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Abstract

Applications that make use of very large scientific datasets have become an increasingly important

subset of scientific applications. In these applications, the datasets are often multi-dimensional, i.e., data

items are associated with points in a multi-dimensional attribute space. The processing is usually highly

stylized, with the basic processing steps consisting of (1) retrieval of a subset of all available data in the

input dataset via a range query, (2) projection of each input data item to one or more output data items, and

(3) some form of aggregation of all the input data items that project to the each output data item. We have

developed an infrastructure, called the Active Data Repository (ADR), that integrates storage, retrieval

and processing of multi-dimensional datasets on shared-nothing architectures. In this paper we address

query planning and execution strategies for range queries with user-defined processing. We evaluate three

potential query planning strategies within the ADR framework under several application scenarios, and

present experimental results on the performance of the strategies on a multiprocessor IBM SP2.

1 Introduction

Large amounts of data are being generated in many scientific and engineering studies by detailed simulations,

and by sensors attached to devices such as satellites and microscopes. Hence, storage, retrieval, processing

and analyzing very large amounts of scientific data has become an important part of scientific research. Typical�This research was supported by the National Science Foundation under Grants # ACI-9619020 (UC Subcontract # 10152408)and
#BIR 9318183, and the Office of Naval Research under Grant #N6600197C8534. The Maryland IBM SP2 used for the experiments
was provided by NSF CISE Institutional Infrastructure Award #CDA9401151 and a grant from IBM.
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examples of very large scientific datasets include long running simulations of time-dependent phenomena

that periodically generate snapshots of their state (e.g. hydrodynamics and chemical transport simulation for

estimating pollution impact on water bodies [13]), simulation of a flame sweeping through a volume [18],

archives of raw and processed remote sensing data (e.g. AVHRR [17]), and archives of medical images (e.g.

high resolution confocal light microscopy, MRI). For example, a dataset of coarse-grained satellite data (with

4.4 km pixels), covering the whole earth surface and captured over a relatively short period of time (10 days)

is about 4.1GB; a finer-grained version (1.1 km per pixel) contains about 65 GB of sensor data. In medical

imaging, size of a single digitized composite slide image at high power from a light microscope is over 7GB

(uncompressed), and a single large hospital can process more than one thousand slides per day.

Scientific applications that make use of large datasets have several important characteristics. The datasets

are usually multi-dimensional, i.e., each data item in a dataset is associated with a point in a multi-dimensional

attribute space defined by several attributes of the data item. Applications usually make use of a subset of

all possible data available in the dataset. In satellite data processing, for instance, an application may only

use sensor data in a limited spatio-temporal region and from a subset of sensor bands. Applications may also

combine existing attributes to synthesize new attributes. Since the same physical entity may be described in

a complementary manner by different types of datasets, applications may need to generate new datasets by

performing joins over pre-existing datasets. Our study of a large set of applications [1, 2, 6, 11, 14, 18, 21]

indicates that the processing is often highly stylized and shares several important characteristics. The basic

processing step usually consists of mapping multi-dimensional coordinates of the retrieved data items to the

coordinates of the proper output data items, and computing output data items by some form of (associative

and commutative) aggregation operation over all the retrieved input items mapped to the same output data

item.

In a database management system (e.g., an object-relational DBMS), the access and processing patterns

of these applications can be represented as multi-dimensional range queries with user-defined aggregation

operations. However, efficient execution of such range queries is a challenging task. Storing very large

amounts of data requires use of disk farms, composed of distributed collections of disks, thereby requiring an

effective distribution of the data items across all the disks in the system. Moreover, user-defined functions in

the queries may involve expensive operations, which can benefit greatly from parallel processing. In addition,

as aggregation functions usually result in significant reductions in data volume, it is desirable to perform the

computation where the data is stored, so that shipping large volumes of data across a network can be avoided.

However, despite the reduction in data size, output datasets can still be very large, and may not even fit into

the available memory in the parallel database system.
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In this paper we address query planning for efficient execution of range queries with user-defined functions

on shared-nothing architectures. In particular, we target the problems of partitioning the computational

workload across processors, minimization of I/O and communication overheads, and handling of out-of-core

output datasets during query processing. We have developed the Active Data Repository (ADR) [4, 5], an

infrastructure for building parallel databases that enables integration of storage, retrieval and processing of

multi-dimensional scientific datasets on a parallel machine. ADR is designed to make it possible to carry out

aggregation operations efficiently on shared-nothing architectures. In this paper we evaluate three potential

query planning strategies within the ADR framework, under several controlled application scenarios. The

goal of this study is to develop methods and cost models based on the characteristics of applications and their

associated datasets, along with the machine configuration the system is running on, to guide (and automate)

selection of appropriate query planning strategies. This paper presents initial experimental results on the

performance of the strategies on a multiprocessor IBM SP.

2 Overview

2.1 Range Queries on Multi-Dimensional Scientific Datasets

In this work we target range queries with user-defined processing that have the following components:� A reference to an input dataset I and an output dataset O. Both input datasets and output datasets have

underlying multi-dimensional attribute spaces. That is, each data item is associated with a point in a

multi-dimensional attribute space defined by the attributes of the data item. The data dimensions can

be spatial coordinates, time, or varying experimental conditions such as temperature or velocity. Data

items may be sparsely and/or irregularly distributed in the underlying attribute space.� A multi-dimensional bounding box, referred to here also as a query window, defined in the attribute

space of I or O. The bounding box defines the region of interest in a multi-dimensional attribute space.� A reference to user-defined projection and aggregation functions. A projection function

maps an element in I to one or more elements in O. The mapping is from an element’s coordinates

in the multi-dimensional attribute space underlying I to coordinates in the attribute space of O. An

aggregation function describes how data items in I that map to the same data item in O are

aggregated. The aggregation functions allowed correspond to the distributiveand algebraic aggregation

functions defined by Gray et. al [12]. That is, the correctness of the result does not depend on the order

the input data items are aggregated.
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� A specification of how the final output dataset is handled. There are three possibilities: (1) The output

is consumed by the application that performed the range query. (2) The output can be inserted into the

database as a new dataset. In this case, O corresponds to the dataset to be added. (3) An existing dataset

can be updated. The reference to dataset O corresponds to the dataset in the database to be updated. In

this case, aggregated input data items are combined with the corresponding previously existing output

data items, and the results are written back to the database, as for (2). The only difference from (2) is

that the output data items may be initialized with their values from the database, instead of with the

identity element for the aggregation function.

Typical examples of applications that make use of multi-dimensional scientific datasets are satellite data

processing applications [1, 21, 6], the Virtual Microscope and analysis of microscopy data [2, 11], and

simulation systems for water contamination studies [13]. In satellite data processing, for example, earth

scientists study the earth by processing remotely-sensed data continuously acquired from satellite-based

sensors. Each sensor reading is associated with a position (longitude and latitude) and the time the reading

was recorded. In a typical analysis [1, 21], a range query defines a bounding box that covers a part or all of

the surface of the earth over a period of time. Data items retrieved from one or more datasets are processed

to generate one or more composite images of the area under study. Generating a composite image requires

projection of the selected area of the earth onto a two-dimensional grid [23]; each pixel in the composite

image is computed by selecting the “best” sensor value that maps to the associated grid point. Composite

images can be added to the database as new datasets. In addition, new sensor readings can be combined to

modify the images already existing in the database (e.g., better sensor values can replace previously selected

sensor values in a computed image). Another example is the Virtual Microscope [2, 11], which supports

the ability to interactively view and process digitized data arising from tissue specimens. The raw data for

such a system can be captured by digitally scanning collections of full microscope slides under high power.

The digitized images from a slide are effectively a three-dimensional dataset, since each slide can contain

multiple two-dimensional focal planes. At the basic level, a range query selects a region on a focal plane

in a slide. The processing for the Virtual Microscope requires projecting high resolution data onto a grid of

suitable resolution (governed by the desired magnification) and appropriately compositing pixels mapping

onto a single grid point, to avoid introducing spurious artifacts into the displayed image.
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2.2 The Active Data Repository

In this section we briefly describe the Active Data Repository (ADR) [4, 5]. ADR consists of a front-end

and a back-end. The front-end interacts with client applications and relays the range queries issued by the

clients to the back-end, which consists of a set of processing nodes and multiple disks attached to these nodes.

During query processing, the back-end nodes are responsible for retrieving the input data and performing

projection and aggregation operations over the data items retrieved to generate the output products

as defined by the range query. ADR has been developed as a set of modular services in C++. Through

use of these services, ADR provides support for common database operations, including index lookup, data

retrieval, memory management, and scheduling of processing across a parallel machine, while at the same

time allowing for customization for different types of processing over widely varying datasets with underlying

multi-dimensional attribute spaces.

We now describe how datasets are stored in ADR, and describe the ADR query planning and query

execution services in more detail.

2.3 Storing Datasets

In order to achieve low latency retrieval of data, ADR datasets are partitioned into chunks, each of which

consists of one or more data items from the same dataset. A chunk is the unit of I/O and communication

operations in the ADR. That is, a chunk is retrieved as a whole during query processing. Since each data

item is associated with a point in a multi-dimensional attribute space, a chunk is associated with a minimum

bounding rectangle (MBR) that encompasses the coordinates of all the items in the chunk. An index is

constructed on the MBRs of the chunks, and the index is used to find the chunks that intersect a query window

during query processing. Chunks are declustered across the disks using a declustering algorithm [8, 9, 15]

to achieve I/O parallelism during query processing. Each chunk is assigned to a single disk, and is read

and/or written during query processing only by the local processor to which the disk is attached. If a chunk is

required for processing by one or more remote processors, the chunk is sent to those processors by the local

processor via interprocessor communication.

2.4 Query Planning

The task of the query planning service is to determine a query plan to efficiently process a range query based

on the amount of available resources in the back-end. A query plan specifies how parts of the final output

are computed and the order the input data chunks are retrieved for processing. In order to hold partial results
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generated during aggregation operations, an intermediate data structure, referred to as an accumulator, may

be required. The partial results computed into the accumulator can be further processed in the final phase of

query execution to produce the final output dataset. In the rest of the paper, we assume that an accumulator

is always used during query processing, and that the accumulator is partitioned into chunks, each of which

corresponds to a chunk in the output dataset, since all existing ADR applications require an accumulator.

Query planning is carried out in two steps; tiling and workload partitioning. In the tiling step, if the size

of the accumulator is too large to fit into the back-end main memory, the accumulator is partitioned into tiles,

each of which contains a distinct set of one or more accumulator chunks, so that each tile fits entirely into

memory. Indices, provided by the ADR indexing service, are then used to locate the data chunks that must

be retrieved from the disks by each back-end process for each tile. Since a projection function may map

an input element to multiple output elements, an input chunk may also be mapped to multiple accumulator

chunks. In other words, a projection function determines how the input data chunks are distributed in the

output dataset attribute space. An input chunk needs to be retrieved multiple times if the output chunks it

maps to are assigned to different tiles. In the workload partitioning step, the workload associated with each

tile (i.e., processing for input and accumulator chunks) is partitioned across processors. This is accomplished

by assigning each processor the responsibility for processing a subset of the input and/or accumulator chunks.

In Section 3 we present query planning strategies that implement different tiling and workload partitioning

schemes.

2.5 Query Execution

The query execution service manages all the resources in the system and carries out the query plan generated

by the query planning service. The primary feature of the query execution service is its ability to integrate data

retrieval and processing for a wide variety of applications. This is achieved by pushing processing operations

into the storage manager and allowing processing operations to access the buffer used to hold data arriving

from disk. As a result, the system avoids one or more levels of copying that would be needed in a layered

architecture where the storage manager and the processing belonged to different layers.

To further reduce query execution time, the query execution service overlaps disk operations, network

operations and processing as much as possible. It does this by maintaining explicit queues for each kind

of operation (data retrieval, message sends and receives, data processing) and switches between them as

required. Pending asynchronous I/O and communication operations left in the operation queues are polled

and, upon their completion, new asynchronous functions are initiated when more work is expected and buffer
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space is available. Data chunks are therefore retrieved and processed in a pipelined fashion. The processing

of a query on a back-end processor progresses through the following phases for each tile:

1. Initialization. Accumulator chunks in the current tile are allocated space in memory and initialized.

If an existing output dataset is required to initialize accumulator elements, an output chunk is retrieved

by the processor that has the chunk on its local disk, and the chunk is forwarded to the processors that

require it.

2. Local Reduction. Input data chunks on the local disks of each back-end processor are retrieved and

aggregated into the accumulator chunks allocated in each processor’s memory in phase 1.

3. Global Combine. Partial results computed in each processor in phase 2 are combined across all

processors to compute final results.

4. Output Handling. The final output chunks for the current tile are computed from the corresponding

accumulator chunks computed in phase 3. If the query creates a new dataset, output chunks are

declustered across the available disks, and each output chunk is written to the assigned disk. If the

query updates an already existing dataset, the updated output chunks are written back to their original

locations on the disks.

A query iterates through these phases repeatedly until all tiles have been processed and the entire output

dataset is handled. When multiple queries are processed simultaneously by the ADR back-end, each query

independently progresses through the four query execution phases.

3 Query Planning Strategies

In this section we describe three query planning strategies that use different workload partitioning and tiling

schemes. To simplify the presentation, we assume that the target range query involves only one input and

one output dataset. Both the input and output datasets are assumed to be already partitioned into chunks

and declustered across the disks in the system. In the following discussions we assume that an accumulator

chunk is allocated in the memory for each output chunk to hold the partial results, and that the total size of

the accumulator exceeds the aggregate memory capacity of the parallel machine, so that tiling is needed.

We define a local input/output chunk on a processor as an input/output chunk stored on one of the disks

attached to that processor. Otherwise, it is a remote chunk. A processor owns an input or output chunk if it is
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a local input or output chunk. A ghost chunk (or ghost cell) is an accumulator chunk allocated in the memory

of a processor that does not own the corresponding output chunk.

For query planning, one of the back-end nodes is designated as the master node, which generates the

query plan and broadcasts it to all other back-end nodes. Prior to query planning, the local input and output

chunks that intersect the query window are determined in each back-end node, including the master node.

Each back-end node sends the minimum bounding rectangles of its input and output chunks to the master node

to use in query planning. At the end of the tiling and workload partitioning step of query planning, the master

processor sends the chunk assignments and workload partitioning information for each tile to the processors

that need the information. Each processor uses this information to compute how many chunks (input, output,

accumulator, ghost chunk) to allocate, retrieve, process, and communicate in the various phases of query

execution.

3.1 Fully Replicated Accumulator (FRA) Strategy

In this scheme each processor is assigned the responsibility to carry out processing associated with its local

input chunks. The accumulator is partitioned into tiles, each of which fits into the local memory of a single

back-end processor. Figure 1 shows the tiling and workload partitioning step for this strategy. When an

output chunk is assigned to a tile, the corresponding accumulator chunk is put into the set of local accumulator

chunks in the processor that owns the output chunk, and is assigned as a ghost cell on all other processors.

This scheme effectively replicates all of the accumulator chunks in a tile on each processor, and each processor

generate partial results using its local input chunks. These partial results are combined into the final result

in the global combine phase of query execution. Ghost chunks are forwarded to the processors that own the

corresponding output (accumulator) chunks to produce the final output product. Since a projection function

may map an input chunk to multiple output chunks, an input chunk must be retrieved multiple times if the

corresponding output chunks are assigned to different tiles. In the implementation of all the query strategies

described in this paper, we use a Hilbert space-filling curve [15, 9, 10] to order the output chunks. Our

goal is to minimize the total length of the boundaries of the tiles, by assigning spatially close chunks in the

multi-dimensional attribute space to the same tile, to reduce the number of input chunks crossing one or more

boundaries. The advantage of using Hilbert curves is that they have good clustering properties [15], since they

preserve locality. In our implementation, the mid-point of the bounding box of each output chunk is used to

generate a Hilbert curve index. The chunks are sorted with respect to this index, and selected in this order for

tiling (step 4 in Figure 1). The current implementation, however, does not take into account the distribution
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1. set Memory = Minimum of the size of memory in each processor (for holding accumulator chunks)
2. set Tile = 1, MemoryUsed = 0
3. while (there is an unassigned output chunk)
4. Select an output chunk
5. set ChunkSize = Size of the corresponding accumulator chunk
6. if ((ChunkSize+MemoryUsed)> Memory)
7. Tile = Tile + 1
8. MemoryUsed = ChunkSize
9. else
10. MemoryUsed = MemoryUsed + ChunkSize
11. Assign the output (accumulator) chunk to tile Tile

(* Workload partitioning step *)
12. Let k be the processor that owns the output chunk
13. Add the accumulator chunk to the set of local accumulator

chunks of k for this tile
14. Add the accumulator chunk to the set of ghost cells on all

other processors for this tile
15. Add set of local input chunks of k that map to this output chunk to

set of input chunks to be retrieved by k during query execution for this tile
16. set NumberOfTiles = Tile

Figure 1: Tiling and workload partitioning for the fully replicated accumulator strategy.

of input chunks in the output attribute space, so for some distributions of the input data in its attribute space

there can still be many input chunks intersecting multiple tiles, despite a small boundary length.

Executing step 15 of the while loop requires either an efficient inverse projection function or an efficient

search method, either of which must return the input chunks that map to a given output chunk. In some cases

it may be less expensive to find the projected output chunks for each input chunk. For example, the input

chunks may be irregularly and sparsely distributed in the input attribute space, while the output may be a

dense and regular array such as a raster image, with the output chunks as regular subregions of the array.

In such cases, step 15 can be carried out in a separate loop, iterating over input chunks, finding the output

chunks they map to, and adding the input chunks to the appropriate tiles. To run step 15 as a separate loop,

the implementation must store the assigned tile number with each output chunk.

3.2 Sparsely Replicated Accumulator (SRA) Strategy

The fully replicated accumulator strategy eliminates interprocessor communication for input chunks, by

replicating all accumulator chunks. However, this is wasteful of memory, because the strategy replicates each

accumulator chunk in every processor even if no input chunks will be aggregated into the accumulator chunks

in some processors. This results in unnecessary initialization overhead in the initialization phase of query

execution, and extra communication and computation in the global combine phase. The available memory in
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1. for (each processor i)
set Memory(i) = Size of memory in i (for holding accumulator chunks)

2. set Tile = 1, MemoryFull = 0
3. while (there is an unassigned output chunk)
4. Select an output chunk
5. Let So be the set of processors having at least one input chunk

that projects to this output chunk
6. set ChunkSize = Size of the corresponding accumulator chunk
7. for (p in So)
8. if ((Memory(p)�ChunkSize)< 0) set MemoryFull = 1
9. if (MemoryFull == 1)
10. Tile = Tile + 1
11. for (p in So) set Memory(p) = (size of memory on p) � ChunkSize
12. for (p not in So) set Memory(p) = size of memory on p
13. set MemoryFull = 0
14. else
15. for (p in So) set Memory(p) = Memory(p)� ChunkSize
16. Assign the output (accumulator) chunk to tile Tile

(* Workload partitioning step *)
17. Let k be the processor that owns the output chunk
18. Add the accumulator chunk to the set of local accumulator

chunks of k for this tile
19. Add the accumulator chunk to the set of ghost cells on each

processor in So for this tile
20. Add set of local input chunks of k that map to this output chunk to

set of input chunks to be retrieved by k during query execution
21. set NumberOfTiles = Tile

Figure 2: The tiling and workload partitioning step for the sparsely replicated accumulator strategy.

the system also is not efficiently employed, because of unnecessary replication. Such replication may result

in more tiles being created than necessary, which may cause a large number of input chunks to be retrieved

from disk more than once. The tiling step of the sparsely replicated accumulator strategy is shown in Figure 2.

In this strategy, a ghost chunk is allocated only on processors owning at least one input chunk that projects

to the corresponding accumulator chunk. Replicating accumulator chunks sparsely in this way requires that

we find the corresponding set of processors for each output chunk during the tiling step (step 5 in Figure 2).

As was stated in the previous section, sometimes it may be easier to find the projected output chunks for each

input chunk. For those cases, an alternative solution is to maintain a list for each output chunk to store the

set of processors that require allocating an accumulator chunk. The list is created prior to the tiling step by

iterating over the input chunks, projecting them to output chunks, and storing the result (processor id) with

each output chunk.
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1. for (each processor i)
2. set Memory(i) = Size of memory in i (for holding accumulator chunks)
3. set Tile(i) = 1
4. while (there is unassigned output chunk)
5. Select an output chunk
6. Let p be the processor that owns this output chunk
7. set ChunkSize = Size of the corresponding accumulator chunk
8. if ((Memory(p)�ChunkSize)< 0)
9. set Tile(p) = Tile(p) + 1
10. set Memory(p) = (size of memory on p) � ChunkSize
11. else
12. set Memory(p) = Memory(p) � ChunkSize
13. Assign the output (accumulator) chunk to tile Tile(p)

(* Workload partitioning step *)
14. Add accumulator chunk to the set of local accumulator

chunks of p for this tile
15. Add all the local and remote input chunks that map to the output chunk

to the set of input chunks to be retrieved and processed by p for this tile
16. set NumberOfTiles = maximum of Tile(p)

Figure 3: The tiling and workload partitioning step for the distributed accumulator strategy.

3.3 Distributed Accumulator (DA) Strategy

In this scheme the output (accumulator) chunks in each tile are partitioned into disjoint sets, referred to as

working sets. Each processor is given the responsibility to carry out the operations associated with the output

chunks in a working set. The tiling and workload partitioning step is shown in Figure 3. Output chunks are

selected (step 5) in Hilbert curve order, as for the other two schemes.

Local chunks for each processor are assigned to the same tile until the memory space allocated for the

accumulator on that processor is filled. Since accumulator chunks are not replicated on other processors, no

ghost chunks are allocated. Therefore this scheme minimizes the use of the memory for accumulators (and

output chunks) in the system. In the other schemes, local memory space is the factor limiting the number of

output chunks assigned to a tile. Since the distributed accumulator strategy can assign more chunks to a tile,

it produces fewer tiles than the other schemes. Hence, the number of input chunks that must be retrieved for

more than one tile is likely to be less than in the other schemes.

In the algorithm shown in Figure 3, the working set of a processor for a tile is composed of only the local

output chunks in that processor. This strategy avoids interprocessor communication during query execution

for accumulator chunks and ghost chunks. In the other schemes, output chunks may need to be communicated

in the initialization phase of query execution to initialize ghost chunks. Similarly, in the global combine phase,

ghost cells in each processor must be transmitted to the processors that own the local accumulator chunks. On
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the other hand, the distributed accumulator strategy introduces communication in the local reduction phase

for input chunks; all the remote input chunks that map to the same output chunk must be forwarded to the

processor that owns the output chunk. Since a projection function may map an input chunk to multiple output

chunks, an input chunk may be forwarded to multiple processors. In addition, a good declustering strategy

could cause almost all input chunks to be forwarded to other processors, because an input chunk and the

output chunk(s) that it projects to are unlikely to be assigned to the same processor. These tradeoffs will be

evaluated for several application scenarios in Section 4.

4 Experimental Results

In this section we present an experimental performance evaluation of the three query execution strategies on a

16 node IBM SP2. Each node of the IBM SP2 is a thin node with 128 MB of memory; nodes are interconnected

with the High Performance Switch, which provides 40MB/sec peak communication bandwidth. In these

experiments data was stored on one disk per node.

A complete evaluation of the strategies requires a detailed sensitivity analysis over a large set of parameters,

including the number of input and accumulator chunks, the number of data items and the extent in the multi-

dimensional attribute space of each chunk, the distribution of the bounding rectangles for the input and

accumulator chunks in their corresponding attribute spaces, and the time it takes to read, communicate,

initialize and process the chunks. We present the results of an initial set of experiments, in which we vary

the extents and the distribution of the bounding rectangles for the input chunks, while keeping the other

parameters constant. Although we are not varying the distribution and extents of the accumulator chunks,

we can still emulate different mappings (projection functions) between the input and accumulator chunks,

by varying the distribution and extents of the input chunks. To further limit the parameter space, we fix the

computation time for initializing and processing the chunks at a constant value. We are in the process of

performing more detailed experiments with variable chunk sizes and computation costs, to investigate their

effects on the performance of the three strategies. Since our main focus is to evaluate the query execution

performance of the query planning strategies, all the execution times do not include the time to perform query

planning.

We employ synthetic input and output datasets in our experiments to evaluate the strategies under

controlled scenarios. The output dataset has an underlying 2D attribute space of integer values (e.g., spatial

coordinates) bounded by a rectangle of 10K�10K. The entire output attribute space is regularly partitioned

into non-overlapping rectangles, with each rectangle representing an accumulator chunk in the output dataset.
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Figure 4: Datasets with uniform (left) and skewed (right) distributions. The dots in each figure show the
mid-points of the bounding rectangles of input chunks after projection into the 2D output attribute space.

The input datasets used in the experiments have a 3D attribute space of integer values, bounded by a box

of 10K�10K�10K. We used a simple projection function that projects a point from the 3D input

space into the 2D output space by discarding the coordinate in the third dimension. To emulate different

application scenarios, the input chunks were placed into the 3D input attribute space using two different

distributions; uniform and skewed. The skewed distribution was generated by placing the mid-points of 20%

of the bounding rectangles of all input chunks using uniform distribution, and placing the mid-points of the

remaining bounding rectangles using a normal distribution (with a mean of 5120 and a standard deviation

of 1024), in all 3 dimensions of the attribute space. Figure 4 shows the distribution of the mid-points of

the bounding rectangles for the input chunks using the two distributions. The skewed distribution places

more input chunks towards the center of the input space. Since we are projecting the input chunks into the

output space by discarding the third dimension of the input space, the accumulator chunks near the center

of the output space would therefore intersect with more input chunks than those located away from the

center. This distribution represents a class of applications where the distribution of input chunks in the output

space is localized and therefore requires different amounts of processing across the accumulator chunks.

Typical examples include applications using adaptive mesh refinement algorithms, studies conducted by earth

scientists that employ remote-sensing data at different resolutions, and medical analysis applied to microscopy

images taken at different magnifications.

For the experiments, we partitioned the output attribute space into 32�32 accumulator chunks, each

with a minimum bounding rectangle of 320�320. The number of input chunks was fixed at 4096 for both

distributions. Both input and accumulator chunks are 128KB in size, and were declustered across the 16

disks in the system using Hilbert curve based declustering algorithms [9]. The result is that all disks are
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assigned approximately the same number of input (accumulator) chunks, and chunks that are spatially close

in the respective attribute spaces are distributed to different disks. We used a single query window that

covers the entire input and output attribute spaces. The computation in each phase of the query execution

is simulated by a constant delay. Our experience with scientific applications indicate that the processing in

the initialization and global combine phases is usually much less expensive than that in the local reduction

phase. To model those costs, we used a delay of 1 millisecond for both initializing an accumulator chunk

in the initialization phase and combining the partial results for an accumulator chunk in the global combine

phase. In selecting the cost for the local reduction phase computation, we want to choose a value that is

significantly larger than the computation costs in the initialization and global combine phases, but also is

small enough so that the cost relative to communication and I/O in the queries is not too small. Otherwise,

the queries become very computationally intensive, and the performance of the queries under all the planning

strategies is affected only by the computational load balance across the processors. For each intersecting

(input chunk, accumulator chunk) pair we used a delay of 10 milliseconds to emulate the processing in the

local reduction phase. Therefore, an input chunk that maps to a larger number of accumulator chunks takes

more time to process. Similarly, an accumulator chunk to which a larger number of input chunks map takes

longer to process.

We first investigate how the amount of memory allocated for the accumulator and for the I/O and

communication buffers affects the performance of the three strategies. In this set of experiments, the total

amount of memory is fixed at 64 MB per processor, and the amount of memory allocated for accumulators

and for I/O and communication buffers is varied. We use input chunks with extent 320�320 and 1280�1280,

distributed using both uniform and skewed distributions. Figure 5 shows the query execution times for the

three strategies; full replicated accumulator (FRA), sparse replicated accumulator (SRA), and distributed

accumulator (DA), using 4 MB, 9 MB, 16 MB, 48 MB and 60 MB of memory per processor for the

accumulators. DA generates 3 tiles with 4 MB and 1 tile with 9 MB or more, while FRA and SRA generate

34 tiles and 33 tiles at 4 MB, respectively, and 3 tiles and 1 tile at 60 MB. This is because DA makes more

efficient use of the aggregated memory in the system. As is shown in the figure, the performance of all the

strategies increases as the memory allocated for accumulators increases, but flattens out at about 32 MB. The

performance improvement is mainly because decreasing the number of tiles decreases total I/O volume. For

example, using the FRA scheme with a uniform data distribution, the volume of I/O for a processor is 60 MB

and 47 MB, for accumulator memory sizes of 4 MB and 60 MB, respectively. However, since the I/O time is

small and part of the I/O time overlaps with computation, the decrease in overall execution time is not large.

We observe that the performance deteriorates at 60 MB. We suspect that this is due to excessive page faults
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Figure 5: Total query execution time for input datasets of uniform (left) and skewed (right) distributions,
using different memory configurations.

for keeping an accumulator tile of 60 MB in memory, but a complete analysis requires further investigation.

Although at least 4 MB of memory was allocated for I/O and communication buffers, less memory was

required at run-time to keep the processors busy. Since the best performance is achieved with accumulator

memory set to 32 MB, we will use this memory configuration for the rest of the experiments presented.

Figure 6 shows query processing time as the extent of the input bounding rectangles in each dimension

is varied. The x-axis in the figures represents the length of each dimension of the query bounding rectangle.

Varying the extent of bounding rectangles varies the number of accumulator chunks an input chunk maps

to. As expected, enlarging the bounding rectangle of an input chunk increases the number of input chunks

that each accumulator chunk must process, hence increases total processing time. This can be seen from

the increase in the time for the local reduction phase of the query, in the execution time breakdowns shown

in Figure 7. Figure 6 also shows that DA performs better than, or as well as, the other strategies when the

input chunk size is small, but performs worse when the input chunk becomes large. This is mainly because

the communication overhead in DA is proportional to the average fanout of an input chunk, where fanout is

the number of accumulator chunks an input chunk maps to. As a result of Hilbert curve based declustering

algorithm, the set of accumulator chunks to which a given input chunk maps is likely to be distributed over

multiple processors. Thus, for larger input chunks, an input chunk intersects more accumulator chunks, and

the input chunk needs to be forwarded to more processors. The volume of communication in FRA and SRA,

on the other hand, is proportional to the number of accumulator chunks. In FRA, all processors always

broadcast their local accumulator chunks to other processors regardless of the size of the input chunk extent.

Therefore, with a small input chunk extent, where DA sends each input chunk to a relatively small number

of processors, FRA incurs more overhead due to interprocessor communication. SRA, however, generates
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Figure 6: Total query execution time for input datasets of uniform (left) and skewed (right) distributions with
different input bounding rectangle extents.

less communication volume than FRA, since it avoids unnecessary replication. The difference between the

volumes of interprocessor communication that occur in the DA and FRA schemes can be computed from the

following formula: NP � f � B � (P � 1)MP � 2� S (1)

where N is the total number of input chunks, f is the average fanout of the input chunks, B is the size of

an input chunk, P is the number of processors, M is the total number of accumulator chunks, and S is the

size of an accumulator chunk. The constant 2 comes from the fact that in FRA each accumulator chunk is

communicated twice, once during the initialization phase and once during the global combine phase of query

execution. With the experimental parameters we are using, Equation (1) is greater than zero when f is greater

than 8, which occurs when the extent of the input chunks exceeds 640. Thus, as can be seen from Figure 6,

the DA scheme performs worse than the FRA and SRA schemes when the extent of the input chunks is larger

than 640. Note that the average fanout of input chunks can be computed during query planning.

Figure 7 shows the breakdown of the total execution time into phases. The figure shows that the output

handling phase (Output), in which each processor writes updated output chunks back to disk, takes a very

small amount of time since each processor writes only a small number of output chunks. Also, with small input

chunks (i.e., small bounding rectangles), the times spent in the initialization, reduction and combine phases

are approximately the same. However, the reduction phase becomes dominant with larger input chunks.

Figure 8 shows how much time is spent in I/O, communication, computation and waiting during the

execution of the query. The figure shows that communication and computation times are the dominant
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Figure 7: Execution time breakdowns by phases for uniform (left) and skewed (right) distributions.
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Figure 8: Execution time breakdowns by components for uniform (left) and skewed (right) distributions.

components. The waiting time is the total time (over all tiles for all phases) processors spend idle at the end of

the various phases during query execution. The waiting time effectively measures the load imbalance across

the processors due to computation, I/O and interprocessor communication.

In these experiments, query planning takes very little time to generate the required query plans. For

example, with an input chunk extent of 320, it takes 0.82, 0.93 and 0.79 seconds to generate a query plan

for FRA, SRA and DA, respectively. An additional 0.2 seconds is used for communication between the

master node and the other nodes. With an input chunk extent of 1280, where input chunks are mapped to

more accumulator chunks, it takes 1.1, 1.3 and 1.2 seconds to generate a query plan for each scheme, and 0.3

seconds for communication.
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5 Related Work

Parallel database systems have been a major topic in the database community [7] for a long time, and much

attention has been devoted to the implementation and scheduling of parallel joins [16, 19]. As in many

parallel join algorithms, our query strategies exploit parallelism by effectively partitioning the data and

workload among the processors. However, the characteristics of the distributive and algebraic aggregation

functions allowed in our queries enable us to deploy more flexible workload partitioning schemes through

the use of ghost chunks. Several extensible database systems have been proposed to provide support for

user-defined functions [3, 22]. The incorporation of user-defined functions into a computation model as

general as the relational model, can make query optimization very difficult, and has recently attracted much

attention [20]. Our system, on the other hand, implements a more restrictive processing structure that

mirrors the processing of our target applications. Good performance is achieved through effective workload

partitioning and careful scheduling of the operations to obtain good utilization of the system resources, not

by rearranging the algebraic operators in a relational query tree, as is done in relational database systems.

6 Conclusions and Future Work

In this paper we have addressed query planning strategies to enable efficient execution of range queries with

user-defined aggregation functions, targeting multi-dimensional scientific datasets. We have evaluated three

potential query planning strategies that employ different tiling and workload partitioning schemes within the

ADR framework.

Our results indicate that no one scheme is always best. The relative performance of the various query

planning strategies changes with the application characteristics. The strategies presented in this paper

represent two extreme approaches. The full and sparse replicated accumulator strategies lie one end of the

spectrum of possible strategies: processing is performed on the processors where input chunks are stored.

The distributed accumulator strategy, on the other hand, lies at the other end: processing is carried out on the

processors where output blocks are stored. Our experimental results suggest that a hybrid strategy may be

the best approach. The tiling and workload partitioning steps can be formulated as a multi-graph partitioning

problem, with input and output chunks representing the graph vertices, and the mapping between input and

output chunks provided by the projection function representing the graph edges. A planning algorithm based

on graph partitioning could provide an effective means for implementing a general hybrid strategy, and we

are currently investigating this line of work.
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One of the long-term goals of our work on query planning strategies is to develop simple but reasonably

accurate cost models to guide and automate the selection of an appropriate strategy. In this paper, we showed

a very simple formula (Eq. 1) that seems able to predict the relative performance of the various strategies

under changing application characteristics. This is encouraging since it shows that simple cost models may

perform well for some application scenarios. However, answering the question “under what circumstances

do the simple cost models provide accurate or inaccurate results?”, and “how can we refine the cost model

in situations where it does not provide reasonably accurate results?” require further research. We plan to

evaluate our strategies on additional applications and on other parallel architectures to further investigate

these questions.
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