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Abstract

Applications that make use of very large scientific datasets have become an increasingly important
subset of scientific applications. In these applications, the datasets are often multi-dimensiond, i.e., data
items are associated with points in a multi-dimensional attribute space. The processing is usually highly
stylized, with the basic processing steps consisting of (1) retrieval of a subset of all available datain the
input dataset viaarange query, (2) projection of each input dataitem to one or more output data items, and
(3) some form of aggregation of all the input data items that project to the each output dataitem. We have
developed an infrastructure, called the Active Data Repository (ADR), that integrates storage, retrieva
and processing of multi-dimensional datasets on shared-nothing architectures. In this paper we address
guery planning and execution strategies for range queries with user-defined processing. We eval uate three
potential query planning strategies within the ADR framework under severa application scenarios, and

present experimental results on the performance of the strategies on a multiprocessor IBM SP2.

1 Introduction

Large amounts of data are being generated in many scientific and engineering studies by detailed simulations,
and by sensors attached to devices such as satellites and microscopes. Hence, storage, retrieval, processing

and analyzing very large amountsof scientific datahas becomean important part of scientific research. Typical
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examples of very large scientific datasets include long running simulations of time-dependent phenomena
that periodically generate snapshots of their state (e.g. hydrodynamics and chemical transport simulation for
estimating pollution impact on water bodies [13]), simulation of a flame sweeping through a volume [18],
archives of raw and processed remote sensing data (e.g. AVHRR [17]), and archives of medical images (e.g.
high resolution confocal light microscopy, MRI). For example, adataset of coarse-grained satellite data (with
4.4 km pixels), covering the whole earth surface and captured over areatively short period of time (10 days)
isabout 4.1GB; afiner-grained version (1.1 km per pixel) contains about 65 GB of sensor data. In medical
imaging, size of a single digitized composite slideimage at high power from alight microscopeisover 7GB
(uncompressed), and a single large hospital can process more than one thousand slides per day.

Scientific applicationsthat make use of large datasets have severa important characteristics. The datasets
are usually multi-dimensional, i.e., each dataitemin adataset isassociated with apoint in amulti-dimensional
attribute space defined by severa attributes of the dataitem. Applications usually make use of a subset of
al possible data available in the dataset. In satellite data processing, for instance, an application may only
use sensor datain alimited spatio-temporal region and from a subset of sensor bands. Applicationsmay aso
combine existing attributes to synthesize new attributes. Since the same physical entity may be described in
a complementary manner by different types of datasets, applications may need to generate new datasets by
performing joins over pre-existing datasets. Our study of alarge set of applications[1, 2, 6, 11, 14, 18, 21]
indicates that the processing is often highly stylized and shares several important characteristics. The basic
processing step usually consists of mapping multi-dimensional coordinates of the retrieved data itemsto the
coordinates of the proper output data items, and computing output data items by some form of (associative
and commutative) aggregation operation over all the retrieved input items mapped to the same output data
item.

In a database management system (e.g., an object-relational DBMS), the access and processing patterns
of these applications can be represented as multi-dimensional range queries with user-defined aggregation
operations. However, efficient execution of such range queries is a challenging task. Storing very large
amounts of datarequiresuse of disk farms, composed of distributed collections of disks, thereby requiring an
effective distribution of the dataitems across all the disksin the system. Moreover, user-defined functionsin
the queries may involve expensive operations, which can benefit greatly from parallel processing. In addition,
as aggregation functions usually result in significant reductionsin data volume, it is desirable to perform the
computation where the datais stored, so that shipping large volumes of data across a network can be avoided.
However, despite the reduction in data size, output datasets can still be very large, and may not even fit into

the available memory in the parallel database system.



Inthispaper we address query planning for efficient execution of range querieswith user-defined functions
on shared-nothing architectures. In particular, we target the problems of partitioning the computationa
workload across processors, minimization of 1/0 and communication overheads, and handling of out-of-core
output datasets during query processing. We have devel oped the Active Data Repository (ADR) [4, 5], an
infrastructure for building parallel databases that enables integration of storage, retrieval and processing of
multi-dimensional scientific datasets on aparallel machine. ADR isdesigned to make it possibleto carry out
aggregation operations efficiently on shared-nothing architectures. In this paper we evaluate three potential
guery planning strategies within the ADR framework, under severa controlled application scenarios. The
goal of thisstudy isto develop methods and cost model s based on the characteristics of applicationsand their
associated datasets, aong with the machine configuration the system is running on, to guide (and automate)
selection of appropriate query planning strategies. This paper presents initial experimental results on the

performance of the strategies on a multiprocessor IBM SP.

2 Overview

2.1 RangeQuerieson Multi-Dimensional Scientific Datasets

In thiswork we target range queries with user-defined processing that have the following components:

¢ A reference to an input dataset | and an output dataset O. Both input datasets and output datasets have
underlying multi-dimensiona attribute spaces. That is, each data item is associated with a point in a
multi-dimensional attribute space defined by the attributes of the dataitem. The data dimensions can
be spatia coordinates, time, or varying experimental conditions such as temperature or velocity. Data

items may be sparsely and/or irregularly distributed in the underlying attribute space.

¢ A multi-dimensional bounding box, referred to here also as a query window, defined in the attribute

space of | or O. The bounding box defines the region of interest in a multi-dimensional attribute space.

o A reference to user-defined pr oj ecti on and aggr egat i on functions. A pr oj ect i on function
maps an element in | to one or more elements in O. The mapping is from an e ement’s coordinates
in the multi-dimensional attribute space underlying | to coordinates in the attribute space of O. An
aggr egati on function describes how data items in | that map to the same data item in O are
aggregated. Theaggregation functionsallowed correspondto thedistributiveand algebraic aggregation
functions defined by Gray et. a [12]. That is, the correctness of the result does not depend on the order
the input data items are aggregated.



¢ A specification of how thefinal output dataset is handled. There are three possibilities: (1) The output
is consumed by the application that performed the range query. (2) The output can be inserted into the
database asanew dataset. Inthiscase, O correspondsto the dataset to be added. (3) Anexisting dataset
can be updated. The reference to dataset O corresponds to the dataset in the database to be updated. In
this case, aggregated input data items are combined with the corresponding previously existing output
data items, and the results are written back to the database, as for (2). The only difference from (2) is
that the output data items may be initiaized with their values from the database, instead of with the
identity element for the aggregation function.

Typical examples of applicationsthat make use of multi-dimensional scientific datasets are satellite data
processing applications [1, 21, 6], the Virtua Microscope and analysis of microscopy data [2, 11], and
simulation systems for water contamination studies [13]. In satellite data processing, for example, earth
scientists study the earth by processing remotely-sensed data continuously acquired from satellite-based
sensors. Each sensor reading is associated with a position (longitude and latitude) and the time the reading
was recorded. In atypical analysis[1, 21], arange query defines a bounding box that covers a part or al of
the surface of the earth over aperiod of time. Dataitems retrieved from one or more datasets are processed
to generate one or more composite images of the area under study. Generating a composite image requires
projection of the selected area of the earth onto a two-dimensional grid [23]; each pixel in the composite
image is computed by selecting the “best” sensor value that maps to the associated grid point. Composite
images can be added to the database as new datasets. In addition, new sensor readings can be combined to
modify the images already existing in the database (e.g., better sensor values can replace previously selected
sensor values in a computed image). Another example is the Virtual Microscope [2, 11], which supports
the ability to interactively view and process digitized data arising from tissue specimens. The raw data for
such a system can be captured by digitally scanning collections of full microscope slides under high power.
The digitized images from a dlide are effectively a three-dimensiona dataset, since each dlide can contain
multiple two-dimensional focal planes. At the basic level, a range query selects a region on a focal plane
inaslide. The processing for the Virtual Microscope requires projecting high resolution data onto a grid of
suitable resolution (governed by the desired magnification) and appropriately compositing pixels mapping

onto asingle grid point, to avoid introducing spurious artifacts into the displayed image.



2.2 TheActive Data Repository

In this section we briefly describe the Active Data Repository (ADR) [4, 5]. ADR consists of a front-end
and a back-end. The front-end interacts with client applications and relays the range queries issued by the
clientsto the back-end, which consists of aset of processing nodes and multipledisks attached to these nodes.
During query processing, the back-end nodes are responsible for retrieving the input data and performing
proj ecti on and aggr egat i on operations over the dataitems retrieved to generate the output products
as defined by the range query. ADR has been developed as a set of modular services in C++. Through
use of these services, ADR provides support for common database operations, including index lookup, data
retrieval, memory management, and scheduling of processing across a paralel machine, while at the same
timeallowing for customizationfor different typesof processing over widely varying datasetswith underlying
multi-dimensional attribute spaces.

We now describe how datasets are stored in ADR, and describe the ADR query planning and query

execution services in more detail.

2.3 Storing Datasets

In order to achieve low latency retrieva of data, ADR datasets are partitioned into chunks, each of which
consists of one or more data items from the same dataset. A chunk is the unit of 1/0 and communication
operations in the ADR. That is, a chunk is retrieved as a whole during query processing. Since each data
item is associated with a point in a multi-dimensional attribute space, a chunk is associated with a minimum
bounding rectangle (MBR) that encompasses the coordinates of al the items in the chunk. An index is
constructed on the MBRs of the chunks, and the index is used to find the chunksthat intersect aquery window
during query processing. Chunks are declustered across the disks using a declustering algorithm [8, 9, 15]
to achieve 1/O parallelism during query processing. Each chunk is assigned to a single disk, and is read
and/or written during query processing only by thelocal processor to which thedisk isattached. If achunkis
required for processing by one or more remote processors, the chunk is sent to those processors by the local

processor viainterprocessor communication.

24 Query Planning

Thetask of the query planning service is to determine aquery plan to efficiently process arange query based
on the amount of available resources in the back-end. A query plan specifies how parts of the final output

are computed and the order the input data chunks are retrieved for processing. In order to hold partia results



generated during aggregation operations, an intermediate data structure, referred to as an accumulator, may
be required. The partia results computed into the accumulator can be further processed in the final phase of
guery execution to produce the final output dataset. In the rest of the paper, we assume that an accumulator
is always used during query processing, and that the accumulator is partitioned into chunks, each of which
corresponds to a chunk in the output dataset, since all existing ADR applications require an accumulator.
Query planning is carried out in two steps; tiling and workload partitioning. In thetiling step, if the size
of the accumulator istoo large to fit into the back-end main memory, the accumulator is partitioned into tiles,
each of which contains a distinct set of one or more accumulator chunks, so that each tile fits entirely into
memory. Indices, provided by the ADR indexing service, are then used to locate the data chunks that must
be retrieved from the disks by each back-end process for each tile. Since a projection function may map
an input el ement to multiple output elements, an input chunk may also be mapped to multiple accumulator
chunks. In other words, a projection function determines how the input data chunks are distributed in the
output dataset attribute space. An input chunk needs to be retrieved multiple times if the output chunks it
maps to are assigned to different tiles. In the workload partitioning step, the workload associated with each
tile(i.e., processing for input and accumulator chunks) is partitioned across processors. Thisis accomplished
by assigning each processor the responsibility for processing a subset of theinput and/or accumulator chunks.
In Section 3 we present query planning strategies that implement different tiling and workload partitioning

schemes.

2.5 Query Execution

The query execution service manages all the resources in the system and carries out the query plan generated
by the query planning service. The primary feature of the query execution serviceisitsability tointegrate data
retrieval and processing for awide variety of applications. Thisisachieved by pushing processing operations
into the storage manager and allowing processing operations to access the buffer used to hold data arriving
from disk. Asaresult, the system avoids one or more levels of copying that would be needed in a layered
architecture where the storage manager and the processing bel onged to different layers.

To further reduce query execution time, the query execution service overlaps disk operations, network
operations and processing as much as possible. It does this by maintaining explicit queues for each kind
of operation (data retrieval, message sends and receives, data processing) and switches between them as
required. Pending asynchronous I/O and communication operations left in the operation queues are polled

and, upon their compl etion, new asynchronous functions are initiated when more work is expected and buffer



spaceis available. Data chunks are therefore retrieved and processed in a pipelined fashion. The processing

of aquery on aback-end processor progresses through the following phases for each tile:

1. Initialization. Accumulator chunks in the current tile are alocated space in memory and initialized.
If an existing output dataset isrequired to initialize accumulator e ements, an output chunk is retrieved
by the processor that has the chunk on itslocal disk, and the chunk is forwarded to the processors that

requireit.

2. Local Reduction. Input data chunks on the local disks of each back-end processor are retrieved and

aggregated into the accumulator chunks allocated in each processor’s memory in phase 1.

3. Global Combine. Partial results computed in each processor in phase 2 are combined across al

processors to computefina results.

4. Output Handling. The final output chunks for the current tile are computed from the corresponding
accumulator chunks computed in phase 3. If the query creates a new dataset, output chunks are
declustered across the available disks, and each output chunk is written to the assigned disk. If the
guery updates an already existing dataset, the updated output chunks are written back to their origina
locations on the disks.

A query iterates through these phases repeatedly until al tiles have been processed and the entire output
dataset is handled. When multiple queries are processed simultaneously by the ADR back-end, each query

independently progresses through the four query execution phases.

3 Query Planning Strategies

In this section we describe three query planning strategies that use different workload partitioning and tiling
schemes. To simplify the presentation, we assume that the target range query involves only one input and
one output dataset. Both the input and output datasets are assumed to be aready partitioned into chunks
and declustered across the disks in the system. In the following discussions we assume that an accumulator
chunk is alocated in the memory for each output chunk to hold the partial results, and that the total size of
the accumulator exceeds the aggregate memory capacity of the paralel machine, so that tiling is needed.

We define alocal input/output chunk on a processor as an input/output chunk stored on one of the disks

attached to that processor. Otherwise, it isaremote chunk. A processor owns an input or output chunk if itis



alocal input or output chunk. A ghost chunk (or ghost cell) isan accumulator chunk allocated in the memory
of a processor that does not own the corresponding output chunk.

For query planning, one of the back-end nodes is designated as the master node, which generates the
guery plan and broadcastsit to al other back-end nodes. Prior to query planning, the local input and output
chunks that intersect the query window are determined in each back-end node, including the master node.
Each back-end node sends the minimum bounding rectangles of itsinput and output chunksto the master node
to usein query planning. At the end of thetiling and workload partitioning step of query planning, the master
processor sends the chunk assignments and workload partitioning information for each tile to the processors
that need the information. Each processor uses thisinformation to compute how many chunks (input, output,
accumulator, ghost chunk) to allocate, retrieve, process, and communicate in the various phases of query

execution.

3.1 Fully Replicated Accumulator (FRA) Strategy

In this scheme each processor is assigned the responsibility to carry out processing associated with its local
input chunks. The accumulator is partitioned into tiles, each of which fitsinto the local memory of asingle
back-end processor. Figure 1 shows the tiling and workload partitioning step for this strategy. When an
output chunk isassigned to atile, the corresponding accumul ator chunk is put into the set of local accumulator
chunks in the processor that owns the output chunk, and is assigned as a ghost cell on all other processors.
Thisschemeeffectively replicates al of the accumul ator chunksin atileon each processor, and each processor
generate partia results using its local input chunks. These partial results are combined into the final result
in the global combine phase of query execution. Ghost chunks are forwarded to the processors that own the
corresponding output (accumulator) chunks to produce the final output product. Since a projection function
may map an input chunk to multiple output chunks, an input chunk must be retrieved multiple timesif the
corresponding output chunks are assigned to different tiles. In the implementation of al the query strategies
described in this paper, we use a Hilbert space-filling curve [15, 9, 10] to order the output chunks. Our
goal isto minimizethe total length of the boundaries of the tiles, by assigning spatially close chunksin the
multi-dimensional attribute space to the sametile, to reduce the number of input chunks crossing one or more
boundaries. The advantage of using Hilbert curvesisthat they have good clustering properties[15], sincethey
preserve locality. In our implementation, the mid-point of the bounding box of each output chunk is used to
generate a Hilbert curveindex. The chunks are sorted with respect to thisindex, and selected in thisorder for

tiling (step 4 in Figure 1). The current implementation, however, does not take into account the distribution



1. set Menory = Minimum of the size of memory in each processor (for holding accumulator chunks)
2. st Tile=1 MenoryUsed =0
3. while (thereis an unassigned output chunk)
Select an output chunk
set ChunkSi ze = Size of the corresponding accumul ator chunk
if (ChunkSi ze+Menor yUsed) > Menor y)

Tile=Tile+1

Menor yUsed = ChunkSi ze
ese

Menor yUsed = Menor yUsed + ChunkSi ze
Assign the output (accumulator) chunk to tile Ti | e
(* Workload partitioning step *)
Let k bethe processor that owns the output chunk

Add the accumulator chunk to the set of local accumulator

chunks of k for thistile

Add the accumulator chunk to the set of ghost cellson all

other processors for thistile
15. Add set of loca input chunks of k that map to this output chunk to

set of input chunksto be retrieved by k during query execution for thistile

16. set NunberOF Tiles=Til e
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Figure 1: Tiling and workload partitioning for the fully replicated accumulator strategy.
of input chunks in the output attribute space, so for some distributions of the input data in its attribute space
there can still be many input chunks intersecting multipletiles, despite a small boundary length.

Executing step 15 of the whileloop requires either an efficient inverse projection function or an efficient
search method, either of which must return the input chunks that map to a given output chunk. 1n some cases
it may be less expensive to find the projected output chunks for each input chunk. For example, the input
chunks may be irregularly and sparsely distributed in the input attribute space, while the output may be a
dense and regular array such as a raster image, with the output chunks as regular subregions of the array.
In such cases, step 15 can be carried out in a separate loop, iterating over input chunks, finding the output
chunks they map to, and adding the input chunks to the appropriate tiles. To run step 15 as a separate |oop,

the implementation must store the assigned tile number with each output chunk.

3.2 Sparsely Replicated Accumulator (SRA) Strategy

The fully replicated accumulator strategy eliminates interprocessor communication for input chunks, by
replicating all accumulator chunks. However, thisiswasteful of memory, because the strategy replicates each
accumulator chunk in every processor evenif no input chunkswill be aggregated into the accumulator chunks
in some processors. This results in unnecessary initialization overhead in the initialization phase of query

execution, and extra communication and computation in the global combine phase. The available memory in



1. for (each processori )
set Menory (i) =Sizeof memory ini (for holding accumulator chunks)
2. st Tile=1 MenoryFull =0
3. while (thereis an unassigned output chunk)
4. Select an output chunk
5. Let S, bethe set of processors having at least oneinput chunk
that projectsto this output chunk
6. set ChunkSi ze = Size of the corresponding accumul ator chunk
7. for (pinS,)
8. if (Menory(p) —ChunkSi ze) < 0) set MenoryFul | =1
9. if (MemoryFul | ==1)
10. Tile=Tile+1
11. for (pin.S,) set Menor y(p) = (sizeof memory onp) — ChunkSi ze
12. for (p notin S,) set Menor y( p) = size of memory onp
13. set MenoryFul | =0
14. dse
15. for (pin.S,) set Menory(p) =Menory(p) — ChunkSi ze
16.  Assignthe output (accumulator) chunk totileTi | e
(* Workload partitioning step *)
17.  Let k bethe processor that owns the output chunk
18. Add the accumulator chunk to the set of local accumulator
chunks of k for thistile
19. Add the accumulator chunk to the set of ghost cells on each
processor in S, for thistile
20. Add set of locd input chunks of k that map to this output chunk to
set of input chunksto be retrieved by k during query execution
21. set NumberOF Tiles=Til e

Figure 2: Thetiling and workload partitioning step for the sparsely replicated accumulator strategy.

the system also is not efficiently employed, because of unnecessary replication. Such replication may result
in more tiles being created than necessary, which may cause a large number of input chunksto be retrieved
from disk more than once. Thetiling step of the sparsely replicated accumulator strategy isshown in Figure 2.

Inthisstrategy, aghost chunk isallocated only on processors owning at | east oneinput chunk that projects
to the corresponding accumulator chunk. Replicating accumulator chunks sparsely in thisway requires that
we find the corresponding set of processors for each output chunk during thetiling step (step 5in Figure 2).
Aswas stated in the previous section, sometimesit may be easier to find the projected output chunks for each
input chunk. For those cases, an aternative solution is to maintain a list for each output chunk to store the
set of processors that require alocating an accumulator chunk. The list is created prior to the tiling step by
iterating over the input chunks, projecting them to output chunks, and storing the result (processor id) with

each output chunk.
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1. for (each processori )

2. st Menory(i) =Sizeof memory ini (for holding accumulator chunks)
3. sTile(i) =1

4. while (thereis unassigned output chunk)

5. Select an output chunk

6. Let p bethe processor that owns this output chunk

7. set ChunkSi ze = Size of the corresponding accumul ator chunk
8. if (Menory(p) —ChunkSi ze) < 0)

9. st Tile(p) =Tile(p) +1

10. set Menor y( p) = (size of memory onp) — ChunkSi ze

11. dse

12. set Menor y(p) =Menory(p) — ChunkSi ze
13.  Assign the output (accumulator) chunk to tileTi | e( p)
(* Workload partitioning step *)
14. Add accumul ator chunk to the set of local accumulator
chunks of p for thistile
15. Add al the loca and remote input chunks that map to the output chunk
to the set of input chunksto be retrieved and processed by p for thistile
16. set Nunber O Ti | es = maximum of Ti | e( p)

Figure 3: Thetiling and workload partitioning step for the distributed accumulator strategy.
3.3 Didgtributed Accumulator (DA) Strategy

In this scheme the output (accumulator) chunks in each tile are partitioned into digoint sets, referred to as
working sets. Each processor is given the responsibility to carry out the operations associated with the output
chunksin aworking set. Thetiling and workload partitioning step is shown in Figure 3. Output chunks are
selected (step 5) in Hilbert curve order, asfor the other two schemes.

Loca chunks for each processor are assigned to the same tile until the memory space alocated for the
accumulator on that processor isfilled. Since accumulator chunks are not replicated on other processors, no
ghost chunks are alocated. Therefore this scheme minimizes the use of the memory for accumulators (and
output chunks) in the system. In the other schemes, local memory space is the factor limiting the number of
output chunks assigned to atile. Since the distributed accumulator strategy can assign more chunksto atile,
it produces fewer tiles than the other schemes. Hence, the number of input chunks that must be retrieved for
more than onetileislikely to beless than in the other schemes.

In the agorithm shown in Figure 3, the working set of aprocessor for atileis composed of only the local
output chunks in that processor. This strategy avoids interprocessor communication during query execution
for accumulator chunks and ghost chunks. 1n the other schemes, output chunks may need to be communicated
intheinitialization phase of query executionto initializeghost chunks. Similarly, intheglobal combine phase,

ghost cellsin each processor must be transmitted to the processors that own theloca accumulator chunks. On

11



the other hand, the distributed accumulator strategy introduces communication in the local reduction phase
for input chunks; al the remote input chunks that map to the same output chunk must be forwarded to the
processor that owns the output chunk. Since a projection function may map an input chunk to multiple output
chunks, an input chunk may be forwarded to multiple processors. In addition, a good declustering strategy
could cause amost al input chunks to be forwarded to other processors, because an input chunk and the
output chunk(s) that it projects to are unlikely to be assigned to the same processor. These tradeoffs will be

evaluated for several application scenariosin Section 4.

4 Experimental Results

In this section we present an experimental performance eval uation of the three query execution strategieson a
16 nodelBM SP2. Each nodeof thelBM SP2 isathin nodewith 128 MB of memory; nodesareinterconnected
with the High Performance Switch, which provides 40MB/sec peak communication bandwidth. In these
experiments data was stored on one disk per node.

A completeeva uation of thestrategiesrequiresadetail ed sensitivity analysisover alarge set of parameters,
including the number of input and accumulator chunks, the number of dataitemsand the extent in the multi-
dimensiona attribute space of each chunk, the distribution of the bounding rectangles for the input and
accumulator chunks in their corresponding attribute spaces, and the time it takes to read, communicate,
initialize and process the chunks. We present the results of an initia set of experiments, in which we vary
the extents and the distribution of the bounding rectangles for the input chunks, while keeping the other
parameters constant. Although we are not varying the distribution and extents of the accumulator chunks,
we can still emulate different mappings (projection functions) between the input and accumulator chunks,
by varying the distribution and extents of the input chunks. To further limit the parameter space, we fix the
computation time for initializing and processing the chunks at a constant value. We are in the process of
performing more detailed experiments with variable chunk sizes and computation costs, to investigate their
effects on the performance of the three strategies. Since our main focus is to evaluate the query execution
performance of the query planning strategies, al the execution times do not include the timeto perform query
planning.

We employ synthetic input and output datasets in our experiments to evaluate the strategies under
controlled scenarios. The output dataset has an underlying 2D attribute space of integer values (e.g., spatia
coordinates) bounded by a rectangle of 10K x 10K. The entire output attribute space is regularly partitioned

into non-overlapping rectangles, with each rectangle representing an accumul ator chunk in the output dataset.
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Figure 4: Datasets with uniform (left) and skewed (right) distributions. The dots in each figure show the
mid-points of the bounding rectangles of input chunks after projection into the 2D output attribute space.

The input datasets used in the experiments have a 3D attribute space of integer values, bounded by a box
of 10K x10K x10K. We used a simple pr oj ecti on function that projects a point from the 3D input
space into the 2D output space by discarding the coordinate in the third dimension. To emulate different
application scenarios, the input chunks were placed into the 3D input attribute space using two different
distributions; uniform and skewed. The skewed distribution was generated by placing the mid-points of 20%
of the bounding rectangles of all input chunks using uniform distribution, and placing the mid-points of the
remaining bounding rectangles using a normal distribution (with a mean of 5120 and a standard deviation
of 1024), in al 3 dimensions of the attribute space. Figure 4 shows the distribution of the mid-points of
the bounding rectangles for the input chunks using the two distributions. The skewed distribution places
more input chunks towards the center of the input space. Since we are projecting the input chunks into the
output space by discarding the third dimension of the input space, the accumulator chunks near the center
of the output space would therefore intersect with more input chunks than those located away from the
center. Thisdistributionrepresents aclass of applicationswhere the distribution of input chunksin the output
space is localized and therefore requires different amounts of processing across the accumulator chunks.
Typica examplesinclude applications using adaptive mesh refinement algorithms, studies conducted by earth
scientiststhat empl oy remote-sensing dataat different resolutions, and medical anaysisapplied to microscopy
images taken at different magnifications.

For the experiments, we partitioned the output attribute space into 32x 32 accumulator chunks, each
with a minimum bounding rectangle of 320x320. The number of input chunks was fixed at 4096 for both
distributions. Both input and accumulator chunks are 128KB in size, and were declustered across the 16

disks in the system using Hilbert curve based declustering agorithms [9]. The result is that all disks are
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assigned approximately the same number of input (accumulator) chunks, and chunks that are spatially close
in the respective attribute spaces are distributed to different disks. We used a single query window that
covers the entire input and output attribute spaces. The computation in each phase of the query execution
issimulated by a constant delay. Our experience with scientific applications indicate that the processing in
the initialization and global combine phases is usually much less expensive than that in the local reduction
phase. To model those costs, we used a delay of 1 millisecond for both initializing an accumulator chunk
in the initialization phase and combining the partia results for an accumulator chunk in the global combine
phase. In selecting the cost for the local reduction phase computation, we want to choose a vaue that is
significantly larger than the computation costs in the initialization and global combine phases, but dso is
small enough so that the cost relative to communication and 1/0 in the queries is not too small. Otherwise,
the queries become very computationally intensive, and the performance of the queries under al the planning
strategies is affected only by the computational load balance across the processors. For each intersecting
(input chunk, accumulator chunk) pair we used a delay of 10 milliseconds to emulate the processing in the
local reduction phase. Therefore, an input chunk that maps to a larger number of accumulator chunks takes
more time to process. Similarly, an accumulator chunk to which alarger number of input chunks map takes
longer to process.

We first investigate how the amount of memory allocated for the accumulator and for the 1/0 and
communication buffers affects the performance of the three strategies. In this set of experiments, the total
amount of memory is fixed at 64 MB per processor, and the amount of memory allocated for accumulators
and for 1/0 and communication buffersisvaried. We useinput chunkswith extent 320x 320 and 1280x 1280,
distributed using both uniform and skewed distributions. Figure 5 shows the query execution times for the
three strategies; full replicated accumulator (FRA), sparse replicated accumulator (SRA), and distributed
accumulator (DA), using 4 MB, 9 MB, 16 MB, 48 MB and 60 MB of memory per processor for the
accumulators. DA generates 3 tileswith 4 MB and 1 tilewith 9 MB or more, while FRA and SRA generate
34 tilesand 33 tiles at 4 MB, respectively, and 3 tilesand 1 tileat 60 MB. Thisis because DA makes more
efficient use of the aggregated memory in the system. Asis shown in the figure, the performance of al the
strategiesincreases as the memory alocated for accumulators increases, but flattens out at about 32 MB. The
performance improvement is mainly because decreasing the number of tiles decreases total 1/0 volume. For
example, using the FRA scheme with a uniform data distribution, the volume of 1/O for aprocessor is 60 MB
and 47 MB, for accumul ator memory sizes of 4 MB and 60 M B, respectively. However, sincethel/Otimeis
small and part of the I/O time overlaps with computation, the decrease in overall execution timeis not large.

We observe that the performance deteriorates at 60 MB. We suspect that this is due to excessive page faults
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Figure 5. Tota query execution time for input datasets of uniform (left) and skewed (right) distributions,
using different memory configurations.

for keeping an accumulator tile of 60 MB in memory, but a complete analysis requires further investigation.
Although at least 4 MB of memory was alocated for 1/0 and communication buffers, less memory was
required at run-time to keep the processors busy. Since the best performance is achieved with accumulator
memory set to 32 MB, wewill use this memory configuration for the rest of the experiments presented.
Figure 6 shows query processing time as the extent of the input bounding rectangles in each dimension
isvaried. The x-axis in the figures represents the length of each dimension of the query bounding rectangle.
Varying the extent of bounding rectangles varies the number of accumulator chunks an input chunk maps
to. Asexpected, enlarging the bounding rectangle of an input chunk increases the number of input chunks
that each accumulator chunk must process, hence increases total processing time. This can be seen from
the increase in the time for the local reduction phase of the query, in the execution time breakdowns shown
in Figure 7. Figure 6 aso shows that DA performs better than, or as well as, the other strategies when the
input chunk size is small, but performs worse when the input chunk becomes large. Thisis mainly because
the communication overhead in DA is proportiona to the average fanout of an input chunk, where fanout is
the number of accumulator chunks an input chunk mapsto. As aresult of Hilbert curve based declustering
algorithm, the set of accumulator chunks to which a given input chunk mapsis likely to be distributed over
multiple processors. Thus, for larger input chunks, an input chunk intersects more accumulator chunks, and
the input chunk needs to be forwarded to more processors. The volume of communicationin FRA and SRA,
on the other hand, is proportiona to the number of accumulator chunks. In FRA, all processors always
broadcast their local accumulator chunksto other processors regardless of the size of the input chunk extent.
Therefore, with a small input chunk extent, where DA sends each input chunk to a relatively small number

of processors, FRA incurs more overhead due to interprocessor communication. SRA, however, generates
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Figure 6: Total query execution timefor input datasets of uniform (left) and skewed (right) distributionswith
different input bounding rectangle extents.

less communication volume than FRA, since it avoids unnecessary replication. The difference between the
volumes of interprocessor communication that occur in the DA and FRA schemes can be computed from the
following formula:

%xfxB—%xeS Q)
where N isthe total number of input chunks, f is the average fanout of the input chunks, B is the size of
an input chunk, P isthe number of processors, M isthe total number of accumulator chunks, and 5 isthe
size of an accumulator chunk. The constant 2 comes from the fact that in FRA each accumulator chunk is
communicated twice, once during the initialization phase and once during the global combine phase of query
execution. With the experimental parameters we are using, Equation (1) isgreater than zero when f isgreater
than 8, which occurs when the extent of the input chunks exceeds 640. Thus, as can be seen from Figure 6,
the DA scheme performs worse than the FRA and SRA schemes when the extent of the input chunksislarger
than 640. Note that the average fanout of input chunks can be computed during query planning.

Figure 7 shows the breakdown of the total execution timeinto phases. The figure shows that the output
handling phase (Output), in which each processor writes updated output chunks back to disk, takes a very
small amount of time since each processor writesonly asmall number of output chunks. Also, with small input
chunks (i.e.,, small bounding rectangles), the times spent in the initialization, reduction and combine phases
are approximately the same. However, the reduction phase becomes dominant with larger input chunks.

Figure 8 shows how much time is spent in I/O, communication, computation and waiting during the

execution of the query. The figure shows that communication and computation times are the dominant
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Figure 8: Execution time breakdowns by components for uniform (left) and skewed (right) distributions.

components. Thewaiting timeisthetotal time (over al tilesfor all phases) processors spend idle at the end of
the various phases during query execution. The waiting time effectively measures the |oad imbalance across
the processors due to computation, I/O and interprocessor communication.

In these experiments, query planning takes very little time to generate the required query plans. For
example, with an input chunk extent of 320, it takes 0.82, 0.93 and 0.79 seconds to generate a query plan
for FRA, SRA and DA, respectively. An additiona 0.2 seconds is used for communication between the
master node and the other nodes. With an input chunk extent of 1280, where input chunks are mapped to

more accumul ator chunks, it takes 1.1, 1.3 and 1.2 seconds to generate a query plan for each scheme, and 0.3

seconds for communication.
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5 Related Work

Pardlel database systems have been amajor topic in the database community [7] for along time, and much
attention has been devoted to the implementation and scheduling of paralld joins [16, 19]. As in many
paralle join agorithms, our query strategies exploit paralelism by effectively partitioning the data and
workload among the processors. However, the characteristics of the distributive and algebraic aggregation
functions alowed in our queries enable us to deploy more flexible workload partitioning schemes through
the use of ghost chunks. Several extensible database systems have been proposed to provide support for
user-defined functions [3, 22]. The incorporation of user-defined functions into a computation model as
genera asthe relationa model, can make query optimization very difficult, and has recently attracted much
attention [20]. Our system, on the other hand, implements a more restrictive processing structure that
mirrors the processing of our target applications. Good performance is achieved through effective workload
partitioning and careful scheduling of the operations to obtain good utilization of the system resources, not

by rearranging the a gebraic operatorsin arelational query tree, asisdonein relationa database systems.

6 Conclusions and Future Work

In this paper we have addressed query planning strategies to enable efficient execution of range queries with
user-defined aggregation functions, targeting multi-dimensional scientific datasets. We have evaluated three
potential query planning strategiesthat employ different tiling and workload partitioning schemes within the
ADR framework.

Our results indicate that no one scheme is dways best. The relative performance of the various query
planning strategies changes with the application characteristics. The strategies presented in this paper
represent two extreme approaches. The full and sparse replicated accumulator strategies lie one end of the
spectrum of possible strategies: processing is performed on the processors where input chunks are stored.
The distributed accumulator strategy, on the other hand, lies at the other end: processing is carried out on the
processors where output blocks are stored. Our experimental results suggest that a hybrid strategy may be
the best approach. The tiling and workload partitioning steps can be formulated as a multi-graph partitioning
problem, with input and output chunks representing the graph vertices, and the mapping between input and
output chunks provided by the projection function representing the graph edges. A planning a gorithm based
on graph partitioning could provide an effective means for implementing a general hybrid strategy, and we

are currently investigating thisline of work.
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One of the long-term goals of our work on query planning strategies isto develop simple but reasonably

accurate cost modelsto guide and automate the sel ection of an appropriate strategy. In this paper, we showed

avery simple formula (Eg. 1) that seems able to predict the relative performance of the various strategies

under changing application characteristics. Thisis encouraging since it shows that simple cost models may

perform well for some application scenarios. However, answering the question “under what circumstances

do the simple cost models provide accurate or inaccurate results?’, and “how can we refine the cost model

in situations where it does not provide reasonably accurate results?’ require further research. We plan to

evaluate our strategies on additiona applications and on other parallel architectures to further investigate

these questions.
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