
Jazz: An Extensible 2D+Zooming Graphics Toolkit in Java

Benjamin B. Bederson, Britt McAlister
Human-Computer Interaction Lab, Institute for Advanced Computer Studies

Computer Science Department
University of Maryland, College Park, MD 20742 USA

+1 301 405-2764
bederson@cs.umd.edu, brittmc@cs.umd.edu

ABSTRACT
Jazz is a new general-purpose toolkit that supports
applications using zooming object-oriented 2D graphics. It
is built entirely in Java using Java2D, and thus runs on all
platforms that support Java 2. It supports zooming, internal
cameras, and lenses in a similar style to Pad++, but does so
in a general purpose manner without a specific focus on
zooming. Jazz is primarily a "scenegraph" for 2D graphics
that is analogous to Sun’s Java3D and SGI’s OpenInventor
in their support for 3D scenegraphs.

This paper describes Jazz and discusses the issues of using
a scenegraph for 2D graphics. We discuss the Jazz
architecture, and how applications can build on top of it.

Keywords
Zoomable User Interfaces (ZUIs), Animation, Graphics,
User Interface Management Systems (UIMS), Pad++, Jazz.

INTRODUCTION
The world of toolkits for building graphical applications
can broadly be divided in two: those toolkits designed for
two-dimensional (2D) graphics, and those designed for
three-dimensional (3D) graphics. Considering the number
of 2D versus 3D graphical applications in use today, a
disproportionate amount of energy has gone into building
tools that support 3D graphics. This is largely due to the
complexity of 3D graphics and its computational
requirements. However, today’s 2D graphics applications
are becoming more complex as well.

One of the primary differences between 2D and 3D
graphics toolkits is that 3D systems frequently consist of a
renderer (the package that takes basic geometry and paints
the pixels on the screen to represent that geometry) and a
scenegraph (the package that helps an application to
manage the data structures representing their geometry.)
2D graphic toolkits on the other hand are generally lacking
in scenegraph support, and instead tend to focus
exclusively on the renderer.

This focus on scenegraphs only for 3D systems can be seen
in a majority of commercial graphics packages. For
example, Silicon Graphics Inc. (SGI) has supported 3D
scenegraphs through their OpenInventor software for many
years, as do all of the 3D modeling packages that are used
for animation and architecture, etc [4]. Even Java’s Java3D
package supports a scenegraph and renderer [1].

When looking at 2D packages, however, we usually find
just renderers. The Mac toolkit, Microsoft Win32 API, X,
and even Sun’s new Java2D package have just 2D renderers
without support for the data structures that all applications
must maintain to use these renderers. Currently, there are a
small number of 2D systems that have some kinds of
scenegraphs, but not the general-purpose kind that we
envision. The Tk Canvas supports object-oriented 2D
graphics, but has no hierarchies or extensibility [15].

Jazz is open source software according to the
GNU Library Public License, and is available at:

http://www.cs.umd.edu/hcil/jazz

Figure 1: Screen snapshot of demo drawing
program using Jazz

InterViews supports a hierarchical structure for GUI
widgets, but not general 2D graphics.

It could be argued that 2D graphics data structures are not
that complex, and therefore do not need special support.
However, we do not believe this, and think that to build a
2D graphical application is in fact quite complex. A
principle reason is that computers have limited processing
power. Writing graphical applications that perform well is
difficult. It is usually necessary to be careful about what is
rendered, and to only render the portion of the scene that is
modified. This is especially true for animated interfaces
which are becoming more common. Today, each
application is left on its own to manage rendering.
However, with Jazz, several efficiency mechanisms are
supported.

The reasons for a 2D scenegraph include more than just
speed. There are also several structural tasks that most
graphical applications have to accomplish. For instance, it
is common to group objects together, or even to create
hierarchical groups of groups, and then move those groups
around. Layers are becoming increasingly common with
the ability to hide and show them on demand, or change the
ordering of the layers. Nearly every application requires
the ability to pick objects – that is, determine which
graphical element is under the pointer. In addition, laying
out graphical elements as well as saving them is also
generally important.

We also believe that supporting multiple representations of
data is important. That is, we want the same underlying
model to appear differently on the screen depending on the
context in which it is viewed. This context can include
zoom (sometimes called semantic zooming) or the viewport
that the model is viewed within (sometimes called lenses or
filters [19].) Actually, the context could be anything else as
well, from author, to the time the data is viewed.

More generally, we are interested in exploring interfaces
that directly consider cognitive factors. While the
venerable Information Visualizer [8] and Self [16] systems
were motivated by an understanding of human cognition,
that is not a principle motivating factor of most toolkits.
Thus, we are building a toolkit that we feel will be
generally useful for 2D graphics, but specifically useful for
exploring novel interface ideas. Finally, our particular
interest is in building Zoomable User Interfaces (ZUIs) that
have the above mentioned complexities as well as others.
We are interested in building fully zoomable information
spaces.

So, why haven't scenegraphs [6, 7] for 2D graphics become
more common? It is hard to be sure, but we speculate that
there are several reasons. One is that the range of 2D
applications is greater than for 3D applications, and a
general-purpose solution will not be broad enough. 3D
applications are more stereotypical, and can be well-
modeled with a hierarchy of triangles. In addition, many
2D applications started out as text-based, and became more
graphical. Scenegraphs are not as useful for text-based

applications. A third reason is that 2D applications are
often designed to run on low-end systems. 3D applications,
however, typically run on higher-end systems, and can
afford the luxury of abstraction. Finally, most 3D
applications are spatially organized while many 2D
applications are organized conceptually.

What is Jazz?
Jazz takes many of the structural elements common to 3D
graphical systems, and creates a scenegraph for 2D
graphics. By using a basic hierarchical scenegraph model
with cameras, Jazz is able to directly support a variety of
common as well as forward-looking interface mechanisms.

This includes hierarchical groups of objects with affine
transforms (translation, scale, rotation and shear), layers,
zooming, internal cameras (portals), lenses, semantic
zooming, and multiple representations.

What makes Jazz unique is the small number of basic
elements that work together to support this large feature set.
While zooming has been one of our motivations for
building Jazz, we think that its simple model will prove
useful for builders of non-zooming applications as well.

We anticipate that Jazz will be useful for a broad array of
applications. From drawing programs, and electronic
presentations, to information visualization – we believe that
Jazz’s combination of extensibility, object orientation,
hierarchical structure, and support for multiple
representations will enable easier building of 2D graphical
applications.

WHY ANOTHER ZUI TOOLKIT?
There have been several implementations of Zoomable
User Interfaces (ZUIs) recently that address many of the
above mentioned issues. This includes the original Pad
system [17], and more recently Pad++ [5, 6, 7]. There also
have been some other systems developed by individuals for
research purposes [10] as well as some commercial ones
that have not been widely accessible [2, 3].

Pad++ is the ZUI that we have the most experience with,
and is the ZUI that has been most widely used. Thus, one
question is why we are starting fresh, rather than extending
Pad++.

The biggest problem with Pad++ is that it is closely tied to
X and Tcl/Tk [15]. Much of the Pad++ core had design
decisions made due to the shortcomings of the application
language (Tcl/Tk). Several features were implemented in
the core that should have been left to the application
because Tcl/Tk was too slow. In addition, since Pad++ was
designed originally to be a prototyping tool, the Pad++ core
grew to become quite large, and supported many general-
purpose features. This tended to make it easy to do basic
things, but harder to do more complex things.

The second major issue is that the Pad++ class structure has
several significant design problems, and is difficult to
extend. For example, an application can't have multiple
top-level views onto a single surface. Also, the Pad++

coordinate systems, hierarchical groups, and anchor points
while feature rich, are very confusing and hard to use
programmatically. And, in Pad++ the renderer is tightly
coupled to the object system; both of which are bound to
events. This makes Pad++ difficult to port to either
different operating systems, or different graphics systems in
a clean manner.

Finally, we believe that Java will play a large part in the
future of application programming. Connecting Pad++ to
Java, while technically feasible, would be difficult because
it would require a wrapper around every function. This
would be difficult to maintain and we would likely have
similar language conflicts as existed in C++ and Tcl/Tk. In
addition, there is a fundamental inefficiency in that Java
application programmers would typically want to create a
Java object that would have to be associated with each C++
object. This would lead to complexities relating to
dangling references to C++ objects from Java when a C++
object is deleted.

Impact of a 2D Scenegraph
A standard scenegraph architecture for 2D graphics offers a
straightforward solution to most of the issues just raised.
However there are costs as well. Let us look at some of the
tradeoffs that come about with the use of a scenegraph.

Advantages:

• Complexity: Scenegraphs scale nicely, and handle
complex scenes well.

• Abstraction: Scenegraphs decouple the components of
the system, making it easier to improve the renderer,
switch to different hardware, make platform-specific
tweaks transparently, etc.

• Reusability: Scenegraphs allow novice programmers
to use professionally implemented algorithms, and to
avoid implementing many common features.

• Interactivity: Scenegraphs make it easier to
implement things like selection and picking.

• Aliasing: Scenegraphs make it easy to reuse data in
multiple places.

Disadvantages:

• Footprint: A general solution such as a scenegraph
will likely use more memory than a custom solution.

• Efficiency: It is typically more efficient to write a
custom solution than to use a general-purpose
scenegraph.

• Restrictions: Even with the most open-ended designs,
a scenegraph is likely to place some restrictions on the
application, which may be avoidable with a custom
solution.

DESIGN GOALS
The design of Jazz, like any system, includes many
tradeoffs. Our primary high-level design goals, which
influence the tradeoffs are:

• Ease of adoption: We must offer a clean, and
understandable substrate for writing 2D object-oriented
graphical applications, so that the barrier to adopting
the technology is low. To this end, our motto with
Jazz is "First build it right, then build it fast". We have
strived to design Jazz so that others can use it quickly,
and integrate legacy Java code.

• Extensibility: In order that Jazz is truly useful, it must
be readily extensible by application builders to support
their specific needs. We can not anticipate all possible
uses of Jazz, and so our strategy has been to design it
to be extensible in as general a way as possible. To this
end, Jazz has no specific visual or interaction policy.
Jazz comes with a default set of visual objects, but
there is a well-defined mechanism for applications to
define their own. Similarly, Jazz supports default
selection, navigation, and other interaction
mechanisms, but they are designed to be modifiable by
applications.

• Performance: The system must run well on a wide
variety of platforms, and also offer rich features such
as animation and complex graphics. To this goal,
Jazz’s general policy is to favor speed over memory.

• Scalability: Jazz must support serious and complex
applications. Towards this end, we were willing to give
up the simplicity that Pad++ offered in order to support
the long-term goal of non-trivial applications.
However, Jazz has several utilities to help lower the
start-up costs of building applications.

The name Jazz is not an acronym, but rather is motivated
by the new music-related naming conventions that the Java
Swing toolkit started. In addition, the letter ’J’ signifies the
Java connection, and the letter ’Z’ signifies the zooming
connection.

JAZZ ARCHITECTURE
Figure 2 shows the object hierarchy of Jazz’s public objects
that applications use. Figure 3 shows the object structure
of a typical application with several objects and a camera.
The basic elements of Jazz are summarized below.

• Scenegraph: Jazz supports an object organization based
on a scenegraph paradigm including the ability to share
graphical objects so that objects can appear multiple
times in the scene. The scenegraph consists of a
hierarchy of nodes that represent relationships between
objects. Each node has a visual component that defines
the visual object associated with that node.
Alternatively, nodes can have a chain of visual
components using the Decorator pattern [12].

• Optimized Renderer: Jazz uses the Java2D renderer,
and is organized to efficiently support fast animation,
high quality stills, very large images, and efficient
screen updates.

• Visual Components: Jazz defines a base visual
component type and several basic components, which
are subclassed from that base type. Applications can
define new object types by sub-classing the base type or
the default objects.

• Sticky Objects: Objects that are "sticky" are associated
with a specific camera, and do not move as the camera
viewpoint changes. A typical sticky object would be a
status bar that always stays at the bottom of the screen
as the camera pans and zooms over the rest of the scene.

• Cameras: Scenegraphs are seen through cameras. A
camera contains an affine transformation, which
controls what part of the scenegraph is seen within that
camera. A scenegraph can be seen through multiple
cameras, each of which can navigate through the
scenegraph separately. Cameras may be mapped to a
top-level window (or Java widget), or to a printer. In
addition, cameras may be nested. When one camera
sees another camera, the internal camera acts like
another view into the scenegraph. (We have used the
word portal in the past to refer to these internal cameras
[19].)

• Drawing order: Objects must have a specific drawing
order. That is, each object is always either in front of or
behind another.

• Coordinate systems: The coordinate system has the

origin (0, 0) at the upper left, and X increases to the
right and Y increases down. The camera and every
visual component have an arbitrary 2D affine
transformation that can be used to translate, scale,
rotate, and shear the objects. When a camera’s
transformation is the identity matrix, the origin is at the
top-left corner of the screen. Objects are defined
relative to the coordinate system of their parent node,
but can be translated, scaled, rotated, or sheared relative
to that coordinate system.

• Object Storage: Jazz defines a new object storage
mechanism similar to Java Serialization, but it is more
stable over different versions of code. It is text-based
and so can be hand-edited, and is well-defined so other
applications (even ones written in other languages) can
define objects that can then be read into Jazz. This
object storage mechanism can be used without using the
rest of Jazz.

• Lenses: A lens provides a mechanism for changing the
way objects look through a specific camera. A lens can
encapsulate any kind of semantic transformation – so
while a simple lens may change the contrast of an
image, a more complex lens may show some structure
of an image.

• Events: Events are associated with individual objects.
The same listener interface that is used in Java 1.1 are
used per object within the scenegraph. (Currently, only

 *

 0 .. 1

ZScenegraphObject

jazz.scenegraph

ZNode

jazz.component

ZTextComponent

ZImage

ZTextField

ZSelection

ZRectangle

ZLink

ZVisualComponent

ZCameraZRootNode

ZTransform 1

 0 .. n

Figure 2: Static object hierarchy of Jazz showing the scenegraph nodes and the basic
components, specified in slightly modified UML. Solid lines/arrows arrows represent inheritance.
Dashed lines with open arrows represent an association. The number next to the open arrow
specifies how many instances of the object is associated with the object pointing to it.

ZTextArea

ZPolyline

ZVisualComponentDecorator
ZSurface

 1

simple events are implemented.)

• Layout: Objects can be positioned and scaled with one-
time layout procedures, or with active layout managers
in a manner analogous to the Java AWT layout
managers. (Currently, only simple one-time layout
methods are implemented.)

One of the goals of Jazz is to support a rich set of
functionality using a simple, understandable, and extensible
design. Jazz supports all of the features that Pad++ does
with just three primary concepts: cameras, nodes, and
visual components.

Jazz has the following packages:

jazz.scenegraph Primary package
jazz.component Basic visual components
jazz.event Event handler support
jazz.util Utility classes
jazz.io Generic I/O system

Nodes and Visual Components
The scenegraph package defines the data structure used to
store all the objects. Each object (such as a rectangle) has
two elements in a scenegraph, a node and a visual
component. This separation exists to support hierarchical
structuring of objects. Hierarchies can be useful in a
scenegraph because they support hierarchical movement of
objects. For instance, hierarchies can be used to implement
“groups” and “layers” that are found in most drawing
programs. An application using the Jazz scenegraph uses
nodes to construct the hierarchy. Then, each node has a
visual component, which specifies what gets drawn for that
node.

There is a clear separation between what goes in a node,
and what goes in a visual component. Nodes contain all
object characteristics that are passed on to child nodes.
This includes an affine transform, min/max magnification,
and transparency (affine transforms support translation,
rotation, scale, and shear). Each of these characteristics

(e.g., rotating) affect the node's visual component and also
affect that node’s children.

The visual components are just visual. They have no
structure, and do not even have a transformation that
specifies where it should be rendered. The visual
component specifies just how to render something, how big
it is, and how to select it. Each node may be assigned a
specific component, or else it will reference a “dummy”
component that does nothing. The dummy component is
implemented as a Singleton [12] and gives the guarantee
that every node has a component, and thus applications are
not forced to check if the component reference is null
before accessing it.

Visual components are rendered in the order of their
associated nodes. That is, if a node has five child nodes,
then those five children's visual components will be
rendered one after the other in the order of the child nodes.
Changing the order of a node within a parent node will
change the rendering order of the associated component.

Nodes can be “hidden”, which means that neither it nor any
of its children will be rendered or receive events. Visual
components may be set to be "unpickable" which means
they do not receive events.

Visual components typically define their bounds to help
Jazz decide which objects are visible, and thus quickly cull
objects that are not visible in a given view. Because nodes
are hierarchical, the bounds are cached at each node in the
current relative coordinate system. Objects that regularly
change their dimensions, however, can define themselves
as volatile. This tells Jazz not to cache their bounds, and
instead to query the object directly every time the bounds
are needed to make a visibility decision.

While a node must check all of its children for visibility,
we plan on adding optional spatial indexing per node. This
should help reduce searching time when a node has many
children.

Visual component decorators can be used to associate extra
characteristics with a visual component without forcing all
visual components to define that behavior. For instance,
Jazz defines a selection decorator, which draws a highlight
around its component to indicate that the component is
selected. Similarly, Jazz defines a link decorator, which is
used to create spatial hyperlinks. The link decorator
associates the destination of a spatial hyperlink with a
visual component, but does so without modifying the
component, and in fact the component doesn't even know
about it. We also envision decorators that allow a single
component to appear in multiple places by defining a
decorator with multiple node parents. Jazz uses Java
introspection to support the finding of specific decorator or
component types by searching the chain. Figure 4 shows
the data structure representing a more complex scene with a
decorator chain.

Figure 3: Run-time object structure in a typical
application. This scene contains a single camera
looking onto a layer that contains an image, a
rectangle, and a group consisting of two polylines.

ZRootNode

ZCameraZNode

ZNode

ZSurface

ZNode

ZImage
ZNode

ZPolyline

ZNode

ZRectangle
ZNode

ZPolyline

Why the split?
This split between nodes and visual components may at
first seem odd, but this separation solves a number of
problems that plagued Pad++ as well as early versions of
Jazz. For one, it separates the structure from the content.
Visual components are interchangeable, making it possible
to, say, replace all the circles w/ squares in a sub-tree of the
scenegraph without affecting the grouping or position of
objects.

It also greatly simplifies coordinate system issues. Because
objects can be transformed hierarchically, and can even
appear in different positions on the screen due to cameras
(and aliasing decorator chains), it can be very confusing to
understand what coordinate system an object or event is
defined in. With our split approach, visual components are
always defined in their own local coordinate system. The
nodes define where the components end up by using affine
transforms, which essentially define coordinate system
mappings.

Finally, the split between nodes and components offers a
more de-coupled design and simplifies modularity.
Component types are defined independently from each
other and from the rest of the scenegraph. As described in
a later section, this enables applications to define visual
components quite easily, or even extend nodes. Using a
component decorator chain, each component can remain
small while enabling more complex features (e.g., selection
and hyperlinks) to use resources where needed.

Cameras
A camera shows a portion of the Jazz scenegraph. Cameras
specify which portion of the scenegraph should be rendered
within that camera using an affine transform. Multiple
cameras are supported, and cameras can navigate the space
independently of one another. Cameras can either be
attached to top-level surfaces (see next section), or can be
viewed by other cameras. In the latter case, they are called
internal cameras, and act like windows within the world
that look onto the world. In previous ZUI implementations,
we called these "portals". Since cameras are nodes (they

extend ZNode), they also can be transformed as objects via
the node transform. This enables internal cameras to be
moved within a scene.

Each camera controls which portion of the scenegraph it
sees by specifying its paint start points. A camera renders
itself by first rendering its background, then all the nodes in
its paint start point list, and then finally the camera’s visual
component (if there is one). This approach lets an
application build a single very large scenegraph, but control
which portion of the scenegraph is visible and where.

Jazz does not specifically support traditional layers, but
traditional layers can be implemented directly using the
hierarchical scenegraph in combination with cameras.
Traditionally, a drawing system contains objects which
each sit on a single layer. The drawing system can specify
which layers are visible, and can change the drawing order
of entire layers. This is accomplished in Jazz by creating
one hierarchical node in the scenegraph for each layer, and
putting objects that should appear on a specific layer under
the node that represents that layer. The layer may be turned
off within all cameras by hiding the relevant node, or the
layer can be turned off within just one camera by removing
the appropriate node from the camera’s paint start point list.
Finally, the layer rendering order can be changed by
changing the order of the layer nodes. Figure 4 shows how
multiple cameras are set up.

Sticky Objects
Sticky objects are visual components associated with a
camera that do not move as the camera viewpoint is
changed. Jazz implements sticky objects by putting them
under a camera node. The camera first renders the portion
of the scenegraph it refers to through its paint start points
with the viewpoint transform, and then renders its children
(the sticky objects) without applying the view transform.
The camera’s children then do not move as the viewpoint
changes. It is as if they are stuck to the camera’s window.

This implementation of sticky objects solves a problem that
we had with Pad++. Sticky objects in Pad++ were
implemented in a general way by applying a constraint to
those objects. Whenever the camera viewpoint was
changed, the inverse transform of the view change was
applied to the sticky objects, thus leaving them at the same
place on the screen. This strategy worked, but because
every view change resulted in two transforms being applied
to the sticky objects, they often "jiggled" on the screen -
especially when zoomed in. Jazz avoids this problem by
simply rendering the sticky objects without applying the
camera view transform to sticky objects. Figure 4 shows a
scenegraph with some example sticky objects.

Surfaces
Cameras are mapped to operating system windows through
surfaces. The abstraction of a surface is important for two
reasons. First of all, it encapsulates a Java Graphics2D
class, which supports 2D rendering. A Graphics2D can
come from either a window, a back buffer, or a printer.

A B C

Cam2 Cam1

Surface

Figure 4: A more complex scenegraph. The top-level
camera (cam1) sees the internal camera (cam2) and
node C, and has two sticky objects. Cam2 sees nodes
A and B. Node A has a child with a visual component
decorator chain that selects the component.

sticky objects
selection
decorator

Thus, with this mechanism, a Jazz surface can be used to
display, print, or to render into a back buffer so an
application can grab the pixels that were rendered.

The second purpose of a surface is to store the region
management information. Jazz stores region management
in the surface, and does so using the scenegraph global
coordinate system rather than window coordinates for
efficiency.

CREATING NEW VISUAL COMPONENTS
Jazz defines a basic set of simple visual components for
basic geometries and text. However, we expect that many
application designers will create their own to specify a new
visual look, or complex custom components.

In order to define new visual components, an application
must extend the ZVisualComponent class, and must
define three functions. The new object must define how to
paint itself, how big it is, and how to pick itself. Picking
means that the object must specify whether a given
rectangle is considered to intersect the object or not.
Figure 5 shows the code necessary to define a simple circle
visual component.

This standard picking is used just to select whether the
pointer is over an object. Visual components are free to
define their own more advanced picking methods, such as
for selecting the text within a component, but that is
separate, and not supported by the visual component
interface.

Using this mechanism, visual components can be easily
defined that wrap existing Java code which was written
without consideration of Jazz. For example, it would be
possible to take some pre-existing code that draws a
scatterplot, and make it available as a Jazz visual
component. To do this, a class similar to the circle defined
in Figure 5 would use the bounds of the scatterplot, call the
scatterplot’s paint method, and then implement a simple
pick method that returned true with an intersection
anywhere within the bounds of the scatterplot.

MODEL BASED COMPONENTS
An application that renders a scatter plot might be designed
in various ways. A straightforward approach would be to
create a new component that extends
ZVisualComponent. The class could store the data,
and its paint method could render the plot. This is the
simplest way, but has the problem that the data is coupled
to the representation of the data. Thus, changing the data
or the representation independent of each other would
require knowing about the other – since it is all stored in
one class.

An alternative approach would be to have the class
reference an underlying data model. Whenever the data
model changes, the scatter plot class would be notified, and
would re-render itself based on the new data.

Because we envision many visual components relying on
an underlying data model, we plan to define a very simple

 //
// A basic circle visual component
//

public class ZCircle extends ZVisualComponent {
 protected Ellipse2D.Float circle;

// Creates circle with center (x,y) and radius = r
 public ZCircle(float x, float y, float r) {

circle = new Ellipse2D.Float(x - r/2, y - r/2, r, r);
updateBounds(); // This results in computeLocalBounds getting called

 }
// Describe how to paint circle

 public void paint(ZRenderContext renderContext) {
Graphics2D g2 = renderContext.getGraphics2D();
g2.setColor(Color.black); // Draw circle

 g2.fill(circle);
 }

// Describe how big the circle is
 protected void computeLocalBounds() {
 localBounds.setRect((float)circle.getX(), (float)circle.getY(),
 (float)circle.getWidth(), (float)circle.getHeight());
 }

// Describe how to pick the circle
 public boolean pick(Rectangle2D r) {
 boolean picked;
 picked = circle.intersects(r.getX(), r.getY(), r.getWidth(), r.getHeight());
 return picked;
 }
}

Figure 5: Java code to create a new circle visual component

ZModel class whose primary purpose will be to generate
events when a model has changed to notify the visual
component of the change. Figure 6 shows the basic class
structure of an application using this approach. (ZModel is
not implemented yet.)

MULTIPLE REPRESENTATIONS OF OBJECTS
The basic approach for representing models is satisfactory,
except that it does not show how we can have multiple
representations of a single data model. That is, it doesn’t
support visually displaying an object differently in different
contexts.

One of the basic things that Jazz supports is the ability to
present different visual representations of data in different
circumstances. Because many different kinds of context can
be used to influence how and what gets drawn, we
sometimes call this context-sensitive rendering. While an
application can use any context whatsoever to control an
object’s rendering (such as author, or time), two especially
common contexts are magnification and the camera being
rendered within. We sometimes use the more specific term
semantic zooming to refer to objects that change the way
they appear based on the current magnification. When an
object appears differently when viewed with different
cameras, we sometimes use the term lens or filter [6, 19].

Jazz’s standard visual components generally render
themselves the same way every time. Although for
efficiency, the standard visual components sometimes
render themselves at lower resolution during interaction.
However, an application can define a new visual
component whose paint method depends on some context.

Standard software engineering approaches lead us to desire
decoupled representations. That is, each visual
representation should exist independently of the others.
This allows the application builder to design new
representations, and modify old ones without affecting the
other representations. A clean decoupled design would
support different classes for each visual representation of
the data. One design that accomplishes this is to make a
special visual component that acts as a Proxy [12] for
another visual component, and can delegate between them.

Such a delegator is fairly straightforward to build. It
maintains a list of ancillary visual components and exactly
one of them is active at a time. It then defines its paint,
pick, and computeLocalBounds methods to call the
active visual component.

We implemented a simple delegator as a proof-of-concept.
Our sample delegator supports semantic zooming by
selecting a specific visual component to render based on
the current magnification level. This approach has the
property of having decoupled visual representations while
keeping those representations together on the screen.
Because they are all controlled by a single node, moving
that node (by changing its transformation) moves each
zoom level’s representation together. We expect that this
approach will work effectively for semantic zooming,
lenses, and other forms of multiple representations.
Figure 7 shows the basic structure of the scenegraph for our
delegator that supports semantic zooming.

Jazz.IO
Jazz includes Jazz.IO, a sub-package that defines a new
general-purpose mechanism and file format to save and
restore Java Objects. To understand the need for Jazz.IO,
consider the standard mechanism, Java Serialization.

Since JDK 1.1 Java has provided the Serialization
interface for capturing and saving the state of object
instances. Serialization is a useful extension to the Java
stream classes. However, it comes with a mixed bag of
features and liabilities. On the positive side, Serialization
is a relatively fast encoding/decoding, compact binary
format. Also, multiple reference and circular dependency
issues are handled automatically.

Unfortunately, Serialization also presents many undesirable
characteristics as well. Not all core Java classes implement
the Serialization interface. One solution is to subclass the
required core class and assign the subclass responsibility
for saving the superclass’s state. Unfortunately, several
core classes, such as TextLayout, are declared final and
cannot be extended. One solution to serialize these classes
is to create a Proxy [12] class to wrap, encode and decode
the final class.

However, this does not address all cases as some core
classes do not implement the Serialization interface, and
they contain private state information, but don't have public
accessor functions (e.g., LineBreakMeasurer.)

Another difficulty with Serialization is the lack of version
safety. Without the use of the SerialVersionUID,
even very small changes to a class will render saved classes
unreadable by the new class. Even with the

ZVisualComponent

ScatterPlot ZModel

DataModel

Figure 6: Basic model-based visual component

Delegator

Rep 1 Rep 2 Rep 3

Figure 7: One way to implement semantic
zooming in Jazz. The Delegator decides which
representation to use to paint itself depending on
the current magnification.

SerialVersionUID, any of the following changes to a
class can result in version conflict:

• Deleting fields
• Moving classes up or down the hierarchy
• Modifying writeObject() or readObject()
• Changing the type of a primitive field
• Changing a non-static field to static
• Changing a non-transient field to transient

Primarily, it was the issue of version safety that led us to
develop Jazz.IO. It was important to ensure Jazz users that
their saved scenes would remain usable as new versions of
Jazz were released. The options were to develop a version
safe persistence mechanism or to provide a utility with each
new version of Jazz that converted existing scene files to
the new object format.

We chose the first option and developed Jazz.IO. Jazz.IO
provides a well-defined text-based file format. While it is
slower and files can be larger than with Serialization, files
are more version resistant. And, because the file format is
well-defined, it is straightforward to generate these files
manually, or even from other languages. We have, in fact,
already done this to populate a Jazz scenegraph with data
generated from a Lisp-based language translation system.

Jazz.IO Architecture
Jazz.IO follows our design guideline regarding initial ease-
of-use versus support for complex features. Jazz.IO
requires slightly more work than Java Serialization for the
simple case, however, Jazz.IO scales well and supports
complex objects such as images.

Using Jazz.IO requires two classes and one interface. The
first class, ZObjectOutputStream is almost identical
in function to Java’s ObjectOutputStream, and is
used in the same manner. Jazz.IO handles the multiple
reference and circular dependency issues automatically.
The ZParser class is used to decode and instantiate the
objects in a scene file. It returns a reference to a copy of
the object originally written out.

All objects that are to be saved in the scene file must
implement the ZSerializable interface (with the
exception of supported core Java classes.) The interface
defines four methods. The first is the isSavable()
method which specifies if a particular object should be
written out at all. The next method is the
ZWriteObjectRecurse() method. This is used to
determine which referenced objects should also be saved in
the scene file. Then, writeObject() specifies how
instance variables should be saved. The last method is used
to read back in the objects. The parser instantiates each
object in the scene file using the default, no argument
constructor, and then calls the setState() method for
each property to return the object to the pre-saved state.

CURRENT STATUS
Everything described in this paper is currently implemented
in Java 2 and publicly available, except for complex lenses,

object-based events, support for models, and the layout
manager. In addition, we have only just begun the
implementation of multiple representations of objects.

The Jazz distribution comes with a sample application
called DrawPad that demonstrates some of the basic
features. In addition, we are currently building two other
applications. The first is a new version of KidPad [9, 14,
18] that provides collaborative storytelling tools for
children. The second is an authoring tool for creating
presentations. The authoring tool will build on our
experience with PadDraw [6], while expanding the notion
of editing in scale space [11] by offering simplified
constrained tools [13].

We are still in the "do it right" state of implementing Jazz,
and have not yet done serious performance tuning or
analysis. Based on our informal observation, it appears to
run 2 or 3 times slower than Pad++, but we are optimistic.
Jazz currently can do animated full-screen zooms with
moderate datasets running on a Windows NT 400MHz
Pentium II machine. However, the system does slow down
when we create numerous or complex components.

We plan on addressing performance issues with three
approaches. To begin with, Sun and other companies are
working on faster JVMs and faster implementations of
Java2D. This is actually more hopeful than it may first
appear because it is likely that some vendor will create a
version of Java2D implemented using a graphics library
that can take advantage of 3D graphics acceleration
hardware that is now becoming common in PCs and
workstations alike.

Second, we have not yet optimized our code. For example,
we need to be careful to avoid all memory allocation within
paint methods. We also will add spatial indexing, load
management, and several other standard scenegraph
optimizations.

Finally, our experience with Java so far is that while it
provides excellent powerful classes that are very general,
this generality leads to inefficiency. Because Jazz uses
only a subset of Java2D's rendering features, we are
looking into implementing a portion of Java2D natively for
a specific platform (Windows). Our expectation is that
because we can get by with supporting a subset of the full
Java2D functionality, we can implement it faster than the
standard implementation. However, we have just started
this investigation.

CONCLUSION
This paper describes the architecture of Jazz, a new Java
toolkit that supports the development of extensible 2D
object-oriented graphics with zooming and multiple
representation. It is a descendent from previous Zoomable
User Interfaces that one of the authors has built in the past.
Jazz is unique in that it is designed in a general way to
support several advanced interface features in a
straightforward way with a small number of essential
classes.

While Jazz is still young, we are optimistic about its utility.
A basic design goal has been to provide an extensible
architecture and well-engineered code so that this will be a
platform on which to build a variety of 2D applications.

ACKNOWLEDGMENTS
We appreciate our previous collaborations with those
involved with Pad++, especially Jim Hollan, Jason Stewart,
Jon Meyer, Allison Druin, and George Furnas. Jason
Stewart was also involved in early design discussions about
Jazz’s support for multiple representations of models.

We would also like to thank our fellow members of the
HCIL, and especially the students in the seminar on ZUIs
that had the patience to use early versions of Jazz and
helped to identify its "features". Maria Jump also
contributed to Jazz’s development in recent months and we
are grateful to her. We also greatly appreciate the careful
reading of this paper by Jon Meyer, Bay-Wei Chang, Jason
Stewart, and Allison Druin.

Finally, Bob Hummel at DARPA has been instrumental in
supporting this work, and Jazz wouldn’t exist without his
support. This work has been funded in part by DARPA, and
an equipment grant from Sun Microsystems.

REFERENCES
1. (Java [Web Page]. URL http://www.javasoft.com.

2. (MerzCom [Web Page]. URL
http://www.merzcom.com/.

3. (Perspecta [Web Page]. URL
http://www.perspecta.com/.

4. (SGI OpenInventor [Web Page]. URL
http://www.sgi.com/Technology/Inventor/.

5. Bederson, B. B., & Hollan, J. D. (1994). Pad++: A
Zooming Graphical Interface for Exploring Alternate
Interface Physics. In Proceedings of User Interface
and Software Technology (UIST 94) New York: ACM,
pp. 17-26.

6. Bederson, B. B., Hollan, J. D., Perlin, K., Meyer, J.,
Bacon, D., & Furnas, G. W. (1996). Pad++: A
Zoomable Graphical Sketchpad for Exploring
Alternate Interface Physics. Journal of Visual
Languages and Computing, 7, 3-31.

7. Bederson, B. B., & Meyer, J. (1998). Implementing a
Zooming User Interface: Experience Building Pad++.
Software: Practice and Experience, 28(10), 1101-
1135.

8. Card, S. K., Robertson, G. G., & Mackinlay, J. D.
(1991). The Information Visualizer, an Information
Workspace. In Proceedings of Human Factors in

Computing Systems (CHI 91) ACM Press, pp. 181-
188.

9. Druin, A., Stewart, J., Proft, D., Bederson, B. B., &
Hollan, J. D. (1997). KidPad: A Design Collaboration
Between Children, Technologists, and Educators. In
Proceedings of Human Factors in Computing Systems
(CHI 97) ACM Press, pp. 463-470.

10. Fox, D. (1998). Tabula Rasa: A Multi-scale User
Interface System. Doctoral dissertation, New York
University, New York, NY.

11. Furnas, G. W., & Bederson, B. B. (1995). Space-Scale
Diagrams: Understanding Multiscale Interfaces. In
Proceedings of Human Factors in Computing Systems
(CHI 95) ACM Press, pp. 234-241.

12. Gamma, E., Helm, R., Johnson, R., & Vlissides, J.
(1995). Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley.

13. Hochheiser, H. S., & Bederson, B. B. (1999).
Authoring With Discrete Levels in Zoomable User
Interfaces. In Proceedings of User Interface and
Software Technology (UIST 99) ACM Press,
(submitted).

14. Hourcade, J. P., Iyer, V., & Bederson, B. B. (1999).
Architecture and Implementation of a Java Package for
Multiple Input Devices (MID). In Proceedings of User
Interface and Software Technology (UIST 99) ACM
Press, (submitted).

15. John K. Ousterhout. (1994). Tcl and the Tk Toolkit.
Addison-Wesley.

16. Maloney, J. H., & Smith, R. B. (1995). Directness and
Liveness in the Morphic User Interface Construction
Environment. In Proceedings of User Interface and
Software Technology (UIST 95) ACM Press, pp. 21-
28.

17. Perlin, K., & Fox, D. (1993). Pad: An Alternative
Approach to the Computer Interface. In Proceedings of
Computer Graphics (SIGGRAPH 93) New York, NY:
ACM Press, pp. 57-64.

18. Stewart, J., Bederson, B. B., & Druin, A. (1999).
Single Display Groupware: A Model for Co-Present
Collaboration. In Proceedings of Human Factors in
Computing Systems (CHI 99) ACM Press, (in press).

19. Stone, M. C., Fishkin, K., & Bier, E. A. (1994). The
Movable Filter As a User Interface Tool. In
Proceedings of Human Factors in Computing Systems
(CHI 94) ACM Press, pp. 306-312.

