y) ≥ H(x) + vT(y− x), ∀y (4.52)
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Now, we show that a subgradient for H(γ) is readily available once the inner max-

imization problems are solved. The following lemma is proved in Appendix 4.8.6.

Lemma 4.9 The vector

[(∑k
i=1 r

∗
ti(γ

l)−∑k
i=1 r̄

∗
ti(γ

l)
)
,
(∑k

i=1 r
∗
bi(γ

l)−
∑k

i=1 r̄
∗
bi(γ

l)
)
,
(
r̄∗ti(γ

l) + r̄∗bi(γ
l)− w∗i (γ(l))

) ]N

k=1

is a subgradient for H(γ) at γ l.

We note that the subgradient method is not a descent method, i.e., the itera-

tions at every step do not necessarily decrease the objective value. Therefore, it is

necessary to keep track of the best point found so far. At each step, we set:

Hl
best = min{Hl−1

best,H(γ l)} (4.53)

We denote γ lbest as the argument of Hl
best. It can be shown that for appropriately

selected ζl, Hl
best → H∗ [82, Section 6.3]. Furthermore, if the step size ζl is chosen

such that
∑∞

l=1 ζl = ∞,
∑∞

l=1 ζ
2
l < ∞, then γ lbest → γ∗ [83, Proposition 5.1].

Once the optimal γ∗ is found, w∗i (γ
∗) is the optimal sum rate and we can find

r∗ti(γ
∗), r∗bi(γ

∗) as the optimal source rates and r̄∗ti(γ
∗), r̄∗bi(γ

∗) as the optimal relay

rates. If r̄∗tk(γ
∗) + r̄∗bk(γ

∗) > w∗k(γ
∗) for some slot k then we can decrease first or

second user rates until equality is achieved.

4.5 Cooperative (Extended) Multiple Access Region

In this section, consider an extended multiple access capacity region for the second

hop of the diamond channel. We note that the statement of Theorem 4.1 still

holds when the multiple access region of (4.3) is used instead of (4.4). However,
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the statement of Lemma 4.5 and the discussions in Section 4.4 do not hold and it

is not clear how to formulate the multiple access side using rate expressions only.

Therefore, here we keep the expressions in terms of both power and rate allocations.

Using the approach followed before, we have that the original problem in (4.12) is

equivalent to:

max
µ∈[0,1]N

z(µ) (4.54)

where z(µ) is defined as in (4.21). We solve the problem in (4.54) in this section.

4.5.1 Inner Maximization

In this section, we focus on the inner problem in (4.21) for fixed µ. We define the

new variables p̄1ti = (1− βi)p̄ti and p̄2ti = βip̄ti and rewrite (4.21) as:

max
N∑

i=1

r̄ti +
N∑

i=1

r̄bi

s.t.
k∑

i=1

r̄ti ≤
k∑

i=1

rti(µi, Pi),
k∑

i=1

r̄bi ≤
k∑

i=1

rbi(µi, Pi)

k∑

i=1

p̄1ti + p̄2ti ≤
k∑

i=1

Eti,
k∑

i=1

p̄bi ≤
k∑

i=1

Ebi

r̄ti ≤ f(p̄1ti/σ
2
3)

r̄ti + r̄bi ≤ f
(
(p̄1ti + p̄2ti + p̄bi + 2

√
p̄2tip̄bi)/σ

2
3

)
(4.55)
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We denote the vector triple P = (p̄1t, p̄2t, p̄b) and define the function y(P) as

maximization over (r̄t, r̄b) for fixed P :

y(P) , max
(r̄t ,̄rb)

N∑

i=1

r̄ti +
N∑

i=1

r̄bi

s.t.
k∑

i=1

r̄ti ≤
k∑

i=1

rti(µi, Pi),
k∑

i=1

r̄bi ≤
k∑

i=1

rbi(µi, Pi)

r̄ti ≤ f(p̄1ti/σ
2
3)

r̄ti + r̄bi ≤ f
(
(p̄1ti + p̄2ti + p̄bi + 2

√
p̄2tip̄bi)/σ

2
3

)
(4.56)

For fixed P , (4.56) is a linear program, and y(P) can be determined efficiently. We

next note the following fact.

Lemma 4.10 y(P) is non-decreasing and concave in P.

Proof: Since increasing the powers can only expand the feasible region, y is non-

decreasing in its arguments. To prove the concavity: Let P = (p̄1t, p̄2t, p̄b) and

Q = (q̄1t, q̄2t, q̄b) be two power vectors. Let λ = 1 − λ̄ ∈ [0, 1]. Let (r̄t, r̄b) solve

y(P) and (̄st, s̄b) solve y(Q). Now, we show that (λr̄t + λ̄s̄t, λr̄b + λ̄s̄b) is feasible

for the problem y(λP + λ̄Q). The first two constraints in (4.56) are linear, thus,

their linear combinations are feasible. The third constraint is convex because f is

concave. The last constraint is convex because f is concave, non-decreasing, and

√
p̄2tip̄bi is concave. Thus, (λr̄t + λ̄s̄t, λr̄b + λ̄s̄b) is feasible for y(λP + λ̄Q). Now,

y(λP + λ̄Q) ≥
N∑

i=1

λr̄ti + λ̄s̄ti + λr̄bi + λ̄s̄bi (4.57)
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= λy(P) + λ̄y(Q) (4.58)

where (4.57) follows because the maximum value of the problem can be no smaller

than the objective value of any feasible point, and (4.58) follows from the fact that

(r̄t, r̄b) solves y(P) and (̄st, s̄b) solves y(Q). �

The problem in (4.55) can equivalently be written as:

max
p̄1t,p̄2t,p̄b

y(p̄1t, p̄2t, p̄b)

s.t.
k∑

i=1

p̄1ti + p̄2ti ≤
k∑

i=1

Eti, ∀k

k∑

i=1

p̄bi ≤
k∑

i=1

Ebi, ∀k (4.59)

The problem in (4.59) is convex as it involves maximizing a concave function over

a feasible set with linear constraints. This can be performed efficiently by iterating

over feasible (p̄1t, p̄2t, p̄b) such that every iteration increases the objective function,

for example, using the method described in [61, Section III.B]. Due to convexity,

the convergence to an optimal solution is guaranteed. Once (p̄∗1t, p̄
∗
2t, p̄

∗
b) is found,

z(µ) = y(p̄∗1t, p̄
∗
2t, p̄

∗
b).

4.5.2 Outer Maximization

The outer maximization problem is the problem of finding the optimal µ in (4.54).

For this purpose, we use the block coordinate descent method on the vector µ. First,
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we fix (µ1, . . . , µN−1) and solve the following problem

max
µN∈[0,1]

z(µ1, µ2, . . . , µN−1, µN) (4.60)

which can be done using a one-dimensional search on µN ∈ [0, 1]. Then, using this

newly found µN , we fix (µ1, . . . , µN−2, µN) and maximize over µN−1. We cyclically

iterate through each µi, one at a time, maximizing the objective function with

respect to that µi. By construction, the iterations z(µ(k)) is a monotone increasing

sequence and is bounded because the optimal value of problem (4.12) is bounded,

which guarantees convergence. The iterations converge to an optimal point due to

the convexity of the original problem. We can utilize Lemma 4.4 to search over µ

space more efficiently. Using this procedure, we reduced an N dimensional search

for µ to N one dimensional searches for each individual µi. For large N , this

search can be computationally demanding, however numerically we observed quick

convergence.

4.6 Numerical Results

In this section, we provide numerical examples and illustrate the resulting optimal

policies. We consider band-limited AWGN broadcast and multiple-access channels.

The bandwidth is BW = 1 MHz and the noise power spectral density is N0 = 10−19

W/Hz. We assume that the path loss between the source and relay 1 (hsr1) is 123dB,

source and relay 2 (hsr2) is 127dB and the path loss between relays and destination

are assumed to be same (hr1d = hr2d) and 130dB. With these definitions, equations
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(4.1) and (4.2) become:

r1 ≤ BW log2

(
1 +

αPhsr1
N0BW

)
= log2

(
1 +

αP

0.2

)
Mbps (4.61)

r2 ≤ BW log2

(
1 +

(1− α)Phsr2
αPhsr2 +N0BW

)
= log2

(
1 +

(1− α)P

αP + 0.6

)
Mbps (4.62)

g(r1, r2) = 0.2 ∗ 2(r1+r2) + (0.6− 0.2) ∗ 2r2 − 0.6 W (4.63)

The extended multiple access capacity region described in (4.3) becomes:

r1 ≤ BW log2

(
1 +

(1− β)hr1dP1

N0BW

)
= log2 (1 + (1− β)P1) Mbps (4.64)

r1 + r2 ≤ BW log2

[
1 + (N0BW )−1

(
hr1dP1 + hr2dP2 + 2

√
βhr1dP1hr2dP2

)]

= log2

(
1 + P1 + P2 + 2

√
βP1P2

)
Mbps (4.65)

Similarly the non-cooperative multiple access capacity region described in (4.4) be-

comes

r1 ≤ BW log2

(
1 +

hr1dP1

N0BW

)
= log2 (1 + P1) Mbps (4.66)

r2 ≤ BW log2

(
1 +

hr2dP2

N0BW

)
= log2 (1 + P2) Mbps (4.67)

r1 + r2 ≤ BW log2

(
1 +

hr1dP1 + hr2dP2

N0BW

)
= log2 (1 + P1 + P2) Mbps (4.68)

4.6.1 Deterministic Energy Arrivals

In this subsection, we consider deterministic energy arrivals, and focus on the offline

problem studied in this chapter. We study a 3 slot scenario with the following energy
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arrivals, Es = [5, 20, 9] J,Et = [4, 6, 5] J,Eb = [6, 10, 4] J.

First, we investigate the non-cooperative Gaussian multiple access scenario,

disregarding the possible cooperation between the top and bottom relays. The evo-

lution of our subgradient descent based algorithm is shown in Fig. 4.3. The step

size is taken as ζk = 1.3
k

and the initial points are taken as λ0
1 = [3.4, 1, 1],λ0

2 =

[2.8, 1.1, 1.4],ν0 = [10, 4, 3]. The plot shows the percentage error between the

best iteration so far and the optimal value of the problem in (4.12). The al-

gorithm converges after around 104 steps to reasonable accuracy. The resulting

Lagrange multipliers are found as λ1 = [3.04, 0.04, 0.4] × 10−3,λ2 = [4.29, 0, 0] ×

10−3,ν = [4.51, 4.29, 4.26] × 10−3. The optimal rates are then found as rt =

[1.55, 1.18, 1.14] Mbits, rb = [0.69, 1.7, 1.72] Mbits, r̄t = [1.16, 1.34, 1.35] Mbits, r̄b =

[1.4, 1.73, 0] Mbits,w = [1.72, 1.87, 1.87] Mbits. We observe that by setting r̄b =

w − r̄t = [0.56, 0.53, 0.52] Mbits we can get wi = r̄ti + r̄bi,∀i and this set of rates

is the optimal solution. The feasibility of this solution can be verified. Due to the

non-uniqueness of the solution, there may exist multiple r̄∗ti, r̄
∗
bi pairs that yield the

optimal sum rate however the optimal sum rate r̄∗ti + r̄∗bi is unique. The optimal

sum throughput in this case is calculated as
∑N

i=1 r̄ti +
∑N

i=1 r̄bi = 5.46 Mbits. The

optimal user priorities for the source are calculated as µ1 = [0.81, 0.72, 0.71].

Second, we investigate the extended multiple access scenario. The optimal

user priorities for the source are found as µ2 = [0.83, 0.43, 0.43]. The optimal

rates are then found as rt = [0.74, 0.07, 0.07] Mbits, rb = [1.27, 2.3, 2.3] Mbits, r̄t =

[0.74, 0.07, 0.07] Mbits, r̄b = [1.27, 2.3, 2.3] Mbits, p̄1t = [1.8, 0.1, 0.1] W,

p̄2t = [2.2, 5.39, 5.39] W, p̄b = [4.82, 7.58, 7.58] W. We note that p̄2t is much larger
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Figure 4.3: Percentage error between the best iteration so far and the optimal value
vs iteration number k.

than p̄1t which means that relay 1 has spent a significant portion of its power on

the cooperative communication rather than forwarding its own data. The optimal

sum throughput in this case is calculated as
∑N

i=1 r̄ti +
∑N

i=1 r̄bi = 6.76 Mbits which

is higher than in the non-cooperative case.

Finally, we examine the maximum departure region and the optimal trajec-

tories for the broadcast side of this diamond channel for the non-cooperative and

cooperative Gaussian multiple access channel second hops. Without the existence

of relays, for the two user Gaussian broadcast channel, to maximize the sum rate we

need to set µ = [1, 1, 1] and rbi = 0, ∀i, i.e., all the power must be allocated to the

stronger user[7]. The existence of the multiple access layer changes this structure.

We sketch the maximum departure region and trajectories to reach the optimal

point in Fig. 4.4. When there is no multiple access layer, all the power is allocated
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(
∑N

i=1 rti,
∑N

i=1 rbi)

:BC with no MAC

:BC with Non-cooperative MAC

:BC with Cooperative MAC

∑N
i=1 rti

∑N
i=1 rbi

Figure 4.4: Maximum departure region and trajectories to reach the optimal point
for BC with no MAC, BC with non-cooperative MAC and BC with cooperative
MAC.

to the first user. In the case of non-cooperative multiple access layer, the rates to

both of the relays follow a balanced pattern. In the case of cooperative multiple

access layer, the weaker relay gets more data than the stronger relay due to the

possibility of cooperation.

4.6.2 Stochastic Energy Arrivals

In this subsection, we consider stochastic energy arrivals and we compare the per-

formance of the offline optimal policy with that of a suboptimal online policy. These

policies are inspired by the optimal offline policy while they require partial or no

offline knowledge of the energy arrivals. We have shown that a partial separation

holds between the broadcast and the multiple access parts of the problem, therefore

the online policies we consider will be of separation based. We denote the amount

of energy in the batteries of the source, top relay and bottom relay as Bs, Bt, Bb and
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the data buffers of the top and bottom relays as Dt, Db. The presented online algo-

rithms are of best-effort type [6, 84], where the transmitters aim to keep a constant

power if feasible, or transmit with the currently available power otherwise.

4.6.2.1 Source Power and Rate Allocation

This policy determines the source power psi and rate (rti, rbi) allocations. We choose

a policy that transmits with constant power equal to the average recharge rate of

the source battery, if there is enough energy, otherwise it uses all of the battery

energy, i.e., ps = min{E[Es], Bs}. First, we define a constant C which depends only

on the average recharge rates of the top and bottom relays, as follows:

C =





log2(1+E[Et])
log2(1+E[Eb])

, if regular MAC

log2(1+E[Eb])
log2(1+E[Eb]+E[Et])

, if cooperative MAC

(4.69)

The reasoning behind the choice of C is as follows. For the regular MAC, the top

relay can transmit at most an average rate of log2(1 + E[Et]), considering its own

energy arrivals. Similarly, the bottom relay can transmit at most an average rate

of log2(1 + E[Eb]). Therefore, we have r̄t
r̄b
∼ log2(1+E[Et])

log2(1+E[Eb])
. We choose the source

rate division to be exactly equal to this quantity. For the cooperative MAC, we

use a constant β policy and set β = 1 − E[Eb]
E[Et]

. Then, from (4.64) we have r̄t ∼

log2(1 + E[Eb]) and from (4.65) r̄b ∼ log2(1 + E[Eb] + E[Et]). We choose the source

rate division to be exactly equal to the ratio of two rates. From (4.61) and (4.62),
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we choose the power share α∗ to satisfy the following equation:

C =
log2

(
1 + αE[Es]

0.2

)

log2

(
1 + (1−α)E[Es]

αE[Es]+0.6

) (4.70)

4.6.2.2 Top and Bottom Relay Power and Rate Allocation

This policy determines the top and bottom relay power (pti, pbi) and rate (r̄ti, r̄bi)

allocations. We note that the policy for the relays must depend on the data ar-

rivals from the source. For the regular MAC, the online policy is determined as

follows. We set the top relay power allocation as the average recharge rate of the

top relay battery if there is enough energy and data, otherwise it uses either all

of the battery energy or transmits at a rate that transmits all of the available

data. We set pt = min{E[Et], Bt, 2
Dt−1}, rt = log2 (1 + pt). Similarly we set pb =

min{E[Eb], Bb, 2
Db−1}, rb = log2 (1 + pb). If the constraint rt + rb ≤ log2(1 + pt + pb)

is not satisfied, then we decrease rb, pb until equality is satisfied.

For the cooperative MAC, additional to pt, pb we need to determine β given in

(4.65). We set pt = min{E[Et], Bt, 2
Dt−1}, rt = log2 (1 + pt). We use a constant β

policy and set β = 1− E[Eb]
E[Et]

. Now, we set pb = min{E[Eb], Bb} and rb = log2(1+pt+

pb + 2
√
βptpb)− rt. If rb > Db, then rb, pb are decreased until equality is satisfied.

4.6.2.3 Simulations

In the simulations, we consider Bernoulli energy arrival processes. The source energy

arrivals are Esi = 0 with probability 0.5 and Esi = 2ξ with probability 0.5 where ξ is
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Figure 4.5: Average sum throughput versus average recharge rate for offline and
online policies.

the average recharge rate, and we denote this process by Ber(0.5, ξ). We assume that

Eti ∼ Ber(0.5, 0.5ξ) and Ebi ∼ Ber(0.5, 0.3ξ). We perform simulations for a deadline

of 10 slots. The performance metric of the policies is the average sum throughput

over 100 realizations of the stochastic energy arrival process. We plot our results

in Fig. 4.5. We observe that the sum throughput increases with increasing energy

recharge rate.

4.7 Concluding Remarks

In this chapter, we considered the energy harvesting diamond channel where the

physical layer is modeled as a concatenation of a broadcast channel and a multiple

access channel. In the first part of the chapter, we focused on the broadcast half of

the diamond network. We first showed that there exists an optimal source power
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allocation policy which is equal to the single-user optimal power policy for the

source energy arrivals and does not depend on the relay energy arrivals. Next, we

showed that even though the total power can be selected as the single-user optimal

power, the fraction of the power spent on each broadcast link depends on the energy

arrivals of the relays. In the second part of the chapter, we turned our attention

to the multiple access side of the diamond network. This is a cooperative multiple

access channel with common data. Initially, we ignored the possible cooperation

between the relays and assumed a regular Gaussian multiple access channel with

non-cooperating users. In this setting, first we showed that when the transmission

rates of the source in the broadcast side are fixed, the overall problem becomes

a multiple access channel with both data and energy arrivals. We showed that

this problem can be formulated in terms of data transmission rates only, instead of

formulating over both transmission powers and data rates. We solved the overall

diamond channel problem with non-cooperative multiple access channel using a dual

decomposition method. In the last part of the chapter, we considered the cooperative

(extended) multiple access capacity region for the second hop. With the extended

multiple access capacity region, we found the overall solution using a decomposition

into inner and outer maximization problems.
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4.8 Appendix

4.8.1 Proof of Theorem 4.1

In this proof, we are only interested in (r∗ti, r
∗
bi). Therefore, to find the necessary

optimality conditions, we write the Lagrangian function of the problem in (4.15) as:

L =−
N∑

i=1

r̄ti −
N∑

i=1

r̄bi +
N∑

k=1

λ1k

(
k∑

i=1

r̄ti −
k∑

i=1

rti

)
+

N∑

k=1

λ2k

(
k∑

i=1

r̄bi −
k∑

i=1

rbi

)

+
N∑

k=1

γk

(
k∑

i=1

g(rti, rbi)−
k∑

i=1

Esi

)
−

N∑

i=1

θ1irti −
N∑

i=1

θ2irbi + other terms

(4.71)

where other terms include the Lagrange multipliers for the other constraints but

they are not needed in the proof and are omitted for the sake of brevity. The

complementary slackness conditions for these Lagrange multipliers are:

λ1k

(
k∑

i=1

r̄ti −
k∑

i=1

rti

)
= λ2k

(
k∑

i=1

r̄bi −
k∑

i=1

rbi

)
= 0 (4.72)

γk

(
k∑

i=1

g(rti, rbi)−
k∑

i=1

Esi

)
= 0 (4.73)

θ1irti = θ2irbi = 0, λ1k, λ2k, γk ≥ 0 (4.74)

Taking the derivatives of L with respect to rti and rbi:

−
N∑

k=i

λ1k +

(
N∑

k=i

γk

)
σ2

122(rti+rbi) − θ1i = 0 (4.75)
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−
N∑

k=i

λ2k +

(
N∑

k=i

γk

)
(
g(rti, rbi) + σ2

2

)
− θ2i = 0 (4.76)

From (4.75) and (4.76), we get:

g(rti, rbi) =
θ2i +

∑N
k=i λ2k∑N

k=i γk
− σ2

2 (4.77)

22(rti+rbi) =
θ1i +

∑N
k=i λ1k

σ2
1

∑N
k=i γk

(4.78)

Lemma 4.11 When the optimal total source power g(r∗ti, r
∗
bi) increases, the energy

buffer must be empty.

Proof: We will show that if g(rti, rbi) < g(rt,i+1, rb,i+1) then γi > 0. First, assume

rb,i+1 > 0 which implies from (4.74) that θ2,i+1 = 0. Then, from (4.77), g(rti, rbi) <

g(rt,i+1, rb,i+1) is only possible if γi > 0. Next, assume rb,i+1 = 0 which implies that

rt,i+1 > 0 otherwise g(rt,i+1, rb,i+1) = 0 which cannot be optimal. When rb,i+1 = 0,

g(rti, rbi) < g(rt,i+1, rb,i+1) is equivalent to 22(rti+rbi) < 22(rt,i+1+rb,i+1), and from (4.78)

and θ1,i+1 = 0, we must have γi > 0. �

Next, we show that the total source power cannot strictly decrease over the

slots.

Lemma 4.12 The total source power must be non-decreasing, i.e., g(r∗ti, r
∗
bi) ≤

g(r∗t,i+1, r
∗
b,i+1), ∀i.

Proof: We will prove this statement by contradiction. Specifically, we assume a

policy in which there is a slot k such that g(r∗tk, r
∗
bk) > g(r∗t,k+1, r

∗
b,k+1). We will show
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that this policy cannot be optimal.

We first show that if g(rtk, rbk) > g(rt,k+1, rb,k+1) then λ1k = λ2k = 0 cannot

happen. First, assume rbk > 0 which implies from (4.74) that θ2k = 0. Then, from

(4.77), g(rtk, rbk) > g(rt,k+1, rb,k+1) is only possible if λ2k > 0. Next, assume rbk = 0

which implies that rtk > 0 otherwise g(rtk, rbk) = 0 which cannot be optimal. When

rbk = 0, g(rtk, rbk) > g(rt,k+1, rb,k+1) is equivalent to 22(rtk+rbk) > 22(rt,k+1+rb,k+1), and

from (4.78) and θ1k = 0, we have λ1k > 0.

Now, for g(r∗tk, r
∗
bk) > g(r∗t,k+1, r

∗
b,k+1) to happen, we need to have either r∗tk >

r∗t,k+1, r
∗
bk ≤ r∗b,k+1 or r∗bk > r∗b,k+1, r

∗
tk ≤ r∗t,k+1 or r∗tk > r∗t,k+1, r

∗
bk > r∗b,k+1. We will

examine these cases separately.

Case 1: r∗tk > r∗t,k+1, r
∗
bk ≤ r∗b,k+1: We must have r∗tk > 0 which implies

θ1k = 0. In this case, for g(r∗tk, r
∗
bk) > g(r∗t,k+1, r

∗
b,k+1), we must also have r∗tk + r∗bk >

r∗t,k+1 + r∗b,k+1. This implies from (4.78) that λ1k > 0 and
∑k

i=1 r̄
∗
ti =

∑k
i=1 r

∗
ti.

From the data causality constraints at the (k − 1)st slot and
∑k

i=1 r̄
∗
ti =

∑k
i=1 r

∗
ti,

we must have r̄tk ≥ rtk. Similarly, from data causality at the (k + 1)st slot and

∑k
i=1 r̄

∗
ti =

∑k
i=1 r

∗
ti, we must have r̄t,k+1 ≤ rt,k+1. This implies that we must have

r̄tk ≥ rtk > rt,k+1 ≥ r̄t,k+1, thus r̄tk > r̄t,k+1. Now, consider the following modified

policy for some δ > 0, r̂tk = r∗tk−δ, r̂t,,k+1 = r∗t,k+1 +δ, r̂tk = r̄∗tk−δ, r̂t,k+1 = r̄∗t,k+1 +δ.

Data causality constraints are trivially satisfied. Energy causality at the top node

can be satisfied by letting P̂tk = p̄tk−ε and P̂t,k+1 = p̄t,k+1+ε because there exists ε >

0 such that r̄∗tk ≤ f ((p̄tk − ε)/σ2
3) and r̄∗t,k+1 ≤ f ((p̄t,k+1 + ε)/σ2

3). Energy causality

at the source node is satisfied since at slot k we have g(r∗tk − δ, r∗bk) < g(r∗tk, r
∗
bk) and

at slot k+1 we have g(r∗tk−δ, r∗bk)+g(r∗t,k+1 +δ, r∗b,k+1) < g(r∗tk, r
∗
bk)+g(r∗t,k+1, r

∗
b,k+1)

136



due to joint convexity of g(·, ·) and r∗tk + r∗bk > r∗t,k+1 + r∗b,k+1. This means that the

modified policy is feasible, forwards the same amount of data, and consumes strictly

less energy than the original one. This additional energy can be used to increase

r∗bk and r∗tk which causes the data buffers at the top and bottom relays to be non-

empty. This modified policy cannot be optimal because it does not satisfy the fact

that if g(rtk, rbk) strictly decreases in time, then both λ1k and λ2k cannot be zero,

as proved at the beginning above. This also means the original policy cannot be

optimal because its throughput is equal to the throughput of a sub-optimal policy.

Case 2: r∗bk > r∗b,k+1, r
∗
tk ≤ r∗t,k+1: We must have r∗bk > 0, therefore θ2k = 0.

From λ2k > 0, we must have that the bottom data buffer is empty, which implies

∑k
i=1 r̄

∗
bi =

∑k
i=1 r

∗
bi. From this point on, the proof follows exactly as in Case 1 but

with modifications to r∗bk, r̄
∗
bk, p̄bk instead of to r∗tk, r

∗
tk, p̄tk, and we conclude that this

case cannot happen.

Case 3: r∗bk > r∗b,k+1, r
∗
tk > r∗t,k+1: This case follows the same line of reasoning

as the previous cases and by modifying both r∗tk, r
∗
bk we reach the same conclusion.

To summarize, since none of the above cases can be true, we have g(r∗ti, r
∗
bi) ≤

g(r∗t,i+1, r
∗
b,i+1),∀i. �

We can always impose the constraint
∑N

i=1 g(r∗ti, r
∗
bi) =

∑N
i=1Esi on the prob-

lem in (4.15) because this does not change the optimal value. From Lemma 4.12,

the total source power must be non-decreasing, and from Lemma 4.11, the total

source power can only increase when the energy buffer is empty. The source power

policy that satisfies these properties is the unique single-user optimal power policy
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[4, 6].

4.8.2 Proof of Lemma 4.3

Assume (r∗ti, r
∗
bi) solves the problem in (4.16). Carrying out a similar analysis as in

Appendix 4.8.1, the KKT conditions are

−
N∑

k=i

λ1k + γkσ
2
122(rti+rbi) − θ1i = 0 (4.79)

−
N∑

k=i

λ2k + γk(g(rti, rbi) + σ2
2)− θ2i = 0 (4.80)

where γk is the Lagrange multiplier for the constraint g(rti, rbi) ≤ Pi. Now, we

examine the following optimization problem for some µ1,µ2 ∈ RN .

max
rti,rbi≥0

N∑

i=1

µ1irti +
N∑

i=1

µ2irbi (4.81)

s.t. g(rti, rbi) ≤ Pi (4.82)

Since the constraint set depends only on the current slot i, this problem is separable

into N local optimization problems which are given as

max
rti,rbi≥0

µ1irti + µ2irbi (4.83)

s.t. g(rti, rbi) ≤ Pi (4.84)
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The problem in (4.84) is convex and is solved in [7]. Following [7, Eqn. (13)] the

KKT conditions are

−µ1 + ηkσ
2
122(rti+rbi) − ω1i = 0 (4.85)

−µ2 + ηk(g(rti, rbi) + σ2
2)− ω2i = 0 (4.86)

with the complementary slackness conditions as

ω1irti = ω2irbi = ηi (g(rti, rbi)− Pi) = 0, ∀i (4.87)

We require the same (r∗ti, r
∗
bi) pair to solve both of these problems. When r∗ti =

0 we set µ1i = 0, otherwise from (4.79), (4.85) we have µ1i = (
∑N

k=i λ1k)ηk/γk.

Similarly, when r∗bi = 0 we set µ2i = 0 otherwise from (4.80), (4.86) we have µ2i =

(
∑N

k=i λ2k)ηk/γk. Note that ηk, γk > 0 because the energy causality constraints will

always be satisfied with equality at every slot. Now we define

µi , min

{
µ1i

µ2i

, 1

}
= min

{∑N
k=i λ1k∑N
k=i λ2k

, 1

}
(4.88)

With this definition, the problems (4.82) and (4.17) are equivalent and have the

same solution as (4.16). This proves Lemma 4.3. We observe from (4.88) that if

µi > µi+1 then λ1k > 0 which implies the top data buffer is empty. Similarly, if

µi < µi+1 then λ2k > 0 which implies the bottom data buffer is empty. This proves

Lemma 4.4.
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4.8.3 Proof of Lemma 4.5

Denote the feasible set and the optimal value of the problem in (4.21) by (F1, T1)

and that of the problem in (4.28) by (F2, T2). First, we show T1 ≤ T2. For any

(p̄ti, p̄bi, r̄ti, r̄bi) ∈ F1, from (4.11) we have

p̄ti ≥ σ2
3

(
22r̄ti − 1

)
, p̄bi ≥ σ2

3

(
22r̄bi − 1

)
, (4.89)

p̄ti + p̄bi ≥ σ2
3

(
22(r̄ti+r̄bi) − 1

)
(4.90)

These constraints imply

k∑

i=1

p̄ti ≥ σ2
3

(
k∑

i=1

22r̄ti − 1

)
, ∀k (4.91)

k∑

i=1

p̄bi ≥ σ2
3

(
k∑

i=1

22r̄bi − 1

)
, ∀k (4.92)

k∑

i=1

p̄ti + p̄bi ≥ σ2
3

(
k∑

i=1

22(r̄ti+r̄bi) − 1

)
, ∀k (4.93)

Together with (4.5) and (4.6), (4.91)-(4.93) imply

σ2
3

(
k∑

i=1

22r̄ti − 1

)
≤

k∑

i=1

Eti, ∀k (4.94)

σ2
3

(
k∑

i=1

22r̄bi − 1

)
≤

k∑

i=1

Ebi, ∀k (4.95)

σ2
3

(
k∑

i=1

22(r̄ti+r̄bi) − 1

)
≤

k∑

i=1

Eti + Ebi, ∀k (4.96)

This means (r̄ti, r̄bi) ∈ F2 and therefore T1 ≤ T2.
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Now, we show T2 ≤ T1. For any (r̄ti, r̄bi) ∈ F2, we will find p̄ti, p̄bi such that

(p̄ti, p̄bi, r̄ti, r̄bi) ∈ F1. To accomplish this, we solve the feasibility problem

max
p̄ti,p̄bi

1

s.t. p̄ti ≥ σ2
3

(
22r̄ti − 1

)
, ∀i

p̄bi ≥ σ2
3

(
22r̄bi − 1

)
, ∀i

p̄ti + p̄bi ≥ σ2
3

(
22(r̄ti+r̄bi) − 1

)
, ∀i

k∑

i=1

p̄ti ≤
k∑

i=1

Eti,
k∑

i=1

p̄bi ≤
k∑

i=1

Ebi, ∀k (4.97)

We can let p̄ti + p̄bi = σ2
3

(
22(r̄ti+r̄bi) − 1

)
,∀i without changing the optimal

value of the feasibility problem. Now, we have the following set of inequalities to be

satisfied:

p̄ti ≥ σ2
3

(
22r̄ti − 1

)
, ∀i (4.98)

p̄ti ≤ σ2
3

(
22(r̄ti+r̄bi) − 22r̄bi

)
, ∀i (4.99)

k∑

i=1

p̄ti ≤
k∑

i=1

Eti, ∀k (4.100)

k∑

i=1

p̄ti ≥
k∑

i=1

[
σ2

3

(
22(r̄ti+r̄bi) − 1

)
− Ebi

]
, ∀k (4.101)

We note that this set of inequalities is consistent by showing every lower bound is no

larger than every upper bound. (4.98) is consistent with (4.99) since 22(x+y)− 22y ≥

22x− 1,∀x, y ≥ 0. (4.98) is consistent with (4.100) since r̄ti satisfies (4.94). (4.99) is

consistent with (4.101) since r̄bi satisfies (4.95) and finally (4.100) is consistent with
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(4.101) since r̄ti, r̄bi satisfy (4.96). We also have p̄ti ≥ 0 which is consistent with

both (4.99) and (4.100) since these lower bounds are non-negative. This feasibility

problem then has a solution and there exists p̄ti, p̄bi that solve (4.97). This means

there exists (p̄ti, p̄bi, r̄ti, r̄bi) ∈ F1 and therefore T2 ≤ T1, proving the lemma.

4.8.4 Proof of Lemma 4.7

The statement is true for k = N because the optimal value of problem (4.29) is

at least as large as that of (4.28) since any profile that is feasible for (4.28) is

also feasible for (4.29). We will show that if the statement holds for slot k, i.e.,

∑k
i=1 r̄

∗
ti + r̄∗bi ≤

∑k
i=1 q

∗
i , then it also holds for slot k − 1. By induction this will

imply that it is true for all k. Assume on the contrary that
∑k−1

i=1 r̄
∗
ti+ r̄∗bi >

∑k−1
i=1 q

∗
i .

Together with
∑k

i=1 r̄
∗
ti + r̄∗bi ≤

∑k
i=1 q

∗
i , this implies r̄∗tk + r̄∗bk < q∗k.

Now, we claim that we must have
∑k−1

i=1 22(r̄∗ti+r̄
∗
bi) >

∑k−1
i=1 22q∗i . This is true

because otherwise, up to slot k − 1, the profile r̄∗ti + r̄∗bi sends more data than q∗i

and in view of the energy constraints in (4.29) leads to a more relaxed feasible set.

This means that the profile q∗i can be replaced with r̄∗ti + r̄∗bi for slots 1 to k − 1

and for the remaining slots k, . . . , N more data can be transmitted because there

is more energy left. This contradicts the optimality of q∗i , therefore we must have

∑k−1
i=1 22(r̄∗ti+r̄

∗
bi) >

∑k−1
i=1 22q∗i .

Note that this also means σ2
3

(∑k−1
i=1 22q∗i − 1

)
<
∑k−1

i=1 Eti+Ebi because other-

wise r̄∗ti+r̄
∗
bi cannot be energy feasible. From the assumption, we have

∑k−1
i=1 r̄

∗
ti+r̄

∗
bi >

∑k−1
i=1 q

∗
i , which implies

∑k−1
i=1 q

∗
i <

∑k−1
i=1 dti + dbi because otherwise r̄∗ti + r̄∗bi can-
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not be data feasible. These collectively mean that slot k − 1 cannot be an en-

ergy or data exhausting slot for q∗i and therefore q∗k−1 = q∗k. From this fact and

r̄∗ti + r̄∗bi is non-decreasing, we have r̄∗t,k−1 + r̄∗b,k−1 ≤ r̄∗tk + r̄∗bk < q∗k = q∗k−1 which

implies r̄∗t,k−1 + r̄∗b,k−1 < q∗k−1. Together with
∑k−1

i=1 r̄
∗
ti + r̄∗bi >

∑k−1
i=1 q

∗
i , this implies

∑k−2
i=1 r̄

∗
ti + r̄∗bi >

∑k−2
i=1 q

∗
i . Following the same reasoning as before, we have that

k − 2 is a non energy and data exhausting slot for q∗i and therefore q∗k−2 = q∗k−1.

We apply the same argument to reach the conclusion that q∗1 = q∗2 = · · · = q∗k and

r̄∗ti + r̄∗bi < q∗i ,∀i ≤ k. This contradicts the assumption
∑k−1

i=1 r̄
∗
ti + r̄∗bi >

∑k−1
i=1 q

∗
i .

4.8.5 Proof of Lemma 4.8

The proof follows from majorization theory. We know that r̄∗ti + r̄∗bi and q∗i are non-

decreasing in i, so they are ordered vectors. From Lemma 4.7, we have
∑l

i=1 r̄
∗
ti +

r̄∗bi ≤
∑l

i=1 q
∗
i ∀l < k and if in addition we have

∑k
i=1 r̄

∗
ti + r̄∗bi =

∑k
i=1 q

∗
i , then

the vector q∗i is majorized by the vector r̄∗ti + r̄∗bi. This means
∑k

i=1 g(r̄∗ti + r̄∗bi) ≥
∑k

i=1 g(q∗i ) for any convex, increasing g and in particular for g = 2x [71, Sec-

tion I.3.C1B]. Furthermore, if we have σ2
3

(∑k
i=1 22q∗i − 1

)
=
∑k

i=1Eti+Ebi, then we

have σ2
3

(∑k
i=1 22(r̄∗ti+r̄

∗
bi) − 1

)
≥∑k

i=1Eti+Ebi. From energy feasibility of r̄∗ti+ r̄
∗
bi we

also have σ2
3

(∑k
i=1 22(r̄∗ti+r̄

∗
bi) − 1

)
≤∑k

i=1Eti + Ebi. These two constraints are fea-

sible if and only if σ2
3

(∑k
i=1 22(r̄∗ti+r̄

∗
bi) − 1

)
=
∑k

i=1Eti + Ebi = σ2
3

(∑k
i=1 22q∗i − 1

)
.

From the strict convexity of 2x and therefore strict Schur-convexity of
∑

2x we must

have r̄∗ti + r̄∗bi = q∗i ,∀i ≤ k.
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4.8.6 Proof of Lemma 4.9

Similar to the discussion that follows [82, Section 6.1, Eq. (1.1)] we have:

H(γ) ≥
N∑

i=1

w∗i (γ
(l))−

N∑

k=1

λ1k

(
k∑

i=1

r̄∗ti(γ
l)−

k∑

i=1

r∗ti(γ
l)

)

−
N∑

k=1

λ2k

(
k∑

i=1

r̄∗bi(γ
l)−

k∑

i=1

r∗bi(γ
l)

)

−
N∑

i=1

νi
(
w∗i (γ

(l))− r̄∗ti(γ l)− r̄∗bi(γ l)
)

(4.102)

=
N∑

i=1

w∗i (γ
(l))−

N∑

k=1

λl1k

(
k∑

i=1

r̄∗ti(γ
l)−

k∑

i=1

r∗ti(γ
l)

)

−
N∑

k=1

λl2k

(
k∑

i=1

r̄∗bi(γ
l)−

k∑

i=1

r∗bi(γ
l)

)

−
N∑

i=1

νi
l
(
w∗i (γ

(l))− r̄∗ti(γ l)− r̄∗bi(γ l)
)

+
N∑

k=1

(λl1k − λ1k)

(
k∑

i=1

r̄∗ti(γ
l)−

k∑

i=1

r∗ti(γ
l)

)

+
N∑

k=1

(λl2k − λ2k)

(
k∑

i=1

r̄∗bi(γ
l)−

k∑

i=1

r∗bi(γ
l)

)

+
N∑

i=1

(νi
l − νi)

(
w∗i (γ

(l))− r̄∗ti(γ l)− r̄∗bi(γ l)
)

(4.103)

=H(γ l) + vT(γ − γ l) (4.104)

where the inequality follows from the fact that (r∗ti(γ
l), r∗bi(γ

l)) ∈ Rs so feasible for

K1(γ) but may not solve K1(γ), r̄∗ti(γ
l) ∈ Rt but may not solve K2(γ), r̄∗bi(γ

l) ∈

Rb but may not solve K3(γ), and w∗i (γ
(l)) ∈ Rw but may not solve K4(γ). The

expression for vT is given in the statement of the lemma.
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CHAPTER 5

Energy and Data Cooperative Multiple Access Channel with

Data Arrivals

5.1 Introduction

In this chapter, we consider the two-user cooperative Gaussian multiple access chan-

nel, see Fig. 5.1.In the first part of this chapter, we consider a cooperative MAC

with both energy and data arrivals as shown in Fig. 5.1(a). In the second part of this

chapter, we consider a cooperative MAC with both energy and data cooperation as

shown in Fig. 5.1(b). We use this system model to investigate interactions of data

and energy cooperation, and study their joint optimization.

In the first part of the chapter, in Section 5.3, we consider the data arrival sce-

nario. While most of the offline optimization literature so far has focused on through-

put maximization under the assumption of infinitely back-logged data queues, in

many applications, data may arrive intermittently at the nodes just like energy.

Two prominent examples of such scenarios are: multi-hop networks and sensor net-

works. In multi-hop networks, each hop forwards the data that has arrived from

the previous hop, therefore, data is not always available and arrives intermittently
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(a) Cooperative MAC with energy
and data arrivals.
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(b) Cooperative MAC with joint energy
and data cooperation

Figure 5.1: Cooperative MAC system models.

depending on the energy arrivals and achievable rates of the previous hops; an ex-

ample of such scenario is investigated in a diamond network in Chapter 4. In sensor

networks, sensor nodes make measurements of an event of interest, therefore, data to

send becomes available as the event occurs intermittently. We first show that there

exists an optimal rate and power allocation which is on the achievable rate region

boundary of the cooperative MAC at every slot, instead of being strictly inside the

achievable rate region. Then, we formulate the problem in terms of data rates only,

rather than both transmission powers and data rates. Although this new problem

is non-convex, we show that strong duality holds. As a result, we are able to em-

ploy a successive convex approximation technique in which non-convex constraints

are approximated by suitable convex functions. Using this approximation, we solve

the problem using an iterative algorithm which iterates between inner and outer
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maximization problems.

In the second part of the chapter, in Section 5.4, we consider the energy co-

operative scenario. In this case, in addition to data cooperation being implemented

at the physical layer by decoding and forwarding the overhead data, energy coop-

eration is implemented at the battery level by forwarding energy between users by

using wireless energy transfer. By such a formulation, we investigate the interaction

between data and energy cooperation, their relative effectiveness, and the direction,

timing and amount of energy exchange in coordination with data cooperation. We

first show that in this scenario, the cooperative powers in all slots must be non-

zero for both users. Then, we derive a one-to-one relation between the optimal

transmission rates and the optimal transmission powers. Next, we show that data

cooperation always precedes energy cooperation. In other words, excess energy must

first be used to increase cooperative powers and then to further assist the other user

by means of direct energy transfer. We determine necessary conditions for energy

transfer to take place. We then propose an algorithm which solves the offline energy

transfer and power allocation problem iteratively based on these conditions.

5.2 System Model and Problem Formulation

We consider an energy harvesting cooperative MAC with intermittent data arrivals,

as shown in Fig. 5.1(a) and bidirectional energy cooperation as shown in Fig 5.1(b).

The harvested energies are saved in the corresponding batteries. There are N equal

length slots. We use subscripts 1 and 2 to denote the parameters of users 1 and
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2. In slot i, there are energy and data arrivals to both users with amounts E1i, E2i

and d1i, d2i, respectively. Energy transfers from user 1 (2) to user 2 (1) are denoted

by δ1i (δ2i). Energy transfer efficiency is 0 ≤ α < 1: when user 1 (2) transfers δ1i

(δ2i) Joules of energy to user 2 (1), αδ1i (αδ2i) Joules of energy enters the energy

queue of user 2 (1). We denote the transmission powers, energy transfers and data

rates of users 1 and 2 as p12i, pU1i, d1i, r1i and p21i, pU2i, d2i, r2i, respectively. We

use boldface letters to denote vectors of these variables. When there is wireless

energy transfer, this is done by two separate orthogonal energy transfer units whose

coupling frequencies are set differently [33]. Finally, data transmission and energy

transfer channels are orthogonal, i.e., energy transfer does not create interference to

data communication.

The physical layer is a cooperative Gaussian MAC with unit-variance Gaussian

noises at the users and σ2 > 1 variance Gaussian noise at the receiver. We employ

the delay constrained cooperation model proposed in [85]. The users cooperate in a

slot by slot basis, by first exchanging information and then beamforming, to send the

established common information, in each given slot. The specifics of the encoding

and decoding policy can be found in [85, Section II]. The achievable rate region with

transmitter sub-powers p12i, p21i, pU1i, pU2i at each slot i is given as [85, 86]:

C(p12i, p21i, pU1i, pU2i) =

{
r1i ≤ f(1 + p12i), r2i ≤ f(1 + p21i), r1i + r2i ≤ f(si/σ

2)

}

(5.1)
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where f(x) = 1
2

log(x), p1i = p12i + pU1i, p2i = p21i + pU2i and

si = σ2 + p1i + p2i + 2
√
pU1ipU2i (5.2)

The operational meaning of the sub-powers will be important to us: p12i and p21i

denote the powers used in slot i to build up common information at the cooperative

partner, while pU1i and pU2i are cooperative powers used for jointly conveying the

common information to the receiver.

Energy arrivals as well as energy transfers occur at the beginning of each slot.

Hence, the net energy available for user ` ∈ {1, 2} in each slot k ∈ {1, . . . , N} is

given by
∑k

i=1(E`i− δ`i +αδmi) where m is the other user. The energy that has not

arrived yet cannot be used for data transmission or energy transfer, leading to the

following energy causality constraints :

k∑

i=1

p1i ≤
k∑

i=1

(E1i − δ1i + αδ2i), ∀k (5.3)

k∑

i=1

p2i ≤
k∑

i=1

(E2i − δ2i + αδ1i), ∀k (5.4)

When there is no energy cooperation, these constraints simplify as:

k∑

i=1

p1i ≤
k∑

i=1

E1i, ∀k (5.5)

k∑

i=1

p2i ≤
k∑

i=1

E2i, ∀k (5.6)

The data that has not arrived yet cannot be transmitted, leading to the following
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data causality constraints :

k∑

i=1

r1i ≤
k∑

i=1

d1i, ∀k (5.7)

k∑

i=1

r2i ≤
k∑

i=1

d2i, ∀k (5.8)

The rate allocations must be achievable for the cooperative MAC in each slot:

(r1i, r2i) ∈ C(p12i, p21i, pU1i, pU2i), ∀i (5.9)

For notational convenience, we denote the sub-power and rate sequences and energy

transfer sequences by the vectors p12,p21,pU1,pU2, r1, r2, δ1, δ2.

In the first half of this chapter, we investigate the data arrival scenario with

no energy transfer. The departure region maximization problem can be stated as

a weighted sum rate maximization for given priorities 0 ≤ µ1, µ2 ≤ 1, due to the

convexity of the departure region:

max
p12,p21,pU1,pU2,r1,r2≥0

µ1

N∑

i=1

r1i + µ2

N∑

i=1

r2i

s.t. (5.5)-(5.9) (5.10)

In the second half of the chapter, we investigate the energy cooperative scenario

with no data arrivals. Then, the departure region maximization problem can be
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stated as:

max
p12,p21,pU1,pU2,r1,r2,δ1,δ2≥0

µ1

N∑

i=1

r1i + µ2

N∑

i=1

r2i

s.t. (5.3)-(5.4), (5.9) (5.11)

5.3 Intermittent Data Arrivals Scenario

In this section, we focus on the scenario with intermittent data arrivals. The system

model is shown in Fig. 5.1(a). We solve the problem in (5.10). First, we prove some

properties of the optimal solution.

Lemma 5.1 There exists an optimal profile that satisfies the following property,

r1i = f(1 + p12i), r2i = f(1 + p21i), ∀i (5.12)

Proof: We will prove this lemma by showing that for any policy that does not

satisfy the above property, there exists another policy that satisfies it and achieves

the same weighted sum rate. Assume there exists an optimal policy and slot i

such that r1i < f(1 + p12i). Now consider the modified policy, q12i = p12i − ε,

qU1i = pU1i + ε while keeping the remaining variables fixed. In this modified policy,

q1i = q12i+qU1i = p12i+pU1i = p1i, therefore the new policy spends the same amount

of energy as the previous one and is energy feasible. It is easy to check that this

modification increases si and (r1i, r2i) still belongs to the set C(q12i, p21i, qU1i, pU2i).

Since we have not changed the rates, the data causality constraints are still feasible.
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By repeating this process we will reach a profile where r1i = f(1 + p12i). By using

similar arguments for r2i and modifying p21i and pU2i we will reach a profile where

r2i = f(1 + p21i). Since we have not changed the rates, the weighted sum rate is the

same and the policy is still optimal. This proves the lemma. �

With Lemma 5.1 and enforcing the constraints in (5.12) the sum rate con-

straints in (5.1) become:

f(1 + p12i) + f(1 + p21i) ≤ f(si/σ
2), ∀i (5.13)

In addition to the rate-power relationships dictated by Lemma 5.1, we further

introduce the auxiliary rate variables, rU1i, rU2i, and perform the variable changes,

rU1i = f(1 + pU1i), rU2i = f(1 + pU2i). Then si = σ2 + 22r1i + 22rU1i + 22r2i + 22rU2i +

2
√

(22rU1i − 1)(22rU2i − 1)− 4. We formulate the problem only in terms of rates as,

max
r1,r2,rU1,rU2

N∑

i=1

µ1r1i + µ2r2i

s.t.
k∑

i=1

22r1i + 22rU1i ≤
k∑

i=1

(E1i + 2), ∀k (5.14)

k∑

i=1

22r2i + 22rU2i ≤
k∑

i=1

(E2i + 2), ∀k (5.15)

k∑

i=1

r1i ≤
k∑

i=1

d1i, ∀k (5.16)

k∑

i=1

r2i ≤
k∑

i=1

d2i, ∀k (5.17)

r1i + r2i ≤ f(si/σ
2), ∀i (5.18)
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The problem in (5.18) is a non-convex optimization problem due to the last set of

constraints r1i + r2i ≤ f(si/σ
2), ∀i. We use the successive convex approximation

technique to approximate the constraints in (5.18) as explained in [87]. We use

the first order Taylor expansion to the function f(si/σ
2) around the point Rn ,

(rn1 , r
n
2 , r

n
U1, r

n
U2) for iteration n+ 1, by

f(si/σ
2) 'Cn

i + αn1i(r1i − rn1i) + αn2i(r2i − rn2i) + βn1i(rU1i − rnU1i) + βn2i(rU2i − rnU2i)

(5.19)

where the values of the coefficients are given in Appendix 5.7.1 and depend only on

the solution of the previous iteration n. With this approximation the problem in

(5.18) becomes

max
r1,r2,rU1,rU2

N∑

i=1

µ1r1i + µ2r2i

s.t. (5.14)-(5.17)

(1− αn1i)r1i + (1− αn2i)r2i − βk1irU1i − βn2irU2i ≤ Dn
i , ∀i (5.20)

where Dn
i , Cn

i − αn1ir
n
1i − αn2ir

n
2i − βn1ir

n
U1i − βn2ir

n
U2i and is a constant for this

optimization problem. At iteration n+1, we evaluate the coefficients in (5.19) using

the optimal rate allocations at iteration n, we solve the problem in (5.20) using these

coefficients and we update the initial point as Rn+1 = R∗(n) where R∗(n) denotes

the optimal values of the variables when (5.20) is solved. Now we show that this

procedure stops at an optimal solution to the problem in (5.18). To achieve this,
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we first show that strong duality holds for (5.18). The proof is given in Appendix

5.7.2.

Lemma 5.2 Strong duality holds for the problem in (5.18).

Now we show that the procedure converges to an optimal solution and the proof is

in Appendix 5.7.3.

Lemma 5.3 Rn → R∗ where R∗ solves (5.18).

In the next section, we solve the problem in (5.20) for fixed n.

5.3.1 Solution for Approximate Problems

In this sub-section, we solve the approximate problems for iteration n + 1. For

notational convenience we drop the superscript n from the last constraints in (5.20)

noting that they depend only on the solution of the problem at the previous iteration

n. Therefore the coefficients αn1i, α
n
2i, β

n
1i, β

n
2i are essentially constants for the problem

at step n+ 1.

Lemma 5.4 There exists an optimal solution in which (1− α1i)r1i + (1− α2i)r2i −

β1irU1i − β2irU2i = Di, ∀i.

Proof: Assume there exists a profile where (1 − α1i)r1i + (1 − α2i)r2i − β1irU1i −

β2irU2i < Di for some slot i. Then we can decrease, rU1i or rU2i to achieve equality.

�
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Invoking Lemma 5.4, the problem becomes,

max
r1,r2,rU1,rU2

N∑

i=1

µ1r1i + µ2r2i

s.t. (5.14)-(5.17)

(1− α1i)r1i + (1− α2i)r2i − β1irU1i − β2irU2i = Di, ∀i (5.21)

We solve the problem in (5.21) using a primal decomposition. We add a new

optimization variable t ∈ RN and equivalently formulate (5.21) as follows:

max
r1,r2,rU1,rU2,t

N∑

i=1

µ1r1i + µ2r2i

s.t. (5.14)-(5.17)

(1− α1i)r1i − β1irU1i = Di + ti (5.22)

(1− α2i)r2i − β2irU2i = −ti, ∀i (5.23)

Let us define the function z(t) which is a maximization over (r1, r2, rU1, rU2) for

fixed t:

z(t) = max
r1,r2,rU1,rU2

N∑

i=1

µ1r1i + µ2r2i

s.t. (5.14)-(5.17), (5.22), (5.23) (5.24)

155



Then the original problem in (5.21) is equivalent to

max
t
z(t) (5.25)

We solve (5.25) by separately solving the outer and inner maximization problems.

5.3.1.1 Inner Maximization

In this section, we focus on the inner problem in (5.24) for fixed t. Note that

when t is fixed, the variables (r1, rU1) and (r2, rU2) are decoupled and (5.24) can be

separated into two sub-problems. We define z1(t) and z2(t) as

z1(t) = max
r1,rU1

N∑

i=1

µ1r1i

s.t.
k∑

i=1

22r1i + 22rU1i ≤
k∑

i=1

(E1i + 2) (5.26)

k∑

i=1

r1i ≤
k∑

i=1

d1i, ∀k (5.27)

(1− α1i)r1i − β1irU1i = Di + ti, ∀i (5.28)

z2(t) = max
r2,rU2

N∑

i=1

µ2r2i

s.t.
k∑

i=1

22r2i + 22rU2i ≤
k∑

i=1

(E2i + 2) (5.29)

k∑

i=1

r2i ≤
k∑

i=1

d2i, ∀k (5.30)

(1− α2i)r2i − β2irU2i = −ti, ∀i (5.31)
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and note that z(t) = z1(t) + z2(t). First we concentrate on solving z1. Let w1i =

(1− α1i)/β1i, v1i = 2−2(Di+ti)/β1i . Using the equality constraints in (5.28) we get,

max
r1

N∑

i=1

µ1r1i

s.t.
k∑

i=1

22r1i + v1i2
2w1ir1i ≤

k∑

i=1

(E1i + 2) (5.32)

k∑

i=1

r1i ≤
k∑

i=1

d1i, ∀k (5.33)

This is a single-user problem with data arrivals d1i, energy arrivals E1i and a modified

energy consumption function m(r1i) = 22r1i + v1i2
2w1ir1i . In order to solve it: first,

we perform directional waterfilling on the data arrivals d1i. Second, we perform

directional waterfilling on the energy arrivals E1i with the understanding thatm′(r1i)

is a generalized water level and the quantity to be kept constant over the slots. Then,

we take the minimum of the two solutions ensuring that any unused data or energy

must be carried over to the future slots.

Now we solve z2. Let w2i = (1− α2i)/β2i and v2i = 2ti/β2i . Using the equality

constraints of (5.31) we get,

max
r2

N∑

i=1

µ2r2i

s.t.
k∑

i=1

22r2i + v2i2
2w2ir1i ≤

k∑

i=1

(E2i + 2) (5.34)

k∑

i=1

r2i ≤
k∑

i=1

d2i, ∀k (5.35)

This problem is solved similarly as in the case of z1.
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5.3.1.2 Outer Maximization

The outer maximization problem is that of finding optimal t in (5.25). The equality

constraints in (5.22) and (5.23) impose some feasibility constraints on t. Then the

problem is equivalent to

max
t

z(t)

s.t. z1(t), z2(t) are feasible (5.36)

It can be shown that z(t) is concave in t. Solving this problem can be performed

efficiently by iterating over feasible t such that every iteration increases the objective

function, for example, using the method described in [61, Section III.B]. Due to

convexity, the convergence to an optimal solution is guaranteed. The overall solution

algorithm is given in Algorithm 4. The solution to outer maximization problem is

in lines 2 to 16.

5.4 Energy Cooperation Scenario

In this section, we focus on the scenario with energy cooperation as well as data

cooperation. The system model is shown in Fig. 5.1(b). We solve the problem in

(5.11). First, we state the necessary conditions for the optimal profile. These con-

ditions lead to interesting interpretations regarding the nature of energy exchange,

including its direction, timing and physical relation to data cooperation. We relax
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Algorithm 4 Algorithm to solve (5.18)

Initialize

1: Find initial feasible R0 , (r0
1, r

0
2, r

0
U1, r

0
U2)

Define function to find z(t)

2: function SolveZ(αn1i, α
n
2i, β

n
1i, β

n
2i, D

n
i ) . Solves z

3: Set u← 0, t1 ← u, t2 ← u
4: Solve z1(u), z2(u) as explained after (5.33) and (5.35)
5: z(u)← z1(u) + z2(u)
6: for i = 1 : N do
7: t1i ← ui + ε, t2i ← ui − ε
8: Solve z1(t1), z2(t1), z1(t2), z2(t2)
9: z(t1)← z1(t1) + z2(t1), z(t2)← z1(t2) + z2(t2)

10: if [z(t1) > z(u)] then u← t1

11: else if [z(t2) > z(u)] then u← t2

12: end if
13: end for
14: Go to (6) until convergence
15: return last found optimal (r1, r2, rU1, rU2)
16: end function

Main Algorithm

17: repeat
18: Find Ani , α

n
1i, α

n
2i, β

n
1i, β

n
2i, C

n
i from (5.75) - (5.80)

19: Dn
i ← Cn

i − αn1irn1i − αn2irn2i − βn1irnU1i − βn2irnU2i

20: Rn+1 ← SolveZ(αn1i, α
n
2i, β

n
1i, β

n
2i, D

n
i )

21: n← n+ 1
22: until convergence
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the equality in (5.2) to reformulate (5.10) as follows.

max µ1

N∑

i=1

r1i + µ2

N∑

i=1

r2i

s.t.
k∑

i=1

p12i + pU1i ≤
k∑

i=1

E1i − δ1i + αδ2i, ∀k (5.37)

k∑

i=1

p21i + pU2i ≤
k∑

i=1

E2i − δ2i + αδ1i, ∀k (5.38)

r1i ≤ f(1 + p12i), ∀i (5.39)

r2i ≤ f(1 + p21i), ∀i (5.40)

r1i + r2i ≤ f(si/σ
2), ∀i (5.41)

si ≤ σ2 + p12i + pU1i + p21i + pU2i + 2
√
pU1ipU2i, ∀i (5.42)

p12,p21,pU1,pU2,d1,d2, r1, r2, s ≥ 0 (5.43)

The problem in (5.43) is a convex optimization problem, however it is non-differentiable

due to the term
√
pU1ipU2i when pU1i = 0 or pU2i = 0. Now, we show that in the

optimal solution, the cooperative powers pU1i, pU2i are non-zero at all slots. The

proof is given in Appendix 5.7.4.

Lemma 5.5 The cooperative powers are strictly positive at all slots, i.e., pU1i >

0, pU2i > 0,∀i.

Utilizing Lemma 5.5, the functions
√
pU1ipU2i are now differentiable. Then, the

KKT optimality conditions are found as:

−µ1 + θ1i + θ3i − γ5i = 0, ∀i (5.44)

160



−µ2 + θ2i + θ3i − γ6i = 0, ∀i (5.45)

N∑

k=i

λ1k −
θ1i

(1 + p12i)
− βi − γ1i = 0, ∀i (5.46)

N∑

k=i

λ2k −
θ2i

(1 + p21i)
− βi − γ2i = 0, ∀i (5.47)

N∑

k=i

λ1k − βi
(

1 +

√
pU2i√
pU1i

)
− γ3i = 0, ∀i (5.48)

N∑

k=i

λ2k − βi
(

1 +

√
pU1i√
pU2i

)
− γ4i = 0, ∀i (5.49)

N∑

k=i

λ1k − α
N∑

k=i

λ2k − γ7i = 0, ∀i (5.50)

N∑

k=i

λ2k − α
N∑

k=i

λ1k − γ8i = 0, ∀i (5.51)

− θ3i

σ2 + si
+ βi − γ9i = 0, ∀i (5.52)

with complementary slackness conditions:

λ1k

(
k∑

i=1

p12i + pU1i − E1i + δ1i − αδ2i

)
= 0, ∀k (5.53)

λ2k

(
k∑

i=1

p21i + pU2i − E2i + δ2i − αδ1i

)
= 0, ∀k (5.54)

θ1i (r1i − f(1 + p12i)) = 0, ∀i (5.55)

θ2i (r2i − f(1 + p21i)) = 0, ∀i (5.56)

θ3i

(
r1i + r2i − f(si/σ

2)
)

= 0, ∀i (5.57)

βi(si − σ2 − p12i − pU1i − p21i − pU2i − 2
√
pU1ipU2i) = 0, ∀i (5.58)

γ1ip12i = γ2ip21i = γ3ipU1i = γ4ipU2i = 0, ∀i (5.59)

γ5ir1i = γ6ir2i = γ7iδ1i = γ8iδ2i = γ9isi = 0, ∀i (5.60)
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From Lemma 5.5, γ3i = γ4i = 0,∀i. Now, we investigate the optimal Lagrange

multipliers in the following two lemmas.

Lemma 5.6 We have βi > 0,∀i.

Proof: Assume βi = 0. From (5.52), θ3i = 0, from (5.44), θ1i = µ1 + γ5i > 0 and

from (5.45), θ2i = µ2 + γ6i > 0, which imply from (5.60) r1i = r2i = 0, which cannot

be optimal. �

We note that Lemma 5.6 further means, from (5.48) and (5.49), that
∑N

k=i λ1k >

0,
∑N

k=i λ2k > 0, ∀i.

Lemma 5.7 We have γ9i = 0,∀i.

Proof: Assume γ9i > 0 for some i. This implies si = 0 and from (5.41), r1i = r2i = 0,

which cannot be optimal. �

Using the structure of the optimal Lagrange multipliers, the following lemma shows

the properties of the optimal solution.

Lemma 5.8 The optimal profile must satisfy:

1. si = σ2 + p12i + pU1i + p21i + pU2i + 2
√
pU1ipU2i,∀i.

2. r1i + r2i = f(si/σ
2),∀i

3. r1i = f(1 + p12i), r2i = f(1 + p12i),∀i

Proof: We prove the lemma as follows:

1) Follows from Lemma 5.6 and (5.58).
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2) From Lemma 5.7 and (5.52), we have θ3i = βi(σ
2 +si). Since βi > 0 from Lemma

5.6, θ3i > 0 which implies r1i + r2i = f(si/σ
2) from (5.57).

3) If p12i = 0, then we must have r1i = 0 and r1i = f(1+p12i) is satisfied. If p12i > 0,

then γ1i = 0 from (5.59). From (5.46) and (5.48), θ1i = βi
√
pU2i/pU1i(1 + p12i) > 0.

From (5.55), r1i = f(1 + p12i). Similarly, if p21i = 0, then we must have r2i = 0 and

r2i = f(1 + p21i). If p21i > 0, then γ2i = 0 from (5.59). From (5.47) and (5.49),

θ2i = βi
√
pU1i/pU2i(1 + p21i) > 0. From (5.56), r2i = f(1 + p21i). �

Lemma 5.8 shows that there is a one-to-one correspondence between the transmis-

sion rates and transmission powers. Furthermore, the transmission powers should

satisfy

f(1 + p12i) + f(1 + p21i) = f(si/σ
2), ∀i. (5.61)

Now, we show that, data cooperation always precedes energy cooperation. In

other words, a user with excess energy to be invested in cooperation in a given slot,

must first invest more energy for data cooperation than its partner; only then can

it invest energy for direct energy cooperation.

Lemma 5.9 The optimal profile satisfies the following:

1. If δ2i > 0 then pU2i > pU1i.

2. If δ1i > 0 then pU1i > pU2i.
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Proof: We start with the first item. If δ2i > 0, then from (5.60), we have γ8i = 0.

From (5.51), we have
∑N

k=i λ2k = α
∑N

k=i λ1k. This implies from (5.48) and (5.49),

βi

(
1 +

√
pU1i√
pU2i

)
= αβi

(
1 +

√
pU2i√
pU1i

)
(5.62)

Since βi > 0 and α < 1, (5.62) implies:

(
1 +

√
pU1i√
pU2i

)
<

(
1 +

√
pU2i√
pU1i

)
(5.63)

which implies pU2i > pU1i. The second item is proved similarly. �

Now, we show that if, in a given slot, a user with high priority transfers

energy to a user with lower priority, the user with higher priority must already be

transmitting at a higher data rate in that slot than the user with lower priority.

Lemma 5.10 The optimal profile satisfies the following:

1. For µ2 ≥ µ1, if δ2i > 0, then r2i ≥ r1i.

2. For µ1 ≥ µ2, if δ1i > 0, then r1i ≥ r2i.

Proof: We start with the first item. Assume µ1 ≥ µ2 and δ2i > 0. If p12i = 0, then

r1i = 0 and the statement holds trivially. We will assume p12i > 0. From (5.60),

γ8i = 0. From (5.51),
∑N

k=i λ2k <
∑N

k=i λ1k. From (5.46) and (5.47), this implies

θ2i

(1 + p21i)
+ βi + γ2i <

θ1i

(1 + p12i)
+ βi + γ1i =

θ1i

(1 + p12i)
+ βi (5.64)
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where the equality follows since p12i > 0 implies γ1i = 0. Then we have,

θ2i

(1 + p21i)
<

θ1i

(1 + p12i)
(5.65)

From (5.44) and (5.45) we have,

θ1i = µ1 + γ5i − θ3i = µ1 − θ3i (5.66)

θ2i = µ2 + γ6i − θ3i ≥ µ2 − θ3i (5.67)

where (5.66) follows from r1i > 0 = f(1 + p12i) > 0, therefore γ5i = 0. Since

µ2 ≥ µ1, we have θ2i ≥ θ1i. Together with (5.65), this implies we have p21i > p12i

and therefore r2i > r1i. The second item is proved similarly. �

5.4.1 Procrastinating Policies

In this sub-section, we show the existence of procrastinating policies that solve this

problem. Procrastinating policies are introduced in [88] and they have the property

that any energy transferred at slot i, must be immediately consumed by the receiving

party at slot i. We formalize this definition below.

Definition 5.1 A policy is called procrastinating if it satisfies the following prop-

erty:

p12i + pU1i ≥ αδ2i, p21i + pU2i ≥ αδ1i, ∀i (5.68)
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Lemma 5.11 There exists a procrastinating policy that solves the problem in (5.10).

The proof of Lemma 5.11 follows from similar arguments as in [88, Lemma 1].

We split the energy transfers δ1i, δ2i into two components π1i ≥ 0, π2i ≥ 0 and

ν1i ≥ 0, ν2i ≥ 0 as follows:

δ1i = π1i + ν1i, δ2i = π2i + ν2i, ∀i (5.69)

In this decomposion π1i, π2i represent the portion of energy transfer that is consumed

in the direct transmission, i.e., to increase p12i, p21i. Similarly, ν1i, ν2i represent the

portion of energy transfer that is consumed in the cooperative transmission, i.e., to

increase pU1i, pU2i. Any procrastinating policy can now be written as

p12i ≥ απ2i, pU1i ≥ αν2i, ∀i (5.70)

p21i ≥ απ1i, pU2i ≥ αν1i, ∀i (5.71)

Lemma 5.12 The optimal profile satisfies the following properties,

1. For µ2 ≥ µ1, if π2i > 0 then p21i > 0.

2. For µ1 ≥ µ2, if π1i > 0, then p12i > 0.

Proof: We start with the first item. If π2i > 0 then δ2i > 0 and from Lemma 5.10

we have r2i ≥ r1i which implies p21i ≥ p12i. From procrastinating policies, we have

that this transferred energy must be used immediately in direct power, therefore

p12i > 0, which implies p21i > 0. The second item is proved similarly. �
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Lemma 5.12 shows that if any direct energy is transferred from a user with high

priority to a user with low priority, then the sending party must be consuming at

least some amount in direct transmission.

5.4.2 Algorithmic Solution

While we have shown several important properties of the optimal solution, we still

need to solve the problem to obtain the transmit scheduling and energy transfer

policy. We do this using an algorithmic approach based on the KKT conditions

given earlier. We determine the conditions under which energy transfer occurs.

Then, we develop an algorithm to compute the optimal energy transfer and power

allocation policy. Now, we show that energy transfers are never bidirectional, i.e.,

in any slot energy transfer happens only in a single direction.

Lemma 5.13 In the optimal profile if δ1i > 0 then δ2i = 0 and if δ2i > 0 then

δ1i = 0, i.e. δ1iδ2i = 0, ∀i.

Proof: Assume for some slot i, δ1i > 0, δ2i > 0. Then, from (5.60), γ7i = γ8i = 0,

and from (5.50) and (5.51),
∑N

k=i λ1k = α
∑N

k=i λ2k = α(α
∑N

k=i λ1k) which cannot

happen unless α = 1. �

Lemma 5.14 If α <
∑N

k=i λ1k∑N
k=i λ2k

< 1
α

, there is no energy transfer in either direction at

slot i, i.e., δ1i = δ2i = 0.

Proof: Let α <
∑N

k=i λ1k∑N
k=i λ2k

< 1
α

, or equivalently
∑N

k=i λ1k > α
∑N

k=i λ2k and
∑N

k=i λ2k >

α
∑N

k=i λ1k. From (5.50) and (5.51), γ7i > 0, γ8i > 0 and from (5.60) δ1i = δ2i = 0.
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Lemma 5.15 A power allocation policy which yields
∑N

k=i λ1k∑N
k=i λ2k

< α or
∑N

k=i λ1k∑N
k=i λ2k

> 1
α

is strictly suboptimal.

Proof: Follows from (5.50), (5.51) and γ7i ≥ 0, γ8i ≥ 0. �

Lemma 5.16 In a given slot i ∈ 1, . . . , N , user ` ∈ {1, 2} transfers energy to user

m ∈ {1, 2},m 6= `, i.e., δli > 0, if
∑N

k=i λ`k∑N
k=i λmk

= α.

Proof: If δ1i > 0 then from (5.60) we have γ7i = 0. If δ2i > 0 then from (5.60) we

have γ8i = 0. The result then follows from (5.50) and (5.51). �

Lemmas 5.14, 5.15 and 5.16 have the following physical interpretation: the

ratio of the generalized water levels v`i ,
(∑N

k=i λ`k

)−1

, ` ∈ {1, 2}, determines

whether or not there should be energy cooperation in each given slot. In particular,

for slot i in which the generalized water level ratio v`i/vmi without energy transfer

is below the energy transfer efficiency α, energy should be transferred from user m

to user `, until the ratio is exactly equal to α. If there is not much discrepancy

between the water levels, i.e., the ratio is between α and 1/α, then there should be

no energy transfer.

Note that, the KKT conditions pertaining to the energy transfer policy do

not explicitly depend on the powers, and the KKT conditions pertaining to the

optimal power distribution policy do not explicitly depend on the energy transfer

variables. Since these two sets of conditions are coupled only through the generalized
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Algorithm 5 Optimal energy and data cooperation algorithm

Initialize

1: for i = 1 : N do
2: p1i ← E1i, p2i ← E2i

3: Determine subpowers p12i, pU1i, p21i, pU2i

4: Determine water levels
∑N

k=i λ1k,
∑N

k=i λ2k from (5.46), (5.47)
5: end for

Main Algorithm

6: repeat
7: for i = 1 : N do
8: If

∑N
k=i λ1k < α

∑N
k=i λ2k, transfer energy from user 1 to user 2

9: If
∑N

k=i λ2k < α
∑N

k=i λ1k, transfer energy from user 2 to user 1
10: Determine new subpowers p12i, pU1i, p21i, pU2i

11: Determine new water levels
12: end for
13: until∑N

k=i λ1k = α
∑N

k=i λ2k or
∑N

k=i λ2k = α
∑N

k=i λ1k

water levels, it is possible to develop an iterative algorithm that iterates over power

distribution and energy transfer steps, updating the generalized water levels in each

energy transfer step based on Lemmas 5.14, 5.15 and 5.16. Such an algorithm, that

provably converges, is given in Algorithm 5.

5.5 Numerical Results

In this section, we provide numerical examples and illustrate the resulting optimal

policies. We consider band-limited AWGN broadcast and multiple-access channels.

The bandwidth is BW = 1 MHz and the noise power spectral density is N0 = 10−19

W/Hz. We assume that the path loss between user 1 to user 2 (h12) and user 2 to

user 1 (h21) are assumed to be same (h12 = h21) and 130dB. The path loss between

user 1 to destination (h1d) and user 2 to destination (h2d) are assumed to be same
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(h1d = h2d) and 133dB. With these definitions, equations (5.1) and (5.2) become:

r1i ≤ BW log2

(
1 +

h12p12i

N0BW

)
= log2 (1 + p12i) Mbps (5.72)

r2i ≤ BW log2

(
1 +

h21p21i

N0BW

)
= log2 (1 + p21i) Mbps (5.73)

r1i + r2i ≤ BW log2

[
1 + (N0BW )−1

(
h1dp1i + h2dp2i + 2

√
h1dpU1ih2dpU2i

)]

= log2

(
1 +

p12i + p21i + 2
√
pU1ipU2i

2

)
Mbps (5.74)

5.5.1 Intermittent Data Arrivals Scenario

We demonstrate numerically that user cooperation improves the achievable depar-

ture region of a MAC, under data and energy arrival constraints. In Fig. 5.2

we plot the achievable departure region of the proposed cooperative MAC model

with energy and data arrival constraints. The energy and data arrivals are cho-

sen as E1 = [5, 0, 5, 0, 0, 0, 0, 10, 0, 0] mJ, E2 = [5, 0, 0, 0, 0, 10, 0, 0, 5, 0] mJ, d1 =

[1.4, 1.4, 0, 1.4, 0, 7, 14, 0, 14, 0] × 10−1 Mbits, d2 = [7, 2.8, 0, 14, 0, 0, 1.4, 2.8, 0, 0] ×

10−1 Mbits. The transmission deadline is chosen as 10 seconds. The existence of

data arrivals in the cooperative MAC has an impact on the departure region and

this effect is more apparent in the single user rates. We also observe that cooper-

ation has enhanced the departure region when we compare the ordinary MAC and

cooperative MAC both with data and energy arrrivals.

Additionally, we plot the data departure curves for both users in Fig. 5.3 in

the case of sum rate maximization, i.e., µ1 = µ2 = 1. We see that the possibility of

user cooperation allows for higher data rates to be sustained using the same amount
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Figure 5.2: Departure regions of cooperative MAC with and without data arrivals
vs the capacity region of regular MAC with data arrivals.

of energy.

5.5.2 Energy Cooperation Scenario

We demonstrate here that energy and data cooperation improve the achievable de-

parture region of a MAC. In Fig. 5.4 we plot the achievable departure region of the

proposed cooperative MAC model with energy and data cooperation. For compari-

son, we also plot the departure region of a cooperative MAC channel with only data

cooperation which was studied in [85]. We use the channel parameters as described

before.

The energy arrivals are E1 = [5, 0, 5, 0, 0, 0, 0, 10, 0, 0] mJ, E2 = [5, 0, 0, 0,

0, 10, 0, 0, 5, 0] mJ, with energy transfer efficiency of α = 0.6 and the transmission
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Figure 5.3: Data departure curves for both users in the case of µ1 = µ2 = 1.

deadline is chosen as 10 seconds. Energy cooperation together with data cooperation

has enhanced the departure region of the MAC. It is interesting that this effect is

more pronounced in single user optimal points rather than sum rate optimal point.

At the sum rate optimal point,
∑N

i=1 r1i + r2i is optimized and the discrepancies in

the energy arrival patterns are negated due to the powers appearing as a summation

term.

Now, we investigate the case when user priorities are fixed at µ1 = 0.6, µ2 = 1.

In Figs. 5.5 and 5.6 we plot the energy usage curve, where we plot the cumulative

energy consumption for each user. We separately plot the energy used for direct

power components, p12, p21 and the cooperative power components, pU1, pU2. We

also compare the effect of energy cooperation. From Fig. 5.5 we see that with

energy cooperation, user 1 has transferred considerable amount of energy to user
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2 and set its direct powers to zero. This means that user 1 no longer transmits

any independent data, but has become a dedicated relay for user 2. From Fig. 5.6

we see that with energy cooperation, the direct power of user 2 has exceeded the

available energy at slot 5. The cooperative powers pU2 did not change with energy

cooperation and therefore all the transferred energy from user 1 has been consumed

in direct transmission.

5.6 Concluding Remarks

In the first part of the chapter, we considered a cooperative MAC with intermittent

data and energy arrivals. We found the optimal offline power and rate allocation

policy that maximize the departure region. We first showed that there exists an
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Figure 5.5: Energy usage curve for user 1 with and without energy cooperation for
µ1 = 0.6 and µ2 = 1

optimal policy, in which the single user rate constraints in each time slot are tight.

Then, we formulated the departure region maximization problem as a weighted sum

rate maximization in terms of rates only. Next, we proposed a sequential convex

approximation method and showed that it converges to the optimal solution. Finally,

we solved the approximate problems with an inner outer decomposition method.

Numerically, we observed that higher data rates can be sustained using the same

amount of energy.

In the second part of the chapter, we considered a cooperative MAC with

data and energy cooperation. We found the optimal offline transmit power and rate

allocation policy that maximizes the departure region. We first showed that, the

cooperative powers in each slot must be non-zero for both users. Next, we showed
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Figure 5.6: Energy usage curve for user 2 with and without energy cooperation for
µ1 = 0.6 and µ2 = 1

that, data cooperation always precedes energy cooperation. In other words, excess

energy must first be used to increase cooperative powers and then to assist the other

user via energy cooperation. Then, we showed that if a high priority user transfers

energy to a low priority user, the higher priority user must already be transmitting

at a higher data rate than the other user. Finally, we showed the existence of

procrastinating policies, which have the property that energy transferred in a slot

must be consumed in that slot immediately.
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5.7 Appendix

5.7.1 Coefficients of (5.19)

By differentiating f(si/σ
2) the coefficients are,

Ani =22rn1i + 22rnU1i + 22rn2i + 22rnU2i + 2
√

(22rnU1i − 1)(22rnU2i − 1)− 4 (5.75)

αn1i ,
∂g

∂r1i

∣∣∣
rn1i

=
0.5

1 + Ani /σ
2
22rn1i (5.76)

αn2i ,
∂g

∂r2i

∣∣∣
rn2i

=
0.5

1 + Ani /σ
2
22rn2i (5.77)

βn1i ,
∂g

∂rU1i

∣∣∣
rnU1i

=
0.5

1 + Ani /σ
2
22rnU1i

(
1 +

√
22rnU2i − 1√
22rnU1i − 1

)
(5.78)

βn2i ,
∂g

∂rU2i

∣∣∣
rnU2i

=
0.5

1 + Ani /σ
2
22rnU2i

(
1 +

√
22rnU1i − 1√
22rnU2i − 1

)
(5.79)

Cn
i =

1

2
log2

(
1 +

Ani
σ2

)
(5.80)

5.7.2 Proof of Lemma 5.2

We will prove a more general result. Assume we have two optimization problems

(P1) and (P2) as given below.

(P1): min
x

f0(x)

s.t. fi(x) ≤ 0, i = 1, . . . ,m (5.81)

(P2): min
y

f0(h(y))

s.t. fi(h(y)) ≤ 0, i = 1, . . . , k
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fi(h(y)) = 0, i = k + 1, . . . ,m (5.82)

Here {fi}mi=1 are convex, differentiable functions and h(y) is a collection of one-to-

one, invertible functions. (P2) is obtained from (P1) by enforcing some inequality

constraints with equality and by a change of variables, x = h(y). Since (P1) is a

convex optimization problem, strong duality holds [70]. We denote the primal opti-

mal values of problems (P1) and (P2) as p∗1, p
∗
2 respectively. We show the following

lemma.

Lemma 5.17 If p∗1 = p∗2, then strong duality also holds for (P2).

Proof: The dual function and the Lagrange dual problem for (P1) are,

g1(λ) = min
x

[f0(x) +
m∑

i=1

λifi(x)] (5.83)

q∗1 = max
λ≥0

g1(λ) (5.84)

where λ are the Lagrange multipliers corresponding to the inequality constraints in

(5.81) and q∗1 denotes the optimal dual value. Similarly for (P2),

g2(β,γ) = min
y

[f0(h(y)) +
k∑

i=1

βifi(h(y)) +
m∑

i=k+1

γifi(h(y))] (5.85)

q∗2 = max
β≥0,γ

g2(β,γ) (5.86)

where βi and γi correspond to the inequality and equality constraints in (5.82),

respectively. We do not have the constraints γ ≥ 0 since γ corresponds to equality
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constraints. Since h is invertible, we let x = h−1(y) and rewrite (5.85) as,

g2(β,γ) = min
x

[f0(x) +
k∑

i=1

βifi(x) +
m∑

i=k+1

γifi(x)] (5.87)

Now we have,

q∗2 ≥ max
(β,γ)≥0

g2(β,γ) = max
λ≥0

g2(λ) = max
λ≥0

g1(λ) = q∗1 (5.88)

where the first inequality follows from the fact that γ ≥ 0 yields to a more restricted

feasible set, the first equality is a rewriting of the problem in terms of variable λ,

the second equality follows from comparing (5.85) to (5.83). Furthermore,

q∗2 ≥ q∗1 = p∗1 = p∗2, q∗2 ≤ p∗2 (5.89)

where q∗1 = p∗1 follows from strong duality of (P1) and p∗1 = p∗2 from assumption

and q∗2 ≤ p∗2 follows from weak duality of (P2) which always holds irrespective of

convexity of the problem. Then we have q∗2 = p∗2 and strong duality holds. �

The problem in (5.18) is obtained from (5.10) similar to how (P2) is obtained from

(P1) without changing the primal objective value and the problem in (5.10) is a

convex problem. Therefore the problem in (5.18) has strong duality.

178



5.7.3 Proof of Lemma 5.3

In [87] a non-convex problem is solved by a convex approximation method, in which

non-convex constraints g(x) are approximated around point xn by a differentiable

convex function ḡ(x,xn). Each function ḡ(x,xn) must satisfy:

• g(x) ≤ ḡ(x,xn) for all feasible x,

• g(x) = g(xn,xn),

• ∂g(xn)/∂xn = ∂ḡ(xn,xn)/∂xn.

In our problem, the non-convex constraint function g is given as r1i+r2i−f(si/σ
2) ≤

0. The last two properties are satisfied when ḡ is taken as the Taylor expansion of

the function g. The function f(si/σ
2) is a convex function since it is of the form

log(
∑

2x). Then, g is concave. The first property is satisfied since linear approxima-

tions are over-estimators for concave functions. By [87, Theorem 1], Rn converges

to R∗ where R∗ is a Kuhn-Tucker point of the problem in (5.18). From Lemma 2,

strong duality holds and therefore Kuhn-Tucker conditions are both necessary and

sufficient for global optimality. Therefore R∗ is a global optimal solution to (5.18).

5.7.4 Proof of Lemma 5.5

We discuss three cases to reach a contradiction in each case.

Case 1: Let ∃k such that pU1k = 0, pU2k > 0. Then, sk = σ2 +p12k +p21k +pU2k. We

define a new power allocation vector as p̃U2k = pU2k− ε1− ε2, p̃21k = p21k + ε1, p̃U1k =

αε2, p̃12k = p12k, for some ε1 > 0, ε2 > 0. Here, we have transferred ε2 amount of
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energy from user 2 to user 1 and consumed it in the cooperative power of user 1.

Additionally, we decreased pU2k by ε1 and increased p21k by ε1. The energy causality

constraints are satisfied for the new power allocation. Rate region constraints (5.39)

and (5.40) become:

r1k ≤ f(1 + p̃12k) = f(1 + p12k) (5.90)

r2k < f(1 + p̃21k) = f(1 + p21k + ε1) (5.91)

For constraint (5.41), we have

s̃k = σ2 + p̃12k + p̃U1k + p̃21k + p̃U2k + 2
√
p̃U1kp̃U2k (5.92)

= σ2 + p12k + αε2 + p21k + ε1 + pU2k − ε1 − ε2 + 2
√
αε2(pU2k − ε1 − ε2) (5.93)

= sk + (α− 1)ε2 + 2
√
αε2(pU2k − ε1 − ε2) > sk (5.94)

where last inequality holds since 2
√
αε2(pU2k − ε1 − ε2) > (1− α)ε2 for small ε1, ε2.

Therefore,

r1k + r2k < f(s̃k/σ
2) (5.95)

The constraints (5.91), (5.95) are loose and we can increase r2k to get a larger

optimal value which contradicts the optimality of the original profile. Therefore,

case 1 cannot happen.

Case 2: Similar to case 1, we will reach a contradiction.
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Case 3: Let ∃k such that pU1k = 0, pU2k = 0. Then, sk = σ2 +p12k+p21k. We cannot

have r1k = f(1+p12k), r2k = f(1+p21k) because f(1+p12k)+f(1+p21k) > f(sk/σ
2) so

this is not feasible. Without loss of generality, assume r1k < f(1+p12k). We define a

new power allocation vector as p̃12k = p12k−ε1−ε2, p̃U1k = ε1, p̃21k = p21k, p̃U2k = αε2.

Here, we have transferred ε2 amount of energy from user 1 to user 2 and consumed

it in the cooperative power of user 2. Additionally, we decreased p12k by ε1 and

increased pU1k by ε1.

For small ε1, ε2 we still have r1k < f(1 + p̃12k) which implies (5.39) is satisfied.

Since p21k has not been changed, (5.40) is satisfied. For constraint (5.41) we have,

s̃k = σ2 + p̃12k + p̃U1k + p̃21k + p̃U2k + 2
√
p̃U1kp̃U2k (5.96)

= σ2 + p12k − ε1 − ε2 + ε1 + αε2 + p21k + 2
√
ε1αε2 (5.97)

= sk + (α− 1)ε2 + 2
√
ε1αε2 > sk (5.98)

where last inequality holds for ε1 > ε2(1− α)2/(4α) which we enforce. Then, r1k +

r2k < f(s̃k/σ
2). Now, we increase r1k which is a contradiction. Therefore, case 3

cannot happen.

181



CHAPTER 6

Conclusion

In this dissertation, we explored the concept of energy cooperation, where energy

can be transferred from one user to another through a separate wireless energy

transfer unit, and investigated several multi-user scenarios that involve both energy

harvesting and energy cooperation.

In Chapter 2, we investigated three channel models with energy harvesting and

energy cooperation. First, we examined additive Gaussian two-hop relay channel

with one-way energy transfer from the source node to the relay node where the ob-

jective is to maximize the end-to-end throughput. Next, we considered the Gaussian

two-way channel with one-way energy transfer, and the two-user Gaussian multiple

access channel with one-way energy transfer. For these two channel models, we

determined the two-dimensional simultaneously achievable throughput regions. In

particular, we developed a two-dimensional directional water-filling algorithm which

optimally controls the energy flow in time and among users.

In Chapter 3, we considered the delay minimization problem in an energy

harvesting communication network with energy cooperation. For fixed data and
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energy routing topologies, we determined the optimum data rates, transmit powers

and energy transfers, subject to flow and energy conservation constraints, in order

to minimize the network delay. We started with a simplified problem with fixed data

flows and a single energy harvest per node. For this case, with no energy cooperation,

we showed that each node should allocate more power to links with more noise

and/or more data flow. We then extended this setting to the case of multiple energy

harvests per node over time. For this case, with no energy cooperation, we showed

that, for any given node, the sum of powers on the outgoing links over time is equal

to the single-link optimal power over time. Then, we considered the problem of

joint flow control and energy management for the entire network. We determined

the necessary conditions for joint optimality of a power control, energy transfer and

routing policy.

In Chapter 4, we considered the energy harvesting diamond channel, where the

source and two relays harvest energy from nature and the physical layer is modeled

as a concatenation of a broadcast and a multiple access channel. We found the

optimal offline transmit power and rate allocations that maximize the end-to-end

throughput. For the broadcast side, we showed that there exists an optimal source

power allocation which is equal to the single-user optimal power allocation for the

source energy arrivals. We then showed that the fraction of the power spent on each

broadcast link depends on the energy arrivals for the relays. For the multiple access

side with no cooperation, with fixed source rates, we showed that the problem can

be cast as a multiple access channel with both data and energy arrivals and can be

formulated in terms of data transmission rates only. We used a dual decomposition

183



method to solve the overall problem efficiently.

In Chapter 5, we considered an energy harvesting two user cooperative Gaus-

sian multiple access channel. We studied two scenarios within this model. In the

first scenario, the data packets arrive intermittently over time. We found the opti-

mal offline transmit power and rate allocation policy that maximize the departure

region. We first showed that there exists an optimal policy, in which the single-user

rate constraints in each time slot are tight, yielding a one-to-one relation between

the powers and rates. Then, we formulated the departure region maximization

problem as a weighted sum rate maximization in terms of rates only. Next, we

proposed a sequential convex approximation method to approximate the problem at

each step and showed that it converges to the optimal solution. Then, we solved the

approximate problems using an inner outer decomposition method. In the second

scenario, the users cooperate at the battery level (energy cooperation) by wirelessly

transferring energy to each other in addition to the data cooperation. We found the

jointly optimal offline transmit power and rate allocation policy together with the

energy transfer policy that maximize the departure region. We provided necessary

conditions for energy transfer.
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