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Chapter 1
Basic theory, notions, and constructions. Some examples

1.1 Introduction

The quadratic family f;(z) = tx(1—x) is a family of S-unimodal maps exhibit-
ing a wide variety of behaviors for f; corresponding to different parameters ¢. This
family of maps has been studied extensively and most thoroughly. For literature
review we refer to [5].

One topic of interest is the abundance of parameters corresponding to maps
which have absolutely continuous invariant measures. Such parameters, denoted by
AT, are known as the stochastic parameters. Topologically, Graczyk and Swiatek
[6] and Lyubich [10] showed that the set of parameters corresponding to maps with
attracting periodic orbits, which cannot have a.c.i.m. is open and dense in (0, 4].
Such parameters, denoted by A~ are known as the regular parameters. This means
that A", being in the complement of A~, can only be a nowhere dense set. On the
other hand, measure-wise, the Lebesgue measure of A* is positive ( [7], [2]), and
t = 4 is a density point of A", namely, lim._, WLZHA” = 1. In fact, Lyubich [11]
showed that AT U A~ takes up full measure in [0,4]. Avila and Moreira [1] showed
that in the set of A", a full measure of the parameters correspond to the Collet-
Eckmann maps, those are maps whose critical orbits have exponentially growing

derivatives.



It is interesting to get an idea of the actual measure of A*. Tucker and Wilczak
[13] have computed a lower bound for the measure of A~. Luzzatto and Takahasi [9]
made the first attempt to find a lower bound for the measure of A™ by estimating
the measure of Collet-Eckmann maps in a small interval adjacent to 4. Here we

work on an interval non-adjacent to 4, and provide the following result.

Theorem 1. In the parameter interval Ty =~ [3.99512595000, 3.99513000706], there

is a set M of parameter values, such that f; fort € M has a.c.i.m. and

M > 1.58382 % 10716, (1.1)

o]

The interval 7y is dynamically defined. The estimate given here is by no means
optimal. The interval 7y chosen was an arbitrary choice, but similar processes can
be carried out for a variety of intervals 7. Note that the parameter choice in our
construction provides not only Collet-Eckmann maps.

We adapt methods from [7] and [8]. In [7] and [8], the inductive constructions
use only C? properties of unimodal maps. Here we use properties of S-unimodal
maps. In particular, in our construction, the number of refinements (discussed in
the text) at any step n is bounded above by 6 + 3, whereas in [7] and [8], the
number of refinements can grow with n. Our method requires some preliminary
computer assisted estimates on sizes, derivatives and velocities. They constitute the
base of induction.

Our approach of estimation is based on the construction of power maps. In
this first chapter, we discuss the basics needed in our method of construction. At

the end of this chapter, we give two examples demonstrating this method. In the



second chapter, we state the algorithm for construction and then prove estimates
for measures, derivatives, and distortions. This leads to the conclusion of our main

theorem.

1.2 Preliminaries

For the family of quadratic maps fi(z) = tz(1 — x), where 0 < ¢t < 4, explicit
formula for the a.c.i.m. is only known for the case t = 4 (Chebyshev map). In that
case, the explicit form of the invariant measure p is given by dy = #mdx. It is
obtained by taking a conjugacy to the full tent map and using that the full tent map
has the Lebesgue measure as an invariant measure. If f; has an attracting periodic
orbit ( only one can exist), such maps do not have a.c.i.m.. It is well known that for
parameter values t = 0 to t = 3.57025... (Feigenbaum value), attracting periodic
orbits of periods 2* exist and they bifurcate as parameter value grows. Indifferent
periodic orbit exists when the periodic orbit of period 2* bifurcates to a periodic
orbit of period 2¥*!. The indifferent periodic orbit plays the role of an attracting

periodic orbit. We are interested in the parameter values after the Feigenbaum value.

1.2.1 S-unimodal maps

Quadratic maps are particular cases of S-unimodal maps. For the theory of
S-unimodal maps, we refer to [4]. Here we give the definition and some basic

properties. An S-unimodal map is a C® unimodal map that has negative Schwarzian



derivative on non-critical points. We say that f has negative Schwarzian derivative
if

f‘/// 3 f//

Sf==— —(7

2
= < 0. 1.2
Below are some properties of S-unimodal maps.

property 1 If Sf < 0, then Sf™ < 0 for all n € N.
property 2 If Sf < 0 on I, then |f’| has minimum on the boundary of I.

property 3 S-unimodal maps can have at most one attracting or indifferent periodic

orbit.

1.2.2 Koebe distortion principle

An important consequence of the negative Schwarzian derivative property that
we will use heavily is the Koebe distortion principle. We say that I is a 7-scaled

neighborhood of I if each component of I\I has length of at least 7|1].

Koebe distortion principle Let g be a diffeomorphism with negative Schwarzian
derivative which maps I onto g(I). Suppose I D J and that g(I) contains a T-scaled

neighborhood of g(J), then

.
1+7

)2 < gzg; < (11—7)2. forall x,y in J (1.3)

(

We say that the distortion of g is bounded by (HTT)2



} 9(R)
g
9(J) l9(D)], l9(R)| > 7|g(J)]
g(L)
T J R
N———
1

diffcomorphism g in the Kocbe distortion principle

Figure 1.1: Diffeomorphism for the Koebe distortion principle

1.2.3 Power maps of f;

We will be discussing induced (power) maps of f; with the following properties.
A power map F' is defined on an interval I, and maps I into I. [ is partitioned
into a countable number of subintervals I, I5, ... (not necessarily in order) so that
the union of the intervals has full Lebesgue measure (denoted by I = U;I; (mod
0)). F restricted to each interval I is a power of f;. We call the maps on each

n times

interval branches of F', and denote them by f, = F|; = "1, zm, where
ny is the power. In addition, f; is either a monotone branch or a critical branch.
When f; is a monontone branch, f; maps I diffeomorphically onto I. When fj
is a critical branch, f; maps I into I and has one critical point. The domains in

which these branches are defined are called monotone domains and critical domains,

respectively.



1.2.4 Uniform extendability

For the power map F' defined in the previous subsection, we define a notion of
uniform extendability. If I is a neighborhood of I, we say that F can be uniformly
extended to I if for each k there exists fk such that fr = f™ maps fk onto I in the
case where f is a monotone branch and f, = f™ maps I, onto an interval covering
one end of T in the case where fr is a critical branch. We call fk the extended

domain of .

fol [ ] | fo] | fa

~»
~

I I ,’, L' L oK

i I

I,
F is uniformly extendible

Figure 1.2: Uniform extendability for power maps



1.2.5 Folklore theorem

The existence of a.c.i.m.s for maps with countably many expanding branches

relies on the Folklore theorem.

Folklore Theorem Let F' be a map defined on a countable collection of disjoint

open intervals |y, I in I and satisfying the following properties:

1. I =2, I (mod 0).
2. fr = F|1, extends to a C* function on cl(Iy) and fy(cl(ly)) =1 for each k.

3. F is uniformly expanding. That is, there is an R > 1 independent of k such

that |‘g—g’j| >R on cl(I;) for each k.

4. F™ has uniformly bounded distortion. That is, there exists K > 0 such that
D(fr,00fk, ) (T . — _
WM < K forall z, yin f' o---o fi'(I) for any n and any set of

indices ki, -+, ky.

Then there exists an a.c.i.m. v with density continuous and bounded away from zero.

See afterword in [3] for a mention of such formulation, and [5] for the proof.
The first two conditions satisfy conditions of a Markov map. From the Koebe distor-
tion principle, condition 4 is satisfied if the negative Schwarzian condition and the
uniform extendability condition hold. The quadratic map has negative Schwarzian
derivative on the intervals (0

,%) and (%, 1). By property of functions with nega-

7



tive Schwarzian derivative, the nth iterate f;* of the quadratic map has negative

Schwarzian derivative on its non-critical points.

Our goal is to construct a power map F; of f; satisfying conditions of the
Folklore theorem. For a given value t, there exist a fixed point ¢ = % of f;, with its

~1 q] since iterates

other preimage ¢~! = % We are interested in the interval I = [q
of all points except 0 and 1 will eventually fall into this interval. The power map is

constructed on the interval I. If we can show that F satisfies conditions 1 through

4, then F has a.c.im. v. Moreover, if

> vl < oo, (1.4)

then

TLk—l

pA) =Y v (AN 1) (1.5)
k

1=0

will give an a.c.i.m. for f; on I.

1.3 Basic notions and constructions

1.3.1 Notations

We have already defined the interval I = [¢7', ¢| for a map f;, where ¢ =

£ and ¢! = ;. By taking further left preimages of ¢, it is natural to label
the points ¢~2,¢73,...,¢7%,.... The corresponding preimages of ¢ on the right
will be ¢;2,¢,%,...,¢.%,.... If f; and f, represent f; restricted to [0,1] and [4,1]

respectively, then ¢™% = f,%(q) and ¢% = f7'o f7"(g). We define intervals

8



1=3.9951

. 5
fi ’

Ji

q q 9

Figure 1.3: Fixed point and left and right preimages of the fixed point
JV=1q,¢%, 7% = [¢.%,¢.3, T2 = [¢.3,¢%], J* = [¢-%,¢.%],.... The figure above
shows the positions of these points and intervals in the case where t is close to 4 but
not equal to the value 4. Note that in the figure, the critical value is so close to 1
that it looks as if it touches 1, but it does not actually touch 1. Each J* is mapped
by fF diffeomorphically onto I. We denote such maps by g, so that g, = f¥|;+ and
gr(J*) = 1. All intervals above vary with ¢, but we suppress the ¢ for convenience.

It is estimated in [8] that for large n

dg ™
dt

< cnA™", (1.6)

where ¢ is a constant and A is close to 4, both constants independent of n. We also
know that the critical value ft(%) is £, therefore moves at constant speed ; with

respect to t. As t becomes larger, the range of the map covers more J*’s. Later, we



will focus our investigation on the case where f(3) € J*.

In general, it is convenient to imagine intervals J*’s as intervals on the y-axis
since later in the text we look at the interval J* in which the critical value fy(3) is
positioned. We will use A for monotone domains and § for critical domains. If the
nature of the branch is not specified, we will just denote them by I;’s. The labeling
of the indices will not have a general rule, except that J," will be a preimage of
0r and Iy, Iy, I13, ... will be subintervals of I,. For the power maps we will be

considering, the leftmost and rightmost domains will always be monotone domains.

We specifically refer to them as A; and A,., respectively.
1.3.2 First return map

For ¢t > 2, we define the first return map on I = [¢7',¢]. If fi(3) ¢ J', the
pullback of J! by f, ' consists of two intervals, namely A; = f,7(J!) and A_; =
f7H(JY). Since f; maps A; (or A_) diffeomorphically onto J!, and ¢g; = f;|;, maps
J! diffeomorphically onto I, we have that g; o fi|a, = fZ|a, (0or g10 fila_, = fZa_,)
maps Ay (or A_;) diffeomorphically onto I. Similarly, if f,(3) ¢ J?, the pullback
of J2 by f7 ' consists of two intervals Ay and A_y and g o fila, = fPla, (or
G20 fila_, = f2|a_, ) maps Ay (or A_,) diffeomorphically onto I. A, is adjacent to
A;. We can do the same for J*, J*,--- if they do not contain f;(3). There will be
an interval JV such that ft(%) € JN. The pullback of JV by f;! will be one interval
centered at % We will call that interval §. It will be adjacent to the intervals Ay_;

and A_(y_1). gn© fils = tN+1|5 maps ¢ into I and has a critical value. Elements
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Ay, Ao, 0, ., A9, A form a partition of I where we ignore common endpoints.
Letting fr = Fyla, = t|k|+1|Ak for 1 < |k| < N—1and hy = Fy|s = fN 1|5, we have
a power map Fy. Fy is the first return map of f; to I. The following figure is an
example for the value t = 3.989. Again, the critical value in the figure looks as if it

touches the value 1, but it actually does not.

f(x) =3.980z(1—x)

2 P2
I e
Jfl
Ay AgAsda A g A

Figure 1.4: Fixed point and left and right preimages of the fixed point

If t = 4, the first return map will have infinitely many monotone branches with
domains converging to the point % If t < 4, there will be finitely many monotone

branches on each side, and a critical branch in the center.

Due to the existence of the central critical branch, we do not automatically have a
map that satisfies the conditions of the Folklore theorem. We will try to substitute

11



Figure 1.5: First return map

the critical branch by new branches that consist of monotone branches and critical
branches with smaller domains. This is done by a series of monotone refinements,
parabolic pullbacks, critical pullbacks and filling-in procedures. Our ultimate goal
is to get a sequence of induced maps, where the total measure of critical domains
converges to zero. In addition, we would like to ensure that the uniform extendability

condition holds for a fixed extension I of I.

1.3.3 Holes

In our inductive construction, there is always some region in the center (%)
consisting of the central critical domain and possibly nearby domains where branches
defined on these domains have not yet been fixed. We refer to these regions as central
holes. Monotone domains in a central hole may be modified in later inductive steps.
Preimages of these central regions are also considered as holes. Holes contain critical
domains and some monotone domains whose corresponding branches may not yet

satisfy the uniform extendability condition. We also use ¢ to denote our holes. We

12



denote maps that map preimages of central holes to their original central hole by
capital script letters F or G.

We wish for the total measure of holes to converge to zero.

1.3.4 Basic procedures

Below, we will explain how the basic procedures are performed.

1.3.4.1 Monotone pullback/refinement

_-—-—'_'_'_'_'_'——I_‘_‘—‘—‘—'—‘—‘—-—._

\

fo .f3

fi 7 1 £

Ao I L I I I

Figure 1.6: The monotone branch to be refined and the power map to pullback with

Definition 1. Let F' be a power map on [ and let fy : Ag — I be a monotone map.

The monotone pullback of F by f; is the new power map F o f5 on A,.

More precisely, if F' has branches f;’s with corresponding domains /’s, the mono-
tone pullback of F' onto Ag forms subintervals Agi, Aga, Aoz, ... of Ay, where Ag; =
fo*(I;), and new branches fy; = f; o fo. Note that fy; is a monotone branch if f; is

13



a monotone branch and is a critical branch if f; is a critical branch.

I
Ly Monotone i
I fo pullback
I %
I
01 J‘l'.‘.
0
L
Ag1Ay ]l‘i gy - A\u.n_\.uhi[- & Agy
Ay
I
Ly Monotone i
I fo pullback
I %
I
01 rﬁ.:
L
Ag1Ay ]l‘i gy - A\u.n_\.uhi[- & Agy
Ay

Figure 1.7: Branches after a monotone pullback

Let £ be a partition of I into domains of F'. We also consider the monotone

pullback of £ into f; 15 as “the pullback of £ by fi b

14



1.3.4.2 Parabolic pullback

Definition 2. Let G be a power map on a domain J on the y-axis and let h; be
the quadratic map restricted to a neighborhood of % It ht(%) is in J, the parabolic

pullback of G by h;'is G o h,.

Suppose G has branches g1, ga, - - - with respective domains J*', J2,---. We perform
parabolic pullback only in instances where ht(%) € J™ and g,, is a monotone branch.
In such cases, domains are created symmetrically on the left and right of % and the
central domain is h; ' (J™). Newly created branches g; o h; could be either a critical
branch or monotone branch again.

Let ¢ be a partition of J into domains of G. Suppose h; '(J) = J. We also
consider the monotone pullback of ¢ into a partition h; *¢ of § as “the pullback of ¢

by h;lw )

1.3.4.3 Critical pullback

& fo s T fs

ho

Figure 1.8: The critical branch to be refined and the power map to pullback with
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Definition 3. Let I’ be a power map on [ and let hg : 0 — [ be the central critical
branch of some power map. The critical pullback of F' by hgl is the new power map

Fohgond.

The critical pullback is simply a combination of first a monotone pullback then
a parabolic pullback. A critical pullback is always taken on the central critical
branch. If F' has branches f;’s with corresponding domains I;’s, we only take
critical pullbacks in instances where ho(%) € I,, and f,, is a monotone branch. In
such cases, domains are created symmetrically on the left and right of % and the
central domain is hy'(I™). Newly created branches g; o hy could be either a critical
branch or monotone branch again.

Let £ be a partition of I into domains of F'. We also consider the critical

pullback of ¢ into hy'€ as “the pullback of & by hg'”.

Figure 1.9: New branches after critical pullback
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hy

Figure 1.10: Critical pullback viewed as a monotone pullback combined with a

parabolic pullback

1.3.4.4 Filling-in

Filling-in is a procedure which substitutes preimages of central holes by preim-

ages of some partitions of central holes. A preimage of a central hole 0 is represented

by 67™.

Definition 4. Let F : 0~ — § be a diffeomorphism and let H be a power map of

fion 0. The filling-in of 6~™ by H is the new power map H o F on 6~ ".

K

Figure 1.11: The hole and the power map to perform fill-in with
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Filling-in is simply a monotone pullback performed on a smaller interval, and we
distinguish it from monotone pullbacks because monotone pullbacks are performed
on monotone domains and filling-ins are performed on holes.

Let n be a partition of § into domains of H. We also consider the filling in of

57" by F i as “the filling-in of =" by n”.

1.3.4.5 Purpose of each procedure

Each of the procedures plays an important role. Monotone pullbacks/refinements
are for refinements on monotone domains that are comparatively large which in turn
will have comparatively large extended domains. How refining monotone domains
will give smaller extensions is explained in greater detail in the following section.
Parabolic pullback is just for pulling back a partition/map from the y-axis onto the
z-axis. Critical pullbacks refine the central domain. Filling-ins refine all holes other
than the central hole. Both critical pullback and filling-in reduces the total measure

of holes, which is one of the goals of our construction.

1.3.5 Extendability

Here we discuss the issue of extendability when performing the basic proce-

dures. We explain ways to make our power maps extendable.
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1.3.5.1 Extendability of the first return map

Let f be a diffeomorphism from A; onto J and g be a diffeomorophism from
Ay onto [ with J = Ay. Then g o f is a diffeomorphism from A; onto I. A basic
property of compositions is as follows.

Extendability property Let A D Ay and Ay D Ny, If f can be extended to a
diffeomorphism from Ay onto J and g can be extended to a diffeomorphism from A,
onto I with J D A, then go f can be extended to a diffecomorphism onto I.

Using the above property of extendability, we will show that the interval
[fN(3), fe(3)] is the maximal interval to which the first return map with 2N — 1
branches can be uniformly extended to. As shown in the previous subsection, each
monotone branch fi, 1 < |k] < N —1, is given by the composition g o fi|a,, where
each g = ftlk||J|k\ is a diffeomorphism from J'*I onto I. The diffeomorphism ftlkl on
J*! can be extended at most to a diffeomorphism on the interval [f of[|k|+2(%), 1],

where f1 o f7 %2 (1) is contained in J¥-! and [f7! o fl_lkHZ(%),l] is mapped

L
onto |0, ft(%)] Therefore g can be extended to a diffeomorphism which maps
[t off'kHQ(%), 1] onto [0, f;(5)]. Each monotone domain Ay, is mapped by f; onto
JI*| this can be extended to a diffeomorphism onto [0, f;(3)]. Combining the above
analysis, the composition f; = g o f; can be extended to a diffeomorphism from
o £ o 7M@) ) (or [, £t o £t o S TP E)]) omto [ (), £u(5) The
interval | t‘k‘ﬂ(%), fi(3)] is the smallest when |k| = N — 1. Therefore the mono-

tone branches can be uniformly extended to [f¥(3), fi(3)]. The central branch

ho = gn o fi|s has image covering gq. The greatest extent to which hy can be ex-
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tended to is such that the image covers [g, f;(3)]. According to the definition in
1.1.4, we can conclude that the first return map can be uniformly extended to the
interval [fN(3), fi(3)]. It is the maximum possible interval of extension. If we pick
I = /N (3), fi(3)], the endpoints of the extended domains Ay's of Ay’s and 0 of
0 excluding A, and A_; lie inside adjacent domains Ay _; and Ag.q or Ay_; and
A_(n-1), therefore inside I. The extended domains of A; and A_; will always lie
inside the extended image I due to expanding property near the point ¢.

Later, I may be chosen to be smaller than FN(3), fi(3)] to accommodate
more restrictions. The extended domains will then be smaller and will still satisfy

the properties mentioned above.

1.3.5.2 Extendability after monotone refinement

Let F' be a power map on I whose branches are uniformly extendable to I.
Let I; be the extension of a subdomain I; of I in the partition induced by F. Let
fo be a monotone map on domain A, which is also extendable to I. We consider
the extendability of the branches after a monotone pullback of F by f;*'. If I, cl,
then the newly created branch f;o fy is also extendable to I. To guarantee uniform
extendability of all new branches to I, F needs to be uniformly extendable to I and
I needs to contain the union ka i of all extended domains. This will always be true
in our case. Indeed, for all nonboundary branches, extensions of their domains are
in I. For boundary branches, we use that their derivatives are greater than 3, and

check directly that preimages of I are contained in .
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1.3.5.3 Extendability of monotone domains after parabolic pullback
or critical pullback

Since the critical pullback is a composition of a monotone pullback with a
parabolic pullback, we will just give the criterion for extendability of branches after
parabolic pullbacks. Let J!% be a monotone domain on the y-axis mapped by Jla]
diffeomorphically onto I. Suppose g|, can be extended to a map g, that maps
diffeomorphically onto I. The let J = f][;]l(f ). If Jl is contained in the image

of hy, then the pullback of gj,) by fi, gjq © fil £l (i=1,r) is also extendable to I.

Otherwise, we perform the boundary refinement procedure defined below.

1.3.5.4 Boundary refinement

Boundary refinement is the procedure of taking a sequence of monotone re-
finements on boundary domains to meet the extendability criterion for a parabolic
pullback.

First we define boundary partitions. Let F be a power map of fr- We denote
the map restricted to the leftmost domain A; by f;, and the map restricted to the
rightmost domain A, by f,.

For t close to 4, boundary branches always satisfy the following properties.
Since A, is adjacent to ¢, within a neighborhood of ¢, and the derivative of f; near ¢
is approximately —2, f, is always an expansion. Similarly, f; is always an expansion.
fr is always monotonically increasing and f; is always monotonically decreasing. Let

F' be is uniformly extendable to I, then f; can be extended to a diffeomorphism f;
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on an extended domain A; of A; so that fl(Al) = ]. Similarly, fr(AT) = [. Fort
close to 4 the derivative of f; is close to —2 near ¢. For such ¢, f, has derivative
larger than 2 near ¢, and the right component of AT\AT has length less than % the
length of the right component of I\1.

Consider the monotone pullback of F by fl_1 onto A;. We get a new map
where A, is refined. We denote the new map after monotone pullback by F}. The
leftmost domain of this map is fl_l(A,,), which we denote by 4A;.. We denote the
branch f, o f; on Ay, by fi.. Since f; has an extension f; that maps an extended
domain A; of A; onto I and I includes Ar, fir has an extension flT that maps an
extended domain Alr of A\;, onto I. This extended domain Alr is equal to fl_l(AT).
Since f; has derivative less than —2 near ¢!, the left component of Alr\Alr has
length less than 1 5 the length of the right component of A A

We can consider again the monotone pullback of a by f;l onto A;.. We denote
the new map by E},. The leftmost domain of this map is fi'(A,) which we denote
by Aj.r. The map on Ay, is f, o f; which we denote by f;,... There is an extension
flw of fj,. such that fm maps an extended domain AW of Ay, onto I. Am is equal
to fl;l(Ar). Since fi, = fro fi, fi- has derivative less than —4, so the left component
of AW\AW has length less than + the length of the right component of A AA,

Inductively, we can define Alu’ A QUL f“« o flr ., and Ia oy by

n times n tlArnes n tlmes n tlmes n—1 times
taking n consecutive monotone pullbacks of F' | each time on the leftmost domain.
Since f e has derivative less than —2", the left component of A .. \Alu
will ha\: 11;1:;}1 which is less than o times the length of the right nC(t)IIr:f;on;lttlmgsf

AT\AT. Therefore, the extended region that extends outside the left of I decreases
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exponentially. Extended domains of all other domains excluding A, are contained
in .

A similar process can be applied to A, of F' to obtain A r...r, Avrooiry frrooor,
N~ ~—~— ~—~—
n times n times n times

frror, and F ,r..r . These will give the boundary partitions which we pullback
~—— ——

n times n—1 times
with.

Consider an interval J!% on the y-axis which is mapped by gja) onto 1. Suppose
that gp, can be extended to a map gy that maps diffeomorphically onto I. In

the case where J@ is not contained in the image of h;, we perform a boundary

A

refinement which is done by a monotone pullback of £ ..., or F' ,.r..., onto
~—— ——

n—1 times n—1 times
Jl@ depending on which direction we want to shorten the extension by. A finite

number of n times will be enough since as explained above, the extended length

Avp o\

n times

decreases exponentially in size, and g, a has fixed distortion.

—

1y
I

I j’_)

I i

Figure 1.12: Extended domains and their pullbacks
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1.3.5.5 Extendability after filling-in

Let 6 be a central hole and 677 be its preimage. Let F be the diffeomorphism
mapping 6P onto §. Let n be a partition of § consisting of monotone domains and
smaller holes and let H be the power map on §. Suppose that all monotone branches
and all critical branches of H are uniformly extendable to I. If F can be extended so
that its image contains the union of all extensions of monotone domains and critical

domains in 7, then all newly created branches in 6% will be extendable to I.

1.3.5.6 Enlargements of holes

0, n, and F are defined as in the previous paragraph. Let & be the union of
all extensions of domains in 7. To guarantee extendibility after filling-in, F needs
to be extendable onto 6. We define an enlargement 8 of & as a larger interval which
contains 6. We shall define § below as some union of adjacent intervals large enough
to contain 4. When taking parabolic pullbacks and critical pullbacks the critical
value should avoid enlargements 6 and all preimages 6P of enlargements. That
way, new monotone domains created after filling-in will again be extendable to I.

All domains outside enlargements are considered to be good domains.

1.4 Dependence on parameter

When the critical value falls into good domains, we can take further pullbacks.
These domains vary as the parameter values change. In order to estimate the mea-

sure of parameter values for which critical value falls into good domains, we need
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to calculate the dependence of interval partitions on the parameter.

Let A*(t) be one of the good domains on the y-axis whose endpoints y; (t) and yo(t)
vary continuously with respect to t. Let t; be the parameter where the critical
value enters A* and ¢, be the parameter where the critical value exits A*. That is,
y1(t1) = & and ya(t2) = 2. Let us define T(A*) as the interval [¢1, t5]. Then we get

the following lemma from [§].

Lemma 1. Let A(t) = [y1(t),y2(t)] be an interval on the y-azxis. Assume

dys(t)
dt

)

dy, (t)
dt

‘ < €. (1.7)

Let T(A) = [t1,t2] be the respective interval on the parameter azis, where ty is the

time when w(t) enters A(t) and ty is the time when w(t) exits A(t). Then

L_ T 1

i%—e_ |A(t)] _i—e

(1.8)

and

1—4de  |A(t)| _ 1+4e
< < .
L+4e = |A(ty)] = 1 —4e

(1.9)

for allt € T(A).

1.5 Transition from the phase space to the parameter space

The basic argument which allows us to estimate the portion of ¢ such that w(t)
belongs to good intervals splits into 3 parts. At step n of induction we consider a
parameter interval 7™~ such that w(t) belongs to some interval A=V (¢) on the
y-axis. Interval A=Y (¢) is mapped by some branch gn—1) (depending on t) onto
I. By lemma 1, the length of 7~V is close to 4|A™ Y| for any t € T,

25



Part I We prove that for each t € 7"V, and for k sufficiently large, k < n, the
measure of holes in partition &, is less than CO*~14 for k > 14, where 6 = 0.73

and C' = 0.000210601.

Part II We pullback some partition §,,—3, s < 1, a few times to get a par-
tition ffsn}_?) of I. Then we pullback ffsn]—g onto A to get a partition
g(_nl—l)<€fsn]—3(t)) of A® 1. Due to bounded distortion, the relative mea-
sure of holes in 9(_7371)( (sn_3(1)) also decreases exponentially with n for each
t € 7Y, By lemma 1, the parameter interval corresponding to w(t) be-
longing to a specific hole §; *(¢) is close to 4|0, ’(¢)| for any ¢ such that w(t)

belongs to §, *(t).

Part III We show that for all t € 7" relative measures of elements of

g(;l_l)(ﬁfsn]_?)(t)) in A=Y remain almost the same.

Combining parts I, II, and III we get that the portion of nonadmissible parameter
intervals at step n of induction decreases exponentially and get an estimate of the
measure of good parameters with a.c.i.m., which proves the main theorem.

1.6 Examples

In this section, we provide two examples of specific parameter values such that

respective maps have a.c.i.m..
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1.6.1 The case where the critical value always falls into the sixth

domain
n+1 times
—~
Consider f, where fy(3) € --- C J#% C J#6 c J* c J* J 466 s the
n times

—~—
sixth interval of the pullback of the initial seven domain partition onto J4¢ 6. ¢

will be one specific value in [3.991749,3.9933] (this is the interval for parameters ¢

such that f;(3) € J%). We denote this specific f; as f for convenience. In this case,

1
2
the critical point is preperiodic. By Misiurewicz’s theorem [12| f has an a.c.i.m..

Here we give an independent proof as an example of applications of our method.

1.6.1.1 Construction of an induced map

Let Fy be the first return map of f. Since f(%) € J*, Fy has seven branches as
discussed in chapter 1. The seven domains of the seven branches form a partition
Soof I. & : 1 =A1UAUA3UGUA_3UA_5UA_q, where A;’s are domains
of monotone branches and dq is the domain of the central critical branch. Branches
of Fy are denoted by fi = Fola, = f*|ar; fo = Fola, = fPlas, fs = Folay = [*|as,
ho = Fols, = flsy of-3 = Folay = flay f-2 = Fola, = f*|la,, and fo4 =
Fola_, = fPla_,.

Our procedure for constructing a map that satisfies the conditions of the Folk-
lore theorem is as follows. First, take a critical pullback of Fy on the central branch
ho : 8o — I of Fy. Here hy can be written as the composition g4 o hl|s,, where h

is just the parabolic map from dy into J4, and g4 = f%|;+ maps J* diffeomorphi-
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cally onto I. If we pull back the partition & by g; ' onto J*, we get seven domains
JH =gt (AL, J® = gt (AL), J® = g (A), T = g (%), J¥ = gi ' (As),
J = g7 (Ay), and JY7 = g;'(A). Since by our assumption that f(1) € J, tak-
ing a parabolic pullback of J4, .. J4 by h~! onto § will give 11 domains. The
11 domains include two that are preimages of § which we denote by &, ' and one
new central domain which we denote by ¢;. All others are monotone domains. We
denote this partition of dy into 11 domains by 1. Next, we fill-in the two d;'’s
using 7y as a partition of dy, which in turn partitions &, * into 11 domains, including
preimages of §; ' which we denote by 6,2 and a preimage of d; which we denote by
67, After one critical pullback and filling-in of two holes, we denote the new map

we have obtained by Fj

J-lT

J-lf)
s
JH
J-L:{

g4

A4

J‘l?

Figure 1.13: Refinement of J* by pullback of &

To obtain the power map F,,.; on I at step n + 1, we define an inductive process.
At the n + 1th step, we have the map F}, with central branch h,, : §,, — I and some
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Fillingin d;' using (p

r—2 o -2
og B } dy ~

S Jedl e [iap |
1

Go: c—1
O 8y L

Figure 1.14: Filling-in 6, " using (y

holes 5fj, where 0 < <nand 1 <j <n+ 1. First, we take a critical pullback of

the first return map Fg on the branch h, : 6, = I. h, = gus...c © f|s,, where f maps

n times

n times n-1 times n times
—N— e —N—
8, into J*0 6 and gss..6 =f 90---0 f_ o ofs 0 gs maps J*0 6 diffeomorphically
——

n times

onto I. The critical pullback of Fy on h,, can be viewed as first taking a monotone

n times n times n times
—~ — —~
pullback of & onto J45 "¢ to get seven subintervals J46---61 ... j46---67 then tak-
n times n times
—~ —~—
ing a parabolic pullback of J46- 61 ... J46---67 onto §,. Since the critical value
n+1 times n times n times
—~ —~ —~
lies in J 466 taking a parabolic pullback of J46- 61 ... j46--67 1y h=1 onto
n times

——
5, will give 11 domains. J46 6% is the preimage of &y, so two of the domains ob-

tained after parabolic pullback are preimages of dy which we denote by d;'. There

n+1 times
—~

will also be one new central branch formed by A~'(J 466 ) which we denote by
Ont1- All other branches are monotone branches. We denote this partition of 4,
into 11 intervals by 7,. From the previous steps, holes 9§, 7 where 0 < [ < n and
1 <j<n+1, were created as well as 7, were defined . We fill in §,° 7 using n; as a

partition of ¢;. When we fill-in ¢, 7 we will get 11 domains including preimages of
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8, ' which we denote by &, U and preimage of ;.1 which we denote by 5l_+j1- At
the n + 1th step, we fill-in each existing hole once. After filling-in, we obtain a new

map on [ which we denote by F),;;.

Filling in 6(”' using &

e T T
el b Lt

—j+1 —J c—i+1
8 'SH 1 2

Figure 1.15: Filling-in 5l_j using (;

Since the critical pullback is always performed using the initial partition, it is possi-
ble to choose an extension length e so that no boundary refinement is needed after
each critical pullback. For a given e, we define I= [ ' —e, q+e]. If e is chosen small
enough so that the first return map is extendable to I, then we can define the ex-
tended domain of the domain of each branch in F. For eachi € {1,2,3, -3, -2, —1}
let A, be the extended domain of A; such that f** maps Al diffeomorphically onto
I. Let &y be the extended domain of & such that f3(dy) covers l¢,q + €] on both
ends of dg. Endpoints of 5o will lie in Az and A_. Endpoints of A; will lie in the
domains adjacent to A; except for the left endpoint of A; and right endpoint of A_;.

The derivative at ¢ is close to 2, therefore, f2 has derivative close to 4 at ¢, and
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A; and A_; would be contained in I. If we take a monotone pullback of the first
return map Fy to the branch fo : Ay — I of Fy, we will get 7 subdomains of As. Let
S =6V f5 (&) be a refined partition of &. If we pull back the partition & by g,
onto J*, the critical value f(1) will lie in J*% = g (/5 (A_2)). If we choose e small
enough so that the left endpoint of Az lies in f5*(Ay), then g5 '(As) will lie in the
range of f. Since the extension J466 of the pullback is equal to the pullback of the
extension, we have that after the first critical pullback, the two branches adjacent to
the central branch is extendable to I. Since left extensions of A_1, Ao, A_3, and
8o are all contained in their adjacent intervals we have that g;'(A_y), g5 {(A_y),
g (A_3), and g5 (d) are also contained in the image f(Jy). After the first critical

pullback, all branches are extendable to I. The arguments work exactly the same

for the nth critical pullback, except instead of pulling back the partition éo by g;*

n-1 times
——

onto J* we pull it back by g% ., onto J *% % We can conclude that after each
n-1 times

critical pullback, the new branches will be extendable to 1.

Ay Ay As & Ay A A_q

[ |
o) (M) f(A) fris)

[ E—

A

Az M AYUA UL

Figure 1.16: Relative position of critical value (domain sizes not to scale)
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1.6.1.2 Exponential decrease of measure of holes

Next, we show that the total measure of holes in F), decreases exponentially.

Since no boundary refinements are needed, new holes are formed from either
a critical pullback or a filling in. In both of these processes, new holes lie inside

original holes. To obtain the measure of holes in Fj, . relative to the holes in F,,

: s 42055 Y 16,21 14+2165 7+
we need to obtain upper bounds for the ratios TS and ST TR where
n 1
5n 20651 . . . .
% is the relative measure of new holes created in the central domain ¢,, after
i 16,7, 14216571 . . .
a critical pullback, and T the relative measure of new holes created in
!
9,7 after a filling in.
n-1 times
For 12:1L+20% 7] d the distortion of h,, where h,, = = ‘
or 5] , we need the distortion of h,,, where h,, = gus...c0f =f 90---0f o

n times

ofs 0 g4 0 f. First observe that the diffeomorphism g, from J* onto I is extendable
to the interval [1 — f(3), f(3)]. Let I =[q" —e,q+ e as in the previous subsub-

section. Since Ay and A_, is contained in I and [1 — f(3), f(3)], the composition
n-1 times

/_/— ~
f-20---0fa0fy004 = gas ¢ Is extendable to /. Let the ratio of e to |I| be 7.

n times

By the Koebe distortion principle (1.3), we have

Dg46-~6(x)

— 1+T12

n times < :O 110
Do) = ) 7O (110

n times

n times

—_——
for any z, y in J4¢ % n € N. The following lemma is a consequence of (1.10).

Lemma 2. For any two domains U, V in I, and any n € N we have

-1
9us... U
19566 (U)] Ul o1

mtmes > L (1.11)
gV~ VG

n times
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n times I

=
JiG6 e,

J: T A
A -[ Ay
Ay
a~
i &y
N
%
\\\ =
\\ Ay
YT
& A
& G| 5 "
\5 —

Figure 1.17: Partition of 9; by a critical pullback of &,

n times n times n times
46- 46---62 1 46---63
Since J = g46 G(A), J = 0i6...6(A2), J = 946 6 (Az),
——
n tlmes n times n tlmes
n times n times n times
46---64 46---65 1 46---66 1
J 946 (60) J - g46---6(A*3)7 J - g46--~6(A*2)7 by Lemma
L — [ p—
n tlmes n times n times

1, there is a constant K; < 1 not depending on n € N such that

n times n times n times n times
|J46 61|_'_|J46 62|+‘J46 63‘+‘J46 ‘ -
n times n times n tlmes n t1mes n t1mes n times - 1

|J46 61|+|J46 62|+|J46 63|+|J46 64|+|J46 65|+|J46 |

The ratio of measures of two intervals each with an endpoint at the tip of the

parabolic map will become the square root of the original ratio of measures after a

. . Snr1|+206y "
parabolic pullback. To obtain an upper bound for %, we assume the worst
n times n times n times

—~ /—M
position for J46-64 That is we assume that J4% 64 is adjacent to J46 "66 Then

33



[Grs1| + 2005 |

[0n]
n tlmes n tlmes
|J46 64| + |J46 |
- n tlmes n tlmes n tlmes n tlmes n tlmes n tlmes

’J46 61’_|_’J46 62’_|_|J46 63|_|_|J46 64|_|_‘J46 65‘+‘J46 ‘

Vv1-K,

IN

If we let Ky =+/1 — K7 < 1, then we have that

(Ot | + 210 |
[0n]

< K (1.12)

for all n € N.

—j — 41
16,71 1+2185 7|

Next, we shall determine an upper bound for T
l

. To do this, we anal-
yse how o, J was obtained. Before that, we note that if k is fixed, critical branches

which map o, 7’ onto their image have the same height ( image is the same ) as the

central critical branch defined on ¢y for all j € N.

o, 7 must be obtained from a filling in. If { > 0, then o, 7 was obtained from
a filling in of 61__j1 which was obtained from a filling in of 61__]2 . If we look [ steps
before, we see that it came from a filling in of some interval J, 7. Now we look at

d,”, it was also obtained from filling-in of some 6, G0,

Denote the branch on (5,;0 D by hij_1. Since d,7 is one of the preimages
h,;}_l(é(]% it is then easy to see that d; 7 is one of the preimages h,;}_l(él) and filling
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same
height

Figure 1.18: Comparing critical branch on a central critical domain with a critical

branch on a preimage of the same central domain

[ [ r [ oy ] 3 ] 1¢ ]
T T = T T T 7 T
Pl P PGl PG PGl Pl

N —
"/ /V
5
o7
5
[ - L A} { \
E T T 3
5= -(j-1) o
0y 6A+| 0y
s -(G-1)
0.

Figure 1.19: A hole 4, 7 is contained in a corresponding hole o J

in 0, 7 means pulling back the partition n by h,;}fl onto 6, 7. Hence, all we need

is the extendability constant of hj j_; on the interval o, J. Since we know that the
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height of hy ;_; is the same as the height of hy, the critical value of hy ;— lies in the

sixth domain of &. That is, the extendability constant is greater than 7, = ﬁ—;"‘.
T Extendible to this
region
hk.,j,1 ) h
OO
0y (5,‘1"]"1> o7
5;;*”
Figure 1.20: Critical value avoids a fixed neighborhood of §
Again, by the Koebe Distortion Principle (1.3), we have
Dhy ;1 (x 1+
kg-1(2) < (222 =0y (1.13)
Dhyj-1(y) T2

for any x, y in ;7. Using (1.12), and (1.13) we get

1651+ 24|50_j+1\ (- 641+ 2‘|50_j+1|)
16, 10,7
16 \0 U b7 U by
6,
- [ieg—1 (6, \G U (_55j us’)l 1
B |h,j—1(6, 7)) Cs
31—(1—1@-0%.
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By letting K3 =1— (1 — K5) - c% < 1, we have that

‘ l-‘rl’ _'| 0 ‘ S K3 (114)
16,1

for all l € N and [ € N. Let o™ be the total measure of holes in map F, and let
K = max{Ky, K3}. By (1.12) and (1.14) we have

a(n+1)

<K (1.15)

a(n) -

for all n € N. We can conclude that the measure of holes decrease exponentially.
The limiting map of {F,} which we denote by F,, will have infinitely many mono-

tone branches.

1.6.1.3 Verification of summability condition

What remains is the verification of the summability condition ., |I;|n, < oo,
where [, are the branches in F,, and n, is the power of each branch. We need

only to look at the increase of power after each induction step. Consider again
n-1 times

—
the central branch of F,, which can be written as h,, = g6 © f=fo0-0f_o

n times
n-1 times

ofsogsoh. After a critical pullback, the new branches formed are f g0 f g0---0 f 9

n-1 times n-1 times
e e e e
ofpogsoh, fso fao-rofyofpogiof, f30 fao--rofy ofyogsof,
n-1 times n-1 times n-1 times
—_——— —_——N— ———
hoo fg0---0 fg0fy0g40f, hoo fa0- -0 f oo0frogs0fy, fso fa0---0f y0f50
n-1 times n-1 times n-1 times
—_——— —_——N— —_——N—
910 fr, f30 fa0- 0 fgo0fy0g40fi, foo foo---0f yofsoguof, foo fao -0 f o
n-1 times n-1 times

—_—~ —~—
ofsogsofy, fio fgo---0of so0fyogsof., and fio f o0---0 f g 0fy0g40 f;, where

fi= h|(07%) and f, = h|(%71). The power in each branch increases by at most 5.
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For the filling in of ¢, 7. the power also increases by at most 5, since by analysis
in previous paragraphs, filling in §," I is replacing h,;}fl(él) by partitioned domains
h,;;._l(m) for some k. The map fiohy, j_1 becomes maps f_q0 fiohy j_1, f_30 fiohy j_1,
hoo fiohgj—1, fso fiohyj—1, fao fiohgj_1, or fi o fiohg,—1. In this case, the
power increases the same way as in the critical pullback of & on §;. Therefore, at
the nth step, the greatest power is going to be no more than 5(n + 1). Lengths of
domains of new branches produced in the nth step will have total measure less than

the total measure of holes in the n — 1th step. Therefore we have by (1.15)

S [ Llng < -4+ 160 - K™ 5(n+ 1) < oo
k n=1

1.6.2 Non-Misiurewicz case

We would like to construct a map that consists of an a.c.i.m. but is not in

1

the Misiurewicz case. We start again with the first return map Fy to I = [¢*, ¢J.

We would like to pick a parameter so that the forward iterates of the critical point
returns arbitrarily close to the critical point. We define our inductive steps so that
the total measure of holes reduces to less than some K < 1 times the measure of
holes in the previous step. We would also like to maintain a fixed distortion for the
power maps as in the previous section. We take a critical pullback of the partition
& and assume that the critical value of the central branch falls into the 6th domain
of & for most inductive steps , but occasionally at the Mth step, the critical value

will lie in the monotone domain just outside the domain ¢, and we will pullback
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the partition {y,, where N, < M}, will be determined later.

0 B >52

Lo
T
f o
T

|
I

Ni OM>

Iy

OM;

Figure 1.21: Pulling back different partitions in different specified steps

In this subsection, we will use the same set of variables as we did in the pre-

vious subsection, but their values and what they represent may differ.

Fy has seven branches with domains Ay, Ao, As, §y, A_3, A_s, and A_;.
We denote the branches of Fy again by fi = Fyla, = f2|a,, fo = Fola, = 3|,
fs = Folas = [Hlag, ho = Folsy = f2lay of-3 = Fola_; = fYlas f2 = Fla_, =
f3la_,, and fo1 = Fyla_, = f?|a_,. Let the partition of I into the seven inter-
vals be &. We can pull back partition & onto each of the seven intervals. For
example, A = A UAR UA 3 UALUAUAGUA, where Ay = fi (A,

A = fTHAL), Az = T (AZ3), A= 7)), Ais = fi ' (A3), Mg = f1 (D),
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and A;; = fi'(A;). For the pullback of & onto dy we have §y = hy'(A_y),
doo = hgy' (A2), do3 = hy' (D), doa = hoy (%), dos = Dy (Aa), dos = hg' (Do),
dor = ho, (D3), dos = hg, (%), o9 = hoy (D), doqo) = ho, (Aos), and dor) =
ho(A_1), where ho; and hg, are hq restricted to the left and right half of &y, respec-
tively. Let I = [ ' —e, g+¢], where e is some small number that is to be determined.
Then we can define the extended domain A; of A; for each i € {1,2,3,-3,-2,—1}
so that fl1+! maps A; diffeomorphically onto I. &y is defined so that fg(dp1) covers
lq,q + €] and hOT(SOT) covers [q,q + ¢|. Here b and g, are the left and right half
of 9§y respectively. We can pick a number e that is small enough so that the right
endpoint of Al is contained in Asq, the right endpoint of AQ is contained in Aszy,
the right endpoint of As is contained in 8y, the right endpoint of dy is contained in
A(_3)1, the right endpoint of A_; is contained in A(_9)1, the right endpoint of A_yis
contained in A(_y;, the left endpoint of A~2 is contained in A7, the left endpoint of
A; is contained in Aqr, the left endpoint of 8y is contained in Ay, the left endpoint
of A_5 is contained in do(11), the left endpoint of A_, is contained in A(_3)7, and
the left endpoint of A_; is contained in A(_z)7. By this choice of e, we will be able

to avoid boundary refinements after each critical pullback.
Let h, be the central critical branch of F),, where F, will be constructed

according to rules in later description. h, = gp, o f, where f is the parabolic map

that maps d,, into some interval J™ and gn) maps J " diffeomorphically onto I.
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Let 1 = ik Using the Koebe distortion principle (1.3), we can get

)2 =0, (1.16)

for any x, y in J, and n € N. Similar to lemma 2 in the previous subsection, we

have for any two domains U, V in I, and any n € N

—1

Gi (U 1
low O ol 1 (1.17)
’g[n] W~ VI &

Suppose that the critical value of h,, was in domain A_, of partition &y, then when
we pull back partition & by h,' onto d,, there will be 11 new domains. Estimate
of the ratio of total measure of new holes in §,, to the length of 4, is given by the
same estimate as in (1.12). In the case where we pull back some partition &y, by
h;jk onto domain d,y, , since all holes in {y, are in dp and since the critical value is

positioned inside dy, we can obtain the following estimate.

|new holes in dyy, |

. ) ) 1
< \/1 — ratio of nonholes in the image f(dp,) - o
1
<. J1— |AL] + |Ag| + |As] 1
- |00] + |A1| + |As| + |A3] Cy
There is a constant K5 that bounds \/ 1— | 50‘@‘1'A+1||ﬁ|2|§2|ﬁf£3‘ . C% from above. Since

the measure of the central critical domain decreases exponentially when we take

|6Nk|

critical pullbacks of &g, it is possible to choose Nj such that 5]

< 3.
Then

Dhpg(y) = 1

)2=4 forany x,y in 5;,}1
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Therefore, we have as in the previous section, distortion for filling-in is the
equal or less than the case in the previous section. We get a constant K < 1 as in
(1.15).

The increase in number of iterates by a filling-in is bounded above by the
increase in number of iterates of critical pullbacks in former steps. Set A as an
arbitrary number less than 1. Next, we define how M) are chosen. Let P be the
greatest power in the map Fl,. Pick M so that (K)Mr . P, < k. Tterates at steps

My to Mj.; cannot increase more than Py at each step. Then we get

Z |Ik’nk

k
My
<) (K)M5k
k1=0
Mo
+ Y (K)(5My + Pi(ky — M)
ko=M7+1
M3
+ Z (K)™ (5My + Py(My — My) + Pa(ks — M)
ks=Ms+1
+ .
<D (E)5lL A+ Y (K)2Py(l— M) + > (K)*Pry(ls — M) + -+
=0 la=M, l3=M>

<0
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Chapter 2

Proof of the main theorem

In [7] and [8], two different algorithms were used to show positivity of measure
for parameters t whose corresponding maps f;’s attain a.c.i.m.s. In this chapter, we
combine the techniques of [7] and [8] with some new tools to develop a new
algorithm for choosing parameters. We will show that under this algorithm, the

parameters with a.c.im. form a set with measure greater than 1.58382 x 10716 %

4.65 % 1076,

2.1 Basic approach

We start by restricting our construction to a small parameter interval 7Ty that
is close to t = 4 but disjoint from ¢t = 4. 7 is chosen so that for t € 7T, partitions
induced by power maps of f; are dynamically equivalent up to five steps of critical
pullbacks. That is, the partitioning points are preimages of ¢ obtained by the same
sequences of left and right preimages.

For each t € Ty, we have the partition & of I which is the partition resulting
from the first return map of f;. We also have the partition & which is the partition
after 5 critical pullbacks by &;. The critical value of the central branch of £ varies at
full scale in I, whereas all branches of £, have little variation with respect to t in 7.

This means two things. First, we need to choose subintervals from 7 so that critical
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values of the central branch of &5 falls into valid domains. Second, we can refine
&5 with & and obtain uniform estimates on domain sizes, derivatives and velocities
of newly defined partitions for all ¢ in 7y. Original domain sizes, derivatives, and
velocities for &, and &5 are obtained numerically by Mathematica, see Appendix B.

At each inductive step n, we are confined to a finite union of admissible in-
tervals U7 (™1  7;. For each admissible interval 71, there is a corresponding
partition &, (7™ V) of I. For t € T elements of &,_,(7T"™V) vary continu-
ously. The critical value of the central branch of fn_l(’T(”_l)) varies at full scale in [
for t in 7™, This compels us to choose admissible subintervals 7™’s from 7~
such that the critical value of the central branch of £, _; falls into valid domains. We
always refine §,_; with an earlier partition §,, 0 < s < 1, which varies little with
respect to t in 7" !, This allows us to make uniform estimates on newly defined
partitions. Our algorithm is designed so that monotone branches of each partition
£,—1 are uniformly extendable to some fixed interval I. We keep track of estimates
on domain sizes, derivatives, and velocities.

From the algorithm, we get a sequence of collections of admissible parameter
intervals {7©}, {T(™M}, ... {T™}, ... where the collection at step n is nested

. € {T™}, there is some

n—17%

in the collection at step n — 1. That is, for each 7;5")1

(n—1) n— (n)
7. € {711 such that T

6. tn—

T

—1% 6. Ip—1"

We wish to get

lim max{measure of holes in fn(’ﬁ(n) )} =0 (2.1)

n—00 1g...in 6:--tn
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and

- o | _
lim Y |77 | =a>0. (2.2)

16...0n

2.2 Preliminary construction (steps 0 through 5)

2.2.1 Initial choice of parameters

As discussed in 1.3.1, we can define right preimages J' = [q,¢ %], J* =
(2,473, I3 = [g2,¢7%,... of [ = [q!,q], depending continuously on the parame-
ter t. According to (1.6), the rates at which the endpoints of J" vary are relatively
slow compared to the constant speed § at which the critical value w(t) = f(3) = %
moves upward. Therefore, there are exact times t, when the critical value enters
each J". So when t € [t,,t,11], w(t) € J". As a primary choice of parameter values,
we restrict ¢t to T* := [t4,t5]. Using Mathematica to solve for fi(w(t)) = ¢; and

S w(t) = q; ', we get

T* ~ [3.9826, 3.9956].

2.2.2  The first return map and partition &

For t € T, the first return map has 7 branches. On the left, the first return
map consists of monotone domains A;, As, and Az with corresponding branches
denoted by fo1 = fZlays fo2 = [Pla, and fo3 = f|as. Symmetrically on the right
are monotone domains A_;, A_s, and A_3 with corresponding branches denoted
by fo—1= f2a_1s fo—2= fZ|a, and fo_3 = f}|a_,. The central domain, denoted

by dg, is the domain of a critical branch denoted by hg = f?|s,- The seven domains
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A1, Ao As 0o, A3, A5 and A_; form a partition of I which we denote by &.

2.2.3 Domain A, and partition ¢ (7*)

Considering J*!, J?, J? and J* as domains on the y-axis, we define the domain
A, as

A, =J UuJPU P UJh (2.3)

The respective partition of A, is denoted by ¢ ©) (7). This partition of A, exists
for all ¢ € int(7T™*). Since we consider J',--- | J* as subintervals of A, on the y-axis,
we call (((T*) a partition of A, on the y-axis. Note that the parabolic pullback of

CO(T*) onto I is exactly the partition &.

2.2.4 Further choice of parameter values

Using the partition &y, we would like to restrict our parameter values further.
J* is mapped by f} diffeomorphically onto I. Let g4 := f!|;+. If we pullback the
partition & of I by g;' onto J*, there will be 7 subintervals of J*. We will label
them by J*', J*2, ..., J* from bottom to top. J*' is mapped by g, onto A_;, J*? is
mapped by g, onto A_,, J* is mapped by g4 onto A_3, J* is mapped by g4 onto
8o, J* is mapped by g4 onto Az, J* is mapped by g4 onto Ay, and J*7 is mapped
by g4 onto A;. We can obtain numerically the velocities of endpoints of J4!, .. | J47
and get that values are always less than 0.003. Therefore, entrance and exit times
of w(t) to each J* exist and are unique. This is also true for more pullbacks of

&0, and we will not repeat this argument later. We would like to restrict parameter
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values so that w(t) € J47. We denote the corresponding parameter interval by 77

T 2 [3.9933, 3.9956].

— 3\
Ay
i A
g T @0t "l
J46 git(a)n gt
J* TQQ(AQ nJ q 1 Ae
g g5 (8,) N J* 4 ¢
J 4 e [ atagnr — 22 5 | %
ja2 g7 tALs) Tt A_g > ]
Jv | gt ag)nJt =
Ay
AN
. J

Figure 2.1: Pulling back & by g;* onto J*

If we look at the first return maps of f,’s for which ¢t € 747, those are exactly the
cases when the image of the central branch hy covers domains A_; through A, and

the critical value of hg falls into the domain A;. Since
A, =J'uPuPuJt U U forallt € T, (2.4)

there is a corresponding partition of A, which we denote by ¢MW(T47). ¢W(T*7) is

a refinement of ¢ (7) for all t € T77.
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Since f! maps J*7 diffeomorphically onto A; and fZ maps A; diffeomorphically
onto I, then J* is mapped by f5 diffeomorphically onto I. We can pull back the
partition & by (f¢];47)~! onto J7 and get 7 subintervals of J47. We label them
JAL g2 JAT from bottom to top. J4™! is mapped by ff onto Ay, .-+, JAT
is mapped by f onto A_;. We make a further restriction of our parameter values
so that w(t) € J4® and denote the corresponding parameter interval by 747. We
obtain numerically that 747 is approximately 7*7® ~ [3.99483, 3.99513].

Again we have a refined partition ¢(®(7%7) of A, on the y-axis.
A, =J' v U Pugtye U YT YU T

In general, if an interval J19 on the y-axis is mapped by some diffeomorphism
gja) onto I, then we can pullback partition §y by Yl ]1 onto J!% to form 7 subintervals
which we label from bottom to top as J, Jjl2 . Jl7 We can also define in
the parameter space the corresponding intervals 714 which is the interval of all s

where w(t) € J°. With this defined, we choose the interval T = 747777 as the

T476777 i

set of initial parameter values to work with. We obtain numerically that S
approximately 747777 ~ [3.99512535856, 3.99513000705).
| TH767T7| > 4.6485 % 106 (2.5)

Partitions () (74767), ¢ (T7677) and ¢©®)(T*75777) are defined analogously to

COTH), ¢CO(TA) and (P (T476), where ¢ (T is a refinement of ¢~V (71al).
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2.2.5 First five steps

For coherence with later construction, we define the first five steps and par-
titions &1, &, -+, &. For all t € T*77"7 we can perform all of the following steps
creating dynamically equivalent partitions, dynamically equivalent in the sense that
each branch corresponding to each domain is the same power of f; for all t € 7476777,

and branches are varying continuously.

Step 0 We create partition &, given by the first return map. Domains in &, are

AI) AQ: A?)a 60) A—37 A—27 A—l‘

Step 1 We take a critical pullback of & on J; and denote the new partition by
1 =A UM UAZUALUASUAGUS, P UAUASUG UA sUA ;UM U

A GUA_sUA_LUA 3UA SUA_.

Step 2 We take a critical pullback of & on d; and denote the new partition by
522]:AlUAQUAgUA4UA5UA@U(;O_IUA7UA8UA9UA(10)UA(H)U
6 UAG2y Ud UA_ 19y US  UA 1) UA_ 19 UA gUA gUA ;U5 U

A,G U A,5 U A74 U A73 U Afg U Afl.

Steps 3,4,5 Similarly, we take consecutive critical pullbacks on 45, d3, d4 to form

€3, &4, s

Remark 1. Fort € TH70777 & &), &, & and & are exactly the parabolic pullbacks of

C(1)<7-47)’ C(z)(7~476)’ 6(3)(74767)’ C(4)(T47677) and C(5)(T476777) onto [, respectively.
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2.2.6 Holes and branches in &;

Totally, &5 consists of 65 domains. FElements of &5 are monotone domains,
preimages d; ' of & and the central domain which we denote by ds. d5 is the central
hole and we refer to the 10 preimages of dy as the “five holes” since there are five on
each side. We let f5,; denote monotone branches in {5 and F5; denote the monotone
maps defined on the five holes which map each hole onto &y. Let A® be the domain
JAT6TTT on the y-axis and let g5y be the map from A®) onto I. Consider the five

preimages of & in () (7*7777) whose parabolic pullbacks are the five holes on the

x-axis, let Gs; denote the maps from these preimages onto d.

2.2.7 Extension constant and uniform extendability of branches in &5

An extended domain I of I is chosen so that the first return map is uniformly
extendable to I for each t € 7475777 since the extension of the third branch extends
a little below ¢~1 — 0.17, we select our extension constant to be 0.17. According to
1.3.5.1, all other branches of the first return map can then be extended below to
¢! — 0.17 and above to ¢~ ! + 0.17.

In the following context, we speak of partitions &, of I with associated branches
to each domain. We would like each monotone branch outside ;¢ and holes in &, to

be extendable to I, then we say that branches in &, are uniformly extendable to I.

Lemma 3. Fort € T4 monotone branches in &1, &, & and &4 are all uniformly

extendable to I.

Proof. First, we look at the extendability of Ay, As, Ag, d5', A7, and Ag. Since
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t € TY77 we have t € T and t € T*. The critical value w(t) falls into the
domain J*. Whether Ay, ..., Ag are extendable depends on whether J4, ..., J
lie in the image of h. Here, J% is the pullback of A_; by g;', J* is the pullback
of Ay by g;t, J* is the pullback of A_3 by g;', J* is the pullback of d, by g,
J% is the pullback of Ay by gt J% is the pullback of Ay by g; ', and JY is the
pullback of A; by g;'. Since we also know that w(t) € J*7, it means g,(w(t)) falls
into Ao where Ay, Aqo, ..., A7 are subdomains ordered from left to right of A,
given by a monotone pullback of & on A;. We know that all left extensions fall
into adjacent domains (see subsection 1.3.5.1), therefore A1, Ay A, 50, and A;
are contained in the image of g4 o hy|s,. To determine whether A, is contained in
the image of g4 o hys,, it is enough to compare the left endpoint of A, with right
endpoint of Ajs. We can obtain numerically that the left endpoint of AQ is greater
than 0.34281 for all ¢ € 74777, The right endpoint of A5 is less than 0.294612 for
all t € 747777 This shows that A, is always contained in the image of g4 o hyls,.
For the extendability of Ag, Aoy, Ay, 50_1, and A(), arguments are the
same as in the previous paragraph, except that here we need the left endpoint of
A3 to be greater than the right endpoint of As;, where Ay is the first subdomain
of A, given by a monotone pullback of §, on A,. For extendability of A3y, Ay,
As), 5, Aqe), and Ar), we need that the left endpoint of A, be greater than
the right endpoint of Ay, which follows from the previous paragraph. Likewise, the

extendability of domains A3y through A o) follows.
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t =3.99513

A FANT Aqr
T e o e b i
) Al ‘ AQ ‘ A3 ‘ 50 ‘ A_g ‘ A_Q ‘ A_]. ‘
0.250305 0371522 0436941 0472224 (527776 0563059 0628478 0.749695
Ty
| 3 | | i |
0.200617 . 0.430388 0.569512 = 0.799383
| | | |
| P | I o |
0.34282 AQ 0.468573 0531427 [_\_Q 065718

0421767 A, 0495622 0504378 A_3 0.578233

0463752 00  0.536248

Figure 2.2: Domains of & and respective extended domains

The above is a figure that shows the partition &, and relative positions of extensions
of each domain in & for the specific parameter value t = 3.99513.

]

After step 5, branches adjacent to d5 may not be extendable to I when w(t)
is close to the lower endpoint of J*77. To avoid such problems, we make an
additional assumption:

t > 3.99512595. (2.6)

This number was obtained by considering one of the two branches adjacent to the
central branch of & and observing at what parameters its extension falls short of

0.17.

Lemma 4. Fort € T*777 critical branches in &1, &, &3, &4 and & are all uniformly
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extendable to I.

Proof. According to 1.2.4, a critical branch is extendable to I if it can be extended
so that it covers one component of I \I. From the figure above, we can see that
the extended domain 50 of g lies in Az U §yp U A_3. By the choice of parameter(t €
TAT6TTT) the critical values of the central branches in &, . . ., &, are always positioned
outside the extended domain d;. That makes all holes 6, ” created from the first five

steps extendable to I. O

We conclude that for all t € T47777 gatisfying (2.6), all branches of & are

uniformly extendable to 1.

2.2.8 Enlargement of §, and distortion on d,”

In the previous subsection, we showed that the critical value avoids extended
domains d;” of 6,” so that new critical branches formed after parabolic pullbacks

are are also extendable to I. In fact, the critical value in the central branch of

&o, - .., &4 avoids a larger neighborhood around dy, namely, 5o where
bo=ALUA;UdgUA_3UA",, (2.7)
A/Q — AQQ U Agg U A24 U A25 U A26 U A27, (28)
A/—Z = A(_Q)l U A(_Q)Q U A(_Q)g U A(_2)4 U A(_2)5 U A(_Q)G. (29)

This fixed region that we avoid around ¢,” will allow us to give uniform estimates

for distortion. dy is called the enlargement of .
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Suppose a hole ¢, is mapped by some diffeomorphism F monotonically onto dg
and is extendable to 0 as defined in (2.7). Let us define D ¥ over ¥ @8 the upper bound,

given by the Koebe distortion principle, of the distortion on X when extension is

X. Then we have

2
8a%:(ﬂffo)

o \T0) |00
%%(yo)

= |1+
- 6 over 6 A
0 0 50\50

<275  for xg,yo €6,"  (2.10)

1
2

for t € T476777 The last number was obtained from estimates on sizes of § and &g

2.2.9 Partition 7y of dg

Let 1y be the restriction of partition &; to dp. 19 has 59 domains and its holes
include 10 preimages of 0y and one central domain d5. The relative measure of holes

fhotes (10) 0 7 is between 0.166 and 0.178 for ¢ € T*77" N {¢t > 3.99512595} (see

first figure in B.1.1).

Later in the algorithm, we will perform 5-step filling-ins on preimages of

defined as follows.

Definition 5. Let d,” be a preimage of , mapped by a diffeomorphism F onto do.

A 5-step filling-in of 6,7 is replacing d,” by F (o).

For a 5-step filling-in of §,”, we can obtain an estimate for the relative measure

of holes in F~!(1y) using the inequality (A.3) from the Appendix. We denote the

relative measure of holes in F~(19) by finoies(F 2 (10))-

D 5 Lpotes(10) 2.75%0.178
oies(F 1 < o over 0o < < 0.373238
IU/h : ( (770)) - 1 - luholes<n0> + D50 over 50 * Mholes(no) 1 - 0178 + 275 * 0178

(2.11)
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The above estimate does not depend on F as it only depends on the fact that F is
extendable to 50.

To improve the estimate for . (F(no)), we divide &y into 5 sections and
calculate a bound for each distorted ratio separately. Dividing dy into sections allows
us to obtain smaller distortion bounds. This method is particularly effective when
the holes are in a sense “evenly scattered”. We use the formula (2.12) below and

the Koebe distortion principle combined to obtain the bounds.

fus i P -@@—H—:—f—{m@—}—H

section 1 section 2 section 3 section 4 section 5

Figure 2.3: Partition of dy into five sections

The sections are shown in the above figure. For each section, a distortion bound
is given by formula (1.3) from the Koebe distortion principle. For example, the
extended part of section one on the left is the left component 1\I and the extended
part of section 2 is the union of the left component of T \I with section 1. We denote

the bound corresponding to section ¢ by d;. r; denotes the relative measure of holes
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in section ¢ and 7} denotes the relative measure of holes in the corresponding section

i of 05", From (A.3), we get that

(2.12)

Table 2.1: Distortion bounds and bounds for relative measure of holes in each section

section sections 1 and 5 | sections 2 and 4 | section 3
upper bound for d; 1.44113 1.113251 1.16614
upper bound for 7r; 0.145941141 0.20592 0.25624640
upper bound for (—24— | 0.197599 0.22702 0.286617

The bounds for d; and r; are valid for all ¢+ € 7475777, We can conclude that

fnoes(F 1 (10)) < 0.29. (2.13)

This is a better estimate than (2.11).

2.2.10 Preliminary estimates

All preliminary estimates are obtained numerically from Mathematica. Sizes
of domains and derivatives of branches in partitions &, . .., &; are listed in B.1.1 and
B.1.2. Bounds for derivative with respect to ¢ and variation of derivatives are listed

in B.1.3 and B.1.4, respectively.
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Let finoes(€) denote the relative measure of holes in £. All other notations are
defined in earlier subsections of this section.

Important estimates for £, are below.

0,
fnotes(§0) = % <0.11123 (2.14)

2. By the negative Schwarzian derivative property, the minimum of the absolute

value of derivatives occurs on endpoints. Therefore by computing minimum

at endpoints, we get the minimum derivative over each domain.

dfo,i
‘ Joil L 55 teTyxel (2.15)
ox
3.
‘af(],i
B)
% <1109 teToze (2.16)
0,7
K3
2 fo}
otoz
— <50 teTyzel (2.17)
of
0z
Important estimates for &5 are below.
1.
_|65]
Fnotes (§5) = < 0.0022 teT; (2.18)
2.
Ofs,i
‘ g},, >35 teTyzelfs, (2.19)
X

Af5; is the domain of fs;.

27



‘ Ofs,i

1o}
‘af—t <161 teTo,x€Afs, (2.20)
5,1

or

a2f5j}
ot0z
— < 900000 teTpzel (2.21)
ofsi
0z

Estimates for gy are below.

)
‘g—f > 391005 te To,x € A (2.22)

(\)

. Velocities on the endpoints of A® are less than 0.0019

99(5)

<0.00188 t € To,x € AP (2.23)

99(s5)
ox

2 —1
9%9(5)
otoz

<89 teTpzel (2.24)

—1
99 s)
Oz

%g(s)
Ox?

;<15 teTyzeA® (2.25)

99(5)
oz

2.3 The algorithm

2.3.1 Step 6

Starting from step 6, we begin to choose subintervals 7()’s of TG = T, =

TA767T" which are admissible according to the rules of general construction. We also

o8



create new partitions &(t), ¢9(A®), and 75(A®). Domains in these partitions

vary continuously when #’s are in the same 7). We explain the algorithm below.

2.3.1.1 Starting partitions and intervals

For each t in 7®), we have the dynamically equivalent 7 branch partition
&o(t) whose partitioning points vary little among different t’'s. We also have the
dynamically equivalent 65 branch partition &;(t) created after 5 consecutive crit-
ical pullbacks, where the central domain 05(¢) and nearby domains vary greatly.
AP)(t) = JATTT7(1) is the interval on the y-axis where w(t) € A®)(t) corresponds
to the maps where the critical value belongs consecutively to the 7th, 6th, 7th, 7th,
7th domains after each critical pullback of £y(¢). By construction, ¢ is in 7 if and
only if w(t) is in A®)(t). We denote the lower endpoint of A®)(t) by ys(t), then
ys(t) is exactly the image of the two endpoints of d5(t).

All domains and partitions depend on ¢, but ¢ may be omitted in later context

for convenience.

2.3.1.2  Choosing T, creating A® and Cl(G)(A(6))

At step 6 we partition A® by pulling back & onto A®) once. We get a
partition of A, which is a refinement of ¢®)(7®) and we denote it by ¢\%(A®)).

When defining 7(®)’s, our goal is to make each |7(®| small enough so that the
position of points that partition A®)(¢) varies little for ¢ in a fixed 7(®. That is, we

would like w(t) to move across some small domain A® when ¢ moves across 7.
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A domain A® is considered to be small enough for parameter choice if

A )]
Hy(AO)(1))

< forallt e TO), (2.26)
where ¥, is defined in (2.104) and Hs(A) := dist(A,ys). If w(t) € A® then
the measure |[ys(t), w(t)]| would be close to Hs(A©®)(t)), and Hs(A®(t)) has small

variation for ¢ in 7®)

The algorithm below defines 7, A®) and dG)(A(G)) simultaneously.

Algorithm for defining 7©, A©® and ¢{?(A®©)

Consider a monotone domain A" in ¢ (6)( ()) and above ys which is not any of
the two monotone domains right above any preimage of dy (We rule out the two
domains above the preimage of §y since we do not want to consider domains in
the enlargement of preimages of dy). If max,c;) # < ¥4, then let A®) =
A" and C{6)(A(6)) = Cl(G)(A(5)). If A’ does not satisfy max,cre) % < vy,
then refine A’ with §. We denote the respective partition of A, by AN,
Then pick a monotone domain A” in A’ that is not one of the two domains

above the preimage of dy. Again we check if max, ) HIA(—( < . If so, let

NG
A©® = A" and ((P(A©®) = 9 (A"). Ifnot, refine A” by & and denote the new
partition of A, created after this refinement by dG)(A” ). We repeat this pro-
cess until we end up with some domain A that is not one of the two monotone
domains right above some preimage of dy and satisfies max, 7 H' (é() < .
As refined domains decrease exponentially in size, this process can be ex-
hausted in finitely many steps as long as we don’t always choose the domain

closest to y5. We denote a domain derived from this process by A® (not mak-
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ing a distinction between different domains). Each such domain is associated
with a partition Cl(ﬁ)(A(6)) of A,. The parameter interval corresponding to

w(t) being in A is denoted by 7).

[A®)]
Hs(A(2))

Remark 2. See table in B.3.2 for sample values of

Remark 3. In step 6, we do not have to worry about monotone domains being
repeatedly adjacent to ys after consecutive refinements since we have already put
a restriction on ¢ in (2.6). We can disregard any domain which will never contain
w(t) under our parameter restriction. For the remaining domains, we will argue in
lemma 8 that no more than four refinements are needed to complete the algorithm
in step 6. In the general step n, the number of refinements needed in A™= is
always bounded above by a constant that does not depend on n. That is because
the ratio of the size of A1) to the distance from A~ to y,_; is bounded above,
therefore we don’t have to worry about a domain in A=Y coming arbitrarily close

to Yn—1-

2.3.1.3 Defining ys and dy

We would like to define g (t) so that if §;(#) is the interval [h;* (ys(t)), hy ' (y6(t))]
(h1 and hy are the left and right branches of the map h(x) = tx(1 — ) respectively),

there are constants r and R such that

<R (2.27)

for all ¢ in 7®) and all 7®) in 7®). The purpose of the inequality (2.27) will become
clear in later context. The superscript re means that the domain is a rescaled central
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domain in contrast to the regular central domain obtained from a critical pullback.

The ratio

19g° ()]

5o ()] could become arbitrarily close to 0, whereas by (2.27), cannot

195° (®)]
105 ()]

be arbitrarily close to 0.

Now we fix any 7® in 7 which also fixes A® and (?(A®). We define

dynamically the point ys(¢) and domain & through the following algorithm.

Algorithm for defining ys and dg°

1.

Let to be the value in 7 such that the image of f, covers completely
the respective interval A® on the y-axis. In other words, t, is the larger

endpoint of 7).

. Let yg be such that

oo wtto)]l = 5llysto) wito)] (2.28)

yi belongs to a domain in partition Cl(ﬁ)(A(fi))(to) of Ay(to). If y; belongs
to a critical domain, it has to belong to a preimage d,” of dy since only
preimages of gy were created in §£6) (A©). In this case, we let 0* = &, (to).

If y; belongs to a monotone domain A(ty), we check whether

[A(1)]
max AID)] < g, (2.29)

where 1, is defined in (2.103). If (2.29) is satisfied, we let A* = A and
C2(6)(A(6)) = C{G)(A@). If (2.29) is not satisfied, we take a monotone
pullback of & onto A. After taking a monotone pullback, we can re-
peat the above procedure until either y; lies in some monotone domain
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A*(tp) such that max,c;) H(%,E?t‘)) < 19 or yg lies in some critical domain
6" (to) = 05" (to)-
4. We let yg(to) be the upper endpoint of A*(¢y) or 6*(to).

5. As each t € T has a dynamically equivalent partition CQ(G) (A®)) hence
dynamically equivalent domain A* or 6*, we can also define yg(t) dynam-

ically as the upper endpoint of A*(¢) or 6*(¢) for all other t € 7).

6. Finally, we take a parabolic pullback of yg(t) onto the x-axis, which will
be two points, forming the endpoints of a rescaled central domain denoted
by 0g(t).

Remark 4. Similar to the case with (2.26), we check (2.29) for all t € T®.
Remark 5. The maximum number of monotone pullbacks needed depends on ¥,
and is calculated in lemma 7.

Remark 6. Since we are always taking yg(to) as the upper endpoint of §* or A*

containing yg, by (2.28) we always have

|ys(to), w(to)

!
< -, 2.30
(i) (i)~ 9 (230
We show in 2.5.1.2 that for any t, € T®,
1 (1 t
~.(1-0.59) < M' (2.31)
9 |y (to), w(to)|

In particular this is true for ¢y equal to the top value of any 7. With some more
calculations we show in 2.5.1.2 that

< Y6 (t

(03 <10, w0

(2.32)

NoR =
S~—
g
Yy
~
=

for all other t € T,
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2.3.1.4 Boundary refinement

Consider a monotone domain A in C2(6)(A(6))(t) that is below yg. It is mapped
by some g onto I. Moreover, g = fo;, © -0 fo; © g5 where the maps in these
compositions can be extended to a map onto I, therefore g can be extended to a
map ¢ defined on the domain A > A whose image is I. If A is not completely
contained in the image of h;, we perform a boundary refinement on this domain
(boundary refinements are defined in 1.3.5.4) by pulling back the partition &.

After the boundary refinement, we denote the new partition that partitions

A, by ¥

Remark 7. When A is refined once, all new domains have extended domains con-
tained in the image of h; except for maybe the top-most domain, which is denoted
by A; (or A,). Therefore we repeat the process only on the top-most domain until
we get Al...l (or Arl...l) contained in the image of h;. We do not need to check ex-
tendability of all other subdomains of A since they are automatically extendable.

The arguments for such are similar to 2.2.7.

Remark 8. Partition C§6)(A(6)) is again dynamically equivalent for all t € 7).

2.3.1.5 Filling-in holes between 5 and g, creating ¢ (A®©)

In order to bound the measure of holes in d5\dg, we perform filling-ins on all
holes between y; and ys. Since all previous procedures consist of only refinement
with &, only preimages d,”’s of ¢y are created. For any preimage of dy, we perform

a 5-step filling-in as defined in definition 5.
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After performing 5-step filling-ins, preimages of 05 and more preimages of J

are created on the y-axis. We denote this final partition of A, by CO (A0,

2.3.1.6 Parabolic pullback onto the x-axis

After we have the partition ((©(A(©®)) on the y-axis, we take a parabolic pull-
back of ((©(A©) onto the z-axis. If we consider domain &y as a hole and neglect
the partition inside &5 at this step, we have the partition &(A©) A®) will be omit-
ted when we move on to the next inductive step. The restriction of the partition
&6(AO)) to 05 is the partition 75(A®)). This completes the algorithm at step 6.

In later steps, we will need the 1-step filling in of d5 defined as follows.

Definition 6. Let 05" be a preimage of J5. Let F be a diffeomorphism that maps

857 onto 5, then a 1-step filling-in of d; ? is replacing o5 7 by F~*(n5).

2.3.2 Steps 7 through 14

For steps 7 through 14, we follow the same algorithm as in step 6 to obtain
AD AW and yr, ..., y14. We repeat important ingredients of the algorithm
below. In addition we add lower boundary refinement and filling-in outside o},

which are procedures not present in step 6.

2.3.2.1 Inductive assumptions at step k

After step k — 1 is completed, we have a collection of domains A®=D’s. If we

identify one such domain as A*~1% %1 we can backtrack a sequence of nested
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intervals A®) > A 5 ... 5 Al=Dsisi-1 op the y-axis. There is also a corre-
sponding sequence of parameter intervals 7 > 7 o ... o Tk=Disik-1 an( a
sequence of partitions (7 (A®), ((D(A®:ie) ... FD(Ak-Dieie1) of A where

f’;)(A(’}“ﬁ'“i%) is a refinement of Gl}_l)(A(’;’l)’iG“'iFl) for all k < k. There is also a
sequence of points y5 < yg < --- < yp_1 , where each y; is continuous with respect

tot € T,

2.3.2.2  Defining A®, 7" and Cl(k)(A(k))

Fix a domain A*~Y_ We check whether max,cy(k-1) % < 01, where

Hj.—1(A) is the distance from A to y,—1 and 6, is defined in (2.104). If max,cx-1) kakfl)(t)‘ <

BINGEDIO)

6, then A®) = A*=1) is the only admissible subdomain of A®=D_ If MaxX,c7(k—1) kak_l)(m >

SAFED@)
(k=1) w3 i i (k) ¢ A (k—1)
61, then refine A with &. Consider the new partition of A, as ¢;"/(A%Y).
Consider a subdomain A’ of A%*~1) that is not a preimage of §, or the two montone
domains just above a preimage of dy. Then check if max,crx-1) % <. If
max; ey ol < 9, then let A®) = A’ and let ¢V (A®) = ¢{P(A*-D). 1f
Max; ey (k—1) % > 11, then refine A’ with &, and repeat the above algorithm.

We perform such an algorithm until all monotone domains A® in A®=1 that are

not the two monotone domains just above a preimage of §, satisfies

[A® ()]
teTi Hy1(AW(1)) < (233)

Such a domain A®) is considered to be an admissible domain at step k, since w(t)
can only belong in one of these domains. For each admissible domain A®), there

is a corresponding admissible parameter interval 7 such that when t € T® we
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have w(t) € AP,

2.3.2.3  Defining y; and 65 (¢)

y;. is defined so that
1
[y, w(to)]| = §|[yk,1(to), w(ty)]|  where tq is the top parameter of 7®)  (2.34)

If y;. lies in some critical domain 0 (before or after refinement), then let §* be 6. 0*

should automatically satisfy

|07 ()]
— < Yy, 2.35
ter7r’l(%)—(l) Hk,1 (5* (t)) < V2 ( )

¥y is defined as in (2.103). If y, lies in some monotone domain, then we refine

the monotone domain with & until y;, lies in some critical domain ¢* or lies in a

monotone domain A* that satisfies

|A*(t)|
S 2.36
tem(ak>_<1> kil( *(t)) < V2 ( )

Y (to) is defined as the upper endpoint of the domain §*(tg) or A*(#y) containing yj.
yx(t) is defined as dynamically the same point as yy(to) for all t € T®). §i(¢) is the

parabolic pullback of [yx(t), w(t)] onto the z-axis.

2.3.2.4 Boundary refinement

For monotone domains in [yx_1, y] whose extended domains are not contained

in the image of h;, we perform boundary refinements.
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2.3.2.5  Lower boundary refinement

For k > 8, we perform lower boundary refinement for monotone domains in
[Yk—1, yx] whose lower extensions are not above y;_4. That is, refining consecutively

the lower boundary domain until we get that all extended domains are above y_4.

2.3.2.6 Filling-in holes between y._1 and vy

Holes that are between y;_1 and y; can only be preimages of dy. We perform
a 5-step filling-in on any such hole. The partition which we get on the y-axis is

denoted by Cék) (A®),

2.3.2.7 Filling-in holes below ;1

Different from step 6, we perform filling-in on holes below y,_;. A 1-step filling

in of §;, i < k at step k is defined inductively by previously defined partitions 7;.

Definition 7. Let ¢, ” be a preimage of 6;°, i > 5. Let F be a diffeomorphism that

maps §; © onto §i, then a 1-step filling-in of §, ¥ is replacing ;¥ by F~*(n;).
The rules for filling-in below y,_; are given below:

1. If there is a hole that is the preimage of §y, then we will perform a 5-step

filling-in on that hole.

2. If there is a hole that is the preimage of 5, - - -, 0x_o, then we perform a 1-step

filling-in.

The final partition which we get on the y-axis is denoted by ¢(*(A®),
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Remark 9. Notice that it is impossible to have holes that are preimages of d;_; at
step k since &7 has hole of highest possible order d5, by allowing only 1-step filling-in,

creation of holes is at least two steps behind the creation of the central hole.

2.3.2.8 Parabolic pullback onto the x-axis

. We take a parabolic pullback of (®¥)(A®*)) onto the z-axis and disregard any
partition inside ¢;7_ ;. We denote this partition of I by {;. We consider d;° , as the
rescaled central domain of ;. The restriction of & to d;7, is the partition 7;_1,

used to define 1-step filling-ins. This completes the algorithm at step k.

Remark 10. Filling-in below y,_; first and then taking a parabolic pullback is equiv-
alent to taking a parabolic pullback of (ék) (A®) first, then filling-in all holes outside

5.

2.3.3 General steps of induction after step 15

We consider all t € T~ where 7 is an admissible interval of parameters
obtained from the previous inductive step. As an inductive assumption, we assume
that there is a sequence of partitions &, of I, k < n, defined for all t € T, An
interval A=Y is defined on the y-axis so that w(t) ranges from the bottom to the
top of A1) when t € T,

We want to partition 7~ into admissible subintervals 7()’s.
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2.3.3.1 Enlargements of holes

For later construction we need to define enlargements of domains 9; for ¢ > 5.

We assign enlargements as follows:

05 = do, 06 = do, d7 = dg (2.37)

;= 0;_3 fori > 8 (2.38)

We also define fl = ¢ for 5 <i < 8 and él = ¢,_3 for i > 8. The purpose of defining

enlargements is explained in 1.3.5.6.

2.3.3.2 Defining A®™, 70 and ¢™(A™)

Fix a domain A=Y created at step n—1. Consider the partition (=1 (AM~1)
of A, produced after the completion of step n — 1, A1 is a domain in this par-
tition. The algorithm for choosing 7™ and A(™ is exactly the same as in steps 7

. (n—1)
through 14. Consider max;crm-1) A D)

W’ where Hn_l(A(t)) is the distance

from A(t) to yn—1(t). If max,crm-n % < ¥, then let AW = A=

and A™ would be the only admissible subdomain of A®~Y. In this case, let

n n n— n— (-1 ;
M (AMY = ¢e=D(ACD) Tf max, 71 Iﬁl(A—(% > 11, we pullback parti-

n=1) and get a new partition of A, which we denote

tion &z] onto the interval Al

by ¢((™(AM=1). Consider a monotone domain A’ in ¢\ (A1) that is outside

the union of enlargements of the central hole and preimages of enlargements of
: |A' ()] |A" ()]

holes in f[g]. Then we check max, -1 T (A0 If max,crm-1) T A0 < W,

we let A = A’. We consider the corresponding parameter interval as an ad-

missible parameter interval 7™ and let ¢”(A™) = ¢"(AY) = ¢(W(AP-D). I
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max,cy(n-1) % > 1)1, we take a pullback of §[ onto A’ which forms a new

partition of A, which we denote by Cl(n) (A"). We consider a monotone subdomain A”

of A’ that is outside the union of the enlargement of the central hole and preimages
A// n

of enlargements of holes in 5[ - If maxyc o1 % < ¥y, we let A = A"

fn)(A(”)) =( (n) (A”) = (n) (A’) and consider the corresponding parameter interval

as an admissible parameter interval 7, otherwise, we repeat the argument again.

After we have obtained some final 7™ and A®™ such that

A ()
— < V. 2.
T Hy (AW (0) ~ .

As in the case of step 6, the variation of w(t) is small with respect to the size of
[[yn_1,w(t)]| for t € T™ as in the case of step 6. Completion of this part of the

algorithm will give a partition Gn)(A(”)) of A,.

2.3.3.3 Defining y,, and &

The algorithm for defining y,, is the same as the algorithm for defining ys. We
fix the parameter value to € T™ as the parameter for which the image of quadratic

If

/ (n)
map covers the whole domain A(™. We set 3/, so that Hy"’fﬁfto )](ln) =03 = 3.
llyn—1(ty ) w(ts )]l

Yr4q lies in a critical domain 9§, then let §* = ¢. If y, lies in a monotone domain A,
we check to see if mMax,cg(n—1) % < 1¥y. If so, we let A* = A. If not, then we
refine A by pulling back the partition §z) onto A. We repeat the process until y/,

lies in some critical domain ¢* or some monotone domain A* which satisfies

[A(#)]

A R 2.40
2 T < =
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where 95 is defined in (2.103). Choose yn(t(()n)) as the upper endpoint of the A* or
&* for which ¢/, lies in. For all other t € 7™, we define y,(¢) as dynamically the
same point as y, (t"). After this step, we get a partition ¢{” (AM™) of A,

The parabolic preimages of y, form endpoints of the rescaled central domain

dre on the z-axis.

2.3.3.4 Boundary refinement

For monotone domains between 1,1 and y, whose extended domains are not
contained in the image of i, we perform boundary refinements with ¢z). After this

step, the partition we have of A, is denoted by (?En)(A(”)).

2.3.3.5 Lower boundary refinement

For monotone domains in [y,_1,¥,] whose extended domains extend below
Yn—1, we perform boundary refinements with {z). After this step, the partition we

have of A, is denoted by ¢\ (A™),

2.3.3.6 Filling-in of holes in [y,,_1, yy)

For holes between y,,_; and y,, we perform filling-in according to the following

rules.
e For holes that are preimages of dy, we perform a 5-step filling-in, and that’s it.

e For all other holes, we perform a 1-step filling-in. If this is a first filling-in at

step n, we repeat the process one more time for holes created here.
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The final partition of A, on the y-axis is denoted by C5n)(A(")).

2.3.3.7 Filling-in outside 6,,_;

For each hole below y,,_1, we perform a 1-step or a 5-step filling-in (depending
on whether or not the hole is a preimage of dp). The final partition of A, on the

y-axis is denoted by ¢ (A™).

2.3.3.8 Parabolic pullback onto d:_,\dy

We take a parabolic pullback of the partition ¢ (”)(A(")) onto the z-axis. We
neglect any partition inside 87 and this forms the final partition &,(A™) of I on the

r-axis. The restriction of the partition &,(A®™) to 6% , is denoted by the partition

Wn—l(A(”))-

2.4 Structure of the phase domains, parameter intervals and maps

at step n

We have described our algorithm for constructing the partition for each in-
ductive step. Now we look at some structures that we get as a consequence of the

algorithm.

2.4.1 Nested sequence of collection of parameter intervals

Up to step n, we have a finite collection of admissible parameter intervals

{T™} whose elements are mutually disjoint except for maybe endpoints of 7™,
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Each parameter interval 7 is contained in an admissible parameter interval 7 (1)

from step n — 1. We can index admissible parameter intervals by g - - -2, to show

its inclusion relation, T, c T 1) - C ’7;((36) C TO) = 746777 If we are

16 tn—1tn 16 lin

looking at one fixed interval T , and its subintervals 7' we omit the index

n—1J’
of T=1 for simplicity. Therefore, we use expressions such as U, 7;(n) C T when

we actually mean (J; ’7;(3")2 7D

16 in—1"

2.4.2  Parameter-induced partition of A1

The intervals ’7;(”) and their complement in 7Y form a partition of 71
We consider respective partition of A=Y in the phase space. This partition is
obtained by the pullback of f[%] which depends continuously on t in 713!, therefore
also depends continuously on t in a smaller parameter interval 7. The non-
admissible domains in A=Y are hence decided by holes and preimages of holes
in é[g}. Since this partition of A®™~Y into subintervals Agn) and its complement
decides admissible parameter intervals, we call this the parameter-induced partition
of A=Y This is to distinguish it from the partitions that define the power maps.

Note that the parameter induced partition is a partition in the phase space.

2.4.3 Phase partition

In the phase space, there are two other partitions, the partition &, of I =
(¢, ', q:] on the r-axis and the partition (™ of A, on the y-axis. The branches

corresponding to &, defines the power map at the nth step of induction. Both &,
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and (™ vary continuously with ¢ € 7, but does not vary continuously with ¢
in the larger parameter interval 7~ containing 7. Therefore, we write &, as
E(AM) or &,(T™) and (™ as ¢™(AM) or (™ (T™) to specify this dependence.

Partition (™ (7)) is a refinement of (=Y (T=Y) for t € T™. The parabolic
pullback of (™ (A™) gives exactly the part of the partition &,(7 ™) when neglect-
ing the partition in J;°. All monotone domains outside holes of &, remain intact

after step n.

2.4.4 Monotone maps and maps on holes

We write out possible forms of compositions for maps defined on domains in
&, and (™. For the partition ¢ of Ay, A™ denotes the domain that contains the
critical value. The monotone branch on A™ is the topmost branch which we will
consider on the y-axis. A(™ is always contained in A=Y, For the other branches
in (™, we distinguish the ones above y, from the ones below y,. Notice that v,

could be inside or below A1)

Aln—1)

T Un

%nld be
either case

T YUn

— Yn—1

Hence, on the y-axis, we discuss maps that are defined on domains of the
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following possible cases.
1. The case where y, is in A1,

(a) Monotone domain A™ containing the critical value
(b) Monotone domains A; in A1 above y,

(¢) Monotone domains A; in A~V below v,

(d) Holes in A=Y above y,

(e) Holes in A=Y below ,

(f) Monotone domains A; below A~V above y,,_;

(g) Holes below A=Y above y,_;

(h) Monotone domains A; below y,,_4

(i) Holes below y,,_1
2. The case where v, is below A1),

(a) Monotone domain A(™ containing the critical value

(b) Monotone domains A; in A=Y

(c) Holes in A1)

(d) Monotone domains A; below A™=Y above y,

(e) Holes below A1) above v,

(f) Monotone domains A; below A=V above y,,_; and below y,

(g) Holes below A=Y above y,_; and below y,
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(h) Monotone domains A; below v,

(i) Holes below y,, 1

Notations used below are described as follows. When choosing parameters at

each step n, we pullback the partition f[g] = {3 onto A=Y until all monotone

n
domains are sufficiently small. (i.e. satisfying (2.39)). These monotone domains are
the admissible domains for which the critical value may possibly fall into. We denote
monotone maps on A by gn)- The remaining domains are holes corresponding
to parameter values which we throw away in the parameter space. Maps on these
holes are denoted by G); : 5™ — g Hence 9y, and G,y ; are maps defined
for parameter choice or in other terms, are maps defined on the parameter-induced
partition of A1 as described in 2.4.2.

For the actual partition on the phase space, we first pullback {2} so that the
domain containing the critical value is sufficiently small. Then we pullback €[zl
until the monotone domain containing y,, is sufficiently small. We define y, to be
the upper endpoint of the final domain containing y/,. Monotone maps above y,, are
denoted by g,;. Maps on holes above y,, are denoted by GM We do not perform
boundary refinement on monotone domains above y,, at step n. We do not fill-in any
holes above y, at step n. For monotone domains below ,,, we perform boundary
refinements if needed. For each hole in [y, 1,y,], we take two 1-step filling-ins,
one 1-step filling-in followed by a 5-step filling-in or one 5-step filling-in depending
on what rescaled central domain the hole is the preimage of. After refinement and

filling-in, the monotone maps on domains in [y,,_1, ¥, are denoted by g, ;'s and maps
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on holes in [y,_1, y,] are denoted by G,;’s. Monotone domains below y,_; remain
unchanged. Holes below y,_; are filled in once. We use g,;’s and G, ;’s to denote
maps on domains below y,_; as well. Then take a parabolic pullback of g, ;’s and
Gy.i’s onto the z-axis to form f,;’s and F,,;’s which are monotone maps and maps
on holes, respectively, in &,.

In general, compositions that result from monotone refinements are expressed

in the following form.

: P ’ refinemen n domain ntaining critical val
boundary refinements below y, refinements on domain containing y,, efinements on doma SJEO ta) g critical value

A A
e

falkm oo fimm o fimge oo fima o fizris 0o fima

(2.41)
f[%] are monotone branches of é[%]. The following are expressions of maps of step n

written as compositions of maps from steps before n.

2.4.4.1 Branches on the y-axis

Monotone domain A(™ containing the critical value
9n) - A(n) — 1

For each value ¢, there is only one A™ containing the critical value. It was
obtained by refining A™1) with §z) and avoiding enlargements of holes in
§[z] or equivalently, refining with é[%]. f[%} is {23 in most cases, other cases

are better, so we write

9n) = S121s © -+ © f12100 © Y(n-1) (2.42)
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Monotone domains A; in A1, above Yn

A; may be some monotone domain created from the refinements for obtaining

A®™ then refined further when obtaining v,, so we have

~

Gni = J1215, © 0 Jiz1 © fiz14. © 0 0 f1210 © g1 (2.43)

No boundary refinements are performed since domains A; are above y,,. Hence,

extended domains of these branches may not be in the image of h;.

Monotone domains A; in AV, below v,

~

Gni = J121k 0 0 f1210 O f1215, 07 0 flmy 0 flmyi 000 flayi 0 gm-1) (2.44)
The last compositions come from possible boundary refinements for domains

A; below y,.

Holes in A1, above v,

Gn,i 0,0 — o
These are monotone maps that map preimages of central holes to their respec-

tive rescaled central domains.

Case 1: This is the case when the holes are created after refinements when
obtaining A®™. In the two forms below, the first form gives the compo-
sitions for the map on the central hole after the last refinement, and the
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second form gives the composition for the maps on holes other than the
central hole after the last refinement. We will see maps on holes in these

two forms many times.

Gni = fim1ier © - © [l © Gtn-1) (2.45)

~

Gni = Fin)-3., © fi21ies © -+ 0 fia14 © 9oy (2.46)

Case 2: This is the case when the holes are created after refinements to

obtain A™ and also after refinements to obtain y,,.

Gni = fi2150 ., 00 fip 0 fizga 0+ 0 fi2)4, © g1 (2.47)

~

Gri = Fizgy © finlgu_y © 0 fingg © fimgi, 0+ 0 finyiy 0 gnory (2.48)
Filling-ins are not performed above vy, at step n.
Holes in AV below v,

We use G,77" to denote maps on holes after all possible refinements because

holes below y,, will be filled in.
Gz 0,7 = 8,

Case 1

~

G = fiagies 0=+ © fiagin © gy (2.49)
G = Fizj=s.i, © f21600 © 0 fl211 © Gy (2.50)

Case 2
g,:i?p = f[%]7j8171 O+++0 f[%}ﬂl (¢] JC[%],Z‘5 O+++0 f[%]ﬂl O g(n_l) (251)
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Gi” = Fl21gy © J1210 -, @ 0 fiz1 © fizga © - © fi210 © g1y (2.52)

Case 3

Due to boundary refinements, there can also be additional compositions.

Gri® = fio1k 0 0 fimyk 0 finy g, 000 fimy 0 fimgi 00 0 fim14 0 Gm-1)

(2.53)
g:l(jlinp - f[%}7ksllof[%]7k5,,710- ) .Of[g}»kl Of[%]:jslo' o f Jlof f%] i1 99 (n—1)
(2.54)
After a first filling-in, we get some monotone branches
temp n
9ni = fm—i—l,l o gnd‘ m < [g] (255)

m is less than or equal to [3] because G, ;" are maps on holes created from
refinements by {z) or earlier partitions. Plugging in (2.49) through (2.54),

form (2.55) can be written into the following detailed forms.

9ni :fm+1,l S f[g],is,l ©---0 f[g],il O J(n-1)

A

Gni =fm+10 0 F2]-3, © f[g},is_l 00 fl2]4 © Gn-1)
ni =m0 © fi2150, © -+ 0 fra gy © fiaga, 0 -+ 0 faa © gy
Gni =Fri100 Fial © f1215,, 0 © fialy © fragis 0 -+ 0 fiagi © gy
Ini =Fm+10© J121 kg © O f1210 © f1215, © 0 fl2)5 © f[g},is 0---0 f[g],il © g(n—1)
i =Jmt10 0 Fialke © Jizlkg_y © 0 0 figlm © fiz14,0

~

-+ 0 frz1 © fizl4, © 0 0 f121i © 9n-1)
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After a first filling-in, we also get new maps on holes which we denote by Q;f‘i"‘ﬁ

because such holes are filled in a second time.
g = g (2.50

or
g::lian = fm-{-l,l ©] g:::]np (257)
where, m < [%] or [§] —3. Possible compositions are exactly the same as those

of monotone branches except f,,+1, is replaced by F,41.
After a second filling-in, we get more monotone branches
Gni = fmi100G 5" m<m+1 (2.58)
and more maps on holes
G = Gro? (2.59)
or

Gni=Fm+110 Q;f;‘-”ﬂ (2.60)

)

where m < m + 1. Final expressions would have the most general form
Gni =Fm+15 © Fint1n © Fl21ky © f121kp_, © 0 0 f1210 © f12)5,,0
“++ 0 fi215 0 f121 0 © flzgi © Y1)

and

Gni =Fmt11s © Fmtiy © F2) ke © f121k © 00 0 f1216 © fl2)5,0

~

w0 Sz © figlac© 0 figra © Y-
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Monotone domains A; below A1

, above y,

Monotone domains A; below A=Y either come from monotone domains from
T

previous inductive steps or monotone domains created after refinements when

obtaining y,. No boundary refinements are performed on monotone domains

above y, at step n. The composition is just

Ini = fiz150 00 f1215: © Gn—1, (2.61)

Note how we use g,_1; here instead of g(,—1) as in (2.43) since A,; is not in

A=Y anymore.

Holes below A~ above y,

n—1

For maps on holes below A™1 and above y,,, the composition for (jm has a

form similar to (2.61).
Gni = fizlgy_y © 0 f12141 © -1
or
= Fla1gy © f(21a0 1 © 7 © f12151 © Gn1

Holes above y,, do not get filled in at step n.

Monotone domains A; below A1, below y, and above Yn_1
For domains A; below A=Y and below v, we add possible boundary refine-

ments to compositions.

ni = a1k © 0 Sk © f1515, © 0 f(215 © Gn1 (2.62)
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Holes below A(”_l), below y, and above ¥,
For maps on holes below A=Y and below v,,, we use the temporary notation

G,i" because we will fill in these holes.

Case 1
Gri” = fiz150_, © 0 fiz1j © Gu,g (2.63)
or
Gri” = Fiz1gu © J12150 0 © - © J12151 © Gn—1 (2.64)
Case 2
g:’rinp — f[%]’ks”fl O+--0 f[%“ﬂ @) f[%],jsl O+--0 f[%],h le) gnfl,j (265)
or
g;e’rinp = F[%Lks// 9 f[%]7ks//71 O« Of[%},lﬂ Of[%}’js/ Q- - Of[%},]l Ognfl,j (266)

After one filling-in, we have some new monotone branches

Ini = fmr110G,5" (2.67)

m < [%]. We also have maps on holes that are temporarily expressed as G, ;" 2
before a second filling-in.

G = G (2.65)
or

temp2 tem
gn,i "= ]:m-I—l,l o gnyjp (269)
After a second filling-in, we have some more new monotone branches

9ni = fm+1,l o gﬁir}m (2'70)
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m<m+ 1.

We have final maps on holes

G = G (2.71)

or

Gni = Fmt110G,5" (2.72)

Writing out the composition, we would have the general forms

Ini = fm+1s © Frntry © F(2lkyn © J121k0_, © O J121k © f121, O+ © 12151 © Gn—1,5

and

Gn,i = Fint 1 © Fnt1in © F[21 ko © f12150 0000 flopm © flzy5, 0+ 0 fl2151 © Gn-1,j-

Monotone domains A; below vy, _;
These branches come from earlier inductive steps and they remain the same
as in step n — 1.

9ni = Gn—-1,j (2.73)

Holes below y,,
For each hole below y,,_; we perform a 1-step filling-in. Suppose that the hole
we fill-in is a preimage of ¢ for some n < n — 1, then new monotone branches

are formed by compositions with f;’s.

Gni = fai0Gn_1, n<n-—1 (2.74)
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We also have new holes and maps on these holes are denoted by

Oni=Fa1°Gn 1, (2.75)

n<n-—1.

2.4.4.2 Branches on the z-axis

Domains on the z-axis are split into domains inside 67, and domains outside

Let f,; represent a monotone branch in partition §,. A monotone branch f, ;
is simply the composition g, ; o hy where g, ; is a monotone branch that maps some
domain A’ in ((™(AM) onto I and hy(z) = tz(1 — x). Similarly, maps on holes in

&, are represented by F,; = G, ;0 Iy

Maps defined on domains inside 67° |\

Monotone domains in 8% ;\dX can be expressed as

Jni = Gn,i © e, (2.76)

where g,,; is a monotone map defined on a monotone domain in [yn_1,Yn].

Maps on holes in 0:¢ ;\d: can be expressed as
-Fn,i == gn,i < ht, (277)
where G, ; is a monotone map defined on a hole in [y,_1, Yn].

Maps defined on domains outside 9;° ,
Monotone branches outside ¢ ; were formed in previous steps, they remain
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the same as before.
fn,i = fn—l,j (278)

Holes get a 1-step filling in, forming new monotone branches
Jni= faj o fao1; wheren <n—1, (2.79)
and new maps on holes

]:n,i = .7:717]'/ o fTL—Lj where n S n— 1. (280)

2.5 Estimates on the measure of holes, domain sizes, derivatives and

velocities

We fix the following parameter values.

1. ¢ :=0.003

2. Y7 :=0.0098

3. 7.92 = 0.6 % %
2.5.1 Step 6

We derive properties for step 6 as a result of the algorithm at step 6.

(I) Velocities of partition points in the parameter-induced partition of A®) are less

than €. Velocities of partition points in the phase partition ¢ of A® are less

than ¢y. Velocities of partition points in 75 are less than " ;re .
6
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(1) |70 < £

|, [A®] < Hs(AOY, < [[ys(t), w(t)]| 91 < |A®] 0,

(111)

re

1 1
VO3155] < 1651 < 2 16s]. (2.81)

A(6)

(IV) No more than 5 pullbacks are needed to achieve ARG V.

(V) No more than 5 pullbacks are needed to achieve HLA(ZAL) < ¥y, where A’ is a

monotone domain containing .
(VI) No more than 2 boundary refinements are needed.

(VII) pinores(115) < 0.526667, finoes(E6) < 0.0189, where 75 is the partition &g restricted

to (55.

(VIII) For g), Gs), Jo.is Ge.i, goi and Gg; defined in 2.4.4, we have

gﬁ):f(),is Ofou ,1<s<5
6),i = fo,is OfoZ1 9(5); 1<s<5h
gG,l:fO,jS/O"'Of(),jlofo,is Of(nl giy, 1 <8 <5, s+ <5

Ge,i = Jo,is_1 © 0 foi, 09(s) for s < 5 or Goi = Joj, o0 fog 0 fO,is o

fm1 ,1<s<5, s+5<5h

96,z=f5,k0f0,10f0,j5,O"‘Ofo,jlofo,z's -0 fon 0gE), 1 <s<5 s+5 <5

Goi = fois 00 fou © 9i), 1 < s <5orGs; = fo;, 00 fo; 0 fo, ©
Of(”1 ,1<s<b5 s+ <bHorGs; = f07ks,,71 o---0 for OfO,js/ o

fO,jlofO,isO"'ofO,z‘l ogi for s <5,1<s545<5,8"<2o0r

Gei = Fsi O fO,i3_1 0 fou , 1 <s<borGs; =Fs5k0 foj, ,0 0

foji 0 foi 0 0 fonoge, 1 <s<5 s+8 <508 Goi = Fsp© fosn , ©

88



‘“Ofo,klofo,js,o"‘OfO,jlofO,isO“'Ofo,i109(5) fors <5,1<s4+5<5,8"<2

(IX) Monotone branches fs; in & are extendible to I. Maps Fg; on holes are

extendible to the enlargements of the holes.

16)
(X) ’% > max {391005 % 3.5, ﬁ * Flﬁ}
9G6),i |60 1 _
Oz Z max {391005’ ‘A(5) ’*(Worst distorted ratio of 50_1 in A(5)) ¥ 1.3035 o 391005
076, 1] _1
20| > max {391005 3.5, bl « 1}
9Gs,i 60| 1
| > ma {31003, ity + ok |
90| > max 4391005 % 3.5, — L 1
Or | — 0 ys (t),ye (8)]] T 15.6
9Gs,i . 60/ 1 05| 1
52| > max {391005, min { o * %5, e * 1) |
il > 109 3.5
X
276i1 > 109
X
96| [P0 | |9°9%1] |27
Otdz otdz otdz otdz
(XI) S o e Tonc] < 211.23
Oz 0z Oz Oz
%G5| |2%95,
—Bto. GIGE
1 < 902421
G ; 99 ;
Oz Oz
27| |2 e
“otoz BIE L3g
< 138~ 99%108
Fg ofs.; ’589 |
Oz Oz
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2.5.1.1 Bounds for velocities of partitioning points of the parameter-
induced partition and phase partitions of A®)

Here we show that the velocities of partitioning points of the parameter-
induced partition and/or the phase partition is less than ¢y = 0.003. All partitioning
points of the parameter-induced partition (discussed in 2.4.2) and phase partitions
(discussed in 2.4.3) of A® are formed by a finite number of monotone pullbacks of

& onto or into A®)

Lemma 5. Let A be any monotone domain either in the parameter-induced partition

of A®) or phase partitions of A®), then

dz ) (t)| |dzy)(t
xiﬁ() , ‘”iﬁo < 0.003 =: ¢ (2.82)

where x1 and xo are endpoints of A.

Proof. First note that A must be mapped by some monotone map g onto I. Here,

g could be g, Ge,i Or g6 Since

g(t,x1(t)) = ¢ ' ( or q;, doesn’t matter) (2.83)
we have
Jg Jdg dri(t) -1

Then the velocity of the endpoint x; of A satisfies the inequality

5 | (t,z1(1)))|

dl’l(t) n
dt ‘_ Ig—i(t,xl(t))! Gt (t)]

(2.85)

According to 2.4.4.1, g(s), Jsi Or gs; can be written as compositions of g and

Jtml ‘

8t
2]
29 (t,21(t)) |

branches of & or &. The case that gives the worst value for || above is
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when ¢ has the form

g = f5,j o fO,ir ©

"ofo,’h o

Using (2.164) and preliminary estimates from 2.2.10, we get

(2.86)

3(f0,z'ro'”0fo,i1) 3(f0,iT,1 0"'0f0,z'1) 9fo.s
ot ot 1 TZT‘
< +
8(f0,iro“‘of0,i1) 8(f0,iT_1°'“0f0,i1) 8(f0,ir_10“‘0f0,i1) Ofo.ir.
ox ox ox Oz
B(fo,iT_zo-..ofo,il) 0o, Ofo.i
< ot N 1 ot 1 ‘ ot
o 3(fo,ir,20"'0f0,z‘1) 3(f0,iT,20"'0f0,i1) 0foiy_y 3(f0,ir,10"'0f0,i1> ‘_afoair
ox ox Oz ox Oz
0fo,i
14+ 1 n 1 T 1 . at
3.5 3.52 3.57—1 dfo.i
loz%
< 1.4%1.109 < 1.5527. (2.87)
Combining (2.87) and (2.20), we get
8f5 kofO zro OfOzl) 6f07,ro OfOzl f5,k
. 1 ot
‘6 f5,k0fo, zro -0f0,i1) ‘8 fo zTO -0f0,i1) ‘8(f0,i7~o"'of0,il) Ofs 1
ox ox
< 1.5527 + L * 161
- 3.5
< 48. (2.88)
Combining (2.88) and (2.23), we get
‘ A(f5,k0f0,i.0-0f0,i1 09(5)) 99(s) A(fs,x0f0,ir0-0f0.i1)
ot ot ot
‘ O(f5,£0f0,i-90f0,i1 °9(5)) 99(s) 99(s5) A(fs5,k0f0,ir-00f0,i1)
ox ox ox ox
< 0.0019 + * 48
- 391005
< 0.00202277. (2.89)

91




Since g is the composition of g(5) and at least one monotone branch from &, g has
derivative greater than 391005 % 3.5, so the first term of (2.85) is relatively small.

We have

dl’l(t)
dt

‘ < 0.000000047 + 0.00202277 < € (2.90)

as desired. 1 can be replaced by x,. O

As a corollary of lemma 5, we estimate the relative shifts of y5(¢) and yg(t).

y5(t) and y4(t) are defined in 2.3.1.1 and 2.3.1.2, respectively.

Corollary 1. Let w(t) be in A© satisfying (2.26), and T©® = T(A®) be the
parameter interval such that when t € T© we have w(t) € A©). If t, is the top

endpoint of T©) and t is any other value in T©, then

|y6(t) — ys(to)| [4(w(t) —w(to))| _  4e
1. 2.91
H5(t0> < € H5(t0) < 1 — 460 ! ( )
and
|ys(t) — ys(to)| |[4(w(t) — w(to))] 4eo
V1. 2.92
H5(t()) < € H5(t0) < 1 —460 ! ( 9 )
where ys and yg are as defined in the algorithm.
Proof. By (1.8) and lemma 5 we have
1 [T (A©))] 1
< < 2.93
711 + €0 |A(6) (t0)| % — € ( )
We know
1
w(t) —w(ty) = Z_l(t —tp). (2.94)
Combining (2.94) and (2.93), we have
1
w(t) —w(ty) < 7—[A(to)]. (2.95)

il
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Then by (2.26),

wt) —wlto) 1 JAO()] 1 |AO)] |
< .
Halto)  —~ 1—dey Hy(to) — 1—deo Hy(AO () 1 _460191, (2.96)

where Hs(t) = |[ys(t), w(t)]|. By lemma 5, we have |ys(t) — ys(to)| < €o|t —to|. Then

by (2.94) and (2.96), we get (2.91). Similarly, we get (2.92). O

The corollary above shows that the shift of y5(¢) and yg(t) is relatively small

when ¢ is restricted to a small interval whose size is controlled by the parameter v.

196" (0)]
|05(%)]

2.5.1.2 Estimating the shift from yj to ys and calculations for
(Defining 97 and vJ5)
Let dg be the parabolic pullback of [yg(t), w(t)] onto the x-axis.

Lemma 6. Based on the algorithm given in 2.3.1, if we assign v1 := 0.0098 and

¥y 1= 0.6 * % then

O3 5y < 05 )1 < st 297)
or equivalently
% o), wOI| < 1) wlt)] < 5 L), w(o)] (2.95)

for allt € T©

Proof. To prove the lemma, we first prove some inequality for some specific param-
eter value. Then, using the small variation of each dynamically defined point, we

prove the inequality for all t € T(©.
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For the top value to of each T(®, we first find r(¢y) and R(ty) so that

%r(to) < (;65((;2))“ < R(to)%- (2.99)

From (2.30) we have R(ty) = 1.

The lower bound of

0g (to)| depends on the distance from ys(to) to w(ty) which
in turn depends on the shift from yg to ys(to). The shift from yg to ys(to) is bounded
above by the size of §*(ty) or A*(ty) which contains y;. Since we can always refine
monotone domains when y; falls in a monotone domain, r(¢y) is determined by the

worst possible value of the ratio of 0*(tg) = dy " (to) over [ys(to), w(to)]-

Ys is in a hole 6*(t¢)
When yg lies in 6", ys(to) is defined as the upper endpoint of d,”. The domain
8" is mapped by some diffeomorphism G monotonically onto dy. This map
can be extended to G’ where the extended image is [ = [¢~* — 0.17,¢ + 0.17].
The image of G o h will cover at least domains A_s and A’ as defined in

(2.9). Consider Y as the pullback of 6o U A_sU A’ , by G~ into A®),

W6, vs(to)]| > 1 10"

, | _ _
sllys(to), wto)ll  [[ys, w(to)l w6, w(to)ll = Y]

(2.100)

We let 6x = 0y, X = 0o UA_3UA’,, and X = I and apply (A.3). We get
that letting X=X gives the better upper bound for distorted ratio.
19"

0
Y]

< 0.59. (2.101)
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Figure 2.4: Y as the pullback of 6o U A_3U A", by G~ into A®)

I[ys (to),w(to)]
S0 lya (o) wio)]

> (1 —k) -5 where k = 0.59. Then |gé:((tto°))|l >1-06-3 >
0.63 - % So we can let

r(to) = 0.63. (2.102)

Y; is in a monotone domains A*
We would also like the left hand side of (2.99) to hold for the case when yj
falls into a monotone domain A*. This can be done since 95 is chosen to be

sufficiently small. If we have

|A*] 1
G~ —: 2.1
A <063 9, (2.103)
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that will imply

|[ys: vs(to)]] < |A™ ()]
l[ys, w(to)]] — measure of A*(ty) and the region up to w(ty)
< H5(A* (L)) |A*(to)]
measure of A*(ty) and the region up to w(ty) / \ Hs(A*(to))

< (o aly (sl )
[y, w(to)]l ) \ Hs(A*(t0))
|A™(to)] )
=8 5+ | <0.6.
(H5(A*(to))
The equality follows from (2.28). We can plug this into (2.100) and derive the

left hand side of (2.99) as we did for the case where yj is in a hole §* (o).

Left inequality of (2.97)

For general t € T we apply (2.96) and (2.91) to get

|[ys (1), w®)]] Z|[ys(to), w(to)]| = [[ys(t), ys(to)]] — [[w(t), w(to)]]

1 4 1
Z§7’<t0>2H5(t0) _ (1 _GZGO) 191H5(t0) — (1 — 4€0> 191H5<t0)
]_ 1 —|— 460
> (1-06-9- .
> (1 0.6—9 <1_4€0) 191> Hs(to)

For
Y1 := 0.0098 (2.104)
and ¢y = 0.003, we have 9 (%) Y7 < 0.1. Then, since %, is the top value of

T and w(t) moves faster than ys(t), we get

[[ye(t), w(B)]| =5 (1 = 0.6 = 0.1) Hs(to)

>—(0.3)Hs(t).

So for all t, we get

0.3 (2.105)



We can define

Right inequality of (2.97)

(2.106)

As tg is the top parameter of 7 we have w(ty) > w(t). Using (2.91) and

(2.92), we get

[lye (1), w(®)]| _ w(t) — ys(t)
lys(t), w(®)]|  w(t) —ys(t)
_ (w(t) —w(ty)) + (wlto) — ys(to)) + (ws(to) — ys(t))
(w(t) —w(to)) + (w(to) — ys(to)) + (ys(to) — ys(t))
w(t)—w(to) ys (to)—ys () w(to)—ye (to)
B H5(to)0 (1 + i(ts]—w(io)> - 10{5(t§) ;
 w(t)—w(t) ys(to)—ys () w(to) —ys(to)
(i) (1 t e —wto) ) T Hte)
w(t)—w(to) 1
< o) (L~ 4€0) + 3
= “w(t)—w(to)
Hs(to)o (14 4e) + 1
1
< —
-9

The last inequality is true because (1 —4eg) > §(1 + 4e) for ¢g = 0.003 and

w(t) — w(ty) is negative. So for all t € T

This shows the right hand side of (2.97).

97
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2.5.1.3 Maximum number of monotone pullbacks for step 6 is less

than 5

In our algorithm, we perform monotone refinements by &, when defining 7)’s
(or A®)’s) and yg(t) so that (2.26) is satisfied for A©)(¢) containing w(t) and (2.29) is
satisfied for A such that A(#y) contains y;. Now we discuss the number of monotone

pullbacks needed in these two procedures.

Lemma 7. If we create A®) and ys(t) according to our algorithm in 2.3.1, the
number of monotone refinements needed in defining A© and ys(t) summed together

will not exceed five.

Proof. This lemma is justified by numeric computations. In (2.6) we made an extra
assumption on the parameters at the initial steps in order for all branches of &5 to
be extendable. Now we find some ¢, > 3.99512595 which is Markov, meaning w(t,)
is a preimage of q;,. Since w(3.99512595) lies in AP (¢) = g (AL (1) N f7 (00(t)))
for all t € 7©)| it makes sense to choose t, such that w(t,) is the upper endpoint of
AGIA(L).

t, ~ 3.99512600657. (2.108)

We check (2.26) and (2.29) for domains A® and above.

Number of monotone refinements in defining 7
When we choose A we only need to consider admissible domains above
A®M - For each monotone domain A obtained from consecutive pullbacks

of & onto the y-axis, ratio’s HL?L) can be obtained numerically. The charts
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Al

H|5( ) for monotone domains and their refinements.

in B.3.2 give values of
From (2.104), we have ¥; = 0.0098. We can conclude from the chart that for
domains above A®) at most 5 monotone refinements are needed to achieve
(2.26). In particular, 4 monotone refinements are needed for the domain at

the very top of A®),

Number of monotone refinements when defining g
The domain A® containing w(t) satisfies (2.26). Since ¥; < 3, by (2.28)
we know that it cannot contain yj. Some domain other than A®) contains yj.
Since w(ty) is always above w(t,) and by lemma 5, the variation of ys(t) is small
compared to variation of w(t), that means yj > y5(t0)+w > y5(to) +
w. Domain g5 ' (A1(t) N f;H(A_3(t))) contains ys(t) + w

for all t € 7O, Tt suffices to look at all monotone domains above A®13 =

g5 (A1 N f71(AZ3)) to check for inequality (2.29), where 95 = 0.075.

2.5.1.4 Number of boundary refinements for step 6 is less than 2

Lemma 8. No more than two boundary refinements are needed on monotone do-

mains A in [ys, ys| at step 6.

Proof. The argument uses (2.28) and the right hand side of the inequality (2.32).

We consider two cases:

Case 1: A is adjacent to y;
Since A and g are defined dynamically, this condition holds for all ¢ € 7©)
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once it holds for one specific ¢ in 7). A(ty) adjacent to ys(to) means that
Y € A(tg). From (2.29), we have % <y =12%0.6forall t € T©. Let us

make the following assumption:

[top component of Alml\Almﬂ _

0.47 2.109
N (2.109)
for all t € T(©)
Combining (2.109) and (2.29) we get
|top component of Al._,l(t)\Al__l(tﬂ
|[ys(t), ys(2)]]
_|top component of Al.,,l(t)\Al,_,l(tﬂ ‘ |A(t)]
|At)] Hs(A(1)) + [A)]
<0475 2 047+ 3 <103 (2.110)
e '
From (2.110) and (2.32) we get
[top component of Ay_i(t)\Ar_(t)] ~Log < @ w®)]l_ lys(t), wt)]
[y (t), ys(1)]] 9 ~ s (@), w®]] T ys (), ys(8)]]

(2.111)
which implies that the extended domain A,.; lies below w(t) for all t € T,
From numerical results in B.14, we get that it only takes one refinement to

get condition (2.109) to hold.

Case 2: A is not adjacent to yg

Let z(t) be the upper endpoint of A(t), then A not adjacent to ys implies
z(ty) < yi. However, this does not imply z(t) < y§ for all t € T, Still we

can make estimates since z(t) and z(to) are close. Similar to (2.91), we have

|2(t) — 2(to)| deg
H5(t0) < 1-— 460

;. (2.112)
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We use (2.112), (2.92), and (2.96) to get
[2(), w(t)]] > |[2(t0), w(to)]| = [[w(t), w(to)]| — |[2(?), 2(t0)]|
lys(2), 2(O)]] — [ys(to), 2(to)l] + |[ys(to), ys()]| + [[2(2), 2(to)]]
I = [[w(®), w(to)]| — [[z(1), 2(to)]]

Hyﬁa ( 0 ] 0
~ lys(to), vell + [[ys(to), ys ()] + [[2(2), 2(t0)]]
llygw)ll _ Jw®)wto)]l _ [[2(t).2(to)]l
o H5(t0) H5(t0) H5(t0)
— lws(o)well | [lys(to).ys (1] + I[2(),2(to)]]
Hs(to) Hs(to) Hs(to)
1 1+44e

9 1—dey 21
> 0 > 0.11.
— 8 4e

9 + 2% 174060 191

If we have
[top component of A, \A; | <011 (2.113)
A
then
|top component of Alml\Almﬂ |top component of Alml\Almﬂ [[z(t), w(t)]|
<011l < ———=
lys(t), z(1)]] Al |Tys(t), z(t)]]
(2.114)

which implies that the extended domain A;..; lies below w(t) for all t € T
From the table in B.14, we see that (2.113) can still be achieved within two

refinements.

2.5.1.5 Estimates on the relative measure of holes in the phase space

Let fi0:(€6) denote the relative measure of holes in & and let pu,....(75) denote
the relative measure of holes in 7.

From (2.13), we have

measure of holes in §,” after 5-step filling-in of §,”

—p = /J’holes(‘Fil(nO)) < 0.29.
[

(2.115)
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This will give an estimate for the measure of holes in J5\d5 after 5-step filling-ins

on all preimages of 0y in d5\0.

measure of holes in 5\ of &g

|65\ 0

< 0.29 (2.116)

Combining (2.107), (2.116), and (A.9) we get

re

% ( o
holes < + 1 -
Haace 1) <15 5

) measure of holes in d5\0g

|65\ 0

1 2
-+ = 2
<3+3*(0 9)

<0.5267. (2.117)

For the measure of holes outside d5, we have the numeric bound

measure of holes in 7\d5 of &5

[1\35]

< 0.01776 (2.118)

for all t € TG N {t > 3.99512595}. For the measure of &5 with respect to the

measure of I, we also have an upper bound

5
% < 0.0022. (2.119)

(2.119) can be observed from the table in B.1.1 on relative sizes of domains. Com-

bining (2.117), (2.118), (2.119) and (A.10), we get

|1\ 05| measure of holes in I\d5 of &  |05| measure of holes in 5 after step 6

/’l’holes é- -
&) =1 T\ 1] 5]

<(1 —0.0022) * 0.01776 + 0.0022 * 0.5267

<0.0189 (2.120)
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2.5.1.6 Possible compositions

Here we repeat the possible compositions for the maps as discussed in 2.4.4.1
and 2.4.4.2, but write out possible compositions particularly for step 6. We give
possible compositions with additional information on the maximum possible number
of refinements for g, Gs), Je,is QGZ, 96.,i» Ye.i, fo.i and Fg ;.

Let fo,z- denote the branches of admissible domains in éo. 9(6) and Gg) are maps
on domains of the parameter-induced partition of A®. The number of monotone

refinements needed to form A is less than or equal to 5, therefore we have

96 = Jos. 00 foiogm  1<s5<5 (2.121)
(6),i = fO,is 0---0 fo,il ogp) 1<s<5H (2.122)

gs; and Gg; are maps on domains above yg of the partitions ((©(A®)). The
number of monotone refinements needed to achieve (2.29) is less than or equal to 5,
therefore we have
ng:fO,jS/o"'ofO,j1of0,i5 0 foi, 095, 1<s<5, s+ <5

Ge,i = Joj,_, 0 0 fog 0 fou. 0 Ofou ,1<s5<5, s+ <5H

g6 and Gg; are maps on domains below ys of the partitions (6 (A®). In
addition to compositions that form gs; and Gg;, fo1 is due to possible boundary
refinements and f5 or F5 are due to a filling-in.
96,z:f5,k0f0,10f0,js/0"'Of0,j10fo,is Ofou ,1<s5<5,s+5 <5

g6,z’:fO,lOfO,jS/O"'OfO,jlOfO,isO"'OfOzl 5),1<S<5 S—l—S,<50l"
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Ge,i = Fs 0 fon 0 foj, 0 0 fo 0 foi 0 0 fonogpr), 1<s<5 s+ <5

From (2.76) and (2.77), we have for maps fs,; and Fg,; on domains in d5\dg,
f6.i = ge,i © h where gg; is a monotone branch defined on [ys(t), w(t)]

F6i = Ge,i o h, where Gg; is a monotone branch defined on [ys(t), w(t)].

2.5.1.7 Extendability and extensions

Lemma 9. All monotone branches fg; in & are extendable to I.

Proof. All monotone branches from partition & are uniformly extendable to I, there-
fore we only have to show extendability for newly created monotone branches. New
monotone branches are created in two ways, from monotone refinements and from
filling-ins.

Monotone branches created from monotone refinements are extendable to I
because we perform boundary refinements if they are not.

Monotone branches created from filling-ins are extendable to I by the following
arguments. Since filling-in first, then taking parabolic pullback, and taking parabolic
pullback, then filling-in are equivalent, for convenience here, we will consider all
filling-ins from the perspective that all filling-ins are done after a parabolic pullback,
which means all filling-ins are performed on the z-axis. The only holes that are
filled-in at step 6 are preimages &;' of &, inside d5. They are mapped by some
diffeomorphism F onto dy and can be extended onto the enlargement 30 due to our

choice of parameters(critical value avoids two monotone domains on top of each &; *
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on the y-axis).
If we fill-in d; ' by 7, all new monotone branches in J;' will be extendable

to I if ¢y contains all extensions of monotone domains in 79, which is true from

observation on extended domains of monotone domains in &5. O]
Since (1 + 2—-)2 < (1 + so77)° < 15.6, we have

Corollary 2. Distortion on monotone branches in &g is less than 15.6.

Lemma 10. All maps on preimages of do, Fe; : 6g° — 0o, in & are extendable to

50. All maps on preimages of 05, Fg, : 551 — 05, in & are extendable to 50.

Proof. We know precisely that the newly created holes in step 6 are either preimages
of & or preimages of 5, both obtained by filling-in of ;' with 1. As in the proof
of the previous lemma, each such d; "' is mapped by some diffeomorphism F onto dg
and can be extended to a map F that maps onto the enlargement 50. The central
domain of 7 is J5, so this shows that F; : 55_1 — 05 are extendable to SO.
Consider d; " as .7:"5’ jl (8p). 65" ’s are all contained in &y and hence in d. Since

Feo,i = Fsj 0 F, this shows Fg; : 57 — g are extendable to 5. O

Lemma 11. The union of extensions of monotone domains in 1, denoted by b5, is

contained in .

Proof. The union of the extensions of monotone domains in 75 is contained in the

union of d5 and the two monotone domains adjacent to o5 which is well within 6y. [

Due to lemma 11, we define the enlargement 55 of d5 to be dy.
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2.5.1.8 Derivatives

Our requirement for derivatives is very low. All we need is to show that all
derivatives on the monotone branches on the x-axis are greater than 3.5. Compo-
sitions of monotone branches make derivatives greater, which is better. Parabolic
pullbacks make derivatives smaller, but as long as the increase compensates for the

decrease, we can still prove that derivatives are still greater than 3.5. From 2.2.10,

OF:

9fo,i 5,
ox

o > 35,

> 391005. The worst case

ox

‘aff),i

> 20 and ‘%

we have ‘
for monotone maps on the y-axis at step 6 is when g() composes with a monotone

branch in & just once. In this case g), Je.,i; Or g6i 15 fo,j © g(5)-

996, | < |9fos|  |996)
Oor | — | Ox oz
> 3.5 % 391005 (2.123)

The worst case for maps on holes on the y-axis at step 6 is when the hole is just a

preimage of oy or d5 and G ;, Ge.i, or Ge; is just 9(5)-

agﬁ,i > 8g(5)
Oor | — | Ox
> 391005 (2.124)

Another way to estimate derivatives is to take the length of the image divided
by the length of the domain divided by the worst possible distortion. We use dis-

tortion from lemma 2 and distortion on holes to get

99(s) 1] 1 1] 1 6
oot | > max {391005 * 3.5, e * 15'6} > o] * 55 > 2.6 %10
99(6),i |0 1 _
Oz Z max {391005’ |A(5) |*(worst distortej ratio of 561 in A<5)) * 1.3035 } - 391005
96 .i 7] I
5. | = max {391005 * 3.9, oo * 15.6} = 391005 * 3.5
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25| > max {391005, il o oL — 301005
996.; I
2002 | > max {391005 3.5, bl « oLt = 391005 3.5
09Gs,i : [00] 1 |05 1 _
9o:| > max {391005, min {m L ﬁ}} — 391005

Now we consider derivatives for fs; and Fs;. When considering maps on the

x-axis, we only consider maps outside d;. For x outside d, we have ’%(x)‘ > t|0g]-
So

Ofsi| < 996 |ON

Or | — | Oz Ox

1
> 391005 * 3.5 * ¢ * g\/O.S * |05
1
> 391005 * 3.5 x ¢ * g\/O.B * (0.00038

> 3.5.

Estimates are similar for Fg ;.

2.5.1.9 Variation of derivatives

We estimate variation of derivatives for maps g, Gs), Je,is g_ﬁ,i, 96.i, Y64, fo.i
and Fg,; with forms given in 2.5.1.6. We use (2.199) and preliminary estimates in

2.2.10.
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6) and Q(G)
6) has the form (2.121). From (2.199) and table in B.1.5, we have

-1
99)

9(6) 9?2 9(fo0,is00f0.i 02(fo i.00fgs, )t
EIor 5 ‘ ai(;) ‘ (fo,is fo 1) ‘ (fo, satazfo, 1) ‘
89(76; 39&3 39(5) ’ A fo, zSO -ofo, i) ‘ 8(.}‘10,1'50"'0];0,1'1)71 ‘
Oz 0z 0z
< 8.9+ 1.5%1.5527 + 200
<211.23 (2.125)

Since G),i = fo,z‘s,l 0---0 fO,il ° g(5), Y(6),i has similar or better estimates.

Je; and g(i,i
96, = fO,jS/ ©--+0 fom © fO,is ©--+0 fo,i1 © g(5)
g6,z = fo,js/_1 ©--+0 fO,j1 © fO,iS -0 fo,z'1 °

Since 1 < s+ s’ < 5, estimates are the same as 9e6) and Gg) ;-

g6; and Gg ;
The worst possible cases for gs,; and Gg; are
96i = fsk 0 fo0 foj, 00 foj © fou, © Ofou ,1<s<5, s+ <5

Ge,i = Fsr 0 foro foj, 0 -0 fos 0 foi 00 foi095),1 <s<5,5+8 <5

108



o0tdz

0% (f5,k0f0,10f0,5 00 f0,51 00150 0f0,iy) ! '

9(fs,k0f0,10f0,5 00 f0,5;0f0,is0-0f0,iy) "

0z
82(f0,10f0,js, 0-++0f0,j; 00,1500 f0,i1) "
otoz
< - -
9(fo10f0,5_,0-+-0f0,5,0f0,i50-0f0,i1) !
0z
; P 1
32(f0,10f0,js,0"'0f0,j1Ofo,iso-"ofo,il) Ofs 1 32f5,k
Oz2 8t’ Otoz
+
A - 1
9(fo,10f0,5 ,0--0f0,4, 00,1500 f0,i1) ‘6f5’k sk
ox
oz 0z

<(200 + 12 % 1.5527 + 200) + 12 % 161 + 900,000 < 902,340  (2.126)

) . R
9%(fo,1°00,5 4 ° 20,41 °f0,i5°°f0,iy)
ox2

where the bound for s uses Corollary 8. Using

0(fo,1°f0,5 000, °f0,i5 00 f0,i1)
ox

(2.126), (2.24),(2.25) and (2.88), we get

gq 92955 a(s) d(fs,k0f0,10f0,5_, 00 fo,j, 0 fo,is 00 foiy)
otoz otoz 22 ot
_ = _ 2’ - -
99,1 89(5; 99(5) 9(f5,k0f0,10f0,5 5 0-0f0,5; 0f0,i50 -0 0 )
0z 0z Ox Ox

otdz

9(fs,k0f0,10f0,5 500 f0,5; 0f0,i50-0f0,i1 )yt ‘

9(fs,k0f0,10f0,5 00 0,5, 0f0,is0-0f0,i1) 7"
0z

<8.9+ 1.5 % 48 + 902, 340 (2.127)

<902, 421. (2.128)

Ue,; has similar or better estimate.
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f6,2' and f6,i in 65\586

fe.i = gei o h where gg; is in [ys(t), w(t)]

Fei = Ge,i o h, where Gg; is in [ys(t), w(t)].

We use
92h~1
otoz 1 2(1 -1 (Séc 2)
<-4 4422 (2.129)
-1 - re 2
ol Tt t |og
0% f5} B A g5
Btgz 8;%; ’ % 8?93’2 8t862
O R L= T P R P
0z N Oz oz 0z
829_1
) i 6,17
1202 = Lo 2 o otoz ‘
- Z re|2 re |2 ’ ag K 9 -1
t o tlog|" |2 2] ‘
1 1 1 1 2 1
< + * * — + —— % x 0.0021 4 902421
— 399 399 |o¢ 272 399 O 2
< 1 1 1+ 1 1 1+ 2 1 00021+9 1
— % * — 4 —— % * — 4+ —— % * 0. —
— 399 |5 22 399 o 272 399 |5(ge|2 8 |6 |?
- 1.38
o)
< 2.9% 108 (2.130)

Estimates for Fg; in d5\0g are similar.

f6,; and Fg,; outside 45

Joi =[5,
Fsi = Fs,; where map Fj5 ;’s are the maps on the five holes in &s.

Estimates remain the same as in step 5.
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2.5.2 Steps 7 through 14

For steps 7 through 14 we pullback the same partition, &, or éo, as we did in
step 6. Therefore, some estimates are the same as in step 6. The difference between
steps 7 through 14 and step 6 is that AF~! is no longer adjacent to y,_;, as A5 was

adjacent to ys.

(I) Velocities on partitioning points of A®~1 and A, are less than ¢, = 0.003.

(IT) For each step k and each rescaled central domain d;°, we have

1 — |5 ()]
+ OSS k S - 2.131
3 o ()] 3 -
or equivalently
1 [ye(t), w@]] _ 1
-0.3 < < -, 2.132
9 7 |yk—1(t),w(®)]] 9 | )
(IIT)
k 1 k
’7-( )‘ < - }A( )}
1~ %
1
< 1 ﬁlHk—l(A(k))
17
1
< 01 [y (1), w(?)]]
1
] 1\ F6
<o (3)  J0.w)
1~ ¢ )
] NS
< O 25 2.1
_%—601<9) 4|5’ ( 33)

(IV) The number of monotone refinements needed is no more than 5.

(V) ftnoree(Me—1) < 0.5267. fiyoree(&4) < 0.0189 * (0.57)%.

A list of more complete properties for the general step n is in the next section.

111



2.5.2.1 Number of monotone refinements in creating A® is less than
or equal to 5

Lemma 12. Let K be greater than 6. If equations (2.132) and (2.33) hold for all

steps k < K — 1, and

AT
e <002 (2.134)
then inequality (2.33) holds for k = K.
Proof. We have
|AE=D(¢)] (k—1)
< t e 2.135
FAF0, )~ tET (2135)
and
[ye—1 (), w(@®)]| _ 1 K1
>-.03 teT®D (2.136)
|[ye—2(t), w(®)]| ~ 9
for all kK < K — 1. This gives
A=Y ()]
dist(AE=D (), yre_1(¢))
_ ATV (@)] ATV + dist (AR (1), yr—a(t))
JAEED ()] + dist (Al K D(t), yr—2(t)) dist (AF=D(t), y—1 (1))
- |AK 1) )‘ |A(K Dt ‘+dlst (A(K (), yx— g(t))
[AED(E)] + dist (AKD (), yk—o(t))  [JAFD ()] + dist (AED (1), yx—1 (1)) — [AFD)
200
dist(AK-1(t),yx_2(t)) 1
< . :
|AE-1) ()] |AE -1 (1) +diSt(AE =D 1),y 1 (1)) |AE-1) ()]
dist (A= (1),yx 2 (1)) |AE=D )|+ dist (AT =D (1) yxeo(8))  [AE-D()[+diSt(AE=D (1) .yx_»(1))
Y1
< 14+
0. 1+19
<0.42 (2.137)

for t € THE-D),
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Combining (2.134) and (2.137), we get

AT ()] - |A K>(t )|
dist (AF(t), yx—1(t)) — dist (AE=D(t), yx_1(t))

< 0.023 % 0.42 < 0.0098 = ¥
(2.138)

]

At steps 6 to 14 we still pullback initial partition &y, so the estimates of step

6 prove that the number of refinements needed to achieve (2.134) is less than 5.

Corollary 3. The number of monotone pullbacks needed to create A®) is no more

than 5.

2.5.2.2 Relative measure of holes in 7,1 and &

Since the algorithm inside dj7_; for step k, 7 < k < 14, is exactly the same as
in step 6, we can obtain the same estimate as in (2.117). By (2.131) and (2.13), we
get

measure of holes in ;7 ; after step k

,U/holes(nk71> -

J
5| 4 | holes between d;° ; and 0;°
0y
< 0.5267 (2.139)

for all t € T, Using (A.3), we get that

measure of holes in ¢, ”; after 1 step filling-in
10x241
- 0.526667 « D
1 —0.526667 + 0.526667 * D

Mholes(]:_l(nk—l)) -

~ 0.57 =: Yo (2.140)
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where D is defined in (2.182). From (2.139) and (2.116) and the algorithm at step
k, we get that the total measure of holes will become less than max{0.53,0.57} the

measure of holes in step £ — 1. If & is the partition of I we get after step k, we have
fhnotes (k) < (0.57) 6 10100 (€6) < 0.0189 x (0.57)%° (2.141)
where the last value is obtained from (2.120). For k = 14, we have

[ (€12) < 0.0189 % (0.57)% < 0.000210601. (2.142)

2.5.3 Steps n larger than 15

2.5.3.1 Estimates at step n

Let n > 15. We consider a list of estimates and properties that we assume to
be true for k£ < n — 1, and prove that all properties will again hold true at step n.
The properties are listed in the order that they can be concluded after the previous

ones are shown.

(I) Velocities of the endpoints of the domains A of (™ above y,_;. If
A = [x1(t), 25(t)] is an element of (™ above y,_;, then

dIi
dt

< €9 = 0.003. (2.143)

(IT) Sizes of central domains. Sizes of rescaled central domains satisfy

1 1
g\/O.S are ] < ore| < 3 o 41, (2.144)
or equivalently,
0.3 1
5 [Wn-1(8), w@)]| < [lya(®), O] < § |lyn-1(2), w(B)]]. (2.145)
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(III) Distortions on holes. Since the enlargement 0™ of 6™ is defined as 67 ,

for n > 8, distortion on preimages 9, % of 0, n > 8, is less than

2
51”(—:

n

03\ 0

1+ <1.16 =: D. (2.146)

1+3

(IV) Size of A™. The size of A™ satisfies

1 n—>6
A< Hya(A)01 < fracs 00101 = (5) a0 w010
(2.147)
A™ is not necessarily strictly contained in A=Y since A™ could be exactly

the domain A1),

(V) Extendability and expansion of maps. Elements of partitions &, on the

P — o

m m)

x-axis are domains of good maps f,,; : A — I and domains of F,,; : 0

m <n.

Maps f,; are extendable to fm - A — [ and Fn,i are extendable to fm :
0P — 5;; where &S = oy _5 for m > 8 and 5;; as defined in 2.2.8 and 2.3.3.1

for m < 7. Derivatives of all maps satisfy

‘df"’i > 3.5. (2.148)

dx

dF,;
"I dx

(VI) Number of monotone pullbacks No more than 6+3 monotone refine-

ments are needed in each step n

(VII) Measure of holes.
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a)Measure of holes in 7 ; after step n satisfies
Finotes (1hn—1) < 0.613.
b)Measure of holes in partition &, satisfies
fnores (6n) < fhnores (€14) - (X)) < 0.000210601 * (0.73)™ 4,

(VIII) Ratio of derivatives

99(n) ) 9G(n),i
ot ot < 0 003
‘% ’ )ag(nm -
oz oz
% agn,i —4 n z{i
o o] 001909 + 116+ - 3 1Y 2 0.003
8gn,i ’ agn,z - ' ' 16 3 k=16 3 '

For branches g, ; or G, ; above y,_1,

agn,i agn,z
ot ot
: L <0.003

8gn,i 8gn,i

oz oz
afn,i afn,z

at ot 1
Ofn,i ’ 8]:71,2 - 4 5;16
oz ox

(VIII) Variation of derivatives. As in [7] Lemma 5 we have

2 —1 2-—1
%90 | |2 Yin.i
otdz otz 3 % (n mod 3) +3
—1 ’ -1 2
99w | |99ma 5re
0z 0z [§]_3
°g,i| |99
oto= oto= 3% (n mod 3)+3
_ ) 5_ 2
agn,}, agn; 6re
0z 0z [%]
P9i| |9°Gna
otdz otz 1.3
_ _ — 2
8971,,11 8gn,'lL 51"9
0z 0z [%H‘Q
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(2.154)
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2f | |02 F, )

910> 90z 1

ot 7 lort] T |6 2 (2'158>
n,i n,i n

0z ' 0z

2.5.3.2 Velocity estimates for partitioning points in the parameter-
induced partition of A=Y and partitions ¢™(AM)

This is done in a similar way as in step 6.

When we consider velocities of the partitioning points of &, and ¢™(A™),
it suffices to consider velocities on endpoints of monotone domains. That is, we
do not need to consider velocities of endpoints of rescaled critical domains or their

preimages because of the following.

Lemma 13. For any hole at any step of construction, there is an adjacent monotone

branch on A mapped onto 1.

Proof. For the initial 7-branch partition, the central hole ¢y is adjacent to two mono-
tone domains Az and A_3. Suppose up to step n each central hole is adjacent to
two good branches. Consider the new central hole at step n + 1. When we choose
parameter we are choosing the position of the critical value w(t). Then for each hole
5% on the y-axis we consider its enlargement 5k, By construction the boundary
domains of 5% are monotone domains. Construction implies that only monotone
domains can be adjacent to the new central hole. Then monotone domains will be

adjacent to any preimage of the new central branch.
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new central domain

Py e

good branch at the
boundary of 5%

A leftor right

/™ /A

boundary domains are good branches

Figure 2.5: Domains adjacent to rescaled central domains are monotone domains

Basic approach for calculating velocities

a) Any monotone domain A(t) = [z1(t), 22(¢)] is mapped by some map g onto

I=[q " q] = [}, 5], Therefore g(t,z(t)) = q or ¢; .

!. By chain rule,

99 , 09 dz(t) _ da.

ot Tor dt

0

dt %9

= (2.159)

dt

9g
ox

(2.160)

We use formula (2.160) for velocity estimates on endpoints of monotone

; %’ — 1 o 1
domains. |dt =7 ~ -

greater than 3.5. As powers grow, %

becomes irrelevant, so we can estimate

g is a composition of maps with derivatives

dagy

approaches oo and the term -g-

instead.

b) We use the inductive assumptions that for k < n,
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1. For any monotone branch f; in &,

> 3.5 (2.161)

O fri
ox

2. For any monotone branch f;; on ¢,

Ofk,i

or | o 1 (2.162)
6fk,i — 4 5re :

ox k

3. For branches gy ;’s and g‘,mﬁs on the y-axis defined above y;_1,

ot ot
‘ 90r | ' e < 0.001909 + 1.16 * 16 <§> 1516 (5) < 0.003
Ox ox =

(2.163)

c) We use the following inequality given by the chain rule for inductive esti-

mates on derivatives.

A(p1092) [elr) 1 1
ot ot ot

O(p1ow2) | — | B2 T (e} 91 (2.164)
ox oz oz oz

Calculations of velocity bounds
The monotone maps ¢ in ( (”)(A(”)) could be g, ge,; or ge;. The monotone
maps ¢ in the parameter-induced partition of A1) are just J(n)- Possible
expressions for monotone maps g are as discussed in 2.4.4. Since the maps we

are considering here are all above y,,_1, we have the following two worst cases.

Case 1: g = fint1ky © Frnt1hy © f[210n 1 © 0 0 f12]5) © Gty
Case 2: g = fm+17k2 O S m+1,k; © gn—l,i

where m <m +1 and m < [g].

In other cases the member of compositions is less and respective estimates are
better. Note here that at this point, there is no restriction on r. However, we
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will show later that the maximum number of refinements is bounded. That is
shown after we prove some other properties. The properties are proven under
the assumption that velocity is small, which is why we need to prove small

velocity before knowing a bound for r.

First we consider case 1. We compute separately estimates for f[%],ir 0---0 f[%m

and fat1k, © Fmt1k - Using (2.164) repeatedly, we get

8(f[%1,ir°'“°f[%],i1) ‘
ot

O(fig1ino o) ‘

ox
8<f[%],ir,1°"'°f[%]’il) af[ﬂ]yir
ot 1 ot
< + :
< f n
O(fig)., o ofy1.) (fig1.4, 0Ty, T
ox ox Oz
3<f[%1,ir_2°"'°f[%],n) fin1a 3fin.r
ot 1 ot 1 ot
< + . + .
= fn 3finia
O fimyi,_poofimn) O(Figri, ooty ) | | Hbiroy O(Fig1.0,_ 0 oF31,,) ‘f[i
ox ox 9z ox Oz
< (1 Ty ) !
ar " 9r2
3 5 35 4 5reﬂ
(5]
1
<14 (2.165)
4|6,
(5]
a(fﬁ”rlv’ﬁO}—m“»’@l) OF m+1,ky A fimt1,ky
ot ot 1 ot
3(fm+1,k20fm+1,k1) - ’8]:7”'*‘17’“1 ’8]:”14-17’@1 ’8fm+1,k2
oz ox ox ox
1 1 1
<————+ -« ——
4 5fcg]+1 4 5{%}4&‘
1
S — (2.166)
4 ‘5[g]+2
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Combining (2.165) and (2.166), we get

a(fﬁl+l*k20fm+l’klof[%]yir,1O"'Of[%]ail)

Using that the branch g,_; ; is

always above y,_1, we can estimate the deriva-

tive of g,_1 ; using that the worst possible distortion is 15.6.

OGn-1, 1| R
Ox | = ly-1(t),w(®)] 156 L|5e |* 15.6°

3(fﬁz+1,k2 oFm+1,k1 °f 216,y 0“'0f[%],i10§n71,¢>

(2.168)

ot

3<fm+1,k2 oF mt1,k1 Of (21,6, 00 f (21,6, 0§n71,i)

ox
O 1. 3(fm+1,k2O}—mﬂ,kl;f[%],i,.,l0"'°f[g],i1)
o N 1 t
o 8gn—l,i agn—l,i a(fm+1,k207m+1ak1Of[%],ir_lo“'of[%],q)
ox or B
Ogn—1,i 2
AL L t T
< ot 15.61 ore 1 |55|
- 85_777,—1,1' ] re 55
ox | | 4 5[%}-{-2 | |

LS 1 n—1-[%]-2 1 n—1-5
<0.002 + 05| (—) (§>

171 \3

t6 1
<0.002 + M:sg (§

7|

5n
3

) (2.169)
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afﬂ iy
ot ot 1 [3{])22’
< Dm0
O(Frt1 ko Fmri iz i,_ o lig1) o(fig).0,_0oFg1.,) O(fig).,_ o ofy1.) [?g”’”
ox ox ox z
- 14 L 1 1
re 3-5 re
41978, 0
1.4 1 1
- re 3-5 re
9x4 6[g]+2 4 5[§]+2
1
- (2.167)
4|04




Case 2 is a little bit worse since the estimate for the derivative of G, 1, is

worse than that of g, ;.

OG-, ‘6[" 1] 1 5?‘%] 1
> * (2.170)
oz [[yn—1(t), w(t)]| distortion on (5[n o e 1.16
O fm+t1, kzo]:erl k1 ©Gn—1,i) 0Gn_1,i Ofm+1,ke0Fm+1,kq
< ot 1 at
‘afm+1 k20]:m+1 k1 9Gn—1,i) 0Gn—_1,i T ’ag’n,l,i . ‘afﬁl+1,k2°fm+1,k1
oz oz oz
8gn— 51
8t1 i 6;5_1 2 1
< = + 1.16 * .
OGn—1,i gre 4 |5
Oz (25t [F]+2
D £\
< — | = Z
<+ 1165 (3) (3)
ozx
< — 1.16 x — [ = —
S A T (3) (3)
ozx
3 8975;1,1 i 1 _4+% ] % n
= | T 6\ 3 3

Using the assumption (2.163), we get

OGn—1,j 0Gn_1,; _ a\ n
2] T ‘ o 1\ /1\3
S < max — = 1.16 x — | = =
‘@‘ -1, | | 0Gn-1,4 16 \ 3 3
Ox Ox ox
< 0.0021 (2.172)

Since g is the composition of maps f with derivatives greater than 3.5 and

map Gp—1,j OF C_Jn_l,j, derivative of g is greater than the derivative of g,,_; ; or
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G, 1;- We have
1 1

<  — <1071
| | OGn—1,j 0Gn_1,j
Oz oz ox
for n > 16. Finally, let A = [21(t), 22(¢)], then
dz(t) = ’ 10
pranl b <1071 +0.0021 < € (2.173)
N A

2.5.3.3 Estimating shift from y,, to y,

We will now show that the shift from ¥/, to y, satisfies

Yy yn(to)]|

]
|[Yn—1(t0), w(to)]|

<--06 (2.174)

Nel o

in either the case when y/, falls into a critical domain 0* or the case when g/, falls

into a montone domain A* which satisfies (2.40). From this, we can show

%(\/ﬁ) < 5?52!’ <% (2.175)

for all t € 7™
We imitate calculations from 2.5.1.2, except here, 6* could also be §;” for
5 <4 < [§]. First consider the case when y;, is in §*. If 6* is Jy or d,”, we have

already stated in 2.5.1.2 that numerical calculations give

10|
|0* U upper half of |

0.59. (2.176)

By the choice of parameters, the critical value is outside the following enlargements

of preimages 057,047, ..., namely ;" for 057, 947,9,%, 057 for 63" and in general

| for ¢ = 5,6, 7 are much larger than Bl e

) .
5.7, for 677, As ratios 1221 and 9, 5,7

16,, pg\ 180 pl
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get that in all other cases, estimate (2.176) is less than 0.59. That implies (2.176)

in all cases when y/, belongs to a hole. (2.176) will give

(Y7, yn (t0)]|

—| o w(to)] < 0.6 (2.177)

which is equivalent to (2.174). Next we consider the case when ¢/, is in A*. Since

A* satisfies (2.40), we have

emltoll g1
T (to) ] =2 =207 (2.178)

which is also equivalent to (2.174).
Arguments to show (2.175) are exactly the same as in 2.5.1.2. This is where

we need velocities from general step n.

2.5.3.4 Size of T

Using (1.8) and (2.39), we get

o [P0 (2.179)

2.5.3.5 Extendability of maps

As corollaries of the algorithm defined, we have

Corollary 4. All monotone branches f,; in &, and all monotone branches g in

C(AM) can be extended to maps onto T
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Proof. Monotone branches in §° \dr°
Monotone domains in 0™ ,\d* are extendable since we perform boundary re-
n—1 n

finement on any non-extendable monotone branches.

Monotone branches from filling-in outside §:°
Newly created monotone domains outside d;°_; are those from filling-in. Mono-
tone domains created from filling-in are always extendable since we always
avoid an enlargement of holes when doing parabolic pullback. By the lower
boundary refinements we performed in each step, we guarantee that extended

domains of monotone domains in §;°\d;, are always inside 0;°.

Monotone branches on the y axis
If we have by induction that any previous maps created on the y-axis are
uniformly extendable to I and any previous monotone maps on the z-axis are
uniformly extendable to I. Then compositions of monotone maps extendable
to I are still extendable to I (see 1.3.5.2).

[]

Corollary 5. All maps F,; on holes in &, that are preimages of 9, can be extended
to maps onto 67. All maps G on holes in (™ (A™) that are preimages of 67 can be

extended to maps onto 5;;';

2.5.3.6 Distortion on holes

|94

We derive the distortion bound D; = (1 + 5o
2 K2 7

)? according to (1.3). To
compute D;, we need to use the right hand side of the inequality (2.131). Taking
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the ratio of the largest possible value for |§;| to the smallest possible value for ||

for all values t € T, we get
D5, Dy, D7 < 1.10 (2.180)
D; < 1.16, fori > 8 (2.181)
We take the maximum of all distortion bounds and denote it by D. Let

D = 1.16. (2.182)

2.5.3.7 Expansiveness of f,; and F,;

We show (2.148). We need to show for new domains created in 67 ;\dx, that
their maps have derivatives greater than 3.5. For domains outside d;°_,, their maps

are just compositions of maps with derivatives greater than 3.5.

a]_—n,i _ 8gnyi oh oh o
We use ‘_ax = ‘W . %‘ and |£‘ > 4|6,
For n > 15,
5re
n,i ’ n 1
‘ag_, > max { 391005, 2
Oz [Yn—1,yn]| 1.16
5re
‘ [2]+2 1
= ' 2.183
[Yn_1,vn]| 1.16 ( )
afn,i . agnﬂ @
02142 1
2 2 p T
51 |9n1 -
gl 1 V03
= - (2.184)

> 5 * *
5 1.16 3
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2.5.3.8  Number of monotone refinements in defining A™ is less than
or equal to 5

Admissible domains
The partition é[%] associated to [z is defined as a partition whose union of
holes contains all enlargements of holes in £z é[%} is usually {[zj_3 except for
the first steps. For steps n greater than 24 we start pulling back &, &, - - -
whose associated partitions are fg = &5, ég = &, - - -. Admissible domains of
&; are non-hole domains of él Therefore, we are actually checking the domain

sizes in SA[% at step n.

Number of pullbacks
When él is &, a maximum number of five pullbacks are needed. When n is
greater than 25, the partition é[g] that we pullback for parameter choice is not
& anymore, but additional domains all lie inside dy. We see from the table in

1l Al e :
B.3.1 that Tstooa D ° less than Tt So for all admissible domains
1A

A in (50, we have W

is less than dist|A_l| Also, distortion on A U

(A—lvq_l) ’

(domains below A) is also less than distortion on A_; U (domains belowA_).
So the maximum number of pullbacks needed for the additional domains in g

will be less than 5.

Domains that do not need refinement

: . . . . gre
We can comment on one other thing for domains inside d5. Since Toloe o™ t‘(;re' =
6 »q
31851 3+0.0011
T(11=%i6s)) > T(1—1=0.0011)

~ 0.000733602 and distortion on d5U(lower half of I) <
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6.12194, their product 0.00449107 is less than v/y. Therefore, no refinements

are needed on the domains that lie inside dg.

2.5.3.9 Number of monotone refinements in defining y,, is less than
or equal to 6

When we define y,,, first we define non-dynamically the point y/. If y/ is
contained in a hole ¢*, then we use arguments as in 2.5.3.3. If y/, is contained in
a monotone domain, then, we refine the monotone domain until y/, is in a hole or

(2.40) is satisfied.

Lemma 14. The number of refinements needed in a general step n to define y, is

no more than 6.
Proof. We prove this by splitting into cases of where y/, could be.

The case where 7/, is in A"~V
If y/ is in A=Y the arguments are the same as the previous subsection except

we replace Y5 by 11, which is better.

The case where 3/, is below A1

Let A be the starting monotone domain containing y/,. A = [z, 29].

Case 1: y := He=ril < 0334 — 9,

Show that AN g~1(A;) is always below v/, if y := moa2]l ) 334 = 9,

|lyn—1,w]|
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Taking into account distortion, we get % < 0.83. Using (A.9),

|[yn—1, 2] U (AN g~ (A1))|
|[yn—17 w”

<y+(1—y)*0.833

< 0.334 + (1 —0.334) % 0.833

8 n—
_ 8 _ lyn-1,5ll

9 Hynfla ”

This shows that ANg=(A,) is always below ¢/, if y := lym1.21]| Zl” < 0.334 =

yn—1,w]|
3.

Let A’ be the domain in A containing y,,, we will show %}‘A,) <85

|A| -
H, (A
97 (Ag)] g7 (As)] 197" (d0)] g7 (As)|
max 5 5 ) ’
197 (AD] g7 (AL U A [g7 (AL U A UA3)| g7 (A1 U Ay U A3 Udp)
lg7(

2| g (A1)
g7 (AT UAUA3 UG UA 3)| g7 (ATUAUA3US UA 3UA L) }
9~ (D)
g~ (A1)
|As]
[A]

<
< 15.6 %

< 15.6 % 0.54

< 8.5

If after several refinements we get a domain A* C A’ containing y/, such

that |A % * (0.6 * % ~ 0.0088, then

A 1A AT AT AT <Z%0.6=1, (2.185)
Hy o (A%) A Hooo(A) A Hy g (A7) 8
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We check by computation that in order to get % < %*0.6* % ~ 0.0088,

we need no more than 5 refinements. That means a total of no more than

541 refinements are needed.

Case 2: y > 0.334

1A

It is immediate that if y > 0.334, o ()

< 2.

If there is a domain A* in A such that Ié’:‘l < % * 0.6 * % = 0.375, then

A7 AT 1A AT A 1
< <-=%x0.6=1 2.186
(A9 A Hoa (A7) S 4] Hoa(8) <8 2 2450
We check by computation that in order to get % < % * 0.6 % % = 0.375

we need no more than 4 refinements. That means a total of no more than

441 refinements are needed.

2.5.3.10 Number of boundary refinements for monotone domains in
o1\ is less than or equal to 3

We consider a monotone domain A between y,,_1 and y,. If extension of A is
not in the image of h, we ask how many boundary refinements are needed in order
for all refined domains to have extensions in the image of h. In lemma 8 we showed
that the number of boundary refinements needed in step 6 is no more than 2. We
argued by considering two separate cases. We obtained that if (2.109) and (2.113) in

the two separate cases are satisfied, respectively, then we have that extension of A;

is in the image of h. Different from step 6, we estimate top componeilt of &.\Av
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[A1..1\I|

W (A1..1’s are the first subdomains of A; after consecutive re-

by evaluating
finements on the first domain) and multiplying that by distortion on A UI
This is because monotone domains A are formed by pullbacks of §[z] where mono-
tone domains are not just the domains A;, Ay and Az anymore. From numerical
calculations, we have

[Ai\]|

=< 0.0066 (2.187)

and distortion is less than 15.6. Therefore the distorted ratio always satifies (2.109)

and (2.113), which means a maximum of three boundary refinements are needed.

2.5.3.11 Simplifying compositions

Since we only need to perform refinements on larger domains, we are mostly
composing branches corresponding to larger domains such as Ay, Ay and As. The

compositions will boil down to the following cases.

Corollary 6. Compositions f,; o---o f, defined specifically from the refinement

processes in our algorithm can be simplified to one of the following forms.

fnjis © foio 0 0 fou <5 (2.188)
Jrsis © foi1 (2.189)
fnsia (2.190)

This corollary is a consequence of remark 17 below.
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2.5.3.12 Estimating relative sizes of holes at step n of induction

Here we prove the estimate for 0. (7,-1), where 7,1 is the restriction of the
partition &, to the rescaled central domain 0;° | and fiye.e.(7,—1) denotes the relative

measure of holes in 7,_;.

Lemma 15. Let N > 15. Suppose (2.149) holds for 15 <n < N —1, (2.144) holds

forn =N and (2.131) holds for 6 < k < 14, then

Lores(v—1) < 0.613 =: . (2.191)

Proof. By the algorithm in 2.3.3, partition ny_; is formed by first constructing a new
rescaled central domain 0% inside 6% _;, then filling-in holes in 0% _,\d%. According
to the assumption, the rescaled central domain ¢y satisfies (2.175). The filling-ins
could be composed of two 1-step filling-ins, one 1-step filling-in followed by a 5-step
filling-in, or just one 5-step filling-in. 5-step filling-ins are performed on preimages
of 9y and the relative measure of holes in a given hole after a 5-step filling is given by
(2.13). One step filling-ins are performed on preimages of J;° where 5 < k < [g] +1

and the relative measure of holes after one such filling-in is given by

X *D

— AT ~073 =y 2.192
s X (2.192)

/'Lholes(f.il(nk)) <

where D is the uniform upper bound for distortions on d;’s. Since X’ is greater than
0.29, the worst case possible for filling-ins in dy_,\0% is the case where all holes

undergo two 1-step filling-in. So we get

measure of holes in dy_,\d% after filling-in

N1 \O
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Combining inequalities (2.193), (2.175) for n = N and using (A.9), we get

0% |+ | holes between 6% _; and 0% 1 2
fnores (My—1) = | o m-l Moo+ <x  (2194)
O
p \2
Remark 11. x was chosen by solving for % + % (17;21)(*17) = X, which is approxi-

mately 0.613. Any number greater than that works.

We can conclude that y depends on the number of 1-step filling-ins we assign
in the algorithm.

5re

Since after step n, the measure of holes inside ¢7°_; reduces to less than y*|dr_,

and outside 9;° ; we perform a 1-step filling-in which reduces the measure of holes

to less than x’ times the original measure of holes, we can conclude the following.

Corollary 7.

Nholes(gn) < X, * ,uhozes(gn—l)- (2'195)

So for n > 15 we have (2.150). That proves that the measure of holes will

decrease to zero.

8g(n) M 8§n,i 8g_n,i 89n,z 8gn,z

. . . . ot ot at ot at ot

2.5.3.13  Estimating derivatives 1;—, 55— to5,77> 1o, 7 Tonil> 99
a(mn) g;)ﬂ ox 81, ox ox

on the y-axis

The estimate for these derivatives follow the same spirit as estimates in 2.5.3.2.

All can be shown to be less than ¢y when the maps are above y,,_1.
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‘ 6fn,i B}-n,i
. . . . ot ot .
2.5.3.14 Estimating derivatives ‘wTa tr—1 on the z-axis

ox ox

We would like to show (2.154). We assume (2.154) holds in earlier steps. We

use
EAR L
ot 2~ 21%
< 2.196
2] < (2190)
for x outside ;.
For f,; and F,; in d:° ,\or°.
fn,i - gn,i o h Where gn,i Is In [yn—l(t)7 yn<t>]
«Fn,i = gn,i o h, Where gn,i iS in [yn—l(t)> yn<t)]
8fn,i 8gn,z
% gm0 %
o] = 28] T[] ooma
ox x O ox
Ogn.i
(%1 — %‘ ore 2) n 1 ot
- t 5;; t 5;; 897L,L
oz
(G —iloxl) 1
< * 0.003
oy T |07
< L (2.197)
~ 4| '

0Fp
.. ot 1
Slmllarly, T0Fni| < st
—ont

For f,; and F,; outside d;° ;.
We assume the worst possible case, which is the case when the new branches
come from filling-in of é ;.
frni = fa—1,0Fn_1,; where map F,_; ; are maps on holes outside 6,7 ; in &,_;.
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Fni = Fn-1,0F,—1,; where map F,,_; ; are maps on holes outside d;° ; in &, ..

Ofn,i OFn_1,j Ofn—1,1
ot ot 1 ot
‘afn,i - ‘3-7:71—1,]' ‘3-7:71—1,]' lafn—u
ox ox ox ox
1 L+ 1 1
—_— * [ —
T Alor | 35 4ae|
<t (2.198)
4 |0 '

2.5.3.15 Variation of derivatives

6@71
We show (2.155), (2.156), (2.157) and (2.158). We refer to the value ke v

9t 9z
g1 as

9z
the variation of derivative of ¢. We constantly use the composition formula below.
Let p(t,x) = wa(t, p1(t,x)), then

_ 2 —1
0 9! 7%
2

_ 825971 _ _ 82,71
;25— S (tes (6 2) . 5 (b9 (1 2) a%l(t o4 Tt2 _(t,2)
291 g - oot ot 0,5t
o= T tez ' (t2) TR (tey (4 2) 22 (1,2)
82@;1 1 32¥,1 1 _1 B¢ 82¢;1
o (b ey (£, 2) 522 (her  (tipy " (8,2)  Z£2 . Tob2 _(t,2)
= ] e w— 2Lt er (a2 + PR (2.199)
8‘212 (t,go;l(t,z)) Wu’wl (t’(P? (t,2))) oz “‘222 (t, 2)
62<p
Due to the second term in (2.199), we need the following lemma to estimate | 222 |.
’ (32)°
Er

Lemma 16. Let ¢ : A — J be a map satisfying the negative Schwarzian derivative

condition. Suppose @ can be extended to ¢ which maps onto an extension J of J, where

the extension on each end has length e. Then

<

‘ " (2)
(¢'(2))”

2
- 2.2
- (2:200)

for any z € A.

Proof. We can assume that the derivatives of ¢ on A are all positive, since if derivatives

are all negative, then we prove for ¢)(z) = —p(x). Let z be any point in A. Assume first
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that z is not a boundary point of A. Choose two points x and y such that z € [z,y] C A.

By (1.3), we have

<1 n lp(x) — so(y)!>2 > ¢’ ()] (2.201)

e l' ()|

By the mean value theorem and some basic calculations we have

— clog¢'(z)—log ¢’ (y)

7
e fol ((90)> (m—y)

l” (0)] |o(2)—¢(y)]
= e "] [¢/(0)]

where 6 and 0 are in (z,y).

1+2\s@(w);<ﬁ(y)\ N <|w($)—w(y)\>2: <1+\so(:fc)—<p(?;)!>2

e e

l” (0)] le(z)—p(y)]

> IO PO

(O] () = #(y)|
CA QI O]

—1+ O(lp(x) — o(y) ).

Then we have,

2 e(@) =)l _ l¢"@O)] 1 .
¢’ e = 170)] 2/ (0)| + O(le() = ¢(y)) (2.202)
Let # — 2~ and y — 2*. Then
2 ¢
¢ 2 1P0P (2.203)

If z is a boundary point of A, choose [x,y] C A where A = ¢~1(.J). e should be replaced
by a smaller extension value varying with = or y. As x and y tend to z, the extension

value will again converge to e, and the same result holds. O

Remark 12. From the proof, we can see that we should be able to obtain better estimates

if z does not lie on the boundary of A.
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Corollary 8. Let fj, -, fj be monotone branches in &;,,--- ,§;,. respectively, then

*(firo-ofir)

Ox2

< 2
2 07

<12

(firoofiy)
ox

Let g be any monotone map from a domain on the y-axis onto I at any step n,

0%g

o2 5 < 2 <12
9g12  0.17

ox

Estimates for g(,) and G, ;
For n = 6, we have (2.125). For 6 < n < 24,

2 —1
979 (1)
otdz

2 —1
9790
otdz

329(n—1)

9(f0,i5°0f0,i;)
ox2 ot

otdz

32(f0,1‘50~-~°f0‘z‘1)71 |

. +
a(f(),iso"'ofo,il)

99(n-1) |?
ox GE

o —1 o —1

el o

I(n) I(n—1)
Oz Oz

EE

P
9791y
9i0=

IA

— + 12 % 1.5527 + 200
99,1y
oz

52,1
96)
otdz

IN

+ (n — 6) x (12 % 1.5527 + 200)

29(6)
Oz

IA

212 + (n — 6) * (12 * 1.5527 + 200)

In particular,

2
9%953)

dtdz

< 212 + (23 — 6) * (12 * 1.5527 + 200)

94 (53)
Dz

< 3929

10-6
652

(2.204)

(2.205)

(2.206)

(2.207)

For n > 24, we have g, = f[%},is 0---0 f[%wl © g(n—1), which by corollary 6 can be

simplified to one of the following cases,

9y = f12 (235 © Jo,is1 © - © 0,01 © G(n—1)

g(n)Zf [2],i2 © f5,i1 © I(n—1)
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The worst case in terms of e§timates for tllle variation of derivatives is of the form

") —5,i5°F5,i1)
Otdz

(2.209). First we estimate

8(f[@],31i2°f5,1‘1>71 ’
oz

When [%] — 3 =5, we have

2,—1 2,—1
32(f5,7120f5,7;1)_1 ° f5vi1 62f5,7',1 5.1 ° f5=i2
3(f5,i50F5,i1) "1 o5 1 9f5,iq |2 | 29500 of5 1,
et | e | |32
<900, 000 + 12 % 161 4+ 900, 000
<1801920
2.19 !
<2.19——
6512
n
When [§] — 3 = 6, we have
_ a2p 1} . 251
0% (f6,i5°75,iy) " I5,iy 9% f5,iy af¢.4 6,iy
9(f6,ip0F5,i1) " of5 1 95,y |2 |276,io of5 1
e — LA o o L
<900, 000 + 12 % 161 + 1.38 G ‘2
6

1 1
<0.122—— 1.38—
SO e T e

<1.51
loge|?

Starting from [§] — 3 = 7, we have a general formula. For [5] —3>7

4 0% sy
3

52 ) ) 2,—1 . —3,4
z otdz 902 ot
+ .
AT POl I R S R TS [ T S
55 5% © oz —a o2
<900, 000 + 12 % 161 + 5
5re
(2]-3
1 1
<0014 —— 0 4 ——
[6%¢] sre
(%]-3
<1.014 5
re
'5[%1—3
2 —1
o
9(n)
Otdz
Then we can estimate \—— for n > 24. Using (2.207) and (2.211), we get
(n)
Oz
8%g7,} 82471 2 2 -1
(24) (28) o ofs 0% (J5,1505,i1)
Bto= Bto= ;1(23) '8“5,%28:105,11) RELL ik A2 KA
o —1 o —1 a 2 T0(f5 15975 11) . =1
dg dg 9(23) 5,i3°J5,4 9(f5,i5°f5,iy)
2| |2 | [T [ Wiz gfon )2
-6

< 12 « +2.19
652 4185] 16512

138

(2.211)

(2.212)

(2.213)
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otdz
Assume as an inductive assumption that [ | < 2x(kmod3)+s for L < pn — 1, then
9 (k) sre
o2 (-3
from (2.211),(2.212), and (2.213) we get
1 1 2 -1
229(,) 9290, 1) 2901y | | 2Y1B1-3,i5°75,i1) OV -84y 0501
dto= otz 22 5t EIE
—1 —1 1%y 2 [a(fin i0OF5,iq) + a(f, ofs ;. )—1
29 (n) 99 _1) '7(5"_1) 313,02 7571 [2]-3,i3°75.31
oz —oz E ow — 2%
3% (n—1mod 3)+3
< . + 12 +2.19 5
re 4075, L
(25t1-s 51-3 [51-3
3% (n—1mod 3)+3
< T 7 4£0.0004 % 5 +2.19 .
sre ‘5% B 58
ot (2]-3 (2]-s
3x(n—1 mod23)+3 +3 1 - i 2] = ;1]
5% 5%
< ‘ [3]-3 [3]-3
32243 4 0.0004 % 5 +2.19 7. i [B] =[5+ 1
re re re
9 5[%]73 5[%]73 9 g
3x(n mod 32)+31 if [%] _ ["gl]
5T
< [F1-3
7, it [2]=[25E] 41
s5Te
(Z]-3
3 d3)+3
_ M (2.215)
o1

Estimates for g, ;

and Gm above y,.

gn,i = f[%],ls O--+0 f[%]fbl ¢} gn_l’]
or
Ini = J121is © - 0 J(21i © I(n—1)-

So the estimates should be the same as for g,).

Estimates for g, ;

and G, ; above y,_.

According to 2.4.4.1 and corollary 6, the compositions of g, ; has the following form:
ni = ft1ks © Fmt1ke © F2]k © fo1 © fo1 0 fl2)4, © foi1 © Gn—1,5, Where m < [3]
and m < m+1, 0r gn; = fratiks © Fmtik ©Gn-1;. To estimate the variation of
derivative of fs41,ks © Frnti ko © .7-"[%]7,€1 o fo,10 fo1 o f[%w2 o f54, © Gn—1,j, we first
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estimate the variation of derivative for F,, 11, © F[%],ky We have

82F 1 2 —1

1
2
a (Ferl«kzo-r[ﬂ],kl) [2],k 32}‘[%]&1 o2F kg
o102 9to= ) 'afm(;lv’“z oo
+ .
-1, = —1 8Fn 2 [0F i1k oF—1
O(Fmi1,ky o0 1y ) 271k [§1. '72 M1,k
282 (51 ky 3 1 Fors ES — it
1 2 1 1
< . .
e re
e
3
! 1 2 1 1
<1 : .
9 ere 13'5“% 4‘5% sre
[Z]+1 131 [31+1 [Z]+1
1 L 2 Lo
9 |sre 13 % 3 |87 4|sts e |?
o241 AR MESEE! B+ %21+
1.13
< . (2.216)
re
‘6[%]+1

Then we estimate the variation of derivative for fjz41 1, composed with F,, 11k, ©
]:[g},kl' We have

-1
2
0 (1, kg ©Fm 1,0 07 (21 0y )
dtdz

—1
a(fm+1,k3 OF m41,kg OF[%],M)
oz

—1
2 2
2 (}—m+1:k2o}—[%],k1> ° (Fwwlykz"f[ﬂ],kl) L
5t0= 922 ’ afﬁ’gtlvka — oz >
< + .
= —1 2 O mt1k or—1
3<fm+1:kz°f[%m1> ‘F’(Fmﬂvkg"ﬂ%],m) ‘TS W int1,kg
Oz dx R
1.13 2 1 1
< o 5T 2
5T ¢ 4) vﬁ+1’ 557?+1‘
‘ (%1+1
1.13 1 2 1 1
<= + : +
9 sre 2 13|61 4 |6T¢ sre 2
(2142 [F]+1 [§1+2 12142
1.13 1 2 1 1
<. + : +
9 sre 2 13 x 3 |67 4|8%¢, sre 2
(Z]+2 [31+2 [51+2 [2]+2
1.14
<—. (2.217)
5re’
‘ [31+2

Then we estimate the variation of derivative for fs,11 ;0 Frt1 ks O]:[%Lkl composed

with fO,l @) f071. We have
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-1

2

2] (fm+1,k3 OFm+1,ko O]:[%],kl °f0,1°f0,1)
Otdz

-1
a(fm+1,k3°-7:m+1,k,2OF[%],klofO,l"nyl) ‘
9z

-1
2 -1 6(f~ 1 ks OF mt1,ke0F (0] ) 82(f~ 1ks OF mt1, ke 0F (0] k )
02(f0,10f0,1) 02 (f0,10/0,1) Mt lks T mAlke (5l k ALk T mA ks 7[Rk

9tz 922 ot 9oz
< + . +
= —1 2 -1
a(f(),lof(),l) a(f0,1°f0,1) a(frh+l,k3°Fm+1,k2O‘F[%],k’l) 3<fm+1,k307‘_m+1,k2°]’_[ﬂ],k1>
0z oz oz 2] 8
: z
1.14
<200 + 12 * + 5
4ors, sre
‘ [31+2 ‘ [2]+2
1.15
<————=- (2.218)
6['9
‘ [2]+2

Then we estimate the variation of derivative for fs,11 ks © Frmt1,ks © ‘7:[%]7 k0 fo10 for
composed with fin);, o f5i,. The estimate for the variation of derivative of fi»);, o
f5,i, comes from (2.213).

-1
2
g} (fm+1,k3 OFm+41,kg 07’[%]1;‘,1 °fo,1°f0,1 Of[%])lé °f5,i1)
9t0=

-1
6(f'rh+l,k3°}_m+1,k2 07"[%]‘;@1 °f0,1°f0,10f[%]),;2 Ofs‘q‘,l)
Oz

a(fﬁl+l,k3 OF m41,kq OF[%],M ofo,1°f0,1
ot

22 (#m,6,°95.01)
922

, .
GHIERCY)
Loz

IN

-+

o(f1g14°05.11) :
oz

2(f1g1i2°051)
9z

6(fm+1.k3°fm+1,k2 °F 2],k oJ"(J,10f0,1)
oz

-1
0? (fm+1,k3 °Fm+1,ky °F[%],k1°f0,1°fo,1) l

dtoz
+ —1
3(fm+1,k3°fm+1,k2 °F 2,8y Ofo,lofo,l)
EE
1.014 1 1.15
< 5 12 + 5
sre 4‘5“—3 sre
3] [31+2 [31+2
1.16
< - (2.219)
re
75112

Finally, we estimate the variation of derivative for fs 1 x; © Fmt1ks © }-[%Lk’l o fo,10
fo1 Of[g],i2 o f5,i; composed with g, _1 ;. Bounds for the variation of derivative of gy ;

LTS
otdz
. . . 3+(k mod 3)+3
comes from the inductive assumption that — < ( > ) for k <n—1.
Ik,j §re
9z ’ [g]
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We have

Itdz

—1
o2 (fm+1,k3 Ofm+1,k2°f[%],k1 °fo,1 Of'o,lof[%]7i2 °f5,iq °§n71,j>

—1
3(fm+1,k3Ofm+1,k207’[%],k1°f0,1°f0,1°f[%],,;2°f5,i1 09n—1,j) l

5=
8(f~ oF, oFinq . ofp.10f0.10fjmny ;. °f5.;
P - m41,k3°Fm41,kg °F 2]k, ©F0,10f0,10f 0 ; 5,11)
979, 1,5 %901, - a2
otdz ox2
< —y o7
agn—l.j g7:3717j 6(fﬁ1+1’k3O‘Fm+1.’k20f[ﬂ]wk1Ofo’lofo,lof[ﬂ]1i2Ofs),,,l)
Bz x 381 3
5 -1
2 (fm+1,k,3°7m+1,k2OF[%],M0f0,1°f0,1°f[%],i2Ofs.ril)
otdz
+ -1
9(fm+1,k3Ofm-f-l,lcr_,OF[%],klOfo,lOfo,lof[%]@ofs,il)
Oz
3% (n —1mod 3)+3 1 1.16
hS 5 + 12 % + 3
4878 re
iy [real - [iigren
3
1.3
5re
[Z1+2

(2.220)

Now lets consider the other case. Estimates for gn—l,j come from the inductive

aQ*fl
Ik j
. oo ) aY1 s
assumption that =TT < x(k mod 9)43 for f < n — 1. We have
k.j sre
‘ o 5

2 _ -1
9 (fﬁl+1,k2 °‘Fm+1,k1°g77,—1,j)
toz

_ —1
a(fr'n.+1,k2O‘Fm+1,k1°gn71,j) ‘
CH

-1

25-1 5 2(t
%90 1,j %G, 1, 8 (St 1,k °F g1,k ) O (it 1,k O F m+ 1.k )
Dtoz 922 ot o0toz
< O : +
R pp— 2 -1
99, _1,j O9n—1,j a(f"ﬁJrl,kz O‘F'rrL+1,k1) 3(fm+1,k2 O-Fm+1,k1)
9= ox oz 57
3% (n —1mod 3)+3 2 1 1.16
= 5 * + 3
re 13 |sTe 4 ‘ére ‘(Sre
fE=s MNEES (3+2] |"(31+2
3 3
1.3
ST—3
5!'9
‘ (5142

From (2.220) and (2.221), we can conclude that

09,

otoz 1.3

a9 — 2
9z [§]+2)

Similar estimates can be derived for G, ;.

Estimates for f,; and F,; whose domains are in §;° ;\0;°.

fn,i = gn,i o h where the domains of g, ;’s are in [yn—1(t), yn(t)].
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Fni = Gni o h, where the domains of G, ;’s are in [y,—1(t), yn(t)]-

We use
oh -1
27 —1 92h -1 82h -1 b (t,h1(t,2))
gl ot + GGG EGSE)| 1 2k — L)
T ’ ) 4 4 "
< -+
! Oh(+ 71 < .
% 820 h 710, ) AT
(2.223)
for x outside d;;.
82f;‘1 o, 1 2 5 629;711»
‘ oro %io gwg‘ e 9%0=
o / N Py

) 8241

In,i Z_Tn,i

< l + 2(i — % ‘629{2) 2 ) ot otoz

B R L 1 T

dx _—n,r

1 _ 1 |sre|2
< 1 n 2(3 1 ‘527,, %) 0003 4 1.3 i
¢ t|ore] t|ote2 ‘5“
[31+2
1
Joxe|? (2.224)

Estimates for f,; and F,; whose domains are outside ¢;° ;.
frni = fn=1, © Fn_1,; where the domains of the maps F,_1 ; is outside J;;_;.

Fni = Fn—1,1 © Fn—1,; where the domains of the maps F,_1; are outside 67_;.

o271
n,i

2 ; —1,
ot0= a5z £ ];T;fl” ‘af*(});“' oz
or V| T |oF " 'OF"*LJ 2 ‘afnfl,l ' or, 1y
oz EE oz o 5
1.3 2 1 1.3
‘5;‘371‘ 13)52§_1’ : 4’5;§_1| ‘5re71‘2
1
2.225
jore|? (2.225)
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2.6 Admissible domains and admissible parameter values

2.6.1 Step 6

2.6.1.1 Total measure of U7

We can consider admissible intervals in the phase space either from the perspective
of a partition on I or from the perspective of a partition on A®). Both notions are
interchangable by a diffeomorphism g5y that maps A®) onto I. On the parameter interval,
we say that an interval is admissible if ¢ traversing through the interval corresponds to
w(t) traversing through an admissible interval in 1.

When defining 7, we always performed refinements by pulling back the seven
branch partition . Therefore it is natural to label monotone domains and refined mono-
tone domains by Ag..q; where 1 < j <5 and ay,...,a; € {1,2,3,5,6,7}. The index j
does not exceed 5 since we do not need to perform more than 4 monotone refinements.

Within these monotone intervals, we define admissible intervals as the following:
Definition 8. A monotone domain A, ...q; in I is an admissible domain at step 6 if

1. subindices ay, ..., a; do not equal to 5 or 6.

|95 (Aay-a))|
Hs(g5 " (Day--a;))

195 (Bay oy )l
5(95?1(A‘11"'aj—1 ))

< and > 191 (when j > 2)

3. ai...a; = 114 in lexicographical ordering.

We pullback admissible intervals in I by g5 Uinto A®). Then they become admissible
intervals in A®). Such definition comes directly from the algorithm for defining A(©).
A)g are exactly the admissible domains in A®) at step 6.

We do not need to avoid domains with subindices a1 ...a;-12 or a1 ...aj_13 since
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when gs(w(t)) falls into such domains, the image of g5 o f does not contain the %

represented by subindex ag ...a;_14.

Definition 9. A parameter interval 77 in 7®) is an admissible parameter interval at step

6 if t € T corresponds to gs(w(t)) € A’ for some admissible domain A’ in 1.

By our definition of admissible intervals, all admissible intervals are disjoint except
at endpoints. We collect the maximal possible collection of admissible intervals U7 (®).
Now we state the numerical results on the measure of admissible intervals and

admissible parameter intervals.

1. Under the algorithm at step 6, there are 135 admissible domains.

2. The total measure of admissible domains in [ relative to the measure of I is bounded

below by 0.196180 and bounded above by 0.196195.

3. The total measure of admissible parameters in 7() at step 6 is 9.1443 %107, If we
divide that by the measure of 7(® which is 4.64851 % 1075, we get

lUT9)

> 0. . .
o 2 0.196714646 (2.226)

2.6.2 Measure of admissible domains for general step n > 6

Admissible intervals in A1 are monotone domains A(™ in the parameter-induced
partition (defined in 2.4.2) of A=Y, Non-admissible intervals §(") are the holes in the
parameter-induced partition. We denote the relative measure of non-admissible intervals

in each A= by H,,.
i)

Hal®) = 13|

(2.227)

As described in the previous subsection, we can also consider admissible intervals from

the perspective of a partition on I on the x-axis. By estimating relative measures on the
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x-axis and considering distortions, we get the following bounds for H,(t). We use some

techniques to lower the bounds of #,(t) in order to get a better final estimate in (2.262).

0.773247352 % (15/13) * (1.29)"6

Holt) < T (773207352 1 0773247352 = (15/13) = (L29)n8 v 6<n <15
(2.228)
Ho(t) < 0.7265  for 1 < [%] ~3<5 (2.229)
H,(t) < 0.1716  for [g] —3=5 (2.230)
H,(t) < 0171126 for [g] ~3=6 (2.231)
Ho(t) < 0.171126 % (0.57)1313°6  for 6 < [g] —3<15 (2.232)
H,(t) < 0.171126 % (0.57)% % (0.73)[517371  for [g] -3>15 (2.233)

2.6.2.1 Calculations for inequalities (2.229) through (2.233)

The algorithm for constructing the parameter-induced partition of A1 requires
pullbacks of E[%] = 5[%]_3 onto or into A= until all monotone domains A satisfy
(2.39). Lemma 12, which makes use of the fact that A1) is always a fixed-proportional-
to—size—‘A("_l)‘ distance away from y,,_1, proves that (2.134) will imply (2.39). In practice,

we are not able to check actual measures after pullback onto each A1 since A1)

s
were not obtained explicitly in the previous step but only estimated for their total mea-
sures. Therefore we use estimates which take distortion into account. Let A = [z1, z9]

(n—1)

be a given monotone domain in I and g be the monotone map that maps A onto I,

depicted in the figure below.
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Al g .

Figure 2.6: A as the image of A™ under mapping g

With reference to the figure, we define the following.

Ratio(A, z) = m (2.234)
2
2% % — x‘ ?
min {|[¢g~ 1, z]| + 0.17,|[x, q]| + 0.17}

Ratio(A, x) * Dist(x)

Dist(x) := (1 + (2.235)

MinDistRatio(A) := i
s & 10( ) X € smaller clc’)IrlnlpIinent of I\A ]. - RatiO(A, x) "‘ RatiO(A, ﬂj) * DlSt(l‘)
(2.236)
-1
MinDistRatio is a function which gives an upper bound to ’gAm(AlS; when pulling back by
¢ and using A.2 and (A.3). We have
—1
lg71(A)] - .
W < MlnDlStR,&th(A). (2237)

The following algorithm determines a worst possible partition £ on I, worst in the sense
that it has the maximum possible measure of non-admissible domains, using MinDistRatio(A)

—1 A
as an upper bound for ||gA(n(1))||.

1. A partition of I (starting with &) is considered on the x-axis. Consider each mono-
tone domain A in the partition. Determine MinDistRatio(A) for all monotone

domains in the partition.
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2. We check if MinDistRatio(A) < 0.023. If so, then we do not partition the domain
further, if not, we partition the domain by &. We do this for all monotone domains
and go back to step one to repeat the procedure until all monotone domains satisfy

MinDistRatio(A) < 0.023.

The resulting partition & on I is pulled back onto A1) to get a worst possible parameter-
induced partition of A=), The previous algorithm implies the following lemma 17 which

specifies the number of refinements needed to get the parameter induced partition.

Lemma 17. If we pullback the partition &, k > 6, in the above algorithm, then the
partition & which we obtain will coincide with & outside 0y and outside preimages of oo
in &. Inside 69 and outside holes of £, the partition &, will coincide with &, where &
is the refinement of & inside 0g by & using the above algorithm. Inside holes of & and

preimages of 8 in &, domains do not need extra refinements.

Proof. We check numerically that the sizes of holes in & or £|s, after the above pullbacks
are small enough to satisfy

MinDistRatio(d) < 0.023. (2.238)

Monotone domains contained in holes of &) and &/|s, will be smaller than the holes they

are contained in. O
We get the following corollary.

Corollary 9. The mazimum number of refinements needed to obtain &, is determined by

the mazimum amount of refinements needed to obtain & and &.

Obtaining (2.229)

Using &y as the partition that we pull back in the above algorithm, we obtain a
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partition & of I. &) has 859 domains with central domain dy. The relative measure

TA76777 . When we consider

of holes in & is less than 0.36 for all parameters in
the distortion on I, which is the big number 15.6, and apply (A.3) directly, we
get that the relative measure of non-admissible domains in A1) after step n for
7 < n < 23 is bounded above by 0.898. To improve this estimate, we use the method
of dividing into sections as used in 2.2.9 for domains outside dg. The sections and

their respective ratios and distortions are listed in B.4. The first table in B.4 shows

that the distorted relative measure of holes in I\dy is less than 0.5 for partition &.
o9~ (€0 ) < 0.5 =1 b (2.239)
Using A.2 and A.3, we get
-1
}9 (50)}
— < =: .
}A(nil)} <0.4524 =:a (2.240)

Using (A.9), we get

Holt) < 197 (60)| g7 (I\bo)]

—L1(¢t o
= ‘A(n_l)‘ ‘A(n_l)‘ * NholeS(g (50’[\50)) <a+ (1 a) *b (2241)

for 7 < n < 23. Combining (2.240) and (2.241), we get (2.229).

Obtaining (2.230)
For steps n where [3] — 3 = 5, we pullback with {5 in the algorithm to obtain &.
&L has 13761 domains. The union of domains 4038 through 9214 is dy. Sections
and their respective ratios and distortions are listed in the second table in B.4. The
second table in B.4 shows that the distorted relative measure of holes outside Jg is

less than 0.1,

/‘I’holes(g_l(é-é|l\50)) < 017 (2242)
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and the distorted relative measure of holes inside §g is less than 0.25,

fnores (97 (515)) < 0.25. (2.243)
By (A.10), we get
Hp(t) <ax0.25+ (1 —a)*0.1 < 0.16786 (2.244)

for 24 < n < 26. Therefore we have (2.230).

Obtaining (2.231)
For steps n where [%] — 3 = 6, we pullback &;. Since & changes with parameters,
we do not obtain each partition & as we did for the earlier steps, it would involve
consideration of several hundred cases. Instead, we take &| 16, and estimate the

relative measure of holes in I\Jy after filling-in each preimage of o by &gls,-

five holes 1) 1 2
Mholes(§6|50) S ||60’| + :62: % <3 —+ g * 029) < 0168 = f (2245)
[five holes| |05 . )
where bounds for Tl and 18] are obtained numerically.
_ J * Ds /
otes(F 1 < 0 <0.209 = 2.246
l’['h1~( (€6‘50)) 1_f+f*D§O f ( )

where F denotes the maps from §, P’s in I\&p onto &y. Dy, is the distortion on dy

when image extension is 1.

MholeS(g_l(géh\éo)) < Mholes(€6|l\§o) * m]_@X Hroles (]:_1 (£6|50))
< bx f/ (2.247)

|five holes| + |05|
[0l

,uholcs(éé‘(so) S + :uholcS( g) * Mholcs{f_1(§6’5o))
< 0.178 4 0.129  f'

<0.205=: ¢ (2.248)
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e* Ds,

S < ~777%
Hnotes (97 (§650)) < 1—e+ex* Ds,

<0.252 = ¢/ (2.249)
Combining (2.247), (2.249) and (A.10), we get

H,(t)<axe +(1—a)xbx* f <0.171126 (2.250)
which gives (2.231).

Obtaining (2.232)
For steps n where 6 < [3] — 3 < 14, we have fges(§[2]-3) < 0.57 * fnoies (§[21-3-1)
from (2.140). By lemma 17, & 41 is what we get after filling-in of holes in &~ Since
the way of filling-in &, is decided by the way of filling-in in &, the relative measure

of holes after filling-in is the same as in (2.140).

,uho1es(51;+1) < Mholes(gl/q} * (0.57) (2.251)
for 7 < k < 14. By (2.251), we get (2.232).

Obtaining (2.233)
For steps n where 15 < [5], we have uholes(f[%},g) < 0.73*;;},0165(5[%],3,1). With the

same arguments as for (2.251), we get

,uholcs(é;f+1) < ,uholcs(gllc) * (0-73)7 (2-252)

and hence (2.233).

2.6.3 Measure of admissible parameters

For each admissible domain A™ in A1 there is a corresponding admissible

parameter interval 7("). Similarly, we have non-admissible parameter intervals 7(5("))’5
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that correspond to non-admissible domains 6 in A"~ We denote the relative measure

of admissible parameter intervals by

_ NUrmcre-y 7™

M, : T (2.253)
and relative measure of non-admissible parameter intervals by
e TN Uroncrmn T

M = T (2.254)

The following lemma follows from Gronwall’s inequality and the fact that the central

domain is larger for greater parameter values.

Lemma 18. Let 6, be mapped by G onto the rescaled central domain 6. Suppose

a2g71
BO(t,2)]
< C forall z €0 (t) forallt € T. (2.255)
aG—1
1252 (t.2)|
Then
|0, 2(t)] < T8, P(t,,,)| for allt € T (2.256)

where t,,, is the top value of T.
Similarly

Lemma 19. Let A be mapped by g onto I. Suppose
82 -1
gz (1 Z)‘

% .2)

< C forall z € I(t) for allt € T. (2.257)

Then

IA)] = e 1T A uom)| for allt € T (2.258)

where tyyuom 18 the bottom value of T .
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Theorem 2. Let H,(t) be defined as in (2.227). Let MS be the relative measure of

non-admissible parameters in T . Then

82g(*1) .
_ 1+ 4eg otoz _
¢ < (n—1) : ‘ (n 1)‘
Mo S Haltuy ) * 1 —4eg e tEI’;'l(E}L—l) 9G.,) T
0z
1 1+ 4eg 8 1t 2
< Hn(tgz, )) * 7 i * exp 2 T4 5n_2‘ v
" S| 17
3
(n—1) 14 4eo 8 %
< tio o 2.2
S Haltiop ) * 1—deg P\ gn131 1 — €0 (2:259)

forn > 24.

Before proving this, we incorporate computer estimates. Our initial parameter in-
terval 7y was described in the first five steps. Then at steps 6 through 23 the relative
measure of admissible parameters follows from the last two columns of the table in B.1.5
(we use the better estimate). By multiplying these numbers we get at step 23 the measure

of admissible parameters is greater than

23
[ Mn > 100614« 107° = x (2.260)

n=>6

Starting at step 24, we delete no more than

(n—1) 1+ 4e 8 ) Y1
Hi(teop ) * T ey * exp [T %_ - (2.261)

at each step n. Then we get that the relative measure of admissible parameters is greater

than

o > B (n—1)y 1 +4eg 8 . U1
A H Mn > X H (1 Hn(tiop )+ 1 — 4eg e <9n[§]+1 L _ ¢ '

n=24 n=24 4

We combine that with bounds for H,, in (2.229) through (2.233) and get the following

corollary.
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Corollary 10. Let M, be the relative measure of admissible parameters at step n. Then

oo
[ M- > 1.58382 %1071 (2.262)

n=6

Proof of theorem 2. From 2.5.3.2, we have that velocities of endpoints of 6(")’s are less
than €y := 0.003. By (1.8), we get

4 4

- 460\5@)@); < |T(6™)] < — 460\5@)@); for all t € T(5) (2.263)
and
1 A=Y (@) < |TY] < 4 A=V ()| for all t € T (2.264)
1+ 4eg 1 —4eo
Let tt(?pfl) be the top value of 7=V From lemma 19, we get that for any non-

admissible domain 6 ¢ A=Y and t € T(6(), we have

PG
(n-1) otoz 1
‘5(”)(t)’ < ‘5(”)(ttop )| * exp max max —_— “T(nf )‘ . (2.265)
t€T( =D 2€G() i (6 (1) | ()i
0z

From (2.263), (2.264), and (2.265), we get

U TE™| T

[Te-D] 2 [T
o™ (t,)

Fo S ane )

G ;

n),t —1

Lt 10 i )
i * exp max max — : ‘T(n )’ * Z ;
i—€o BET D) 2€G(,4(6 (1)) 3géz>,z~ ; ‘ A=) (¢~ >)’

e () (4(n1)
1+e o1 (n-1) Ui 0" (1 )’
=3 * eTp max max — |- ‘T ‘ * :
71— €0 teT =D 2€G ) (5 (1)) 8gén),i A(”*l)(tggp_l))‘
z
Using estimates from (2.155) and (2.179), we get (2.259). O

That finishes the proof of the main theorem except for the summability condition.
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2.7 Summability condition

According to section 1.2.5, we need to show the summablility condition (1.4) for the
power maps of f; constructed through the given algorithm. Then we can conclude that f;

has an a.c.i.m. given by (1.5) for t € ), (U’T(")). Let us define the following notations:
e N, (k): the maximum number of iterates of branches in .

e AN,

y(k): the maximum increase in the number of iterates of branches defined on

the y-axis above y;_1, at step k.

e AN, (k): the maximum increase in the number of iterates of branches defined on

the z-axis inside 6;7_,, at step k.

e AN,(k): the maximum increase in the number of iterates of branches defined on

the x-axis outside ;7 ,, at step k.

The maximum number of iterates for initial partitions are calculated directly to be

(2.266)
For general n, we have the following lemma.
Lemma 20. Given 0 < e; < 1 there is a constant N¢, such that
Ny(n) < N+ (1+€)" (2.267)

for alln > 6.
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Proof. Fix e1. Assume the inductive assumption that for £ < K — 1, we have
Ny(k) < N, + (1+e)F, (2.268)

where N, is to be chosen later. We will show (2.268) for k = K.

By construction, we pullback elements of partition 5[% into ¢*=D (A1) at step
k. According to 2.4.4, the worst possible cases of maps ¢’s on domains above y;_1 are
g= f[%H»Q’j o fo,10 fo1o0 f[g},l-s o fois—1 © 0 fo,i; © gk—1,i and
g= f[§]+27j o fo,10 fo1o0 f[gm © f5,i1 © Gh—1,-
Therefore, the change in number of iterates above y;_1 is given by the maximum possible

sum of the number of iterates of the maps which we compose with.

AN, (k) < Ny ([g] +2> +2%24+ N, <[§D + max {4 * N, (0), N, (5)}

cx([Be2) waen ([f]) v -

for any step k. By (2.268) and (2.269) we get,

ANy(K) < N x (14 61)[%“2 +44 Ng x(1+ 61)[%] + 20

1 1 24 2(K-1)
< Ne, * 2AK-1) K + KD kT k-1 | * (I1+e) 3
=512 ==—-[5]
(1+¢€1) (1+e€) 3 3 (I14+€) 3

3 [3

(2.270)

We choose K sufficiently large so that

1 1 24
( 2(Kg—1) Ko 2 + 2(Kg—1) Kq + 2(Kg—1) ) < €1 (2271)
(1+e) 35 312 Q+e) 5 B Q+ea) 5
Then for K > Kj

2(K—1)

ANy(K) < Ny *(1+e€)” 3 . (2.272)

Since the parabolic pullback of ¢*) (A(k)) onto I includes all partitions of and in fact more

partitions than &, we have

_ 2(K—1)

AN,(K) < ANy (K) < Ne, x(1+¢€1)” 3 . (2.273)
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Outside 0% _,, the increase of iterates comes from the 1-step or 5-step filling-in on
each hole. When we fill-in a hole §; ¥ that is the preimage of §*, i =0or5<i< K —1,
the increase of the number of iterates will be no more than AN, (i). Therefore, the worst
cases for the increase in the number of iterates would be when we fill-in holes that are
preimages of d%_;. This gives

- 2(K—2)

ANL(K) < AN, (K —1) < N, * (1 +¢) 3 . (2.274)

Since max{AN,(K), AN,(K)} will provided an upper bound for the maximum increase
of iterates for any branch created on the z-axis in step K, we have from (2.272), (2.273)

and (2.271) that

Np(K) < Np(K — 1) + max{AN,(K), AN, (K)}

2(K—1)

<N, *(1+ el)K_l + N, *x(14€) 3

1
< Ne * (1+ 61)K_1 * <1 + K_1_20E-1
(I4+e) 73
<N, *(1+6)k (2.275)
for K > Ky. If we set N¢, := N,(Kp), then (2.268) will hold for all K. O

Since monotone branches in §;° ;\d;° of & will not change after step k, monotone
branches of the limiting power map with power greater than IV, (k) has domain inside 0;°.

Combining this with (2.150), we get

Zni ’I'L‘ < Ny(o) * ’I’ + ZNy<k) * ,u'holes(gk) (2276)
i k=5
< Ny(0) # |I] + > (1+ )" %0.000210601 * (0.73)"~** (2.277)
k=5

As €1 can be chosen to be arbitrarily small, we choose

(1+€)*0.73 < 1.
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Then ), n; |1;| converges.

2.7.0.1 Decay of correlations

As a consequence of lemma 20, we have decay of correlations at polynomial rate.

Lemma 21. For any p > 0, there is some K, such that for any K > K,,, the measure
of monotone domains in the power maps constructed by our algorithm with the number

of iterates of the original map greater than K is less than C% for some fized constant

C=Cp).

Proof. From lemma 20, we have for arbitrarily small ¢ an N, such that the maximum
number of iterates of f; of branches in &, is less than N, * (1 + €)™ for all n. Choose
€p so that 0.73 (e, + 1)? < 1. Then choose n, so that N%p (14 2)™ < (14 ¢)".
Let K, = N%p x (1+ 2)™. For any K > K,, we have one of K = [N<(1 + )+ 1,
K = [Ng(1+ ) +2, -+, 0or K = [N%p(l + )", for some n > n,, which means
Ne(1+ <K < Ne(1+ 2)"*! for some n > n,. The measure of domains with the

maximum number of iterates greater than K will be less than

Cy # (0.73)"

(2.278)

where Cy = 0.000210601. Letting C = Cy * (Nipu n %’))p proves the claim. O
2
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By the theorem of L-S Young [14], lemma 21 implies polynomial decay of correla-
tions. As mentioned in [8], there exists parameter values in construction such as the one

explained here that the decay of correlations is slower than exponential decay.
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Appendix A

A.1 Distortion estimates

Let x be a diffeomorphism that maps the interval Y onto the interval X. Let

Y = Y1 UY; be a partition of Y, X7 = x(Y1), and X3 = x(Y2). Suppose % = o and

% = ka. If there is some constant D such that g:gzlg < D for all y1, y2 € Y, then

% < k < D, which gives
Yi| ko Da

— = < . Al
Y| 1+ka = 1+ Da (A1)
and
Y1 ka oty
— = > A2
Y| 1+ka = 1+ 1a’ (4.2)
On the other hand, if ‘é}" = 7, then gl} = —. From (A.1) we obtain
@ < D(% = Dy (A.3)
V] ST5DGL) (-7 +Dr
and
1
mi, olcs) v (A4)
V] Z T+ 5(Z) DA+

A.2  Minimizing distorted ratios I

We frequently use the following technique for obtaining the best (smallest) ratio
when taking into account distortion bounds. Suppose x is a diffeomorphism that maps
the interval Y onto the interval X. Moreover x can be extended to a diffeomorphism
X from Y DY onto X D X. If X is a 7-neighborhood of X, then from (1.3) , we get

3;83 < (1+ 2)? =: D. Suppose there is a domain dx C X such that ”—XH =+, then to
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Figure A.1: Minimizing distorted ratio by adjusting the intermediate domain

X1 (82)]

estimate Sy s we can use (A.3) and get the upper bound 1D

T, D Or, we can pick an

intermediate domain X = [21, zo] such that 6y € X C X. This will give a new extension

constant

, min{[left component of X\X]|, |[right component of X\ X|} (A5)
T = : :

Ry

The new distortion bound given by (1.3) is

~

1 X 2
D’:(1+/)2:<1+ - |:| — )
T min{|left component of X\ X|, |right component of X\ X|}
(A.6)
By (A.3), we get
x| pr
X1 (0)] X1
. (A.7)
¥l < 1_Fd L B
Xl X
. Byl pr
We can adjust X so that % is minimized.
-4 DX
(x| 1|

161



Figure A.2: Minimizing distorted ratio by repeatedly choosing intermediate domains

A.3 Minimizing distorted ratios II

On the basis of A.2, we can improve the estimate for distorted ratios even more.
Define Dy ¢ as the upper bound of the distortion on X when extension is X given by

the Koebe distortion principle. Then

A F A X A
distorted ratio of u = M < u D * u * D

_ ) ~ A
11~ FED] S g ever 1]

Xoveri—m*D

I over I

(A.8)

Therefore defining intermediate intervals gives better bounds.

A.4  Simple arithmetic

This is very simple arithmetic, but we use it many times so we write it down here

to simplify the calculations in the text. Let 0 < A< A’ <1 and 0 <y < x’ <1, then

A+(1-A)x=A(1-x)+x

<A"(1—x)+x
=A"+(1-A4)x
<A+ 1 -A) (A.9)
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Let 0< A<A <1,0<x<x' <1,0<¢ <9 <1andy </, then
Ap+ (1= A)x =Ad" + (1 - A) X'
ZA(W—X')JFX’
SA/(w/_X/)"‘XI

<A+ (1— A)Y (A.10)
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Appendix B

All estimates here are obtained using Mathematica. Most estimates are obtained
for parameter values approximately at the two endpoints of 7o = [tnottoms trop)- Lhis is

sufficient because from graphing these values as functions of ¢, we observe that the graphs

are monotone.

B.1 Estimates for & and &;

Since &y and &5 are symmetric partitions, we only provide estimates for the first half

of the domains.

B.1.1 Relative sizes of domains

Table B.1: Relative sizes of domains in &5

thottom

ttop

0.2427319087

0.2427306095

0.1309998911

0.1309975736

0.07065822374

0.07065293974

0.01004307132

0.01004097488

0.005404021765

0.005402410542

0.002998582113

0.002997323711

0.004953891000

0.004952576925

0.003382907318

0.003380821552

0.007167250156

0.007161326857

0.004271401491

0.004265621070

0.002515416726

0.002510447359

0.001493126335

0.001489215309

0.002695390798

0.002686328996

0.002105055444

0.002093411296

0.001201827266

0.001192314156

0.0006818043795

0.0006749125945

164




Figure B.1.1 graphs the relative

tion of t.

Figure B.1:

ol6s

0.0003898465847

0.0003852279662

0.0006620850197

0.0006529792462

0.0004642227615

0.0004563669112

0.001006865975

0.0009841148679

0.0006018800761

0.0005824543224

0.0003466195253

0.0003323382542

0.0001999401332

0.0001903082403

0.0003429122408

0.0003234190773

0.0002434628705

0.0002265727424

0.0005405182143

0.0004898067834

0.0003363503340

0.0002905431268

0.0002015655023

0.0001659570049

0.0001202404555

0.00009508442368

0.0002164648905

0.0001616696455

0.0001660506337

0.0001133122945

0.0004734182300

0.0002450917575

0.0007675737511

0.002151890379

measure of holes in &5 restricted to I\d5 as a func-

t bottom

Relative measure of holes in 7y
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B.1.2 Derivatives

By property of functions with negative Schwarzian derivative, the minimum of the

absolute value of the derivative occurs on the endpoints.

Table B.2: Minimum derivatives of monotone branches in &5

t thottom ttop
mingea, o5 3.550344958 | 3.550374917
minge A, % 6.723459232 | 6.723682199
mingea, 2ss 11.72819466 | 11.73013718
mingea, os.a 86.87310503 | 86.89533073
mingea oss 160.5497500 | 160.6061824
mingeag 2se 2721965563 | 272.3434811
first hole

mingea, 2s.7 253.2091857 | 253.3735781
mingeag 2s8 115.0400218 | 115.1652419
mingea, 250 193.6785762 | 194.0053214
minge g w 331.2450544 | 332.0156282
mingea ;) % 531.1810758 | 532.7770510
second hole

mingeA )y w 402.7311018 | 405.4987128
mingeA ;g w 701.9768611 | 708.4823797
ming e, w 1248.211624 | 1262.263100
mingeA ;5 w 2071.551280 | 2098.096375
third hole

mingeA g % 1863.962889 | 1893.613157
mingeA gy % 812.6257973 | 835.8831673
mingeA g % 1388.217406 | 1442.191933
mingea g, W 2441.862586 | 2557.873810
mingeA 0 % 4025.403248 | 4242.651494
fourth hole

mingeA ;) % 3574.163547 | 3817.617767
mingeA 4y % 1481.907922 | 1676.960973
mingeA (3 % 2420255414 | 2889.120726
mingeA 4y % 4117.551441 | 5120.475467
mingeA 5 % 6593.336572 | 8489.935758
fifth hole

mingeA 4 % 5185.817708 | 7634.923726
mingeA 7 % 1194.970643 | 3350.229588
95
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Table B.3: Minimum derivatives of maps on holes in &5

¢ thottom ttop
) 9F5.1

Mg cfirst hole | o 21.5 21.5
. 8}‘5’2

ming esecond hole | “ax 37 37
. 8.7:5’3

Mming cthird hole | ~aa 159 160
i 0F5,4

Mmingefourth hole r 300 325
) 0755

ming cfifth hole oz 460 650

B.1.3 Velocities

This is for t & tyoiom

Table B.4: Velocities compared with ratio of derivatives of endpoints of monotone domains

for the bottom parameter

af
7 2xto
z

A left endpoint of A right endpoint of A left endpoint of A right endpoint of A
Ay 0.04691305788 0.2098046492 -0.06265274890 -0.1921578221
Ao 0.1833134070 0.4703299944 -0.1921582611 -0.4610116203
As 0.4563422466 1.107998824 -0.4610125742 -1.102657049
Ay 1.101991496 1.360261390 -1.102663703 -1.359539846
Ag 1.359181607 1.557697813 -1.359542576 -1.557307073
Ag 1.557115130 1.712355790 -1.557310194 -1.712124748
first hole
Ay 1.873180686 2.129928542 -1.873426996 -2.129696013
Ag 2.129229951 2.859278703 -2.129691727 -2.858733312
Ag 2.858467109 3.571474464 -2.858739036 -3.571149860
A(lo) 3.570996072 4.184574665 -3.571156987 -4.184384000
A(11) 4.184298808 4.668154514 -4.184392301 -4.668033953

second hole

A(12) 5.789089567 7.233381363 -5.789230595 -7.233223494
A(13) 7.233162025 8.417863700 -7.233237643 -8.417771406
A(14) 8.417745193 9.278989877 -8.417787505 -9.278935629
A(15) 9.278929767 9.859145529 -9.278952827 -9.859107579
third hole

A(IG) 11.00251042 11.99280134 -11.00253953 -11.99276388
A(17) 11.99267607 14.88960255 -11.99273627 -14.88951968
A(IS) 14.88951209 17.39938947 -14.88954706 -17.39933601
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A(19) 17.39934704 19.27031749 -17.39936675 -19.27027655
A(20) 19.27030030 20.37224043 -19.27031292 -20.37293944
fourth hole

A(21) 23.16206023 25.47200468 -23.16207435 -25.47191555
A(22) 25.47165138 32.70658570 -25.47168019 -32.70652074
A(23) 32.70656075 39.72259010 -32.70658044 -39.72242540
A(24) 39.72258387 45.56999831 -39.72262588 -45.57001621
A(25) 45.57001340 49.95686962 -45.57000665 -49.95689000
fifth hole

A(26) 60.41266814 71.93685307 -60.41265954 -71.93687061
A(27) 71.93685973 155.5888650 -71.93692639 -155.5889281
s

Table B.5: Velocities compared with ratio of derivatives of endpoints of holes for the

bottom parameter

oF

It

OF

z

551 left endpoint of 561 right endpoint of 551
first hole 1.65 2
second hole 4.5 5.8
third hole 9.8 11
fourth hole 20.1 23.2
fifth hole 50 61

This is for t = t;,,

Table B.6: Velocities compared with ratio of derivatives of endpoints of monotone domains

for the top parameter

ar

Dt dx(t)

af dt

z

A left endpoint of A right endpoint of A left endpoint of A right endpoint of A
A 0.04691279046 0.2098029741 -0.06265246566 -0.1921562559
Ao 0.1833113595 0.4703147173 -0.1921562559 -0.4609965396
Az 0.4563260782 1.107817863 -0.4609965396 -1.102476709
Ay 1.101804164 1.359917399 -1.102476709 -1.359196388
Ag 1.358835003 1.557156619 -1.359196388 -1.556766520
Ag 1.556570993 1.711441025 -1.556766520 -1.711210975
first hole
Ar 1.871981055 2.128576243 -1.872228328 -2.128344475
Ag 2.127882066 2.856207363 -2.128344475 -2.855663340
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Ag 2.855390665 3.565532308 -2.855663340 -3.565209366

A(IO) 3.565047501 4.174979348 -3.565209366 -4.174790645

A(ll) 4.174696063 4.654317395 -4.174790645 -4.654199799

second hole

A(12) 5.763104191 7.184623098 -5.763247721 -7.184468590
A(13) 7.184391148 8.341520636 -7.184468590 -8.341432204
A(14) 8.341387880 9.176939224 -8.341432204 -9.176889589
A(ls) 9.176864711 9.735422487 -9.176889589 -9.735392626
third hole

A(16) 10.83272057 11.77543960 -10.83275366 -11.77540806
A(17) 11.77534514 14.48049458 -11.77540806 -14.48041962
A(IS) 14.48038205 16.75635452 -14.48041962 -16.75631108
A(lg) 16.75628930 18.40687523 -16.75631108 -18.40685074
A(20) 18.40683846 19.50827507 -18.40685074 -19.50826030

fourth hole

A(zl) 21.70555335 23.57312764 -21.70556976 -23.57311197
A(22) 23.57308070 28.95228316 -23.57311197 -28.95224580
A(23) 28.95222707 33.48332006 -28.95224580 -33.48329838
A(2g) 33.48328751 36.77019997 -33.48329838 -36.77018774
A(25) 36.77018160 38.96205579 -36.77018774 -38.96204841
fifth hole

A(26) 43.35079340 47.07072420 -43.35080160 -47.07071636
A(27) 47.07070072 57.79458380 -47.07071636 -57.79456510
95

Table B.7: Velocities compared with ratio of derivatives of endpoints of holes for the

bottom parameter

oOF
ot
OF
ox
651 left endpoint of 651 right endpoint of 651
first hole 1.65 2
second hole 4.5 5.8
third hole 9.7 10.9
fourth hole 19.5 21.7
fifth hole 39 43.5

FOI' t~ tbottom
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Table B.8: Velocities compared with ratio of derivatives of endpoints of monotone domains

for the bottom parameter on the y-axis

&
)
ot

I
=]

Q|
)
ot

Q)
f<

dy(t)

dt

lower endpoint of A(5)

upper endpoint of A(G)

lower endpoint of AG)

upper endpoint of AB)

-0.00187040473

-0.00186108386

0.00187024454

0.00186124318

B.1.4 Variation of derivatives

Let f5; be monotone branches in {5, we obtain upper bounds for

the interval A and t over the parameter interval 7y as follows.

Table B.9: Upper bounds for mixed derivatives for monotone branches

for x over

af 1
0 95,4
Upper bounds for ﬁt—i“fL
8f5,i
dx
domain A Aq Aoy As Ay As Ag 5ot Ar Ag Ag Acoy | Aan
Upper bound of 2.2 8.5 41 65 87 135 160 250 420 600 750
. —1 —1 —1
domain A 5 Aaz) | Aas) | Aae | Aas) | % Aae) | Aan | Aas) | Aag) | Aeo | Y
o 5
Upper bound of ﬁta—fjfL 1700 2300 2800 3200 4700 7500 10000 | 12000 | 14000
5,1
BmL
. —1
domain A A(Zl) A(22) A(23> A(24) A(25) S A(26) A<27) o5
o 5
Upper bound of %f}fL 21000 | 34000 | 55000 | 70000 | 82000 170000 | 900000
5,1
BmL
) -1, -1 b » o
Let F5;’s map 6, s to dg. 6, s are the "five holes” in &s.
Table B.10: Upper bounds for mixed derivatives for maps on holes
aF 1
o 5,1
Upper bounds for ﬁfa—% over the interval 50_1
Fo
pora.
561 ‘ first hole second hole third hole forth hole fifth hole
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17500

120000

Upper bounds for

125

1100 4000

For t ~ t.p,

Table B.11: Upper bounds for mixed

y-axis

derivatives for the initial monotone branch on the

Qw‘@
}LQa

Q

5

lower endpoint of A®)

upper endpoint of A5

-8.9

-7.9

Figure B.2: Mixed derivative for z ranging over A(®)

Let G5 ;’s map 50_1’3 to dp. 50_1’5 are the ”five holes” in C(5).

Table B.12: Upper bounds for mixed derivatives for the maps on holes on the y-axis

—1
gogii
Upper bounds for 6599% over the interval 661
5.3
FiF
551 first hole second hole third hole forth hole fifth hole
—1
@‘995,-;
Upper bound for |22z 1.22 2.47 6.5 6.24 7.04
995,
ox
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B.1.5 Bounds for initial partitions

This summarizes estimates for £y and &5.

Table B.13: Overall bounds for derivatives for the initial maps

o
o .
lower bound for % 3.5
970,i
upper bound for é)fot - 1.109
XA
dx
a2 foi
Itz
upper bound for — 50
e
z
' 9(fo,iz° °f0,i) ‘
at
upper bound for 1.5527 (1.109 * (1 + ﬁ + ﬁ§+))
upper bound for ,s<6 200
€5, x — axis
o .
lower bound for ‘ 251’1 85 ( this is for the 4th to the 32th domain)
deJ
t
upper bound for 8f85 - 160
K
23
aZf;i
dtdz
upper bound for —7 900, 000
8f5J
dz
OFsy
lower bound for ‘% 20
2% F5
ox
upper bound for 57, ) 4
5,4
ox
dfbﬂ
ot
upper bound for 5F 50
5,1
dx
5=
d fsj
dtdz
upper bound for —T 61,000
oF ]
5,1
9z
£5, y — awis
dg
lower bound for ‘%‘ 391005
‘ 1’9891 (ZO)‘ 15
upper bound for Tog T 13 ~ 1.15385
J(5
‘7£;l(y0)
2
979(5)
ox
upper bound for 1.5
99(s) |
oz
99(s)
ot
upper bound for Bg( ) 0.0019
5
ox
5
979 (5)
Itdz
upper bound for — 8.9
99(5)
Oz
oG5 ;
lower bound for % 37
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505
ot 0.0025

upper bound for 305 ;
i
dx

——
9795
—otos

upper bound for
PP 69571
i

Oz

B.2 Extensions and refined extensions

The extensions of domains in &y will give the maximum number of boundary refine-

ments needed. Values in this chart are upper bounds over all ¢t € 7476777

Table B.14: Upper bounds for distorted ratios of sizes of extended domains to sizes

of corresponding domains

T d :=distortion on : dx*r

left Compo‘nAerl‘f of ANAL 400908 (left component of Aj\A1) U A < 5.85896 2.40163
|right Compo’:’ﬁt of 1\ 486451 (right component of A1\A1) UA; < 4.24323 2.07412
Ileft Compon‘e&‘i ‘Of ANALT ¢ 0105975 (left component of Aj1\A11) UA; < 3.43389 0.363906
|right C°"‘p°r“2’f‘ of 817\M7l 190445 (right component of A17\A17) U A; < 3.23616 0.389779
eft Compone‘"Atlo‘f A1\211l 0268014 | (left component of A111\A111) UA; < 3.05 0.0817443
Iright Compon‘egtl ff 77\ 77l 03016 (right component of A177\A177) U Aj < 3.00866 | 0.0907141
Ileft C"mp”“‘gf of 2o\As| 438737 (left component of Ag\As) U Ay < 1.84564 0.809751
Iright C"mp“)ze;?t of Ax\A2l g 483555 (right component of Ag\Ag) U Ap < 1.77762 0.859577
Ileft Co"‘pO“fA“; ‘Of Bo1\A21l . g 111057 (left component of Apy\Ag1) U Ay < 1.57749 0.175191
Iright Compor‘lzr:‘ of 57\827] _ 117951 (right component of Ag7\Agr) U Ag < 1.56536 0.184636
Ileft Componc‘r‘;;‘f Ao11\ 011l 027951 (left component of Aaj1\Aa11) U As < 1.51877 0.0424511
Iright Compon‘ez'fz ff A277\22771  (.03016 | (right component of Agzr\Ag77) UAs < 1.51604 | 0.0447295
Ieft Co"‘po‘r‘zgf of A3\l 430055 (left component of Az\A3z) U Az < 1.31740 0.566554
Iright CO‘“POg‘;}t of A3\Aal g 6639 (right component of Az\Az) U Ag < 1.35640 0.900514
left CO‘“""“‘QX; ‘Of A31\A311 . gq08727 (left component of Asz;\Agz1) UAs < 1.23409 0.134179
Iright Compm“zr;t‘ of 237\A371 _ (127995 (right component of Azz\Az7) U Az < 1.23568 0.158161
eft C"mpone‘“ﬁ:‘f A311\23111 0273644 | (left component of Ag11\Ag11) U Ag < 1.21425 0.0332272
|right Co"‘pon‘ezg ff A377\23770 031502 | (right component of Agr7\Agrs) U Ag < 1.15815 | 0.036484

173




B.3

B.3.1 Primary ratios

Table B.15: Overall bounds for derivatives for the initial maps

Ratios on I

t thottom ttop
1A_ql
DA o1y | 0-3205862640 | 0.3205340300
1A _al
DA g1y | 0-2091753153 | 0.2091704753
188l | 271721842 | 0.1271607979
dist(A_3,q— 1)
_ 1%l
TG =T 0.2502761679 | 0.2503206110
___ 1Azl
AT 0.1890611386 | 0.1890490012

[A2]

Totag.c D) 0.5396895251 0.5396829591

B.3.2 Selected ratios %

Here, we let A7 = A_1, Ag = A_o, A5 = A_3 to show the order they appear on
the y-axis. Other subscripts will also be given according to the order they appear on the

y-axis. Let g5 be the diffeomorphism that maps A®) onto I.

Table B.16: Ratio of domain sizes to partial of remaining domains

Ratios on I

t thottom ttop

ﬁ;"fl) 0.32053663 | 0.3205340300298

ﬁfﬁl—u 0.20917610 | 0.2091704753206

ﬁ«il«rl) 0.12717403 | 0.1271607979076

W 0.25026897 | 0.2503206110132

W&% 0.18906310 | 0.1890490011995
[Ag]

dstiag.a D) 0.53969059 0.5396829590522

[A77]
dist(Agma 1) 0.061977625 0.06197692151387

__lAanl
TRAL Ty | 0083906928 | 0.08390559199038

_ A7l
Tial—Ty | 0:043995279 | 0.04398951322458

[A31]
dist(ASl,qfl) 0.045789189 0.04578733117880
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_ 1Ao7
T(A Ty | 0098793277 | 0.09879052896388

[A2q ]
Dt g1 0.13337261 0.1333709148367

A7l
Teta L g=Ty | 0-35459170 0.3545879467640

P S 51—
Tet(a 2 =1y | 0-52020847 0.5202009580464

Table B.17: Ratio of domain sizes to partial of remaining domains on the y-axis

Ratios on A(%)

t thottom ttop
— 0.33541197 0.3354098997771
Hs (g5 " (A7)
lg5  (Ag)
—5 0.20504858 0.2050435703931
Hs(gz " (Ag))
log " (ap)]
S e 0.12228690 0.1222745479508
Hs (9= " (A5))
lgg * (50)]
—5 9 0.23732558 0.2373747405086
Hs (g5 " (50))
lg5 " (A3)]
—5 = 0.17844517 0.1784321639675
Hs (g5 " (A3))
log "(A2)]
—5 = 0.50626223 0.5062560261036
Hs (9 " (A2))
laz L (A7)l
—=5 I | 0.067344702 | 0.06734403693652
Hs (g5 " (A77))

=
_los A7l | 84545

— . 5160 | 0.08454397745428
Hs (g5 " (A71))
lgs " (As7)l
—5 = 0.041707790 | 0.04170237694486
Hs (95 " (A37))

—T1
lgg _(A31)] 0.043337254 | 0.04333556027423
T =1, . . .
Hs(g95 " (A31))

—1
195 (B2D)| | 093372605 | 0.09337015582215

— . .
Hs (g5 " (A27))
lgs " (A21)l
—h =t 0.12646672 0.1264652977255
Hs(g9z " (A21))
las "(A17)]
—=5 T | 0.33650744 0.3365043713358
Hs (95 " (A17))
lgs (A12)]
—5 o= | 0.50692626 0.5069194318305
Hs (g5~ (A12))

Table B.18: More ratio of domain sizes to partial of remaining domains

Ratios on T

t thottom ttop
|A777]

Tt AT 0.014677608 0.01467738117096
|A772]

oA T 0.0078377722 | 0.007837528334170
|A7711

oA T 0.015826017 0.01582571222937
|A737]

oA =T 0.0050770231 | 0.005076253134255

% 0.0094806979 | 0.009480300321950

dist(A727.¢— 1)

__langl 0.019724964 0.01972453216366

dist(Azy7,9—1)

183771 | 010088716 | 0.01098691333112

dist(Az77,9—1)
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|A3711
dist(Ag7;.9— 1)

0.010831911

0.01083071327374

__ |Ag37l
Tt Ar =T 0.0030897953 | 0.003089179866715
__ 1Aza7l
oA =1 0.0056348362 | 0.005634374374564
__ 1Azi7l
oA T 0.011216713 0.01121613285142
_ 1A31al
Ttan =T 0.011447672 0.01144720261362
_ 1Ao7yl
Tstlar =Ty 0.023273862 0.02327302474135
__ |Ao7a|
Tstlamr =1y 0.012260892 0.01226034520501
Sl 0.024740046 0.02473928014316
dist(Ag71.9— 1)

18237 ] 0.0078405532 | 0.007839341900395

dist(Ag37.9—1)

[A237 |
dist(Ag31.9— 1)

0.0073433283

0.007342901066202

_ |Aoo7|

Tt h =13 0.014664821 0.01466418789082
_ |Aoy7|

Tt A =T 0.030690287 0.03068965729156
_ 1Ag77l

Toh 0.071028946 0.07102791382318
1Ml

SIS 0.088604528 0.08860298707742
_ IAa37l

Tota =T 0.042985456 0.04297976529638
_ Mgl

Tota T 0.044538903 0.04453706606865
_ 1Aqo7l

Tota =T 0.095882311 0.09587959619373
1ourl 0.34291367 0.3429100228299
dist(Ajq7.9— 1)

1877771 | (0036343166 | 0.003634316656083
dist(Azz77,¢—1) | :
—_1&777l | 9.016977990 0.01697799017366

dist(Ay777.a~1)

Table B.19: More ratio of domain

sizes to partial of remaining domains on the y-axis

Ratios on A(5)

t thottom ttop

lo3 " (A777)]
Sf 0.016106136 0.01610590840944
Hs (9= " A777))

los "(A772)]

=T
Hs(95  Av72))

0.0084509762

0.008450725325239

—T
lgs = (Arzz1)l
H5(5;1A771))

0.016974444

0.01697414336095

=T
lgs ~(A737)|

95 (27870

Hs (95 A737))

0.0052526462

0.005251854412446

—T1
lgs ~(A727)|
=T A
Hs(95 " A727))

0.0097417664

0.009741372135499

=TI
lgs ~(A717)]

95 CTITI

Hs (95 " A717))

0.020021280

0.02002087732676

—T
lgs ~(As77)l
=1
Hs (95  Asz77))

0.010429497

0.01042779682981

—71
lgs ~(Ag71)l
95 "STL)
Hs (95 "Asz71))

0.010273920

0.01027279602420

—1
lgs ~(Az37)l
=T A
Hs (95 " A337))

0.0029287563

0.002928176877694

=
lgs ~(Aza7)l
H5(9§1A327))

0.0053401109

0.005339680622473

—T
lgs ~(Az17)]
=T A
Hs (95 "Asz17))

0.010626426

0.01062589142954

—1
lgs ~(Az11)]
—1
Hs(95 “A311))

0.010843463

0.01084303409416

—T
lgs = (A277)l
Hs(gglAzw))

0.022037915

0.02203715421925
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=T
A
o5 (Ba72)l fl 272)] 0.011613686 | 0.01161318538644
Hs (95 " A272))

Iggl(A271)|
H5(951A271>>
Iggl(A237>I
H5(9§1A237))
|g5’1<A231>|
Hs(nglAzal))
Iggl(A227)|
H5(§§1A227))
Iggl(A217>I
H5(9;_1A217))
log T(Aa177)l
H5(9§1A177>)

0.023428273 0.02342758275824

0.0074378572 0.007436719453193

0.0069684446 0.006968049379401

0.013915875 0.01391529483451

0.029143622 0.02914306636412

0.067586680 0.06758579038737

— T

—a
M 0.084751133 0.08474976160574
Hs (95 " A171))

—1
lgs ~(A137)]
=T
Hs(g9= " A137))
—1
lgs ~(A131)]

0.041765194 0.04175972055139

— 0.043392238 0.04339049233279
Hs(95  A131))

lo3 ' (A127)]
—571— 0.093488773 0.09348621361920
Hs(95  Ai27))

lo3 " (A117)]
—55 2107 0.33683767 0.3368342882525

H5(g;1A117))
log T (ar777)
H5(9§1A7777))
log T (a1777)
H5(951A1777))

0.0039980041 0.003998004132746

0.0161658656 0.01616586569946

B.4 Admissible domains

We take pullbacks of & into domains of &y according to the algorithm in 2.6.2. This
forms &. Then we divide & into sections which will improve the estimate for distorted

relative measure of holes in ). Upper bounds are taken for ¢ over 7y

Table B.20: Upper bounds for the distorted relative measure of holes for any domain refined

by 56 divided into appropriate sections

€0
Domains of each section D=Upper bound for dis- R=Upper bound for the %

tortion on the section relative measure of holes in

the section

1 through 7 1.022 0.11 0.112149
7 through 14 1.057 0.162 0.169667
15 through 20 1.024 0.095 0.0970587
21 through 25 1.021 0.214 0.217516
26 through 56 1.169 0.283 0.315727
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57 through 60 1.029 0.288 0.293897
61 through 64 1.011 0.192 0.193703
65 through 71 1.030 0.138 0.141554
72 through 83 1.063 0.291 0.303764
84 through 108 1.112 0.15 0.164044
109 through 292 2.142 0.291 0.467846
293 through 383 1.351 0.27 0.333193
384 through 429 1.103 0.318 0.33963

Here we do the same for partition £;. The last row(section), shaded in gray, is the

region of 09 where we use separately to get (2.243).

Table B.21: Upper bounds for the distorted relative measure of holes for any domain refined

by 5'5 divided into appropriate sections

Section D=Distortion on the sec- R=Relative measure of %
tion holes in the section

1 through 64 1.016 0.026 0.026405
65 through 130 1.057 0.029 0.0306024
131 through 194 1.024 0.017 0.0174009
195 through 257 1.021 0.038 0.0387671
258 through 578 1.169 0.051 0.0591095
579 through 640 1.029 0.051 0.0524015
641 through 702 1.011 0.035 0.0353714
703 through 767 1.030 0.025 0.0257307
768 through 895 1.063 0.052 0.0550955
896 through 2100 1.73 0.057 0.0946708
1153 through 2100 1.56 0.064 0.0963855
2101 through 3076 1.38 0.038 0.0516935
3077 through 4037 1.36 0.048 0.0641711
4038 through 4547 1.12 0.055 0.0611961
4548 through 9214 1.3036 0.2 0.245795

B.5 Final calculations

The following table lists the figures we use to obtain inequality (2.260).
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