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Chapter 1

Basic theory, notions, and constructions. Some examples

1.1 Introduction

The quadratic family ft(x) = tx(1−x) is a family of S-unimodal maps exhibit-

ing a wide variety of behaviors for ft corresponding to different parameters t. This

family of maps has been studied extensively and most thoroughly. For literature

review we refer to [5].

One topic of interest is the abundance of parameters corresponding to maps

which have absolutely continuous invariant measures. Such parameters, denoted by

Λ+, are known as the stochastic parameters. Topologically, Graczyk and Światek

[6] and Lyubich [10] showed that the set of parameters corresponding to maps with

attracting periodic orbits, which cannot have a.c.i.m. is open and dense in (0, 4].

Such parameters, denoted by Λ−, are known as the regular parameters. This means

that Λ+, being in the complement of Λ−, can only be a nowhere dense set. On the

other hand, measure-wise, the Lebesgue measure of Λ+ is positive ( [7], [2]), and

t = 4 is a density point of Λ+, namely, limε→0
|Λ+∩[4−ε,4]|

ε
= 1. In fact, Lyubich [11]

showed that Λ+ ∪ Λ− takes up full measure in [0,4]. Avila and Moreira [1] showed

that in the set of Λ+, a full measure of the parameters correspond to the Collet-

Eckmann maps, those are maps whose critical orbits have exponentially growing

derivatives.

1



It is interesting to get an idea of the actual measure of Λ+. Tucker and Wilczak

[13] have computed a lower bound for the measure of Λ−. Luzzatto and Takahasi [9]

made the first attempt to find a lower bound for the measure of Λ+ by estimating

the measure of Collet-Eckmann maps in a small interval adjacent to 4. Here we

work on an interval non-adjacent to 4, and provide the following result.

Theorem 1. In the parameter interval T0 ≈ [3.99512595000, 3.99513000706], there

is a set M of parameter values, such that ft for t ∈M has a.c.i.m. and

|M|
|T0|

≥ 1.58382 ∗ 10−16. (1.1)

The interval T0 is dynamically defined. The estimate given here is by no means

optimal. The interval T0 chosen was an arbitrary choice, but similar processes can

be carried out for a variety of intervals T0. Note that the parameter choice in our

construction provides not only Collet-Eckmann maps.

We adapt methods from [7] and [8]. In [7] and [8], the inductive constructions

use only C2 properties of unimodal maps. Here we use properties of S-unimodal

maps. In particular, in our construction, the number of refinements (discussed in

the text) at any step n is bounded above by 6 + 3, whereas in [7] and [8], the

number of refinements can grow with n. Our method requires some preliminary

computer assisted estimates on sizes, derivatives and velocities. They constitute the

base of induction.

Our approach of estimation is based on the construction of power maps. In

this first chapter, we discuss the basics needed in our method of construction. At

the end of this chapter, we give two examples demonstrating this method. In the
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second chapter, we state the algorithm for construction and then prove estimates

for measures, derivatives, and distortions. This leads to the conclusion of our main

theorem.

1.2 Preliminaries

For the family of quadratic maps ft(x) = tx(1− x), where 0 < t ≤ 4, explicit

formula for the a.c.i.m. is only known for the case t = 4 (Chebyshev map). In that

case, the explicit form of the invariant measure µ is given by dµ = 1

π
√
x(1−x)

dx. It is

obtained by taking a conjugacy to the full tent map and using that the full tent map

has the Lebesgue measure as an invariant measure. If ft has an attracting periodic

orbit ( only one can exist), such maps do not have a.c.i.m.. It is well known that for

parameter values t = 0 to t = 3.57025 . . . (Feigenbaum value), attracting periodic

orbits of periods 2k exist and they bifurcate as parameter value grows. Indifferent

periodic orbit exists when the periodic orbit of period 2k bifurcates to a periodic

orbit of period 2k+1. The indifferent periodic orbit plays the role of an attracting

periodic orbit. We are interested in the parameter values after the Feigenbaum value.

1.2.1 S-unimodal maps

Quadratic maps are particular cases of S-unimodal maps. For the theory of

S-unimodal maps, we refer to [4]. Here we give the definition and some basic

properties. An S-unimodal map is a C3 unimodal map that has negative Schwarzian
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derivative on non-critical points. We say that f has negative Schwarzian derivative

if

Sf =
f ′′′

f ′
− 3

2
(
f ′′

f ′
)2 < 0. (1.2)

Below are some properties of S-unimodal maps.

property 1 If Sf < 0, then Sfn < 0 for all n ∈ N.

property 2 If Sf < 0 on I, then |f ′| has minimum on the boundary of I.

property 3 S-unimodal maps can have at most one attracting or indifferent periodic

orbit.

1.2.2 Koebe distortion principle

An important consequence of the negative Schwarzian derivative property that

we will use heavily is the Koebe distortion principle. We say that Ĩ is a τ -scaled

neighborhood of I if each component of Ĩ\I has length of at least τ |I|.

Koebe distortion principle Let g be a diffeomorphism with negative Schwarzian

derivative which maps I onto g(I). Suppose I ⊃ J and that g(I) contains a τ -scaled

neighborhood of g(J), then

(
τ

1 + τ
)2 ≤ Dg(x)

Dg(y)
≤ (

1 + τ

τ
)2. for all x, y in J (1.3)

We say that the distortion of g is bounded by (1+τ
τ

)2.
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Figure 1.1: Diffeomorphism for the Koebe distortion principle

1.2.3 Power maps of ft

We will be discussing induced (power) maps of ft with the following properties.

A power map F is defined on an interval I, and maps I into I. I is partitioned

into a countable number of subintervals I1, I2, . . . (not necessarily in order) so that

the union of the intervals has full Lebesgue measure (denoted by I = ∪iIi (mod

0)). F restricted to each interval Ik is a power of ft. We call the maps on each

interval branches of F , and denote them by fk = F |Ik = fnkt |Ik =

nk times︷ ︸︸ ︷
f ◦ f · · · ◦ f , where

nk is the power. In addition, fk is either a monotone branch or a critical branch.

When fk is a monontone branch, fk maps Ik diffeomorphically onto I. When fk

is a critical branch, fk maps Ik into I and has one critical point. The domains in

which these branches are defined are called monotone domains and critical domains,

respectively.
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1.2.4 Uniform extendability

For the power map F defined in the previous subsection, we define a notion of

uniform extendability. If Ĩ is a neighborhood of I, we say that F can be uniformly

extended to Ĩ if for each k there exists Ĩk such that fk = fnk maps Ĩk onto Ĩ in the

case where fk is a monotone branch and fk = fnk maps Ĩk onto an interval covering

one end of Ĩ in the case where fk is a critical branch. We call Ĩk the extended

domain of Ik.

Figure 1.2: Uniform extendability for power maps
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1.2.5 Folklore theorem

The existence of a.c.i.m.s for maps with countably many expanding branches

relies on the Folklore theorem.

Folklore Theorem Let F be a map defined on a countable collection of disjoint

open intervals
⋃∞
k=1 Ik in I and satisfying the following properties:

1. I =
⋃∞
k=1 Ik (mod 0).

2. fk = F |Ik extends to a C2 function on cl(Ik) and fk(cl(Ik)) = I for each k.

3. F is uniformly expanding. That is, there is an R > 1 independent of k such

that |dfk
dx
| ≥ R on cl(Ik) for each k.

4. F n has uniformly bounded distortion. That is, there exists K > 0 such that

D(fk1
◦···◦fkn )(x)

D(fk1
◦···◦fkn )(y)

< K for all x, y in f−1
kn
◦ · · · ◦ f−1

k1
(I) for any n and any set of

indices k1, · · · , kn.

Then there exists an a.c.i.m. ν with density continuous and bounded away from zero.

See afterword in [3] for a mention of such formulation, and [5] for the proof.

The first two conditions satisfy conditions of a Markov map. From the Koebe distor-

tion principle, condition 4 is satisfied if the negative Schwarzian condition and the

uniform extendability condition hold. The quadratic map has negative Schwarzian

derivative on the intervals (0, 1
2
) and (1

2
, 1). By property of functions with nega-
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tive Schwarzian derivative, the nth iterate fnt of the quadratic map has negative

Schwarzian derivative on its non-critical points.

Our goal is to construct a power map Ft of ft satisfying conditions of the

Folklore theorem. For a given value t, there exist a fixed point q = t−1
t

of ft, with its

other preimage q−1 = 1
t
. We are interested in the interval I = [q−1, q] since iterates

of all points except 0 and 1 will eventually fall into this interval. The power map is

constructed on the interval I. If we can show that F satisfies conditions 1 through

4, then F has a.c.i.m. ν. Moreover, if

∑
ν(Ik)nk <∞, (1.4)

then

µ(A) =
∑
k

nk−1∑
i=0

ν(f−it (A) ∩ Ik) (1.5)

will give an a.c.i.m. for ft on I.

1.3 Basic notions and constructions

1.3.1 Notations

We have already defined the interval I = [q−1, q] for a map ft, where q =

t−1
t

and q−1 = 1
t
. By taking further left preimages of q, it is natural to label

the points q−2, q−3, . . . , q−k, . . .. The corresponding preimages of q on the right

will be q−2
r , q−3

r , . . . , q−kr , . . .. If fl and fr represent ft restricted to [0, 1
2
] and [1

2
, 1]

respectively, then q−k = f−kl (q) and q−kr = f−1
r ◦ f−k+1

l (q). We define intervals
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Figure 1.3: Fixed point and left and right preimages of the fixed point

J1 = [q, q−2
r ], J2 = [q−2

r , q−3
r ], J3 = [q−3

r , q−4
r ], J4 = [q−4

r , q−5
r ], . . .. The figure above

shows the positions of these points and intervals in the case where t is close to 4 but

not equal to the value 4. Note that in the figure, the critical value is so close to 1

that it looks as if it touches 1, but it does not actually touch 1. Each Jk is mapped

by fkt diffeomorphically onto I. We denote such maps by gk, so that gk = fkt |Jk and

gk(J
k) = I. All intervals above vary with t, but we suppress the t for convenience.

It is estimated in [8] that for large n

dq−nr
dt

< cnA−n, (1.6)

where c is a constant and A is close to 4, both constants independent of n. We also

know that the critical value ft(
1
2
) is t

4
, therefore moves at constant speed 1

4
with

respect to t. As t becomes larger, the range of the map covers more Jk’s. Later, we
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will focus our investigation on the case where ft(
1
2
) ∈ J4.

In general, it is convenient to imagine intervals Jk’s as intervals on the y-axis

since later in the text we look at the interval Jk in which the critical value ft(
1
2
) is

positioned. We will use ∆ for monotone domains and δ for critical domains. If the

nature of the branch is not specified, we will just denote them by Ij’s. The labeling

of the indices will not have a general rule, except that δ−nk will be a preimage of

δk and Ik1, Ik2, Ik3, . . . will be subintervals of Ik. For the power maps we will be

considering, the leftmost and rightmost domains will always be monotone domains.

We specifically refer to them as ∆l and ∆r, respectively.

1.3.2 First return map

For t > 2, we define the first return map on I = [q−1, q]. If ft(
1
2
) /∈ J1, the

pullback of J1 by f−1
t consists of two intervals, namely ∆1 = f−1

l (J1) and ∆−1 =

f−1
r (J1). Since ft maps ∆1 (or ∆−1) diffeomorphically onto J1, and g1 = ft|J1 maps

J1 diffeomorphically onto I, we have that g1◦ft|∆1 = f 2
t |∆1 ( or g1◦ft|∆−1 = f 2

t |∆−1)

maps ∆1 (or ∆−1) diffeomorphically onto I. Similarly, if ft(
1
2
) /∈ J2, the pullback

of J2 by f−1
t consists of two intervals ∆2 and ∆−2 and g2 ◦ ft|∆2 = f 3

t |∆2 ( or

g2 ◦ ft|∆−2 = f 3
t |∆−2 ) maps ∆2 (or ∆−2) diffeomorphically onto I. ∆2 is adjacent to

∆1. We can do the same for J3, J4, · · · if they do not contain ft(
1
2
). There will be

an interval JN such that ft(
1
2
) ∈ JN . The pullback of JN by f−1

t will be one interval

centered at 1
2
. We will call that interval δ. It will be adjacent to the intervals ∆N−1

and ∆−(N−1). gN ◦ ft|δ = fN+1
t |δ maps δ into I and has a critical value. Elements

10



∆1, ∆2,. . .,δ,. . .,∆−2,∆−1 form a partition of I where we ignore common endpoints.

Letting fk = F0|∆k
= f

|k|+1
t |∆k

for 1 ≤ |k| ≤ N − 1 and h0 = F0|δ = fN+1
t |δ, we have

a power map F0. F0 is the first return map of ft to I. The following figure is an

example for the value t = 3.989. Again, the critical value in the figure looks as if it

touches the value 1, but it actually does not.

Figure 1.4: Fixed point and left and right preimages of the fixed point

If t = 4, the first return map will have infinitely many monotone branches with

domains converging to the point 1
2
. If t < 4, there will be finitely many monotone

branches on each side, and a critical branch in the center.

Due to the existence of the central critical branch, we do not automatically have a

map that satisfies the conditions of the Folklore theorem. We will try to substitute
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Figure 1.5: First return map

the critical branch by new branches that consist of monotone branches and critical

branches with smaller domains. This is done by a series of monotone refinements,

parabolic pullbacks, critical pullbacks and filling-in procedures. Our ultimate goal

is to get a sequence of induced maps, where the total measure of critical domains

converges to zero. In addition, we would like to ensure that the uniform extendability

condition holds for a fixed extension Ĩ of I.

1.3.3 Holes

In our inductive construction, there is always some region in the center (1
2
)

consisting of the central critical domain and possibly nearby domains where branches

defined on these domains have not yet been fixed. We refer to these regions as central

holes. Monotone domains in a central hole may be modified in later inductive steps.

Preimages of these central regions are also considered as holes. Holes contain critical

domains and some monotone domains whose corresponding branches may not yet

satisfy the uniform extendability condition. We also use δ to denote our holes. We
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denote maps that map preimages of central holes to their original central hole by

capital script letters F or G.

We wish for the total measure of holes to converge to zero.

1.3.4 Basic procedures

Below, we will explain how the basic procedures are performed.

1.3.4.1 Monotone pullback/refinement

Figure 1.6: The monotone branch to be refined and the power map to pullback with

Definition 1. Let F be a power map on I and let f0 : ∆0 → I be a monotone map.

The monotone pullback of F by f−1
0 is the new power map F ◦ f0 on ∆0.

More precisely, if F has branches fk’s with corresponding domains Ik’s, the mono-

tone pullback of F onto ∆0 forms subintervals ∆01,∆02,∆03, . . . of ∆0, where ∆0i =

f−1
0 (Ii), and new branches f0,i = fi ◦ f0. Note that f0,i is a monotone branch if fi is
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a monotone branch and is a critical branch if fi is a critical branch.

Figure 1.7: Branches after a monotone pullback

Let ξ be a partition of I into domains of F . We also consider the monotone

pullback of ξ into f−1
0 ξ as “the pullback of ξ by f−1

0 ”.
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1.3.4.2 Parabolic pullback

Definition 2. Let G be a power map on a domain J on the y-axis and let ht be

the quadratic map restricted to a neighborhood of 1
2
. If ht(

1
2
) is in J , the parabolic

pullback of G by h−1
t is G ◦ ht.

Suppose G has branches g1, g2, · · · with respective domains J1, J2, · · · . We perform

parabolic pullback only in instances where ht(
1
2
) ∈ Jm and gm is a monotone branch.

In such cases, domains are created symmetrically on the left and right of 1
2

and the

central domain is h−1
t (Jm). Newly created branches gi ◦ ht could be either a critical

branch or monotone branch again.

Let ζ be a partition of J into domains of G. Suppose h−1
t (J) = δ. We also

consider the monotone pullback of ζ into a partition h−1
t ζ of δ as “the pullback of ζ

by h−1
t ”.

1.3.4.3 Critical pullback

Figure 1.8: The critical branch to be refined and the power map to pullback with
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Definition 3. Let F be a power map on I and let h0 : δ → I be the central critical

branch of some power map. The critical pullback of F by h−1
0 is the new power map

F ◦ h0 on δ.

The critical pullback is simply a combination of first a monotone pullback then

a parabolic pullback. A critical pullback is always taken on the central critical

branch. If F has branches fk’s with corresponding domains Ik’s, we only take

critical pullbacks in instances where h0(1
2
) ∈ Im and fm is a monotone branch. In

such cases, domains are created symmetrically on the left and right of 1
2

and the

central domain is h−1
0 (Im). Newly created branches gi ◦ h0 could be either a critical

branch or monotone branch again.

Let ξ be a partition of I into domains of F . We also consider the critical

pullback of ξ into h−1
0 ξ as “the pullback of ξ by h−1

0 ”.

Figure 1.9: New branches after critical pullback
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Figure 1.10: Critical pullback viewed as a monotone pullback combined with a

parabolic pullback

1.3.4.4 Filling-in

Filling-in is a procedure which substitutes preimages of central holes by preim-

ages of some partitions of central holes. A preimage of a central hole δ is represented

by δ−n.

Definition 4. Let F : δ−n → δ be a diffeomorphism and let H be a power map of

ft on δ. The filling-in of δ−n by H is the new power map H ◦ F on δ−n.

Figure 1.11: The hole and the power map to perform fill-in with
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Filling-in is simply a monotone pullback performed on a smaller interval, and we

distinguish it from monotone pullbacks because monotone pullbacks are performed

on monotone domains and filling-ins are performed on holes.

Let η be a partition of δ into domains of H. We also consider the filling in of

δ−n by F−1η as “the filling-in of δ−n by η”.

1.3.4.5 Purpose of each procedure

Each of the procedures plays an important role. Monotone pullbacks/refinements

are for refinements on monotone domains that are comparatively large which in turn

will have comparatively large extended domains. How refining monotone domains

will give smaller extensions is explained in greater detail in the following section.

Parabolic pullback is just for pulling back a partition/map from the y-axis onto the

x-axis. Critical pullbacks refine the central domain. Filling-ins refine all holes other

than the central hole. Both critical pullback and filling-in reduces the total measure

of holes, which is one of the goals of our construction.

1.3.5 Extendability

Here we discuss the issue of extendability when performing the basic proce-

dures. We explain ways to make our power maps extendable.
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1.3.5.1 Extendability of the first return map

Let f be a diffeomorphism from ∆1 onto J and g be a diffeomorophism from

∆2 onto I with J = ∆2. Then g ◦ f is a diffeomorphism from ∆1 onto I. A basic

property of compositions is as follows.

Extendability property Let ∆̃1 ⊃ ∆1 and ∆̃2 ⊃ ∆2. If f can be extended to a

diffeomorphism from ∆̃1 onto J̃ and g can be extended to a diffeomorphism from ∆̃2

onto Ĩ with J̃ ⊃ ∆̃2, then g ◦ f can be extended to a diffeomorphism onto Ĩ.

Using the above property of extendability, we will show that the interval

[fNt (1
2
), ft(

1
2
)] is the maximal interval to which the first return map with 2N − 1

branches can be uniformly extended to. As shown in the previous subsection, each

monotone branch fk, 1 ≤ |k| ≤ N −1, is given by the composition g|k| ◦ ft|∆k
, where

each g|k| = f
|k|
t |J |k| is a diffeomorphism from J |k| onto I. The diffeomorphism f

|k|
t on

J |k| can be extended at most to a diffeomorphism on the interval [f−1
r ◦f

−|k|+2
l (1

2
), 1],

where f−1
r ◦ f−|k|+2

l (1
2
) is contained in J |k|−1 and [f−1

r ◦ f−|k|+2
l (1

2
), 1] is mapped

onto [0, ft(
1
2
)]. Therefore g|k| can be extended to a diffeomorphism which maps

[f−1
r ◦ f

−|k|+2
l (1

2
), 1] onto [0, ft(

1
2
)]. Each monotone domain ∆k is mapped by ft onto

J |k|, this can be extended to a diffeomorphism onto [0, ft(
1
2
)]. Combining the above

analysis, the composition fk = g|k| ◦ ft can be extended to a diffeomorphism from

[f−1
l ◦ f−1

r ◦ f
−|k|+2
l (1

2
), 1

2
] (or [1

2
, f−1
r ◦ f−1

r ◦ f
−|k|+2
l (1

2
)] ) onto [f

|k|+1
t (1

2
), ft(

1
2
)]. The

interval [f
|k|+1
t (1

2
), ft(

1
2
)] is the smallest when |k| = N − 1. Therefore the mono-

tone branches can be uniformly extended to [fNt (1
2
), ft(

1
2
)]. The central branch

h0 = gN ◦ ft|δ has image covering q. The greatest extent to which h0 can be ex-
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tended to is such that the image covers [q, ft(
1
2
)]. According to the definition in

1.1.4, we can conclude that the first return map can be uniformly extended to the

interval [fNt (1
2
), ft(

1
2
)]. It is the maximum possible interval of extension. If we pick

Ĩ = [fNt (1
2
), ft(

1
2
)], the endpoints of the extended domains ∆̃k’s of ∆k’s and δ̃ of

δ excluding ∆̃1 and ∆̃−1 lie inside adjacent domains ∆k−1 and ∆k+1 or ∆N−1 and

∆−(N−1), therefore inside I. The extended domains of ∆1 and ∆−1 will always lie

inside the extended image Ĩ due to expanding property near the point q.

Later, Ĩ may be chosen to be smaller than [fNt (1
2
), ft(

1
2
)] to accommodate

more restrictions. The extended domains will then be smaller and will still satisfy

the properties mentioned above.

1.3.5.2 Extendability after monotone refinement

Let F be a power map on I whose branches are uniformly extendable to Ĩ.

Let Ĩi be the extension of a subdomain Ii of I in the partition induced by F . Let

f0 be a monotone map on domain ∆0 which is also extendable to Ĩ. We consider

the extendability of the branches after a monotone pullback of F by f−1
0 . If Ĩi ⊂ Ĩ,

then the newly created branch fi ◦ f0 is also extendable to Ĩ. To guarantee uniform

extendability of all new branches to Ĩ, F needs to be uniformly extendable to Ĩ and

Ĩ needs to contain the union ∪kĨk of all extended domains. This will always be true

in our case. Indeed, for all nonboundary branches, extensions of their domains are

in I. For boundary branches, we use that their derivatives are greater than 3, and

check directly that preimages of Ĩ are contained in Ĩ.
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1.3.5.3 Extendability of monotone domains after parabolic pullback

or critical pullback

Since the critical pullback is a composition of a monotone pullback with a

parabolic pullback, we will just give the criterion for extendability of branches after

parabolic pullbacks. Let J [a] be a monotone domain on the y-axis mapped by g[a]

diffeomorphically onto I. Suppose g[a] can be extended to a map g̃[a] that maps

diffeomorphically onto Ĩ. The let J̃ [a] = g̃−1
[a] (Ĩ). If J̃ [a] is contained in the image

of ht, then the pullback of g[a] by fl, g[a] ◦ fi|f−1
i (J [a]) (i=l,r) is also extendable to Ĩ.

Otherwise, we perform the boundary refinement procedure defined below.

1.3.5.4 Boundary refinement

Boundary refinement is the procedure of taking a sequence of monotone re-

finements on boundary domains to meet the extendability criterion for a parabolic

pullback.

First we define boundary partitions. Let F̂ be a power map of ft. We denote

the map restricted to the leftmost domain ∆l by fl, and the map restricted to the

rightmost domain ∆r by fr.

For t close to 4, boundary branches always satisfy the following properties.

Since ∆r is adjacent to q, within a neighborhood of q, and the derivative of ft near q

is approximately −2, fr is always an expansion. Similarly, fl is always an expansion.

fr is always monotonically increasing and fl is always monotonically decreasing. Let

F̂ be is uniformly extendable to Ĩ, then fl can be extended to a diffeomorphism f̃l
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on an extended domain ∆̃l of ∆l so that f̃l(∆̃l) = Ĩ. Similarly, f̃r(∆̃r) = Ĩ. For t

close to 4 the derivative of ft is close to −2 near q. For such t, fr has derivative

larger than 2 near q, and the right component of ∆̃r\∆r has length less than 1
2

the

length of the right component of Ĩ\I.

Consider the monotone pullback of F̂ by f−1
l onto ∆l. We get a new map

where ∆l is refined. We denote the new map after monotone pullback by F̂l. The

leftmost domain of this map is f−1
l (∆r), which we denote by ∆lr. We denote the

branch fr ◦ fl on ∆lr by flr. Since fl has an extension f̃l that maps an extended

domain ∆̃l of ∆l onto Ĩ and Ĩ includes ∆̃r, flr has an extension f̃lr that maps an

extended domain ∆̃lr of ∆lr onto Ĩ. This extended domain ∆̃lr is equal to f̃−1
l (∆̃r).

Since f̃l has derivative less than −2 near q−1, the left component of ∆̃lr\∆lr has

length less than 1
2

the length of the right component of ∆̃r\∆r.

We can consider again the monotone pullback of F̂ by f−1
lr onto ∆lr. We denote

the new map by F̂lr. The leftmost domain of this map is f−1
lr (∆r) which we denote

by ∆lrr. The map on ∆lrr is fr ◦ flr which we denote by flrr. There is an extension

f̃lrr of flrr such that f̃lrr maps an extended domain ∆̃lrr of ∆lrr onto Ĩ. ∆̃lrr is equal

to f−1
lr (∆̃r). Since flr = fr ◦fl, flr has derivative less than −4, so the left component

of ∆̃lrr\∆lrr has length less than 1
4

the length of the right component of ∆̃r\∆r.

Inductively, we can define ∆ l r · · · r︸ ︷︷ ︸
n times

, ∆̃ l r · · · r︸ ︷︷ ︸
n times

, f l r · · · r︸ ︷︷ ︸
n times

, f̃ l r · · · r︸ ︷︷ ︸
n times

, and F̂ l r · · · r︸ ︷︷ ︸
n−1 times

by

taking n consecutive monotone pullbacks of F̂ , each time on the leftmost domain.

Since f l r · · · r︸ ︷︷ ︸
n−1 times

has derivative less than −2n, the left component of ∆̃ l r · · · r︸ ︷︷ ︸
n times

\∆ l r · · · r︸ ︷︷ ︸
n times

will have length which is less than 1
2n

times the length of the right component of

∆̃r\∆r. Therefore, the extended region that extends outside the left of I decreases
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exponentially. Extended domains of all other domains excluding ∆r are contained

in I.

A similar process can be applied to ∆r of F̂ to obtain ∆r r · · · r︸ ︷︷ ︸
n times

, ∆̃r r · · · r︸ ︷︷ ︸
n times

, fr r · · · r︸ ︷︷ ︸
n times

,

f̃r r · · · r︸ ︷︷ ︸
n times

, and F̂ r r · · · r︸ ︷︷ ︸
n−1 times

. These will give the boundary partitions which we pullback

with.

Consider an interval J [a] on the y-axis which is mapped by g[a] onto I. Suppose

that g[a] can be extended to a map g̃[a] that maps diffeomorphically onto Ĩ. In

the case where J̃ [a] is not contained in the image of ht, we perform a boundary

refinement which is done by a monotone pullback of F̂ l r · · · r︸ ︷︷ ︸
n−1 times

or F̂ r r · · · r︸ ︷︷ ︸
n−1 times

onto

J [a] depending on which direction we want to shorten the extension by. A finite

number of n times will be enough since as explained above, the extended length∣∣∣∣∣∆̃r r · · · r︸ ︷︷ ︸
n times

\I

∣∣∣∣∣ decreases exponentially in size, and g̃[a] a has fixed distortion.

Figure 1.12: Extended domains and their pullbacks
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1.3.5.5 Extendability after filling-in

Let δ be a central hole and δ−p be its preimage. Let F be the diffeomorphism

mapping δ−p onto δ. Let η be a partition of δ consisting of monotone domains and

smaller holes and let H be the power map on δ. Suppose that all monotone branches

and all critical branches of H are uniformly extendable to Ĩ. If F can be extended so

that its image contains the union of all extensions of monotone domains and critical

domains in η, then all newly created branches in δ−p will be extendable to Ĩ.

1.3.5.6 Enlargements of holes

δ, η, and F are defined as in the previous paragraph. Let δ̃ be the union of

all extensions of domains in η. To guarantee extendibility after filling-in, F needs

to be extendable onto δ̃. We define an enlargement δ̂ of δ as a larger interval which

contains δ̃. We shall define δ̂ below as some union of adjacent intervals large enough

to contain δ̃. When taking parabolic pullbacks and critical pullbacks the critical

value should avoid enlargements δ̂ and all preimages δ̂−p of enlargements. That

way, new monotone domains created after filling-in will again be extendable to Ĩ.

All domains outside enlargements are considered to be good domains.

1.4 Dependence on parameter

When the critical value falls into good domains, we can take further pullbacks.

These domains vary as the parameter values change. In order to estimate the mea-

sure of parameter values for which critical value falls into good domains, we need
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to calculate the dependence of interval partitions on the parameter.

Let ∆∗(t) be one of the good domains on the y-axis whose endpoints y1(t) and y2(t)

vary continuously with respect to t. Let t1 be the parameter where the critical

value enters ∆∗ and t2 be the parameter where the critical value exits ∆∗. That is,

y1(t1) = t1
4

and y2(t2) = t2
4

. Let us define T (∆∗) as the interval [t1, t2]. Then we get

the following lemma from [8].

Lemma 1. Let ∆(t) = [y1(t), y2(t)] be an interval on the y-axis. Assume∣∣∣∣dy1(t)

dt

∣∣∣∣ , ∣∣∣∣dy2(t)

dt

∣∣∣∣ < ε. (1.7)

Let T (∆) = [t1, t2] be the respective interval on the parameter axis, where t1 is the

time when w(t) enters ∆(t) and t2 is the time when w(t) exits ∆(t). Then

1
1
4

+ ε
≤ |T (∆)|
|∆(t)|

≤ 1
1
4
− ε

(1.8)

and

1− 4ε

1 + 4ε
≤ |∆(t)|
|∆(t1)|

≤ 1 + 4ε

1− 4ε
. (1.9)

for all t ∈ T (∆).

1.5 Transition from the phase space to the parameter space

The basic argument which allows us to estimate the portion of t such that w(t)

belongs to good intervals splits into 3 parts. At step n of induction we consider a

parameter interval T (n−1) such that w(t) belongs to some interval ∆(n−1)(t) on the

y-axis. Interval ∆(n−1)(t) is mapped by some branch g(n−1) (depending on t) onto

I. By lemma 1, the length of T (n−1) is close to 4|∆(n−1)| for any t ∈ T (n−1).
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Part I We prove that for each t ∈ T (n−1), and for k sufficiently large, k < n, the

measure of holes in partition ξk is less than Cθk−14 for k ≥ 14, where θ = 0.73

and C = 0.000210601.

Part II We pullback some partition ξ[sn]−3, s < 1, a few times to get a par-

tition ξ′[sn]−3 of I. Then we pullback ξ′[sn]−3 onto ∆(n−1) to get a partition

g−1
(n−1)(ξ

′
[sn]−3(t)) of ∆(n−1). Due to bounded distortion, the relative mea-

sure of holes in g−1
(n−1)(ξ

′
[sn]−3(t)) also decreases exponentially with n for each

t ∈ T (n−1). By lemma 1, the parameter interval corresponding to w(t) be-

longing to a specific hole δ−pi (t) is close to 4|δ−pi (t)| for any t such that w(t)

belongs to δ−pi (t).

Part III We show that for all t ∈ T (n−1), relative measures of elements of

g−1
(n−1)(ξ

′
[sn]−3(t)) in ∆(n−1) remain almost the same.

Combining parts I, II, and III we get that the portion of nonadmissible parameter

intervals at step n of induction decreases exponentially and get an estimate of the

measure of good parameters with a.c.i.m., which proves the main theorem.

1.6 Examples

In this section, we provide two examples of specific parameter values such that

respective maps have a.c.i.m..
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1.6.1 The case where the critical value always falls into the sixth

domain

Consider ft where ft(
1
2
) ∈ · · · ⊂ J4666 ⊂ J466 ⊂ J46 ⊂ J4. J

n+1 times

4
︷ ︸︸ ︷
6 · · · 6 is the

sixth interval of the pullback of the initial seven domain partition onto J

n times

4
︷ ︸︸ ︷
6 · · · 6. t

will be one specific value in [3.991749, 3.9933] (this is the interval for parameters t

such that ft(
1
2
) ∈ J46). We denote this specific ft as f for convenience. In this case,

the critical point is preperiodic. By Misiurewicz’s theorem [12] f has an a.c.i.m..

Here we give an independent proof as an example of applications of our method.

1.6.1.1 Construction of an induced map

Let F0 be the first return map of f . Since f(1
2
) ∈ J4, F0 has seven branches as

discussed in chapter 1. The seven domains of the seven branches form a partition

ξ0 of I. ξ0 : I = ∆1 ∪ ∆2 ∪ ∆3 ∪ δ0 ∪ ∆−3 ∪ ∆−2 ∪ ∆−1, where ∆i’s are domains

of monotone branches and δ0 is the domain of the central critical branch. Branches

of F0 are denoted by f1 = F0|∆1 = f 2|∆1 , f2 = F0|∆2 = f 3|∆2 , f3 = F0|∆3 = f 4|∆3 ,

h0 = F0|δ0 = f 5|δ0 ,f−3 = F0|∆−3 = f 4|∆−3 , f−2 = F0|∆−2 = f 3|∆−2 , and f−1 =

F0|∆−1 = f 2|∆−1 .

Our procedure for constructing a map that satisfies the conditions of the Folk-

lore theorem is as follows. First, take a critical pullback of F0 on the central branch

h0 : δ0 → I of F0. Here h0 can be written as the composition g4 ◦ h|δ0 , where h

is just the parabolic map from δ0 into J4, and g4 = f 4|J4 maps J4 diffeomorphi-

27



cally onto I. If we pull back the partition ξ0 by g−1
4 onto J4, we get seven domains

J41 = g−1
4 (∆−1), J42 = g−1

4 (∆−2), J43 = g−1
4 (∆−3), J44 = g−1

4 (δ0), J45 = g−1
4 (∆3),

J46 = g−1
4 (∆2), and J47 = g−1

4 (∆1). Since by our assumption that f(1
2
) ∈ J46, tak-

ing a parabolic pullback of J41, · · · , J47 by h−1 onto δ0 will give 11 domains. The

11 domains include two that are preimages of δ0 which we denote by δ−1
0 and one

new central domain which we denote by δ1. All others are monotone domains. We

denote this partition of δ0 into 11 domains by η0. Next, we fill-in the two δ−1
0 ’s

using η0 as a partition of δ0, which in turn partitions δ−1
0 into 11 domains, including

preimages of δ−1
0 which we denote by δ−2

0 and a preimage of δ1 which we denote by

δ−1
1 . After one critical pullback and filling-in of two holes, we denote the new map

we have obtained by F1

Figure 1.13: Refinement of J4 by pullback of ξ0

To obtain the power map Fn+1 on I at step n + 1, we define an inductive process.

At the n+ 1th step, we have the map Fn with central branch hn : δn → I and some
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Figure 1.14: Filling-in δ−1
0 using ζ0

holes δ−jl , where 0 ≤ l ≤ n and 1 ≤ j ≤ n + 1. First, we take a critical pullback of

the first return map F0 on the branch hn : δn → I. hn = g4 6 · · · 6︸ ︷︷ ︸
n times

◦f |δn , where f maps

δn into J

n times

4
︷ ︸︸ ︷
6 · · · 6 and g4 6 · · · 6︸ ︷︷ ︸

n times

=

n-1 times︷ ︸︸ ︷
f−2 ◦ · · · ◦ f−2 ◦f2 ◦ g4 maps J

n times

4
︷ ︸︸ ︷
6 · · · 6 diffeomorphically

onto I. The critical pullback of F0 on hn can be viewed as first taking a monotone

pullback of ξ0 onto J

n times

4
︷ ︸︸ ︷
6 · · · 6 to get seven subintervals J

n times

4
︷ ︸︸ ︷
6 · · · 61, · · · , J

n times

4
︷ ︸︸ ︷
6 · · · 67, then tak-

ing a parabolic pullback of J

n times

4
︷ ︸︸ ︷
6 · · · 61, · · · , J

n times

4
︷ ︸︸ ︷
6 · · · 67 onto δn. Since the critical value

lies in J

n+1 times

4
︷ ︸︸ ︷
6 · · · 6 , taking a parabolic pullback of J

n times

4
︷ ︸︸ ︷
6 · · · 61, · · · , J

n times

4
︷ ︸︸ ︷
6 · · · 67 by h−1 onto

δn will give 11 domains. J

n times

4
︷ ︸︸ ︷
6 · · · 64 is the preimage of δ0, so two of the domains ob-

tained after parabolic pullback are preimages of δ0 which we denote by δ−1
0 . There

will also be one new central branch formed by h−1(J

n+1 times

4
︷ ︸︸ ︷
6 · · · 6 ) which we denote by

δn+1. All other branches are monotone branches. We denote this partition of δn

into 11 intervals by ηn. From the previous steps, holes δ−jl , where 0 ≤ l ≤ n and

1 ≤ j ≤ n + 1, were created as well as ηl were defined . We fill in δ−jl using ηl as a

partition of δl. When we fill-in δ−jl , we will get 11 domains including preimages of
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δ−1
0 which we denote by δ

−(j+1)
0 and preimage of δl+1 which we denote by δ−jl+1. At

the n+ 1th step, we fill-in each existing hole once. After filling-in, we obtain a new

map on I which we denote by Fn+1.

Figure 1.15: Filling-in δ−jl using ζl

Since the critical pullback is always performed using the initial partition, it is possi-

ble to choose an extension length e so that no boundary refinement is needed after

each critical pullback. For a given e, we define Ĩ = [q−1−e, q+e]. If e is chosen small

enough so that the first return map is extendable to Ĩ, then we can define the ex-

tended domain of the domain of each branch in F0. For each i ∈ {1, 2, 3,−3,−2,−1}

let ∆̃i be the extended domain of ∆i such that f |i|+1 maps ∆̃i diffeomorphically onto

Ĩ. Let δ̃0 be the extended domain of δ0 such that f 5(δ̃0) covers [q, q + e] on both

ends of δ̃0. Endpoints of δ̃0 will lie in ∆3 and ∆−3. Endpoints of ∆̃i will lie in the

domains adjacent to ∆i except for the left endpoint of ∆̃1 and right endpoint of ∆̃−1.

The derivative at q is close to 2, therefore, f 2 has derivative close to 4 at q, and

30



∆̃1 and ∆̃−1 would be contained in Ĩ. If we take a monotone pullback of the first

return map F0 to the branch f2 : ∆2 → I of F0, we will get 7 subdomains of ∆2. Let

ξ̂0 = ξ0 ∨ f−1
2 (ξ0) be a refined partition of ξ0. If we pull back the partition ξ̂0 by g−1

4

onto J4, the critical value f(1
2
) will lie in J466 = g−1

4 (f−1
2 (∆−2)). If we choose e small

enough so that the left endpoint of ∆̃3 lies in f−1
2 (∆1), then g−1

4 (∆̃3) will lie in the

range of f . Since the extension J̃466 of the pullback is equal to the pullback of the

extension, we have that after the first critical pullback, the two branches adjacent to

the central branch is extendable to Ĩ. Since left extensions of ∆−1, ∆−2, ∆−3, and

δ0 are all contained in their adjacent intervals we have that g−1
4 (∆̃−1), g−1

4 (∆̃−2),

g−1
4 (∆̃−3), and g−1

4 (δ̃0) are also contained in the image f(δ0). After the first critical

pullback, all branches are extendable to Ĩ. The arguments work exactly the same

for the nth critical pullback, except instead of pulling back the partition ξ̂0 by g−1
4

onto J4 we pull it back by g−1
4 6 · · · 6︸ ︷︷ ︸

n-1 times

onto J

n-1 times

4
︷ ︸︸ ︷
6 · · · 6 . We can conclude that after each

critical pullback, the new branches will be extendable to Ĩ.

Figure 1.16: Relative position of critical value (domain sizes not to scale)
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1.6.1.2 Exponential decrease of measure of holes

Next, we show that the total measure of holes in Fn decreases exponentially.

Since no boundary refinements are needed, new holes are formed from either

a critical pullback or a filling in. In both of these processes, new holes lie inside

original holes. To obtain the measure of holes in Fn+1 relative to the holes in Fn,

we need to obtain upper bounds for the ratios
|δn+1|+2|δ−1

0 |
|δn| and

|δ−jl+1|+2|δ−j+1
0 |

|δ−jl |
, where

|δn+1|+2|δ−1
0 |

|δn| is the relative measure of new holes created in the central domain δn after

a critical pullback, and
|δ−jl+1|+2|δ−j+1

0 |
|δ−jl |

is the relative measure of new holes created in

δ−jl after a filling in.

For
|δl+1|+2|δ−1

0 |
|δl|

, we need the distortion of hn, where hn = g4 6 · · · 6︸ ︷︷ ︸
n times

◦f =

n-1 times︷ ︸︸ ︷
f−2 ◦ · · · ◦ f−2

◦f2 ◦ g4 ◦ f . First observe that the diffeomorphism g4 from J4 onto I is extendable

to the interval [1 − f(1
2
), f(1

2
)]. Let Ĩ = [q−1 − e, q + e] as in the previous subsub-

section. Since ∆̃2 and ∆̃−2 is contained in Ĩ and [1 − f(1
2
), f(1

2
)], the composition

n-1 times︷ ︸︸ ︷
f−2 ◦ · · · ◦ f−2 ◦f2 ◦ g4 = g4 6 · · · 6︸ ︷︷ ︸

n times

is extendable to Ĩ. Let the ratio of e to |I| be τ1.

By the Koebe distortion principle (1.3), we have

Dg4 6 · · · 6︸ ︷︷ ︸
n times

(x)

Dg4 6 · · · 6︸ ︷︷ ︸
n times

(y)
≤ (

1 + τ1

τ1

)2 = C1 (1.10)

for any x, y in J4

n times︷ ︸︸ ︷
6 · · · 6 , n ∈ N. The following lemma is a consequence of (1.10).

Lemma 2. For any two domains U , V in I, and any n ∈ N we have

|g−1
4 6 · · · 6︸ ︷︷ ︸
n times

(U)|

|g−1
4 6 · · · 6︸ ︷︷ ︸
n times

(V )|
≥ |U |
|V |
· 1

C1

. (1.11)
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Figure 1.17: Partition of δl by a critical pullback of ξ0

Since J

n times

4
︷ ︸︸ ︷
6 · · · 61 = g−1

4 6 · · · 6︸ ︷︷ ︸
n times

(∆1), J

n times

4
︷ ︸︸ ︷
6 · · · 62 = g−1

4 6 · · · 6︸ ︷︷ ︸
n times

(∆2), J

n times

4
︷ ︸︸ ︷
6 · · · 63 = g−1

4 6 · · · 6︸ ︷︷ ︸
n times

(∆3),

J

n times

4
︷ ︸︸ ︷
6 · · · 64 = g−1

4 6 · · · 6︸ ︷︷ ︸
n times

(δ0), J

n times

4
︷ ︸︸ ︷
6 · · · 65 = g−1

4 6 · · · 6︸ ︷︷ ︸
n times

(∆−3), J

n times

4
︷ ︸︸ ︷
6 · · · 66 = g−1

4 6 · · · 6︸ ︷︷ ︸
n times

(∆−2), by Lemma

1, there is a constant K1 < 1 not depending on n ∈ N such that

|J
n times

4
︷ ︸︸ ︷
6 · · · 61|+ |J

n times

4
︷ ︸︸ ︷
6 · · · 62|+ |J

n times

4
︷ ︸︸ ︷
6 · · · 63|+ |J

n times

4
︷ ︸︸ ︷
6 · · · 65|

|J
n times

4
︷ ︸︸ ︷
6 · · · 61|+ |J

n times

4
︷ ︸︸ ︷
6 · · · 62|+ |J

n times

4
︷ ︸︸ ︷
6 · · · 63|+ |J

n times

4
︷ ︸︸ ︷
6 · · · 64|+ |J

n times

4
︷ ︸︸ ︷
6 · · · 65|+ |J

n times

4
︷ ︸︸ ︷
6 · · · 66|

≥ K1.

The ratio of measures of two intervals each with an endpoint at the tip of the

parabolic map will become the square root of the original ratio of measures after a

parabolic pullback. To obtain an upper bound for
|δn+1|+2|δ−1

0 |
|δn| , we assume the worst

position for J

n times

4
︷ ︸︸ ︷
6 · · · 64. That is we assume that J

n times

4
︷ ︸︸ ︷
6 · · · 64 is adjacent to J

n times

4
︷ ︸︸ ︷
6 · · · 66. Then
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|δn+1|+ 2|δ−1
0 |

|δn|

≤

√√√√√√√ |J
n times

4
︷ ︸︸ ︷
6 · · · 64|+ |J

n times

4
︷ ︸︸ ︷
6 · · · 66|

|J
n times

4
︷ ︸︸ ︷
6 · · · 61|+ |J

n times

4
︷ ︸︸ ︷
6 · · · 62|+ |J

n times

4
︷ ︸︸ ︷
6 · · · 63|+ |J

n times

4
︷ ︸︸ ︷
6 · · · 64|+ |J

n times

4
︷ ︸︸ ︷
6 · · · 65|+ |J

n times

4
︷ ︸︸ ︷
6 · · · 66|

≤
√

1−K1

If we let K2 =
√

1−K1 < 1, then we have that

|δn+1|+ 2|δ−1
0 |

|δn|
≤ K2 (1.12)

for all n ∈ N.

Next, we shall determine an upper bound for
|δ−jl+1|+2|δ−j+1

0 |
|δ−jl |

. To do this, we anal-

yse how δ−jl was obtained. Before that, we note that if k is fixed, critical branches

which map δ−jk ’s onto their image have the same height ( image is the same ) as the

central critical branch defined on δk for all j ∈ N.

δ−jl must be obtained from a filling in. If l > 0, then δ−jl was obtained from

a filling in of δ−jl−1 which was obtained from a filling in of δ−jl−2 . If we look l steps

before, we see that it came from a filling in of some interval δ−j0 . Now we look at

δ−j0 , it was also obtained from filling-in of some δ
−(j−1)
k .

Denote the branch on δ
−(j−1)
k by hk,j−1. Since δ−j0 is one of the preimages

h−1
k,j−1(δ0), it is then easy to see that δ−jl is one of the preimages h−1

k,j−1(δl) and filling
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Figure 1.18: Comparing critical branch on a central critical domain with a critical

branch on a preimage of the same central domain

Figure 1.19: A hole δ−jl is contained in a corresponding hole δ−j0

in δ−jl means pulling back the partition ηl by h−1
k,j−1 onto δ−jl . Hence, all we need

is the extendability constant of hk,j−1 on the interval δ−j0 . Since we know that the
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height of hk,j−1 is the same as the height of hk, the critical value of hk,j−1 lies in the

sixth domain of ξ0. That is, the extendability constant is greater than τ2 = |∆3|
|δ0| .

Figure 1.20: Critical value avoids a fixed neighborhood of δ0

Again, by the Koebe Distortion Principle (1.3), we have

Dhk,j−1(x)

Dhk,j−1(y)
≤ (

1 + τ2

τ2

)2 = C2 (1.13)

for any x, y in δ−j0 . Using (1.12), and (1.13) we get

|δ−jl+1|+ 2|δ−j+1
0 |

|δ−jl |
= 1− (1−

|δ−jl+1|+ 2|δ−j+1
0 |

|δ−jl |
)

= 1−
|δ−jl \δ

−j
l+1 ∪ δ

−j
0 ∪ δ

−j
0 |

|δ−jl |

≤ 1−
|hk,j−1(δ−jl \δ

−j
l+1 ∪ δ

−j
0 ∪ δ

−j
0 )|

|hk,j−1(δ−jl )|
· 1

C2

≤ 1− (1−K2) · 1

C2

.
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By letting K3 = 1− (1−K2) · 1
C2
< 1, we have that

|δ−jl+1|+ 2|δ−j+1
0 |

|δ−jl |
≤ K3 (1.14)

for all l ∈ N and l ∈ N. Let α(n) be the total measure of holes in map Fn and let

K = max{K2, K3}. By (1.12) and (1.14) we have

α(n+1)

α(n)
≤ K (1.15)

for all n ∈ N. We can conclude that the measure of holes decrease exponentially.

The limiting map of {Fn} which we denote by F∞ will have infinitely many mono-

tone branches.

1.6.1.3 Verification of summability condition

What remains is the verification of the summability condition
∑

k |Ik|nk <∞,

where Ik are the branches in F∞ and nk is the power of each branch. We need

only to look at the increase of power after each induction step. Consider again

the central branch of Fn which can be written as hn = g4 6 · · · 6︸ ︷︷ ︸
n times

◦ f =

n-1 times︷ ︸︸ ︷
f−2 ◦ · · · ◦ f−2

◦f2◦g4◦h. After a critical pullback, the new branches formed are f−2◦
n-1 times︷ ︸︸ ︷

f−2 ◦ · · · ◦ f−2

◦f2 ◦ g4 ◦ h, f−3◦
n-1 times︷ ︸︸ ︷

f−2 ◦ · · · ◦ f−2 ◦f2 ◦ g4 ◦ fr, f−3◦
n-1 times︷ ︸︸ ︷

f−2 ◦ · · · ◦ f−2 ◦f2 ◦ g4 ◦ fl,

h0◦
n-1 times︷ ︸︸ ︷

f−2 ◦ · · · ◦ f−2 ◦f2◦g4◦fr, h0◦
n-1 times︷ ︸︸ ︷

f−2 ◦ · · · ◦ f−2 ◦f2◦g4◦fl, f3◦
n-1 times︷ ︸︸ ︷

f−2 ◦ · · · ◦ f−2 ◦f2◦

g4◦fr, f3◦
n-1 times︷ ︸︸ ︷

f−2 ◦ · · · ◦ f−2 ◦f2◦g4◦fl, f2◦
n-1 times︷ ︸︸ ︷

f−2 ◦ · · · ◦ f−2 ◦f2◦g4◦fr, f2◦
n-1 times︷ ︸︸ ︷

f−2 ◦ · · · ◦ f−2

◦f2 ◦ g4 ◦fl, f1◦
n-1 times︷ ︸︸ ︷

f−2 ◦ · · · ◦ f−2 ◦f2 ◦ g4 ◦fr, and f1◦
n-1 times︷ ︸︸ ︷

f−2 ◦ · · · ◦ f−2 ◦f2 ◦ g4 ◦fl, where

fl = h|(0, 1
2

) and fr = h|( 1
2
,1). The power in each branch increases by at most 5.
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For the filling in of δ−jl , the power also increases by at most 5, since by analysis

in previous paragraphs, filling in δ−jl is replacing h−1
k,j−1(δl) by partitioned domains

h−1
k,j−1(ηl) for some k. The map fl◦hk,j−1 becomes maps f−2◦fl◦hk,j−1, f−3◦fl◦hk,j−1,

h0 ◦ fl ◦ hk,j−1, f3 ◦ fl ◦ hk,j−1, f2 ◦ fl ◦ hk,j−1, or f1 ◦ fl ◦ hk,j−1. In this case, the

power increases the same way as in the critical pullback of ξ0 on δl. Therefore, at

the nth step, the greatest power is going to be no more than 5(n + 1). Lengths of

domains of new branches produced in the nth step will have total measure less than

the total measure of holes in the n− 1th step. Therefore we have by (1.15)

∑
k

|Ik|nk ≤ |I| · 4 +
∞∑
n=1

|δ0| ·Kn−1 · 5(n+ 1) <∞.

1.6.2 Non-Misiurewicz case

We would like to construct a map that consists of an a.c.i.m. but is not in

the Misiurewicz case. We start again with the first return map F0 to I = [q−1, q].

We would like to pick a parameter so that the forward iterates of the critical point

returns arbitrarily close to the critical point. We define our inductive steps so that

the total measure of holes reduces to less than some K < 1 times the measure of

holes in the previous step. We would also like to maintain a fixed distortion for the

power maps as in the previous section. We take a critical pullback of the partition

ξ0 and assume that the critical value of the central branch falls into the 6th domain

of ξ0 for most inductive steps , but occasionally at the Mkth step, the critical value

will lie in the monotone domain just outside the domain δk, and we will pullback
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the partition ξNk , where Nk < Mk will be determined later.

Figure 1.21: Pulling back different partitions in different specified steps

In this subsection, we will use the same set of variables as we did in the pre-

vious subsection, but their values and what they represent may differ.

F0 has seven branches with domains ∆1, ∆2, ∆3, δ0, ∆−3, ∆−2, and ∆−1.

We denote the branches of F0 again by f1 = F0|∆1 = f 2|∆1 , f2 = F0|∆2 = f 3|∆2 ,

f3 = F0|∆3 = f 4|∆3 , h0 = F0|δ0 = f 5|δ0 ,f−3 = F0|∆−3 = f 4|∆−3 , f−2 = F0|∆−2 =

f 3|∆−2 , and f−1 = F0|∆−1 = f 2|∆−1 . Let the partition of I into the seven inter-

vals be ξ0. We can pull back partition ξ0 onto each of the seven intervals. For

example, ∆1 = ∆11 ∪ ∆12 ∪ ∆13 ∪ ∆14 ∪ ∆15 ∪ ∆16 ∪ ∆17 where ∆11 = f−1
1 (∆−1),

∆12 = f−1
1 (∆−2), ∆13 = f−1

1 (∆−3), ∆14 = f−1
1 (δ0), ∆15 = f−1

1 (∆3), ∆16 = f−1
1 (∆2),
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and ∆17 = f−1
1 (∆1). For the pullback of ξ0 onto δ0 we have δ01 = h−1

0l (∆−1),

δ02 = h−1
0l (∆−2), δ03 = h−1

0l (∆−3), δ04 = h−1
01 (δ0), δ05 = h−1

0l (∆3), δ06 = h−1
0 (∆2),

δ07 = h−1
0r (∆3), δ08 = h−1

0r (δ0), δ09 = h−1
0r (∆−3), δ0(10) = h−1

0r (∆−2), and δ0(11) =

h−1
0r (∆−1), where h0l and h0r are h0 restricted to the left and right half of δ0, respec-

tively. Let Ĩ = [q−1−e, q+e], where e is some small number that is to be determined.

Then we can define the extended domain ∆̃i of ∆i for each i ∈ {1, 2, 3,−3,−2,−1}

so that f |i|+1 maps ∆̃i diffeomorphically onto Ĩ. δ̃0 is defined so that h0l(δ̃01) covers

[q, q + e] and h0r(δ̃0r) covers [q, q + e]. Here δ̃0l and δ̃0r are the left and right half

of δ0 respectively. We can pick a number e that is small enough so that the right

endpoint of ∆̃1 is contained in ∆21, the right endpoint of ∆̃2 is contained in ∆31,

the right endpoint of ∆̃3 is contained in δ01, the right endpoint of δ̃0 is contained in

∆(−3)1, the right endpoint of ∆̃−3 is contained in ∆(−2)1, the right endpoint of ∆̃−2 is

contained in ∆(−1)1, the left endpoint of ∆̃2 is contained in ∆17, the left endpoint of

∆̃3 is contained in ∆27, the left endpoint of δ̃0 is contained in ∆37, the left endpoint

of ∆̃−3 is contained in δ0(11), the left endpoint of ∆̃−2 is contained in ∆(−3)7, and

the left endpoint of ∆̃−1 is contained in ∆(−2)7. By this choice of e, we will be able

to avoid boundary refinements after each critical pullback.

Let hn be the central critical branch of Fn, where Fn will be constructed

according to rules in later description. hn = g[n] ◦ f , where f is the parabolic map

that maps δn into some interval J [n] and g[n] maps J [n] diffeomorphically onto I.
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Let τ1 = e
|I| . Using the Koebe distortion principle (1.3), we can get

Dg[n](x)

Dg[n](y)
≤ (

1 + τ1

τ1

)2 = C1 (1.16)

for any x, y in J [n], and n ∈ N. Similar to lemma 2 in the previous subsection, we

have for any two domains U , V in I, and any n ∈ N

|g−1
[n] (U)|
|g−1

[n] (V )|
≥ |U |
|V |
· 1

C1

. (1.17)

Suppose that the critical value of hn was in domain ∆−2 of partition ξ0, then when

we pull back partition ξ0 by h−1
n onto δn, there will be 11 new domains. Estimate

of the ratio of total measure of new holes in δn to the length of δn is given by the

same estimate as in (1.12). In the case where we pull back some partition ξNk by

h−1
Mk

onto domain δMk
, since all holes in ξNk are in δ0 and since the critical value is

positioned inside δ0, we can obtain the following estimate.

|new holes in δMk
|

|δMk
|

≤
√

1− ratio of nonholes in the image f(δMk
) · 1

C1

≤

√
1− |∆1|+ |∆2|+ |∆3|
|δ0|+ |∆1|+ |∆2|+ |∆3|

· 1

C1

There is a constant K2 that bounds
√

1− |∆1|+|∆2|+|∆3|
|δ0|+|∆1|+|∆2|+|∆3| ·

1
C1

from above. Since

the measure of the central critical domain decreases exponentially when we take

critical pullbacks of ξ0, it is possible to choose Nk such that
|δNk |
|δk|

< 1
2
.

Then

DhMk
(x)

DhMk
(y)
≤ (

1 + 1

1
)2 = 4 for any x, y in δ−1

Nk
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Therefore, we have as in the previous section, distortion for filling-in is the

equal or less than the case in the previous section. We get a constant K < 1 as in

(1.15).

The increase in number of iterates by a filling-in is bounded above by the

increase in number of iterates of critical pullbacks in former steps. Set λ as an

arbitrary number less than 1. Next, we define how Mk are chosen. Let Pk be the

greatest power in the map FNk . Pick Mk so that (K)Mk · Pk ≤ λk. Iterates at steps

Mk to Mk+1 cannot increase more than Pk at each step. Then we get

∑
k

|Ik|nk

≤
M1∑
k1=0

(K)k15k1

+

M2∑
k2=M1+1

(K)k2(5M1 + P1(k2 −M1))

+

M3∑
k3=M2+1

(K)k3(5M1 + P1(M2 −M1) + P2(k3 −M2))

+ · · ·

≤
∞∑
l1=0

(K)l15l1 +
∞∑

l2=M1

(K)l2P1(l2 −M1) +
∞∑

l3=M2

(K)l3PN2(l3 −M2) + · · ·

≤(5 + (K)M1P1 + (K)M2P2 + · · · )
∞∑
l=0

(K)ll

<∞
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Chapter 2

Proof of the main theorem

In [7] and [8], two different algorithms were used to show positivity of measure

for parameters t whose corresponding maps ft’s attain a.c.i.m.s. In this chapter, we

combine the techniques of [7] and [8] with some new tools to develop a new

algorithm for choosing parameters. We will show that under this algorithm, the

parameters with a.c.i.m. form a set with measure greater than 1.58382 ∗ 10−16 ∗

4.65 ∗ 10−6.

2.1 Basic approach

We start by restricting our construction to a small parameter interval T0 that

is close to t = 4 but disjoint from t = 4. T0 is chosen so that for t ∈ T0 partitions

induced by power maps of ft are dynamically equivalent up to five steps of critical

pullbacks. That is, the partitioning points are preimages of q obtained by the same

sequences of left and right preimages.

For each t ∈ T0, we have the partition ξ0 of I which is the partition resulting

from the first return map of ft. We also have the partition ξ5 which is the partition

after 5 critical pullbacks by ξ0. The critical value of the central branch of ξ5 varies at

full scale in I, whereas all branches of ξ0 have little variation with respect to t in T0.

This means two things. First, we need to choose subintervals from T0 so that critical

43



values of the central branch of ξ5 falls into valid domains. Second, we can refine

ξ5 with ξ0 and obtain uniform estimates on domain sizes, derivatives and velocities

of newly defined partitions for all t in T0. Original domain sizes, derivatives, and

velocities for ξ0 and ξ5 are obtained numerically by Mathematica, see Appendix B.

At each inductive step n, we are confined to a finite union of admissible in-

tervals ∪T (n−1) ⊂ T0. For each admissible interval T (n−1), there is a corresponding

partition ξn−1(T (n−1)) of I. For t ∈ T (n−1) elements of ξn−1(T (n−1)) vary continu-

ously. The critical value of the central branch of ξn−1(T (n−1)) varies at full scale in I

for t in T (n−1). This compels us to choose admissible subintervals T (n)’s from T (n−1)

such that the critical value of the central branch of ξn−1 falls into valid domains. We

always refine ξn−1 with an earlier partition ξ[sn], 0 < s < 1, which varies little with

respect to t in T n−1. This allows us to make uniform estimates on newly defined

partitions. Our algorithm is designed so that monotone branches of each partition

ξn−1 are uniformly extendable to some fixed interval Ĩ. We keep track of estimates

on domain sizes, derivatives, and velocities.

From the algorithm, we get a sequence of collections of admissible parameter

intervals {T (6)}, {T (7)}, · · · , {T (n)}, · · · , where the collection at step n is nested

in the collection at step n − 1. That is, for each T (n)
i6...in−1in

∈ {T (n)}, there is some

T (n−1)
i6...in−1

∈ {T (n−1)} such that T (n)
i6...in−1in

⊂ T (n−1)
i6...in−1

.

We wish to get

lim
n→∞

max
i6...in
{measure of holes in ξn(T (n)

i6...in
)} = 0 (2.1)
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and

lim
n→∞

∑
i6...in

|T (n)
i6...in
| = α > 0. (2.2)

2.2 Preliminary construction (steps 0 through 5)

2.2.1 Initial choice of parameters

As discussed in 1.3.1, we can define right preimages J1 = [q, q−2
r ], J2 =

[q−2
r , q−3

r ], J3 = [q−3
r , q−4

r ], . . . of I = [q−1, q], depending continuously on the parame-

ter t. According to (1.6), the rates at which the endpoints of Jn vary are relatively

slow compared to the constant speed 1
4

at which the critical value ω(t) = ft(
1
2
) = t

4

moves upward. Therefore, there are exact times tn when the critical value enters

each Jn. So when t ∈ [tn, tn+1], ω(t) ∈ Jn. As a primary choice of parameter values,

we restrict t to T 4 := [t4, t5]. Using Mathematica to solve for f 4
t (w(t)) = qt and

f 4
t (w(t)) = q−1

t , we get

T 4 ≈ [3.9826, 3.9956].

2.2.2 The first return map and partition ξ0

For t ∈ T 4, the first return map has 7 branches. On the left, the first return

map consists of monotone domains ∆1, ∆2, and ∆3 with corresponding branches

denoted by f0,1 = f 2
t |∆1 , f0,2 = f 3

t |∆2 and f0,3 = f 4
t |∆3 . Symmetrically on the right

are monotone domains ∆−1, ∆−2, and ∆−3 with corresponding branches denoted

by f0,−1 = f 2
t |∆−1 , f0,−2 = f 3

t |∆−2 and f0,−3 = f 4
t |∆−3 . The central domain, denoted

by δ0, is the domain of a critical branch denoted by h0 = f 5
t |δ0 . The seven domains
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∆1,∆2,∆3, δ0,∆−3,∆−2 and ∆−1 form a partition of I which we denote by ξ0.

2.2.3 Domain ∆y and partition ζ(0)(T 4)

Considering J1, J2, J3 and J4 as domains on the y-axis, we define the domain

∆y as

∆y := J1 ∪ J2 ∪ J3 ∪ J4. (2.3)

The respective partition of ∆y is denoted by ζ(0)(T 4). This partition of ∆y exists

for all t ∈ int(T 4). Since we consider J1, · · · , J4 as subintervals of ∆y on the y-axis,

we call ζ(0)(T 4) a partition of ∆y on the y-axis. Note that the parabolic pullback of

ζ(0)(T 4) onto I is exactly the partition ξ0.

2.2.4 Further choice of parameter values

Using the partition ξ0, we would like to restrict our parameter values further.

J4 is mapped by f 4
t diffeomorphically onto I. Let g4 := f 4

t |J4 . If we pullback the

partition ξ0 of I by g−1
4 onto J4, there will be 7 subintervals of J4. We will label

them by J41, J42, . . . , J47 from bottom to top. J41 is mapped by g4 onto ∆−1, J42 is

mapped by g4 onto ∆−2, J43 is mapped by g4 onto ∆−3, J44 is mapped by g4 onto

δ0, J45 is mapped by g4 onto ∆3, J46 is mapped by g4 onto ∆2, and J47 is mapped

by g4 onto ∆1. We can obtain numerically the velocities of endpoints of J41, · · · , J47

and get that values are always less than 0.003. Therefore, entrance and exit times

of w(t) to each J4i exist and are unique. This is also true for more pullbacks of

ξ0, and we will not repeat this argument later. We would like to restrict parameter

46



values so that ω(t) ∈ J47. We denote the corresponding parameter interval by T 47.

T 47 ≈ [3.9933, 3.9956].

Figure 2.1: Pulling back ξ0 by g−1
4 onto J4

If we look at the first return maps of ft’s for which t ∈ T 47, those are exactly the

cases when the image of the central branch h0 covers domains ∆−1 through ∆2 and

the critical value of h0 falls into the domain ∆1. Since

∆y = J1 ∪ J2 ∪ J3 ∪ J41 ∪ · · · ∪ J47 for all t ∈ T 47, (2.4)

there is a corresponding partition of ∆y which we denote by ζ(1)(T 47). ζ(1)(T 47) is

a refinement of ζ(0)(T 4) for all t ∈ T 47.
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Since f 4
t maps J47 diffeomorphically onto ∆1 and f 2

t maps ∆1 diffeomorphically

onto I, then J47 is mapped by f 6
t diffeomorphically onto I. We can pull back the

partition ξ0 by (f 6
t |J47)−1 onto J47 and get 7 subintervals of J47. We label them

J471, J472, . . . , J477 from bottom to top. J471 is mapped by f 6
t onto ∆1, · · · , J477

is mapped by f 6
t onto ∆−1. We make a further restriction of our parameter values

so that ω(t) ∈ J476, and denote the corresponding parameter interval by T 476. We

obtain numerically that T 476 is approximately T 476 ≈ [3.99483, 3.99513].

Again we have a refined partition ζ(2)(T 476) of ∆y on the y-axis.

∆y = J1 ∪ J2 ∪ J3 ∪ J41 ∪ · · · ∪ J46 ∪ J471 ∪ · · · ∪ J477.

In general, if an interval J [a] on the y-axis is mapped by some diffeomorphism

g[a] onto I, then we can pullback partition ξ0 by g−1
[a] onto J [a] to form 7 subintervals

which we label from bottom to top as J [a]1, J [a]2, . . ., J [a]7. We can also define in

the parameter space the corresponding intervals T [a] which is the interval of all t’s

where w(t) ∈ J [a]. With this defined, we choose the interval T0 = T 476777 as the

set of initial parameter values to work with. We obtain numerically that T 476777 is

approximately T 476777 ≈ [3.99512535856, 3.99513000705].

∣∣T 476777
∣∣ > 4.6485 ∗ 10−6. (2.5)

Partitions ζ(3)(T 4767), ζ(4)(T 47677) and ζ(5)(T 476777) are defined analogously to

ζ(0)(T 4), ζ(1)(T 47) and ζ(2)(T 476), where ζ(k)(T [a]i) is a refinement of ζ(k−1)(T [a]).
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2.2.5 First five steps

For coherence with later construction, we define the first five steps and par-

titions ξ1, ξ2, · · · , ξ5. For all t ∈ T 476777 we can perform all of the following steps

creating dynamically equivalent partitions, dynamically equivalent in the sense that

each branch corresponding to each domain is the same power of ft for all t ∈ T 476777,

and branches are varying continuously.

Step 0 We create partition ξ0 given by the first return map. Domains in ξ0 are

∆1,∆2,∆3, δ0,∆−3,∆−2,∆−1.

Step 1 We take a critical pullback of ξ0 on δ0 and denote the new partition by

ξ1 : I = ∆1 ∪∆2 ∪∆3 ∪∆4 ∪∆5 ∪∆6 ∪ δ−1
0 ∪∆7 ∪∆8 ∪ δ1 ∪∆−8 ∪∆−7 ∪ δ−1

0 ∪

∆−6 ∪∆−5 ∪∆−4 ∪∆−3 ∪∆−2 ∪∆−1.

Step 2 We take a critical pullback of ξ0 on δ1 and denote the new partition by

ξ2 : I = ∆1 ∪∆2 ∪∆3 ∪∆4 ∪∆5 ∪∆6 ∪ δ−1
0 ∪∆7 ∪∆8 ∪∆9 ∪∆(10) ∪∆(11) ∪

δ−1
0 ∪ ∆(12) ∪ δ2 ∪ ∆−(12) ∪ δ−1

0 ∪ ∆−(11) ∪ ∆−(10) ∪ ∆−9 ∪ ∆−8 ∪ ∆−7 ∪ δ−1
0 ∪

∆−6 ∪∆−5 ∪∆−4 ∪∆−3 ∪∆−2 ∪∆−1.

Steps 3,4,5 Similarly, we take consecutive critical pullbacks on δ2, δ3, δ4 to form

ξ3, ξ4, ξ5.

Remark 1. For t ∈ T 476777, ξ1, ξ2, ξ3, ξ4 and ξ5 are exactly the parabolic pullbacks of

ζ(1)(T 47), ζ(2)(T 476), ζ(3)(T 4767), ζ(4)(T 47677) and ζ(5)(T 476777) onto I, respectively.
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2.2.6 Holes and branches in ξ5

Totally, ξ5 consists of 65 domains. Elements of ξ5 are monotone domains,

preimages δ−1
0 of δ0 and the central domain which we denote by δ5. δ5 is the central

hole and we refer to the 10 preimages of δ0 as the “five holes” since there are five on

each side. We let f5,i denote monotone branches in ξ5 and F5,i denote the monotone

maps defined on the five holes which map each hole onto δ0. Let ∆(5) be the domain

J476777 on the y-axis and let g(5) be the map from ∆(5) onto I. Consider the five

preimages of δ0 in ζ(5)(T 476777) whose parabolic pullbacks are the five holes on the

x-axis, let G5,i denote the maps from these preimages onto δ0.

2.2.7 Extension constant and uniform extendability of branches in ξ5

An extended domain Ĩ of I is chosen so that the first return map is uniformly

extendable to Ĩ for each t ∈ T 476777. since the extension of the third branch extends

a little below q−1 − 0.17, we select our extension constant to be 0.17. According to

1.3.5.1, all other branches of the first return map can then be extended below to

q−1 − 0.17 and above to q−1 + 0.17.

In the following context, we speak of partitions ξn of I with associated branches

to each domain. We would like each monotone branch outside δre
n and holes in ξn to

be extendable to Ĩ, then we say that branches in ξn are uniformly extendable to Ĩ.

Lemma 3. For t ∈ T 476777, monotone branches in ξ1, ξ2, ξ3 and ξ4 are all uniformly

extendable to Ĩ.

Proof. First, we look at the extendability of ∆4, ∆5, ∆6, δ−1
0 , ∆7, and ∆8. Since
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t ∈ T 476777, we have t ∈ T 47 and t ∈ T 476. The critical value w(t) falls into the

domain J47. Whether ∆4, . . . ,∆8 are extendable depends on whether J̃41, . . ., J̃46

lie in the image of h. Here, J̃41 is the pullback of ∆̃−1 by g−1
4 , J̃42 is the pullback

of ∆̃−2 by g−1
4 , J̃43 is the pullback of ∆̃−3 by g−1

4 , J̃44 is the pullback of δ̃0 by g−1
4 ,

J̃45 is the pullback of ∆̃3 by g−1
4 , J̃46 is the pullback of ∆̃2 by g−1

4 , and J̃47 is the

pullback of ∆̃1 by g−1
4 . Since we also know that w(t) ∈ J476, it means g4(w(t)) falls

into ∆12 where ∆11, ∆12, . . ., ∆17 are subdomains ordered from left to right of ∆1

given by a monotone pullback of ξ0 on ∆1. We know that all left extensions fall

into adjacent domains (see subsection 1.3.5.1), therefore ∆̃−1, ∆̃−2, ∆̃−3, δ̃0, and ∆̃3

are contained in the image of g4 ◦ ht|δ0 . To determine whether ∆̃2 is contained in

the image of g4 ◦ ht|δ0 , it is enough to compare the left endpoint of ∆̃2 with right

endpoint of ∆12. We can obtain numerically that the left endpoint of ∆̃2 is greater

than 0.34281 for all t ∈ T 476777. The right endpoint of ∆12 is less than 0.294612 for

all t ∈ T 476777. This shows that ∆̃2 is always contained in the image of g4 ◦ ht|δ0 .

For the extendability of ∆9, ∆(10), ∆(11), δ
−1
0 , and ∆(12), arguments are the

same as in the previous paragraph, except that here we need the left endpoint of

∆̃3 to be greater than the right endpoint of ∆21, where ∆21 is the first subdomain

of ∆2 given by a monotone pullback of ξ0 on ∆2. For extendability of ∆(13), ∆(14),

∆(15), δ
−1
0 , ∆(16), and ∆(17), we need that the left endpoint of ∆̃2 be greater than

the right endpoint of ∆11, which follows from the previous paragraph. Likewise, the

extendability of domains ∆(13) through ∆(22) follows.
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Figure 2.2: Domains of ξ0 and respective extended domains

The above is a figure that shows the partition ξ0 and relative positions of extensions

of each domain in ξ0 for the specific parameter value t = 3.99513.

After step 5, branches adjacent to δ5 may not be extendable to Ĩ when w(t)

is close to the lower endpoint of J476777. To avoid such problems, we make an

additional assumption:

t > 3.99512595. (2.6)

This number was obtained by considering one of the two branches adjacent to the

central branch of ξ5 and observing at what parameters its extension falls short of

0.17.

Lemma 4. For t ∈ T 476777, critical branches in ξ1, ξ2, ξ3, ξ4 and ξ5 are all uniformly
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extendable to Ĩ.

Proof. According to 1.2.4, a critical branch is extendable to Ĩ if it can be extended

so that it covers one component of Ĩ\I. From the figure above, we can see that

the extended domain δ̃0 of δ0 lies in ∆3 ∪ δ0 ∪∆−3. By the choice of parameter(t ∈

T 476777), the critical values of the central branches in ξ0, . . . , ξ4 are always positioned

outside the extended domain δ̃0. That makes all holes δ−p0 created from the first five

steps extendable to Ĩ.

We conclude that for all t ∈ T 476777 satisfying (2.6), all branches of ξ5 are

uniformly extendable to Ĩ.

2.2.8 Enlargement of δ0 and distortion on δ−p0

In the previous subsection, we showed that the critical value avoids extended

domains δ̃−p0 of δ−p0 so that new critical branches formed after parabolic pullbacks

are are also extendable to Ĩ. In fact, the critical value in the central branch of

ξ0, . . . , ξ4 avoids a larger neighborhood around δ0, namely, δ̂0 where

δ̂0 = ∆′2 ∪∆3 ∪ δ0 ∪∆−3 ∪∆′−2, (2.7)

∆′2 = ∆22 ∪∆23 ∪∆24 ∪∆25 ∪∆26 ∪∆27, (2.8)

∆′−2 = ∆(−2)1 ∪∆(−2)2 ∪∆(−2)3 ∪∆(−2)4 ∪∆(−2)5 ∪∆(−2)6. (2.9)

This fixed region that we avoid around δ−p0 will allow us to give uniform estimates

for distortion. δ̂0 is called the enlargement of δ0.
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Suppose a hole δ−p0 is mapped by some diffeomorphism F monotonically onto δ0

and is extendable to δ̂0 as defined in (2.7). Let us defineDX over X̃ as the upper bound,

given by the Koebe distortion principle, of the distortion on X when extension is

X̃. Then we have∣∣∣∣∣ ∂F∂x (x0)
∂F
∂x

(y0)

∣∣∣∣∣ ≤ Dδ0 over δ̃0
:=

1 +
|δ0|

1
2

∣∣∣δ̂0\δ0

∣∣∣
2

< 2.75 for x0, y0 ∈ δ−p0 (2.10)

for t ∈ T 476777. The last number was obtained from estimates on sizes of δ0 and δ̂0.

2.2.9 Partition η0 of δ0

Let η0 be the restriction of partition ξ5 to δ0. η0 has 59 domains and its holes

include 10 preimages of δ0 and one central domain δ5. The relative measure of holes

µholes(η0) in η0 is between 0.166 and 0.178 for t ∈ T 476777 ∩ {t > 3.99512595} (see

first figure in B.1.1).

Later in the algorithm, we will perform 5-step filling-ins on preimages of δ0

defined as follows.

Definition 5. Let δ−p0 be a preimage of δ0 mapped by a diffeomorphism F onto δ0.

A 5-step filling-in of δ−p0 is replacing δ−p0 by F−1(η0).

For a 5-step filling-in of δ−p0 , we can obtain an estimate for the relative measure

of holes in F−1(η0) using the inequality (A.3) from the Appendix. We denote the

relative measure of holes in F−1(η0) by µholes(F−1(η0)).

µholes(F−1(η0)) ≤
Dδ0 over δ̃0

∗ µholes(η0)

1− µholes(η0) +Dδ0 over δ̃0
∗ µholes(η0)

<
2.75 ∗ 0.178

1− 0.178 + 2.75 ∗ 0.178
< 0.373238

(2.11)
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The above estimate does not depend on F as it only depends on the fact that F is

extendable to δ̂0.

To improve the estimate for µholes(F−1(η0)), we divide δ0 into 5 sections and

calculate a bound for each distorted ratio separately. Dividing δ0 into sections allows

us to obtain smaller distortion bounds. This method is particularly effective when

the holes are in a sense “evenly scattered”. We use the formula (2.12) below and

the Koebe distortion principle combined to obtain the bounds.

Figure 2.3: Partition of δ0 into five sections

The sections are shown in the above figure. For each section, a distortion bound

is given by formula (1.3) from the Koebe distortion principle. For example, the

extended part of section one on the left is the left component Ĩ\I and the extended

part of section 2 is the union of the left component of Ĩ\I with section 1. We denote

the bound corresponding to section i by di. ri denotes the relative measure of holes
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in section i and r′i denotes the relative measure of holes in the corresponding section

i of δ−k0 . From (A.3), we get that

r′i ≤
di · ri

1− ri + di · ri
(2.12)

Table 2.1: Distortion bounds and bounds for relative measure of holes in each section

section sections 1 and 5 sections 2 and 4 section 3

upper bound for di 1.44113 1.113251 1.16614

upper bound for ri 0.145941141 0.20592 0.25624640

upper bound for di·ri
1−ri+di·ri 0.197599 0.22702 0.286617

The bounds for di and ri are valid for all t ∈ T 476777. We can conclude that

µholes(F−1(η0)) < 0.29. (2.13)

This is a better estimate than (2.11).

2.2.10 Preliminary estimates

All preliminary estimates are obtained numerically from Mathematica. Sizes

of domains and derivatives of branches in partitions ξ0, . . . , ξ5 are listed in B.1.1 and

B.1.2. Bounds for derivative with respect to t and variation of derivatives are listed

in B.1.3 and B.1.4, respectively.
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Let µholes(ξ) denote the relative measure of holes in ξ. All other notations are

defined in earlier subsections of this section.

Important estimates for ξ0 are below.

1.

µholes(ξ0) =
|δ0|
|I|

< 0.11123 (2.14)

2. By the negative Schwarzian derivative property, the minimum of the absolute

value of derivatives occurs on endpoints. Therefore by computing minimum

at endpoints, we get the minimum derivative over each domain.

∣∣∣∣∂f0,i

∂x

∣∣∣∣ > 3.5 t ∈ T0, x ∈ ∆i (2.15)

3. ∣∣∣∂f0,i

∂t

∣∣∣∣∣∣∂f0,i

∂x

∣∣∣ < 1.109 t ∈ T0, x ∈ ∆i (2.16)

4. ∣∣∣∣∂2f−1
0,i

∂t∂z

∣∣∣∣∣∣∣∣∂f−1
0,i

∂z

∣∣∣∣ < 50 t ∈ T0, z ∈ I (2.17)

Important estimates for ξ5 are below.

1.

µholes(ξ5) =
|δ5|
|I|

< 0.0022 t ∈ T0 (2.18)

2. ∣∣∣∣∂f5,i

∂x

∣∣∣∣ > 3.5 t ∈ T0, x ∈ ∆f5,i (2.19)

∆f5,i is the domain of f5,i.
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3. ∣∣∣∂f5,i

∂t

∣∣∣∣∣∣∂f5,i

∂x

∣∣∣ < 161 t ∈ T0, x ∈ ∆f5,i (2.20)

4. ∣∣∣∣∂2f−1
5,i

∂t∂z

∣∣∣∣∣∣∣∣∂f−1
5,i

∂z

∣∣∣∣ < 900000 t ∈ T0, z ∈ I (2.21)

Estimates for g(5) are below.

1. ∣∣∣∣∂g(5)

∂y

∣∣∣∣ > 391005 t ∈ T0, x ∈ ∆(5) (2.22)

2. Velocities on the endpoints of ∆(5) are less than 0.0019

3. ∣∣∣∂g(5)

∂t

∣∣∣∣∣∣∂g(5)

∂x

∣∣∣ < 0.00188 t ∈ T0, x ∈ ∆(5) (2.23)

4. ∣∣∣∣∂2g−1
(5)

∂t∂z

∣∣∣∣∣∣∣∣∂g−1
(5)

∂z

∣∣∣∣ < 8.9 t ∈ T0, z ∈ I (2.24)

5. ∣∣∣∂2g(5)

∂x2

∣∣∣∣∣∣∂g(5)

∂x

∣∣∣2 < 1.5 t ∈ T0, x ∈ ∆(5) (2.25)

2.3 The algorithm

2.3.1 Step 6

Starting from step 6, we begin to choose subintervals T (6)’s of T (5) = T0 =

T 476777 which are admissible according to the rules of general construction. We also
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create new partitions ξ6(t), ζ(6)(∆(6)), and η5(∆(6)). Domains in these partitions

vary continuously when t’s are in the same T (6). We explain the algorithm below.

2.3.1.1 Starting partitions and intervals

For each t in T (5), we have the dynamically equivalent 7 branch partition

ξ0(t) whose partitioning points vary little among different t’s. We also have the

dynamically equivalent 65 branch partition ξ5(t) created after 5 consecutive crit-

ical pullbacks, where the central domain δ5(t) and nearby domains vary greatly.

∆(5)(t) = J476777(t) is the interval on the y-axis where w(t) ∈ ∆(5)(t) corresponds

to the maps where the critical value belongs consecutively to the 7th, 6th, 7th, 7th,

7th domains after each critical pullback of ξ0(t). By construction, t is in T (5) if and

only if w(t) is in ∆(5)(t). We denote the lower endpoint of ∆(5)(t) by y5(t), then

y5(t) is exactly the image of the two endpoints of δ5(t).

All domains and partitions depend on t, but t may be omitted in later context

for convenience.

2.3.1.2 Choosing T (6), creating ∆(6) and ζ
(6)
1 (∆(6))

At step 6 we partition ∆(5) by pulling back ξ0 onto ∆(5) once. We get a

partition of ∆y which is a refinement of ζ(5)(T (5)) and we denote it by ζ
(6)
1 (∆(5)).

When defining T (6)’s, our goal is to make each |T (6)| small enough so that the

position of points that partition ∆(5)(t) varies little for t in a fixed T (6). That is, we

would like w(t) to move across some small domain ∆(6) when t moves across T (6).
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A domain ∆(6) is considered to be small enough for parameter choice if

|∆(6)(t)|
H5(∆(6)(t))

< ϑ1 for all t ∈ T (5), (2.26)

where ϑ1 is defined in (2.104) and H5(∆) := dist(∆, y5). If w(t) ∈ ∆(6), then

the measure |[y5(t), w(t)]| would be close to H5(∆(6)(t)), and H5(∆(6)(t)) has small

variation for t in T (5).

The algorithm below defines T (6), ∆(6) and ζ
(6)
1 (∆(6)) simultaneously.

Algorithm for defining T (6), ∆(6) and ζ
(6)
1 (∆(6))

Consider a monotone domain ∆′ in ζ
(6)
1 (∆(5)) and above y5 which is not any of

the two monotone domains right above any preimage of δ0 (We rule out the two

domains above the preimage of δ0 since we do not want to consider domains in

the enlargement of preimages of δ0). If maxt∈T (5)
|∆′(t)|

H5(∆′(t))
< ϑ1, then let ∆(6) =

∆′ and ζ
(6)
1 (∆(6)) = ζ

(6)
1 (∆(5)). If ∆′ does not satisfy maxt∈T (5)

|∆′(t)|
H5(∆′(t))

< ϑ1,

then refine ∆′ with ξ0. We denote the respective partition of ∆y by ζ
(6)
1 (∆′).

Then pick a monotone domain ∆′′ in ∆′ that is not one of the two domains

above the preimage of δ0. Again we check if maxt∈T (5)
|∆′′(t)|

H5(∆′′(t))
< ϑ1. If so, let

∆(6) = ∆′′ and ζ
(6)
1 (∆(6)) = ζ

(6)
1 (∆′). If not, refine ∆′′ by ξ0 and denote the new

partition of ∆y created after this refinement by ζ
(6)
1 (∆′′). We repeat this pro-

cess until we end up with some domain ∆ that is not one of the two monotone

domains right above some preimage of δ0 and satisfies maxt∈T (5)
|∆(t)|

H5(∆(t))
< ϑ1.

As refined domains decrease exponentially in size, this process can be ex-

hausted in finitely many steps as long as we don’t always choose the domain

closest to y5. We denote a domain derived from this process by ∆(6)(not mak-
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ing a distinction between different domains). Each such domain is associated

with a partition ζ
(6)
1 (∆(6)) of ∆y. The parameter interval corresponding to

w(t) being in ∆(6) is denoted by T (6).

Remark 2. See table in B.3.2 for sample values of |∆(t)|
H5(∆(t))

.

Remark 3. In step 6, we do not have to worry about monotone domains being

repeatedly adjacent to y5 after consecutive refinements since we have already put

a restriction on t in (2.6). We can disregard any domain which will never contain

w(t) under our parameter restriction. For the remaining domains, we will argue in

lemma 8 that no more than four refinements are needed to complete the algorithm

in step 6. In the general step n, the number of refinements needed in ∆(n−1) is

always bounded above by a constant that does not depend on n. That is because

the ratio of the size of ∆(n−1) to the distance from ∆(n−1) to yn−1 is bounded above,

therefore we don’t have to worry about a domain in ∆(n−1) coming arbitrarily close

to yn−1.

2.3.1.3 Defining y6 and δre

6

We would like to define y6(t) so that if δre
6 (t) is the interval [h−1

1 (y6(t)), h−1
2 (y6(t))]

(h1 and h2 are the left and right branches of the map h(x) = tx(1−x) respectively),

there are constants r and R such that

1

3
r ≤ |δ

re
6 (t)|
|δ5(t)|

≤ 1

3
R (2.27)

for all t in T (6) and all T (6) in T (5). The purpose of the inequality (2.27) will become

clear in later context. The superscript re means that the domain is a rescaled central
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domain in contrast to the regular central domain obtained from a critical pullback.

The ratio
|δre

6 (t)|
|δ5(t)| could become arbitrarily close to 0, whereas by (2.27),

|δre
6 (t)|
|δ5(t)| cannot

be arbitrarily close to 0.

Now we fix any T (6) in T (5) which also fixes ∆(6) and ζ
(6)
1 (∆(6)). We define

dynamically the point y6(t) and domain δre
6 through the following algorithm.

Algorithm for defining y6 and δre6

1. Let t0 be the value in T (6) such that the image of ft0 covers completely

the respective interval ∆(6) on the y-axis. In other words, t0 is the larger

endpoint of T (6).

2. Let y′6 be such that

|[y′6, w(t0)]| = 1

9
|[y5(t0), w(t0)]|. (2.28)

3. y′6 belongs to a domain in partition ζ
(6)
1 (∆(6))(t0) of ∆y(t0). If y′6 belongs

to a critical domain, it has to belong to a preimage δ−p0 of δ0 since only

preimages of δ0 were created in ζ
(6)
1 (∆(6)). In this case, we let δ∗ = δ−p0 (t0).

If y′6 belongs to a monotone domain ∆(t0), we check whether

max
t∈T (6)

|∆(t)|
H5(∆(t))

< ϑ2, (2.29)

where ϑ2 is defined in (2.103). If (2.29) is satisfied, we let ∆∗ = ∆ and

ζ
(6)
2 (∆(6)) = ζ

(6)
1 (∆(6)). If (2.29) is not satisfied, we take a monotone

pullback of ξ0 onto ∆. After taking a monotone pullback, we can re-

peat the above procedure until either y′6 lies in some monotone domain
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∆∗(t0) such that maxt∈T (6)
|∆∗(t)|
H(∆∗(t))

< ϑ2 or y′6 lies in some critical domain

δ∗(t0) = δ−p0 (t0).

4. We let y6(t0) be the upper endpoint of ∆∗(t0) or δ∗(t0).

5. As each t ∈ T (6) has a dynamically equivalent partition ζ
(6)
2 (∆(6)) hence

dynamically equivalent domain ∆∗ or δ∗, we can also define y6(t) dynam-

ically as the upper endpoint of ∆∗(t) or δ∗(t) for all other t ∈ T (6).

6. Finally, we take a parabolic pullback of y6(t) onto the x-axis, which will

be two points, forming the endpoints of a rescaled central domain denoted

by δre
6 (t).

Remark 4. Similar to the case with (2.26), we check (2.29) for all t ∈ T (5).

Remark 5. The maximum number of monotone pullbacks needed depends on ϑ2

and is calculated in lemma 7.

Remark 6. Since we are always taking y6(t0) as the upper endpoint of δ∗ or ∆∗

containing y′6, by (2.28) we always have

|y6(t0), w(t0)|
|y5(t0), w(t0)|

≤ 1

9
. (2.30)

We show in 2.5.1.2 that for any t0 ∈ T (5),

1

9
· (1− 0.59) ≤ |y6(t0), w(t0)|

|y5(t0), w(t0)|
. (2.31)

In particular this is true for t0 equal to the top value of any T (6). With some more

calculations we show in 2.5.1.2 that

1

9
· (0.3) ≤ |y6(t), w(t)|

|y5(t), w(t)|
≤ 1

9
(2.32)

for all other t ∈ T (6).
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2.3.1.4 Boundary refinement

Consider a monotone domain ∆ in ζ
(6)
2 (∆(6))(t) that is below y6. It is mapped

by some g onto I. Moreover, g = f0,ik ◦ · · · ◦ f0,i1 ◦ g(5) where the maps in these

compositions can be extended to a map onto Ĩ, therefore g can be extended to a

map g̃ defined on the domain ∆̃ ⊃ ∆ whose image is Ĩ. If ∆̃ is not completely

contained in the image of ht, we perform a boundary refinement on this domain

(boundary refinements are defined in 1.3.5.4) by pulling back the partition ξ0.

After the boundary refinement, we denote the new partition that partitions

∆y by ζ
(6)
3 .

Remark 7. When ∆ is refined once, all new domains have extended domains con-

tained in the image of ht except for maybe the top-most domain, which is denoted

by ∆l (or ∆r). Therefore we repeat the process only on the top-most domain until

we get ∆̃l···l (or ∆̃rl···l) contained in the image of ht. We do not need to check ex-

tendability of all other subdomains of ∆ since they are automatically extendable.

The arguments for such are similar to 2.2.7.

Remark 8. Partition ζ
(6)
3 (∆(6)) is again dynamically equivalent for all t ∈ T (6).

2.3.1.5 Filling-in holes between y5 and y6, creating ζ(6)(∆(6))

In order to bound the measure of holes in δ5\δre
6 , we perform filling-ins on all

holes between y5 and y6. Since all previous procedures consist of only refinement

with ξ0, only preimages δ−p0 ’s of δ0 are created. For any preimage of δ0, we perform

a 5-step filling-in as defined in definition 5.
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After performing 5-step filling-ins, preimages of δ5 and more preimages of δ0

are created on the y-axis. We denote this final partition of ∆y by ζ(6)(∆(6)).

2.3.1.6 Parabolic pullback onto the x-axis

After we have the partition ζ(6)(∆(6)) on the y-axis, we take a parabolic pull-

back of ζ(6)(∆(6)) onto the x-axis. If we consider domain δre
6 as a hole and neglect

the partition inside δre
6 at this step, we have the partition ξ6(∆(6)) ∆(6) will be omit-

ted when we move on to the next inductive step. The restriction of the partition

ξ6(∆(6)) to δ5 is the partition η5(∆(6)). This completes the algorithm at step 6.

In later steps, we will need the 1-step filling in of δ5 defined as follows.

Definition 6. Let δ−p5 be a preimage of δ5. Let F be a diffeomorphism that maps

δ−p5 onto δ5, then a 1-step filling-in of δ−p5 is replacing δ−p5 by F−1(η5).

2.3.2 Steps 7 through 14

For steps 7 through 14, we follow the same algorithm as in step 6 to obtain

∆(7), . . . ,∆(14) and y7, . . . , y14. We repeat important ingredients of the algorithm

below. In addition we add lower boundary refinement and filling-in outside δrek−1

which are procedures not present in step 6.

2.3.2.1 Inductive assumptions at step k

After step k − 1 is completed, we have a collection of domains ∆(k−1)’s. If we

identify one such domain as ∆(k−1),i6···ik−1 we can backtrack a sequence of nested
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intervals ∆(5) ⊃ ∆(6),i6 ⊃ · · · ⊃ ∆(k−1),i6···ik−1 on the y-axis. There is also a corre-

sponding sequence of parameter intervals T (5) ⊃ T (6),i6 ⊃ · · · ⊃ T (k−1),i6···ik−1 and a

sequence of partitions ζ
(5)
1 (∆(5)), ζ

(6)
1 (∆(6),i6), · · · , ζ(k−1)

1 (∆(k−1),i6···ik−1) of ∆y where

ζ
(k̃)
1 (∆(k̃),i6···ik̃) is a refinement of ζ

(k̃−1)
1 (∆(k̃−1),i6···ik̃−1) for all k̃ < k. There is also a

sequence of points y5 < y6 < · · · < yk−1 , where each yi is continuous with respect

to t ∈ T (k−1).

2.3.2.2 Defining ∆(k), T (k), and ζ
(k)
1 (∆(k))

Fix a domain ∆(k−1). We check whether maxt∈T (k−1)
|∆(k−1)(t)|

Hk−1(∆(k−1)(t))
< θ1, where

Hk−1(∆) is the distance from ∆ to yk−1 and θ1 is defined in (2.104). If maxt∈T (k−1)
|∆(k−1)(t)|

Hk−1(∆(k−1)(t))
<

θ1 then ∆(k) = ∆(k−1) is the only admissible subdomain of ∆(k−1). If maxt∈T (k−1)
|∆(k−1)(t)|

Hk−1(∆(k−1)(t))
>

θ1, then refine ∆(k−1) with ξ0. Consider the new partition of ∆y as ζ
(k)
1 (∆(k−1)).

Consider a subdomain ∆′ of ∆(k−1) that is not a preimage of δ0 or the two montone

domains just above a preimage of δ0. Then check if maxt∈T (k−1)
|∆′(t)|

Hk−1(∆′(t))
< ϑ1. If

maxt∈T (k−1)
|∆′(t)|

Hk−1(∆′(t))
< ϑ1, then let ∆(k) = ∆′ and let ζ

(k)
1 (∆(k)) = ζ

(k)
1 (∆(k−1)). If

maxt∈T (k−1)
|∆′(t)|

Hk−1(∆′(t))
> ϑ1, then refine ∆′ with ξ0 and repeat the above algorithm.

We perform such an algorithm until all monotone domains ∆(k) in ∆(k−1) that are

not the two monotone domains just above a preimage of δ0 satisfies

max
t∈T (k−1)

|∆(k)(t)|
Hk−1(∆(k)(t))

< ϑ1. (2.33)

Such a domain ∆(k) is considered to be an admissible domain at step k, since w(t)

can only belong in one of these domains. For each admissible domain ∆(k), there

is a corresponding admissible parameter interval T (k) such that when t ∈ T (k), we

66



have w(t) ∈ ∆(k).

2.3.2.3 Defining yk and δre

k (t)

y′k is defined so that

|[y′k, w(t0)]| = 1

9
|[yk−1(t0), w(t0)]| where t0 is the top parameter of T (k) (2.34)

If y′k lies in some critical domain δ (before or after refinement), then let δ∗ be δ. δ∗

should automatically satisfy

max
t∈T (k−1)

|δ∗(t)|
Hk−1(δ∗(t))

< ϑ2. (2.35)

ϑ2 is defined as in (2.103). If y′k lies in some monotone domain, then we refine

the monotone domain with ξ0 until y′k lies in some critical domain δ∗ or lies in a

monotone domain ∆∗ that satisfies

max
t∈T (k−1)

|∆∗(t)|
Hk−1(∆∗(t))

< ϑ2 (2.36)

yk(t0) is defined as the upper endpoint of the domain δ∗(t0) or ∆∗(t0) containing y′k.

yk(t) is defined as dynamically the same point as yk(t0) for all t ∈ T (k). δre
k (t) is the

parabolic pullback of [yk(t), w(t)] onto the x-axis.

2.3.2.4 Boundary refinement

For monotone domains in [yk−1, yk] whose extended domains are not contained

in the image of ht, we perform boundary refinements.
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2.3.2.5 Lower boundary refinement

For k > 8, we perform lower boundary refinement for monotone domains in

[yk−1, yk] whose lower extensions are not above yk−4. That is, refining consecutively

the lower boundary domain until we get that all extended domains are above yk−4.

2.3.2.6 Filling-in holes between yk−1 and yk

Holes that are between yk−1 and yk can only be preimages of δ0. We perform

a 5-step filling-in on any such hole. The partition which we get on the y-axis is

denoted by ζ
(k)
6 (∆(k)).

2.3.2.7 Filling-in holes below yk−1

Different from step 6, we perform filling-in on holes below yk−1. A 1-step filling

in of δi, i < k at step k is defined inductively by previously defined partitions ηi.

Definition 7. Let δ−pi be a preimage of δre
i , i ≥ 5. Let F be a diffeomorphism that

maps δ−pi onto δre
i , then a 1-step filling-in of δ−pi is replacing δ−pi by F−1(ηi).

The rules for filling-in below yk−1 are given below:

1. If there is a hole that is the preimage of δ0, then we will perform a 5-step

filling-in on that hole.

2. If there is a hole that is the preimage of δ5, · · · , δk−2, then we perform a 1-step

filling-in.

The final partition which we get on the y-axis is denoted by ζ(k)(∆(k)).
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Remark 9. Notice that it is impossible to have holes that are preimages of δk−1 at

step k since ξ7 has hole of highest possible order δ5, by allowing only 1-step filling-in,

creation of holes is at least two steps behind the creation of the central hole.

2.3.2.8 Parabolic pullback onto the x-axis

. We take a parabolic pullback of ζ(k)(∆(k)) onto the x-axis and disregard any

partition inside δre
k−1. We denote this partition of I by ξk. We consider δre

k−1 as the

rescaled central domain of ξk. The restriction of ξk to δre
k−1 is the partition ηk−1,

used to define 1-step filling-ins. This completes the algorithm at step k.

Remark 10. Filling-in below yk−1 first and then taking a parabolic pullback is equiv-

alent to taking a parabolic pullback of ζ
(k)
6 (∆(k)) first, then filling-in all holes outside

δre
k−1.

2.3.3 General steps of induction after step 15

We consider all t ∈ T (n−1) where T (n−1) is an admissible interval of parameters

obtained from the previous inductive step. As an inductive assumption, we assume

that there is a sequence of partitions ξk of I, k ≤ n, defined for all t ∈ T (n−1). An

interval ∆(n−1) is defined on the y-axis so that w(t) ranges from the bottom to the

top of ∆(n−1) when t ∈ T (n−1).

We want to partition T (n−1) into admissible subintervals T (n)’s.
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2.3.3.1 Enlargements of holes

For later construction we need to define enlargements of domains δi for i ≥ 5.

We assign enlargements as follows:

δ̂5 = δ0, δ̂6 = δ0, δ̂7 = δ0 (2.37)

δ̂i = δi−3 for i ≥ 8 (2.38)

We also define ξ̂i = ξ0 for 5 ≤ i < 8 and ξ̂i = ξi−3 for i ≥ 8. The purpose of defining

enlargements is explained in 1.3.5.6.

2.3.3.2 Defining ∆(n), T (n), and ζ
(n)
1 (∆(n))

Fix a domain ∆(n−1) created at step n−1. Consider the partition ζ(n−1)(∆(n−1))

of ∆y produced after the completion of step n − 1, ∆(n−1) is a domain in this par-

tition. The algorithm for choosing T (n) and ∆(n) is exactly the same as in steps 7

through 14. Consider maxt∈T (n−1)
|∆(n−1)(t)|

Hn−1(∆(n−1)(t))
, where Hn−1(∆(t)) is the distance

from ∆(t) to yn−1(t). If maxt∈T (n−1)
|∆(n−1)(t)|

Hn−1(∆(n−1)(t))
< ϑ1, then let ∆(n) = ∆(n−1)

and ∆(n) would be the only admissible subdomain of ∆(n−1). In this case, let

ζ
(n)
1 (∆(n)) = ζ(n−1)(∆(n−1)). If maxt∈T (n−1)

|∆(n−1)(t)|
Hn−1(∆(n−1)(t))

> ϑ1, we pullback parti-

tion ξ[n
3

] onto the interval ∆(n−1) and get a new partition of ∆y which we denote

by ζ
(n)
1 (∆(n−1)). Consider a monotone domain ∆′ in ζ

(n)
1 (∆(n−1)) that is outside

the union of enlargements of the central hole and preimages of enlargements of

holes in ξ[n
3

]. Then we check maxt∈T (n−1)
|∆′(t)|

Hn−1(∆′(t))
. If maxt∈T (n−1)

|∆′(t)|
Hn−1(∆′(t))

< ϑ1,

we let ∆(n) = ∆′. We consider the corresponding parameter interval as an ad-

missible parameter interval T (n) and let ζ
(n)
1 (∆(n)) = ζ

(n)
1 (∆′) := ζ

(n)
1 (∆(n−1)). If
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maxt∈T (n−1)
|∆′(t)|

Hn−1(∆′(t))
> ϑ1, we take a pullback of ξ[n

3
] onto ∆′ which forms a new

partition of ∆y which we denote by ζ
(n)
1 (∆′). We consider a monotone subdomain ∆′′

of ∆′ that is outside the union of the enlargement of the central hole and preimages

of enlargements of holes in ξ[n
3

]. If maxt∈T (n−1)
|∆′′(t)|

Hn−1(∆′′(t))
< ϑ1, we let ∆(n) = ∆′′,

ζ
(n)
1 (∆(n)) = ζ

(n)
1 (∆′′) := ζ

(n)
1 (∆′) and consider the corresponding parameter interval

as an admissible parameter interval T (n), otherwise, we repeat the argument again.

After we have obtained some final T (n) and ∆(n) such that

max
t∈T (n−1)

|∆(n)(t)|
Hn−1(∆(n)(t))

< ϑ1. (2.39)

As in the case of step 6, the variation of w(t) is small with respect to the size of

|[yn−1, w(t)]| for t ∈ T (n) as in the case of step 6. Completion of this part of the

algorithm will give a partition ζ
(n)
1 (∆(n)) of ∆y.

2.3.3.3 Defining yn and δre

n

The algorithm for defining yn is the same as the algorithm for defining y6. We

fix the parameter value t
(n)
0 ∈ T (n) as the parameter for which the image of quadratic

map covers the whole domain ∆(n). We set y′n so that
|[y′n,w(t

(n)
0 )]|

|[yn−1(t
(n)
0 ),w(t

(n)
0 )]|

= θ2
0 = 1

9
. If

y′n+1 lies in a critical domain δ, then let δ∗ = δ. If y′n lies in a monotone domain ∆,

we check to see if maxt∈T (n−1)
|∆(t)|

Hn−1(∆(t))
< ϑ2. If so, we let ∆∗ = ∆. If not, then we

refine ∆ by pulling back the partition ξ[n
3

] onto ∆. We repeat the process until y′n

lies in some critical domain δ∗ or some monotone domain ∆∗ which satisfies

max
t∈T (n−1)

|∆∗(t)|
Hn−1(∆∗(t))

< ϑ2, (2.40)
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where ϑ2 is defined in (2.103). Choose yn(t
(n)
0 ) as the upper endpoint of the ∆∗ or

δ∗ for which y′n lies in. For all other t ∈ T (n), we define yn(t) as dynamically the

same point as yn(t
(n)
0 ). After this step, we get a partition ζ

(n)
2 (∆(n)) of ∆y.

The parabolic preimages of yn form endpoints of the rescaled central domain

δre
n on the x-axis.

2.3.3.4 Boundary refinement

For monotone domains between yn−1 and yn whose extended domains are not

contained in the image of ht, we perform boundary refinements with ξ[n
3

]. After this

step, the partition we have of ∆y is denoted by ζ
(n)
3 (∆(n)).

2.3.3.5 Lower boundary refinement

For monotone domains in [yn−1, yn] whose extended domains extend below

yn−4, we perform boundary refinements with ξ[n
3

]. After this step, the partition we

have of ∆y is denoted by ζ
(n)
4 (∆(n)).

2.3.3.6 Filling-in of holes in [yn−1, yn]

For holes between yn−1 and yn we perform filling-in according to the following

rules.

• For holes that are preimages of δ0, we perform a 5-step filling-in, and that’s it.

• For all other holes, we perform a 1-step filling-in. If this is a first filling-in at

step n, we repeat the process one more time for holes created here.
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The final partition of ∆y on the y-axis is denoted by ζ
(n)
5 (∆(n)).

2.3.3.7 Filling-in outside δn−1

For each hole below yn−1, we perform a 1-step or a 5-step filling-in (depending

on whether or not the hole is a preimage of δ0). The final partition of ∆y on the

y-axis is denoted by ζ(n)(∆(n)).

2.3.3.8 Parabolic pullback onto δre

n−1\δre

n

We take a parabolic pullback of the partition ζ(n)(∆(n)) onto the x-axis. We

neglect any partition inside δre
n and this forms the final partition ξn(∆(n)) of I on the

x-axis. The restriction of the partition ξn(∆(n)) to δre
n−1 is denoted by the partition

ηn−1(∆(n)).

2.4 Structure of the phase domains, parameter intervals and maps

at step n

We have described our algorithm for constructing the partition for each in-

ductive step. Now we look at some structures that we get as a consequence of the

algorithm.

2.4.1 Nested sequence of collection of parameter intervals

Up to step n, we have a finite collection of admissible parameter intervals

{T (n)} whose elements are mutually disjoint except for maybe endpoints of T (n).

73



Each parameter interval T (n) is contained in an admissible parameter interval T (n−1)

from step n − 1. We can index admissible parameter intervals by i6 · · · in to show

its inclusion relation, T (n)
i6···in−1in

⊂ T (n−1)
i6···in−1

⊂ · · · ⊂ T (6)
i6
⊂ T (5) = T 476777. If we are

looking at one fixed interval T (n−1)
i6···in−1

and its subintervals T (n)
i6···in−1j

, we omit the index

of T (n−1) for simplicity. Therefore, we use expressions such as
⋃
i T

(n)
i ⊂ T (n−1) when

we actually mean
⋃
j T

(n)
i6···in−1j

⊂ T (n−1)
i6···in−1

.

2.4.2 Parameter-induced partition of ∆(n−1)

The intervals T (n)
i and their complement in T (n−1) form a partition of T (n−1).

We consider respective partition of ∆(n−1) in the phase space. This partition is

obtained by the pullback of ξ̂[n
3

] which depends continuously on t in T [n
3

], therefore

also depends continuously on t in a smaller parameter interval T (n−1). The non-

admissible domains in ∆(n−1) are hence decided by holes and preimages of holes

in ξ̂[n
3

]. Since this partition of ∆(n−1) into subintervals ∆
(n)
i and its complement

decides admissible parameter intervals, we call this the parameter-induced partition

of ∆(n−1). This is to distinguish it from the partitions that define the power maps.

Note that the parameter induced partition is a partition in the phase space.

2.4.3 Phase partition

In the phase space, there are two other partitions, the partition ξn of I =

[q−1
t , qt] on the x-axis and the partition ζ(n) of ∆y on the y-axis. The branches

corresponding to ξn defines the power map at the nth step of induction. Both ξn
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and ζ(n) vary continuously with t ∈ T (n), but does not vary continuously with t

in the larger parameter interval T (n−1) containing T (n). Therefore, we write ξn as

ξn(∆(n)) or ξn(T (n)) and ζ(n) as ζ(n)(∆(n)) or ζ(n)(T (n)) to specify this dependence.

Partition ζ(n)(T (n)) is a refinement of ζ(n−1)(T (n−1)) for t ∈ T (n). The parabolic

pullback of ζ(n)(∆(n)) gives exactly the part of the partition ξn(T (n)) when neglect-

ing the partition in δre
n . All monotone domains outside holes of ξn remain intact

after step n.

2.4.4 Monotone maps and maps on holes

We write out possible forms of compositions for maps defined on domains in

ξn and ζ(n). For the partition ζ(n) of ∆y, ∆(n) denotes the domain that contains the

critical value. The monotone branch on ∆(n) is the topmost branch which we will

consider on the y-axis. ∆(n) is always contained in ∆(n−1). For the other branches

in ζ(n), we distinguish the ones above yn from the ones below yn. Notice that yn

could be inside or below ∆(n−1).

Hence, on the y-axis, we discuss maps that are defined on domains of the
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following possible cases.

1. The case where yn is in ∆(n−1).

(a) Monotone domain ∆(n) containing the critical value

(b) Monotone domains ∆̄i in ∆(n−1), above yn

(c) Monotone domains ∆i in ∆(n−1), below yn

(d) Holes in ∆(n−1), above yn

(e) Holes in ∆(n−1) below yn

(f) Monotone domains ∆i below ∆(n−1), above yn−1

(g) Holes below ∆(n−1), above yn−1

(h) Monotone domains ∆i below yn−1

(i) Holes below yn−1

2. The case where yn is below ∆(n−1).

(a) Monotone domain ∆(n) containing the critical value

(b) Monotone domains ∆̄i in ∆(n−1)

(c) Holes in ∆(n−1)

(d) Monotone domains ∆̄i below ∆(n−1), above yn

(e) Holes below ∆(n−1) above yn

(f) Monotone domains ∆i below ∆(n−1), above yn−1 and below yn

(g) Holes below ∆(n−1), above yn−1 and below yn
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(h) Monotone domains ∆i below yn−1

(i) Holes below yn−1

Notations used below are described as follows. When choosing parameters at

each step n, we pullback the partition ξ̂[n
3

] = ξ[n
3

]−3 onto ∆(n−1) until all monotone

domains are sufficiently small. (i.e. satisfying (2.39)). These monotone domains are

the admissible domains for which the critical value may possibly fall into. We denote

monotone maps on ∆(n) by g(n). The remaining domains are holes corresponding

to parameter values which we throw away in the parameter space. Maps on these

holes are denoted by G(n),i : δ(n) → δre
m. Hence g(n),i and G(n),i are maps defined

for parameter choice or in other terms, are maps defined on the parameter-induced

partition of ∆(n−1) as described in 2.4.2.

For the actual partition on the phase space, we first pullback ξ[n
3

] so that the

domain containing the critical value is sufficiently small. Then we pullback ξ[n
3

]

until the monotone domain containing y′n is sufficiently small. We define yn to be

the upper endpoint of the final domain containing y′n. Monotone maps above yn are

denoted by ḡn,i. Maps on holes above yn are denoted by Ḡn,i. We do not perform

boundary refinement on monotone domains above yn at step n. We do not fill-in any

holes above yn at step n. For monotone domains below yn, we perform boundary

refinements if needed. For each hole in [yn−1, yn], we take two 1-step filling-ins,

one 1-step filling-in followed by a 5-step filling-in or one 5-step filling-in depending

on what rescaled central domain the hole is the preimage of. After refinement and

filling-in, the monotone maps on domains in [yn−1, yn] are denoted by gn,i’s and maps
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on holes in [yn−1, yn] are denoted by Gn,i’s. Monotone domains below yn−1 remain

unchanged. Holes below yn−1 are filled in once. We use gn,i’s and Gn,i’s to denote

maps on domains below yn−1 as well. Then take a parabolic pullback of gn,i’s and

Gn,i’s onto the x-axis to form fn,i’s and Fn,i’s which are monotone maps and maps

on holes, respectively, in ξn.

In general, compositions that result from monotone refinements are expressed

in the following form.

boundary refinements below yn︷ ︸︸ ︷
f[n

3
],ks′′
◦ · · · ◦ f[n

3
],k1 ◦

refinements on domain containing y′n︷ ︸︸ ︷
f[n

3
],js′
◦ · · · ◦ f[n

3
],j1 ◦

refinements on domains containing critical value︷ ︸︸ ︷
f̂[n

3
],is ◦ · · · ◦ f̂[n

3
],i1

(2.41)

f̂[n
3

] are monotone branches of ξ̂[n
3

]. The following are expressions of maps of step n

written as compositions of maps from steps before n.

2.4.4.1 Branches on the y-axis

Monotone domain ∆(n) containing the critical value

g(n) : ∆(n) → I

For each value t, there is only one ∆(n) containing the critical value. It was

obtained by refining ∆(n−1) with ξ[n
3

] and avoiding enlargements of holes in

ξ[n
3

] or equivalently, refining with ξ̂[n
3

]. ξ̂[n
3

] is ξ[n
3

]−3 in most cases, other cases

are better, so we write

g(n) = f̂[n
3

],is ◦ · · · ◦ f̂[n
3

],i1 ◦ g(n−1) (2.42)
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Monotone domains ∆̄i in ∆(n−1), above yn

ḡn,i : ∆̄i → I

∆̄i may be some monotone domain created from the refinements for obtaining

∆(n), then refined further when obtaining yn, so we have

ḡn,i = f[n
3

],js′
◦ · · · ◦ f[n

3
],j1 ◦ f̂[n

3
],is ◦ · · · ◦ f̂[n

3
],i1 ◦ g(n−1) (2.43)

No boundary refinements are performed since domains ∆̄i are above yn. Hence,

extended domains of these branches may not be in the image of ht.

Monotone domains ∆i in ∆(n−1), below yn

gn,i : ∆i → I

gn,i = f[n
3

],ks′′
◦· · ·◦f[n

3
],k1 ◦f[n

3
],js′
◦· · ·◦f[n

3
],j1 ◦ f̂[n

3
],is ◦· · ·◦ f̂[n

3
],i1 ◦g(n−1) (2.44)

The last compositions come from possible boundary refinements for domains

∆i below yn.

Holes in ∆(n−1), above yn

Ḡn,i : δ−pm → δre

m

These are monotone maps that map preimages of central holes to their respec-

tive rescaled central domains.

Case 1: This is the case when the holes are created after refinements when

obtaining ∆(n). In the two forms below, the first form gives the compo-

sitions for the map on the central hole after the last refinement, and the
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second form gives the composition for the maps on holes other than the

central hole after the last refinement. We will see maps on holes in these

two forms many times.

Ḡn,i = f̂[n
3

],is−1 ◦ · · · ◦ f̂[n
3

],i1 ◦ g(n−1) (2.45)

Ḡn,i = F[n
3

]−3,is ◦ f̂[n
3

],is−1 ◦ · · · ◦ f̂[n
3

],i1 ◦ g(n−1) (2.46)

Case 2: This is the case when the holes are created after refinements to

obtain ∆(n) and also after refinements to obtain yn.

Ḡn,i = f[n
3

],js′−1
◦ · · · ◦ f[n

3
],j1 ◦ f̂[n

3
],is ◦ · · · ◦ f̂[n

3
],i1 ◦ g(n−1) (2.47)

Ḡn,i = F[n
3

],js′
◦ f[n

3
],js′−1

◦ · · · ◦ f[n
3

],j1 ◦ f̂[n
3

],is ◦ · · · ◦ f̂[n
3

],i1 ◦ g(n−1) (2.48)

Filling-ins are not performed above yn at step n.

Holes in ∆(n−1) below yn

We use Gtemp

n,i to denote maps on holes after all possible refinements because

holes below yn will be filled in.

Gtemp

n,i : δ−pm → δre

m

Case 1

Gtemp

n,i = f̂[n
3

],is−1 ◦ · · · ◦ f̂[n
3

],i1 ◦ g(n−1) (2.49)

Gtemp

n,i = F[n
3

]−3,is ◦ f̂[n
3

],is−1 ◦ · · · ◦ f̂[n
3

],i1 ◦ g(n−1) (2.50)

Case 2

Gtemp

n,i = f[n
3

],js′−1
◦ · · · ◦ f[n

3
],j1 ◦ f̂[n

3
],is ◦ · · · ◦ f̂[n

3
],i1 ◦ g(n−1) (2.51)
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Gtemp

n,i = F[n
3

],js′
◦ f[n

3
],js′−1

◦ · · · ◦ f[n
3

],j1 ◦ f̂[n
3

],is ◦ · · · ◦ f̂[n
3

],i1 ◦ g(n−1) (2.52)

Case 3

Due to boundary refinements, there can also be additional compositions.

Gtemp

n,i = f[n
3

],ks′′−1
◦· · ·◦f[n

3
],k1 ◦f[n

3
],js′
◦· · ·◦f[n

3
],j1 ◦ f̂[n

3
],is ◦· · ·◦ f̂[n

3
],i1 ◦g(n−1)

(2.53)

Gtemp

n,i = F[n
3

],ks′′
◦f[n

3
],ks′′−1

◦· · ·◦f[n
3

],k1◦f[n
3

],js′
◦· · ·◦f[n

3
],j1◦f̂[n

3
],is◦· · ·◦f̂[n

3
],i1◦g(n−1)

(2.54)

After a first filling-in, we get some monotone branches

gn,i = fm+1,l ◦ Gtemp

n,j m ≤ [
n

3
]. (2.55)

m is less than or equal to [n
3
] because Gtemp

n,i are maps on holes created from

refinements by ξ[n
3

] or earlier partitions. Plugging in (2.49) through (2.54),

form (2.55) can be written into the following detailed forms.

gn,i =fm+1,l ◦ f̂[n
3

],is−1 ◦ · · · ◦ f̂[n
3

],i1 ◦ g(n−1)

gn,i =fm+1,l ◦ F[n
3

]−3,is ◦ f̂[n
3

],is−1 ◦ · · · ◦ f̂[n
3

],i1 ◦ g(n−1)

gn,i =fm+1,l ◦ f[n
3

],js′−1
◦ · · · ◦ f[n

3
],j1 ◦ f̂[n

3
],is ◦ · · · ◦ f̂[n

3
],i1 ◦ g(n−1)

gn,i =fm+1,l ◦ F[n
3

],js′
◦ f[n

3
],js′−1

◦ · · · ◦ f[n
3

],j1 ◦ f̂[n
3

],is ◦ · · · ◦ f̂[n
3

],i1 ◦ g(n−1)

gn,i =fm+1,l ◦ f[n
3

],ks′′−1
◦ · · · ◦ f[n

3
],k1 ◦ f[n

3
],js′
◦ · · · ◦ f[n

3
],j1 ◦ f̂[n

3
],is ◦ · · · ◦ f̂[n

3
],i1 ◦ g(n−1)

gn,i =fm+1,l ◦ F[n
3

],ks′′
◦ f[n

3
],ks′′−1

◦ · · · ◦ f[n
3

],k1 ◦ f[n
3

],js′
◦

· · · ◦ f[n
3

],j1 ◦ f̂[n
3

],is ◦ · · · ◦ f̂[n
3

],i1 ◦ g(n−1)
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After a first filling-in, we also get new maps on holes which we denote by Gtemp2

n,i

because such holes are filled in a second time.

Gtemp2

n,i = Gtemp

n,j (2.56)

or

Gtemp2

n,i = Fm+1,l ◦ Gtemp

n,j (2.57)

where, m ≤ [n
3
] or [n

3
]−3. Possible compositions are exactly the same as those

of monotone branches except fm+1,l is replaced by Fm+1,l.

After a second filling-in, we get more monotone branches

gn,i = fm̄+1,l ◦ Gtemp2

n,j m̃ ≤ m+ 1 (2.58)

and more maps on holes

Gn,i = Gtemp2

n,j (2.59)

or

Gn,i = Fm̄+1,l ◦ Gtemp2

n,j (2.60)

where m̄ ≤ m+ 1. Final expressions would have the most general form

gn,i =fm̄+1,l2 ◦ Fm+1,l1 ◦ F[n
3

],ks′′
◦ f[n

3
],ks′′−1

◦ · · · ◦ f[n
3

],k1 ◦ f[n
3

],js′
◦

· · · ◦ f[n
3

],j1 ◦ f̂[n
3

],is ◦ · · · ◦ f̂[n
3

],i1 ◦ g(n−1)

and

Gn,i =Fm̄+1,l2 ◦ Fm+1,l1 ◦ F[n
3

],ks′′
◦ f[n

3
],ks′′−1

◦ · · · ◦ f[n
3

],k1 ◦ f[n
3

],js′
◦

· · · ◦ f[n
3

],j1 ◦ f̂[n
3

],is ◦ · · · ◦ f̂[n
3

],i1 ◦ g(n−1).
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Monotone domains ∆̄i below ∆(n−1), above yn

Monotone domains ∆̄i below ∆(n−1) either come from monotone domains from

previous inductive steps or monotone domains created after refinements when

obtaining yn. No boundary refinements are performed on monotone domains

above yn at step n. The composition is just

ḡn,i = f[n
3

],js′
◦ · · · ◦ f[n

3
],j1 ◦ ḡn−1,j (2.61)

Note how we use ḡn−1,j here instead of g(n−1) as in (2.43) since ∆̄i is not in

∆(n−1) anymore.

Holes below ∆(n−1) above yn

For maps on holes below ∆(n−1) and above yn, the composition for Ḡn,i has a

form similar to (2.61).

Ḡn,i = f[n
3

],js′−1
◦ · · · ◦ f[n

3
],j1 ◦ ḡn−1,j

or

= F[n
3

],js′
◦ f[n

3
],js′−1

◦ · · · ◦ f[n
3

],j1 ◦ ḡn−1,j

Holes above yn do not get filled in at step n.

Monotone domains ∆i below ∆(n−1), below yn and above yn−1

For domains ∆i below ∆(n−1) and below yn, we add possible boundary refine-

ments to compositions.

gn,i = f[n
3

],ks′′
◦ · · · ◦ f[n

3
],k1 ◦ f[n

3
],js′
◦ · · · ◦ f[n

3
],j1 ◦ ḡn−1,j (2.62)
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Holes below ∆(n−1), below yn and above yn−1

For maps on holes below ∆(n−1) and below yn, we use the temporary notation

Gtemp

n,i because we will fill in these holes.

Case 1

Gtemp

n,i = f[n
3

],js′−1
◦ · · · ◦ f[n

3
],j1 ◦ ḡn−1,j (2.63)

or

Gtemp

n,i = F[n
3

],js′
◦ f[n

3
],js′−1

◦ · · · ◦ f[n
3

],j1 ◦ ḡn−1,j (2.64)

Case 2

Gtemp

n,i = f[n
3

],ks′′−1
◦ · · · ◦ f[n

3
],k1 ◦ f[n

3
],js′
◦ · · · ◦ f[n

3
],j1 ◦ ḡn−1,j (2.65)

or

Gtemp

n,i = F[n
3

],ks′′
◦f[n

3
],ks′′−1

◦ · · · ◦f[n
3

],k1 ◦f[n
3

],js′
◦ · · · ◦f[n

3
],j1 ◦ ḡn−1,j (2.66)

After one filling-in, we have some new monotone branches

gn,i = fm+1,l ◦ Gtemp

n,j (2.67)

m ≤ [n
3
]. We also have maps on holes that are temporarily expressed as Gtemp2n,i

before a second filling-in.

Gtemp2

n,i = Gtemp

n,j (2.68)

or

Gtemp2

n,i = Fm+1,l ◦ Gtemp

n,j (2.69)

After a second filling-in, we have some more new monotone branches

gn,i = fm̄+1,l ◦ Gtemp2

n,j (2.70)
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m̄ ≤ m+ 1.

We have final maps on holes

Gn,i = Gtemp2

n,j (2.71)

or

Gn,i = Fm̄+1,l ◦ Gtemp2

n,j (2.72)

Writing out the composition, we would have the general forms

gn,i = fm̄+1,l2 ◦ Fm+1,l1 ◦ F[n
3

],ks′′
◦ f[n

3
],ks′′−1

◦ · · · ◦ f[n
3

],k1 ◦ f[n
3

],js′
◦ · · · ◦ f[n

3
],j1 ◦ ḡn−1,j

and

Gn,i = Fm̄+1,l2 ◦ Fm+1,l1 ◦ F[n
3

],ks′′
◦ f[n

3
],ks′′−1

◦ · · · ◦ f[n
3

],k1 ◦ f[n
3

],js′
◦ · · · ◦ f[n

3
],j1 ◦ ḡn−1,j.

Monotone domains ∆i below yn−1

These branches come from earlier inductive steps and they remain the same

as in step n− 1.

gn,i = gn−1,j (2.73)

Holes below yn−1

For each hole below yn−1 we perform a 1-step filling-in. Suppose that the hole

we fill-in is a preimage of δre
ñ for some ñ ≤ n− 1, then new monotone branches

are formed by compositions with fñ,l’s.

gn,i = fñ,l ◦ Gn−1,j ñ ≤ n− 1 (2.74)
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We also have new holes and maps on these holes are denoted by

Gn,i = Fñ,l ◦ Gn−1,j (2.75)

ñ ≤ n− 1.

2.4.4.2 Branches on the x-axis

Domains on the x-axis are split into domains inside δre
n−1 and domains outside

δre
n−1.

Let fn,i represent a monotone branch in partition ξn. A monotone branch fn,i

is simply the composition gn,i ◦ ht where gn,i is a monotone branch that maps some

domain ∆i in ζ(n)(∆(n)) onto I and ht(x) = tx(1 − x). Similarly, maps on holes in

ξn are represented by Fn,i = Gn,i ◦ ht

Maps defined on domains inside δren−1\δren

Monotone domains in δre
n−1\δre

n can be expressed as

fn,i = gn,i ◦ ht, (2.76)

where gn,i is a monotone map defined on a monotone domain in [yn−1, yn].

Maps on holes in δre
n−1\δre

n can be expressed as

Fn,i = Gn,i ◦ ht, (2.77)

where Gn,i is a monotone map defined on a hole in [yn−1, yn].

Maps defined on domains outside δren−1

Monotone branches outside δre
n−1 were formed in previous steps, they remain
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the same as before.

fn,i = fn−1,j (2.78)

Holes get a 1-step filling in, forming new monotone branches

fn,i = fñ,j′ ◦ fn−1,j where ñ ≤ n− 1, (2.79)

and new maps on holes

Fn,i = Fñ,j′ ◦ fn−1,j where ñ ≤ n− 1. (2.80)

2.5 Estimates on the measure of holes, domain sizes, derivatives and

velocities

We fix the following parameter values.

1. ε0 := 0.003

2. ϑ1 := 0.0098

3. ϑ2 := 0.6 ∗ 1
8

2.5.1 Step 6

We derive properties for step 6 as a result of the algorithm at step 6.

(I) Velocities of partition points in the parameter-induced partition of ∆(5) are less

than ε0. Velocities of partition points in the phase partition ζ of ∆(5) are less

than ε0. Velocities of partition points in η5 are less than 1

4|δre
6 |

.
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(II)
∣∣T (6)

∣∣ ≤ 1
1
4
−ε0

∣∣∆(6)
∣∣, ∣∣∆(6)

∣∣ ≤ H5(∆(6))ϑ1 ≤ |[y5(t), w(t)]|ϑ1 <
∣∣∆(5)

∣∣ϑ1

(III)

1

3

√
0.3 |δ5| ≤ |δre

6 | ≤
1

3
|δ5| . (2.81)

(IV) No more than 5 pullbacks are needed to achieve
|∆(6)|
H5(∆(6))

< ϑ1.

(V) No more than 5 pullbacks are needed to achieve
|∆i|
H5(∆i)

< ϑ2, where ∆i is a

monotone domain containing y′6.

(VI) No more than 2 boundary refinements are needed.

(VII) µholes(η5) < 0.526667, µholes(ξ6) < 0.0189, where η5 is the partition ξ6 restricted

to δ5.

(VIII) For g(6), G(6), ḡ6,i, Ḡ6,i, g6,i and G6,i defined in 2.4.4, we have

g(6) = f̂0,is ◦ · · · ◦ f̂0,i1 ◦ g(5), 1 ≤ s ≤ 5

G(6),i = f̂0,is ◦ · · · ◦ f̂0,i1 ◦ g(5), 1 ≤ s ≤ 5

ḡ6,i = f0,js′
◦ · · · ◦ f0,j1 ◦ f̂0,is ◦ · · · ◦ f̂0,i1 ◦ g(5), 1 ≤ s ≤ 5, s+ s′ ≤ 5

Ḡ6,i = f0,is−1 ◦ · · · ◦ f0,i1 ◦ g(5) for s ≤ 5 or Ḡ6,i = f0,js′−1
◦ · · · ◦ f0,j1 ◦ f̂0,is ◦ · · · ◦

f̂0,i1 ◦ g(5), 1 ≤ s ≤ 5, s+ s′ ≤ 5

g6,i = f5,k ◦ f0,1 ◦ f0,js′
◦ · · · ◦ f0,j1 ◦ f̂0,is ◦ · · · ◦ f̂0,i1 ◦ g(5), 1 ≤ s ≤ 5, s+ s′ ≤ 5

G6,i = f̂0,is−1 ◦ · · · ◦ f̂0,i1 ◦ g(5), 1 ≤ s ≤ 5 or G6,i = f0,js′−1
◦ · · · ◦ f0,j1 ◦ f̂0,is ◦

· · · ◦ f̂0,i1 ◦ g(5), 1 ≤ s ≤ 5, s+ s′ ≤ 5 or G6,i = f0,ks′′−1
◦ · · · ◦ f0,k1 ◦ f0,js′

◦ · · · ◦

f0,j1 ◦ f̂0,is ◦ · · · ◦ f̂0,i1 ◦ g(5) for s ≤ 5 , 1 ≤ s+ s′ ≤ 5, s′′ ≤ 2 or

G6,i = F5,k ◦ f̂0,is−1 ◦ · · · ◦ f̂0,i1 ◦ g(5), 1 ≤ s ≤ 5 or G6,i = F5,k ◦ f0,js′−1
◦ · · · ◦

f0,j1 ◦ f̂0,is ◦ · · · ◦ f̂0,i1 ◦ g(5), 1 ≤ s ≤ 5, s + s′ ≤ 5 or G6,i = F5,k ◦ f0,ks′′−1
◦
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· · ·◦f0,k1 ◦f0,js′
◦· · ·◦f0,j1 ◦ f̂0,is ◦· · ·◦ f̂0,i1 ◦g(5) for s ≤ 5 , 1 ≤ s+s′ ≤ 5, s′′ ≤ 2

(IX) Monotone branches f6,i in ξ6 are extendible to Ĩ. Maps F6,i on holes are

extendible to the enlargements of the holes.

(X)
∣∣∣∂g(6)

∂x

∣∣∣ ≥ max

{
391005 ∗ 3.5, |I|

|∆(6)| ∗
1

15.6

}
∣∣∣∂G(6),i

∂x

∣∣∣ ≥ max

{
391005, |δ0|

|∆(5)|∗(worst distorted ratio of δ−1
0 in ∆(5))

∗ 1
1.3035

}
= 391005∣∣∣∂ḡ6,i

∂x

∣∣∣ ≥ max
{

391005 ∗ 3.5, |I|
|[y6(t),w(t)]| ∗

1
15.6

}
∣∣∣∂Ḡ6,i

∂x

∣∣∣ ≥ max
{

391005, |δ0|
|[y6(t),w(t)]| ∗

1
2.75

}
∣∣∣∂g6,i

∂x

∣∣∣ ≥ max
{

391005 ∗ 3.5, |I|
|[y5(t),y6(t)]| ∗

1
15.6

}
∣∣∣∂G6,i

∂x

∣∣∣ ≥ max
{

391005,min
{

|δ0|
|[y5(t),y6(t)]| ∗

1
2.75

, |δ5|
|[y5(t),y6(t)]| ∗

1
1.1

}}
∣∣∣∂f6,i

∂x

∣∣∣ ≥ 109 ∗ 3.5∣∣∣∂F6,i

∂x

∣∣∣ ≥ 109

(XI)

∣∣∣∣∣ ∂
2G−1

(6),i
∂t∂z

∣∣∣∣∣∣∣∣∣∣ ∂G
−1
(6),i
∂z

∣∣∣∣∣
,

∣∣∣∣∣ ∂
2g−1

(6)
∂t∂z

∣∣∣∣∣∣∣∣∣∣ ∂g
−1
(6)
∂z

∣∣∣∣∣
,

∣∣∣∣∣ ∂2Ḡ−1
6,i

∂t∂z

∣∣∣∣∣∣∣∣∣∣ ∂Ḡ−1
6,i
∂z

∣∣∣∣∣
,

∣∣∣∣∣ ∂2ḡ−1
6,i

∂t∂z

∣∣∣∣∣∣∣∣∣∣ ∂ḡ−1
6,i
∂z

∣∣∣∣∣
≤ 211.23

∣∣∣∣∣ ∂2G−1
6,i

∂t∂z

∣∣∣∣∣∣∣∣∣∣ ∂G−1
6,i
∂z

∣∣∣∣∣
,

∣∣∣∣∣ ∂2g−1
6,i

∂t∂z

∣∣∣∣∣∣∣∣∣∣ ∂g−1
6,i
∂z

∣∣∣∣∣
< 902421

∣∣∣∣∣ ∂2F−1
6,i

∂t∂z

∣∣∣∣∣∣∣∣∣∣ ∂F−1
6,i
∂z

∣∣∣∣∣
,

∣∣∣∣∣ ∂2f−1
6,i

∂t∂z

∣∣∣∣∣∣∣∣∣∣ ∂f−1
6,i
∂z

∣∣∣∣∣
< 1.38

|δre
6 |2

< 2.9 ∗ 108

89



2.5.1.1 Bounds for velocities of partitioning points of the parameter-

induced partition and phase partitions of ∆(5)

Here we show that the velocities of partitioning points of the parameter-

induced partition and/or the phase partition is less than ε0 = 0.003. All partitioning

points of the parameter-induced partition (discussed in 2.4.2) and phase partitions

(discussed in 2.4.3) of ∆(5) are formed by a finite number of monotone pullbacks of

ξ0 onto or into ∆(5).

Lemma 5. Let ∆ be any monotone domain either in the parameter-induced partition

of ∆(5) or phase partitions of ∆(5), then∣∣∣∣∣dx(6)
1 (t)

dt

∣∣∣∣∣ ,
∣∣∣∣∣dx(6)

2 (t)

dt

∣∣∣∣∣ < 0.003 =: ε0 (2.82)

where x1 and x2 are endpoints of ∆.

Proof. First note that ∆ must be mapped by some monotone map g onto I. Here,

g could be g(6), ḡ6,i or g6,i. Since

g(t, x1(t)) = q−1
t ( or qt, doesn’t matter) (2.83)

we have

∂g

∂t
(t, x1(t)) +

∂g

∂x
(t, x1(t))

dx1(t)

dt
=
−1

t2
. (2.84)

Then the velocity of the endpoint x1 of ∆ satisfies the inequality∣∣∣∣dx1(t)

dt

∣∣∣∣ ≤ 1
t2∣∣ ∂g

∂x
(t, x1(t))

∣∣ +

∣∣∂g
∂t

(t, x1(t))
∣∣∣∣ ∂g

∂x
(t, x1(t))

∣∣ . (2.85)

According to 2.4.4.1, g(6), ḡ6,i or g6,i can be written as compositions of g(5) and

branches of ξ0 or ξ5. The case that gives the worst value for
| ∂g∂t (t,x1(t))|
| ∂g∂x (t,x1(t))| above is
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when g has the form

g = f5,j ◦ f0,ir ◦ · · · ◦ f0,i1 ◦ g(5). (2.86)

Using (2.164) and preliminary estimates from 2.2.10, we get∣∣∣∣∂(f0,ir◦···◦f0,i1)
∂t

∣∣∣∣∣∣∣∣∂(f0,ir◦···◦f0,i1)
∂x

∣∣∣∣ ≤
∣∣∣∣∂(f0,ir−1

◦···◦f0,i1)
∂t

∣∣∣∣∣∣∣∣∂(f0,ir−1
◦···◦f0,i1)
∂x

∣∣∣∣ +
1∣∣∣∣∂(f0,ir−1
◦···◦f0,i1)
∂x

∣∣∣∣
∣∣∣∂f0,ir

∂t

∣∣∣∣∣∣∂f0,ir

∂x

∣∣∣
≤

∣∣∣∣∂(f0,ir−2
◦···◦f0,i1)
∂t

∣∣∣∣∣∣∣∣∂(f0,ir−2
◦···◦f0,i1)
∂x

∣∣∣∣ +
1∣∣∣∣∂(f0,ir−2
◦···◦f0,i1)
∂x

∣∣∣∣
∣∣∣∂f0,ir−1

∂t

∣∣∣∣∣∣∂f0,ir−1

∂x

∣∣∣ +
1∣∣∣∣∂(f0,ir−1
◦···◦f0,i1)
∂x

∣∣∣∣
∣∣∣∂f0,ir

∂t

∣∣∣∣∣∣∂f0,ir

∂x

∣∣∣
...

<

(
1 +

1

3.5
+

1

3.52
+ · · ·+ 1

3.5r−1

)
∗

∣∣∣∂f0,i

∂t

∣∣∣∣∣∣∂f0,i

∂x

∣∣∣
< 1.4 ∗ 1.109 < 1.5527. (2.87)

Combining (2.87) and (2.20), we get∣∣∣∂(f5,k◦f0,ir◦···◦f0,i1
)

∂t

∣∣∣∣∣∣∂(f5,k◦f0,ir◦···◦f0,i1
)

∂x

∣∣∣ ≤
∣∣∣∂(f0,ir◦···◦f0,i1

)

∂t

∣∣∣∣∣∣∂(f0,ir◦···◦f0,i1
)

∂x

∣∣∣ +
1∣∣∣∂(f0,ir◦···◦f0,i1

)

∂x

∣∣∣ ·
∣∣∣∂f5,k

∂t

∣∣∣∣∣∣∂f5,k

∂x

∣∣∣
≤ 1.5527 +

1

3.5
∗ 161

< 48. (2.88)

Combining (2.88) and (2.23), we get∣∣∣∂(f5,k◦f0,ir◦···◦f0,i1
◦g(5))

∂t

∣∣∣∣∣∣∂(f5,k◦f0,ir◦···◦f0,i1
◦g(5))

∂x

∣∣∣ ≤
∣∣∣∂g(5)

∂t

∣∣∣∣∣∣∂g(5)

∂x

∣∣∣ +
1∣∣∣∂g(5)

∂x

∣∣∣ ·
∣∣∣∂(f5,k◦f0,ir◦···◦f0,i1

)

∂t

∣∣∣∣∣∣∂(f5,k◦f0,ir◦···◦f0,i1
)

∂x

∣∣∣
≤ 0.0019 +

1

391005
∗ 48

< 0.00202277. (2.89)
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Since g is the composition of g(5) and at least one monotone branch from ξ5, g has

derivative greater than 391005 ∗ 3.5, so the first term of (2.85) is relatively small.

We have ∣∣∣∣dx1(t)

dt

∣∣∣∣ ≤ 0.000000047 + 0.00202277 < ε0 (2.90)

as desired. x1 can be replaced by x2.

As a corollary of lemma 5, we estimate the relative shifts of y5(t) and y6(t).

y5(t) and y6(t) are defined in 2.3.1.1 and 2.3.1.2, respectively.

Corollary 1. Let w(t) be in ∆(6) satisfying (2.26), and T (6) = T (∆(6)) be the

parameter interval such that when t ∈ T (6), we have w(t) ∈ ∆(6). If t0 is the top

endpoint of T (6) and t is any other value in T (6), then

|y6(t)− y6(t0)|
H5(t0)

< ε0
|4(w(t)− w(t0))|

H5(t0)
<

4ε0
1− 4ε0

ϑ1. (2.91)

and

|y5(t)− y5(t0)|
H5(t0)

< ε0
|4(w(t)− w(t0))|

H5(t0)
<

4ε0
1− 4ε0

ϑ1. (2.92)

where y5 and y6 are as defined in the algorithm.

Proof. By (1.8) and lemma 5 we have

1
1
4

+ ε0
<
|T (∆(6))|
|∆(6)(t0)|

<
1

1
4
− ε0

(2.93)

We know

w(t)− w(t0) =
1

4
(t− t0). (2.94)

Combining (2.94) and (2.93), we have

w(t)− w(t0) <
1
4

1
4
− ε0
|∆(6)(t0)|. (2.95)
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Then by (2.26),

w(t)− w(t0)

H5(t0)
≤ 1

1− 4ε0

|∆(6)(t0)|
H5(t0)

<
1

1− 4ε0

|∆(6)(t0)|
H5(∆(6)(t0))

<
1

1− 4ε0
ϑ1, (2.96)

where H5(t) = |[y5(t), w(t)]|. By lemma 5, we have |y6(t)−y6(t0)| < ε0|t− t0|. Then

by (2.94) and (2.96), we get (2.91). Similarly, we get (2.92).

The corollary above shows that the shift of y5(t) and y6(t) is relatively small

when t is restricted to a small interval whose size is controlled by the parameter ϑ1.

2.5.1.2 Estimating the shift from y′6 to y6 and calculations for |δ
re
6 (t)|
|δ5(t)|

(Defining ϑ1 and ϑ2)

Let δre
6 be the parabolic pullback of [y6(t), w(t)] onto the x-axis.

Lemma 6. Based on the algorithm given in 2.3.1, if we assign ϑ1 := 0.0098 and

ϑ2 := 0.6 ∗ 1
8

then
√

0.3

3
|δ5(t)| ≤ |δre6 (t)| ≤ 1

3
|δ5(t)| (2.97)

or equivalently

0.3

9
|[y5(t), w(t)]| ≤ |[y6(t), w(t)]| ≤ 1

9
|[y5(t), w(t)]| (2.98)

for all t ∈ T (6)

Proof. To prove the lemma, we first prove some inequality for some specific param-

eter value. Then, using the small variation of each dynamically defined point, we

prove the inequality for all t ∈ T (6).
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For the top value t0 of each T (6), we first find r(t0) and R(t0) so that

1

3
r(t0) ≤ |δ

re
6 (t0)|
|δ5(t0)|

≤ R(t0)
1

3
. (2.99)

From (2.30) we have R(t0) = 1.

The lower bound of |δre
6 (t0)| depends on the distance from y6(t0) to w(t0) which

in turn depends on the shift from y′6 to y6(t0). The shift from y′6 to y6(t0) is bounded

above by the size of δ∗(t0) or ∆∗(t0) which contains y′6. Since we can always refine

monotone domains when y′6 falls in a monotone domain, r(t0) is determined by the

worst possible value of the ratio of δ∗(t0) = δ−p0 (t0) over [y5(t0), w(t0)].

y′6 is in a hole δ∗(t0)

When y′6 lies in δ−p0 , y6(t0) is defined as the upper endpoint of δ−p0 . The domain

δ−p0 is mapped by some diffeomorphism G monotonically onto δ0. This map

can be extended to G̃ where the extended image is Ĩ = [q−1 − 0.17, q + 0.17].

The image of G̃ ◦ h will cover at least domains ∆−3 and ∆′−2 as defined in

(2.9). Consider Y as the pullback of δ0 ∪∆−3 ∪∆′−2 by G̃−1 into ∆(5).

Then

|[y6(t0), w(t0)]|
1
9
|[y5(t0), w(t0)]|

=
|[y6(t0), w(t0)]|
|[y′6, w(t0)]|

= 1− |[y
′
6, y6(t0)]|
|[y′6, w(t0)]|

≥ 1− |δ
−p
0 |
|Y |

(2.100)

We let δX = δ0, X = δ0 ∪ ∆−3 ∪ ∆′−2, and X̃ = Ĩ and apply (A.3). We get

that letting
ˆ̂
X = X gives the better upper bound for distorted ratio.

|δ−p0 |
|Y |

< 0.59. (2.101)
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Figure 2.4: Y as the pullback of δ0 ∪∆−3 ∪∆′−2 by G̃−1 into ∆(5)

So |[y6(t0),w(t0)]|
|[y5(t0),w(t0)]| > (1 − k) · 1

9
where k = 0.59. Then

|δre
6 (t0)|
|δ5(t0)| >

√
1− 0.6 · 1

3
>

0.63 · 1
3
. So we can let

r(t0) = 0.63. (2.102)

y′6 is in a monotone domains ∆∗

We would also like the left hand side of (2.99) to hold for the case when y′6

falls into a monotone domain ∆∗. This can be done since ϑ2 is chosen to be

sufficiently small. If we have

|∆∗|
H5(∆∗)

< 0.6 ∗ 1

8
=: ϑ2 (2.103)
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that will imply

|[y′6, y6(t0)]|
|[y′6, w(t0)]|

<
|∆∗(t0)|

measure of ∆∗(t0) and the region up to w(t0)

<

(
H5(∆∗(t0))

measure of ∆∗(t0) and the region up to w(t0)

)(
|∆∗(t0)|

H5(∆∗(t0))

)
<

(
|[y5(t0), y′6]|
|[y′6, w(t0)]|

)(
|∆∗(t0)|

H5(∆∗(t0))

)
= 8

(
|∆∗(t0)|

H5(∆∗(t0))

)
< 0.6.

The equality follows from (2.28). We can plug this into (2.100) and derive the

left hand side of (2.99) as we did for the case where y′6 is in a hole δ∗(t0).

Left inequality of (2.97)

For general t ∈ T (6), we apply (2.96) and (2.91) to get

|[y6(t), w(t)]| ≥|[y6(t0), w(t0)]| − |[y6(t), y6(t0)]| − |[w(t), w(t0)]|

≥1

9
r(t0)2H5(t0)−

(
4ε0

1− 4ε0

)
ϑ1H5(t0)−

(
1

1− 4ε0

)
ϑ1H5(t0)

≥1

9

(
1− 0.6− 9 ·

(
1 + 4ε0
1− 4ε0

)
ϑ1

)
H5(t0).

For

ϑ1 := 0.0098 (2.104)

and ε0 = 0.003, we have 9
(

1+4ε0
1−4ε0

)
ϑ1 < 0.1. Then, since t0 is the top value of

T (6) and w(t) moves faster than y5(t), we get

|[y6(t), w(t)]| ≥1

9
(1− 0.6− 0.1)H5(t0)

≥1

9
(0.3)H5(t).

So for all t, we get

|δre
6 (t)|
|δ5(t)|

≥ 1

3
·
√

0.3. (2.105)
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We can define

r =
√

0.3 (2.106)

Right inequality of (2.97)

As t0 is the top parameter of T (6), we have w(t0) > w(t). Using (2.91) and

(2.92), we get

|[y6(t), w(t)]|
|[y5(t), w(t)]|

=
w(t)− y6(t)

w(t)− y5(t)

=
(w(t)− w(t0)) + (w(t0)− y6(t0)) + (y6(t0)− y6(t))

(w(t)− w(t0)) + (w(t0)− y5(t0)) + (y5(t0)− y5(t))

=

w(t)−w(t0)
H5(t0)

(
1 + y6(t0)−y6(t)

w(t)−w(t0)

)
+ w(t0)−y6(t0)

H5(t0)

w(t)−w(t0)
H5(t0)

(
1 + y5(t0)−y5(t)

w(t)−w(t0)

)
+ w(t0)−y5(t0)

H5(t0)

≤
w(t)−w(t0)
H5(t0)

(1− 4ε0) + 1
9

w(t)−w(t0)
H5(t0)

(1 + 4ε0) + 1

≤ 1

9

The last inequality is true because (1 − 4ε0) ≥ 1
9
(1 + 4ε0) for ε0 = 0.003 and

w(t)− w(t0) is negative. So for all t ∈ T (6),

|δre
6 |
|δ5|
≤ 1

3
. (2.107)

This shows the right hand side of (2.97).
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2.5.1.3 Maximum number of monotone pullbacks for step 6 is less

than 5

In our algorithm, we perform monotone refinements by ξ0 when defining T (6)’s

(or ∆(6)’s) and y6(t) so that (2.26) is satisfied for ∆(6)(t) containing w(t) and (2.29) is

satisfied for ∆ such that ∆(t0) contains y′6. Now we discuss the number of monotone

pullbacks needed in these two procedures.

Lemma 7. If we create ∆(6) and y6(t) according to our algorithm in 2.3.1, the

number of monotone refinements needed in defining ∆(6) and y6(t) summed together

will not exceed five.

Proof. This lemma is justified by numeric computations. In (2.6) we made an extra

assumption on the parameters at the initial steps in order for all branches of ξ5 to

be extendable. Now we find some t∗ > 3.99512595 which is Markov, meaning w(t∗)

is a preimage of qt∗ . Since w(3.99512595) lies in ∆(5)14(t) = g−1
5 (∆1(t) ∩ f−1

1 (δ0(t)))

for all t ∈ T (5), it makes sense to choose t∗ such that w(t∗) is the upper endpoint of

∆(5)14(t∗).

t∗ ≈ 3.99512600657. (2.108)

We check (2.26) and (2.29) for domains ∆(5)14 and above.

Number of monotone refinements in defining T (6)

When we choose ∆(6), we only need to consider admissible domains above

∆(5)14. For each monotone domain ∆ obtained from consecutive pullbacks

of ξ0 onto the y-axis, ratio’s |∆|
H5(∆)

can be obtained numerically. The charts
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in B.3.2 give values of |∆|
H5(∆)

for monotone domains and their refinements.

From (2.104), we have ϑ1 = 0.0098. We can conclude from the chart that for

domains above ∆(5)14, at most 5 monotone refinements are needed to achieve

(2.26). In particular, 4 monotone refinements are needed for the domain at

the very top of ∆(5).

Number of monotone refinements when defining y6

The domain ∆(6) containing w(t) satisfies (2.26). Since ϑ1 < 1
9
, by (2.28)

we know that it cannot contain y′6. Some domain other than ∆(6) contains y′6.

Since w(t0) is always above w(t∗) and by lemma 5, the variation of y5(t) is small

compared to variation of w(t), that means y′6 > y5(t0)+ 8|[y5(t0),w(t0)]|
9

≥ y5(t0)+

8|[y5(t∗),w(t∗)]|
9

. Domain g−1
5 (∆1(t) ∩ f−1

1 (∆−3(t))) contains y5(t) + 8|[y5(t∗),w(t∗)]|
9

for all t ∈ T (5). It suffices to look at all monotone domains above ∆(5)13 =

g−1
5 (∆1 ∩ f−1

1 (∆−3)) to check for inequality (2.29), where ϑ2 = 0.075.

2.5.1.4 Number of boundary refinements for step 6 is less than 2

Lemma 8. No more than two boundary refinements are needed on monotone do-

mains ∆ in [y5, y6] at step 6.

Proof. The argument uses (2.28) and the right hand side of the inequality (2.32).

We consider two cases:

Case 1: ∆ is adjacent to y6

Since ∆ and y6 are defined dynamically, this condition holds for all t ∈ T (6)
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once it holds for one specific t in T (6). ∆(t0) adjacent to y6(t0) means that

y′6 ∈ ∆(t0). From (2.29), we have |∆|
H5(∆)

< ϑ2 = 1
8
∗ 0.6 for all t ∈ T (6). Let us

make the following assumption:

|top component of ∆̃l...l\∆l...l|
|∆|

< 0.47 (2.109)

for all t ∈ T (6)

Combining (2.109) and (2.29) we get

|top component of ∆̃l...l(t)\∆l...l(t)|
|[y5(t), y6(t)]|

=
|top component of ∆̃l...l(t)\∆l...l(t)|

|∆(t)|
· |∆(t)|
H5(∆(t)) + |∆(t)|

<0.47 ∗ ϑ2

1 + ϑ2

< 0.47 ∗
0.6
8

1 + 0.6
8

<
1

9
∗ 0.3. (2.110)

From (2.110) and (2.32) we get

|top component of ∆̃l...l(t)\∆l...l(t)|
|[y5(t), y6(t)]|

<
1

9
∗0.3 ≤ |[y6(t), w(t)]|

|[y5(t), w(t)]|
≤ |[y6(t), w(t)]|
|[y5(t), y6(t)]|

(2.111)

which implies that the extended domain ∆̃l···l lies below w(t) for all t ∈ T (6).

From numerical results in B.14, we get that it only takes one refinement to

get condition (2.109) to hold.

Case 2: ∆ is not adjacent to y6

Let z(t) be the upper endpoint of ∆(t), then ∆ not adjacent to y6 implies

z(t0) ≤ y′6. However, this does not imply z(t) ≤ y′6 for all t ∈ T (6). Still we

can make estimates since z(t) and z(t0) are close. Similar to (2.91), we have

|z(t)− z(t0)|
H5(t0)

<
4ε0

1− 4ε0
ϑ1. (2.112)
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We use (2.112), (2.92), and (2.96) to get

|[z(t), w(t)]|
|[y5(t), z(t)]|

≥ |[z(t0), w(t0)]| − |[w(t), w(t0)]| − |[z(t), z(t0)]|
|[y5(t0), z(t0)]|+ |[y5(t0), y5(t)]|+ |[z(t), z(t0)]|

≥ |[y
′
6, w(t0)]| − |[w(t), w(t0)]| − |[z(t), z(t0)]|

|[y5(t0), y′6]|+ |[y5(t0), y5(t)]|+ |[z(t), z(t0)]|

=

|[y′6,w(t0)]|
H5(t0)

− |[w(t),w(t0)]|
H5(t0)

− |[z(t),z(t0)]|
H5(t0)

|[y5(t0),y′6]|
H5(t0)

+ |[y5(t0),y5(t)]|
H5(t0)

+ |[z(t),z(t0)]|
H5(t0)

≥
1
9
− 1+4ε0

1−4ε0
ϑ1

8
9

+ 2 ∗ 4ε0
1−4ε0

ϑ1

> 0.11.

If we have

|top component of ∆̃l...l\∆l...l|
|∆|

< 0.11 (2.113)

then

|top component of ∆̃l...l\∆l...l|
|[y5(t), z(t)]|

<
|top component of ∆̃l...l\∆l...l|

|∆|
< 0.11 <

|[z(t), w(t)]|
|[y5(t), z(t)]|

(2.114)

which implies that the extended domain ∆̃l···l lies below w(t) for all t ∈ T (6).

From the table in B.14, we see that (2.113) can still be achieved within two

refinements.

2.5.1.5 Estimates on the relative measure of holes in the phase space

Let µholes(ξ6) denote the relative measure of holes in ξ6 and let µholes(η5) denote

the relative measure of holes in η5.

From (2.13), we have

measure of holes in δ−p0 after 5-step filling-in of δ−p0

|δ−p0 |
= µholes(F−1(η0)) < 0.29.

(2.115)
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This will give an estimate for the measure of holes in δ5\δre
6 after 5-step filling-ins

on all preimages of δ0 in δ5\δre
6 .

measure of holes in δ5\δre
6 of ξ6

|δ5\δre
6 |

< 0.29 (2.116)

Combining (2.107), (2.116), and (A.9) we get

µholes(η5) <
|δre

6 |
|δ5|

+

(
1− |δ

re
6 |
|δ5|

)
measure of holes in δ5\δre

6

|δ5\δre
6 |

<
1

3
+

2

3
∗ (0.29)

<0.5267. (2.117)

For the measure of holes outside δ5, we have the numeric bound

measure of holes in I\δ5 of ξ5

|I\δ5|
< 0.01776 (2.118)

for all t ∈ T (5) ∩ {t > 3.99512595}. For the measure of δ5 with respect to the

measure of I, we also have an upper bound

|δ5|
|I|

< 0.0022. (2.119)

(2.119) can be observed from the table in B.1.1 on relative sizes of domains. Com-

bining (2.117), (2.118), (2.119) and (A.10), we get

µholes(ξ6) =
|I\δ5|
|I|

measure of holes in I\δ5 of ξ5

|I\δ5|
+
|δ5|
|I|

measure of holes in δ5 after step 6

|δ5|

<(1− 0.0022) ∗ 0.01776 + 0.0022 ∗ 0.5267

<0.0189 (2.120)
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2.5.1.6 Possible compositions

Here we repeat the possible compositions for the maps as discussed in 2.4.4.1

and 2.4.4.2, but write out possible compositions particularly for step 6. We give

possible compositions with additional information on the maximum possible number

of refinements for g(6), G(6), ḡ6,i, Ḡ6,i, g6,i, G6,i, f6,i and F6,i.

Let f̂0,i denote the branches of admissible domains in ξ̂0. g(6) and G(6) are maps

on domains of the parameter-induced partition of ∆(5). The number of monotone

refinements needed to form ∆(6) is less than or equal to 5, therefore we have

g(6) = f̂0,is ◦ · · · ◦ f̂0,i1 ◦ g(5) 1 ≤ s ≤ 5 (2.121)

G(6),i = f̂0,is ◦ · · · ◦ f̂0,i1 ◦ g(5) 1 ≤ s ≤ 5 (2.122)

ḡ6,i and Ḡ6,i are maps on domains above y6 of the partitions ζ(6)(∆(6)). The

number of monotone refinements needed to achieve (2.29) is less than or equal to 5,

therefore we have

ḡ6,i = f0,js′
◦ · · · ◦ f0,j1 ◦ f̂0,is ◦ · · · ◦ f̂0,i1 ◦ g(5), 1 ≤ s ≤ 5, s+ s′ ≤ 5

Ḡ6,i = f0,js′−1
◦ · · · ◦ f0,j1 ◦ f̂0,is ◦ · · · ◦ f̂0,i1 ◦ g(5), 1 ≤ s ≤ 5, s+ s′ ≤ 5

g6,i and G6,i are maps on domains below y6 of the partitions ζ(6)(∆(6)). In

addition to compositions that form ḡ6,i and Ḡ6,i, f0,1 is due to possible boundary

refinements and f5,k or F5,k are due to a filling-in.

g6,i = f5,k ◦ f0,1 ◦ f0,js′
◦ · · · ◦ f0,j1 ◦ f̂0,is ◦ · · · ◦ f̂0,i1 ◦ g(5), 1 ≤ s ≤ 5, s+ s′ ≤ 5

G6,i = f0,1 ◦ f0,js′
◦ · · · ◦ f0,j1 ◦ f̂0,is ◦ · · · ◦ f̂0,i1 ◦ g(5), 1 ≤ s ≤ 5, s + s′ ≤ 5 or
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G6,i = F5,k ◦ f0,1 ◦ f0,js′
◦ · · · ◦ f0,j1 ◦ f̂0,is ◦ · · · ◦ f̂0,i1 ◦ g(5), 1 ≤ s ≤ 5, s+ s′ ≤ 5

From (2.76) and (2.77), we have for maps f6,i and F6,i on domains in δ5\δre
6 ,

f6,i = g6,i ◦ h where g6,i is a monotone branch defined on [y5(t), w(t)]

F6,i = G6,i ◦ h, where G6,i is a monotone branch defined on [y5(t), w(t)].

2.5.1.7 Extendability and extensions

Lemma 9. All monotone branches f6,i in ξ6 are extendable to Ĩ.

Proof. All monotone branches from partition ξ5 are uniformly extendable to Ĩ, there-

fore we only have to show extendability for newly created monotone branches. New

monotone branches are created in two ways, from monotone refinements and from

filling-ins.

Monotone branches created from monotone refinements are extendable to Ĩ

because we perform boundary refinements if they are not.

Monotone branches created from filling-ins are extendable to Ĩ by the following

arguments. Since filling-in first, then taking parabolic pullback, and taking parabolic

pullback, then filling-in are equivalent, for convenience here, we will consider all

filling-ins from the perspective that all filling-ins are done after a parabolic pullback,

which means all filling-ins are performed on the x-axis. The only holes that are

filled-in at step 6 are preimages δ−1
0 of δ0 inside δ5. They are mapped by some

diffeomorphism F onto δ0 and can be extended onto the enlargement δ̂0 due to our

choice of parameters(critical value avoids two monotone domains on top of each δ−1
0
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on the y-axis).

If we fill-in δ−1
0 by η0, all new monotone branches in δ−1

0 will be extendable

to Ĩ if δ̂0 contains all extensions of monotone domains in η0, which is true from

observation on extended domains of monotone domains in ξ5.

Since (1 + |I|
1
2 |Ĩ\I|

)2 < (1 + 1
2∗0.17

)2 < 15.6, we have

Corollary 2. Distortion on monotone branches in ξ6 is less than 15.6.

Lemma 10. All maps on preimages of δ0, F6,i : δ−p0 → δ0, in ξ6 are extendable to

δ̂0. All maps on preimages of δ5, F6,i : δ−1
5 → δ5, in ξ6 are extendable to δ̂0.

Proof. We know precisely that the newly created holes in step 6 are either preimages

of δ0 or preimages of δ5, both obtained by filling-in of δ−1
0 with η0. As in the proof

of the previous lemma, each such δ−1
0 is mapped by some diffeomorphism F onto δ0

and can be extended to a map F̃ that maps onto the enlargement δ̂0. The central

domain of η0 is δ5, so this shows that F6,i : δ−1
5 → δ5 are extendable to δ̂0.

Consider δ̂−1
0 as F̃−1

5,j (δ̂0). δ̂−1
0 ’s are all contained in δ0 and hence in δ̂0. Since

F6,i = F5,j ◦ F , this shows F6,i : δ−p0 → δ0 are extendable to δ̂0.

Lemma 11. The union of extensions of monotone domains in η5, denoted by δ̃5, is

contained in δ0.

Proof. The union of the extensions of monotone domains in η5 is contained in the

union of δ5 and the two monotone domains adjacent to δ5 which is well within δ0.

Due to lemma 11, we define the enlargement δ̂5 of δ5 to be δ0.
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2.5.1.8 Derivatives

Our requirement for derivatives is very low. All we need is to show that all

derivatives on the monotone branches on the x-axis are greater than 3.5. Compo-

sitions of monotone branches make derivatives greater, which is better. Parabolic

pullbacks make derivatives smaller, but as long as the increase compensates for the

decrease, we can still prove that derivatives are still greater than 3.5. From 2.2.10,

we have
∣∣∣∂f0,i

∂x

∣∣∣ , ∣∣∣∂f5,i

∂x

∣∣∣ ≥ 3.5 ,
∣∣∣∂F5,i

∂x

∣∣∣ ≥ 20 and
∣∣∣∂g(5)

∂x

∣∣∣ ≥ 391005. The worst case

for monotone maps on the y-axis at step 6 is when g(5) composes with a monotone

branch in ξ0 just once. In this case g(6), ḡ6,i, or g6,i is f0,j ◦ g(5).∣∣∣∣∂g6,i

∂x

∣∣∣∣ ≥ ∣∣∣∣∂f0,j

∂x

∣∣∣∣ · ∣∣∣∣∂g(5)

∂x

∣∣∣∣
≥ 3.5 ∗ 391005 (2.123)

The worst case for maps on holes on the y-axis at step 6 is when the hole is just a

preimage of δ0 or δ5 and G(6),i, Ḡ6,i, or G6,i is just g(5).∣∣∣∣∂G6,i

∂x

∣∣∣∣ ≥ ∣∣∣∣∂g(5)

∂x

∣∣∣∣
≥ 391005 (2.124)

Another way to estimate derivatives is to take the length of the image divided

by the length of the domain divided by the worst possible distortion. We use dis-

tortion from lemma 2 and distortion on holes to get∣∣∣∂g(6)

∂x

∣∣∣ ≥ max

{
391005 ∗ 3.5, |I|

|∆(6)| ∗
1

15.6

}
≥ |I|
|∆(6)| ∗

1
15.6

> 2.6 ∗ 106∣∣∣∂G(6),i

∂x

∣∣∣ ≥ max

{
391005, |δ0|

|∆(5)|∗(worst distorted ratio of δ−1
0 in ∆(5))

∗ 1
1.3035

}
= 391005∣∣∣∂ḡ6,i

∂x

∣∣∣ ≥ max
{

391005 ∗ 3.5, |I|
|[y6(t),w(t)]| ∗

1
15.6

}
= 391005 ∗ 3.5
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∣∣∣∂Ḡ6,i

∂x

∣∣∣ ≥ max
{

391005, |δ0|
|[y6(t),w(t)]| ∗

1
1.3035

}
= 391005∣∣∣∂g6,i

∂x

∣∣∣ ≥ max
{

391005 ∗ 3.5, |I|
|[y5(t),y6(t)]| ∗

1
15.6

}
= 391005 ∗ 3.5∣∣∣∂G6,i

∂x

∣∣∣ ≥ max
{

391005,min
{

|δ0|
|[y5(t),y6(t)]| ∗

1
2.75

, |δ5|
|[y5(t),y6(t)]| ∗

1
1.1

}}
= 391005

Now we consider derivatives for f6,i and F6,i. When considering maps on the

x-axis, we only consider maps outside δre
6 . For x outside δre

6 , we have
∣∣∂h
∂x

(x)
∣∣ ≥ t |δre

6 |.

So

∣∣∣∣∂f6,i

∂x

∣∣∣∣ ≥ ∣∣∣∣∂g6,j

∂x

∣∣∣∣ · ∣∣∣∣∂h∂x
∣∣∣∣

≥ 391005 ∗ 3.5 ∗ t ∗ 1

3

√
0.3 ∗ |δ5|

≥ 391005 ∗ 3.5 ∗ t ∗ 1

3

√
0.3 ∗ 0.00038

> 3.5.

Estimates are similar for F6,i.

2.5.1.9 Variation of derivatives

We estimate variation of derivatives for maps g(6), G(6), ḡ6,i, Ḡ6,i, g6,i, G6,i, f6,i

and F6,i with forms given in 2.5.1.6. We use (2.199) and preliminary estimates in

2.2.10.
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g(6) and G(6)

g(6) has the form (2.121). From (2.199) and table in B.1.5, we have∣∣∣∣∂2g−1
(6)

∂t∂z

∣∣∣∣∣∣∣∣∂g−1
(6)

∂z

∣∣∣∣ ≤
∣∣∣∣∂2g−1

(5)

∂t∂z

∣∣∣∣∣∣∣∣∂g−1
(5)

∂z

∣∣∣∣ +

∣∣∣∂2g(5)

∂x2

∣∣∣∣∣∣∂g(5)

∂x

∣∣∣2 ·
∣∣∣∂(f̂0,is◦···◦f̂0,i1

)

∂t

∣∣∣∣∣∣∂(f̂0,is◦···◦f̂0,i1
)

∂x

∣∣∣ +

∣∣∣∂2(f̂0,is◦···◦f̂0,i1
)−1

∂t∂z

∣∣∣∣∣∣∂(f̂0,is◦···◦f̂0,i1
)−1

∂z

∣∣∣
≤ 8.9 + 1.5 ∗ 1.5527 + 200

< 211.23 (2.125)

Since G(6),i = f̂0,is−1 ◦ · · · ◦ f̂0,i1 ◦ g(5), G(6),i has similar or better estimates.

ḡ6,i and Ḡ6,i

ḡ6,i = f0,js′
◦ · · · ◦ f0,j1 ◦ f̂0,is ◦ · · · ◦ f̂0,i1 ◦ g(5)

Ḡ6,i = f0,js′−1
◦ · · · ◦ f0,j1 ◦ f̂0,is ◦ · · · ◦ f̂0,i1 ◦ g(5)

Since 1 ≤ s+ s′ ≤ 5, estimates are the same as g(6) and G(6),i.

g6,i and G6,i

The worst possible cases for g6,i and G6,i are

g6,i = f5,k ◦ f0,1 ◦ f0,js′
◦ · · · ◦ f0,j1 ◦ f̂0,is ◦ · · · ◦ f̂0,i1 ◦ g(5), 1 ≤ s ≤ 5, s+ s′ ≤ 5

G6,i = F5,k ◦ f0,1 ◦ f0,js′
◦ · · · ◦ f0,j1 ◦ f̂0,is ◦ · · · ◦ f̂0,i1 ◦ g(5), 1 ≤ s ≤ 5, s+ s′ ≤ 5
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∣∣∣∣∂2(f5,k◦f0,1◦f0,js′
◦···◦f0,j1

◦f̂0,is◦···◦f̂0,i1
)−1

∂t∂z

∣∣∣∣∣∣∣∣∂(f5,k◦f0,1◦f0,js′
◦···◦f0,j1

◦f̂0,is◦···◦f̂0,i1
)−1

∂z

∣∣∣∣
≤

∣∣∣∣∂2(f0,1◦f0,js′
◦···◦f0,j1

◦f̂0,is◦···◦f̂0,i1
)−1

∂t∂z

∣∣∣∣∣∣∣∣∂(f0,1◦f0,js′
◦···◦f0,j1

◦f̂0,is◦···◦f̂0,i1
)−1

∂z

∣∣∣∣
+

∣∣∣∣∂2(f0,1◦f0,js′
◦···◦f0,j1

◦f̂0,is◦···◦f̂0,i1
)

∂x2

∣∣∣∣∣∣∣∣∂(f0,1◦f0,js′
◦···◦f0,j1

◦f̂0,is◦···◦f̂0,i1
)

∂x

∣∣∣∣2 ·
∣∣∣∂f5,k

∂t

∣∣∣∣∣∣∂f5,k

∂x

∣∣∣ +

∣∣∣∣∂2f−1
5,k

∂t∂z

∣∣∣∣∣∣∣∣∂f−1
5,k

∂z

∣∣∣∣
≤(200 + 12 ∗ 1.5527 + 200) + 12 ∗ 161 + 900, 000 < 902, 340 (2.126)

where the bound for

∣∣∣∣∣ ∂
2(f0,1◦f0,js′

◦···◦f0,j1◦f̂0,is◦···◦f̂0,i1 )

∂x2

∣∣∣∣∣∣∣∣∣∣ ∂(f0,1◦f0,js′
◦···◦f0,j1◦f̂0,is◦···◦f̂0,i1 )

∂x

∣∣∣∣∣
2 uses Corollary 8. Using

(2.126), (2.24),(2.25) and (2.88), we get

∣∣∣∣∂2g−1
6,i

∂t∂z

∣∣∣∣∣∣∣∣∂g−1
6,i

∂z

∣∣∣∣ ≤
∣∣∣∣∂2g−1

(5)

∂t∂z

∣∣∣∣∣∣∣∣∂g−1
(5)

∂z

∣∣∣∣ +

∣∣∣∂2g(5)

∂x2

∣∣∣∣∣∣∂g(5)

∂x

∣∣∣2 ·
∣∣∣∣∂(f5,k◦f0,1◦f0,js′

◦···◦f0,j1
◦f̂0,is◦···◦f̂0,i1

)

∂t

∣∣∣∣∣∣∣∣∂(f5,k◦f0,1◦f0,js′
◦···◦f0,j1

◦f̂0,is◦···◦f̂0,i1
)

∂x

∣∣∣∣
+

∣∣∣∣∂(f5,k◦f0,1◦f0,js′
◦···◦f0,j1

◦f̂0,is◦···◦f̂0,i1
)−1

∂t∂z

∣∣∣∣∣∣∣∣∂(f5,k◦f0,1◦f0,js′
◦···◦f0,j1

◦f̂0,is◦···◦f̂0,i1
)−1

∂z

∣∣∣∣
≤8.9 + 1.5 ∗ 48 + 902, 340 (2.127)

<902, 421. (2.128)

G6,i has similar or better estimate.
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f6,i and F6,i in δ5\δre6

f6,i = g6,i ◦ h where g6,i is in [y5(t), w(t)]

F6,i = G6,i ◦ h, where G6,i is in [y5(t), w(t)].

We use ∣∣∣∂2h−1

∂t∂z

∣∣∣∣∣∂h−1

∂z

∣∣ ≤ 1

t
+

2(1
4
− 1

4
|δre

6 |
2)

t |δre
6 |

2 . (2.129)

∣∣∣∣∂2f−1
6,i

∂t∂z

∣∣∣∣∣∣∣∣∂f−1
6,i

∂z

∣∣∣∣ ≤
∣∣∣∂2h−1

∂t∂z

∣∣∣∣∣∂h−1

∂z

∣∣ +

∣∣∣∂2h
∂x2

∣∣∣∣∣∂h
∂x

∣∣2 ·
∣∣∣∂g6,i

∂t

∣∣∣∣∣∣∂g6,i

∂x

∣∣∣ +

∣∣∣∣∂2g−1
6,i

∂t∂z

∣∣∣∣∣∣∣∣∂g−1
6,i

∂z

∣∣∣∣
≤ 1

t
+

2(1
4
− 1

4
|δre

6 |
2)

t |δre
6 |

2 +
2

t |δre
6 |

2 ·

∣∣∣∂g6,i

∂t

∣∣∣∣∣∣∂g6,i

∂x

∣∣∣ +

∣∣∣∣∂2g−1
6,i

∂t∂z

∣∣∣∣∣∣∣∣∂g−1
6,i

∂z

∣∣∣∣
≤ 1

3.99
+

1

3.99
∗ 1

|δre
6 |

2 ∗
1

2
+

2

3.99
∗ 1

|δre
6 |

2 ∗ 0.0021 + 902421

≤ 1

3.99
∗ 1

|δre
6 |

2 ∗
1

2
+

1

3.99
∗ 1

|δre
6 |

2 ∗
1

2
+

2

3.99
∗ 1

|δre
6 |

2 ∗ 0.0021 +
9

8

1

|δre
6 |

2

<
1.38

|δre
6 |

2

< 2.9 ∗ 108 (2.130)

Estimates for F6,i in δ5\δre
6 are similar.

f6,i and F6,i outside δ5

f6,i = f5,j

F6,i = F5,j where map F5,j’s are the maps on the five holes in ξ5.

Estimates remain the same as in step 5.
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2.5.2 Steps 7 through 14

For steps 7 through 14 we pullback the same partition, ξ0 or ξ̂0, as we did in

step 6. Therefore, some estimates are the same as in step 6. The difference between

steps 7 through 14 and step 6 is that ∆k−1 is no longer adjacent to yk−1 as ∆5 was

adjacent to y5.

(I) Velocities on partitioning points of ∆(k−1) and ∆y are less than ε0 = 0.003.

(II) For each step k and each rescaled central domain δre
k , we have

1

3

√
0.3 ≤ |δre

k (t)|
|δre
k−1(t)|

≤ 1

3
, (2.131)

or equivalently

1

9
0.3 ≤ |[yk(t), w(t)]|

|[yk−1(t), w(t)]|
≤ 1

9
, (2.132)

(III)

∣∣T (k)
∣∣ ≤ 1

1
4
− ε0

∣∣∆(k)
∣∣

≤ 1
1
4
− ε0

ϑ1Hk−1(∆(k))

≤ 1
1
4
− ε0

ϑ1 |[yk−1(t), w(t)]|

≤ 1
1
4
− ε0

ϑ1

(
1

9

)k−6

|[y5(t), w(t)]|

≤ 1
1
4
− ε0

ϑ1

(
1

9

)k−6
t

4
|δ5|2 (2.133)

(IV) The number of monotone refinements needed is no more than 5.

(V) µholes(ηk−1) < 0.5267. µholes(ξk) < 0.0189 ∗ (0.57)k−6.

A list of more complete properties for the general step n is in the next section.
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2.5.2.1 Number of monotone refinements in creating ∆(k) is less than

or equal to 5

Lemma 12. Let K be greater than 6. If equations (2.132) and (2.33) hold for all

steps k ≤ K − 1, and ∣∣∆(K)
∣∣

|∆(K−1)|
< 0.023, (2.134)

then inequality (2.33) holds for k = K.

Proof. We have

|∆(k−1)(t)|
dist(∆(k−1)(t), yk−2(t))

< ϑ1 t ∈ T (k−1) (2.135)

and

|[yk−1(t), w(t)]|
|[yk−2(t), w(t)]|

≥ 1

9
· 0.3 t ∈ T (k−1) (2.136)

for all k ≤ K − 1. This gives

|∆(K−1)(t)|
dist(∆(K−1)(t), yK−1(t))

=

∣∣∆(K−1)(t)
∣∣

|∆(K−1)(t)|+ dist (∆(K−1)(t), yK−2(t))
·
∣∣∆(K−1)(t)

∣∣+ dist
(
∆(K−1)(t), yK−2(t)

)
dist (∆(K−1)(t), yK−1(t))

<

∣∣∆(K−1)(t)
∣∣

|∆(K−1)(t)|+ dist (∆(K−1)(t), yK−2(t))
·

∣∣∆(K−1)(t)
∣∣+ dist

(
∆(K−1)(t), yK−2(t)

)
|∆(K−1)(t)|+ dist (∆(K−1)(t), yK−1(t))− |∆(K−1)|

<

|∆(K−1)(t)|
dist(∆(K−1)(t),yK−2(t))

|∆(K−1)(t)|
dist(∆(K−1)(t),yK−2(t))

+ 1
· 1

|∆(K−1)(t)|+dist(∆(K−1)(t),yK−1(t))
|∆(K−1)(t)|+dist(∆(K−1)(t),yK−2(t))

− |∆(K−1)(t)|
|∆(K−1)(t)|+dist(∆(K−1)(t),yK−2(t))

<
ϑ1

1+ϑ1

1
9
· 0.3− ϑ1

1+ϑ1

<0.42 (2.137)

for t ∈ T (K−1).
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Combining (2.134) and (2.137), we get∣∣∆(K)(t)
∣∣

dist (∆(K)(t), yK−1(t))
<

∣∣∆(K)(t)
∣∣

dist (∆(K−1)(t), yK−1(t))
< 0.023 ∗ 0.42 < 0.0098 = ϑ1

(2.138)

At steps 6 to 14 we still pullback initial partition ξ0, so the estimates of step

6 prove that the number of refinements needed to achieve (2.134) is less than 5.

Corollary 3. The number of monotone pullbacks needed to create ∆(k) is no more

than 5.

2.5.2.2 Relative measure of holes in ηk−1 and ξk

Since the algorithm inside δre
k−1 for step k, 7 ≤ k ≤ 14, is exactly the same as

in step 6, we can obtain the same estimate as in (2.117). By (2.131) and (2.13), we

get

µholes(ηk−1) =
measure of holes in δre

k−1 after step k

|δre
k−1|

=
|δre
k |+ | holes between δre

k−1 and δre
k |

|δre
k−1|

< 0.5267 (2.139)

for all t ∈ T (k). Using (A.3), we get that

µholes(F−1(ηk−1)) =
measure of holes in δ−pk−1 after 1 step filling-in

|δ−pk−1|

<
0.526667 ∗ D

1− 0.526667 + 0.526667 ∗ D

≈ 0.57 =: χ0 (2.140)
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where D is defined in (2.182). From (2.139) and (2.116) and the algorithm at step

k, we get that the total measure of holes will become less than max{0.53, 0.57} the

measure of holes in step k−1. If ξk is the partition of I we get after step k, we have

µholes(ξk) ≤ (0.57)k−6µholes(ξ6) ≤ 0.0189 ∗ (0.57)k−6 (2.141)

where the last value is obtained from (2.120). For k = 14, we have

µholes(ξ14) ≤ 0.0189 ∗ (0.57)8 < 0.000210601. (2.142)

2.5.3 Steps n larger than 15

2.5.3.1 Estimates at step n

Let n ≥ 15. We consider a list of estimates and properties that we assume to

be true for k ≤ n − 1, and prove that all properties will again hold true at step n.

The properties are listed in the order that they can be concluded after the previous

ones are shown.

(I) Velocities of the endpoints of the domains ∆ of ζ(n) above yn−1. If

∆ = [x1(t), x2(t)] is an element of ζ(n) above yn−1, then∣∣∣∣dxidt
∣∣∣∣ < ε0 = 0.003. (2.143)

(II) Sizes of central domains. Sizes of rescaled central domains satisfy

1

3

√
0.3|δre

n−1| ≤ |δre

n | ≤
1

3
|δre

n−1|, (2.144)

or equivalently,

0.3

9
|[yn−1(t), w(t)]| ≤ |[yn(t), w(t)]| ≤ 1

9
|[yn−1(t), w(t)]| . (2.145)
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(III) Distortions on holes. Since the enlargement δ̂re
n of δre

n is defined as δre
n−3

for n ≥ 8, distortion on preimages δ−pn of δre
n , n ≥ 8, is less than1 +

|δre
n |

1 + 1
2

∣∣∣δ̂re
n \δre

n

∣∣∣
2

< 1.16 =: D. (2.146)

(IV) Size of ∆(n). The size of ∆(n) satisfies

|∆(n)| < Hn−1(∆(n))ϑ1 < |[yn−1(t), w(t)]|ϑ1 ≤
(

1

9

)n−6

|[y5(t), w(t)]|ϑ1.

(2.147)

∆(n) is not necessarily strictly contained in ∆(n−1), since ∆(n) could be exactly

the domain ∆(n−1).

(V) Extendability and expansion of maps. Elements of partitions ξn on the

x-axis are domains of good maps fn,i : ∆→ I and domains of Fn,i : δ−pm → δre
m,

m < n.

Maps fn,i are extendable to f̃n,i : ∆̃ → Ĩ and Fn,i are extendable to F̃n,i :

δ̃−pm → δ̂re
m where δ̂re

m = δre
m−3 for m ≥ 8 and δ̂re

m as defined in 2.2.8 and 2.3.3.1

for m ≤ 7. Derivatives of all maps satisfy

∣∣∣∣dfn,idx

∣∣∣∣ , ∣∣∣∣dFn,idx

∣∣∣∣ > 3.5. (2.148)

(VI) Number of monotone pullbacks No more than 6+3 monotone refine-

ments are needed in each step n

(VII) Measure of holes.
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a)Measure of holes in δre
n−1 after step n satisfies

µholes(ηn−1) < 0.613. (2.149)

b)Measure of holes in partition ξn satisfies

µholes(ξn) < µholes(ξ14) · (χ′)n−14 < 0.000210601 ∗ (0.73)n−14. (2.150)

(VIII) Ratio of derivatives ∣∣∣∂g(n)

∂t

∣∣∣∣∣∣∂g(n)

∂x

∣∣∣ ,
∣∣∣∂G(n),i

∂t

∣∣∣∣∣∣∂G(n),i

∂x

∣∣∣ ≤ 0.003. (2.151)

∣∣∣∂ḡn,i∂t

∣∣∣∣∣∣∂ḡn,i∂x

∣∣∣ ,
∣∣∣∂Ḡn,i∂t

∣∣∣∣∣∣∂Ḡn,i∂x

∣∣∣ ≤ 0.001909 + 1.16 ∗ t

16

(
1

3

)−4 n∑
k=16

(
1

3

) 4k
3

< 0.003 (2.152)

For branches gn,i or Gn,i above yn−1,∣∣∣∂gn,i∂t

∣∣∣∣∣∣∂gn,i∂x

∣∣∣ ,
∣∣∣∂Gn,i∂t

∣∣∣∣∣∣∂Gn,i∂x

∣∣∣ ≤ 0.003 (2.153)

∣∣∣∂fn,i∂t

∣∣∣∣∣∣∂fn,i∂x

∣∣∣ ,
∣∣∣∂Fn,i∂t

∣∣∣∣∣∣∂Fn,i∂x

∣∣∣ ≤ 1

4 |δre
n |

(2.154)

(VIII) Variation of derivatives. As in [7] Lemma 5 we have∣∣∣∣∂2g−1
(n)

∂t∂z

∣∣∣∣∣∣∣∣∂g−1
(n)

∂z

∣∣∣∣ ,
∣∣∣∣∂2G−1

(n),i

∂t∂z

∣∣∣∣∣∣∣∣∂G−1
(n),i

∂z

∣∣∣∣ ≤
3 ∗ (n mod 3) + 3∣∣∣δre

[n
3

]−3

∣∣∣2 (2.155)

∣∣∣∣∂2ḡ−1
n,i

∂t∂z

∣∣∣∣∣∣∣∣∂ḡ−1
n,i

∂z

∣∣∣∣ ,
∣∣∣∣∂2Ḡ−1

n,i

∂t∂z

∣∣∣∣∣∣∣∣∂Ḡ−1
n,i

∂z

∣∣∣∣ ≤
3 ∗ (n mod 3) + 3∣∣∣δre

[n
3

]

∣∣∣2 (2.156)

∣∣∣∣∂2g−1
n,i

∂t∂z

∣∣∣∣∣∣∣∣∂g−1
n,i

∂z

∣∣∣∣ ,
∣∣∣∣∂2G−1

n,i

∂t∂z

∣∣∣∣∣∣∣∣∂G−1
n,i

∂z

∣∣∣∣ ≤
1.3∣∣∣δre

[n
3

]+2

∣∣∣2 (2.157)
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∣∣∣∣∂2f−1
n,i

∂t∂z

∣∣∣∣∣∣∣∣∂f−1
n,i

∂z

∣∣∣∣ ,
∣∣∣∣∂2F−1

n,i

∂t∂z

∣∣∣∣∣∣∣∣∂F−1
n,i

∂z

∣∣∣∣ ≤
1

|δre
n |

2 (2.158)

2.5.3.2 Velocity estimates for partitioning points in the parameter-

induced partition of ∆(n−1) and partitions ζ(n)(∆(n))

This is done in a similar way as in step 6.

When we consider velocities of the partitioning points of ξn and ζ(n)(∆(n)),

it suffices to consider velocities on endpoints of monotone domains. That is, we

do not need to consider velocities of endpoints of rescaled critical domains or their

preimages because of the following.

Lemma 13. For any hole at any step of construction, there is an adjacent monotone

branch on ∆ mapped onto I.

Proof. For the initial 7-branch partition, the central hole δ0 is adjacent to two mono-

tone domains ∆3 and ∆−3. Suppose up to step n each central hole is adjacent to

two good branches. Consider the new central hole at step n + 1. When we choose

parameter we are choosing the position of the critical value w(t). Then for each hole

δ−k on the y-axis we consider its enlargement δ̂−k. By construction the boundary

domains of δ̂−k are monotone domains. Construction implies that only monotone

domains can be adjacent to the new central hole. Then monotone domains will be

adjacent to any preimage of the new central branch.
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Figure 2.5: Domains adjacent to rescaled central domains are monotone domains

Basic approach for calculating velocities

a) Any monotone domain ∆(t) = [z1(t), z2(t)] is mapped by some map g onto

I = [q−1
t , qt] = [1

t
, t−1

t
]. Therefore g(t, zi(t)) = qt or q−1

t . By chain rule,

we have

∂g

∂t
+
∂g

∂x
· dzi(t)

dt
=
dqt
dt

(2.159)

dzi(t)

dt
=

dqt
dt
∂g
∂x

−
∂g
∂t
∂g
∂x

(2.160)

We use formula (2.160) for velocity estimates on endpoints of monotone

domains.
∣∣dqt
dt

∣∣ = 1
t2
≈ 1

16
. g is a composition of maps with derivatives

greater than 3.5. As powers grow, ∂g
∂x

approaches ∞ and the term
dqt
dt
∂g
∂x

becomes irrelevant, so we can estimate
∂g
∂t
∂g
∂x

instead.

b) We use the inductive assumptions that for k < n,
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1. For any monotone branch fk,i in ξk,∣∣∣∣∂fk,i∂x

∣∣∣∣ ≥ 3.5 (2.161)

2. For any monotone branch fk,i on ξk,∣∣∣∣∣
∂fk,i
∂t
∂fk,i
∂x

∣∣∣∣∣ ≤ 1

4|δre
k |

(2.162)

3. For branches ḡk,i’s and Ḡk,i’s on the y-axis defined above yk−1,∣∣∣∣∣
∂ḡk,i
∂t
∂ḡk,i
∂x

∣∣∣∣∣ ,
∣∣∣∣∣
∂Ḡk,i
∂t

∂Ḡk,i
∂x

∣∣∣∣∣ ≤ 0.001909 + 1.16 ∗ t

16

(
1

3

)−4 k∑
l=16

(
1

3

) 4l
3

< 0.003

(2.163)

c) We use the following inequality given by the chain rule for inductive esti-

mates on derivatives.∣∣∣∣∣ ∂(ϕ1◦ϕ2)
∂t

∂(ϕ1◦ϕ2)
∂x

∣∣∣∣∣ ≤
∣∣∣∣∣ ∂ϕ2

∂t
∂ϕ2

∂x

∣∣∣∣∣+

∣∣∣∣∣ 1
∂ϕ2

∂x

∣∣∣∣∣ ·
∣∣∣∣∣ ∂ϕ1

∂t
∂ϕ1

∂x

∣∣∣∣∣ (2.164)

Calculations of velocity bounds

The monotone maps g in ζ(n)(∆(n)) could be g(n), ḡ6,i or g6,i. The monotone

maps g in the parameter-induced partition of ∆(n−1) are just g(n). Possible

expressions for monotone maps g are as discussed in 2.4.4. Since the maps we

are considering here are all above yn−1, we have the following two worst cases.

Case 1: g = fm̃+1,k2 ◦ Fm+1,k1 ◦ f[n
3

],ir−1 ◦ · · · ◦ f[n
3

],i1 ◦ ḡn−1,i

Case 2: g = fm̃+1,k2 ◦ Fm+1,k1 ◦ Ḡn−1,i

where m̃ ≤ m+ 1 and m ≤ [n
3
].

In other cases the member of compositions is less and respective estimates are

better. Note here that at this point, there is no restriction on r. However, we
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will show later that the maximum number of refinements is bounded. That is

shown after we prove some other properties. The properties are proven under

the assumption that velocity is small, which is why we need to prove small

velocity before knowing a bound for r.

First we consider case 1. We compute separately estimates for f[n
3

],ir◦· · ·◦f[n
3

],i1

and fm̃+1,k2 ◦ Fm+1,k1 . Using (2.164) repeatedly, we get∣∣∣∣∂(f[n3 ],ir
◦···◦f[n3 ],i1

)
∂t

∣∣∣∣∣∣∣∣∂(f[n3 ],ir
◦···◦f[n3 ],i1

)
∂x

∣∣∣∣
≤

∣∣∣∣∂(f[n3 ],ir−1
◦···◦f[n3 ],i1

)
∂t

∣∣∣∣∣∣∣∣∂(f[n3 ],ir−1
◦···◦f[n3 ],i1

)
∂x

∣∣∣∣ +
1∣∣∣∣∂(f[n3 ],ir−1
◦···◦f[n3 ],i1

)
∂x

∣∣∣∣ ·
∣∣∣∂f[n3 ],ir

∂t

∣∣∣∣∣∣∂f[n3 ],ir

∂x

∣∣∣
≤

∣∣∣∣∂(f[n3 ],ir−2
◦···◦f[n3 ],i1

)
∂t

∣∣∣∣∣∣∣∣∂(f[n3 ],ir−2
◦···◦f[n3 ],i1

)
∂x

∣∣∣∣ +
1∣∣∣∣∂(f[n3 ],ir−2
◦···◦f[n3 ],i1

)
∂x

∣∣∣∣ ·
∣∣∣∂f[n3 ],ir−1

∂t

∣∣∣∣∣∣∂f[n3 ],ir−1

∂x

∣∣∣ +
1∣∣∣∣∂(f[n3 ],ir−1
◦···◦f[n3 ],i1

)
∂x

∣∣∣∣ ·
∣∣∣∂f[n3 ],ir

∂t

∣∣∣∣∣∣∂f[n3 ],ir

∂x

∣∣∣
<

(
1 +

1

3.5
+

1

3.52
+ · · ·

)
1

4
∣∣∣δre

[n
3

]

∣∣∣
≤1.4

1

4
∣∣∣δre

[n
3

]

∣∣∣ (2.165)

∣∣∣∣∂(fm̃+1,k2
◦Fm+1,k1)
∂t

∣∣∣∣∣∣∣∣∂(fm̃+1,k2
◦Fm+1,k1)
∂x

∣∣∣∣ ≤
∣∣∣∂Fm+1,k1

∂t

∣∣∣∣∣∣∂Fm+1,k1

∂x

∣∣∣ +
1∣∣∣∂Fm+1,k1

∂x

∣∣∣ ·
∣∣∣∂fm̃+1,k2

∂t

∣∣∣∣∣∣∂fm̃+1,k2

∂x

∣∣∣
≤ 1

4
∣∣∣δre

[n
3

]+1

∣∣∣ +
1

3.5
∗ 1

4
∣∣∣δre

[n
3

]+2

∣∣∣
≤ 1

4
∣∣∣δ[n

3
]+2

∣∣∣ (2.166)
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Combining (2.165) and (2.166), we get

∣∣∣∣∂(fm̃+1,k2
◦Fm+1,k1

◦f[n3 ],ir−1
◦···◦f[n3 ],i1

)
∂t

∣∣∣∣∣∣∣∣∂(fm̃+1,k2
◦Fm+1,k1

◦f[n3 ],ir−1
◦···◦f[n3 ],i1

)
∂x

∣∣∣∣ ≤
∣∣∣∣∂(f[n3 ],ir−1

◦···◦f[n3 ],i1

)
∂t

∣∣∣∣∣∣∣∣∂(f[n3 ],ir−1
◦···◦f[n3 ],i1

)
∂x

∣∣∣∣ +
1∣∣∣∣∂(f[n3 ],ir−1
◦···◦f[n3 ],i1

)
∂x

∣∣∣∣ ·
∣∣∣∂f[n3 ]+2,ir

∂t

∣∣∣∣∣∣∂f[n3 ]+2,ir

∂x

∣∣∣
<

1.4

4
∣∣∣δre

[n
3

]

∣∣∣ +
1

3.5

1

4
∣∣∣δre

[n
3

]+2

∣∣∣
≤ 1.4

9 ∗ 4
∣∣∣δre

[n
3

]+2

∣∣∣ +
1

3.5

1

4
∣∣∣δre

[n
3

]+2

∣∣∣
<

1

4
∣∣∣δre

[n
3

]+2

∣∣∣ (2.167)

Using that the branch ḡn−1,j is always above yn−1, we can estimate the deriva-

tive of ḡn−1,j using that the worst possible distortion is 15.6.

∣∣∣∣∂ḡn−1,j

∂x

∣∣∣∣ ≥ |I|
|[yn−1(t), w(t)]|

∗ 1

15.6
=

|I|
t
4

∣∣δre
n−1

∣∣2 ∗ 1

15.6
. (2.168)

∣∣∣∣∂(fm̃+1,k2
◦Fm+1,k1

◦f[n3 ],ir−1
◦···◦f[n3 ],i1

◦ḡn−1,i

)
∂t

∣∣∣∣∣∣∣∣∂(fm̃+1,k2
◦Fm+1,k1

◦f[n3 ],ir−1
◦···◦f[n3 ],i1

◦ḡn−1,i

)
∂x

∣∣∣∣
≤

∣∣∣∂ḡn−1,i

∂t

∣∣∣∣∣∣∂ḡn−1,i

∂x

∣∣∣ +
1∣∣∣∂ḡn−1,i

∂x

∣∣∣ ·
∣∣∣∣∂(fm̃+1,k2

◦Fm+1,k1
◦f[n3 ],ir−1

◦···◦f[n3 ],i1

)
∂t

∣∣∣∣∣∣∣∣∂(fm̃+1,k2
◦Fm+1,k1

◦f[n3 ],ir−1
◦···◦f[n3 ],i1

)
∂x

∣∣∣∣
≤

∣∣∣∂ḡn−1,i

∂t

∣∣∣∣∣∣∂ḡn−1,i

∂x

∣∣∣ +
15.6 t

4

∣∣δre
n−1

∣∣2
|I|

1

4
∣∣∣δre

[n
3

]+2

∣∣∣ |δ5|
|δ5|

<0.002 +
t |δ5|
|I|

(
1

3

)n−1−[n
3

]−2(
1

3

)n−1−5

<0.002 +
t |δ5|
|I|

39

(
1

3

) 5n
3

(2.169)
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Case 2 is a little bit worse since the estimate for the derivative of Ḡn−1,i is

worse than that of ḡn−1,i.

∣∣∣∣∂Ḡn−1,j

∂x

∣∣∣∣ ≥
∣∣∣δre

[n−1
3

]

∣∣∣
|[yn−1(t), w(t)]|

1

distortion on δre

[n−1
3

]

≥

∣∣∣δre

[n−1
3

]

∣∣∣
t
4

∣∣δre
n−1

∣∣2 ∗ 1

1.16
. (2.170)

∣∣∣∂(fm̃+1,k2
◦Fm+1,k1

◦Ḡn−1,i)

∂t

∣∣∣∣∣∣∂(fm̃+1,k2
◦Fm+1,k1

◦Ḡn−1,i)

∂x

∣∣∣ ≤
∣∣∣∂Ḡn−1,i

∂t

∣∣∣∣∣∣∂Ḡn−1,i

∂x

∣∣∣ +
1∣∣∣∂Ḡn−1,i

∂x

∣∣∣ ·
∣∣∣∂fm̃+1,k2

◦Fm+1,k1

∂t

∣∣∣∣∣∣∂fm̃+1,k2
◦Fm+1,k1

∂x

∣∣∣
≤

∣∣∣∂Ḡn−1,i

∂t

∣∣∣∣∣∣∂Ḡn−1,i

∂x

∣∣∣ + 1.16 ∗
t
4

∣∣δre
n−1

∣∣2∣∣∣δre

[n−1
3

]

∣∣∣ · 1

4
∣∣∣δre

[n
3

]+2

∣∣∣
≤

∣∣∣∂Ḡn−1,i

∂t

∣∣∣∣∣∣∂Ḡn−1,i

∂x

∣∣∣ + 1.16 ∗ t

16

(
1

3

)n−1−[n−1
3

](
1

3

)n−1−[n
3

]−2

≤

∣∣∣∂Ḡn−1,i

∂t

∣∣∣∣∣∣∂Ḡn−1,i

∂x

∣∣∣ + 1.16 ∗ t

16

(
1

3

)n−1−n−1
3
(

1

3

)n−1−n
3
−2

≤

∣∣∣∂Ḡn−1,i

∂t

∣∣∣∣∣∣∂Ḡn−1,i

∂x

∣∣∣ + 1.16 ∗ t

16

(
1

3

)−4+ 1
3

((
1

3

) 4
3

)n

(2.171)

Using the assumption (2.163), we get

∣∣∂g
∂t

∣∣∣∣ ∂g
∂x

∣∣ ≤ max


∣∣∣∂ḡn−1,j

∂t

∣∣∣∣∣∣∂ḡn−1,j

∂x

∣∣∣ ,
∣∣∣∂Ḡn−1,j

∂t

∣∣∣∣∣∣∂Ḡn−1,j

∂x

∣∣∣
+ 1.16 ∗ t

16

(
1

3

)−4
((

1

3

) 4
3

)n

≤ 0.0021 (2.172)

Since g is the composition of maps f with derivatives greater than 3.5 and

map ḡn−1,j or Ḡn−1,j, derivative of g is greater than the derivative of ḡn−1,j or
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Ḡn−1,j. We have

1∣∣ ∂g
∂x

∣∣ ≤ 1∣∣∣∂ḡn−1,j

∂x

∣∣∣ , 1∣∣∣∂Ḡn−1,j

∂x

∣∣∣ ≤ 10−10

for n ≥ 16. Finally, let ∆ = [z1(t), z2(t)], then

∣∣∣∣dz1(t)

dt

∣∣∣∣ ≤ 1
t2∣∣ ∂g
∂x

∣∣ +

∣∣∂g
∂t

∣∣∣∣ ∂g
∂x

∣∣ < 10−10 + 0.0021 < ε0 (2.173)

2.5.3.3 Estimating shift from y′n to yn

We will now show that the shift from y′n to yn satisfies

|[y′n, yn(t0)]|
|[yn−1(t0), w(t0)]|

<
1

9
· 0.6 (2.174)

in either the case when y′n falls into a critical domain δ∗ or the case when y′n falls

into a montone domain ∆∗ which satisfies (2.40). From this, we can show

1

3
(
√

0.3) <
|δre
n (t)|

|δre
n−1(t)|

<
1

3
(2.175)

for all t ∈ T (n).

We imitate calculations from 2.5.1.2, except here, δ∗ could also be δ−pi for

5 ≤ i ≤ [n
3
]. First consider the case when y′n is in δ∗. If δ∗ is δ0 or δ−p0 , we have

already stated in 2.5.1.2 that numerical calculations give

|δ∗|
|δ∗ ∪ upper half of δ̂∗|

< 0.59. (2.176)

By the choice of parameters, the critical value is outside the following enlargements

of preimages δ−p5 , δ−p6 , . . ., namely δ−p0 for δ−p5 , δ−p6 , δ−p7 , δ−p5 for δ−p8 and in general

δ−pn−3 for δ−pn . As ratios |δ−pn |
|δ−pn−3|

and
|δ−pi |
|δ−p0 |

for i = 5, 6, 7 are much larger than
|δ−p0 |
|δ̂−p0 |

, we
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get that in all other cases, estimate (2.176) is less than 0.59. That implies (2.176)

in all cases when y′n belongs to a hole. (2.176) will give

|[y′n, yn(t0)]|
|[y′n, w(t0)]|

< 0.6 (2.177)

which is equivalent to (2.174). Next we consider the case when y′n is in ∆∗. Since

∆∗ satisfies (2.40), we have

|[y′n, yn(t0)]|
|[yn−1(t0), y′n]|

< ϑ2 = 0.6 · 1

8
(2.178)

which is also equivalent to (2.174).

Arguments to show (2.175) are exactly the same as in 2.5.1.2. This is where

we need velocities from general step n.

2.5.3.4 Size of T (n)

Using (1.8) and (2.39), we get

∣∣T (n)
∣∣ ≤ 1

1
4
− ε0

∣∣∆(n)
∣∣

≤ 1
1
4
− ε0

Hn−1(∆(n))ϑ1

≤ 1
1
4
− ε0

|[yn−1(t), w(t)]|ϑ1

≤ 1
1
4
− ε0

t

4

∣∣δre

n−1

∣∣2 ϑ1 (2.179)

2.5.3.5 Extendability of maps

As corollaries of the algorithm defined, we have

Corollary 4. All monotone branches fn,i in ξn and all monotone branches g in

ζ(n)(∆(n)) can be extended to maps onto Ĩ
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Proof. Monotone branches in δren−1\δren

Monotone domains in δre
n−1\δre

n are extendable since we perform boundary re-

finement on any non-extendable monotone branches.

Monotone branches from filling-in outside δren−1

Newly created monotone domains outside δre
n−1 are those from filling-in. Mono-

tone domains created from filling-in are always extendable since we always

avoid an enlargement of holes when doing parabolic pullback. By the lower

boundary refinements we performed in each step, we guarantee that extended

domains of monotone domains in δre
i \δre

i+1 are always inside δ̂re
i .

Monotone branches on the y axis

If we have by induction that any previous maps created on the y-axis are

uniformly extendable to Ĩ and any previous monotone maps on the x-axis are

uniformly extendable to Ĩ. Then compositions of monotone maps extendable

to Ĩ are still extendable to Ĩ (see 1.3.5.2).

Corollary 5. All maps Fn,i on holes in ξn that are preimages of δrem can be extended

to maps onto δ̂rem. All maps G on holes in ζ(n)(∆(n)) that are preimages of δrem can be

extended to maps onto δ̂rem.

2.5.3.6 Distortion on holes

We derive the distortion bound Di = (1 + |δi|
1
2
|δ̂i\δi|

)2 according to (1.3). To

compute Di, we need to use the right hand side of the inequality (2.131). Taking
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the ratio of the largest possible value for |δi| to the smallest possible value for |δ̂i|

for all values t ∈ T (5), we get

D5,D6,D7 < 1.10 (2.180)

Di < 1.16, for i ≥ 8 (2.181)

We take the maximum of all distortion bounds and denote it by D. Let

D = 1.16. (2.182)

2.5.3.7 Expansiveness of fn,i and Fn,i

We show (2.148). We need to show for new domains created in δre
n−1\δre

n , that

their maps have derivatives greater than 3.5. For domains outside δre
n−1, their maps

are just compositions of maps with derivatives greater than 3.5.

We use
∣∣∣∂Fn,i∂x

∣∣∣ =
∣∣∣∂Gn,i∂x

∣∣∣ · ∣∣∂h∂x ∣∣ and
∣∣∂h
∂x

∣∣ ≥ t |δre
n |.

For n ≥ 15, ∣∣∣∣∂Gn,i∂x

∣∣∣∣ ≥ max

391005,

∣∣∣δre

[n
3

]+2

∣∣∣
|[yn−1, yn]|

· 1

1.16


≥

∣∣∣δre

[n
3

]+2

∣∣∣
|[yn−1, yn]|

· 1

1.16
(2.183)

∣∣∣∣∂Fn,i∂x

∣∣∣∣ =

∣∣∣∣∂Gn,i∂x

∣∣∣∣ · ∣∣∣∣∂h∂x
∣∣∣∣

≥

∣∣∣δ[n
3

]+2

∣∣∣
8
9
t
4

∣∣δre
n−1

∣∣2 ∗ 1

1.16
∗ t |δre

n |

≥ 3n−1−[n
3

]−2

2
9

∗ 1

1.16
∗
√

0.3

3
(2.184)
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2.5.3.8 Number of monotone refinements in defining ∆(n) is less than

or equal to 5

Admissible domains

The partition ξ̂[n
3

] associated to ξ[n
3

] is defined as a partition whose union of

holes contains all enlargements of holes in ξ[n
3

]. ξ̂[n
3

] is usually ξ[n
3

]−3 except for

the first steps. For steps n greater than 24 we start pulling back ξ8, ξ9, · · ·

whose associated partitions are ξ̂8 = ξ5, ξ̂9 = ξ6, · · · . Admissible domains of

ξi are non-hole domains of ξ̂i. Therefore, we are actually checking the domain

sizes in ξ̂[n
3

] at step n.

Number of pullbacks

When ξ̂i is ξ0, a maximum number of five pullbacks are needed. When n is

greater than 25, the partition ξ̂[n
3

] that we pullback for parameter choice is not

ξ0 anymore, but additional domains all lie inside δ0. We see from the table in

B.3.1 that |δ0|
dist(δ0,q−1)

is less than |∆−1|
dist(∆−1,q−1)

. So for all admissible domains

∆ in δ0, we have |∆|
dist(∆,q−1)

is less than |∆−1|
dist(∆−1,q−1)

. Also, distortion on ∆ ∪

(domains below ∆) is also less than distortion on ∆−1 ∪ (domains below∆−1).

So the maximum number of pullbacks needed for the additional domains in δ0

will be less than 5.

Domains that do not need refinement

We can comment on one other thing for domains inside δre
6 . Since

|δre
6 |

dist(δre
6 ,q
−1)

<

1
3
|δ5|

1
2

(|I|− 1
3
|δ5|)

<
1
3
∗0.0011

1
2

(1− 1
3
∗0.0011)

≈ 0.000733602 and distortion on δre
6 ∪(lower half of I) <
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6.12194, their product 0.00449107 is less than ϑ1. Therefore, no refinements

are needed on the domains that lie inside δre
6 .

2.5.3.9 Number of monotone refinements in defining yn is less than

or equal to 6

When we define yn, first we define non-dynamically the point y′n. If y′n is

contained in a hole δ∗, then we use arguments as in 2.5.3.3. If y′n is contained in

a monotone domain, then, we refine the monotone domain until y′n is in a hole or

(2.40) is satisfied.

Lemma 14. The number of refinements needed in a general step n to define yn is

no more than 6.

Proof. We prove this by splitting into cases of where y′n could be.

The case where y′n is in ∆(n−1)

If y′n is in ∆(n−1), the arguments are the same as the previous subsection except

we replace ϑ2 by ϑ1, which is better.

The case where y′n is below ∆(n−1)

Let ∆ be the starting monotone domain containing y′n. ∆ = [z1, z2].

Case 1: y := |[yn−1,z1]|
|[yn−1,w]| < 0.334 =: ϑ3

Show that ∆∩ g−1(∆1) is always below y′n if y := |[yn−1,z1]|
|[yn−1,w]| < 0.334 =: ϑ3
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Taking into account distortion, we get |∆∩g
−1(∆1)|
|∆| < 0.83. Using (A.9),

|[yn−1, z1] ∪ (∆ ∩ g−1(∆1))|
|[yn−1, w]|

≤ y + (1− y) ∗ 0.833

< 0.334 + (1− 0.334) ∗ 0.833

<
8

9
=
|[yn−1, y

′
n]|

|[yn−1, w]|
.

This shows that ∆∩g−1(∆1) is always below y′n if y := |[yn−1,z1]|
|[yn−1,w]| < 0.334 =:

ϑ3.

Let ∆′ be the domain in ∆ containing y′n, we will show |∆′|
Hn−1(∆′)

< 8.5

|∆′|
Hn−1(∆′)

<

max

{
|g−1(∆2)|
|g−1(∆1)|

,
|g−1(∆3)|

|g−1(∆1 ∪∆2)|
,

|g−1(δ0)|
|g−1(∆1 ∪∆2 ∪∆3)|

,
|g−1(∆−3)|

|g−1(∆1 ∪∆2 ∪∆3 ∪ δ0)|
,

|g−1(∆−2)|
|g−1(∆1 ∪∆2 ∪∆3 ∪ δ0 ∪∆−3)|

,
|g−1(∆−1)|

|g−1(∆1 ∪∆2 ∪∆3 ∪ δ0 ∪∆−3 ∪∆−2)|

}
<
|g−1(∆2)|
|g−1(∆1)|

< 15.6 ∗ |∆2|
|∆1|

< 15.6 ∗ 0.54

< 8.5

If after several refinements we get a domain ∆∗ ⊂ ∆′ containing y′n such

that |∆
∗|

|∆′| <
1
8
∗ 0.6 ∗ 1

8.5
≈ 0.0088, then

|∆∗|
Hn−1(∆∗)

<
|∆∗|
|∆′|

|∆′|
Hn−1(∆∗)

<
|∆∗|
|∆′|

|∆′|
Hn−1(∆′)

<
1

8
∗ 0.6 = ϑ2 (2.185)
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We check by computation that in order to get |∆
∗|

|∆′| <
1
8
∗0.6∗ 1

8.5
≈ 0.0088,

we need no more than 5 refinements. That means a total of no more than

5+1 refinements are needed.

Case 2: y ≥ 0.334

It is immediate that if y ≥ 0.334, |∆|
Hn−1(∆)

< 2.

If there is a domain ∆∗ in ∆ such that |∆
∗|

|∆′| <
1
8
∗ 0.6 ∗ 1

2
= 0.375, then

|∆∗|
Hn−1(∆∗)

<
|∆∗|
|∆|

|∆|
Hn−1(∆∗)

<
|∆∗|
|∆|

|∆|
Hn−1(∆)

<
1

8
∗ 0.6 = ϑ2 (2.186)

We check by computation that in order to get |∆
∗|
|∆| <

1
8
∗ 0.6 ∗ 1

2
= 0.375

we need no more than 4 refinements. That means a total of no more than

4+1 refinements are needed.

2.5.3.10 Number of boundary refinements for monotone domains in

δre

n−1\δre

n is less than or equal to 3

We consider a monotone domain ∆ between yn−1 and yn. If extension of ∆ is

not in the image of h, we ask how many boundary refinements are needed in order

for all refined domains to have extensions in the image of h. In lemma 8 we showed

that the number of boundary refinements needed in step 6 is no more than 2. We

argued by considering two separate cases. We obtained that if (2.109) and (2.113) in

the two separate cases are satisfied, respectively, then we have that extension of ∆l...l

is in the image of h. Different from step 6, we estimate
top component of ∆̃l...l\∆l...l

∆
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by evaluating |∆̃1···1\I|
|I| (∆1···1’s are the first subdomains of ∆1 after consecutive re-

finements on the first domain) and multiplying that by distortion on ∆̃1···1 ∪ I.

This is because monotone domains ∆ are formed by pullbacks of ξ[n
3

] where mono-

tone domains are not just the domains ∆1, ∆2 and ∆3 anymore. From numerical

calculations, we have

|∆̃111\I|
|I|

< 0.0066 (2.187)

and distortion is less than 15.6. Therefore the distorted ratio always satifies (2.109)

and (2.113), which means a maximum of three boundary refinements are needed.

2.5.3.11 Simplifying compositions

Since we only need to perform refinements on larger domains, we are mostly

composing branches corresponding to larger domains such as ∆1, ∆2 and ∆3. The

compositions will boil down to the following cases.

Corollary 6. Compositions fn,is ◦ · · · ◦fn,i1 defined specifically from the refinement

processes in our algorithm can be simplified to one of the following forms.

fn,is ◦ f0,is−1 ◦ · · · ◦ f0,i1 s ≤ 5 (2.188)

fn,i2 ◦ f5,i1 (2.189)

fn,i1 (2.190)

This corollary is a consequence of remark 17 below.
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2.5.3.12 Estimating relative sizes of holes at step n of induction

Here we prove the estimate for µholes(ηn−1), where ηn−1 is the restriction of the

partition ξn to the rescaled central domain δre
n−1 and µholes(ηn−1) denotes the relative

measure of holes in ηn−1.

Lemma 15. Let N ≥ 15. Suppose (2.149) holds for 15 ≤ n ≤ N − 1, (2.144) holds

for n = N and (2.131) holds for 6 ≤ k ≤ 14, then

µholes(ηN−1) ≤ 0.613 =: χ. (2.191)

Proof. By the algorithm in 2.3.3, partition ηN−1 is formed by first constructing a new

rescaled central domain δre
N inside δre

N−1, then filling-in holes in δre
N−1\δre

N . According

to the assumption, the rescaled central domain δre
N satisfies (2.175). The filling-ins

could be composed of two 1-step filling-ins, one 1-step filling-in followed by a 5-step

filling-in, or just one 5-step filling-in. 5-step filling-ins are performed on preimages

of δ0 and the relative measure of holes in a given hole after a 5-step filling is given by

(2.13). One step filling-ins are performed on preimages of δre
k where 5 ≤ k ≤ [N

3
] + 1

and the relative measure of holes after one such filling-in is given by

µholes(F−1(ηk)) <
χ ∗ D

1− χ+ χ ∗ D
≈ 0.73 =: χ′ (2.192)

where D is the uniform upper bound for distortions on δi’s. Since χ′ is greater than

0.29, the worst case possible for filling-ins in δre
N−1\δre

N is the case where all holes

undergo two 1-step filling-in. So we get

measure of holes in δre
N−1\δre

N after filling-in∣∣δre
N−1\δre

N

∣∣ ≤ (χ′)
2

(2.193)
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Combining inequalities (2.193), (2.175) for n = N and using (A.9), we get

µholes(ηN−1) =
|δre
N |+ | holes between δre

N−1 and δre
N |

|δre
N−1|

<
1

3
+

2

3
(χ′)

2
< χ (2.194)

Remark 11. χ was chosen by solving for 1
3

+ 2
3

(
χ∗D

1−χ+χ∗D

)2

= χ, which is approxi-

mately 0.613. Any number greater than that works.

We can conclude that χ depends on the number of 1-step filling-ins we assign

in the algorithm.

Since after step n, the measure of holes inside δre
n−1 reduces to less than χ∗

∣∣δre
n−1

∣∣
and outside δre

n−1 we perform a 1-step filling-in which reduces the measure of holes

to less than χ′ times the original measure of holes, we can conclude the following.

Corollary 7.

µholes(ξn) < χ′ ∗ µholes(ξn−1). (2.195)

So for n ≥ 15 we have (2.150). That proves that the measure of holes will

decrease to zero.

2.5.3.13 Estimating derivatives

∣∣∣∣∂g(n)
∂t

∣∣∣∣∣∣∣∣∂g(n)
∂x

∣∣∣∣ ,
∣∣∣∣∂G(n),i

∂t

∣∣∣∣∣∣∣∣∂G(n),i
∂x

∣∣∣∣ ,
∣∣∣∂ḡn,i∂t

∣∣∣∣∣∣∂ḡn,i∂x

∣∣∣ ,
∣∣∣∂Ḡn,i∂t

∣∣∣∣∣∣∂Ḡn,i∂x

∣∣∣ ,
∣∣∣∂gn,i∂t

∣∣∣∣∣∣∂gn,i∂x

∣∣∣ ,
∣∣∣∂Gn,i∂t

∣∣∣∣∣∣∂Gn,i∂x

∣∣∣
on the y-axis

The estimate for these derivatives follow the same spirit as estimates in 2.5.3.2.

All can be shown to be less than ε0 when the maps are above yn−1.
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2.5.3.14 Estimating derivatives

∣∣∣∂fn,i∂t

∣∣∣∣∣∣∂fn,i∂x

∣∣∣ ,
∣∣∣∂Fn,i

∂t

∣∣∣∣∣∣∂Fn,i
∂x

∣∣∣ on the x-axis

We would like to show (2.154). We assume (2.154) holds in earlier steps. We

use ∣∣∂h
∂t

∣∣∣∣∂h
∂x

∣∣ < 1
4
− 1

4
|δre
n |

2

t |δre
n |

(2.196)

for x outside δre
n .

For fn,i and Fn,i in δren−1\δren .

fn,i = gn,i ◦ h where gn,i is in [yn−1(t), yn(t)]

Fn,i = Gn,i ◦ h, where Gn,i is in [yn−1(t), yn(t)]

∣∣∣∂fn,i∂t

∣∣∣∣∣∣∂fn,i∂x

∣∣∣ ≤
∣∣∂h
∂t

∣∣∣∣∂h
∂x

∣∣ +
1∣∣∂h
∂x

∣∣ ·
∣∣∣∂gn,i∂t

∣∣∣∣∣∣∂gn,i∂x

∣∣∣
≤

(1
4
− 1

4
|δre
n |

2)

t |δre
n |

+
1

t |δre
n |
·

∣∣∣∂gn,i∂t

∣∣∣∣∣∣∂gn,i∂x

∣∣∣
≤

(1
4
− 1

4
|δre
n |

2)

t |δre
n |

+
1

t |δre
n |
∗ 0.003

≤ 1

4 |δre
n |

(2.197)

Similarly,

∣∣∣ ∂Fn,i∂t

∣∣∣∣∣∣ ∂Fn,i∂x

∣∣∣ ≤ 1
4|δre

n |
.

For fn,i and Fn,i outside δren−1.

We assume the worst possible case, which is the case when the new branches

come from filling-in of δre
n−1.

fn,i = fn−1,l ◦Fn−1,j where map Fn−1,j are maps on holes outside δre
n−1 in ξn−1.
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Fn,i = Fn−1,l◦Fn−1,j where map Fn−1,j are maps on holes outside δre
n−1 in ξn−1..

∣∣∣∂fn,i∂t

∣∣∣∣∣∣∂fn,i∂x

∣∣∣ ≤
∣∣∣∂Fn−1,j

∂t

∣∣∣∣∣∣∂Fn−1,j

∂x

∣∣∣ +
1∣∣∣∂Fn−1,j

∂x

∣∣∣ ·
∣∣∣∂fn−1,l

∂t

∣∣∣∣∣∣∂fn−1,l

∂x

∣∣∣
≤ 1

4
∣∣δre
n−1

∣∣ +
1

3.5
∗ 1

4
∣∣δre
n−1

∣∣
<

1

4 |δre
n |

(2.198)

2.5.3.15 Variation of derivatives

We show (2.155), (2.156), (2.157) and (2.158). We refer to the value
∂
∂t
∂ϕ−1

∂z
∂ϕ−1

∂z

as

the variation of derivative of ϕ. We constantly use the composition formula below.
Let ϕ(t, x) = ϕ2(t, ϕ1(t, x)), then

∂
∂t

∂ϕ−1

∂z

∂ϕ−1

∂z

=

∂2ϕ
−1
1

∂t∂z
(t, ϕ−1

2 (t, z))

∂ϕ
−1
1
∂z

(t, ϕ−1
2 (t, z))

+

∂2ϕ
−1
1

∂z2
(t, ϕ−1

2 (t, z))

∂ϕ
−1
1
∂z

(t, ϕ−1
2 (t, z))

·
∂ϕ−1

2

∂t
(t, z) +

∂2ϕ
−1
2

∂t∂z
(t, z)

∂ϕ
−1
2
∂z

(t, z)

=

∂2ϕ
−1
1

∂t∂z
(t, ϕ−1

2 (t, z))

∂ϕ
−1
1
∂z

(t, ϕ−1
2 (t, z))

+

∂2ϕ1
∂x2 (t, ϕ−1

1 (t, ϕ−1
2 (t, z)))

∂ϕ1
∂x

(t, ϕ−1
1 (t, ϕ−1

2 (t, z)))
·
∂ϕ2
∂t
∂ϕ2
∂x

(t, ϕ
−1
2 (t, z)) +

∂2ϕ
−1
2

∂t∂z
(t, z)

∂ϕ
−1
2
∂z

(t, z)

(2.199)

Due to the second term in (2.199), we need the following lemma to estimate

∣∣∣∣∣ ∂2ϕ

∂x2

( ∂ϕ∂x )
2

∣∣∣∣∣.
Lemma 16. Let ϕ : ∆ → J be a map satisfying the negative Schwarzian derivative

condition. Suppose ϕ can be extended to ϕ̃ which maps onto an extension J̃ of J , where

the extension on each end has length e. Then

∣∣∣∣ ϕ′′(z)(ϕ′(z))2

∣∣∣∣ ≤ 2

e
(2.200)

for any z ∈ ∆.

Proof. We can assume that the derivatives of ϕ on ∆ are all positive, since if derivatives

are all negative, then we prove for ψ(x) = −ϕ(x). Let z be any point in ∆. Assume first
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that z is not a boundary point of ∆. Choose two points x and y such that z ∈ [x, y] ⊂ ∆.

By (1.3), we have (
1 +
|ϕ(x)− ϕ(y)|

e

)2

≥ |ϕ
′(x)|
|ϕ′(y)|

. (2.201)

By the mean value theorem and some basic calculations we have

|ϕ′(x)|
|ϕ′(y)|

= e
log

ϕ′(x)

ϕ′(y)

= elogϕ′(x)−logϕ′(y)

= e
ϕ′′(θ)
ϕ′(θ) (x−y)

= e
|ϕ′′(θ)|
|ϕ′(θ)|

|ϕ(x)−ϕ(y)|
|ϕ′(θ̃)|

where θ and θ̃ are in (x, y).

1 + 2
|ϕ(x)− ϕ(y)|

e
+

(
|ϕ(x)− ϕ(y)|

e

)2

=

(
1 +
|ϕ(x)− ϕ(y)|

e

)2

≥ e
|ϕ′′(θ)|
|ϕ′(θ)|

|ϕ(x)−ϕ(y)|
|ϕ′(θ̃)|

= 1 +
|ϕ′′(θ)|
|ϕ′(θ)|

|ϕ(x)− ϕ(y)|
|ϕ′(θ̃)|

+ O(|ϕ(x)− ϕ(y)|2).

Then we have,

2

e
+
|ϕ(x)− ϕ(y)|

e
≥ |ϕ

′′(θ)|
|ϕ′(θ)|

1

|ϕ′(θ̃)|
+ O(|ϕ(x)− ϕ(y)|) (2.202)

Let x→ z− and y → z+. Then

2

e
≥ |ϕ

′′(z)|
|ϕ′(z)|2

. (2.203)

If z is a boundary point of ∆, choose [x, y] ⊂ ∆̃ where ∆̃ = ϕ̃−1(J̃). e should be replaced

by a smaller extension value varying with x or y. As x and y tend to z, the extension

value will again converge to e, and the same result holds.

Remark 12. From the proof, we can see that we should be able to obtain better estimates

if z does not lie on the boundary of ∆.
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Corollary 8. Let fj1 , · · · , fjr be monotone branches in ξj1 , · · · , ξjr respectively, then∣∣∣∣∂2(fjr◦···◦fj1)
∂x2

∣∣∣∣∣∣∣∣∂(fjr◦···◦fj1)
∂x

∣∣∣∣2
<

2

0.17
< 12 (2.204)

Let g be any monotone map from a domain on the y-axis onto I at any step n,∣∣∣ ∂2g
∂x2

∣∣∣∣∣∣ ∂g∂x ∣∣∣2 <
2

0.17
< 12 (2.205)

Estimates for g(n) and G(n),i.

For n = 6, we have (2.125). For 6 < n < 24,

∣∣∣∣∣∣
∂2g
−1
(n)

∂t∂z

∣∣∣∣∣∣∣∣∣∣∣∣
∂g
−1
(n)
∂z

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∂2g
−1
(n−1)
∂t∂z

∣∣∣∣∣∣∣∣∣∣∣∣
∂g
−1
(n−1)
∂z

∣∣∣∣∣∣
+

∣∣∣∣∣ ∂2g(n−1)

∂x2

∣∣∣∣∣∣∣∣∣ ∂g(n−1)
∂x

∣∣∣∣2 ·
∣∣∣∣∣ ∂
(
f0,is

◦···◦f0,i1

)
∂t

∣∣∣∣∣∣∣∣∣∣ ∂
(
f0,is

◦···◦f0,i1

)
∂x

∣∣∣∣∣
+

∣∣∣∣∣∣ ∂
2
(
f0,is

◦···◦f0,i1

)−1

∂t∂z

∣∣∣∣∣∣∣∣∣∣∣∣ ∂
(
f0,is

◦···◦f0,i1

)−1

∂z

∣∣∣∣∣∣

≤

∣∣∣∣∣∣
∂2g
−1
(n−1)
∂t∂z

∣∣∣∣∣∣∣∣∣∣∣∣
∂g
−1
(n−1)
∂z

∣∣∣∣∣∣
+ 12 ∗ 1.5527 + 200

≤

∣∣∣∣∣∣
∂2g
−1
(6)

∂t∂z

∣∣∣∣∣∣∣∣∣∣∣∣
∂g
−1
(6)
∂z

∣∣∣∣∣∣
+ (n− 6) ∗ (12 ∗ 1.5527 + 200)

≤ 212 + (n− 6) ∗ (12 ∗ 1.5527 + 200) (2.206)

In particular,
∣∣∣∣∣∣
∂2g
−1
(23)

∂t∂z

∣∣∣∣∣∣∣∣∣∣∣∣
∂g
−1
(23)
∂z

∣∣∣∣∣∣
≤ 212 + (23− 6) ∗ (12 ∗ 1.5527 + 200)

< 3929

<
10−6

|δ5|2
(2.207)

For n ≥ 24, we have g(n) = f̂[n
3

],is ◦ · · · ◦ f̂[n
3

],i1 ◦ g(n−1), which by corollary 6 can be

simplified to one of the following cases,

g(n) = f̂[n
3

],is ◦ f0,is−1 ◦ · · · ◦ f0,i1 ◦ g(n−1) (2.208)

g(n) = f̂[n
3

],i2 ◦ f5,i1 ◦ g(n−1) (2.209)

g(n) = f̂[n
3

],i1 (2.210)

137



The worst case in terms of estimates for the variation of derivatives is of the form

(2.209). First we estimate

∣∣∣∣∣∣∣
∂2(f[n

3
]−3,i2

◦f5,i1 )−1

∂t∂z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∂(f[n

3
]−3,i2

◦f5,i1 )−1

∂z

∣∣∣∣∣∣∣
.

When [n3 ]− 3 = 5, we have

∣∣∣∣∣ ∂2(f5,i2
◦f5,i1 )−1

∂t∂z

∣∣∣∣∣∣∣∣∣∣ ∂(f5,i2
◦f5,i1 )−1

∂z

∣∣∣∣∣
≤

∣∣∣∣∣∣
∂2f
−1
5,i1

∂t∂z

∣∣∣∣∣∣∣∣∣∣∣∣
∂f
−1
5,i1
∂z

∣∣∣∣∣∣
+

∣∣∣∣∣ ∂2f5,i1
∂x2

∣∣∣∣∣∣∣∣∣ ∂f5,i1∂x

∣∣∣∣2 ·
∣∣∣∣ ∂f5,i2∂t

∣∣∣∣∣∣∣∣ ∂f5,i2∂x

∣∣∣∣ +

∣∣∣∣∣∣
∂2f
−1
5,i2

∂t∂z

∣∣∣∣∣∣∣∣∣∣∣∣
∂f
−1
5,i2
∂z

∣∣∣∣∣∣
≤900, 000 + 12 ∗ 161 + 900, 000

<1801920

<2.19
1

|δ5|2
(2.211)

When [n3 ]− 3 = 6, we have

∣∣∣∣∣ ∂2(f6,i2
◦f5,i1 )−1

∂t∂z

∣∣∣∣∣∣∣∣∣∣ ∂(f6,i2
◦f5,i1 )−1

∂z

∣∣∣∣∣
≤

∣∣∣∣∣∣
∂2f
−1
5,i1

∂t∂z

∣∣∣∣∣∣∣∣∣∣∣∣
∂f
−1
5,i1
∂z

∣∣∣∣∣∣
+

∣∣∣∣∣ ∂2f5,i1
∂x2

∣∣∣∣∣∣∣∣∣ ∂f5,i1∂x

∣∣∣∣2 ·
∣∣∣∣ ∂f6,i2∂t

∣∣∣∣∣∣∣∣ ∂f6,i2∂x

∣∣∣∣ +

∣∣∣∣∣∣
∂2f
−1
6,i2

∂t∂z

∣∣∣∣∣∣∣∣∣∣∣∣
∂f
−1
6,i2
∂z

∣∣∣∣∣∣
≤900, 000 + 12 ∗ 161 + 1.38

1

|δ6|2

≤0.122
1∣∣δre6

∣∣2 + 1.38
1∣∣δre6

∣∣2
<1.51

1∣∣δre6

∣∣2 (2.212)

Starting from [n3 ]− 3 = 7, we have a general formula. For [n3 ]− 3 ≥ 7

∣∣∣∣∣∣
∂2(f[n

3
]−3,i2

◦f5,i1 )−1

∂t∂z

∣∣∣∣∣∣∣∣∣∣∣∣
∂(f[n

3
]−3,i2

◦f5,i1 )−1

∂z

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∂2f
−1
5,i1

∂t∂z

∣∣∣∣∣∣∣∣∣∣∣∣
∂f
−1
5,i1
∂z

∣∣∣∣∣∣
+

∣∣∣∣∣ ∂2f5,i1
∂x2

∣∣∣∣∣∣∣∣∣ ∂f5,i1∂x

∣∣∣∣2 ·
∣∣∣∣∣ ∂f[n3 ]−3,i2

∂t

∣∣∣∣∣∣∣∣∣∣ ∂f[n3 ]−3,i2
∂x

∣∣∣∣∣
+

∣∣∣∣∣∣∣
∂2f
−1
[n
3

]−3,i2
∂t∂z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∂f
−1
[n
3

]−3,i2
∂z

∣∣∣∣∣∣∣
≤900, 000 + 12 ∗ 161 +

1∣∣∣∣δre[n
3

]−3

∣∣∣∣2
≤0.014

1∣∣δre7

∣∣2 +
1∣∣∣∣δre[n

3
]−3

∣∣∣∣2
<1.014

1∣∣∣∣δre[n
3

]−3

∣∣∣∣2 (2.213)

Then we can estimate

∣∣∣∣∣ ∂
2g−1

(n)
∂t∂z

∣∣∣∣∣∣∣∣∣∣ ∂g
−1
(n)
∂z

∣∣∣∣∣
for n ≥ 24. Using (2.207) and (2.211), we get

∣∣∣∣∣∣
∂2g
−1
(24)

∂t∂z

∣∣∣∣∣∣∣∣∣∣∣∣
∂g
−1
(24)
∂z

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∂2g
−1
(23)

∂t∂z

∣∣∣∣∣∣∣∣∣∣∣∣
∂g
−1
(23)
∂z

∣∣∣∣∣∣
+

∣∣∣∣∣ ∂2g(23)

∂x2

∣∣∣∣∣∣∣∣∣ ∂g(23)
∂x

∣∣∣∣2 ·
∣∣∣∣ ∂(f5,i2

◦f5,i1 )

∂t

∣∣∣∣∣∣∣∣ ∂(f5,i2
◦f5,i1 )

∂x

∣∣∣∣ +

∣∣∣∣∣ ∂2(f5,i2
◦f5,i1 )−1

∂t∂z

∣∣∣∣∣∣∣∣∣∣ ∂(f5,i2
◦f5,i1 )−1

∂z

∣∣∣∣∣
≤

10−6

|δ5|2
+ 12 ∗

1

4 |δ5|
+ 2.19

1

|δ5|2

≤ 3
1

|δ5|2
(2.214)
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Assume as an inductive assumption that

∣∣∣∣∣∣∣
∂2g
−1
(k)

∂t∂z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∂g
−1
(k)
∂z

∣∣∣∣∣∣∣
≤ 3∗(k mod 3)+3∣∣∣∣∣∣δre[ k

3
]−3

∣∣∣∣∣∣
2 for k ≤ n − 1, then

from (2.211),(2.212), and (2.213) we get

∣∣∣∣∣∣
∂2g
−1
(n)

∂t∂z

∣∣∣∣∣∣∣∣∣∣∣∣
∂g
−1
(n)
∂z

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∂2g
−1
(n−1)
∂t∂z

∣∣∣∣∣∣∣∣∣∣∣∣
∂g
−1
(n−1)
∂z

∣∣∣∣∣∣
+

∣∣∣∣∣ ∂2g(n−1)

∂x2

∣∣∣∣∣∣∣∣∣ ∂g(n−1)
∂x

∣∣∣∣2 ·
∣∣∣∣∣ ∂(f[n

3
]−3,i2

◦f5,i1 )

∂t

∣∣∣∣∣∣∣∣∣∣ ∂(f[n
3

]−3,i2
◦f5,i1 )

∂x

∣∣∣∣∣
+

∣∣∣∣∣∣
∂2(f[n

3
]−3,i2

◦f5,i1 )−1

∂t∂z

∣∣∣∣∣∣∣∣∣∣∣∣
∂(f[n

3
]−3,i2

◦f5,i1 )−1

∂z

∣∣∣∣∣∣
≤

3 ∗ (n− 1 mod 3) + 3∣∣∣∣∣δre[n−1
3

]−3

∣∣∣∣∣
2

+ 12 ∗
1

4

∣∣∣∣δre[n
3

]−3

∣∣∣∣ + 2.19
1∣∣∣∣δre[n

3
]−3

∣∣∣∣2

≤
3 ∗ (n− 1 mod 3) + 3∣∣∣∣∣δre[n−1

3
]−3

∣∣∣∣∣
2

+ 0.0004 ∗
1∣∣∣∣δre[n

3
]−3

∣∣∣∣2 + 2.19
1∣∣∣∣δre[n

3
]−3

∣∣∣∣2

≤



3∗(n−1 mod 3)+3∣∣∣∣∣δre[n
3

]−3

∣∣∣∣∣
2 + 3 1∣∣∣∣∣δre[n

3
]−3

∣∣∣∣∣
2 , if [n

3
] = [n−1

3
]

3∗2+3

9

∣∣∣∣∣δre[n
3

]−3

∣∣∣∣∣
2 + 0.0004 ∗ 1∣∣∣∣∣δre[n

3
]−3

∣∣∣∣∣
2 + 2.19 1∣∣∣∣∣δre[n

3
]−3

∣∣∣∣∣
2 , if [n

3
] = [n−1

3
] + 1

≤



3∗(n mod 3)+3∣∣∣∣∣δre[n
3

]−3

∣∣∣∣∣
2 , if [n

3
] = [n−1

3
]

3∣∣∣∣∣δre[n
3

]−3

∣∣∣∣∣
2 , if [n

3
] = [n−1

3
] + 1

=
3 ∗ (n mod 3) + 3∣∣∣∣δre[n

3
]−3

∣∣∣∣2 . (2.215)

Estimates for ḡn,i and Ḡn,i above yn.

ḡn,i = f[n
3

],is ◦ · · · ◦ f[n
3

],i1 ◦ ḡn−1,j

or

ḡn,i = f[n
3

],is ◦ · · · ◦ f[n
3

],i1 ◦ g(n−1).

So the estimates should be the same as for g(n).

Estimates for gn,i and Gn,i above yn−1.

According to 2.4.4.1 and corollary 6, the compositions of gn,i has the following form:

gn,i = fm̃+1,k3 ◦ Fm+1,k2 ◦ F[n
3

],k1
◦ f0,1 ◦ f0,1 ◦ f[n

3
],i2 ◦ f5,i1 ◦ ḡn−1,j , where m ≤ [n3 ]

and m̃ ≤ m + 1, or gn,i = fm̃+1,k2 ◦ Fm+1,k1 ◦ Ḡn−1,j . To estimate the variation of

derivative of fm̃+1,k3 ◦ Fm+1,k2 ◦ F[n
3

],k1
◦ f0,1 ◦ f0,1 ◦ f[n

3
],i2 ◦ f5,i1 ◦ ḡn−1,j , we first
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estimate the variation of derivative for Fm+1,k2 ◦ F[n
3

],k1
. We have

∣∣∣∣∣∣∣
∂2
(
Fm+1,k2

◦F[n
3

],k1

)−1

∂t∂z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∂

(
Fm+1,k2

◦F[n
3

],k1

)−1

∂z

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
∂2F−1

[n
3

],k1
∂t∂z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∂F−1

[n
3

],k1
∂z

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣
∂2F[n

3
],k1

∂x2

∣∣∣∣∣∣∣∣∣∣∣ ∂F[n
3

],k1
∂x

∣∣∣∣∣
2
·

∣∣∣∣ ∂Fm+1,k2
∂t

∣∣∣∣∣∣∣∣ ∂Fm+1,k2
∂x

∣∣∣∣ +

∣∣∣∣∣∣
∂2F−1

m+1,k2
∂t∂z

∣∣∣∣∣∣∣∣∣∣∣∣
∂F−1
m+1,k2
∂z

∣∣∣∣∣∣
≤

1∣∣∣∣δre[n
3

]

∣∣∣∣2 +
2

e
·

1

4
∣∣∣δrem+1

∣∣∣ +
1∣∣∣δrem+1

∣∣∣2
≤

1

9
·

1∣∣∣∣δre[n
3

]+1

∣∣∣∣2 +
2

13

∣∣∣∣δre[n
3

]

∣∣∣∣ ·
1

4

∣∣∣∣δre[n
3

]+1

∣∣∣∣ +
1∣∣∣∣δre[n

3
]+1

∣∣∣∣2
≤

1

9
·

1∣∣∣∣δre[n
3

]+1

∣∣∣∣2 +
2

13 ∗ 3

∣∣∣∣δre[n
3

]+1

∣∣∣∣ ·
1

4

∣∣∣∣δre[n
3

]+1

∣∣∣∣ +
1∣∣∣∣δre[n

3
]+1

∣∣∣∣2
≤

1.13∣∣∣∣δre[n
3

]+1

∣∣∣∣2 (2.216)

Then we estimate the variation of derivative for fm̃+1,k3 composed with Fm+1,k2 ◦
F[n

3
],k1

. We have

∣∣∣∣∣∣∣
∂2
(
fm̃+1,k3

◦Fm+1,k2
◦F[n

3
],k1

)−1

∂t∂z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∂

(
fm̃+1,k3

◦Fm+1,k2
◦F[n

3
],k1

)−1

∂z

∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣
∂2
(
Fm+1,k2

◦F[n
3

],k1

)−1

∂t∂z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∂

(
Fm+1,k2

◦F[n
3

],k1

)−1

∂z

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
∂2
(
Fm+1,k2

◦F[n
3

],k1

)
∂x2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∂

(
Fm+1,k2

◦F[n
3

],k1

)
∂x

∣∣∣∣∣∣∣
2
·

∣∣∣∣ ∂fm̃+1,k3
∂t

∣∣∣∣∣∣∣∣ ∂fm̃+1,k3
∂x

∣∣∣∣ +

∣∣∣∣∣∣
∂2f
−1
m̃+1,k3
∂t∂z

∣∣∣∣∣∣∣∣∣∣∣∣
∂f
−1
m̃+1,k3
∂z

∣∣∣∣∣∣
≤

1.13∣∣∣∣δre[n
3

]+1

∣∣∣∣2 +
2

e
·

1

4
∣∣∣δrem̃+1

∣∣∣ +
1∣∣∣δrem̃+1

∣∣∣2
≤

1.13

9
·

1∣∣∣∣δre[n
3

]+2

∣∣∣∣2 +
2

13

∣∣∣∣δre[n
3

]+1

∣∣∣∣ ·
1

4

∣∣∣∣δre[n
3

]+2

∣∣∣∣ +
1∣∣∣∣δre[n

3
]+2

∣∣∣∣2
≤

1.13

9
·

1∣∣∣∣δre[n
3

]+2

∣∣∣∣2 +
2

13 ∗ 3

∣∣∣∣δre[n
3

]+2

∣∣∣∣ ·
1

4

∣∣∣∣δre[n
3

]+2

∣∣∣∣ +
1∣∣∣∣δre[n

3
]+2

∣∣∣∣2
≤

1.14∣∣∣∣δre[n
3

]+2

∣∣∣∣2 . (2.217)

Then we estimate the variation of derivative for fm̃+1,k3 ◦Fm+1,k2 ◦F[n
3

],k1
composed

with f0,1 ◦ f0,1. We have
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∣∣∣∣∣∣∣
∂2
(
fm̃+1,k3

◦Fm+1,k2
◦F[n

3
],k1
◦f0,1◦f0,1

)−1

∂t∂z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∂

(
fm̃+1,k3

◦Fm+1,k2
◦F[n

3
],k1
◦f0,1◦f0,1

)−1

∂z

∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣ ∂
2
(
f0,1◦f0,1

)−1

∂t∂z

∣∣∣∣∣∣∣∣∣∣∣∣ ∂
(
f0,1◦f0,1

)−1

∂z

∣∣∣∣∣∣
+

∣∣∣∣∣ ∂2
(
f0,1◦f0,1

)
∂x2

∣∣∣∣∣∣∣∣∣∣ ∂
(
f0,1◦f0,1

)
∂x

∣∣∣∣∣
2
·

∣∣∣∣∣∣∣
∂

(
fm̃+1,k3

◦Fm+1,k2
◦F[n

3
],k1

)
∂t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∂

(
fm̃+1,k3

◦Fm+1,k2
◦F[n

3
],k1

)
∂x

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
∂2
(
fm̃+1,k3

◦Fm+1,k2
◦F[n

3
],k1

)−1

∂t∂z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∂

(
fm̃+1,k3

◦Fm+1,k2
◦F[n

3
],k1

)−1

∂z

∣∣∣∣∣∣∣
≤200 + 12 ∗

1

4

∣∣∣∣δre[n
3

]+2

∣∣∣∣ +
1.14∣∣∣∣δre[n
3

]+2

∣∣∣∣2
≤

1.15∣∣∣∣δre[n
3

]+2

∣∣∣∣2 . (2.218)

Then we estimate the variation of derivative for fm̃+1,k3 ◦Fm+1,k2 ◦F[n
3

],k1
◦f0,1 ◦f0,1

composed with f[n
3

],i2 ◦ f5,i1 . The estimate for the variation of derivative of f[n
3

],i2 ◦
f5,i1 comes from (2.213).

∣∣∣∣∣∣∣
∂2
(
fm̃+1,k3

◦Fm+1,k2
◦F[n

3
],k1
◦f0,1◦f0,1◦f[n

3
],i2
◦f5,i1

)−1

∂t∂z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∂

(
fm̃+1,k3

◦Fm+1,k2
◦F[n

3
],k1
◦f0,1◦f0,1◦f[n

3
],i2
◦f5,i1

)−1

∂z

∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣
∂2
(
f[n

3
],i2
◦f5,i1

)−1

∂t∂z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∂

(
f[n

3
],i2
◦f5,i1

)−1

∂z

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
∂2
(
f[n

3
],i2
◦f5,i1

)
∂x2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∂

(
f[n

3
],i2
◦f5,i1

)
∂x

∣∣∣∣∣∣∣
2
·

∣∣∣∣∣∣∣
∂

(
fm̃+1,k3

◦Fm+1,k2
◦F[n

3
],k1
◦f0,1◦f0,1

)
∂t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∂

(
fm̃+1,k3

◦Fm+1,k2
◦F[n

3
],k1
◦f0,1◦f0,1

)
∂x

∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣
∂2
(
fm̃+1,k3

◦Fm+1,k2
◦F[n

3
],k1
◦f0,1◦f0,1

)−1

∂t∂z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∂

(
fm̃+1,k3

◦Fm+1,k2
◦F[n

3
],k1
◦f0,1◦f0,1

)−1

∂z

∣∣∣∣∣∣∣
≤

1.014∣∣∣∣δre[n
3

]

∣∣∣∣2 + 12 ∗
1

4

∣∣∣∣δre[n
3

]+2

∣∣∣∣ +
1.15∣∣∣∣δre[n
3

]+2

∣∣∣∣2
≤

1.16∣∣∣∣δre[n
3

]+2

∣∣∣∣2 . (2.219)

Finally, we estimate the variation of derivative for fm̃+1,k3 ◦Fm+1,k2 ◦F[n
3

],k1
◦ f0,1 ◦

f0,1◦f[n
3

],i2 ◦f5,i1 composed with ḡn−1,j . Bounds for the variation of derivative of ḡk,j

comes from the inductive assumption that

∣∣∣∣∣ ∂2ḡ−1
k,j

∂t∂z

∣∣∣∣∣∣∣∣∣∣ ∂ḡ
−1
k,j
∂z

∣∣∣∣∣
≤ 3∗(k mod 3)+3∣∣∣∣δre

[ k3 ]

∣∣∣∣2 for k ≤ n − 1.
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We have ∣∣∣∣∣∣∣
∂2
(
fm̃+1,k3

◦Fm+1,k2
◦F[n

3
],k1
◦f0,1◦f0,1◦f[n

3
],i2
◦f5,i1◦ḡn−1,j

)−1

∂t∂z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∂

(
fm̃+1,k3

◦Fm+1,k2
◦F[n

3
],k1
◦f0,1◦f0,1◦f[n

3
],i2
◦f5,i1◦ḡn−1,j

)−1

∂z

∣∣∣∣∣∣∣

≤

∣∣∣∣∣ ∂
2ḡ
−1
n−1,j
∂t∂z

∣∣∣∣∣∣∣∣∣∣ ∂ḡ
−1
n−1,j
∂z

∣∣∣∣∣
+

∣∣∣∣∣ ∂2ḡn−1,j

∂x2

∣∣∣∣∣∣∣∣∣ ∂ḡn−1,j
∂x

∣∣∣∣2 ·
∣∣∣∣∣∣∣
∂

(
fm̃+1,k3

◦Fm+1,k2
◦F[n

3
],k1
◦f0,1◦f0,1◦f[n

3
],i2
◦f5,i1

)
∂t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∂

(
fm̃+1,k3

◦Fm+1,k2
◦F[n

3
],k1
◦f0,1◦f0,1◦f[n

3
],i2
◦f5,i1

)
∂x

∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣
∂2
(
fm̃+1,k3

◦Fm+1,k2
◦F[n

3
],k1
◦f0,1◦f0,1◦f[n

3
],i2
◦f5,i1

)−1

∂t∂z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∂

(
fm̃+1,k3

◦Fm+1,k2
◦F[n

3
],k1
◦f0,1◦f0,1◦f[n

3
],i2
◦f5,i1

)−1

∂z

∣∣∣∣∣∣∣
≤

3 ∗ (n− 1 mod 3) + 3∣∣∣∣∣δre[n−1
3

]

∣∣∣∣∣
2

+ 12 ∗
1

4

∣∣∣∣δre[n
3

]+2

∣∣∣∣ +
1.16∣∣∣∣δre[n
3

]+2

∣∣∣∣2

≤
1.3∣∣∣∣δre[n
3

]+2

∣∣∣∣2 . (2.220)

Now lets consider the other case. Estimates for Ḡn−1,j come from the inductive

assumption that

∣∣∣∣∣∣
∂2Ḡ−1

k,j
∂t∂z

∣∣∣∣∣∣∣∣∣∣∣∣
∂Ḡ−1
k,j
∂z

∣∣∣∣∣∣
≤ 3∗(k mod 3)+3∣∣∣∣∣∣δre[ k

3
]

∣∣∣∣∣∣
2 for k ≤ n− 1. We have

∣∣∣∣∣∣ ∂
2
(
fm̃+1,k2

◦Fm+1,k1
◦Ḡn−1,j

)−1

∂t∂z

∣∣∣∣∣∣∣∣∣∣∣∣ ∂
(
fm̃+1,k2

◦Fm+1,k1
◦Ḡn−1,j

)−1

∂z

∣∣∣∣∣∣

≤

∣∣∣∣∣ ∂
2Ḡ−1
n−1,j
∂t∂z

∣∣∣∣∣∣∣∣∣∣ ∂Ḡ
−1
n−1,j
∂z

∣∣∣∣∣
+

∣∣∣∣∣ ∂2Ḡn−1,j

∂x2

∣∣∣∣∣∣∣∣∣ ∂Ḡn−1,j
∂x

∣∣∣∣2 ·
∣∣∣∣∣ ∂
(
fm̃+1,k2

◦Fm+1,k1

)
∂t

∣∣∣∣∣∣∣∣∣∣ ∂
(
fm̃+1,k2

◦Fm+1,k1

)
∂x

∣∣∣∣∣
+

∣∣∣∣∣∣ ∂
2
(
fm̃+1,k2

◦Fm+1,k1

)−1

∂t∂z

∣∣∣∣∣∣∣∣∣∣∣∣ ∂
(
fm̃+1,k2

◦Fm+1,k1

)−1

∂z

∣∣∣∣∣∣
≤

3 ∗ (n− 1 mod 3) + 3∣∣∣∣∣δre[n−1
3

]

∣∣∣∣∣
2

+
2

13

∣∣∣∣∣δre[n−1
3

]

∣∣∣∣∣
∗

1

4

∣∣∣∣δre[n
3

]+2

∣∣∣∣ +
1.16∣∣∣∣δre[n
3

]+2

∣∣∣∣2

≤
1.3∣∣∣∣δre[n
3

]+2

∣∣∣∣2 (2.221)

From (2.220) and (2.221), we can conclude that∣∣∣∣∂2g−1
n,i

∂t∂z

∣∣∣∣∣∣∣∣∂g−1
n,i

∂z

∣∣∣∣ ≤
1.3∣∣∣δre

[n
3

]+2

∣∣∣2 (2.222)

Similar estimates can be derived for Gn,i.

Estimates for fn,i and Fn,i whose domains are in δren−1\δren .

fn,i = gn,i ◦ h where the domains of gn,i’s are in [yn−1(t), yn(t)].
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Fn,i = Gn,i ◦ h, where the domains of Gn,i’s are in [yn−1(t), yn(t)].

We use∣∣∣∂2h−1

∂t∂z

∣∣∣∣∣∣∂h−1

∂z

∣∣∣ =

∣∣∣∣ ∂2h
∂t∂x(t, h−1(t, z)) + ∂2h

∂x2 (t, h−1(t, z))
∂h
∂t

(t,h−1(t,z))
∂h
∂x

(t,h−1(t,z))

∣∣∣∣∣∣∂h
∂x(t, h−1(t, z))

∣∣ ≤ 1

t
+

2(1
4 −

1
4 |δ

re
n |

2)

t |δre
n |

2

(2.223)

for x outside δre
n .

∣∣∣∣∣ ∂
2f
−1
n,i

∂t∂z

∣∣∣∣∣∣∣∣∣∣ ∂f
−1
n,i
∂z

∣∣∣∣∣
≤

∣∣∣∣ ∂2h−1

∂t∂z

∣∣∣∣∣∣∣ ∂h−1

∂z

∣∣∣ +

∣∣∣∣ ∂2h
∂x2

∣∣∣∣∣∣∣ ∂h∂x ∣∣∣2 ·
∣∣∣∣ ∂gn,i∂t

∣∣∣∣∣∣∣∣ ∂gn,i∂x

∣∣∣∣ +

∣∣∣∣∣ ∂
2g
−1
n,i

∂t∂z

∣∣∣∣∣∣∣∣∣∣ ∂g
−1
n,i
∂z

∣∣∣∣∣

≤
1

t
+

2( 1
4
− 1

4

∣∣δren ∣∣2)

t
∣∣δren ∣∣2 +

2

t
∣∣δren ∣∣2 ·

∣∣∣∣ ∂gn,i∂t

∣∣∣∣∣∣∣∣ ∂gn,i∂x

∣∣∣∣ +

∣∣∣∣∣ ∂
2g
−1
n,i

∂t∂z

∣∣∣∣∣∣∣∣∣∣ ∂g
−1
n,i
∂z

∣∣∣∣∣
≤

1

t
+

2( 1
4
− 1

4

∣∣δren ∣∣2)

t
∣∣δren ∣∣2 +

2

t
∣∣δren ∣∣2 ∗ 0.003 +

1.3∣∣∣∣δre[n
3

]+2

∣∣∣∣2
<

1∣∣δren ∣∣2 (2.224)

Estimates for fn,i and Fn,i whose domains are outside δren−1.

fn,i = fn−1,l ◦ Fn−1,j where the domains of the maps Fn−1,j is outside δre
n−1.

Fn,i = Fn−1,l ◦ Fn−1,j where the domains of the maps Fn−1,j are outside δre
n−1.

∣∣∣∣∣ ∂
2F−1
n,i

∂t∂z

∣∣∣∣∣∣∣∣∣∣ ∂F
−1
n,i
∂z

∣∣∣∣∣
≤

∣∣∣∣∣ ∂
2F−1
n−1,j
∂t∂z

∣∣∣∣∣∣∣∣∣∣ ∂F
−1
n−1,j
∂z

∣∣∣∣∣
+

∣∣∣∣∣ ∂2Fn−1,j

∂x2

∣∣∣∣∣∣∣∣∣ ∂Fn−1,j
∂x

∣∣∣∣2 ·
∣∣∣∣ ∂Fn−1,l

∂t

∣∣∣∣∣∣∣∣ ∂Fn−1,l
∂x

∣∣∣∣ +

∣∣∣∣∣∣
∂2F−1

n−1,l
∂t∂z

∣∣∣∣∣∣∣∣∣∣∣∣
∂F−1
n−1,l
∂z

∣∣∣∣∣∣
≤

1.3∣∣∣δren−1

∣∣∣2 +
2

13
∣∣∣δren−1

∣∣∣ ·
1

4
∣∣∣δren−1

∣∣∣ +
1.3∣∣∣δren−1

∣∣∣2
≤

1∣∣δren ∣∣2 (2.225)
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2.6 Admissible domains and admissible parameter values

2.6.1 Step 6

2.6.1.1 Total measure of ∪T (6)

We can consider admissible intervals in the phase space either from the perspective

of a partition on I or from the perspective of a partition on ∆(5). Both notions are

interchangable by a diffeomorphism g(5) that maps ∆(5) onto I. On the parameter interval,

we say that an interval is admissible if t traversing through the interval corresponds to

w(t) traversing through an admissible interval in I.

When defining T (6), we always performed refinements by pulling back the seven

branch partition ξ0. Therefore it is natural to label monotone domains and refined mono-

tone domains by ∆a1···aj where 1 ≤ j ≤ 5 and a1, . . . , aj ∈ {1, 2, 3, 5, 6, 7}. The index j

does not exceed 5 since we do not need to perform more than 4 monotone refinements.

Within these monotone intervals, we define admissible intervals as the following:

Definition 8. A monotone domain ∆a1···aj in I is an admissible domain at step 6 if

1. subindices a1, . . . , aj do not equal to 5 or 6.

2.
|g−1

5 (∆a1···aj )|
H5(g−1

5 (∆a1···aj ))
< ϑ1 and

|g−1
5 (∆a1···aj−1 )|

H5(g−1
5 (∆a1···aj−1 ))

≥ ϑ1 (when j ≥ 2)

3. a1 . . . aj � 114 in lexicographical ordering.

We pullback admissible intervals in I by g−1
5 into ∆(5). Then they become admissible

intervals in ∆(5). Such definition comes directly from the algorithm for defining ∆(6).

∆(6)’s are exactly the admissible domains in ∆(5) at step 6.

We do not need to avoid domains with subindices a1 . . . aj−12 or a1 . . . aj−13 since
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when g5(w(t)) falls into such domains, the image of g5 ◦ f does not contain the δ−p0

represented by subindex a1 . . . aj−14.

Definition 9. A parameter interval T ′ in T (5) is an admissible parameter interval at step

6 if t ∈ T ′ corresponds to g5(w(t)) ∈ ∆′ for some admissible domain ∆′ in I.

By our definition of admissible intervals, all admissible intervals are disjoint except

at endpoints. We collect the maximal possible collection of admissible intervals ∪T (6).

Now we state the numerical results on the measure of admissible intervals and

admissible parameter intervals.

1. Under the algorithm at step 6, there are 135 admissible domains.

2. The total measure of admissible domains in I relative to the measure of I is bounded

below by 0.196180 and bounded above by 0.196195.

3. The total measure of admissible parameters in T (5) at step 6 is 9.1443 ∗ 10−7. If we

divide that by the measure of T (5) which is 4.64851 ∗ 10−6, we get

| ∪ T (6)|
|T (5)|

≥ 0.196714646. (2.226)

2.6.2 Measure of admissible domains for general step n > 6

Admissible intervals in ∆(n−1) are monotone domains ∆(n) in the parameter-induced

partition (defined in 2.4.2) of ∆(n−1). Non-admissible intervals δ(n) are the holes in the

parameter-induced partition. We denote the relative measure of non-admissible intervals

in each ∆(n−1) by Hn.

Hn(t) =

∣∣∣⋃i δ
(n)
i (t)

∣∣∣∣∣∆(n−1)(t)
∣∣ (2.227)

As described in the previous subsection, we can also consider admissible intervals from

the perspective of a partition on I on the x-axis. By estimating relative measures on the
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x-axis and considering distortions, we get the following bounds for Hn(t). We use some

techniques to lower the bounds of Hn(t) in order to get a better final estimate in (2.262).

Hn(t) <
0.773247352 ∗ (15/13) ∗ (1.29)n−6

1− 0.773247352 + 0.773247352 ∗ (15/13) ∗ (1.29)n−6
for 6 < n < 15

(2.228)

Hn(t) < 0.7265 for 1 < [
n

3
]− 3 < 5 (2.229)

Hn(t) < 0.1716 for [
n

3
]− 3 = 5 (2.230)

Hn(t) < 0.171126 for [
n

3
]− 3 = 6 (2.231)

Hn(t) < 0.171126 ∗ (0.57)[n
3

]−3−6 for 6 < [
n

3
]− 3 < 15 (2.232)

Hn(t) < 0.171126 ∗ (0.57)8 ∗ (0.73)[n
3

]−3−14 for [
n

3
]− 3 ≥ 15 (2.233)

2.6.2.1 Calculations for inequalities (2.229) through (2.233)

The algorithm for constructing the parameter-induced partition of ∆(n−1) requires

pullbacks of ξ̂[n
3

] = ξ[n
3

]−3 onto or into ∆(n−1) until all monotone domains ∆(n) satisfy

(2.39). Lemma 12, which makes use of the fact that ∆(n−1) is always a fixed-proportional-

to-size-
∣∣∆(n−1)

∣∣ distance away from yn−1, proves that (2.134) will imply (2.39). In practice,

we are not able to check actual measures after pullback onto each ∆(n−1), since ∆(n−1)’s

were not obtained explicitly in the previous step but only estimated for their total mea-

sures. Therefore we use estimates which take distortion into account. Let ∆ = [x1, x2]

be a given monotone domain in I and g be the monotone map that maps ∆(n−1) onto I,

depicted in the figure below.
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Figure 2.6: ∆ as the image of ∆(n) under mapping g

With reference to the figure, we define the following.

Ratio(∆, x) :=
x2 − x1

2 ∗
∣∣1

2 − x
∣∣ (2.234)

Dist(x) :=

(
1 +

2 ∗
∣∣1

2 − x
∣∣

min {|[q−1, x]|+ 0.17, |[x, q]|+ 0.17}

)2

(2.235)

MinDistRatio(∆) := min
x∈ smaller component of I\∆

Ratio(∆, x) ∗Dist(x)

1− Ratio(∆, x) + Ratio(∆, x) ∗Dist(x)

(2.236)

MinDistRatio is a function which gives an upper bound to
|g−1(∆)|
|∆(n−1)| when pulling back by

ξ and using A.2 and (A.3). We have

∣∣g−1(∆)
∣∣∣∣∆(n−1)
∣∣ < MinDistRatio(∆). (2.237)

The following algorithm determines a worst possible partition ξ′ on I, worst in the sense

that it has the maximum possible measure of non-admissible domains, using MinDistRatio(∆)

as an upper bound for
|g−1(∆)|
|∆(n−1)| .

1. A partition of I (starting with ξ) is considered on the x-axis. Consider each mono-

tone domain ∆ in the partition. Determine MinDistRatio(∆) for all monotone

domains in the partition.
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2. We check if MinDistRatio(∆) < 0.023. If so, then we do not partition the domain

further, if not, we partition the domain by ξ. We do this for all monotone domains

and go back to step one to repeat the procedure until all monotone domains satisfy

MinDistRatio(∆) < 0.023.

The resulting partition ξ′ on I is pulled back onto ∆(n−1) to get a worst possible parameter-

induced partition of ∆(n−1). The previous algorithm implies the following lemma 17 which

specifies the number of refinements needed to get the parameter induced partition.

Lemma 17. If we pullback the partition ξk, k ≥ 6, in the above algorithm, then the

partition ξ′k which we obtain will coincide with ξ′0 outside δ0 and outside preimages of δ0

in ξ′0. Inside δ0 and outside holes of ξ′′5 , the partition ξ′k will coincide with ξ′′5 , where ξ′′5

is the refinement of ξ5 inside δ0 by ξ0 using the above algorithm. Inside holes of ξ′′5 and

preimages of δ0 in ξ′0, domains do not need extra refinements.

Proof. We check numerically that the sizes of holes in ξ′0 or ξ′′5 |δ0 after the above pullbacks

are small enough to satisfy

MinDistRatio(δ) < 0.023. (2.238)

Monotone domains contained in holes of ξ′0 and ξ′′5 |δ0 will be smaller than the holes they

are contained in.

We get the following corollary.

Corollary 9. The maximum number of refinements needed to obtain ξ′k is determined by

the maximum amount of refinements needed to obtain ξ′0 and ξ′5.

Obtaining (2.229)

Using ξ0 as the partition that we pull back in the above algorithm, we obtain a
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partition ξ′0 of I. ξ′0 has 859 domains with central domain δ0. The relative measure

of holes in ξ′0 is less than 0.36 for all parameters in T 476777. When we consider

the distortion on I, which is the big number 15.6, and apply (A.3) directly, we

get that the relative measure of non-admissible domains in ∆(n−1) after step n for

7 ≤ n ≤ 23 is bounded above by 0.898. To improve this estimate, we use the method

of dividing into sections as used in 2.2.9 for domains outside δ0. The sections and

their respective ratios and distortions are listed in B.4. The first table in B.4 shows

that the distorted relative measure of holes in I\δ0 is less than 0.5 for partition ξ′0.

µholes(g
−1(ξ′0|I\δ0)) < 0.5 =: b (2.239)

Using A.2 and A.3, we get

∣∣g−1(δ0)
∣∣∣∣∆(n−1)
∣∣ ≤ 0.4524 =: a (2.240)

Using (A.9), we get

Hn(t) ≤
∣∣g−1(δ0)

∣∣∣∣∆(n−1)
∣∣ +

∣∣g−1(I\δ0)
∣∣∣∣∆(n−1)
∣∣ ∗ µholes(g

−1(ξ′0|I\δ0)) ≤ a+ (1− a) ∗ b (2.241)

for 7 ≤ n ≤ 23. Combining (2.240) and (2.241), we get (2.229).

Obtaining (2.230)

For steps n where [n3 ] − 3 = 5, we pullback with ξ5 in the algorithm to obtain ξ′5.

ξ′5 has 13761 domains. The union of domains 4038 through 9214 is δ0. Sections

and their respective ratios and distortions are listed in the second table in B.4. The

second table in B.4 shows that the distorted relative measure of holes outside δ0 is

less than 0.1,

µholes(g
−1(ξ′5|I\δ0)) < 0.1, (2.242)
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and the distorted relative measure of holes inside δ0 is less than 0.25,

µholes(g
−1(ξ′5|δ0)) < 0.25. (2.243)

By (A.10), we get

Hn(t) < a ∗ 0.25 + (1− a) ∗ 0.1 < 0.16786 (2.244)

for 24 ≤ n ≤ 26. Therefore we have (2.230).

Obtaining (2.231)

For steps n where [n3 ] − 3 = 6, we pullback ξ6. Since ξ6 changes with parameters,

we do not obtain each partition ξ′6 as we did for the earlier steps, it would involve

consideration of several hundred cases. Instead, we take ξ′0|I\δ0 and estimate the

relative measure of holes in I\δ0 after filling-in each preimage of δ0 by ξ6|δ0 .

µholes(ξ6|δ0) ≤ |five holes|
|δ0|

+
|δ5|
|δ0|
∗
(

1

3
+

2

3
∗ 0.29

)
< 0.168 =: f (2.245)

where bounds for
|five holes|

|δ0| and |δ5||δ0| are obtained numerically.

µholes(F−1(ξ6|δ0)) <
f ∗Dδ0

1− f + f ∗Dδ0

< 0.209 =: f ′ (2.246)

where F denotes the maps from δ−p0 ’s in I\δ0 onto δ0. Dδ0 is the distortion on δ0

when image extension is Ĩ.

µholes(g
−1(ξ′6|I\δ0)) ≤ µholes(ξ

′
0|I\δ0) ∗max

F
µholes

(
F−1 (ξ6|δ0)

)
≤ b ∗ f ′ (2.247)

µholes(ξ
′
6|δ0) ≤ |five holes|+ |δ5|

|δ0|
+ µholes(ξ

′′
5 ) ∗ µholes(F−1(ξ6|δ0))

≤ 0.178 + 0.129 ∗ f ′

< 0.205 =: e (2.248)
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µholes(g
−1(ξ′6|δ0)) ≤ e ∗Dδ0

1− e+ e ∗Dδ0

< 0.252 =: e′ (2.249)

Combining (2.247), (2.249) and (A.10), we get

Hn(t) < a ∗ e′ + (1− a) ∗ b ∗ f ′ < 0.171126 (2.250)

which gives (2.231).

Obtaining (2.232)

For steps n where 6 < [n3 ] − 3 ≤ 14, we have µholes(ξ[n
3

]−3) ≤ 0.57 ∗ µholes(ξ[n
3

]−3−1)

from (2.140). By lemma 17, ξ′k+1 is what we get after filling-in of holes in ξ′k. Since

the way of filling-in ξ′k is decided by the way of filling-in in ξk, the relative measure

of holes after filling-in is the same as in (2.140).

µholes(ξ
′
k+1) ≤ µholes(ξ

′
k) ∗ (0.57) (2.251)

for 7 ≤ k ≤ 14. By (2.251), we get (2.232).

Obtaining (2.233)

For steps n where 15 ≤ [n3 ], we have µholes(ξ[n
3

]−3) ≤ 0.73∗µholes(ξ[n
3

]−3−1). With the

same arguments as for (2.251), we get

µholes(ξ
′
k+1) ≤ µholes(ξ

′
k) ∗ (0.73), (2.252)

and hence (2.233).

2.6.3 Measure of admissible parameters

For each admissible domain ∆(n) in ∆(n−1), there is a corresponding admissible

parameter interval T (n). Similarly, we have non-admissible parameter intervals T (δ(n))’s
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that correspond to non-admissible domains δ(n) in ∆(n−1). We denote the relative measure

of admissible parameter intervals by

Mn :=
|
⋃
T (n)⊂T (n−1) T (n)|
|T (n−1)|

. (2.253)

and relative measure of non-admissible parameter intervals by

Mc
n :=

|T (n−1)\
⋃
T (n)⊂T (n−1) T (n)|
|T (n−1)|

. (2.254)

The following lemma follows from Gronwall’s inequality and the fact that the central

domain is larger for greater parameter values.

Lemma 18. Let δ−pm be mapped by G onto the rescaled central domain δrem. Suppose∣∣∣∂2G−1

∂t∂z (t, z)
∣∣∣∣∣∣∂G−1

∂z (t, z)
∣∣∣ < C for all z ∈ δrem(t) for all t ∈ T . (2.255)

Then ∣∣δ−pm (t)
∣∣ ≤ eC|T | ∣∣δ−pm (ttop)

∣∣ for all t ∈ T (2.256)

where ttop is the top value of T .

Similarly

Lemma 19. Let ∆ be mapped by g onto I. Suppose∣∣∣∂2g−1

∂t∂z (t, z)
∣∣∣∣∣∣∂g−1

∂z (t, z)
∣∣∣ < C for all z ∈ I(t) for all t ∈ T . (2.257)

Then

|∆(t)| ≥ e−C|T | |∆(tbottom)| for all t ∈ T (2.258)

where tbottom is the bottom value of T .
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Theorem 2. Let Hn(t) be defined as in (2.227). Let Mc
n be the relative measure of

non-admissible parameters in T (n−1). Then

Mc
n ≤ Hn(t

(n−1)
top ) ∗ 1 + 4ε0

1− 4ε0
∗ exp

 max
t∈T (n−1)

∣∣∣∣∂2G−1
(n),i

∂t∂z

∣∣∣∣∣∣∣∣∂G−1
(n),i

∂z

∣∣∣∣ ·
∣∣∣T (n−1)

∣∣∣


≤ Hn(t
(n−1)
top ) ∗ 1 + 4ε0

1− 4ε0
∗ exp

 8∣∣∣δre[n
3

]−3

∣∣∣2 ·
1

1
4 − ε0

t

4

∣∣δren−2

∣∣2 ϑ1


≤ Hn(t

(n−1)
top ) ∗ 1 + 4ε0

1− 4ε0
∗ exp

(
8

9n−[n
3

]+1
· ϑ1

1
4 − ε0

)
(2.259)

for n ≥ 24.

Before proving this, we incorporate computer estimates. Our initial parameter in-

terval T0 was described in the first five steps. Then at steps 6 through 23 the relative

measure of admissible parameters follows from the last two columns of the table in B.1.5

(we use the better estimate). By multiplying these numbers we get at step 23 the measure

of admissible parameters is greater than

23∏
n=6

Mn > 1.00614 ∗ 10−15 =: X (2.260)

Starting at step 24, we delete no more than

Hn(t
(n−1)
top ) ∗ 1 + 4ε0

1− 4ε0
∗ exp

(
8

9n−[n
3

]+1
· ϑ1

1
4 − ε0

)
(2.261)

at each step n. Then we get that the relative measure of admissible parameters is greater

than

X
∞∏

n=24

Mn > X
∞∏

n=24

(
1−Hn(t

(n−1)
top ) ∗ 1 + 4ε0

1− 4ε0
∗ exp

(
8

9n−[n
3

]+1
· ϑ1

1
4 − ε0

))
.

We combine that with bounds for Hn in (2.229) through (2.233) and get the following

corollary.
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Corollary 10. Let Mn be the relative measure of admissible parameters at step n. Then

∞∏
n=6

Mn > 1.58382 ∗ 10−16. (2.262)

Proof of theorem 2. From 2.5.3.2, we have that velocities of endpoints of δ(n)’s are less

than ε0 := 0.003. By (1.8), we get

4

1 + 4ε0
|δ(n)(t)| < |T (δ(n))| < 4

1− 4ε0
|δ(n)(t)| for all t ∈ T (δ(n)) (2.263)

and

4

1 + 4ε0
|∆(n−1)(t)| < |T (n−1)| < 4

1− 4ε0
|∆(n−1)(t)| for all t ∈ T (n−1) (2.264)

Let t
(n−1)
top be the top value of T (n−1). From lemma 19, we get that for any non-

admissible domain δ(n) ⊂ ∆(n−1) and t ∈ T (δ(n)), we have

∣∣∣δ(n)(t)
∣∣∣ ≤ ∣∣∣δ(n)(t

(n−1)
top )

∣∣∣ ∗ exp

 max
t∈T (n−1)

max
z∈G(n),i(δ

(n)(t))

∣∣∣∣∂2G−1
(n),i

∂t∂z

∣∣∣∣∣∣∣∣∂G−1
(n),i

∂z

∣∣∣∣
 · ∣∣∣T (n−1)

∣∣∣
 . (2.265)

From (2.263), (2.264), and (2.265), we get∣∣∣⋃i T (δ
(n)
i )
∣∣∣∣∣T (n−1)
∣∣ =

∑
i

∣∣∣T (δ
(n)
i )
∣∣∣∣∣T (n−1)
∣∣

<
1
4 + ε0
1
4 − ε0

∗
∑
i

∣∣∣δ(n)
i (ti)

∣∣∣∣∣∣∆(n−1)(t
(n−1)
top )

∣∣∣ ti ∈ T (δ
(n)
i )

<
1
4 + ε0
1
4 − ε0

∗ exp


 max
t∈T (n−1)

max
z∈G(n),i(δ

(n)(t))

∣∣∣∣∂2G−1
(n),i

∂t∂z

∣∣∣∣∣∣∣∣∂G−1
(n),i

∂z

∣∣∣∣
 · ∣∣∣T (n−1)

∣∣∣
 ∗∑

i

∣∣∣δ(n)
i (t

(n−1)
top )

∣∣∣∣∣∣∆(n−1)(t
(n−1)
top )

∣∣∣
=

1
4 + ε0
1
4 − ε0

∗ exp


 max
t∈T (n−1)

max
z∈G(n),i(δ

(n)(t))

∣∣∣∣∂2G−1
(n),i

∂t∂z

∣∣∣∣∣∣∣∣∂G−1
(n),i

∂z

∣∣∣∣
 · ∣∣∣T (n−1)

∣∣∣
 ∗

∣∣∣⋃i δ
(n)
i (t

(n−1)
top )

∣∣∣∣∣∣∆(n−1)(t
(n−1)
top )

∣∣∣ .
Using estimates from (2.155) and (2.179), we get (2.259).

That finishes the proof of the main theorem except for the summability condition.
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2.7 Summability condition

According to section 1.2.5, we need to show the summablility condition (1.4) for the

power maps of ft constructed through the given algorithm. Then we can conclude that ft

has an a.c.i.m. given by (1.5) for t ∈
⋂
n

(
∪T (n)

)
. Let us define the following notations:

• Nx(k): the maximum number of iterates of branches in ξk.

• ∆N̄y(k): the maximum increase in the number of iterates of branches defined on

the y-axis above yk−1, at step k.

• ∆N̄x(k): the maximum increase in the number of iterates of branches defined on

the x-axis inside δre
k−1, at step k.

• ∆ ¯̄Nx(k): the maximum increase in the number of iterates of branches defined on

the x-axis outside δre
k−1, at step k.

The maximum number of iterates for initial partitions are calculated directly to be

Ny(0) ≤ 4

Nx(0) ≤ 5

Ny(5) ≤ 18

Nx(5) ≤ 19

(2.266)

For general n, we have the following lemma.

Lemma 20. Given 0 < ε1 < 1 there is a constant Nε1 such that

Nx(n) ≤ Nε1 ∗ (1 + ε1)n (2.267)

for all n ≥ 6.
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Proof. Fix ε1. Assume the inductive assumption that for k ≤ K − 1, we have

Nx(k) ≤ Nε1 ∗ (1 + ε1)k, (2.268)

where Nε1 is to be chosen later. We will show (2.268) for k = K.

By construction, we pullback elements of partition ξ[ k
3

] into ζ(k−1)(∆(k−1)) at step

k. According to 2.4.4, the worst possible cases of maps g’s on domains above yk−1 are

g = f[ k
3

]+2,j ◦ f0,1 ◦ f0,1 ◦ f[ k
3

],is
◦ f0,is−1 ◦ · · · ◦ f0,i1 ◦ gk−1,i and

g = f[ k
3

]+2,j ◦ f0,1 ◦ f0,1 ◦ f[ k
3

],i2
◦ f5,i1 ◦ gk−1,i.

Therefore, the change in number of iterates above yk−1 is given by the maximum possible

sum of the number of iterates of the maps which we compose with.

∆N̄y(k) < Nx

([
k

3

]
+ 2

)
+ 2 ∗ 2 +Nx

([
k

3

])
+ max {4 ∗Nx (0) , Nx (5)}

< Nx

([
k

3

]
+ 2

)
+ 4 +Nx

([
k

3

])
+ 20. (2.269)

for any step k. By (2.268) and (2.269) we get,

∆N̄y(K) < Nε1 ∗ (1 + ε1)[
K
3 ]+2 + 4 +Nε1 ∗ (1 + ε1)[

K
3 ] + 20

≤ Nε1 ∗

(
1

(1 + ε1)
2(K−1)

3
−[K

3
]−2

+
1

(1 + ε1)
2(K−1)

3
−[K

3
]

+
24

(1 + ε1)
2(K−1)

3

)
∗ (1 + ε1)

2(K−1)
3

(2.270)

We choose K0 sufficiently large so that(
1

(1 + ε1)
2(K0−1)

3
−[

K0
3

]−2
+

1

(1 + ε1)
2(K0−1)

3
−[

K0
3

]
+

24

(1 + ε1)
2(K0−1)

3

)
< ε1 (2.271)

Then for K ≥ K0

∆N̄y(K) < Nε1 ∗ (1 + ε1)
2(K−1)

3 . (2.272)

Since the parabolic pullback of ζ(k)(∆(k)) onto I includes all partitions of and in fact more

partitions than ξk, we have

∆N̄x(K) ≤ ∆N̄y(K) < Nε1 ∗ (1 + ε1)
2(K−1)

3 . (2.273)
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Outside δre
K−1, the increase of iterates comes from the 1-step or 5-step filling-in on

each hole. When we fill-in a hole δ−pi that is the preimage of δre
i , i = 0 or 5 ≤ i ≤ K − 1 ,

the increase of the number of iterates will be no more than ∆N̄x(i). Therefore, the worst

cases for the increase in the number of iterates would be when we fill-in holes that are

preimages of δre
K−1. This gives

∆ ¯̄Nx(K) ≤ ∆N̄x(K − 1) < Nε1 ∗ (1 + ε1)
2(K−2)

3 . (2.274)

Since max{∆ ¯̄Nx(K),∆N̄x(K)} will provided an upper bound for the maximum increase

of iterates for any branch created on the x-axis in step K, we have from (2.272), (2.273)

and (2.271) that

Nx(K) ≤ Nx(K − 1) + max{∆ ¯̄Nx(K),∆N̄x(K)}

≤ Nε1 ∗ (1 + ε1)K−1 +Nε1 ∗ (1 + ε1)
2(K−1)

3

≤ Nε1 ∗ (1 + ε1)K−1 ∗

(
1 +

1

(1 + ε1)K−1− 2(K−1)
3

)

≤ Nε1 ∗ (1 + ε1)K (2.275)

for K ≥ K0. If we set Nε1 := Nx(K0), then (2.268) will hold for all K.

Since monotone branches in δre
k−1\δre

k of ξk will not change after step k, monotone

branches of the limiting power map with power greater than Nx(k) has domain inside δre
k .

Combining this with (2.150), we get

∑
i

ni |Ii| < Ny(0) ∗ |I|+
∞∑
k=5

Ny(k) ∗ µholes(ξk) (2.276)

≤ Ny(0) ∗ |I|+
∞∑
k=5

(1 + ε1)k ∗ 0.000210601 ∗ (0.73)k−14 (2.277)

As ε1 can be chosen to be arbitrarily small, we choose

(1 + ε1) ∗ 0.73 < 1.
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Then
∑

i ni |Ii| converges.

2.7.0.1 Decay of correlations

As a consequence of lemma 20, we have decay of correlations at polynomial rate.

Lemma 21. For any p > 0, there is some Kp, such that for any K ≥ Kp, the measure

of monotone domains in the power maps constructed by our algorithm with the number

of iterates of the original map greater than K is less than C 1
Kp for some fixed constant

C = C(p).

Proof. From lemma 20, we have for arbitrarily small ε an Nε such that the maximum

number of iterates of ft of branches in ξn is less than Nε ∗ (1 + ε)n for all n. Choose

εp so that 0.73 ∗ (εp + 1)p < 1. Then choose np so that N εp
2
∗ (1 +

εp
2 )np < (1 + εp)

np .

Let Kp = N εp
2
∗ (1 +

εp
2 )np . For any K ≥ Kp, we have one of K = [N ε

2
(1 +

εp
2 )n] + 1,

K = [N ε
2
(1 +

εp
2 )n] + 2, · · · , or K = [N εp

2
(1 +

εp
2 )n+1], for some n > np, which means

N ε
2
(1 +

εp
2 )n ≤ K ≤ N ε

2
(1 +

εp
2 )n+1 for some n > np. The measure of domains with the

maximum number of iterates greater than K will be less than

C1 ∗ (0.73)n

<C1 ∗
1

(1 + εp)np

<C1 ∗

(
1

N εp
2
∗ (1 +

εp
2 )n

)p

=C1 ∗
(
N εp

2
∗ (1 +

εp
2

)
)p
∗

(
1

N εp
2
∗ (1 +

εp
2 )n+1

)p

≤
C1 ∗

(
N εp

2
(1 +

εp
2 )
)p

Kp
, (2.278)

where C1 = 0.000210601. Letting C = C1 ∗
(
N εp

2
(1 +

εp
2 )
)p

proves the claim.
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By the theorem of L-S Young [14], lemma 21 implies polynomial decay of correla-

tions. As mentioned in [8], there exists parameter values in construction such as the one

explained here that the decay of correlations is slower than exponential decay.
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Appendix A

A.1 Distortion estimates

Let χ be a diffeomorphism that maps the interval Y onto the interval X. Let

Y = Y1 ∪ Y2 be a partition of Y , X1 = χ(Y1), and X2 = χ(Y2). Suppose |X1|
|X2| = α and

|Y1|
|Y2| = kα. If there is some constant D such that Dχ(y1)

Dχ(y2) ≤ D for all y1, y2 ∈ Y , then

1
D ≤ k ≤ D, which gives

|Y1|
|Y |

=
kα

1 + kα
≤ Dα

1 +Dα
. (A.1)

and

|Y1|
|Y |

=
kα

1 + kα
≥

1
Dα

1 + 1
Dα

. (A.2)

On the other hand, if |X1|
|X| = γ, then |X1|

|X2| = γ
1−γ . From (A.1) we obtain

|Y1|
|Y |
≤

D( γ
1−γ )

1 +D( γ
1−γ )

=
Dγ

(1− γ) +Dγ
(A.3)

and

|Y1|
|Y |
≥

1
D ( γ

1−γ )

1 + 1
D ( γ

1−γ )
=

γ

D(1− γ) + γ
. (A.4)

A.2 Minimizing distorted ratios I

We frequently use the following technique for obtaining the best (smallest) ratio

when taking into account distortion bounds. Suppose χ is a diffeomorphism that maps

the interval Y onto the interval X. Moreover χ can be extended to a diffeomorphism

χ̃ from Ỹ ⊃ Y onto X̃ ⊃ X. If X̃ is a τ -neighborhood of X, then from (1.3) , we get

Dχ(y1)
Dχ(y2) ≤ (1 + 1

τ )2 =: D. Suppose there is a domain δX ⊂ X such that |δX ||X| = γ, then to
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Figure A.1: Minimizing distorted ratio by adjusting the intermediate domain

estimate |χ
−1(δx)|
|Y | , we can use (A.3) and get the upper bound γ·D

1−γ+γ·D . Or, we can pick an

intermediate domain
ˆ̂
X = [z1, z2] such that δX ⊂ ˆ̂

X ⊂ X. This will give a new extension

constant

τ ′ =
min{|left component of X̃\ ˆ̂

X|, |right component of X̃\ ˆ̂
X|}

| ˆ̂X|
. (A.5)

The new distortion bound given by (1.3) is

D′ = (1 +
1

τ ′
)2 =

(
1 +

| ˆ̂X|

min{|left component of X̃\ ˆ̂
X|, |right component of X̃\ ˆ̂

X|}

)2

(A.6)

By (A.3), we get

|χ−1(δx)|
|Y |

<

|δX |
| ˆ̂X|
· D′

1− |δX |
| ˆ̂X|

+ |δX |
| ˆ̂X|
· D′

. (A.7)

We can adjust
ˆ̂
X so that

|δX |

| ˆ̂X|
·D′

1− |δX |
| ˆ̂X|

+
|δX |

| ˆ̂X|
·D′

is minimized.
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Figure A.2: Minimizing distorted ratio by repeatedly choosing intermediate domains

A.3 Minimizing distorted ratios II

On the basis of A.2, we can improve the estimate for distorted ratios even more.

Define DX over X̃ as the upper bound of the distortion on X when extension is X̃ given by

the Koebe distortion principle. Then

distorted ratio of
|∆|
|I|

=

∣∣F−1(∆)
∣∣

|F−1(I)|
≤ |X|
|I|
∗ DI over Ĩ ∗

|∆|
|X|
∗ DX over Ĩ ≤

|∆|
|I|
∗ DI over Ĩ

(A.8)

Therefore defining intermediate intervals gives better bounds.

A.4 Simple arithmetic

This is very simple arithmetic, but we use it many times so we write it down here

to simplify the calculations in the text. Let 0 ≤ A ≤ A′ < 1 and 0 ≤ χ ≤ χ′ < 1, then

A+ (1−A)χ =A (1− χ) + χ

≤A′ (1− χ) + χ

=A′ + (1−A′)χ

<A′ + (1−A′)χ′ (A.9)
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Let 0 ≤ A ≤ A′ < 1, 0 ≤ χ ≤ χ′ < 1, 0 ≤ ψ ≤ ψ′ < 1 and χ′ < ψ′, then

Aψ + (1−A)χ =Aψ′ + (1−A)χ′

=A
(
ψ′ − χ′

)
+ χ′

≤A′
(
ψ′ − χ′

)
+ χ′

<A′ψ′ + (1−A′)χ′ (A.10)

163



Appendix B

All estimates here are obtained using Mathematica. Most estimates are obtained

for parameter values approximately at the two endpoints of T0 = [tbottom, ttop]. This is

sufficient because from graphing these values as functions of t, we observe that the graphs

are monotone.

B.1 Estimates for ξ0 and ξ5

Since ξ0 and ξ5 are symmetric partitions, we only provide estimates for the first half

of the domains.

B.1.1 Relative sizes of domains

Table B.1: Relative sizes of domains in ξ5

t tbottom ttop

|∆1|
|I| 0.2427319087 0.2427306095

|∆2|
|I| 0.1309998911 0.1309975736

|∆3|
|I| 0.07065822374 0.07065293974

|∆4|
|I| 0.01004307132 0.01004097488

|∆5|
|I| 0.005404021765 0.005402410542

|∆6|
|I| 0.002998582113 0.002997323711∣∣∣δ−1
0

∣∣∣
|I| 0.004953891000 0.004952576925

|∆7|
|I| 0.003382907318 0.003380821552

|∆8|
|I| 0.007167250156 0.007161326857

|∆9|
|I| 0.004271401491 0.004265621070∣∣∣∆(10)

∣∣∣
|I| 0.002515416726 0.002510447359∣∣∣∆(11)

∣∣∣
|I| 0.001493126335 0.001489215309∣∣∣δ−1
0

∣∣∣
|I| 0.002695390798 0.002686328996∣∣∣∆(12)

∣∣∣
|I| 0.002105055444 0.002093411296∣∣∣∆(13)

∣∣∣
|I| 0.001201827266 0.001192314156∣∣∣∆(14)

∣∣∣
|I| 0.0006818043795 0.0006749125945
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∣∣∣∆(15)

∣∣∣
|I| 0.0003898465847 0.0003852279662∣∣∣δ−1
0

∣∣∣
|I| 0.0006620850197 0.0006529792462∣∣∣∆(16)

∣∣∣
|I| 0.0004642227615 0.0004563669112∣∣∣∆(17)

∣∣∣
|I| 0.001006865975 0.0009841148679∣∣∣∆(18)

∣∣∣
|I| 0.0006018800761 0.0005824543224∣∣∣∆(19)

∣∣∣
|I| 0.0003466195253 0.0003323382542∣∣∣∆(20)

∣∣∣
|I| 0.0001999401332 0.0001903082403∣∣∣δ−1
0

∣∣∣
|I| 0.0003429122408 0.0003234190773∣∣∣∆(21)

∣∣∣
|I| 0.0002434628705 0.0002265727424∣∣∣∆(22)

∣∣∣
|I| 0.0005405182143 0.0004898067834∣∣∣∆(23)

∣∣∣
|I| 0.0003363503340 0.0002905431268∣∣∣∆(24)

∣∣∣
|I| 0.0002015655023 0.0001659570049∣∣∣∆(25)

∣∣∣
|I| 0.0001202404555 0.00009508442368∣∣∣δ−1
0

∣∣∣
|I| 0.0002164648905 0.0001616696455∣∣∣∆(26)

∣∣∣
|I| 0.0001660506337 0.0001133122945∣∣∣∆(27)

∣∣∣
|I| 0.0004734182300 0.0002450917575

|δ5|
|I| 0.0007675737511 0.002151890379

Figure B.1.1 graphs the relative measure of holes in ξ5 restricted to I\δ5 as a func-

tion of t.

Figure B.1: Relative measure of holes in η0 as a function of parameter t
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B.1.2 Derivatives

By property of functions with negative Schwarzian derivative, the minimum of the

absolute value of the derivative occurs on the endpoints.

Table B.2: Minimum derivatives of monotone branches in ξ5

t tbottom ttop

minx∈∆1

∣∣∣∣ ∂f5,1∂x

∣∣∣∣ 3.550344958 3.550374917

minx∈∆2

∣∣∣∣ ∂f5,2∂x

∣∣∣∣ 6.723459232 6.723682199

minx∈∆3

∣∣∣∣ ∂f5,3∂x

∣∣∣∣ 11.72819466 11.73013718

minx∈∆4

∣∣∣∣ ∂f5,4∂x

∣∣∣∣ 86.87310503 86.89533073

minx∈∆5

∣∣∣∣ ∂f5,5∂x

∣∣∣∣ 160.5497500 160.6061824

minx∈∆6

∣∣∣∣ ∂f5,6∂x

∣∣∣∣ 272.1965563 272.3434811

first hole

minx∈∆7

∣∣∣∣ ∂f5,7∂x

∣∣∣∣ 253.2091857 253.3735781

minx∈∆8

∣∣∣∣ ∂f5,8∂x

∣∣∣∣ 115.0400218 115.1652419

minx∈∆9

∣∣∣∣ ∂f5,9∂x

∣∣∣∣ 193.6785762 194.0053214

minx∈∆(10)

∣∣∣∣ ∂f5,(10)
∂x

∣∣∣∣ 331.2450544 332.0156282

minx∈∆(11)

∣∣∣∣ ∂f5,(11)
∂x

∣∣∣∣ 531.1810758 532.7770510

second hole

minx∈∆(12)

∣∣∣∣ ∂f5,(12)
∂x

∣∣∣∣ 402.7311018 405.4987128

minx∈∆(13)

∣∣∣∣ ∂f5,(13)
∂x

∣∣∣∣ 701.9768611 708.4823797

minx∈∆(14)

∣∣∣∣ ∂f5,(14)
∂x

∣∣∣∣ 1248.211624 1262.263100

minx∈∆(15)

∣∣∣∣ ∂f5,(15)
∂x

∣∣∣∣ 2071.551280 2098.096375

third hole

minx∈∆(16)

∣∣∣∣ ∂f5,(16)
∂x

∣∣∣∣ 1863.962889 1893.613157

minx∈∆(17)

∣∣∣∣ ∂f5,(17)
∂x

∣∣∣∣ 812.6257973 835.8831673

minx∈∆(18)

∣∣∣∣ ∂f5,(18)
∂x

∣∣∣∣ 1388.217406 1442.191933

minx∈∆(19)

∣∣∣∣ ∂f5,(19)
∂x

∣∣∣∣ 2441.862586 2557.873810

minx∈∆(20)

∣∣∣∣ ∂f5,(20)
∂x

∣∣∣∣ 4025.403248 4242.651494

fourth hole

minx∈∆(21)

∣∣∣∣ ∂f5,(21)
∂x

∣∣∣∣ 3574.163547 3817.617767

minx∈∆(22)

∣∣∣∣ ∂f5,(22)
∂x

∣∣∣∣ 1481.907922 1676.960973

minx∈∆(23)

∣∣∣∣ ∂f5,(23)
∂x

∣∣∣∣ 2429.255414 2889.129726

minx∈∆(24)

∣∣∣∣ ∂f5,(24)
∂x

∣∣∣∣ 4117.551441 5120.475467

minx∈∆(25)

∣∣∣∣ ∂f5,(25)
∂x

∣∣∣∣ 6593.336572 8489.935758

fifth hole

minx∈∆(26)

∣∣∣∣ ∂f5,(26)
∂x

∣∣∣∣ 5185.817708 7634.923726

minx∈∆(27)

∣∣∣∣ ∂f5,(27)
∂x

∣∣∣∣ 1194.970643 3350.229588

δ5
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Table B.3: Minimum derivatives of maps on holes in ξ5

t tbottom ttop

minx∈first hole

∣∣∣∣ ∂F5,1
∂x

∣∣∣∣ 21.5 21.5

minx∈second hole

∣∣∣∣ ∂F5,2
∂x

∣∣∣∣ 37 37

minx∈third hole

∣∣∣∣ ∂F5,3
∂x

∣∣∣∣ 159 160

minx∈fourth hole

∣∣∣∣ ∂F5,4
∂x

∣∣∣∣ 300 325

minx∈fifth hole

∣∣∣∣ ∂F5,5
∂x

∣∣∣∣ 460 650

B.1.3 Velocities

This is for t ≈ tbottom

Table B.4: Velocities compared with ratio of derivatives of endpoints of monotone domains

for the bottom parameter

∂f
∂t
∂f
∂x

dx(t)
dt

∆ left endpoint of ∆ right endpoint of ∆ left endpoint of ∆ right endpoint of ∆

∆1 0.04691305788 0.2098046492 -0.06265274890 -0.1921578221

∆2 0.1833134070 0.4703299944 -0.1921582611 -0.4610116203

∆3 0.4563422466 1.107998824 -0.4610125742 -1.102657049

∆4 1.101991496 1.360261390 -1.102663703 -1.359539846

∆5 1.359181607 1.557697813 -1.359542576 -1.557307073

∆6 1.557115130 1.712355790 -1.557310194 -1.712124748

first hole

∆7 1.873180686 2.129928542 -1.873426996 -2.129696013

∆8 2.129229951 2.859278703 -2.129691727 -2.858733312

∆9 2.858467109 3.571474464 -2.858739036 -3.571149860

∆(10) 3.570996072 4.184574665 -3.571156987 -4.184384000

∆(11) 4.184298808 4.668154514 -4.184392301 -4.668033953

second hole

∆(12) 5.789089567 7.233381363 -5.789230595 -7.233223494

∆(13) 7.233162025 8.417863700 -7.233237643 -8.417771406

∆(14) 8.417745193 9.278989877 -8.417787505 -9.278935629

∆(15) 9.278929767 9.859145529 -9.278952827 -9.859107579

third hole

∆(16) 11.00251042 11.99280134 -11.00253953 -11.99276388

∆(17) 11.99267607 14.88960255 -11.99273627 -14.88951968

∆(18) 14.88951209 17.39938947 -14.88954706 -17.39933601
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∆(19) 17.39934704 19.27031749 -17.39936675 -19.27027655

∆(20) 19.27030030 20.37224043 -19.27031292 -20.37293944

fourth hole

∆(21) 23.16206023 25.47200468 -23.16207435 -25.47191555

∆(22) 25.47165138 32.70658570 -25.47168019 -32.70652074

∆(23) 32.70656075 39.72259010 -32.70658044 -39.72242540

∆(24) 39.72258387 45.56999831 -39.72262588 -45.57001621

∆(25) 45.57001340 49.95686962 -45.57000665 -49.95689000

fifth hole

∆(26) 60.41266814 71.93685307 -60.41265954 -71.93687061

∆(27) 71.93685973 155.5888650 -71.93692639 -155.5889281

δ5

Table B.5: Velocities compared with ratio of derivatives of endpoints of holes for the

bottom parameter

∂F
∂t
∂F
∂x

δ−1
0 left endpoint of δ−1

0 right endpoint of δ−1
0

first hole 1.65 2

second hole 4.5 5.8

third hole 9.8 11

fourth hole 20.1 23.2

fifth hole 50 61

This is for t ≈ ttop

Table B.6: Velocities compared with ratio of derivatives of endpoints of monotone domains

for the top parameter

∂f
∂t
∂f
∂x

dx(t)
dt

∆ left endpoint of ∆ right endpoint of ∆ left endpoint of ∆ right endpoint of ∆

∆1 0.04691279046 0.2098029741 -0.06265246566 -0.1921562559

∆2 0.1833113595 0.4703147173 -0.1921562559 -0.4609965396

∆3 0.4563260782 1.107817863 -0.4609965396 -1.102476709

∆4 1.101804164 1.359917399 -1.102476709 -1.359196388

∆5 1.358835003 1.557156619 -1.359196388 -1.556766520

∆6 1.556570993 1.711441025 -1.556766520 -1.711210975

first hole

∆7 1.871981055 2.128576243 -1.872228328 -2.128344475

∆8 2.127882066 2.856207363 -2.128344475 -2.855663340
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∆9 2.855390665 3.565532308 -2.855663340 -3.565209366

∆(10) 3.565047501 4.174979348 -3.565209366 -4.174790645

∆(11) 4.174696063 4.654317395 -4.174790645 -4.654199799

second hole

∆(12) 5.763104191 7.184623098 -5.763247721 -7.184468590

∆(13) 7.184391148 8.341520636 -7.184468590 -8.341432204

∆(14) 8.341387880 9.176939224 -8.341432204 -9.176889589

∆(15) 9.176864711 9.735422487 -9.176889589 -9.735392626

third hole

∆(16) 10.83272057 11.77543960 -10.83275366 -11.77540806

∆(17) 11.77534514 14.48049458 -11.77540806 -14.48041962

∆(18) 14.48038205 16.75635452 -14.48041962 -16.75631108

∆(19) 16.75628930 18.40687523 -16.75631108 -18.40685074

∆(20) 18.40683846 19.50827507 -18.40685074 -19.50826030

fourth hole

∆(21) 21.70555335 23.57312764 -21.70556976 -23.57311197

∆(22) 23.57308070 28.95228316 -23.57311197 -28.95224580

∆(23) 28.95222707 33.48332006 -28.95224580 -33.48329838

∆(24) 33.48328751 36.77019997 -33.48329838 -36.77018774

∆(25) 36.77018160 38.96205579 -36.77018774 -38.96204841

fifth hole

∆(26) 43.35079340 47.07072420 -43.35080160 -47.07071636

∆(27) 47.07070072 57.79458380 -47.07071636 -57.79456510

δ5

Table B.7: Velocities compared with ratio of derivatives of endpoints of holes for the

bottom parameter

∂F
∂t
∂F
∂x

δ−1
0 left endpoint of δ−1

0 right endpoint of δ−1
0

first hole 1.65 2

second hole 4.5 5.8

third hole 9.7 10.9

fourth hole 19.5 21.7

fifth hole 39 43.5

For t ≈ tbottom
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Table B.8: Velocities compared with ratio of derivatives of endpoints of monotone domains

for the bottom parameter on the y-axis

∂g5
∂t
∂g5
∂y

dy(t)
dt

∆ lower endpoint of ∆(5) upper endpoint of ∆(5) lower endpoint of ∆(5) upper endpoint of ∆(5)

-0.00187040473 -0.00186108386 0.00187024454 0.00186124318

B.1.4 Variation of derivatives

Let f5,i be monotone branches in ξ5, we obtain upper bounds for

∣∣∣∣∣ ∂∂t ∂f
−1
5,i
∂x

∂f−1
5,i
∂x

∣∣∣∣∣ for x over

the interval ∆ and t over the parameter interval T0 as follows.

Table B.9: Upper bounds for mixed derivatives for monotone branches

Upper bounds for

∣∣∣∣∣∣∣∣
∂
∂t

∂f
−1
5,i
∂x

∂f
−1
5,i
∂x

∣∣∣∣∣∣∣∣
domain ∆ ∆1 ∆2 ∆3 ∆4 ∆5 ∆6 δ−1

0 ∆7 ∆8 ∆9 ∆(10) ∆(11)

Upper bound of

∣∣∣∣∣∣∣∣
∂
∂t

∂f
−1
5,i
∂x

∂f
−1
5,i
∂x

∣∣∣∣∣∣∣∣ 2.2 8.5 41 65 87 135 160 250 420 600 750

domain ∆ δ−1
0 ∆(12) ∆(13) ∆(14) ∆(15) δ−1

0 ∆(16) ∆(17) ∆(18) ∆(19) ∆(20) δ−1
0

Upper bound of

∣∣∣∣∣∣∣∣
∂
∂t

∂f
−1
5,i
∂x

∂f
−1
5,i
∂x

∣∣∣∣∣∣∣∣ 1700 2300 2800 3200 4700 7500 10000 12000 14000

domain ∆ ∆(21) ∆(22) ∆(23) ∆(24) ∆(25) δ−1
0 ∆(26) ∆(27) δ5

Upper bound of

∣∣∣∣∣∣∣∣
∂
∂t

∂f
−1
5,i
∂x

∂f
−1
5,i
∂x

∣∣∣∣∣∣∣∣ 21000 34000 55000 70000 82000 170000 900000

Let F5,i’s map δ−1
0 ’s to δ0. δ−1

0 ’s are the ”five holes” in ξ5.

Table B.10: Upper bounds for mixed derivatives for maps on holes

Upper bounds for

∣∣∣∣∣∣∣∣
∂
∂t

∂F−1
5,i
∂x

∂F−1
5,i
∂x

∣∣∣∣∣∣∣∣ over the interval δ−1
0

δ−1
0 first hole second hole third hole forth hole fifth hole
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Upper bounds for

∣∣∣∣∣∣∣∣
∂
∂t

∂F−1
5,i
∂x

∂F−1
5,i
∂x

∣∣∣∣∣∣∣∣ 125 1100 4000 17500 120000

For t ≈ ttop,

Table B.11: Upper bounds for mixed derivatives for the initial monotone branch on the

y-axis

∂
∂t

∂g
−1
5
∂y

∂g
−1
5
∂y

lower endpoint of ∆(5) upper endpoint of ∆(5)

-8.9 -7.9

Figure B.2: Mixed derivative for z ranging over ∆(5)

Let G5,i’s map δ−1
0 ’s to δ0. δ−1

0 ’s are the ”five holes” in ζ(5).

Table B.12: Upper bounds for mixed derivatives for the maps on holes on the y-axis

Upper bounds for

∣∣∣∣∣∣∣∣
∂
∂t

∂G−1
5,i
∂x

∂G−1
5,i
∂x

∣∣∣∣∣∣∣∣ over the interval δ−1
0

δ−1
0 first hole second hole third hole forth hole fifth hole

Upper bound for

∣∣∣∣∣∣∣∣
∂
∂t

∂G−1
5,i
∂x

∂G−1
5,i
∂x

∣∣∣∣∣∣∣∣ 1.22 2.47 6.5 6.24 7.04
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B.1.5 Bounds for initial partitions

This summarizes estimates for ξ0 and ξ5.

Table B.13: Overall bounds for derivatives for the initial maps

ξ0

lower bound for

∣∣∣∣ ∂f0,i∂x

∣∣∣∣ 3.5

upper bound for

∣∣∣∣ ∂f0,i∂t

∣∣∣∣∣∣∣∣ ∂f0,i∂x

∣∣∣∣ 1.109

upper bound for

∣∣∣∣∣∣
∂2f
−1
0,i

∂t∂z

∣∣∣∣∣∣∣∣∣∣∣∣
∂f
−1
0,i
∂z

∣∣∣∣∣∣
50

upper bound for

∣∣∣∣∣ ∂(f0,is
◦···◦f0,i)
∂t

∣∣∣∣∣∣∣∣∣∣ ∂f0,is◦···◦f0,i)∂x

∣∣∣∣∣
1.5527 (1.109 ∗ (1 + 1

3.5
+ 1

3.52 + · · · ))

upper bound for

∣∣∣∣∣ ∂
2(f0,is

◦···◦f0,i)
−1

∂t∂z

∣∣∣∣∣∣∣∣∣∣ ∂(f0,is
◦···◦f0,i)−1

∂z

∣∣∣∣∣
, s ≤ 6 200

ξ5, x− axis

lower bound for

∣∣∣∣ ∂f5,i∂x

∣∣∣∣ 85 ( this is for the 4th to the 32th domain)

upper bound for

∣∣∣∣ ∂f5,i∂t

∣∣∣∣∣∣∣∣ ∂f5,i∂x

∣∣∣∣ 160

upper bound for

∣∣∣∣∣∣
∂2f
−1
5,i

∂t∂z

∣∣∣∣∣∣∣∣∣∣∣∣
∂f
−1
5,i
∂z

∣∣∣∣∣∣
900, 000

lower bound for

∣∣∣∣ ∂F5,i
∂x

∣∣∣∣ 20

upper bound for

∣∣∣∣∣ ∂
2F5,i

∂x2

∣∣∣∣∣∣∣∣∣ ∂F5,i
∂x

∣∣∣∣2 4

upper bound for

∣∣∣∣ ∂F5,i
∂t

∣∣∣∣∣∣∣∣ ∂F5,i
∂x

∣∣∣∣ 50

upper bound for

∣∣∣∣∣∣
∂2F−1

5,i
∂t∂z

∣∣∣∣∣∣∣∣∣∣∣∣
∂F−1

5,i
∂z

∣∣∣∣∣∣
61, 000

ξ5, y − axis

lower bound for

∣∣∣∣ ∂g(5)
∂x

∣∣∣∣ 391005

upper bound for

∣∣∣∣ ∂g5∂x (x0)

∣∣∣∣∣∣∣∣∣ ∂g(5)
∂x

(y0)

∣∣∣∣∣
15
13
≈ 1.15385

upper bound for

∣∣∣∣∣∣
∂2g(5)

∂x2

∣∣∣∣∣∣∣∣∣∣∣ ∂g(5)
∂x

∣∣∣∣∣
2 1.5

upper bound for

∣∣∣∣∣ ∂g(5)
∂t

∣∣∣∣∣∣∣∣∣∣ ∂g(5)
∂x

∣∣∣∣∣
0.0019

upper bound for

∣∣∣∣∣∣∣
∂2g
−1
(5)

∂t∂z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∂g
−1
(5)
∂z

∣∣∣∣∣∣∣
8.9

lower bound for

∣∣∣∣ ∂G5,i
∂x

∣∣∣∣ 37
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upper bound for

∣∣∣∣ ∂G5,i
∂t

∣∣∣∣∣∣∣∣ ∂G5,i
∂x

∣∣∣∣ 0.0025

upper bound for

∣∣∣∣∣∣
∂2G−1

5,i
∂t∂z

∣∣∣∣∣∣∣∣∣∣∣∣
∂G−1

5,i
∂z

∣∣∣∣∣∣
8

B.2 Extensions and refined extensions

The extensions of domains in ξ0 will give the maximum number of boundary refine-

ments needed. Values in this chart are upper bounds over all t ∈ T 476777

Table B.14: Upper bounds for distorted ratios of sizes of extended domains to sizes

of corresponding domains

r d :=distortion on : d ∗ r

|left component of ∆̃1\∆1|
|∆1|

< 0.409908 (left component of ∆̃1\∆1) ∪∆1 < 5.85896 2.40163

|right component of ∆̃1\∆1|
|∆1|

< 0.486451 (right component of ∆̃1\∆1) ∪∆1 < 4.24323 2.07412

|left component of ∆̃11\∆11|
|∆1|

< 0.105975 (left component of ∆̃11\∆11) ∪∆1 < 3.43389 0.363906

|right component of ∆̃17\∆17|
|∆1|

< 0.120445 (right component of ∆̃17\∆17) ∪∆1 < 3.23616 0.389779

|left component of ∆̃111\∆111|
|∆1|

< 0.0268014 (left component of ∆̃111\∆111) ∪∆1 < 3.05 0.0817443

|right component of ∆̃177\∆177|
|∆1|

< 0.03016 (right component of ∆̃177\∆177) ∪∆1 < 3.00866 0.0907141

|left component of ∆̃2\∆2|
|∆2|

< 0.438737 (left component of ∆̃2\∆2) ∪∆2 < 1.84564 0.809751

|right component of ∆̃2\∆2|
|∆2|

< 0.483555 (right component of ∆̃2\∆2) ∪∆2 < 1.77762 0.859577

|left component of ∆̃21\∆21|
|∆2|

< 0.111057 (left component of ∆̃21\∆21) ∪∆2 < 1.57749 0.175191

|right component of ∆̃27\∆27|
|∆2|

< 0.117951 (right component of ∆̃27\∆27) ∪∆2 < 1.56536 0.184636

|left component of ∆̃211\∆211|
|∆2|

< 0.027951 (left component of ∆̃211\∆211) ∪∆2 < 1.51877 0.0424511

|right component of ∆̃277\∆277|
|∆2|

< 0.03016 (right component of ∆̃277\∆277) ∪∆2 < 1.51604 0.0447295

|left component of ∆̃3\∆3|
|∆3|

< 0.430055 (left component of ∆̃3\∆3) ∪∆3 < 1.31740 0.566554

|right component of ∆̃3\∆3|
|∆3|

< 0.6639 (right component of ∆̃3\∆3) ∪∆3 < 1.35640 0.900514

|left component of ∆̃31\∆31|
|∆3|

< 0.108727 (left component of ∆̃31\∆31) ∪∆3 < 1.23409 0.134179

|right component of ∆̃37\∆37|
|∆3|

< 0.127995 (right component of ∆̃37\∆37) ∪∆3 < 1.23568 0.158161

|left component of ∆̃311\∆311|
|∆3|

< 0.0273644 (left component of ∆̃311\∆311) ∪∆3 < 1.21425 0.0332272

|right component of ∆̃377\∆377|
|∆3|

< 0.031502 (right component of ∆̃377\∆377) ∪∆3 < 1.15815 0.036484
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B.3

B.3.1 Primary ratios

Table B.15: Overall bounds for derivatives for the initial maps

Ratios on I

t tbottom ttop

|∆−1|
dist(∆−1,q

−1)
0.3205362640 0.3205340300

|∆−2|
dist(∆−2,q

−1)
0.2091753153 0.2091704753

|∆−3|
dist(∆−3,q

−1)
0.1271721842 0.1271607979

|δ0|
dist(δ0,q−1)

0.2502761679 0.2503206110

|∆3|
dist(∆3,q

−1)
0.1890611386 0.1890490012

|∆2|
dist(∆2,q

−1)
0.5396895251 0.5396829591

B.3.2 Selected ratios |∆|
H5(∆)

Here, we let ∆7 = ∆−1, ∆6 = ∆−2, ∆5 = ∆−3 to show the order they appear on

the y-axis. Other subscripts will also be given according to the order they appear on the

y-axis. Let g5 be the diffeomorphism that maps ∆(5) onto I.

Table B.16: Ratio of domain sizes to partial of remaining domains

Ratios on I

t tbottom ttop

|∆7|
dist(∆7,q

−1)
0.32053663 0.3205340300298

|∆6|
dist(∆6,q

−1)
0.20917610 0.2091704753206

|∆5|
dist(∆5,q

−1)
0.12717403 0.1271607979076

|δ0|
dist(δ0,q−1)

0.25026897 0.2503206110132

|∆3|
dist(∆3,q

−1)
0.18906310 0.1890490011995

|∆2|
dist(∆2,q

−1)
0.53969059 0.5396829590522

|∆77|
dist(∆77,q

−1)
0.061977625 0.06197692151387

|∆71|
dist(∆71,q

−1)
0.083906928 0.08390559199038

|∆37|
dist(∆37,q

−1)
0.043995279 0.04398951322458

|∆31|
dist(∆31,q

−1)
0.045789189 0.04578733117880
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|∆27|
dist(∆27,q

−1)
0.098793277 0.09879052896388

|∆21|
dist(∆21,q

−1)
0.13337261 0.1333709148367

|∆17|
dist(∆17,q

−1)
0.35459170 0.3545879467640

|∆12|
dist(∆12,q

−1)
0.52020847 0.5202009580464

Table B.17: Ratio of domain sizes to partial of remaining domains on the y-axis

Ratios on ∆(5)

t tbottom ttop

|g−1
5 (∆7)|

H5(g
−1
5 (∆7))

0.33541197 0.3354098997771

|g−1
5 (∆6)|

H5(g
−1
5 (∆6))

0.20504858 0.2050435703931

|g−1
5 (∆5)|

H5(g
−1
5 (∆5))

0.12228690 0.1222745479508

|g−1
5 (δ0)|

H5(g
−1
5 (δ0))

0.23732558 0.2373747405086

|g−1
5 (∆3)|

H5(g
−1
5 (∆3))

0.17844517 0.1784321639675

|g−1
5 (∆2)|

H5(g
−1
5 (∆2))

0.50626223 0.5062560261036

|g−1
5 (∆77)|

H5(g
−1
5 (∆77))

0.067344702 0.06734403693652

|g−1
5 (∆71)|

H5(g
−1
5 (∆71))

0.084545160 0.08454397745428

|g−1
5 (∆37)|

H5(g
−1
5 (∆37))

0.041707790 0.04170237694486

|g−1
5 (∆31)|

H5(g
−1
5 (∆31))

0.043337254 0.04333556027423

|g−1
5 (∆27)|

H5(g
−1
5 (∆27))

0.093372605 0.09337015582215

|g−1
5 (∆21)|

H5(g
−1
5 (∆21))

0.12646672 0.1264652977255

|g−1
5 (∆17)|

H5(g
−1
5 (∆17))

0.33650744 0.3365043713358

|g−1
5 (∆12)|

H5(g
−1
5 (∆12))

0.50692626 0.5069194318305

Table B.18: More ratio of domain sizes to partial of remaining domains

Ratios on I

t tbottom ttop

|∆777|
dist(∆777,q

−1)
0.014677608 0.01467738117096

|∆772|
dist(∆772,q

−1)
0.0078377722 0.007837528334170

|∆771|
dist(∆771,q

−1)
0.015826017 0.01582571222937

|∆737|
dist(∆737,q

−1)
0.0050770231 0.005076253134255

|∆727|
dist(∆727,q

−1)
0.0094806979 0.009480300321950

|∆717|
dist(∆717,q

−1)
0.019724964 0.01972453216366

|∆377|
dist(∆377,q

−1)
0.010988716 0.01098691333112
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|∆371|
dist(∆371,q

−1)
0.010831911 0.01083071327374

|∆337|
dist(∆337,q

−1)
0.0030897953 0.003089179866715

|∆327|
dist(∆327,q

−1)
0.0056348362 0.005634374374564

|∆317|
dist(∆317,q

−1)
0.011216713 0.01121613285142

|∆311|
dist(∆311,q

−1)
0.011447672 0.01144720261362

|∆277|
dist(∆277,q

−1)
0.023273862 0.02327302474135

|∆272|
dist(∆272,q

−1)
0.012260892 0.01226034520501

|∆271|
dist(∆271,q

−1)
0.024740046 0.02473928014316

|∆237|
dist(∆237,q

−1)
0.0078405532 0.007839341900395

|∆231|
dist(∆231,q

−1)
0.0073433283 0.007342901066202

|∆227|
dist(∆227,q

−1)
0.014664821 0.01466418789082

|∆217|
dist(∆217,q

−1)
0.030690287 0.03068965729156

|∆177|
dist(∆177,q

−1)
0.071028946 0.07102791382318

|∆171|
dist(∆171,q

−1)
0.088604528 0.08860298707742

|∆137|
dist(∆137,q

−1)
0.042985456 0.04297976529638

|∆131|
dist(∆131,q

−1)
0.044538903 0.04453706606865

|∆127|
dist(∆127,q

−1)
0.095882311 0.09587959619373

|∆117|
dist(∆117,q

−1)
0.34291367 0.3429100228299

|∆7777|
dist(∆7777,q

−1)
0.0036343166 0.003634316656083

|∆1777|
dist(∆1777,q

−1)
0.016977990 0.01697799017366

Table B.19: More ratio of domain sizes to partial of remaining domains on the y-axis

Ratios on ∆(5)

t tbottom ttop

|g−1
5 (∆777)|

H5(g
−1
5 ∆777))

0.016106136 0.01610590840944

|g−1
5 (∆772)|

H5(g
−1
5 ∆772))

0.0084509762 0.008450725325239

|g−1
5 (∆771)|

H5(g
−1
5 ∆771))

0.016974444 0.01697414336095

|g−1
5 (∆737)|

H5(g
−1
5 ∆737))

0.0052526462 0.005251854412446

|g−1
5 (∆727)|

H5(g
−1
5 ∆727))

0.0097417664 0.009741372135499

|g−1
5 (∆717)|

H5(g
−1
5 ∆717))

0.020021280 0.02002087732676

|g−1
5 (∆377)|

H5(g
−1
5 ∆377))

0.010429497 0.01042779682981

|g−1
5 (∆371)|

H5(g
−1
5 ∆371))

0.010273920 0.01027279602420

|g−1
5 (∆337)|

H5(g
−1
5 ∆337))

0.0029287563 0.002928176877694

|g−1
5 (∆327)|

H5(g
−1
5 ∆327))

0.0053401109 0.005339680622473

|g−1
5 (∆317)|

H5(g
−1
5 ∆317))

0.010626426 0.01062589142954

|g−1
5 (∆311)|

H5(g
−1
5 ∆311))

0.010843463 0.01084303409416

|g−1
5 (∆277)|

H5(g
−1
5 ∆277))

0.022037915 0.02203715421925
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|g−1
5 (∆272)|

H5(g
−1
5 ∆272))

0.011613686 0.01161318538644

|g−1
5 (∆271)|

H5(g
−1
5 ∆271))

0.023428273 0.02342758275824

|g−1
5 (∆237)|

H5(g
−1
5 ∆237))

0.0074378572 0.007436719453193

|g−1
5 (∆231)|

H5(g
−1
5 ∆231))

0.0069684446 0.006968049379401

|g−1
5 (∆227)|

H5(g
−1
5 ∆227))

0.013915875 0.01391529483451

|g−1
5 (∆217)|

H5(g
−1
5 ∆217))

0.029143622 0.02914306636412

|g−1
5 (∆177)|

H5(g
−1
5 ∆177))

0.067586680 0.06758579038737

|g−1
5 (∆171)|

H5(g
−1
5 ∆171))

0.084751133 0.08474976160574

|g−1
5 (∆137)|

H5(g
−1
5 ∆137))

0.041765194 0.04175972055139

|g−1
5 (∆131)|

H5(g
−1
5 ∆131))

0.043392238 0.04339049233279

|g−1
5 (∆127)|

H5(g
−1
5 ∆127))

0.093488773 0.09348621361920

|g−1
5 (∆117)|

H5(g
−1
5 ∆117))

0.33683767 0.3368342882525

|g−1
5 (∆7777)|

H5(g
−1
5 ∆7777))

0.0039980041 0.003998004132746

|g−1
5 (∆1777)|

H5(g
−1
5 ∆1777))

0.0161658656 0.01616586569946

B.4 Admissible domains

We take pullbacks of ξ0 into domains of ξ0 according to the algorithm in 2.6.2. This

forms ξ′0. Then we divide ξ′0 into sections which will improve the estimate for distorted

relative measure of holes in ξ′0. Upper bounds are taken for t over T0

Table B.20: Upper bounds for the distorted relative measure of holes for any domain refined

by ξ′0 divided into appropriate sections

ξ′0

Domains of each section D=Upper bound for dis-

tortion on the section

R=Upper bound for the

relative measure of holes in

the section

D∗R
1−R+R∗D

1 through 7 1.022 0.11 0.112149

7 through 14 1.057 0.162 0.169667

15 through 20 1.024 0.095 0.0970587

21 through 25 1.021 0.214 0.217516

26 through 56 1.169 0.283 0.315727
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57 through 60 1.029 0.288 0.293897

61 through 64 1.011 0.192 0.193703

65 through 71 1.030 0.138 0.141554

72 through 83 1.063 0.291 0.303764

84 through 108 1.112 0.15 0.164044

109 through 292 2.142 0.291 0.467846

293 through 383 1.351 0.27 0.333193

384 through 429 1.103 0.318 0.33963

Here we do the same for partition ξ5. The last row(section), shaded in gray, is the

region of δ0 where we use separately to get (2.243).

Table B.21: Upper bounds for the distorted relative measure of holes for any domain refined

by ξ′5 divided into appropriate sections

Section D=Distortion on the sec-

tion

R=Relative measure of

holes in the section

D∗R
1−R+R∗D

1 through 64 1.016 0.026 0.026405

65 through 130 1.057 0.029 0.0306024

131 through 194 1.024 0.017 0.0174009

195 through 257 1.021 0.038 0.0387671

258 through 578 1.169 0.051 0.0591095

579 through 640 1.029 0.051 0.0524015

641 through 702 1.011 0.035 0.0353714

703 through 767 1.030 0.025 0.0257307

768 through 895 1.063 0.052 0.0550955

896 through 2100 1.73 0.057 0.0946708

1153 through 2100 1.56 0.064 0.0963855

2101 through 3076 1.38 0.038 0.0516935

3077 through 4037 1.36 0.048 0.0641711

4038 through 4547 1.12 0.055 0.0611961

4548 through 9214 1.3036 0.2 0.245795

B.5 Final calculations

The following table lists the figures we use to obtain inequality (2.260).
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