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This study is motivated by the geological storage of carbon dioxide in subsur-
face saline aquifers. After injection in an aquifer, CO2 dissolves in brine to form
a diffusive solute boundary layer that is gravitationally unstable leading to natural
convection within the aquifer. The exploration of the underlying hydrodynamic in-
stability is of practical importance because of enhanced CO2 dissolution and storage
in aquifers. In comparison to the classical Rayleigh-Bénard convection in a heated
fluid cell, the analysis is not straightforward because the CO2 boundary layer is
unsteady and nonlinear. The physics of the convective instability is described by
a mathematical operator that is both non-autonomous and non-normal. Conse-
quently, it is uncertain whether classical stability results for the onset of convection
are valid. In addition, it is unclear how theoretical predictions compare with exper-
iments.

To explore these issues, the physical mechanisms and perturbation structures
of transient, diffusive boundary layers are examined using multiple theoretical and
computational tools. Traditional schemes based on linear stability theory, due to
unique physical constraints, are unlikely to produce physically relevant perturba-
tion structures. Therefore, a novel optimization procedure is formulated such that
the optimization is restricted to physically admissible fields. The new method is
compared with traditional stability approaches such as quasi-steady eigenvalue and
classical optimization procedures along with fully resolved nonlinear direct numeri-
cal simulations.

After establishing a suitable analytical framework, the role of viscosity and
permeability variation is examined on the onset of natural convection. Onset of
convection occurs sooner when viscosity decreases with aquifer depth. These effects
of viscosity variation are in contrast to observations in classical viscous fingering
problems. When the porous medium is horizontally layered, qualitatively different
instability characteristics can occur depending on the relative length scales of the
boundary layer and the permeability variation. For sufficiently high permeability



contrast, small changes in the permeability field can lead to large variations in the
onset times for convection. Resonance effects are observed only when the porous
medium is vertically layered. The current study provides a framework to explore
gravity driven instabilities arising both in pure fluid and porous media applications.
The framework can be extended to study more complex systems such as those
involving chemically reacting species and random anisotropic permeability fields.
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Chapter 1: Introduction

1.1 Motivation

The past decades have seen a rapid increase in the man-made production of

greenhouse gases such as carbon dioxide. Recent estimates of the concentration of

atmospheric CO2 are at an all time high of about 397 ppm (NOAA-ESRL, 2014).

The primary sources of CO2 emissions are attributed to the combustion of fossil

fuels in power plants. To reduce emissions, it has been proposed to store CO2 in

subsurface porous rock formations (Orr, 2009). The process of capturing and storing

CO2 is referred to in past literature as CO2 sequestration.

According to the sequestration procedure, CO2 would be captured from power

plants and then injected into brine-saturated aquifers with large storage capacity.

CO2 is stored within rocks through a combination of several mechanisms such as:

• Structural trapping

This trapping occurs when a layer of impermeable caprock prevents CO2 from

leaking back into the atmosphere.

• Residual trapping

This occurs due to capillary trapping of CO2 within small pore spaces.
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Figure 1.1: Sketch of CO2 sequestration process

• Mineral trapping

Given sufficient time, CO2 reacts with surrounding brine in aquifer to form

stable carbonate minerals.

• Solubility trapping

CO2 dissolves into the surrounding brine and thus stored within the brine.

This study explores the fluid mechanics of the solubility trapping mechanism.

A schematic of the process is shown in figure 1. After injection, the buoyant CO2

initially rises and forms a horizontal layer beneath an impermeable caprock. With

time, free CO2 dissolves into the underlying brine across the two-phase interface and

forms a downwardly growing diffusive boundary layer. Because the CO2-rich brine

in the boundary layer is denser than the underlying brine, a gravitational instability

eventually results in finger-like structures that break away from the boundary layer

and convect CO2 downwards into the aquifer. Due to the ensuing natural convection,

free CO2 dissolves more faster into the brine. A clear understanding of the physical
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mechanisms behind natural convection is vital to the modelling of CO2 sequestration

(Huppert & Neufeld, 2014; Riaz & Cinar, 2014).

1.2 Review

A gravitational instability usually occurs when a heavier fluid is present above

a lighter fluid. When the interface between the two fluids is perturbed, the fluids

interpenetrate to produce buoyant unstable fingers. Such an instability, which is

referred to in literature as the Rayleigh–Taylor instability (Drazin & Reid, 2004),

is observable in a wide scale of systems ranging from a modern lava lamp to the

outer atmosphere of the sun. Similar instabilities are also formed when unstable

density distributions exist within a single fluid, as in the case of Rayleigh–Bénard

convection. In this classical scenario, a horizontal layer fluid is heated from be-

low such that a linear temperature profile is formed within the fluid, leading to a

buoyancy-driven convection. For many natural phenomena, convection occurs well

before the formation of the linear temperature profile, because of strong unfavorable

density gradients within the developing thermal boundary layer. This form of early

onset of natural convection in a transient, developing boundary layer is a common

feature of several important porous media applications such as CO2 sequestration

and groundwater flow (Wooding et al., 1997) as well as pure fluid applications such

as heat transfer devices (Goldstein, 1959).

The onset of natural convection can be explored using analogous experiments

in laboratory conditions (Blair & Quinn, 1969). In addition to experiments, they can
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also be analyzed using various theoretical methods. One popular method is to exam-

ine the eigenvalues of the operator or matrix that describes the physical evolution of

instabilities. Instabilities are also investigated by performing a computational simu-

lation of the nonlinear equations that govern the physics. This dissertation explores

gravity-driven instabilities that lead to natural convection in transient, diffusive

boundary layers using a combination of theoretical and computational methods.

The archetypal problem of Rayleigh–Bénard convection in which a horizontal

fluid heated from below is well understood as the underlying thermal gradient or

boundary layer is steady and linear. The stability characteristics are determined by

the dimensionless Rayleigh number, which is the ratio of the destabilizing buoyancy

forces that drive convection to the stabilizing effects of diffusion. Convection occurs

when the thermal gradients are strong enough to drive motion. Similar behavior

is also observed for porous media flows (Horton & Rogers, 1945; Lapwood, 1948).

For the classical Rayleigh–Bénard convection, there is excellent agreement between

experiments and theory.

In comparison to classical Rayleigh-Bénard convection, the diffusive boundary

layers of CO2 sequestration are unsteady and nonlinear. This renders the linear sta-

bility operator non-autonomous. In comparison, popular stability operators in fluid

mechanics such as the Orr-Sommerfeld operator are not a function of time (Reddy

et al., 1993). Furthermore, the governing equations are also non-self-adjoint and

the resultant eigenmodes are non-orthogonal. The superposition of non-orthogonal

eigenmodes may result in transient growth (Schmid, 2007). Because of these effects,

it is uncertain whether existing theoretical methods predict the physics accurately.
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It is also unclear how theoretical and experimental methods of transient boundary

layers compare with each other.

Earlier experimental studies provide a sound qualitative understanding of the

evolution of transient diffusive boundary layers (Blair & Quinn, 1969; Elder, 1968).

In the early stages of the boundary layer formation, perturbations to the layer are

damped due to an initial diffusive period during which the stabilizing effects of

viscosity dominate the physics. Eventually a critical time is reached at which the

vertical density gradient is sufficient to drive fluid motion (Foster, 1965; Goldstein,

1959) such that perturbations begin to grow. Computational simulations suggest

that for small initial perturbations, nonlinear effects increase slowly and, linear

mechanisms can dominate for considerable time beyond the critical onset time for

instabilities (Farajzadeh et al., 2007; Riaz et al., 2006; Selim & Rees, 2007b). Within

this linear regime, the flux of CO2 into the brine decreases monotonically, see figure

1.2. Eventually nonlinear mechanisms cause the flux of CO2 to increase from that

predicted by linear theory such that there is a turning point across which flux starts

to increase. This turning point is referred to as the onset time of natural convection.

The linear stability of diffusive boundary layers has been studied using three

main approaches. The quasi-steady-state approach (QSSA) approximates the bound-

ary layer as steady in comparison to the rapid growth of perturbations. The method

was first applied to convection in fluid layers by Morton (1957), Goldstein (1959),

and Lick (1965), and subsequently to porous layers by Robinson (1976). The QSSA

is considered to be invalid for small times when the boundary layer grows rapidly.

The stability of diffusive boundary layers has also been studied using energy meth-
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Figure 1.2: Dissolution flux of CO2 (solid line) into brine. The diffusive
flux (dashed line) corresponds to the linear regime. Nonlinear effects
begin to dominate at the onset of natural convection (solid dot).

ods (Caltagirone, 1980; Homsy, 1973; Kim & Choi, 2007; Slim & Ramakrishnan,

2010). These methods determine lower bounds below which all perturbations decay,

but do not provide information for the subsequent evolution of unstable perturba-

tions in the linear regime. The third, and most popular, approach avoids the QSSA

by solving the non-autonomous, linear, initial value problem (IVP) numerically for

given initial conditions.

The IVP was first considered by Foster (1965) to study thermal convection in

pure fluid media. Foster focused on white noise initial conditions that excited all ver-

tical Fourier modes equally. Gresho & Sani (1971) noted several drawbacks to this

approach. First, white noise conditions produce initial temperature perturbations

that vary far outside the boundary layer. In experiments, however, perturbations

originate in the boundary layer (Blair & Quinn, 1969; Elder, 1968; Green & Foster,
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1975; Spangenberg & Rowland, 1961; Wooding et al., 1997). Second, initial condi-

tions may play a secondary role in systems continuously forced by noise. Lastly, the

onset time for convection is due to nonlinear effects and cannot be predicted by the

linear IVP. Subsequently, Jhaveri & Homsy (1982) modelled noise by adding random

forcing to the momentum equation and reported good agreement with experiments.

The IVP for thermal boundary layers in porous media was first considered by

Caltagirone (1980) and Kaviany (1984), and subsequently applied to CO2 seques-

tration by Ennis-King & Paterson (2005). All three studies used initial white noise

conditions that spanned the entire domain. However, these initial conditions con-

tradict previous experimental observations that suggest that perturbations originate

within the boundary layer. Consequently, two methods have emerged that suggest

more appropriate initial conditions for the IVP. The first approach (Ben et al., 2002;

Kim & Choi, 2011; Riaz et al., 2006) involves a similarity transformation of the lin-

ear stability operator. As a result, the newly transformed eigenmodes are always

localized within the boundary layer. Riaz et al. (2006) also developed the “dominant

mode analysis” (DMA) that involved a projection of the dynamics onto a weighted

Hermite polynomial. This technique produced analytical expressions for onset time

that showed good agreement with corresponding results of IVP simulations.

The second approach to determining initial conditions for the IVP uses non-

modal stability theory (Farrell & Ioannou, 1996a,b; Schmid, 2007) to determine opti-

mal initial perturbations with maximum amplification over a certain period of time.

In this manner, Rapaka et al. (2008), using a singular value decomposition method,

showed that optimal perturbations tend to be more localized within the boundary
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layer than white noise conditions. Subsequently, Doumenc et al. (2010) studied

non-modal growth in transient Rayleigh-Bénard-Marangoni convection. This was

performed using an adjoint-based method. An approach similar to that of Rapaka

et al. (2008) or Doumenc et al. (2010) is to optimize for the growth rate by formu-

lating an eigenvalue problem to determine the numerical abscissa. This approach

has been taken by Slim & Ramakrishnan (2010) and Kim & Choi (2012).

1.3 Challenges and Objectives

Though the stability of diffusive boundary layers has been studied extensively

using multiple methods, it is still uncertain which methodology best reflects the

physics of the problem. This uncertainty is best illustrated by examining recent

works. Ghesmat et al. (2011) performed a QSSA eigenvalue analysis to study the

effect of chemical reactions within the boundary layer . Elenius et al. (2012) em-

ployed a self-similar QSSA eigenvalue analysis to investigate the effect of a capil-

lary transition zone above the transient boundary layer. Meanwhile, Cheng et al.

(2012) investigated the effect of permeability anisotropy using the method of Slim

& Ramakrishnan (2010). Because of uncertainties in methodology, comparing ex-

perimental and theoretical studies is not straightforward.

In addition, there are other challenges in relating theoretical and experimental

studies of transient diffusive boundary layers. For example, the linear stability

analyses (Ennis-King et al., 2003; Riaz et al., 2006; Selim & Rees, 2007a) of CO2

solute boundary layers employ a constant viscosity. On the other hand, experimental
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studies (Backhaus et al., 2011), due to practical limitations, use miscible fluids with

large viscosity contrast. It is therefore important to characterize the effect of fluid

viscosity within the boundary layer.

An important measure for subsurface flows is the permeability of the porous

medium. The magnitude of permeability signifies the ability of the fluid to move

with ease through the porous medium. Typical aquifers are made of sedimentary

rocks with grain sizes varying from coarser sand to finer clay, which in turn causes

permeability to change within position (Bear, 1988). Depending on grain shape,

permeability may also be anisotropic due to preferential flow in a particular direc-

tion. Currently, there is no clear understanding on the effect of a spatially varying

permeability field on the onset times for natural convection in transient boundary

layers. Though the effect of permeability anisotropy on transient boundary layers

have been addressed by some studies (Cheng et al., 2012; Ennis-King & Paterson,

2005; Rapaka et al., 2009; Xu et al., 2006), the linear stability of transient boundary

layers in an aquifer with vertically (Rapaka et al., 2009) and horizontally varying

permeability is less explored. This is partly because of complications in the theoreti-

cal formulation of the linear stability problem especially in the case of a horizontally

varying permeability field.

The current study addresses these issues by

• developing a robust physical basis from which to study the influence of physical

effects, such as permeability heterogeneity and anisotropy as well as chemically

active boundary layers.
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• investigating the role of viscosity on transient boundary layers, and to relate

experimental and theoretical studies.

• exploring the effect of vertical and horizontal variations in the permeability

field.

1.4 Outline of Dissertation

Chapter 2 explores the onset of natural convection in homogeneous isotropic

porous media using a combination of linear stability analysis and direct numerical

simulations. Various linear stability approaches are investigated simultaneously in

order to develop a robust analytical framework. A new optimization procedure to

analyze the onset of instabilities is proposed.

Chapter 3 examines the effect of viscosity contrast on the linear stability of

transient, diffusive layers in porous media. This analysis helps evaluate experimental

observations of various boundary layer models that are commonly used to study CO2

sequestration. Comparisons are also made with classical viscous fingering systems.

Chapter 4 explores the stability of transient diffusive boundary layers in a

horizontally layered porous medium. Permeability is assumed to vary periodically

along the direction of the unstable gravity force. The behavior of instability is

studied with respect to modes of vorticity production related to the coupling of

perturbations with the magnitude and gradients of permeability.

Chapter 5 analyzes the onset of natural convection in a vertically layered

porous medium. The results are obtained using multi-dimensional eigenvalue prob-

10



lems and non-linear direct numerical simulations.

Finally, Chapter 6 lists the journal publications produced by this study. Av-

enues for future research are suggested.
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Chapter 2: Natural convection in homogeneous porous media

2.1 Overview

In this chapter, it is shown that classical optimal perturbation profiles that

maximize perturbation amplification cannot lead to onset of convection in finite

time. Rather, onset of convection results from the growth of “suboptimal” pertur-

bations localized within the diffusive boundary layer. The chapter is divided into

three broad categories: (i) analysis of the classical optimization procedure; (ii) de-

velopment of a new methodology to study constrained optimal perturbations; and

(iii) validation that the new approach predicts optimal perturbations closely related

to physical systems.

This chapter is organized as follows. The governing equations are presented

in §2.2. The classical modal and nonmodal approaches are described in §2.3. The

classical optimization results are presented in §2.4. The proposed modifications to

the classical optimization procedure and associated results are presented in §2.5.

DNS results are reported in §2.6. The main findings are summarized in §2.7.
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Figure 2.1: (a) Sketch, not to scale, of the geometry considered in this
study. (b) Base-state (2.3) for Ra = 500 and t = 0.1 (solid line), t = 1
(dashed line), and t = 10 (dash-dotted line).

2.2 Geometry and governing equations

Due to the fundamental nature of the current study, the porous medium is

modeled as being fluid-saturated, isotropic, homogeneous, of infinite horizontal ex-

tent in the x and y directions, and of finite depth H in the vertical z direction,

see figure 2.1(a). The vertical z direction is positive in the downward direction of

gravity, g. The domain is bounded by an impermeable wall at z = H. The top

boundary at z = 0 represents the fixed two-phase interface between CO2 gas and

CO2-saturated brine. The porous medium is characterized by its permeability, K,

dispersivity, D, and porosity, φ, respectively. Initially, the brine is quiescent with

zero CO2 concentration, c = 0, and constant density, ρ = ρ0. At time t = 0, satu-

rated brine is supplied at z = 0 with a constant concentration c = C1 and density ρ1.

The fluid viscosity, µ, is assumed to be constant. The density difference ∆ρ = ρ1−ρ0

13



is assumed to be much less than ρ0, i.e. ∆ρ� ρ0.

Fluid flow and mass transport in the porous medium are governed by Darcy’s

law and volume averaged forms of the continuity and advection-diffusion equations

(Whitaker, 1999). The governing equations are written in nondimensional form as,

v +∇p− cez = 0, ∇ · v = 0,
∂c

∂t
+ v · ∇c− 1

Ra
∇2c = 0, (2.1)

using the characteristic length L = H, time T = φH/U , buoyancy velocity U =

K∆ρg/µ, pressure P = ∆ρgH, and concentration C = C1. The dimensionless

equations (2.1) have been obtained using the Boussinesq approximation and a linear

fluid density profile, ρ = ρ0 + ∆ρ(c/C1). The Rayleigh number is defined as Ra =

UH/(φD). The symbol v = [u, v, w] is the nondimensional velocity vector, c is the

nondimensional concentration and p is the nondimensional pressure obtained from

the dimensional pressure p̂ through the relation p = (p̂ − ρ0gz)/P. The symbol ez

is the unit vector in the z direction. Equations (2.1) must satisfy the following

boundary conditions,

c
∣∣∣
z=0

= 1,
∂c

∂z

∣∣∣
z=1

= 0, w
∣∣∣
z=0

= w
∣∣∣
z=1

= 0, t ≥ 0. (2.2)

Equations (2.1) admit the transient base state,

vb = 0, cb(z, t) = 1− 4

π

∞∑

n=1

1

2n−1
sin

[(
n− 1

2

)
πz

]
exp

[
−
(

n− 1

2

)2
π2t

Ra

]
, (2.3)

The linear stability of base-state (2.3) is studied with respect to small wavelike

perturbations of the form,

c̃ = ĉ(z, t)ei(αx+βy), ṽ = v̂(z, t)ei(αx+βy), p̃ = p̂(z, t)ei(αx+βy), (2.4)

14



where i =
√
−1, α and β are wavenumbers in the x and y directions respectively, and

ĉ(z, t), v̂(z, t) and p̂(z, t) are time-dependent perturbation profiles in the z direction.

Following the standard procedure (see Riaz et al., 2006), the linear stability problem

can be written as the following initial value problem for ĉ and ŵ,

∂ĉ

∂t
+ ŵ

∂cb

∂z
− 1

Ra
Dĉ = 0, Dŵ + k2ĉ = 0, (2.5)

ĉ
∣∣∣
z=0

= 0,
∂ĉ

∂z

∣∣∣
z=1

= 0, ŵ
∣∣∣
z=0

= ŵ
∣∣∣
z=1

= 0, (2.6)

where D = ∂2/∂z2 − k2 and k =
√
α2 + β2. Because the base-state is transient, the

boundary layer is sensitive to the time at which it is perturbed. The boundary layer

is perturbed at time t = tp with the following initial perturbation profiles,

ĉ
∣∣∣
t=tp

= cp(z), ŵ
∣∣∣
t=tp

= wp(z), (2.7)

where cp and wp must satisfy equations (2.5)–(2.6).

2.3 Linear stability methods

This study explores a wide range of complementary modal and nonmodal

analysis methods. The various methods used for the linear stability analysis of

equations (2.5)–(2.6) are discussed in this section.

2.3.1 Quasi-steady eigenvalue analysis

The QSSA approach reduces equations (2.5)–(2.6) to an autonomous eigen-

value problem. For a prescribed final time tf , this approach approximates the base-

state, cb(z, t), as steady and decomposes perturbations into separable functions of
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z and t,

ĉ = ce(z; tf)e
σ(tf)t, ŵ = we(z; tf)e

σ(tf)t, (2.8)

where σ(tf) is the instantaneous growth rate at t = tf . Substituting (2.8) into (2.5)–

(2.6) produces an eigenvalue problem for eigenvalues σ and eigenfunctions ce and

we,

1

Ra

(
d2

dz2
− k2

)
ce + k2∂cb

∂z

(
d2

dz2
− k2

)−1

ce = σce, ce

∣∣∣
z=0

=
dce

dz

∣∣∣
z=1

= 0. (2.9)

The QSSA eigenvalue problem can also be written in terms of we. In practice,

however, solving (2.9) was more stable.

2.3.2 Classical Optimization

The initial perturbation profiles, cp and wp, are determined so that the per-

turbation amplification is maximized at some prescribed final time t = tf . Tan

& Homsy (1986) and Doumenc et al. (2010) have observed that the perturbation

amplification is sensitive to the perturbation flow field used to measure the pertur-

bation magnitude. To investigate how different measures of perturbation magnitude

influence nonmodal results, the perturbation magnitude at time t is defined as,

E(t) =

∫ 1

0

[
A1ĉ(z, t)

2 + A2ŵ(z, t)2 + A3û(z, t)2
]

dz, (2.10)

where A1,A2 and A3 are constants to be defined shortly. The following measures of

perturbation amplification, Φ(t), are studied,

Φc(t) =

[
E(t)

E(tp)

] 1
2

, A1 = 1, A2 = A3 = 0, (2.11a)
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Φw(t) =

[
E(t)

E(tp)

] 1
2

, A2 = 1, A1 = A3 = 0, (2.11b)

Φe(t) =

[
E(t)

E(tp)

] 1
2

, A1 = A2 = A3 = 1. (2.11c)

Most previous studies of transient boundary layers measure amplification with re-

spect to the perturbation’s concentration field, Φc (Caltagirone, 1980; Ennis-King

et al., 2003; Kim & Kim, 2005; Rapaka et al., 2008; Tan & Homsy, 1986), or the

vertical velocity field, Φw (Foster, 1965; Gresho & Sani, 1971; Kaviany, 1984; Tan

& Homsy, 1986). In addition, Φe is introduced as a measure of perturbation energy

that includes both the velocity and concentration fields. Φ(tf) is optimized using an

adjoint procedure described by Doumenc et al. (2010) in which E(tf) is maximized

subject to the constraint that E(tp) = 1. For this purpose, the Lagrangian is defined

as,

L(ĉ, c∗, ŵ, w∗, û, s) = E(tf)− s
[
E(tp)− 1

]
−
∫ tf

tp

∫ 1

0

w∗
(
Dŵ + k2ĉ

)
dz dt

−
∫ tf

tp

∫ 1

0

c∗
(
∂ĉ

∂t
− 1

Ra
Dĉ+ ŵ

∂cb

∂z

)
dz dt, (2.12)

where s is a scalar Lagrange multiplier and the adjoint variables c∗(z, t) and w∗(z, t)

are Lagrange multipliers dependent on z and t. The double integrals on the right-

hand-side of (2.12) assure satisfaction of the governing IVP (2.5)–(2.7). To obtain

first-order optimality conditions, the variational of the Lagrangian, δL, is set to
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zero. Integrating by parts, δL can be written as,

δL =

∫ 1

0

[
2 (A1ĉ δĉ+ A2ŵ δŵ + A3û δû)− c∗ δĉ

]
t=tf

dz

−
∫ 1

0

[
2s (A1ĉ δĉ+ A2ŵ δŵ + A3û δû)− c∗ δĉ

]
t=tp

dz

−
∫ tf

tp

∫ 1

0

[
δĉ

(
−∂c

∗

∂t
− 1

Ra
Dc∗ + k2w∗

)
+ δŵ

(
Dw∗ +

∂cb

∂z
c∗
)]

dz dt

+

∫ tf

tp

[
1

Ra

(
c∗
∂δĉ

∂z
− δĉ∂c

∗

∂z

)
− w∗∂δŵ

∂z
+ δŵ

∂w∗

∂z

]z=1

z=0

dt = 0. (2.13)

The optimality conditions are met when c∗ and w∗ satisfy the following adjoint

problem,

−∂c
∗

∂t
− 1

Ra
Dc∗ + k2w∗ = 0, Dw∗ = −∂cb

∂z
c∗, (2.14)

c∗
∣∣∣
z=0

= 0,
∂c∗

∂z

∣∣∣
z=1

= 0, w∗
∣∣∣
z=0

= w∗
∣∣∣
z=1

= 0, (2.15)

along with the following coupling conditions between the adjoint and physical vari-

ables,

2 (A1ĉ δĉ+ A2ŵ δŵ + A3û δû)
∣∣∣
t=tf

= c∗ δĉ
∣∣∣
t=tf

, (2.16)

2s (A1ĉ δĉ+ A2ŵ δŵ + A3û δû)
∣∣∣
t=tp

= c∗ δĉ
∣∣∣
t=tp

. (2.17)

The optimal initial perturbations are found using an iterative procedure. Given

an initial guess for cp and wp, the IVP (2.5)–(2.7) is integrated forward in time

to t = tf . Then the condition (2.16) is used to obtain a final condition for the

adjoint IVP (2.14)–(2.15). The adjoint IVP is then integrated backwards in time

to t = tp. Then using condition (2.17), one obtains improved initial profiles cp

and wp. This procedure is repeated until satisfaction of the convergence criteria,

‖cn
p − cn−1

p ‖∞/‖cn−1
p ‖∞ ≤ 10−4, where n is the iteration number. The iterative

procedure is insensitive to the initial guess; however, the number of iterations is
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reduced using c0
p = ξexp(−ξ2) where ξ = z

√
Ra/(4t). The IVPs are solved using

standard second-order finite-difference methods.

The application of the coupling conditions (2.16)–(2.17) depends on the def-

inition of the perturbation amplification. When maximizing Φc, conditions (2.16)–

(2.17) are satisfied for,

2ĉ
∣∣∣
t=tf

= c∗
∣∣∣
t=tf

, 2sĉ
∣∣∣
t=tp

= c∗
∣∣∣
t=tp

. (2.18)

The derivation of (2.18) is described by Doumenc et al. (2010). When maximizing

Φw or Φe, however, the application of the coupling conditions is less straightforward

than in the case of Doumenc et al. (2010) because in the current study, the momen-

tum equation lacks a temporal derivative. For those cases, the Neumann boundary

conditions for ĉ and c∗ at the lower wall are replaced with the following Dirichlet

condition,

ĉ
∣∣∣
z=1

= c∗
∣∣∣
z=1

= 0. (2.19)

Consequently, when maximizing Φw, coupling conditions (2.16)–(2.17) are satisfied

for,

−2k2ŵ
∣∣∣
t=tf

= Dc∗
∣∣∣
t=tf

, −2k2sŵ
∣∣∣
t=tp

= Dc∗
∣∣∣
t=tp

. (2.20)

When maximizing Φe, conditions (2.16)–(2.17) are satisfied for,

(
k2 ∂

2

∂z2
− k4 −D2

)
ŵ
∣∣∣
t=tf

=
k2

2
Dc∗

∣∣∣
t=tf

, (2.21)

s

(
k2 ∂

2

∂z2
− k4 −D2

)
ŵ
∣∣∣
t=tp

=
k2

2
Dc∗

∣∣∣
t=tp

. (2.22)

For the parameter space (tp, tf ,Ra, k) considered in the current study, the

Dirichlet condition (2.19) is a valid approximation because the optimal perturbations
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are concentrated near z = 0 and decay to zero outside the boundary layer such that

they are not influenced by the lower wall (Rapaka et al., 2008; Slim & Ramakrishnan,

2010). The results are validated by directly optimizing the IVP (2.5)–(2.7), subject

to the standard boundary conditions (2.6), using MATLAB routines. The adjoint-

based method shows excellent agreement with direct optimization but is an order-

of-magnitude faster.

2.4 Results

Previously, Rapaka et al. (2008) reported optimal perturbations that maximize

Φc for a fixed initial perturbation time, tp. That work is extended in the following

manner. First, this study explores how the amplification measure (2.11) affects the

optimization results. Second, the role of the initial perturbation time is investigated.

Third, this study examines the influence of the final time on the initial optimal

profiles. Fourth, in this study, the optimal perturbations are compared with quasi-

steady eigenmodes. Finally, in §2.3, the current study assess the relevance of the

optimal perturbations to physical experiments.

2.4.1 Effect of amplification measure

Figure 2.2 presents optimization results for Ra = 500 and tp = 0.01 when

maximizing Φc, Φw, and Φe. The Rayleigh number is set to a typical value for

CO2 sequestration (Ennis-King & Paterson, 2005). The initial perturbation time is

chosen to be one order-of-magnitude smaller than the critical time for instability,
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Figure 2.2: Optimization results for Ra = 500 and tp = 0.01 when
maximizing Φc, Φw and Φe, respectively. (a) Isocontours of Φc (solid
line), Φw (dashed line), and Φe (dash-dotted line) in the (k, tf) plane.
(b) kmax, vs. tf , when maximizing Φc (solid line), Φw (dashed line), and
Φe (dash-dotted line). (c) The optimal cp profiles when maximizing Φc

(circles), Φw (crosses), and Φe (squares) for k = 30 and tf = 5. The
base state cb(z, tp) is shown as a solid line. (d)–(f ) Amplifications Φc,
Φw, and Φe vs. t when integrating the forward IVP (2.5)–(2.7) in time
using the optimal initial cp profiles shown in panel (c), that maximize
Φc (solid line), Φw (dashed line), and Φe (dash-dotted line).
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tc, where the critical time is the time at which dΦ/dt = 0, after which Φ begins

to increase. The critical time depends on the initial condition and choice of the

amplification measure; however, previous analyses find the minimum critical time is

on the order of tc ∼ O(0.1) for Ra = 500 (Riaz et al., 2006; Selim & Rees, 2007a;

Slim & Ramakrishnan, 2010). Panel (a) illustrates optimal isocontours of Φc (solid

lines), Φw (dashed lines), and Φe (dash-dotted lines) in the (k, tf) plane. The three

amplification measures produce qualitatively similar behavior. The isocontours for

Φc and Φe are visually indistinguishable. For much of the (k, tf) plane, Φw is

marginally larger than Φc or Φe.

The dominant wavenumber, kmax, is defined as the wavenumber for which the

amplification is maximized at tf ,

Φmax(tf) = sup
0≤k<∞

Φ(tf , k). (2.23)

Figure 2.2(b) illustrates the dominant wavenumbers that maximize Φc (solid line),

Φw (dashed line), and Φe (dash-dotted line) for the final times 0.1 ≤ tf ≤ 2. The

dominant wavenumbers for the three amplification measures are qualitatively sim-

ilar. When tf ≤ 0.21, the dominant wavenumbers are zero. When tf > 0.21,

the dominant wavenumbers jump discontinuously to values around kmax ≈ 25. The

dominant zero-wavenumber perturbations were not reported by Rapaka et al. (2008)

because they considered late values of tf for which kmax is non-zero. When comparing

results of Rapaka et al. (2008) with the current study, one must note that Rapaka

et al. (2008) nondimensionalized the problem with a diffusive time scale, while the

current study uses an advective time scale. Consequently, the nondimensional times,
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t, in this study are related to those of Rapaka et al. (2008), t(R), through the relation

t(R) = t/Ra.

Though maximizing different perturbation fields produces similar dominant

wavenumbers, kmax, the corresponding optimal initial profiles, cp and wp, are sen-

sitive to the amplification measure. Figure 2.2(c) illustrates the optimal cp profiles

that maximize Φc (circles), Φw (crosses), and Φe (squares) at tf = 5 for k = 30.

For visualization, the profiles have been scaled so ‖cp‖∞ = 1. The solid line shows

the base-state at tp = 0.01. Figure 2.2(c) shows results for 0 ≤ z ≤ 0.15 because

the profiles are concentrated near z = 0 and decay to zero before interacting with

the lower wall z = 1. The profiles for Φe and Φc have maxima occurring around

z = 0.05, while the profile for Φw has a maximum occurring around z = 0.01.

Figure 2.2(d) illustrates the temporal evolution of Φc when the forward IVP

(2.5)–(2.7) is integrated from tp = 0.01 to t = 2 using the three initial cp profiles

illustrated in figure 2.2(c). The cp profiles that maximize Φc (solid line) and Φe

(dash-dotted line) produce indistinguishable results in figure 2.2(d). The cp pro-

file that maximizes Φw (dashed line), however, produces much lower values of Φc.

This suggests that maximization of Φw occurs at the expense of Φc. Figure 2.2(e)

illustrates the corresponding results for the evolution of Φw. The cp profiles that

maximize Φc (solid line) and Φe (dash-dotted line) produce nearly indistinguishable

results, while the profile that maximizes Φw (dashed line) produces marginally larger

Φw. Finally, figure 2.2(f ) illustrates the corresponding results for the evolution of

Φe. The initial profiles that maximize Φc and Φe again produce indistinguishable

results. This indicates that maximizing the perturbation’s concentration field nat-
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urally maximizes Φe, while maximizing Φw does so at the expense of Φc and Φe.

Because Φc naturally maximizes Φe, hereinafter this study focusses on maximiz-

ing Φc. Φc is preferred over Φe because the application of the coupling conditions

(2.16)–(2.17) is much simpler for Φc.

2.4.2 Optimal perturbation structures

Figure 2.3(a) illustrates the optimal amplifications Φc versus tf for tp = 0.01,

and k = 0 (circles), k = 10 (crosses), k = 25 (squares), and k = 40 (diamonds). For

small final times, tf < 0.1, all perturbations decay; however, the k = 25 perturba-

tions are more damped than the k = 0 and k = 10 perturbations. Note that the

k = 0 perturbations have a small constant damping rate. This occurs because the

IVP (2.5)–(2.7) for k = 0 reduces to

∂ĉ

∂t
− 1

Ra

∂2ĉ

∂z2
= 0, ŵ = 0. (2.24)

Equation (2.24) can be solved analytically to show that the optimal perturbation is

given by ĉ = sin (πz/2) exp (−π2Ra−1t/4). In contrast to the k = 0 perturbations,

finite wavenumber perturbations do not have constant growth rates. The k = 25

perturbations begin to grow around tf = 0.1 and eventually overtake the k = 10

and k = 0 perturbations. This explains the discontinuous jump in the dominant

wavenumbers from kmax = 0 to kmax ≈ 25 illustrated in figure 2.2(b). The k = 40

perturbations experience greater damping, and consequently, never overtake the

k = 25 perturbations.

Figure 2.3(b) illustrates the base state, cb(z, tf) (solid line), and optimal pro-
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Figure 2.3: Dominant perturbations for Ra = 500 and tp = 0.01. (a) Φc

vs. tf , for k = 0 (circles), k = 10 (crosses), k = 25 (squares), and k = 40
(diamonds). (b) cb(z, tf) (solid line) and ĉ(z, tf) for tf = 0.21, and k = 0
(circles), k = 10 (crosses), k = 20 (squares), and k = 30 (diamonds).

files, ĉ(z, tf), at tf = 0.21 for k = 0 (circles), k = 10 (crosses), k = 20 (squares), and

k = 30 (diamonds). The final time is chosen to be near to the discontinuous jump

in kmax illustrated in figure 2.2(b). The optimal profile for k = 0 has a maximum

at the lower boundary at z = 1, while the profiles for k = 10, 20, and 30 have

maxima near z = 0. With increasing k, the optimal profiles become increasingly

concentrated within the boundary layer.

The results for Φc and cp illustrated in figure 2.3 can be explained physically

by examining the competing effects of the stabilizing diffusive term, Dĉ/Ra, and the

destabilizing convective term, ŵ∂cb/∂z, in equation (2.5). At small times, t � tc,

the convective term ŵ∂cb/∂z has only a small effect because ∂cb/∂z is nonzero only

within the thin boundary layer where ŵ necessarily tends to zero due to the no-

penetration condition at z = 0. This explains why the boundary layer is stable at

small times. The dominant wavenumber is initially zero because finite wavenumber
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perturbations have additional damping due to the transverse diffusive term (k2/Ra)ĉ

in equation (2.5). At later times, the growing boundary layer increases the influence

of the destabilizing term ŵ∂cb/∂z such that non-zero wavenumber perturbations

become unstable. This explains why dominant perturbations at late times tend to

be increasingly concentrated in the boundary layer.

2.4.3 Sensitivity to initial perturbation time

Due to the transient nature of the base-state, the optimal perturbations also

depend on the time, tp, at which the boundary layer is perturbed. Figure 2.4 explores

the sensitivity of the optimal amplifications Φc to the initial perturbation time tp

for Ra=500. Panel (a) illustrates Φc versus tf for k = 30 and tp = 0.001 (solid line),

tp = 0.1 (dashed line), and tp = 0.5 (dash-dotted line). Perturbations originating

at tp = 0.001 have a long initial damping period and consequently have smaller

amplifications than perturbations originating at tp = 0.1. Perturbations originating

at the late time tp = 0.5 experience no damping, but have smaller amplifications

than perturbations originating at tp = 0.001 and tp = 0.1 because those perturba-

tions begin growing much earlier. At later times, tf > 0.5, the three curves have

identical slopes, indicating that the perturbations have identical temporal growth

rates. Figure 2.4(b) illustrates isocontours of Φc in the (k, tf) parameter plane for

tp = 0.001 (solid line), tp = 0.1 (dashed line), and tp = 0.5 (dash-dotted line). As

expected, perturbations originating at tp = 0.1 produce larger amplifications. The

horizontal dash-dotted line indicates that perturbations originating at tp = 0.5 grow
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immediately for 2 < k < 56.

Figures 2.4(a) and 2.4(b) suggest that there exists an optimal initial pertur-

bation time, top, that maximizes Φc. Perturbations originating prior to top cannot

outgrow the optimal perturbation originating at top due to the initial damping pe-

riod. From figure 2.4(a), top is expected to occur near the critical time, t = tc, because

this minimizes the damping period. Note that for Ra = 500, Slim & Ramakrish-

nan (2010) report that the minimum critical time is tc ≈ 0.096. The notion of an

optimal initial perturbation time may appear counterintuitive because in physical

systems the boundary layer is continuously perturbed beginning at tp = 0. Within

the framework of a linear stability analysis, however, the response to this contin-

uous forcing can be expressed as the infinite sum of many impulse responses to

forcing at discrete initial times, tp. The optimal perturbation originating at top gives

a theoretical upper bound for the amplification.

Figure 2.4(c) illustrates the normalized amplifications, Φc/||Φc||∞, versus tp

for tf = 1, and k = 10 (solid line), k = 30 (dashed line), and k = 50 (dash-dotted

line). The amplifications have been normalized with respect to their maximum

values to facilitate comparison between the results for different wavenumbers. As

tp → 0, the amplifications asymptote to constant values. With increasing tp, the

amplifications attain maxima near tp = tc and then decrease. Stronger sensitivity

of Φc to tp occurs with increasing wavenumber. This behavior is similar to that

observed in figure 2.3(a) for the sensitivity of Φc to the final time tf . The increasing

sensitivity of Φc to both tp and tf at higher wavenumbers is likely due to the increase

in transverse diffusive damping as noted in the previous section. Figure 2.4(d)
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Figure 2.4: Effect of initial perturbation time for Ra = 500. (a) Φc vs.
tf for k = 30, and tp = 0.001 (solid line), tp = 0.1 (dashed line), and
tp = 0.5 (dash-dotted line). (b) Isocontours of Φc in the (k, tf) plane for
tp = 0.001 (solid line), tp = 0.1 (dashed line), and tp = 0.5 (dash-dotted
line). (c) Φc/||Φc||∞, vs. tp for tf = 1, and k = 10 (solid line), k = 30
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Figure 2.5: (a) Dominant wavenumbers, kmax vs. tf for tp = 0.001 (solid
line), tp = 0.1 (dashed line), and tp = 0.5 (dash-dotted line). (b) Base-
state, cb (solid line), and optimal cp profiles (dashed line) for tp = 0.001,
tf = 5, and k = 30. (c) Same as panel (b) for tp = 0.5. (d) Same as panel
(b) for tp = 1.5. With increasing tp, the cp profiles become increasingly
concentrated in the boundary layer.
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illustrates Φc/||Φc||∞ versus tp for k = 30 and tf = 1 (circles), tf = 2 (crosses),

and tf = 3 (squares). The results for different tf are indistinguishable from each

other. This occurs because, as demonstrated in figure 2.4(a), the perturbations

have identical growth rates for tf > 1.

Figure 2.5(a) illustrates the temporal evolution of the dominant wavenumbers,

kmax, when tp = 0.001, (solid line), tp = 0.1 (dashed line), and tp = 0.5 (dash-dotted

line). As expected from the discussion in §2.4.2, the dominant wavenumbers are

initially zero when tp = 0.001. When tp = 0.1, however, the dominant wavenumber

is initially kmax = 29.74 for tf = 0.12 and reaches a maximum at tf = 0.26 after

which it decays monotonically. When tp = 0.5, kmax decreases monotonically with

tf . Previously, Rapaka et al. (2008) only reported cases with a monotonic decay of

kmax with tf . Figures 2.5(b)–2.5(d) illustrate the base state (solid lines) and optimal

cp profiles (dashed lines), for tp = 0.001 (panel b), tp = 0.5 (panel c), and tp = 1.5

(panel d) for Ra = 500, k = 30, and tf = 5. As expected from the discussion in

§2.4.2, the optimal profiles become increasingly concentrated within the boundary

layer with increasing tp due to the destabilizing convective term.

To explore the optimal initial perturbation time, the optimization procedure

is repeated for a wide range of wavenumbers, initial times, and final times. Figure

2.6(a) illustrates the optimal amplifications Φc for tf = 1, Ra = 500, 10 ≤ k ≤ 50,

and 0.01 ≤ tp ≤ 0.5. The maximum amplification, i.e. the peak of the Φc surface in

figure 2.6(a), is defined as

Φo
c(tf) = sup

0≤k<∞
0<tp<tf

{Φc(tf , k, tp)}, (2.25)
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Figure 2.6: The optimal point (Φo
c, ko, top) as a function of tf and Ra.

(a) Φc vs. tp and k for Ra = 500 and tf = 1. The solid dot marks
(Φo

c, ko, top). (b) Φo
c vs. tfRa for Ra = 500 (circles), Ra = 750 (crosses),

and Ra = 1000 (squares). The dashed line shows relationship (2.26).
(c) ko/Ra vs. tfRa for Ra = 500 (circles), Ra = 750 (crosses), and
Ra = 1000 (squares). The dashed line shows relationship (2.27) (d)
tpRa vs. tfRa for Ra = 500 (circles), Ra = 750 (crosses), and Ra = 1000
(squares). The dashed line shows relationship (2.28).
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and the optimal point (ko, top) as the location in the (k, tp) plane where Φ = Φo
c.

To explore the dependence of the optimal point on tf and Ra, (Φo
c, ko, top)

is calculated for 500 ≤ Ra ≤ 1000 and 1 ≤ tf ≤ 8. Figure 2.6 demonstrates

that the results collapse to three curves by plotting Φo
c (panel b), ko/Ra (panel

c), and topRa (panel d) as functions of tfRa. This collapse occurs because the

optimal perturbations are concentrated near z = 0 and do not interact with the

lower boundary at z = 1. Consequently, the Rayleigh number dependence may

be scaled out of the governing equations (2.1)–(2.2) by approximating the vertical

depth as infinite, H → ∞, and nondimensionalizing the problem with respect to

the characteristic length L = φD/U , and time, T = φL/U . From figure 2.6, obtain

the following relationships,

log Φo
c = −4.458×10−8(tfRa)2 + 0.001721tfRa − 0.05739, (2.26)

ko = Ra
[
0.1152− 0.02023 log(tfRa)

]
, (2.27)

top = 6.364×10−4 tf + 58.00/Ra, (2.28)

For convenience, relations (2.27) and (2.28) are presented in dimensional form,

k∗ =
U

φD

[
0.1152− 0.02023 log

(
t∗fU

2

φ2D

)]
, (2.29)

t∗p = 6.364×10−4 t∗f + 58.00
φ2D

U2
, (2.30)

where k∗, t∗p, and t∗f are the optimal wavenumber, initial time, and final time in

dimensional form. Recall from §2.2 that U = K∆ρ g/µ. These relations demonstrate

that the optimal wavenumber and initial time are independent of the aquifer depth

32



H. Note that when tfRa < 1500, relations (2.26) and (2.27) continue to provide

accurate estimates, while relation (2.28) deviates significantly.

Ennis-King & Paterson (2005) report the following typical parameter values

for CO2 sequestration: µ = 5×10−4 Pa s, φ = 0.2, ∆ρ = 10 kg m−3, g = 9.81 m s−2,

D = 10−9 m2 s−1, and 10−14 ≤ K ≤ 10−12 m2. Using these values, figure 2.6 predicts

that the optimal wavelength and initial time for high permeability aquifers, K =

10−12 m2, vary in the range, 11 cm ≤ 2π/k∗ ≤ 18 cm and 17 hours ≤ t∗p ≤ 18 hours

as the final time varies between, 6 days ≤ t∗f ≤ 96 days. For low permeability

aquifers, K = 10−14 m2, these parameters vary between 11 m ≤ 2π/k∗ ≤ 18 m,

19 years ≤ t∗p ≤ 21 years, 165 years ≤ t∗f ≤ 2636 years. While these initial and final

times for K = 10−14 m2 aquifers may appear late, the optimal initial times are

consistent with previous estimates of the critical time reported by Ennis-King &

Paterson (2005) and Riaz et al. (2006). Furthermore, in §2.6.2, the range of final

times are found to be representative of actual onset times for nonlinear convection,

to.

The dependence of the optimal point (ko, top) on tf indicates that the optimal

initial perturbation depends on the initial perturbation amplitude and consequently

cannot be determined through purely linear analysis. Consider, for example, that

direct numerical simulations show that the onset time for convection, to, decreases

with increasing initial perturbation amplitude (Rapaka et al., 2008; Selim & Rees,

2007b). Consequently, figures 2.6(c) and 2.6(d) predict that large amplitude pertur-

bations will have larger values of ko and smaller values of top than small amplitude

perturbations. Their exact values, however, would require a priori numerical or
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Figure 2.7: Convergence of the optimal cp profiles for tp = 0.01. (a)
∆cp/∆tf vs. tf for k = 30 and Ra = 500 (b) Isocontours of ∆cp/∆tf in
the (k, tf) plane for Ra = 500 (solid line), Ra = 750 (dashed line), and
Ra = 1000 (dash-dotted line).

experimental results for the onset time to.

2.4.4 Influence of final time on initial perturbation profiles

Beyond a certain final time, the initial profiles, cp and wp, are unaffected by

further increases to tf . To quantify the final time beyond which cp and wp do not

depend on tf , the rate of change of cp is measured with respect to tf as,

∆cp

∆tf
=
‖cp(z; tf + ∆tf)− cp(z; tf)‖∞

∆tf
, (2.31)

where ∆tf = 0.01 and the cp profiles are normalized with respect to their L2 norms.

Figure 2.7(a) illustrates ∆cp/∆tf versus tf for tp = 0.01, k = 30 and Ra = 500.

∆cp/∆tf is initially large but decreases rapidly to zero. Figure 2.7(b) illustrates

isocontours of ∆cp/∆tf = 0.1 and 0.001 in the (k, tf) parameter plane for tp =

0.01 and Ra = 500 (solid line), Ra = 750 (dashed line), and Ra = 1000 (dash-
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Figure 2.8: IVP results using random initial profiles, cp and wp, for
tp = 0.01, k = 30, and Ra = 500. (a) The base-state (solid line)
and random initial profiles cp (dashed line) and wp (dash-dotted line)
at tp = 0.01. (b) Resulting perturbation profiles ĉ (dashed line) and ŵ
(dash-dotted line) at t = 5 The squares show the corresponding optimal
perturbation ĉ when tf = 5.

dotted line). With increasing k, the final time after which cp and wp do not change

decreases. There is only a small influence of the Rayleigh number on the ∆cp/∆tf

isocontours.

The convergence of cp and wp beyond a certain tf may be explained by noting

that the forward IVP (2.5)–(2.7) always converges to the same dominant perturba-

tions given sufficient time. To demonstrate this behavior, figure 2.8(a) illustrates

random initial conditions for cp (dashed line) and wp (dash-dotted line) that span

the entire vertical domain, 0 ≤ z ≤ 1, at tp = 0.01 for k = 30. Figure 2.8(b)

illustrates the resulting perturbation profiles, ĉ(z, 5) and ŵ(z, 5), generated by inte-

grating the forward IVP to t = 5. The final state of the forward IVP is identical to

the corresponding optimal perturbation, shown using squares in figure 2.8(b).
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2.4.5 Comparison with quasi-steady eigenvalue analysis

The convergence of the forward IVP and optimization procedure to identical

dominant perturbations at late times may be explained by considering a quasi-steady

modal analysis. The optimal perturbations are compared with the dominant QSSA

modes by measuring,

∆ĉ =

∫ 1

0

∣∣∣∣
ce(z; tf)

‖ce(z; tf)‖∞
− ĉ(z, tf)

‖ĉ(z, tf)‖∞

∣∣∣∣dz. (2.32)

When ∆ĉ = 0, the dominant QSSA mode and optimal perturbation are identical.

Figure 2.9 compares optimal perturbations with dominant QSSA modes for

tp = 0.1 and Ra = 500. Note that tp is chosen to be close to the optimal initial time

top. Figure 2.9(a) illustrates the variation of ∆ĉ for wavenumbers 5 ≤ k ≤ 60 and

final times 0.12 ≤ tf ≤ 2. Large values of ∆ĉ occur at small wavenumbers and final

times. In the limit of k → 0, however, ∆ĉ tends to zero because the optimal pertur-

bation and dominant QSSA mode both tend to ĉ = sin (πz/2) exp (−π2Ra−1t/4).

With increasing wavenumber and final time, ∆ĉ becomes small, indicating that the

optimal perturbations essentially recover the dominant QSSA modes. This behav-

ior is confirmed in figure 2.9(b) which illustrates the base-state (solid line), optimal

perturbation (dashed line), and dominant QSSA eigenmode (dash-dotted line) at

tf = 2 and k = 10. Note that ∆ĉ remains small for the optimal perturbations with

wavenumber, kmax, illustrated in figure 2.2(b).

The amplification produced by temporal integration of the dominant QSSA
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Figure 2.9: Comparison of optimal perturbations with the least stable
QSSA mode for Ra = 500. (a) ∆ĉ in the (k, tf) plane for tp = 0.1. (b)
illustrates base-state, cb(z, tf) (solid line), optimal perturbation ĉ(z, tf)
(dashed line) and least stable eigenmode, ce(z; tf) (dash-dotted line) at
tf for tp = 0.1, k = 10, and tf = 2. (c) Isocontours of amplification in
the (k, tf) plane when tp = 0.01 for QSSA (solid lines) and optimization
(dashed lines). (d) The dominant wavenumbers kmax vs. tf when tp =
0.01 for QSSA (solid lines) and optimization (dashed lines)
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growth rate, σ, can be computed through the relation

Φq(t) = eg(t), g(t) =

∫ t

tp

σ(tf) dtf . (2.33)

Figure 2.9(c) compares isocontours of Φq (solid line) with optimal results for Φc

(dashed line) in the (k, tf) parameter plane for Ra = 500 and tp = 0.01. The am-

plifications produced by optimal perturbations are in excellent agreement with the

dominant QSSA eigenmodes. Counterintuitively, for much of the (k, tf) plane, Φq is

marginally greater than Φc. This occurs for the following reasons. At late times, the

boundary layer grows slowly and the optimal perturbations tend to the dominant

QSSA eigenmodes. At small times, however, the boundary layer varies rapidly and

the optimal perturbations cannot continuously adhere to the quasi-steady eigen-

modes. Consequently, temporal integration of the dominant QSSA growth rates

produces marginally larger amplifications than Φc. This also helps explain why

dominant perturbations tend to differ from the dominant eigenmode at small times.

Figure 2.9(d) illustrates the dominant wavenumbers, kmax, that maximize Φq

(solid line) and Φc (dashed line) for 0.03 ≤ tf ≤ 5. The optimization procedure is

repeated for different tp and observe similar agreement between the QSSA and opti-

mization results. This suggests that optimal perturbations are primarily composed

of the dominant QSSA mode. In contrast, nonmodal stability analyses of steady

wall-bounded shear flows, such as channel flows and flat plate boundary layers, typ-

ically produce optimal perturbations that are qualitatively very different from the

corresponding dominant eigenmodes. This suggests that for the current study, the

deviation of the optimal perturbations from the dominant eigenmodes at small times
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tp = 0.01

A∞ cmin
net

10−02 −10−02

10−05 −10−05

10−10 −10−10

tp = 0.1

A∞ cmin
net

10−02 −8.0× 10−03

10−05 −4.9× 10−06

10−10 −2.5× 10−11

tp = 1

A∞ cmin
net

10−02 −2.1× 10−03

10−05 −3.3× 10−08

10−10 −5.1× 10−15

Table 2.1: Minimum net concentrations cmin
net produced by the classical

optimal cp profiles when k = 30, Ra = 500, tf = 5, tp = 0.01, 0.1, 1, and
A∞ = 10−2, 10−5, and 10−10. At tp = 0.01, the negative concentration
is of the same order as A∞. As tp increases, the perturbation profiles
become increasingly concentrated within the boundary layer and conse-
quently the magnitude of the negative concentrations cmin

net diminish.

is primarily due to the transient base-state, rather than the nonorthogonality of the

quasi-steady eigenmodes.

2.5 Modified Optimization Procedure

Experimental studies observe that perturbations are initially localized within

the boundary layer (Blair & Quinn, 1969; Elder, 1968; Green & Foster, 1975; Span-

genberg & Rowland, 1961; Wooding et al., 1997). To determine whether the optimal

perturbations obtained in §4 reflect those observed experimentally, one considers

the following argument. If the optimal perturbation is observed experimentally, the

net concentration can be expressed as the sum of the base-state and perturbation
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through the relation

cnet(x, z, tp) = cb(z, tp) + A∞ cos(kx)
cp(z)

||cp||∞
, (2.34)

where cp is the optimal initial profile and A∞ is the perturbation amplitude measured

using the L∞ norm. Table 2.1 lists the minimum net concentrations, cmin
net , for various

A∞ and tp when tf = 5, k = 30, and Ra = 500. For tp = 0.01, unphysical

negative net concentrations are observed that are equal to A∞. This occurs because

the maxima of the optimal cp profiles are located outside the boundary layer, see

figure 2.5(b). For tp = 0.1 and 1, the magnitude of the negative concentrations

become increasingly smaller because the optimal cp profiles become increasingly

concentrated within the boundary layer, see figures 2.5(c)–2.5(d).

Direct numerical simulations show that the onset time for convection decreases

with increasing initial perturbation amplitude A∞(Rapaka et al., 2008). Conse-

quently, though the classical optimal perturbations are mathematically valid opti-

mal solutions, onset of convection in physical systems may more likely be triggered

by suboptimal perturbations concentrated within boundary layer. Those perturba-

tions support finite initial amplitudes, and consequently require less time to grow

sufficiently for onset of convection. To investigate this alternate path to onset of

convection, this study proposes a modified optimization procedure that constrains

the initial concentration fields of the perturbations to be within the boundary layer.
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2.5.1 Methodology

The classical optimization procedure described in §3 is modified by replacing

the constraint E(tp) = 1 with the modified constraint EΨ(tp) = 1, where

EΨ(tp) =

∫ 1

0

Ψ(z) ĉ(z, tp)2dz, (2.35)

where Ψ(z) is a filter function that tends to infinity, Ψ→∞, outside the boundary

layer. Then ΦΨ =
√
E(tf)/EΨ(tp) is maximized.The filter function assures that

EΨ(tp) = ∞, when cp extends beyond the boundary layer. This forces ΦΨ to

zero and effectively filters such perturbations from the optimization procedure. In

practice, the infinite values of Ψ are approximated numerically using a large finite

value.

Following an analogous procedure to that in §3, the Lagrangian is formulated,

L(ĉ, c∗, ŵ, w∗, s) = E(tf)− s
[
EΨ(tp)− 1

]
−
∫ tf

tp

∫ 1

0

w∗
(
Dŵ + k2ĉ

)
dz dt

−
∫ tf

tp

∫ 1

0

c∗
(
∂ĉ

∂t
− 1

Ra
Dĉ+ ŵ

∂cb

∂z

)
dz dt, (2.36)

and obtain the following coupling conditions between physical and adjoint variables,

2sĉ
∣∣
tp

= Ψ−1c∗
∣∣
tp
, 2ĉ

∣∣
tf

= c∗
∣∣
tf
. (2.37)

The adjoint IVP (2.14)–(2.15) remains unchanged. After convergence of the itera-

tive procedure for the optimal profile that maximizes ΦΨ, the final amplification is

computed using the traditional definition of Φc =
√
E(tf)/E(tp). This allows us to

compare results of the modified optimization procedure with those of the classical

procedure.
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Figure 2.10: Optimization using Ψ1 and Ψ2 for k = 30, Ra = 500,
tp = 0.1, and tf = 3. (a) Base-state (solid line), Ψ−1

1 (dashed line), and
Ψ−1

2 (dash-dotted line). (b) Base-state (solid line), classical cp (circles),
and modified cp profiles using Ψ1 (dashed line) and Ψ2 (dash-dotted
line).

2.5.2 Filter Functions

First, a filter function is employed such that its inverse is a step function of

the form,

Ψ−1
1 (z) =





1 if z ≤ δ,

0 if δ < z ≤ 1,

(2.38)

where δ is the boundary layer depth defined as cb(δ, tp) = 0.005. Figure 2.10(a)

illustrates Ψ−1
1 as a dashed line for tp = 0.1 and Ra = 500. The base-state is

shown as a solid line. Figure 2.10(b) illustrates the corresponding optimal cp profile

(dashed line) for Ra = 500, k = 30, tp = 0.1, and tf = 3. The base-state is shown

as a solid line and the classical optimal cp profile is shown using circles. Within the

boundary layer, the modified profile follows the classical profile and then vanishes
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discontinuously at z = δ. Consequently, though concentrated within the boundary

layer, the perturbations generated by Ψ1 are unlikely to arise in nature.

To produce continuously differentiable perturbations, the following filter func-

tion is introduced such that it is equal to unity in most of the boundary layer, but

varies smoothly to zero beyond the boundary layer depth,

Ψ−1
2 (z) =

1

2

[
1− erf

(
25 (z − δ)

δ

)]
. (2.39)

Figure 2.10(a) illustrates Ψ−1
2 using a dash-dotted line. Figure 2.10(b) illustrates

that the corresponding optimal modified cp profile (dash-dotted line) decreases

rapidly, but smoothly, to zero outside the boundary layer, but is otherwise similar

to that produced by Ψ1. The modified profiles illustrated in figure 2.10(b) produce

physical initial conditions, cmin
net = 0, when A∞ < 10−3.

Though Ψ2 produces physically realizable optimal perturbations, the pertur-

bations have maxima near the boundary layer depth, z = δ, where the base-state

concentration is very small. This limits the maximum allowable initial amplitude

of these perturbations. In contrast, perturbations with maxima near z = 0 can

support larger initial amplitudes and may consequently trigger onset of convection

sooner. Furthermore, one may expect that perturbations would naturally tend to

have maxima near the upper boundary, z = 0, where the base-state has a maximum

and there is consequently more solute to perturb. To investigate this possibility,

note that the inverse filter functions may be first interpreted as weight functions.

Because Ψ−1
1 and Ψ−1

2 are equal to unity in most of the boundary layer, they give

equal weight to most of the boundary layer. Optimal perturbations with maxima
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near z = 0 can be obtained using an inverse filter function that decreases with

the base-state concentration. A natural candidate is Ψ−1
3 = cb because this natu-

rally weighs regions of high base-state concentration over those with low base-state

concentration.

Figure 2.11(a) illustrates the base-state (solid line) and cp profile generated

using Ψ3 (dashed line) for tp = 0.1, tf = 5, k = 30, and Ra = 500. As expected, Ψ3

produces a profile with a maximum closer to z = 0 than z = δ. Consequently, the

profile shown in figure 2.11(a) supports initial amplitudes as large as A∞ = 10−1

without producing negative values of cnet. Figure 2.11(b) illustrates optimal isocon-

tours of Φc in the (k, tf) parameter plane using Ψ2 (solid lines) and Ψ3 (dashed lines).

As expected, though Ψ3 supports larger initial amplitudes, Ψ2 produces greater am-

plifications. This raises the possibility that there exists an optimal filter function,

Ψopt, that balances the tradeoff between the initial amplitude and subsequent ampli-

fication in order to minimize the onset time for convection. This is beyond the scope

of the current study, however, because it requires a nonlinear analysis. Therefore,

for brevity, this study focusses on the perturbations produced by Ψ3 because these

support large initial amplitudes.

2.5.3 Comparison with classical optimization scheme

Hereinafter, this study refers to the classical optimization procedure as COP

and the modified optimization procedure using Ψ3 as MOP. Figure 2.12(a) illus-

trates the temporal evolution of the dominant wavenumbers, kmax, produced by
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Figure 2.11: Optimization results for tp = 0.01 and Ra = 500. (a) The
base-state cb(z, tp) (solid line) and optimal cp(z) profile using Ψ3 (dashed
line) for tf = 5 and k = 30. Note that the initial cp(z) profile obtained
using Ψ2 is shown in figure 2.10(b). (b) Isocontours of Φc in (k, tf) plane
using Ψ2 (solid line) and Ψ3 (dashed line).

the COP (solid line) and MOP (dashed line) schemes for tp = 0.01 and Ra =

500. For early final times, tf < 0.21, the MOP scheme produces nonzero dom-

inant wavenumbers, kmax 6= 0, while the COP scheme predicts kmax = 0. The

large difference in dominant wavenumbers at small times occurs because the zero-

wavenumber perturbations produced by the COP scheme span the entire vertical

domain, ĉ = sin (πz/2) exp (−π2Ra−1t/4), as discussed in §2.4.2. Using the MOP

scheme, these perturbations are filtered by Ψ3. At late tf , the MOP dominant

wavenumbers tend towards those predicted by the COP. Figure 2.12(b) illustrates

the corresponding maximum amplifications, Φmax, see equation (2.23), produced by

the COP (solid line) and MOP (dashed line) schemes. For final times, tf < 0.21, the

COP amplifications are close to unity because the zero-wavenumber perturbations

have a small constant decay rate, see discussion in §2.4.2. The MOP amplifica-
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Figure 2.12: Comparison of the COP and MOP schemes for Ra = 500.
(a) kmax vs. tf for tp = 0.01 for COP (solid line) and MOP (dashed line).
(b) Φmax vs. tf for tp = 0.01 for COP (solid line) and MOP (dashed line).
(c) ∆Φmax vs. tp for tf = 4. (d) Isocontours of ∆cp/∆tf = 0.001 in the
(k, tf) plane for tp = 0.1 for COP (solid line) and MOP (dashed line).
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tions are an order-of-magnitude smaller because the perturbations are constrained

to the boundary layer and undergo substantial damping up to the critical time for

instability, tc. For tf > 1, the amplifications produced by COP and MOP in figure

2.12(b) have identical slopes. This occurs because of similar growth rates between

the final states of the dominant wavenumber perturbations obtained using the COP

and MOP schemes.

The difference between the COP and MOP amplifications depends on the

initial time, tp. To explore this, one can measure

∆Φmax =
ΦCOP − ΦMOP

ΦCOP

, (2.40)

where ΦCOP and ΦMOP are the maximum amplifications, Φmax, obtained using COP

and MOP, respectively. Figure 2.12(c) illustrates ∆Φmax for tf = 4 as the initial

perturbation time varies from tp = 10−3 to tp = 1. Note that the results are

independent of final time tf when tf > 1. ∆Φmax tends to a maximum as tp → 0

because ΦMOP → 0, while ΦCOP converges to finite values, see figures 2.4(c)–2.4(d).

With increasing tp, ∆Φmax decreases indicating better agreement between the COP

and MOP amplifications. Note that the maxima of the optimal initial MOP profiles

are always closer to the top boundary, z = 0, compared to the initial COP profiles.

Recall from §2.4.4, that beyond certain final times, the initial cp profiles gen-

erated by the COP scheme are insensitive to further increases in tf . To investi-

gate this behavior for the MOP scheme, figure 2.12(d) illustrates the isocontours

∆cp/∆tf = 0.001, see equation (2.31), in the (k, tf) parameter plane generated using

the COP (solid line) and MOP (dashed line) schemes for tp = 0.1 and Ra = 500. The
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final times beyond which the initial MOP profiles do not change shape are much

smaller than the COP profiles. This suggests that initial perturbations confined

within the boundary layer rapidly converge to a common shape.

As discussed in §2.4.3, due to the transient growth of the base-state, there

exists an optimal combination of initial time and wavenumber, top and ko, that

produces the subsequent optimal amplification Φo
c. Figure 2.13(a) illustrates the

MOP amplifications, Φc, for 10 ≤ k ≤ 50, 0.1 ≤ tp ≤ 0.5, tf = 1, and Ra = 500.

The solid dot marks the peak of the surface, Φo
c. Figure 2.13 demonstrates Φo

c

(panel b), ko/Ra (panel c), and topRa (panel d) as functions of tfRa. The results

for different Ra collapse as previously demonstrated for the COP scheme in figure

2.6. The following relationships for Φo
c and the dimensional forms of wavenumber,

k∗, and the initial time, t∗p are obtained,

log Φo
c = −5.550×10−8t∗f

2

(
U2

φ2D

)2

+ 0.001785t∗f
U2

φ2D
− 0.3967, (2.41)

k∗ =
U

φD

[
0.1234− 0.02237 log

(
t∗fU

2

φ2D

)]
, (2.42)

t∗p = −5.107×10−7t∗f
2 U

2

φ2D
+ 0.01086t∗f + 120.1

φ2D

U2
. (2.43)

For high permeability aquifers, K = 10−12 m2 (see §2.4.3), figure 2.13 predicts

that the optimal perturbation wavelength and initial perturbation time vary in the

range, 10 cm ≤ 2π/k∗ ≤ 18 cm and 36 hours ≤ t∗p ≤ 51 hours as the final time

varies between, 6 days ≤ t∗f ≤ 96 days. For low permeability aquifers, K = 10−14 m2,

these parameters vary in the range 10 m ≤ 2π/k∗ ≤ 18 m, 41 years ≤ t∗p ≤ 58 years,

165 years ≤ t∗f ≤ 2636 years. The optimal amplifications, Φo
c, are approximately

50 % those produced by the COP scheme, see figure 2.6. ko agrees closely with
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those produced, using the COP scheme. The optimal initial perturbation times, top,

however, are roughly twice as large as those for the COP scheme due to the large

initial damping periods experienced by the MOP perturbations. The optimal initial

time, top, is also more sensitive to tf than the COP scheme. Recall from §2.4.3, that

the optimal initial perturbation time would require a priori knowledge of the onset

time of convection, i.e. tf = to. Because of the increased sensitivity of top to tf , the

optimal MOP perturbations are expected to be more sensitive to initial perturbation

amplitude, A∞, than the COP perturbations.

2.5.4 Comparison with eigenvalue and initial value problems

In this section, the modified optimization procedure is compared to previously

published linear stability methods that ensure perturbations are localized within

the boundary layer. The first approach approximates the vertical domain as semi-

infinite. In this case there is a similarity solution for the base-state, cb = 1− erf(ξ),

where ξ(z, t) = z
√

Ra/(4t) is the similarity variable. Riaz et al. (2006) demon-

strated that a quasi-steady modal analysis with respect to the (ξ, t) space produces

eigenmodes concentrated in the boundary layer. For convenience of notation, this

eigenvalue problem is referred to as the QSSAξ problem. The eigenvectors of the

QSSAξ problem are cξ and wξ. The second procedure considered is the solution of

the forward IVP (2.5)–(2.7) using cp = cdm, where cdm is the “dominant mode” of

Riaz et al. (2006) given by,

cdm(z) = ξe−ξ
2

. (2.44)
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Figure 2.14: Comparison of modified optimization with QSSA in self-
similar space and IVP with cp = cdm for Ra = 500. (a) Base-state, cb

(solid line), initial MOP profile (circles), dominant QSSAξ eigenmode, cξ

(squares), and cdm perturbation (2.44) (crosses) at tp = 0.01 for k = 10.
(b) Same as in panel (a) for k = 50. (c)–(d) Temporal evolution of Φmax

and kmax for tp = 0.01 using MOP (solid line), QSSAξ (dashed line), and
initial condition (2.44) (dash-dotted line).
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Initial condition (2.44) is the leading-order term of a Hermite polynomial expansion

in the (ξ, t) space and has been used in numerous previous studies (Ben et al., 2002;

Elenius et al., 2012; Kim & Choi, 2011, 2012; Pritchard, 2004; Riaz et al., 2006;

Selim & Rees, 2007a; Wessel-Berg, 2009).

Figure 2.14(a) illustrates the initial perturbation concentration profiles, ĉ(z, tp),

produced by the MOP (circles), dominant QSSAξ eigenmode (squares), and initial

condition (2.44) (crosses), for tp = 0.01, Ra = 500, and k = 10. Figure 2.14(b)

repeats figure 2.14(a) for the larger wavenumber, k = 50. In both figures, the

base-state is shown as a solid line. For both wavenumbers, the three methodologies

produce qualitatively similar profiles. The profiles produced by QSSAξ and cdm are

indistinguishable, while the MOP profiles have maxima closer to z = 0. Note that

the MOP profiles support slightly larger initial magnitudes, A∞, than the QSSAξ

and cdm profiles, without producing negative net concentrations, cnet.

Figure 2.14(c) illustrates results for Φmax versus tf obtained using the MOP

(solid line), QSSAξ (dashed line), and initial condition (2.44) for tp = 0.01, 0.03 ≤

tf ≤ 5, and Ra = 500. The three procedures again produce similar results, though

initial condition (2.44) produces marginally larger amplifications. Note that the

QSSAξ amplifications are obtained by first transforming the dominant QSSAξ growth

rates to the (z, t) coordinates using a L2 norm, before integrating equation (2.33).

Figure 2.14(d) illustrates the corresponding dominant wavenumbers, kmax, of the

three procedures. The results produced by initial condition (2.44) and the MOP are

indistinguishable.
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2.6 Direct Numerical Simulations

Two-dimensional direct numerical simulations (DNS) of the nonlinear govern-

ing equations (2.1)–(2.2) are performed using a traditional pseudospectral method

with spectral spatial accuracy (Peyret, 2002). The horizontal domain is truncated

to x ∈ [0, L] with periodic boundary conditions on x = 0 and x = L. Equa-

tions (2.1)–(2.2) are then discretized spatially using Chebyshev polynomials in the

vertical z direction and a Fourier expansion in the horizontal x direction. The

advection-diffusion equation is discretized temporally using a third-order, semi-

implicit, backwards-difference scheme (Peyret, 2002). This temporal discretization

is chosen for its favorable stability and allows us to investigate small initial times,

tp → 0, The initial concentration field is prescribed at t = tp as

cdns(z, x) = cb(z) + A∞
ci(x, z)

‖ci‖∞
, (2.45)

where A∞ is the initial perturbation magnitude measured with respect to the infinity

norm of the perturbation concentration field, ci.

2.6.1 Simulations of physical systems

To emulate physical experiments, DNS is performed in which the boundary

layer is simultaneously perturbed with all wavenumbers resolved numerically,

ci(x, z) =

N/2−1∑

m=0

amcos

(
2πm

L
x

)
G(z)F (z), (2.46)

where N is the number of collocation points in the x direction, and −1 ≤ F (z) ≤ 1

is a random function generated using Fortran’s random number generator. The co-
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Case ζc σ Symbol

1 0.50 0.05 Circle

2 0.50 0.10 Square

3 0.50 0.15 Cross

4 0.25 0.10 Diamond

5 0.75 0.10 Plus

Table 2.2: The parameters used for the Gaussian, G(z).

efficients am are computed to ensure that each horizontal Fourier mode is perturbed

with equal energy. The following values, L = 4π and N = 1024, are used in order

to resolve wavenumbers, k = 0, 0.5, 1, ... , 255. To ensure that ci satisfies the bound-

ary condition at z = 0 and remains concentrated within the boundary layer, the

Gaussian function is employed,

G(z) =





0 if z = 0,

exp
(
−1

2

(
ζ−ζc
σ

)2
)

if 0 < z ≤ δ,

0 if δ < z ≤ 1,

(2.47)

where ζ = z/δ, ζc is the mean and σ is the standard deviation. For example, when

ζc = 0.5, the peak of the Gaussian function is located midway between z = 0 and

z = δ. This study varies the peak location, ζc, and the width, σ, to recreate several

experimental possibilities listed in table 2.2.

Figure 2.15(a) illustrates the temporal evolution of the dominant wavenum-
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Figure 2.15: (a) Temporal evolution of dominant wavenumbers, kmax,
produced by DNS (symbols, see table 2.2), COP (solid line), and MOP
(dashed line) for Ra = 500 and tp = 0.01 (b) Same as in panel (a) for
tp = 0.2.

bers, kmax, produced by COP (solid line), MOP (dashed line), and five DNS recre-

ating the experimental conditions in table 2.2, for Ra = 500 and tp = 0.01. All

simulations are run using the initial amplitude A∞ = 10−4 to produce a long linear

regime, to > 5, to facilitate comparison of the dominant wavenumbers predicted

by COP, MOP and DNS. Excellent agreement between the dominant wavenumbers

produced by the MOP and DNS are observed, while those predicted by the COP

show poor agreement.

Figure 2.15(b) repeats figure 2.15(a) for the initial perturbation time tp = 0.2,

chosen to be near the optimal perturbation time, top. Note that the DNS results

for kmax have a much wider spread than those for tp = 0.01. This likely occurs

because the initial damping period is much shorter for tp = 0.2. Overall, MOP

shows much better agreement with DNS than COP. For cases 1, 2, and 3 (see table

2.2) the agreement between MOP and DNS is excellent. For cases 4 and 5, MOP
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underpredicts kmax, though it still outperforms COP. The improved agreement for

cases 1, 2, and 3 may stem from the fact that the boundary layer was perturbed near

z = 0.5δ in these cases. In cases 4 and 5, the layer was perturbed near z = 0.25δ

and z = 0.75δ, respectively.

2.6.2 Extent of linear regime and onset of convection

In the remaining section, it is shown that there exists a well-defined linear

regime preceding onset of convection. The onset time to is measured for different

values of A∞ and tp by specifying the following initial concentration field,

cdns(x, z) = cb(z) + A∞ cos(kx)
cp(z)

||cp||∞
, (2.48)

where cp are the optimal initial profiles determined by COP or MOP. Motivated by

experiments (Blair & Quinn, 1969; Kaviany, 1984), the current study defines to as

the time at which dJ/dt = 0, where J is the mean flux of CO2 into the brine given

by,

J(t) = − 1

L

∫ L

0

1

Ra

∂cdns

∂z

∣∣∣
z=0

dx. (2.49)

Note from (2.49) that perturbations oscillating sinusoidally in the horizontal direc-

tion have no net effect on J . Consequently, during the linear regime, the net flux

is due to pure diffusion of the base-state, i.e. J = Jb. The deviation of the DNS

results for J from Jb is due to the growth of a zero-wavenumber mode, k = 0, due to

nonlinear interactions (Jhaveri & Homsy, 1982). To further quantify the duration of

the linear regime, this study also measures the time, t = tl, for which J/Jb = 1.01.

Figure 2.16(a) presents DNS results for J using the optimal cp profile produced
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Figure 2.16: DNS results for Ra = 500 and k = 30 (a) the flux due
to base-state, Jb (solid lines), and the flux from DNS, J , (dashed lines)
using the MOP cp profile at tp = 0.1. The crosses denote tl while the
solid dots denote to. (b) tl (crosses) and to (solid dots) vs. A∞ using the
MOP cp profile at tp = 0.1. (c) to vs. A∞ using the COP (crosses) and
MOP (solid dots) cp profiles at tp = 0.1. (d) to vs. A∞ using the MOP
cp profiles at tp = 0.01 (crosses), tp = 0.05 (plus signs), and tp = 0.2
(circles). Note that a log scale has been used for to.
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by MOP for tp = 0.1, tf = 5, k = 30, and Ra = 500. Note that the MOP cp profiles

are insensitive to the final time when tf > 1. The solid line shows the temporal

evolution of the flux due to the base-state, Jb, while the dashed lines show DNS

results for J when A∞ = 10−1, 10−3, 10−5, and 10−7. The times, tl and to, are

marked with solid dots and crosses respectively. The flux J initially agrees with Jb

and then deviates after t = tl due to nonlinear effects. The initial linear regime exists

even in the case of large initial amplitude A∞ = 10−1. Figure 2.16(b) illustrates tl

(crosses) and to (solid dots) for various perturbation amplitudes A∞.

Figure 2.16(c) illustrates to versus A∞ using the optimal profiles produced

by COP (crosses) and MOP (solid dots) for tp = 0.1, tf = 5, k = 30, and Ra =

500. The COP scheme produces negative net concentration fields, cnet, for all finite

perturbation amplitudes, see table 2.1. For illustration purposes, the maximum

amplitude for COP to is arbitrarily set A∞ = 10−6 for which cmin
net = −4.1 × 10−7.

In this case, COP produces onset times as low as to = 7.29 for A∞ = 10−6. Note,

however, that the onset times predicted by COP cannot be realized in physical

systems because of cmin
net < 0, and are shown for illustration purposes only. In

comparison, the MOP supports finite initial amplitudes as large as A∞ = 10−1 for

which to = 1.21. This study concludes that the perturbations produced by the MOP

are more likely to trigger onset of convection in physical systems.

Figure 2.16(d) illustrates to versus A∞ using the MOP cp profiles at tp = 0.01

(crosses), tp = 0.05 (plus signs), and tp = 0.2 (circles) for tf = 5, Ra = 500, and

k = 30. Onset of convection occurs later for smaller tp due to the strong initial

damping periods. Note that a log scale has also been used for to to highlight the
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difference for larger A∞. For large amplitude perturbations, the onset of convection

can occur around to ≈ 1. For typical aquifer conditions (see §4.3), with permeability

K = 10−14 m2 and height, H = 51 m, this corresponds to a dimensional onset time

of t∗o ≈ 165 years.

2.7 Conclusions and summary

This chapter investigated the linear stability of gravitationally unstable, tran-

sient, diffusive boundary layers in isotropic, homogeneous porous media. First, a

classical optimization procedure (COP) was performed to determine optimal per-

turbations with maximum amplifications. Previously, Tan & Homsy (1986) and

Doumenc et al. (2010) have observed that perturbation amplification is sensitive to

the perturbation flow field used to measure perturbation magnitude. Because this

sensitivity has not been addressed for applications to CO2 sequestration, this study

considered three different measures of perturbation amplitude that maximize either

the perturbation concentration field, vertical velocity field, or the sum of the per-

turbation velocity and concentration fields, which is referred to as the total energy.

It was determined that maximizing the perturbation concentration field naturally

maximizes the total energy. Maximizing the perturbation velocity field, however,

does so at the expense of the concentration field and total energy. Consequently, this

dissertation focusses on perturbations that maximize the concentration field because

these are expected to be the dominant trigger for onset of nonlinear convection.

As the final time, tf , increases, the optimal initial perturbations eventually
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converge to a fixed shape and cease to vary with increasing tf . This occurs be-

cause the final perturbations at t = tf rapidly tend to the dominant quasi-steady

eigenmode. In fact, for the current problem, the quasi-steady modal analysis is a

good approximation to the COP. Both methods produce nearly identical amplifica-

tions and dominant wavenumbers. This suggests that the deviation of the optimal

perturbations from the dominant eigenmodes at small times may be primarily due

to the transient base-state, rather than the nonorthogonality of the quasi-steady

eigenmodes. This is in stark contrast to wall-bounded shear flows for which non-

orthogonal eigenmodes often play a dominant role.

To judge the relevance of optimal perturbations to physical systems, it is shown

that every perturbation has a maximum allowable initial amplitude above which the

sum of the base-state and perturbation produces unphysical negative concentrations.

This study demonstrates that the optimal initial perturbations predicted by the

COP produce unphysical negative concentrations for all finite initial amplitudes.

Consequently, onset of convection in physical systems is more likely triggered by

suboptimal perturbations that support finite amplitudes. To explore this alternate

path to onset of convection, a modified optimization procedure (MOP) is developed

that constrains the initial perturbations to be concentrated within the boundary

layer.

An integral characteristic of the MOP is the concept of a filter function, Ψ(z),

that effectively filters out perturbations with concentration fields extending beyond

the boundary layer, see equation (2.35). The choice of filter function is not unique,

and determines both the maximum allowable initial perturbation amplitude as well
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as the subsequent perturbation amplification. Filter functions that concentrate the

initial perturbation close to z = 0 support large initial amplitudes, but produce small

subsequent amplifications. Filter functions that concentrate the perturbations near

the boundary layer depth support small initial amplitudes, but produce large sub-

sequent amplifications. This raises the possibility that there exists an optimal filter

function that balances the effects of the initial amplitude and subsequent amplifica-

tion in order to minimize the onset time for convection. This is an avenue for future

work. This study focussed on perturbations produced by Ψ = c−1
b because this nat-

urally concentrates perturbations in regions of large base-state concentration, and

because it shows good agreement with corresponding DNS of physical systems.

The alternate path to onset of convection taken by the MOP features smaller

amplifications and larger dominant wavenumbers than the COP, especially at small

initial perturbation times, tp � top. This occurs because the dominant MOP pertur-

bations are concentrated within the boundary layer, and consequently experience

more initial damping than the COP perturbations. It is shown that the results

produced by MOP agree well with the “dominant mode” approach of Riaz et al.

(2006) as well as quasi-steady modal analyses performed in the similarity space of

the base-state (Riaz et al., 2006; Selim & Rees, 2007a; Wessel-Berg, 2009).

To emulate physical experiments, DNS is performed in which the boundary

layer is simultaneously perturbed with all wavenumbers resolved by the simulations.

The perturbations have a random structure but are concentrated within the bound-

ary layer. The DNS results confirm that physical systems follow the alternate path

to convection predicted by the MOP scheme and show poor agreement with COP.
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Furthermore, the MOP perturbations support large initial amplitudes, A∞ ∼ 10−1,

and produce early onset times for nonlinear convection. In contrast, the COP per-

turbations support neither finite amplitudes nor finite onset times.
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Chapter 3: Effect of viscosity contrast on gravity-driven instabilities

in porous media

This chapter examines the effect of viscosity contrast on the linear stability

of gravitationally unstable, transient, diffusive layers in porous media. The analysis

presented in this chapter helps evaluate experimental observations of various bound-

ary layer models that are commonly used to study the sequestration of CO2 in brine

aquifers. It is shown that models that allow the interface between CO2 and brine to

move, in an effort to capture the effect of dissolution, can more unstable compared

to conventional, fixed interface models. Also, diffusive layers are generally found to

be more unstable when viscosity decreases with depth within the layer compared

to when viscosity increases with depth. This behavior is in contrast to the classical

understanding of gravitationally unstable diffusive layers subject to mean flow. For

that case, greater instability is associated with the displacement of a more viscous

fluid in the direction of gravity by a less viscous fluid. The new phenomenon can be

explained as a special case of the classical displacement problem that depends on

the relative magnitude of the displacement and buoyancy velocities. For such clas-

sical flows, there exists a critical viscosity ratio that determines whether the flow is

buoyancy dominated or displacement dominated. The new behavior is explained in
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terms of the interaction of vorticity components related to gravitational and viscous

effects.

3.1 Overview

During CO2 sequestration, free CO2 is trapped as it dissolves into brine across

a two-phase interface, see figure 3.1. Once dissolved, the trapped CO2 diffuses

downwards to form a solute boundary layer. These diffusive boundary layers have

been studied with the help of various models. These models often assume that

CO2 dissolves into brine across the two-phase interface at constant pressure and

temperature. The concentration of dissolved CO2 at the interface across which CO2

dissolves into brine is therefore taken to be constant. The interface motion resulting

from dissolution is considered to be small by one popular model in comparison

with other relevant time scales in the problem. The interface location is therefore

considered to be fixed. This model is referred to as in this chapter as the fixed

interface model (Ennis-King et al., 2003; Riaz et al., 2006; Slim & Ramakrishnan,

2010). This model is a popularly used in many theoretical and computational studies

and also in previous chapter of this study. An alternative model of the diffusive

boundary layer attempts to incorporate the motion of the interface by considering a

diffused layer that separates two initially quiescent, miscible fluids. For this model,

a non-monotonic density-concentration relationship is used to produce both stable

and unstable regions within the boundary layer (Backhaus et al., 2011; Ehyaei &

Kiger, 2014; MacMinn et al., 2012; Neufeld et al., 2010). The overall result is the
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apparent motion of the diffusive layer after the onset of nonlinear convection. This

setup as the moving interface model. Because of the relative ease of laboratory setup,

the moving interface model has gained more popularity with experimental studies

compared with the fixed interface model. The moving interface model however has

not been well explored and a fundamental insight regarding the physical behavior

is lacking. Consequently, it is unclear how the stability characteristics of the two

models compare with each other.

From a practical stand point, differences in the viscosities of CO2-brine solu-

tion and CO2-free brine are small (Bando et al., 2004; Kumagai & Yokoyama, 1999).

However, because of physical constraints, the fluids employed by experimental stud-

ies lead to very different viscosity contrasts than what is expected in practice. In

some cases, the viscosity of the experimental fluid representing CO2-brine solution

is about 20 times larger than that of the fluid representing CO2-free brine solution

Backhaus et al. (2011). Since the fixed and moving interface models are frequently

used as analogs for physical systems, the effect of viscosity contrast on stability

behavior needs to be understood to properly interpret corresponding experimental

observations. In order to facilitate such an understanding, this study draws com-

parison with the closely related problem of the gravitationally unstable diffusive

layer subject to mean flow. The moving interface model is a special case (with

zero mean flow) of this displaced interface problem. For this classical problem the

viscosity contrast, density difference and mean flow, all interact to affect stability

behavior (Manickam & Homsy, 1995). Evaluation of such interactions is expected

to facilitate a deeper understanding of relevant physical mechanisms for the moving
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Figure 3.1: Sketch of CO2 sequestration. Dissolution of CO2 into brine
occurs across the two-phase interface, indicated by pairs of counter-
pointing arrows. The gravitationally unstable CO2 layer within brine
plays a vital role in determining the interfacial dissolution rate.

interface problem, and also by extension for the fixed interface problem.

The main highlights of this chapter are; (i) investigation for the effect of the

viscosity contrast for the fixed and moving interface models and (ii) exploration

of the interaction of mean flow, buoyancy velocity and viscosity contrast for un-

derstanding the transition from displacement dominated to buoyancy dominated

behavior. These two features are explored by means of a quasi-steady-state eigen-

value approach in self-similar space of the diffusive boundary layer. The suitability

of this approach is confirmed by our findings in Chapter 2. The work is divided as

follow. The geometries and governing equations are explained in §3.2. The results

are discussed in §3.3 along with conclusions in §3.4.
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Figure 3.2: (a) Non-monotonic density-concentration profile employed
in a MI model (b) Monotonic viscosity-concentration profiles for various
log mobility ratios, R = ln(µ0/µ1).

3.2 Governing equations

In order to evaluate experimental setups based on the moving interface (MI)

model of the diffusive boundary layer, this study uses a non-monotonic density

profile, ρ∗, of the form illustrated in figure 3.2(a). This density profile can be

represented as,

ρ∗ = ρ0 + ∆ρF (c), (3.1)

where the function F (c) =
∑4

n=1 anc
n, determines how density varies with con-

centration c. The end point densities related to c = 0 and c = 1 are ρ0 and ρ1,

respectively, and ρm is the maximum density. Note that the fluid with c = 1 lies

above the fluid with c = 0. The quantity, ∆ρ = ρm − ρ0, indicates the strength of

unstable density stratification. The function F (c) is normalized to the maximum
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value of one. The density profile is linear when a1 = 1 and an = 0 for n = 2, 3, 4. Fol-

lowing previous works, this study employs a monotonic viscosity profile illustrated

in figure 3.2(b),

µ∗ = µ1 exp (R (1− c)), (3.2)

where R = ln(µ0/µ1) is the log mobility ratio, µ1 is the viscosity of the fluid with

c = 1, and µ0 is the viscosity of the fluid with c = 0.

For the experimental study of Backhaus et al. (2011) based on the moving in-

terface model, water and propylene glycol were used as the lighter and heavier fluids,

respectively. For that system, the location of the density peak occurs at a concen-

tration of c ≈ 0.38. A log mobility ratio, R ≈ −3, fits the viscosity-concentration

relationship at a temperature of 120 ◦F. Neufeld et al. (2010), MacMinn et al.

(2012) and Ehyaei & Kiger (2014) also employ a moving interface model, using

methanol/ethylene glycol (MEG) mixtures and water as the lighter and heavier

fluids respectively. The location of the density peak and the viscosity differences

depend on the composition of the MEG mixture. Typical values of the peak density

vary in the range, 0.2 < c < 0.55 (Huppert et al., 1986), while the log mobility

ratios vary approximately in the range, −1.5 < R < 1 MacMinn et al. (2012). An-

other experimental study by Slim et al. (2013) employs a setup that is closer to the

fixed interface model. The authors employed potassium permanganate (KMnO4) in

water as an analogous model for CO2 in brine. The KMnO4-water mixture approx-

imately satisfies a linear density profile and a log mobility ratio of R ≈ 0.04 fits the

viscosity-concentration relationship at 77 ◦F (Jones & Fornwalt, 1936).
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The porous aquifer is modeled as isotropic, homogeneous, and of infinite hor-

izontal extent and finite depth H. The vertical coordinate, z, is positive in the

direction of gravity, g. The porous medium is characterized by permeability, K,

dispersivity, D, and porosity, φ. The characteristic values are H for length, µ1 for

viscosity, K∆ρg/µ1 for velocity, µ1H/K∆ρgφ for time and ∆ρgH for pressure. Us-

ing these characteristics values, one obtains the following non-dimensional governing

equations,

µ(c)v +∇p− F (c)ez = 0, ∇ · v = 0,
∂c

∂t
+ v · ∇c− 1

Ra
∇2c = 0. (3.3)

The Rayleigh number is defined as Ra = K∆ρgH/φDµ1. The symbol v = [u, v, w]

is the nondimensional velocity vector, and p is the nondimensional pressure obtained

from the dimensional pressure p̂ through the relation p = (p̂ − ρogz)/∆ρgH. The

symbol ez is the unit vector in the z-direction.

The boundary conditions for (3.3) depend on the model. For the fixed interface

(FI) model, the boundary conditions for (3.3) are,

c
∣∣
z=0

= 1,
∂c

∂z

∣∣∣∣
z=1

= 0, w
∣∣
z=0

= w
∣∣∣
z=1

= 0. (3.4)

Equations (3.3) and (3.4) admit the concentration base state, cFb (z, t) = erfc(z
√

Ra/4t),

see figure 3.3(a) for illustration. The velocity base-state is vb = 0.

For the MI model, the study uses boundary conditions that allow diffusion in

two opposite directions,

∂c

∂z

∣∣∣∣
z=−1

=
∂c

∂z

∣∣∣∣
z=1

= 0, w
∣∣∣
z=−1

= w
∣∣∣
z=1

= 0. (3.5)

Equations (3.3) and (3.5) admit the base-states, cMb (z, t) = erfc(z
√

Ra/4t)/2, see
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Figure 3.3: Concentration base-states for Rayleigh number, Ra = 500,
at various instants of time t. (a) Base-state for FI model , cFb =
erfc(z

√
Ra/4t). (b) Base-state for MI model, cMb = 0.5 erfc(z

√
Ra/4t).

figure 3.3(b), and vb = 0. These expressions of the base-states, cFb and cMb , are

valid as long as the boundary layer remains far away from the boundaries at z=1

for the FI model and z = ±1 for the MI model respectively. This holds true when

√
Ra/4t > 3.(Riaz et al., 2006)

The linear stability of various diffusive boundary layer models is studied with

respect to small wavelike perturbations of the form,

c̃ = ĉ(z, t)ei(αx+βy), ṽ = v̂(z, t)ei(αx+βy), (3.6)

where i =
√
−1, α and β are wavenumbers in the x- and y-directions respectively,

and ĉ(z, t) and v̂(z, t) are time-dependent perturbation profiles in the z-direction.

Substituting c = cb + c̃ and v = vb + ṽ into equation (3.3) and linearizing about

base-states, one obtains the following initial value problem for ĉ and ŵ,

(
∂

∂t
− 1

Ra

∂2

∂z2
− k2

)
ĉ+

∂cb

∂z
ŵ = 0, (3.7)
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(
∂2

∂z2
−R∂cb

∂z

∂

∂z
− k2

)
ŵ +Gk2ĉ = 0, (3.8)

where k =
√
α2 + β2, G = 1/µ(cb) ∂F (cb)/∂cb+UR and cb refers to either of the FI

or MI base states defined above. Homogeneous Dirichlet boundary conditions for

perturbation variables are specified at z = 1 and z = ±1 for the FI and MI models,

respectively.

The symbol, U = U∗µ1/K∆ρg, refers to the fluid displacement velocity, U∗,

scaled with the buoyancy velocity, K∆ρg/µ1. It indicates the relative strength of

the mean flow with respect to buoyancy velocity and is effective only when viscosity

varies in the boundary layer, R 6= 0. When U = 0, equations (3.7)–(3.8) represent

either the FI or MI models. When U 6= 0, the equations represent the displaced in-

terface model. The coordinate system for the displaced interface model is such that

it moves with velocity, Uez. The associated linear stability equations were obtained

by first performing coordinate transformations to equations (3.3) and (3.5) before

carrying out an expansion using normal modes. Note that due to coordinate trans-

formation, the boundary conditions and resulting base-state for displaced interface

model are same as that of the MI model.(Manickam & Homsy, 1995)

Equations (3.7)–(3.8) are analyzed using a quasi-steady-state (QSSA) eigen-

value formulation in the self-similar (ξ, t) space, where ξ = az and a =
√

Ra/4t.(Riaz

et al., 2006) The resulting eigenvalue problem may be expressed as

σce =
ξ

2

∂ce
∂ξ

+
1

Ra

(
a2 ∂

2

∂ξ2
− k2

)
ce − a

∂cb

∂ξ
we, (3.9)

(
a2 ∂

2

∂ξ2
− a2R

∂cb

∂ξ

∂

∂ξ
− k2

)
we = −Gk2ce, (3.10)

with homogeneous Dirchlet boundary conditions for the eigenmodes, ce and we,
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Figure 3.4: Isocontours of σ = 0 produced by an FI model. Arrows point
toward the unstable region, σ > 0. Solid dots mark the critical points,
(kc, tc).

and the eigenvalue, σ, represents the growth rate. The least stable perturbation is

defined as the eigenmode with the maximum real value for σ. The growth rates

obtained in the self-similar space (ξ, t) are equivalent to the growth rates calcu-

lated in the regular space (z, t) when perturbation amplitudes are based on the L∞

norm.(Tilton et al., 2013) The equations (3.9)–(3.10) are discretized using standard

second-order finite difference schemes. For given parameters of k, t and Ra, the gen-

eralized eigenvalue problem is solved using function ‘eig’ in MATLAB. The onset

time for linear instability, t = tc, is defined as the time at which the growth rate of

a perturbation eigenmode first becomes positive. The corresponding wavenumber is

called the critical wavenumber, k = ko.
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3.3 Results and discussion

This section examines the effect of viscosity contrast on the onset of instabil-

ity in a gravitationally unstable, transient, diffusive boundary layer. The moving

interface model is compared extensively with the fixed interface model and is fur-

ther explored by considering various types of non-monotonic density-concentration

distributions. This section also explores how mean flow and viscosity contrast deter-

mines the shift in stability features from that of displacement dominated to those of

buoyancy dominated behavior. For the remainder of the study, the Rayleigh number

is fixed at Ra = 500. Linear stability behavior at other value of Ra > 50 can be

obtained by a simple rescaling.(Riaz et al., 2006; Tilton et al., 2013)

3.3.1 The fixed interface model

The diffusive boundary layer in the fixed interface (FI) model adopts a linear

density-concentration relationship such that F (c) = c. Figure 3.4 illustrates the

isocontours of growth rates, σ = 0, in the (k, t) parameter plane for log mobility

ratios, R = −1 (solid line), R = 0 (dashed line), and R = 1 (dash-dotted line).

The lowest point of the σ = 0 isocontour corresponds to the critical parameters

(kc, tc). For R = −1, the critical point is at k = 66.8 and t = 0.1 respectively. The

arrows point towards the unstable zone where the growth rates are greater than

zero, σ > 0. For small times, all perturbation wavenumbers are stable, after which

a band of wavenumbers become unstable. When R = 0, one recovers the constant

viscosity case(Riaz et al., 2006) with the critical point at (34.7,0.3). The R = 0 case
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has a smaller band of unstable wavenumbers compared to R = −1. The unstable

region shrinks further when the viscosity ratio is increased to R = 1, resulting in

smaller kc and larger tc. A similar effect of R on transient diffusive boundary layers

has also been observed by Meulenbroek et al. (2013).

The dominant wavenumber, kmax, is defined as the wavenumber at a given

time t for which the largest growth rate is observed,

σmax(t) = sup
0≤k<∞

σ(t, k). (3.11)

Figure 3.5(a) illustrates the temporal evolution of σmax for R = −1 (solid line),

R = 0 (dashed line), and R = 1 (dash-dotted line). The R = −1 perturbations

have larger σmax compared to R = 0 and R = 1 perturbations. When t < 1,

the R = −1 perturbations attain growth rates as large as σmax ≈ 6. In contrast,

the R = 1 perturbations are stable for the same period with σmax < 0. Figure

3.5(b) illustrates the dominant wavenumbers, kmax, for R = −1 (solid line), R = 0

(dashed line), and R = 1 (dash-dotted line). The dominant wavenumbers, kmax,

monotonically decrease with increasing time. The R = −1 perturbations have larger

values of kmax compared to the R = 1 perturbations.

It is found that the increasing strength of the instabilities for decreasing R

directly correlates to the perturbation’s instantaneous vorticity field,

Ωe =
k

µ(cb)
ce −

R

k

∂cb

∂z

∂we
∂z

. (3.12)

The individual contributions to vorticity are examined using,

I =

∫
Ωe dz = I1 + I2, (3.13)
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Figure 3.5: Results produced by FI model. (a) Maximum growthrates,
σmax, vs. t. (b) Dominant wavenumbers, kmax, vs. t. The solid points
represent the critical point of instability, (kc, tc).

where

I1 = k

∫
exp[−R (1− cb)]ce dz, I2 = −R

k

∫
∂cb

∂z

∂we
∂z

dz. (3.14)

The first integral, I1, measures the contribution to vorticity arising from the buoyant

forces. When density gradients are unstable, I1 is positive. The second integral I2

depends both on the base-state and the velocity perturbation.

Table 3.1 illustrates the values of the integral quantities, I1 and I2, and the

growth rate σ for values of R ranging from -3 to 3. The eigenmodes are normalized

such that maximum value of ce is one. The values of I2 are consistently smaller

than I1. When R = 3, one observes the smallest values for I1. This indicates

that the buoyancy velocities produced due to the unstable density gradients are

small, and consequently, tend to have weak destabilizing effects. With decreasing

R, values of I1 increases till a maximum value is reached at R = −3. Larger values
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R I1 I2 I1 + I2 σ

−3 12.67 −5.40 7.27 23.39

−2 5.37 −1.75 3.63 8.99

−1 2.49 −0.45 2.04 1.70

0 1.26 0.00 1.26 −2.23

1 0.68 0.13 0.80 −4.41

2 0.38 0.13 0.51 −5.59

3 0.23 0.09 0.32 −6.21

Table 3.1: Vorticity values and growth rate produced by the FI model
for k = 30 and t = 0.2

Figure 3.6: Base-state and least stable eigenmodes produced by the FI
model as a function of self-similar coordinate, ξ, for k = 30, and t = 0.2.
Viscosity values are presented at the top axis. (a) R = −1.5. (b) R = 1.5
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of the vorticity integral, I, produce higher growth rates, and consequently, produce

stronger perturbation fields that promote the formation of instabilities.

Figure 3.6 illustrates the base-state, cFb (solid line), concentration eigenmode,

ce (dashed line), and vertical velocity eigenmode, we (dash-dotted line) for R = −1.5

(panel a) and R = 1.5 (panel b) respectively. The numbers along top axis represent

fluid viscosity obtained using µ = exp (R(1− cFb )). When R = −1.5, one observes a

large vertical velocity perturbation field, we, that is nearly of the same magnitude as

the concentration perturbation field ce. The ratio of the maximum value of we and

the maximum value of ce is 0.92. For large value of the log mobility ratio, R = 1.5,

weaker vertical velocity fields are observed. The ratio of the maximum values drops

to 0.13. The drop in magnitudes is because we fields associated with R = 1.5

are formed in regions of higher viscosity (more resistance to fluid flow) compared

to R = −1.5. The viscosity variation within the boundary layer also explains why

perturbations are concentrated away from z = 0 for R = −1.5 compared to R = 1.5.

When R > 0, viscosity increases with depth and perturbation peaks are closer to

z = 0, compared to R < 0 where viscosity decreases with depth and perturbation

peaks are concentrated in regions away from z = 0. Note that the classical behavior

of greater instability associated with higher R is due to a source of perturbations

arising from the background mean flow, as explained in more detail in section 3.3.4.

77



Figure 3.7: Comparison between MI and FI models. (a) Nonmonotonic
function F as a function of concentration c, see equation (3.1). The
coefficients of F (c) are: a1 = 1.06, a2 = 17.31, a3 = −39.35, a4 = 12.28.
(b) cMb vs. z for t = 10. The density gradients are destabilizing only
when z > γ (arrow). (c) tc vs. R. (d) kc vs. R.

78



Figure 3.8: Linear stability results for FI with R = 0 (solid line) and
MI with R = 0.48 (dashed line). (a) σmax vs. t. (b) kmax vs. t. (c)
ce/‖ce‖∞ vs. ξ for k = 30 and t = 1. (d) we/‖we‖∞ vs. ξ for k = 30
and t = 1.

79



3.3.2 The moving interface model

This section explores the effect of viscosity contrast on the moving interface

(MI) model. A non-monotonic density profile is employed such that the function

F (c), see equation (3.1), corresponds to aqueous propylene glycol mixtures , with

c = 0 and c = 1 representing concentrations of pure propylene glycol and wa-

ter respectively. Figure 3.7(a) illustrates the function F (c). The positive density

gradients when c < 0.38 promote the formation of instabilities. Figure 3.7(b) il-

lustrates the location of the zone of unstable density gradients within the diffusive

layer. Unlike an FI model, where the entire boundary layer is unstable, the unstable

density gradients in an MI model exist only when z > γ(t) (or ξ > 0.21), where

γ(t) = 0.21
√

4t/Ra.

Figure 3.7(c) illustrates the onset times, tc, versus the log mobility ratio, R,

for the MI (circles) and FI (crosses) models. As expected, the onset times produced

by the two models increase with increasing R. A large difference in the onset times

occurs especially for small values of R. When R = −2, the FI model has onset times,

tc, that are approximately 500% larger than those produced by the MI model. With

increasing R, the onset times produced the two models agree better. For R ≈ 1.8,

the FI and MI models have nearly identical onset times. Figure 3.7(d) illustrates

the critical wavenumbers, kc, versus R for the MI (circles) and FI (crosses) models.

As expected, kc decreases with increasing R. For R < 1.36, the MI model has larger

kc compared to the FI model.

The linear stability behavior of the FI and MI models can be made to coincide
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when different viscosity contrasts are used with each model. For example, when

R = 0 for the FI model and R = 0.48 for the MI model, the onset times, tc, predicted

by the two models agree with each other. For these parameters, good agreement is

obtained even for time, t > O(tc). This is depicted in figures 3.8(a)–3.8(b) where

the temporal evolution of the dominant growth rates, σmax, (panel a) and dominant

wavenumbers, kmax, (panel b) are plotted for FI model with R = 0 (solid line) and

MI model with R = 0.48 (dashed line). Figure 3.8(c) illustrates ce/‖ce‖∞ versus ξ

for k = 30 and t = 1. The ce profile produced by the MI model (dashed line) for

R = 0.48 is identical to that of the FI model (solid line) for R = 0 except for a small

narrow region across z = 0. Figure 3.8(d) illustrates the corresponding normalized

we for k = 30 and t = 1. The we profiles are similar for ξ > 0. The FI domain (solid

line) does not exist when ξ < 0. When we < 0 as for the MI model (dashed line),

the region associated with it becomes stabilizing, see term we∂cb/∂z in equations

(3.9)–(3.10). This region does not contribute to perturbation growth.

To further illustrate the above argument, figure 3.9(a) shows the base-state,

cMb (solid line), least stable ce (dashed line), and we (dash-dotted line), for k = kc,

t = tc when R = 0 in the MI model. The vertical line represents the location of the

peak density, ξ = 0.21 or z = γ. The perturbations, ce and we, are concentrated

in the destabilizing zone where we > 0. Due to momentum transport, the point

(solid dot) where velocity changes sign from a negative to a positive value does

not coincide with the location of zero gradient of density, ξ = 0.21. Figure 3.9(b)

depicts the normalized we profiles for k = 15, t = 1 and log mobility ratios, R = 0

(solid line), R = 1 (dashed line), and R = 2 (dash-dotted line). With increasing R,
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there is less momentum transport across the location of peak density at ξ = 0.21.

Consequently, the solid dots move to the right, indicating a decrease in the width of

the boundary layer corresponding with lesser instability, as shown in figure 3.7(c).

The following explains why the MI model is more unstable at small R and

less unstable at large R, as seen in figure 3.7(c). Unlike the FI model, it is found

that for the MI model, momentum transports across the region linking the zones of

stable and unstable density gradients at z = γ or ξ = 0.21. FI model offers no such

mechanism. The magnitude of momentum transport in the MI model is proportional

to the strength of the we fields within the boundary layer. Consequently, the width

of the unstable portion of the boundary layer depend on R. The MI model is more

unstable than the FI model when the width of the unstable region is large enough

to produce stronger instabilities than an FI model. With increasing R, the width of

the destabilizing zone becomes narrower, producing weaker instabilities compared

to the FI model.

3.3.3 Effect of non-monotonic density profiles

The features of the non-monotonic density profile are varied in order to inves-

tigate its effect on the results produced by the MI model. The density profile used in

§3.3.2 is referred to as ρA. To investigate how varying the location of the maximum

density may affect the onset times, this study uses two additional profiles, ρB and

ρC , by modifying the function F (c), see equation (3.1). Figure 3.10(a) illustrates

the function F (c) for density profiles, ρA (circles), ρB (crosses), and ρC (squares).
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Figure 3.9: Eigenmodes associated with the MI model (a) Base-state,
cMb (solid line), least stable ce (dashed line), and we (dash-dotted line)
at critical point (kc, tc) when R = 0. The vertical line is drawn at
the location of maximum (turning point) in the density profile. (b)
Normalized we profiles at k = 15 and t = 1 for log mobility ratios, R = 0
(solid line), R = 1 (dashed line), and R = 2 (dash-dotted line). The
dots emphazise the points where we = 0.

83



Figure 3.10: Five different non-monotonic density profiles in the MI
model. (a)–(b) Effect of changing the location of the maximum value of
density. (c)–(d) Effect of changing the density values of the saturated
fluid, c = 1.
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The maximum value of density for the ρA profile occurs at c = 0.38, while it is at

c = 0.5 for ρB and at c = 0.25 for ρC . As peak value of density moves closer to c = 1,

the width of the zone of unstable density gradients increases but the magnitude of

positive density gradients decreases.

Figure 3.10(b) illustrates the onset time, tc, versus log mobility ratio, R, ob-

tained using the MI model with density profiles, ρA (circles), ρB (crosses), and ρC

(squares). The onset times produced by the three density profiles increase with in-

creasing R. When R = −2, the onset time, tc, produced by ρB is 1.8 times greater

than those produced by ρC . This suggests that the onset times obtained using ρB

are closer to those predicted by FI model compared to other density profiles. For

R ≈ −0.2, three density profiles produce nearly equal tc. With increasing R, the ρC

profile tends to produce the largest onset times, tc.

Figure 3.10(c) illustrates F (c) for peak density location at c = 0.375 (solid

dot) and for different values of density at c = 1. Modifying the density values of

the saturated fluid changes the slope of the negative density gradients. The density

profile, ρE (squares), has larger gradients compared to ρA (circles) and ρD (crosses).

Figure 3.10(d) illustrates the corresponding onset times as function of R. The onset

times for the different profiles are identical.

The stability characteristics observed in figures 3.10(b) and 3.10(d) can be

explained by examining the relative location of the velocity eigenmode, we, and

the fluid viscosity. Figure 3.11(a) illustrates we versus ξ for R = 0, k = 30, t =

1, and density profiles, ρA (solid line), ρB (dashed line), ρC (dash-dotted line).

The viscosity values are mentioned along the top axes in figure 3.11. The crosses
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Figure 3.11: Effect of density profiles on velocity eigenmode we. The top
axis represents viscosity at corresponding depthwise coordinate ξ. The
location of the maximum density associated with each profile is marked
with a cross. (a) we/‖we‖∞ vs. ξ for R = 0, k = 30, t = 1, and ρA (solid
line), ρB (dashed line), ρC (dash-dotted line). (b) Same as in panel (a)
for R = −2. (c) Same as in panel (a) for R = 2. (d) Same as in panel
(a) for ρA (solid line), ρD (dashed line), ρE (dash-dotted line).
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denote the location of maximum value of density. Perturbations are predominantly

concentrated in regions to the right of the crosses where unstable density gradients

exist. When maximum density occurs at c = 0.5 as in ρB, one observes that the

peak of we shifts to the right in comparison to we related to ρA for which maximum

density is at c = 0.38. When maximum density is at c = 0.25 as for ρC , the peak

of we shifts to the left. The change in perturbation structures occurs due to the

shifting of unstable regions within the boundary layer. Though the perturbations

produced by ρA, ρB, and ρC peak at three different locations, the corresponding

onset times for R = 0, shown in figure 3.10(b), are similar.

Let us now consider the effect of the spatial variation of viscosity within the

boundary layer. Figure 3.11(a) is repeated for R = −2 in figure 3.11(b) and for

R = 2 in figure 3.11(c) respectively. For R = −2, one finds that we fields remain

shifted with respect to each other. Because viscosity decreases with depth when

R < 0, the perturbations produced by ρC profiles are now located in lower viscous

regions compared to perturbations produced by ρA or ρB. Consequently, perturba-

tions produced by ρC have much earlier onset times compared to other profiles when

R < 0, see figure 3.10(b). For R = 2, the perturbations produced by ρB profiles are

located in lower viscosity regions, and therefore, have earlier onset times. Density

profiles ρD and ρE have insignificant effects on perturbation structures, see we pro-

files in figure 3.11(d). The momentum transport across peak density locations has

increased slightly when decreasing the magnitude of the negative density gradients.

This is reflected in the upward movement of the crosses. However, these changes

were small and did not affect the onset times for instability shown previously in
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figure 3.10(d).

3.3.4 Effect of uniform flow

In previous sections, it is observed that gravitationally unstable boundary lay-

ers are less unstable for larger values of R. This behavior contrasts with classical

displacement problems where instability increases with R. To explain this difference

in behavior, this study considers a displaced interface model, which is an extension

of the MI model where the lighter fluid is displaced by the heavier fluid with a

uniform velocity, U , along the direction of gravity. For U = 1, the dimensional

displacement velocity is equal to the buoyancy velocity of K∆ρg/µ1, see §3.2 for

details. To facilitate comparison with previous studies on displacement based in-

stabilities (Manickam & Homsy, 1995), a linear density profile is first considered in

addition to non-monotonic density profiles illustrated in figure 3.10(a).

Figure 3.12(a) illustrates onset times, tc, versus log mobility ratio, R, for

displacement velocities, U = 0 (circles), U = 0.5 (squares), and U = 1(crosses),

using a linear density profile. As expected, when U = 0, one observes that tc

increases with increasing R. For U = 0.5, tc increases with R until it attains a

maximum value at R ≈ 0. Beyond this R, tc decreases with R. When U = 1,

similar behavior is observed with the maximum value of tc occurring at R = −1.

Figure 3.12(b) illustrates corresponding critical wavenumbers, kc, versus R for U = 0

(circles), U = 0.5 (squares), and U = 1(crosses). For U = 0, kc monotonically

decreases with R. For U = 0.5, kc decreases with increasing R until it reaches a
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Figure 3.12: Effect of viscosity contrast on the displaced interface model.
(a) Onset (critical) time tc vs. log mobility ratio R, for U = 0 (circles),
U = 0.5 (squares), and U = 1 (crosses). Solid dot marks Rc when U = 1.
Solid dot marks Rc when U = 1.(b) Critical wavenumber kc vs. R, for
U = 0 (circles), U = 0.5 (squares), and U = 1 (crosses). (c) Critical
viscosity ratio, Rc, vs. U for linear density profile (diamond), ρA (circles)
, ρB (crosses) , ρC (squares). (d) Rc vs U for a linear density profile. The
shaded region represents the space of Rc and U for which no instabilities
are formed.
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minimum at R = 0 and increases afterwards. For U = 1, the minimum point is

located at a lower value of R. Similar qualitative trends were also observed for tc

and kc produced by non-monotonic density profiles.

Figures 3.12(a) and 3.12(b) depict the existence of qualitatively different sta-

bility behaviors for the critical parameters, tc and kc. The value of R at which the

instability characteristics of tc changes is referred to as the critical viscosity ratio,

Rc. When R < Rc, tc increases with increase in R. This feature is in sharp contrast

with classical displacement behavior and is more in accordance with buoyancy insta-

bilities demonstrated in previous sections. When R > Rc, tc decreases with increase

in R, depicting the dominance of displacement-related instabilities. It is also ob-

served that the point of maximum tc and minimum kc do not coincide but are close

to each other. This may be because of sensitivity issues regarding measurement of

perturbation quantities during small times, t < O(tc).Tilton et al. (2013)

Figure 3.12(c) illustrates Rc versus U for density profiles, ρA (circles), ρB

(crosses), ρC (squares), and a linear density profile (diamonds), for mean flow in the

range, 0 < U < 2. For any given density profile, when displacement velocity tends

to zero, U → 0, the critical log mobility ratio, Rc, approaches infinity, Rc → ∞.

With increasing U , Rc decreases. The rate at which Rc decreases is larger for a

linear density profile followed by the density profiles, ρB, ρA and ρC respectively.

This suggests that the decay rate is proportional to the width of the zone of positive

density gradients within the boundary layer, see section 3.3.3. By increasing the

displacement velocity beyond U = 2, Rc splits into two branches. This is depicted

in figure 3.12(d) for a linear density profile. The split at U ≈ 2.7 is due to the

90



R I1 I2 I3 I1 + I2 + I3 σ

−3 15.90 −3.29 −4.89 7.71 19.79

−2 7.16 −0.76 −3.55 2.85 4.88

−1 3.48 −0.11 −1.92 1.44 0.85

0 1.90 0.00 0.00 1.90 3.00

1 1.19 −0.07 1.86 2.97 7.36

2 0.82 −0.31 3.66 4.18 12.17

3 0.62 −0.74 5.43 5.31 16.59

Table 3.2: Vorticity integral values and growth rates for U = 1, k = 30,
t = 0.2 and Ra = 500.

formation of a stable region when U is larger than a certain critical value.

To gain a deeper insight into relevant physical mechanisms, the instantaneous

perturbation vorticity field is defined as,

Ωe =
k

µ(cb)
ce −

R

k

∂cb

∂z

∂we
∂z

+ kRUce. (3.15)

Equation (3.15) is integrated to obtain a measure of the vorticity field given

by,

I =

∫
Ωe dz = I1 + I2 + I3, (3.16)

where

I1 = k

∫
exp (−R(1− cb)) ce dz, I2 = −R

k

∫
∂cb

∂z

∂we
∂z

dz, I3 = kRU

∫
ce dz.

(3.17)
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Compared to equation (3.13) in §3.3, there is an extra component to the vorticity

field, I3, that depends on the uniform flow, U . For R > 0, I3 is positive and

destabilizing, and vice-versa for R < 0. Uniform flow plays an insignificant role on

the stability of the diffusive front when R tends to zero, R→ 0.

Table 3.2 illustrates the values of the vorticity integrals, I1, I2, and I3, and the

growth rate, σ, using a linear density profile for U = 1, k = 30, and t = 0.2. The

eigenmodes are normalized such that the maximum value of ce is one. The smallest

values of I and σ are observed when the log mobility ratio is close to its critical

value, R = −1 (R ≈ Rc). With increasing or decreasing R, the magnitude of I

increases, and consequently, the growth rate σ. For smaller values of R, the major

contribution to the vorticity comes from the buoyancy term I1. Though the uniform

flow contribution, I3 is stabilizing, it is not strong enough to overcome the density

mechanisms. For larger values when R > 0, the term I1 has small magnitudes, and

therefore the major contribution to the vorticity comes from the flow term I3.

The vorticity integrals also explain the presence of the stable zone in figure

3.12(d). Within the stable zone where R < 0 and U > 0, the stabilizing effects of I3

are stronger than destabilizing effects of buoyant term, I1. The stabilizing effect of U

when R < 0 has also been previously reported by Manickam and Homsy.(Manickam

& Homsy, 1995) Note that when fluids move against the direction of gravity, U < 0,

the perturbation characteristics are similar to those of buoyancy dominated instabil-

ities. This is because when U < 0, both I1 and I3 becomes increasingly destabilizing

with decreasing R.

For non-monotonic density profiles, the strength of displacement dominated
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Figure 3.13: Effect of displacement velocity on the velocity eigenmode
we. Viscosity values are mentioned at the top. The crosses denote the
location of the maximum in the density profile, ρA. (a) we/‖we‖∞ vs. ξ
for R = −1, k = 30, and t = 1. (b) Same as in panel (a) for R = 1.

instabilities would affect the momentum transport across the interface of zero den-

sity gradient. Figure 3.13(a) illustrates the normalized vertical velocity profiles,

we/‖we‖∞, for U = 0 (solid line), U = 1 (dashed line) , and U = 2 (dashed-dotted

line) when R = −1, k = 30, and t = 1. The crosses correspond to the peak density

location at ξ = 0.21 for ρA profile. With increasing values of U , the strength of the

we fields associated with R = −1 decreases due to stabilizing effects of the uniform

flow. Therefore, the momentum transport across ξ = 0.21 also decreases. On the

other hand, R > 0 results in greater momentum transport. This is illustrated in

figure 3.13(b) for R = 1. In this case the velocity perturbations increase in strength

due to increased destabilizing effects of the uniform flow.

The critical Rc is also an excellent indicator of long term linear viscous char-

acteristics for time, t � tc, even though Rc was defined with respect to the onset
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Figure 3.14: Long term linear stability characteristics, σmax vs. R, using
a linear density profile for (a) U = 0.5 (b) U = 2.

time of linear instability, tc. To demonstrate this, figure 3.14(a) illustrates σmax vs

R for U = 0.5 using a linear density profile. The vertical dashed line represents

R = Rc. The solid dots denote the points at which ∂σmax/∂R = 0. Across this

minima, there is a reversal of instability characteristics associated with σmax. At

t = 0.1, σmax has a nonmonotonic behavior with R with the local minima at R = 0.

At t = 1 and t = 10, the local minima is still at R = 0. The viscosity ratio at

which local minima occurs for late times are in excellent agreement with Rc. Figure

3.14(b) repeats figure 3.14(b) for U = 2. Large values of t were used because of

smaller perturbation growth rates. The locations of local minima (solid dots) are

within 10 percent of Rc even for late times, t < 1000.
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3.4 Conclusions

This chapter examines the effect of viscosity contrast on the linear stability of

gravitationally unstable, transient boundary layers. To interpret experimental ob-

servations, the current work considered two physical models that are characterized

by the specific depth-wise concentration profiles and density-concentration relation-

ships. If laboratory studies are carried out with fluids for which R ≈ 0, our study

indicates that the onset times of instability determined by the MI and FI models

can differ by a factor of 3. For R < 0, the MI model becomes even more unstable

and gives rise to much earlier onset times compared to the FI model. By adopting

fluids with R ≈ 0.5 for the MI model and R = 0 for the FI model, the MI and

FI models produce similar linear stability characteristics. The exact value of R for

MI model that provides the agreement would also depend on the specific profiles of

density-concentration relationship. Previous works (Ennis-King et al., 2003; Riaz

et al., 2006) demonstrate that the onset times scale proportionately to the Rayleigh

number. Therefore, the ratio of the onset times for the fixed and moving interface

models is not a function of the Rayleigh number.

Diffusive layers are more unstable in general when viscosity decreases with

depth within the layer compared to when viscosity increases with depth. This

behavior is in contrast to the classical understanding of gravitationally unstable,

transient diffusive layers. For that case, greater instability is associated with the

displacement of a more viscous fluid in the direction of gravity by a less viscous

fluid. To place this behavior in context, it is shown how instability mechanisms
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depend on the critical value of the log mobility ratio, Rc. When R < Rc, density

gradients govern instability. When R > Rc, perturbations derive energy from the

background flow. When the magnitude of displacement velocity that is scaled with

buoyancy velocity exceeds a certain threshold value, Rc splits into two branches due

to the formation of an intermediate stable zone. The mechanisms are explained in

terms of the interaction of vorticity components related to gravitational and viscous

effects.

Available data on the viscosity-concentration relationship for the CO2-water

system indicates some uncertainty with regards to whether the viscosity of the mix-

ture would increase or decrease upon dissolution of CO2. Different studies report

both positive and negative values of R (Bando et al., 2004; Kumagai & Yokoyama,

1998, 1999), though all studies report viscosity differences to be small, |R| ≈ O(0.1).

Therefore it is determined that viscosity contrast would not substantially alter the

stability results based on the R = 0 case for practical problems. However, the

viscosity contrast between the solution and the solvent for the fluids employed by

experimental studies is large. For example, the experimental study of Backhaus

et al. (2011) was based on the moving interface model where the viscosity contrast

was about R ≈ −3. This implies a much greater level of instability compared with

the case of R ≈ 0. For the experimental study of Slim et al. (2013) based on the

fixed interface model, on the other hand, R ≈ 0.04, which is closer to what is ex-

pected in practice. However, it is uncertain whether the model employed in that

study exactly corresponds to either the fixed or the moving interface models. This is

because the authors observed bubbles at the top boundary for certain experimental
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runs. This may suggest that the presence of small velocity perturbations at the

top boundary. Such FI models usually have much smaller onset time of instabilties

compared to standard FI models (Elenius et al., 2012). In general, modeling and

theoretical studies based on the assumption of R = 0 cannot be used directly to

interpret results from experimental observations of systems with a large viscosity

contrast. Stability analysis for such systems need to account for these differences.

Most experimental studies report the time for the onset of nonlinear convec-

tion. Fully resolved nonlinear simulations (Farajzadeh et al., 2013; Rapaka et al.,

2008; Tilton & Riaz, 2014) demonstrate that the time for the onset of nonlinear

effects depends on amplitude of initial perturbations and Ra, and is usually much

greater than to. Our conclusions with regards to differences in the level of instabil-

ity depending on the viscosity contrast and different models are expected to have a

proportionate effect on the onset of convection.
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Chapter 4: Natural convection in horizontally layered porous media

4.1 Overview

This chapter explores the onset of natural convection in horizontally layered

aquifers where permeability varies in the direction of gravity. Natural convection

associated with CO2 sequestration in deep saline aquifers occurs due to the unsta-

ble density stratification of diffusive boundary layers. The density-driven instability

plays a key role in the rapid dissolution of CO2 into brine (Orr, 2009). The primary

objective of this chapter is to develop a basic understanding of the instability mecha-

nisms that govern the interaction of perturbations with permeability heterogeneity.

Permeability is assumed to vary periodically across the thickness of the aquifer.

Such a variation of permeability is relevant for saline aquifers (Bickle et al., 2007;

Chadwick et al., 2005; Green & Ennis-King, 2010; Neufeld & Huppert, 2009) and is

used to identify the general mechanisms of instability in heterogeneous porous me-

dia. The periodic variation of permeability may also facilitate comparison with the

classical Rayleigh-Bénard convection in layered and periodic permeability porous

media (Gjerde & Tyvand, 1984; Hewitt et al., 2014; McKibbin & O’Sullivan, 1980,

1981; Nield & Bejan, 2006).

Previous studies of miscible flows in heterogeneous porous media highlight the
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importance of the interactions between fluid flow and permeability heterogeneity.

These studies relate to displacement processes for oil recovery (Christie et al., 1993;

Tchelepi et al., 1993; Zhang et al., 1997), the flow of a contaminant jet into an

aquifer (Schincariol, 1998; Schincariol et al., 1997) and the problem of natural con-

vection due to a gravitationally unstable boundary layer (Prasad & Simmons, 2003;

Rapaka et al., 2009; Simmons et al., 2001). The presence of correlated variability

of permeability leads to complex regimes. As the variance level and the correlation

length of heterogeneity increase, the details of the permeability field dictate the flow

paths. (Camhi et al., 2000; Chen & Meiburg, 1998; Tan & Homsy, 1992; Tchelepi &

Orr, 1994). A resonant amplification of instability was reported by DeWit & Homsy

(1997) and Riaz & Meiburg (2004) when the length scale of the viscous instability

is close to the correlation scale of the permeability variation.

The onset of natural convection depends on the growth rate of perturbation

amplitude within the linear regime. For the problem of CO2 sequestration, the

transient nature of the diffusive boundary layer imparts an evolutionary character

to the amplitude that depends on the instantaneous coupling between perturbations

and the boundary layer. In the presence of heterogeneity, the coupling involves

additional terms related to the permeability field, the effect of which has not been

investigated for the onset of convection in the past. This study examines such effects

using a combination of linear stability analysis and direct numerical simulations.

The chapter is organized as follows. The governing equations and the perme-

ability model are described in §4.2. The critical times for the onset of instability and

the physical justification are presented in §4.3. The onset of nonlinear convection is
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explained in §4.4. Finally, a summary of our findings are presented in §4.5.

4.2 Governing equations

The mathematical model governing the flow of dissolved CO2 in a porous saline

aquifer can be expressed in dimensionless form as

∇ · u = 0 , ct = −u · ∇c+
1

Ra
∇2c , u = −k (∇p− cẑ) , (4.1)

where, u(x, t) is the Darcy velocity, c(x, t) is the concentration, p(x, t) the pressure.

In equation (4.1), Ra and k(z) are dimensionless quantities corresponding to the

Rayleigh number and permeability field. The unit vector, ẑ, acts in the direction

of gravity. The initial condition is the quiescent state, u = 0. Periodic boundary

conditions are imposed on the vertical boundaries. The boundary conditions on the

horizontal boundaries are,

c
∣∣
z=0

= 1, cz
∣∣
z=1

= 0, w
∣∣
z=0

= w
∣∣
z=1

= 0 . (4.2)

Equation (4.1) was non-dimensionalized as in Riaz et al. (2006) with the following

characteristic values for length, time, velocity, and pressure,

L = H , T =
φµH

k̄∆ρg
, U =

k̄∆ρg

µ
, P =

µUH

k̄
, (4.3)

where k̄ is a characteristic value of permeability, φ is the porosity, D is the diffusion

coefficient, and H the thickness of the aquifer. Concentration is scaled with respect

to its maximum value found at z = 0. The Rayleigh number is defined as Ra =

UH/(φD). The driving mechanism of density difference is represented by, ∆ρ =
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ρ1 − ρo, where ρo and ρ1 refer, respectively, to the density of pure brine and CO2

saturated brine. The difference in density compared with the density of brine is

small, ∆ρ/ρo ∼ ∆ρ/ρ1 � 1 Ṫhis justifies the use of the Boussinesq approximation

and a linear density profile, ρ = ρo+∆ρc, for obtaining (4.1). Viscosity, µ, is assumed

to be a constant (Bando et al., 2004; Fleury & Deschamps, 2008). The dimensionless

permeability field to assumed to vary periodically in the vertical direction according

to

k(z) = exp
[√

2σ2 cos(mz + γ)
]
. (4.4)

The term,
√

2σ2, indicates the amplitude of the spatial permeability oscillation,

where σ2 is the variance of ln(k). The wavelength of permeability oscillation is

m, and γ indicates the phase with respect to z = 0. The cosine permeability

variation allows the spatial distribution to be smooth with a constant wavelength,

2π/m. When k(z) is normalized according to
∫ 1

0
k(z) dz = 1, as in this work, k̄

corresponds to the average of the permeability field. The permeability model given

by (4.4) includes the essential features of the spatial correlation of the permeability

field and its variance (Delhomme, 1979; Freeze, 1975). The variance associated

with the spatial distribution of the natural logarithm of the permeability field has

been reported to be within the range, 0.5 to 5 (Clifton & Neuman, 1982), while the

spatial correlation scales are often observed to be large horizontally and much smaller

vertically (Dagan, 1984), indicating a layered permeability structure. Porosity

variation is not considered in this study because it is generally much less than the

permeability variation (Hoeksema & Kitanidis, 1985).
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A linear stability analysis is used to identify the structure and growth of finite

amplitude perturbations that lead to the onset of nonlinear effects. To perform a

linear stability analysis, perturbations are imposed in the form of vertical shape

functions that vary periodically in the x and y directions,

(u, p, c)(x, t) = co(z, t) + (ũ, p̃, c̃)(z, t) exp [i(`xx+ `yy)] , (4.5)

where co is the concentration base state and ũ, p̃ and c̃ denote the perturbation

profiles in the z-direction. Perturbation wavenumbers in the x- and y-direction are

denoted by `x and `y, respectively, and i =
√
−1.

The base state, co(z, t), is the solution of the diffusion equation, ct = czz/Ra,

that follows from the initial condition, u = 0, and the concentration boundary condi-

tions, (4.2). This time varying base state represents a diffusive boundary layer that

originates at z = 0 and diffuses downwards. By substituting (4.5) into (4.1), elimi-

nating pressure and collecting linear terms, the following system for perturbations,

c̃ and w̃, are obtained,

c̃t −
1

Ra

(
c̃zz − `2c̃

)
= −cozw̃ , (4.6)

w̃zz − (ln k)zw̃z − `2w̃ = −k`2c̃ , (4.7)

where, ` =
√
`2
x + `2

y. The boundary conditions are

c̃
∣∣
z=0

= c̃z
∣∣
z=1

= w̃
∣∣
z=0

= w̃
∣∣
z=1

= 0 . (4.8)

The above set of equations represents a linear initial value problem (IVP) with

respect to the perturbations, c̃ and w̃. The IVP can be expressed more compactly
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as

∂c̃

∂t
= A(t; `)c̃ , c̃(z, to) = c̃o(z) ; z ∈ {0, 1} , (4.9)

where to is the time at which perturbations are introduced and A(t; `) is the linear

operator that results from the elimination of w̃ between (4.6) and (4.7). The IVP

can be marched in time to determine the evolution of the initial condition, c̃o(z).

As in chapter 3, the IVP (4.9) is studied by spectrally transforming the under-

lying operator A. Using the transformation, ξ = zα and t̂ = t, where α =
√
Ra/4t

and ξ ∈ {0,∞}, equations (4.6) and (4.7) are expressed in (ξ, t)-space which gives

the new IVP

∂c̃

∂t
= B(t; `)c̃ , c̃(ξ, to) = c̃o(ξ) ; ξ ∈ {0,∞} . (4.10)

The base state in (ξ, t)-space is self-similar, co = erfc(ξ), where erfc is the

complementary error function. Homogeneous Dirichlet boundary conditions are

employed for both c̃ and w̃. The IVP in (ξ, t)-space, (4.10), is equivalent to the IVP

in (z, t)-space, (4.9), provided α > 3. When α > 3, the two initial value problems,

(4.9) and (4.10), produce identical results.

4.3 Linear perturbation growth

This section explores the effect of permeability on the onset of linear instability.

The onset of instability is defined as the time at which the perturbation growth rate

first becomes positive, ω > 0. The critical time for the onset of instability is defined

as the minimum onset time of instability over all perturbation wavenumbers. A
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Figure 4.1: Marginal stability curves for Ra = 500 and m = 6π, based
on ω∞ (lines) and ωDMA (open symbols). (a) γ = 0 and (b) γ = π.
Critical conditions for the onset of instability, (tc, `c), are indicated by
solid dots. Increasing the variance for γ = 0 results in greater instability,
shifting the onset of instability to earlier times and larger wavenumbers.
For the case of γ = π, an increase in variance has the opposite effect.

marginal state of stability corresponds to ω = 0. The parameters of interest are the

permeability variance, σ2, phase, γ, the permeability wavenumber, m, in addition

to the perturbation wavenumber, `, and time, t. The analysis is conducted for a

constant Ra = 500. Results for different Ra are related through simple scaling

relationships.

4.3.1 Influence of permeability variance and phase

The effect of permeability variance and phase on the marginal stability curve

is shown in figure 4.1 for Ra = 500 and m = 6π. Two different values of the phase,

γ = 0 and γ = π, are shown in plots (a) and (b), respectively. The marginal stability

curve, for which ω = 0, maps the boundaries of the stable (negative growth rate)
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and unstable (positive growth rate) regions in the t-` plane. The lowest point on the

curve, highlighted with a dot, indicates the critical conditions, (tc, `c), for the onset

of instability, i.e., the earliest time, tc, at which the critical wavenumber, `c, becomes

unstable. The critical time is greater than zero because perturbations are initially

damped. The marginal stability curves also show the longwave cutoff, indicating

that wavenumbers smaller than a critical value are damped.

The marginal stability curves based on the growth rate, ω∞, the maximum

eigenvalue of B, are indicated with lines in figure 4.1. Symbols represent the growth

rate, ωDMA, obtained with the dominant mode analysis (DMA) of Riaz et al. (2006),

namely,

ωDMA = − 1

4t

(
4 + β2

)
+

1

a(t)
√
πt

∫ ∞

0

exp(−ξ2)w̃dξ , (4.11)

where, β = `/α, α =
√
Ra/4t and a(t) is the coefficient in the expansion, c̃(ξ, t) =

a(t)ξe−ξ
2
. For problems with homogeneous permeability, when σ2 = 0, an analytical

solution for w̃ can be used to obtain the following relation,

ωDMA = − 1

4t

(
4 + β2

)
+

1

16

√
π

t
β2eβ

2/2

[
1− erf

(
β

2

)]2

. (4.12)

For heterogeneous cases, where σ2 > 0, w̃ can only be determined numerically. The

integration in (4.11) is then carried out numerically to determine ωDMA. The results

based on ωDMA are plotted to demonstrate the validity of DMA for the heterogeneous

case. Figure 4.1(a) shows that the marginal stability curves based on ωDMA and ω∞

agree very well for wavenumbers up to the critical wavenumber. Note that the

time required for calculating critical conditions using DMA is atleast an order of

magnitude smaller than other methods.
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Figure 4.1(a) shows that when γ = 0, larger values of permeability variance, σ2,

lead to greater instability, i.e., smaller critical times, tc, larger critical wavenumbers,

`c, and a larger spectrum of unstable wavenumbers. Figure 4.1(b) indicates that

the effect of variance is reversed when γ = π. The critical time, tc, shifts to larger

values with increasing variance while the critical wavenumber, kc, decreases. The

entire spectrum of unstable wavenumbers also shrinks.

4.3.2 Stability mechanisms

A physical understanding of the effect of heterogeneity can be gained by con-

sidering the vorticity, ∇× u, which is obtained from (4.1) as

∇× u = k∇c× ẑ +∇lnk × u . (4.13)

The two terms on the right hand side of (4.13) indicate that vorticity is produced

or diminished by the interaction of two effects. The first term is related to the

misalignment of the concentration gradient with the direction of the gravity vector,

ẑ. The second term is associated with the misalignment of the velocity field with

the gradient of lnk. For the homogeneous case, σ2 = 0, only the first term is active.

For σ2 > 0, both terms contribute to either amplify or diminish vorticity. Note that

the vorticity production due to variable viscosity is given by R∇c × u, where R is

the log mobility ratio (see Chapter 3). Although this term is similar to vorticity

production by permeability gradients (equation 4.13), the physical effect should be

different because of the transient nature of the concentration field as opposed to the

fixed spatial variation of permeability.
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Figure 4.2: Perturbation and permeability profiles for ` = 40, m = 6π
and t = 0.5. Lines represent, σ2 = 0 (solid), σ2 = 0.1, γ = 0 (dashed)
and σ2 = 0.1, γ = π (dash-dot). The base state, co, is plotted in (a) with
symbols. It indicates that perturbations rapidly decay to zero outside
the boundary layer.

To interpret vorticity in the linear regime for a 2-D disturbance field, this

study considers the y-component of vorticity, η(x, z, t) = iη̃(z, t) exp(i`x), which can

be expressed as

η̃ = `kc̃− 1

`
(lnk)′w̃z . (4.14)

The vorticity, η̃, reflects the net effect of the coupling between perturbation and

permeability profiles. The amplitude of perturbations, c̃ and w̃, is governed by the

history of perturbation growth. In order to focus on the effect of the instantaneous

coupling between perturbation and permeability profiles, the concentration pertur-

bation, c̃, in (4.14) will be scaled with ||c̃||∞. The velocity perturbation, w̃, then

also scales with ||c̃||∞ because the governing equations (4.6) and (4.7) are linear and

do not contain the time derivative of w̃. Note that the resulting instantaneous value

of η̃/||c̃||∞ is useful for comparing the effect of different permeability profiles for a

fixed value of `. Note that this approach is independent of the specific scale, ||c̃||p,
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for c̃ and w̃. Our interpretation and conclusions do not change when perturbations

are scaled with either ||c̃||1 or ||c̃||2.

The spatial profiles for c̃/||c̃||∞, w̃/||c̃||∞ and k for Ra = 500, are plotted

in figure 4.2 for ` = 40, m = 6π and t = 0.5. Perturbation profiles shown are

based on the initial condition (2.44). The base state, co, is also plotted in figure

4.2(a) to indicate that c̃ and w̃ decay rapidly to zero outside the boundary layer.

Figure 4.2(a) shows that the profiles for c̃/||c̃||∞ do no change appreciably when

heterogeneity is introduced. Therefore, the differences in the corresponding velocity

perturbations, w̃/||c̃||∞, plotted in figure 4.2(b), are mainly due to the differences in

the corresponding permeability profiles, shown in figures 4.2(c). Figure 4.2(b) shows

that compared with the homogeneous case, the amplitude of w̃/||c̃||∞ increases for

γ = 0 but decreases when γ = π. This behavior can be explained with the help of

(4.7) where k appears as a source term and sets the amplitude of w̃.

The perturbation-permeability interactions are shown in figure 4.3 with the

help of,

η̂c = `kc̃/||c̃||∞ , η̂w = w̃z(lnk)′/`||c̃||∞ , and η̂ = η̂c − η̂w , (4.15)

for Ra = 500, ` = 40, m = 6π and t = 0.5. Figure 4.3(a) shows that η̂c increases with

an increase in the variance for γ = 0. This is because larger values of k coincide with

the peak of c̃/||c̃||∞ when σ2 is increased, as shown in figures 4.2(a,c). Conversely,

η̂c decreases with an increase in σ2 when γ = π, as shown in figure 4.3(d). This is

because smaller values of k coincide with the peak of c̃/||c̃||∞ with an increase in σ2,

as shown in figures 4.2(a,c). The profiles of η̂w, shown in figures 4.3(b,d), are much
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Figure 4.3: Spatial variation of vorticity contributions and net vorticity,
η̂c, η̂w and η̂, defined in (4.15), for ` = 40, m = 6π and t = 0.5. Lines
represent, σ2 = 0 (solid), σ2 = 0.1 (dashed) and σ2 = 0.5 (dash-dot).
The two cases, γ = 0 and γ = π are shown, respectively, in plots (a,b,c)
and (d,e,f).

smaller in magnitude compared with η̂c. The primary contribution to η̂ therefore

comes from η̂c.

To sum up the spatial variation of vorticity production, the net vorticity is

defined as

∫ 1

0

η̂ dz = `

∫ 1

0

kc̃/||c̃||∞ dz − 1

`

∫ 1

0

w̃z(lnk)′/||c̃||∞ dz . (4.16)

The first term on the right hand side of (4.16), Ic, is positive because c̃ and k are

both positive, as shown in figures 4.2(a,c). The second term on the right hand side

of (4.16), Iw, shown in figures 4.3(b,e), depends in a more complicated manner on

the coupling between the spatial variations of (lnk)′ and w̃z. The values of Ic, Iw
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γ = 0

σ2 Ic Iw I ω∞

0 2.397 0.000 2.396 1.052

0.1 2.876 0.095 2.778 2.838

0.5 3.393 0.263 3.129 4.571

1.0 3.692 0.402 3.290 5.427

γ = π

σ2 Ic Iw I ω∞

0 2.397 0.000 2.396 1.052

0.1 1.933 -0.042 1.975 -0.705

0.5 1.451 -0.026 1.477 -2.509

1.0 1.166 0.013 1.152 -3.460

Table 4.1: Net vorticity contributions, Ic, Iw and I, as a function of σ2

for ` = 40, m = 6π and t = 0.5. The corresponding growth rates, ω∞,
indicate that larger positive values of I are associated with greater insta-
bility. Net vorticity, I, is determined primarily by Ic for this parameter
set because Ic/|Iw| � 1.

and I (the left hand side of equation 4.16) can b found in Table 4.1 for Ra = 500,

` = 40, m = 6π and t = 0.5. Table 4.1 indicates that I increases with an increase

in the variance when γ = 0 and decreases with an increase in the variance when

γ = π. Corresponding values of the growth rate listed in Table 4.1 indicate that

larger values of I are associated with greater instability and smaller values with

less instability. Table 4.1 further indicates that Ic is an order of magnitude greater

than |Iw| and therefore sets the magnitude of I. Hence, with an increase in σ2 the

increase in I for γ = 0 and the decrease in I for γ = π is related, respectively,

to larger and smaller values of k in the boundary layer, as shown in figure 4.2(c).

Permeability gradients play a relatively minor role for the parameter set considered

in figure 4.1.
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m = 10π. (b) Influence of m for σ2 = 1.

4.3.3 Effect of correlation length

For larger values of m, the contribution of Iw to net vorticity is expected to

increase because of larger gradients of permeability within the boundary layer. To

investigate this effect, figure 4.4(a) plots the marginal stability curves for Ra = 500,

γ = 0, m = 10π and different value of σ2. The overall stability behavior, as

a function of σ2, is quantitatively different compared with the case of m = 6π

considered in figure 4.1(a). In the case of m = 10π considered in figure 4.4(a),

instability is found to decrease with an increase in σ2. This effect is more obvious

at times greater than about t > 0.4, which indicates that the influence of the two

modes of vorticity production changes in time due to the change in the thickness

of the boundary layer. For σ2 = 1.1, the marginal stability curve splits into two

separate unstable regions that continue to diminish with a further increase in the
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Figure 4.5: Spatial variation of perturbation and vorticity contributions
for ` = 40, m = 10π and t = 0.5. Lines represent, σ2 = 0 (solid),
σ2 = 0.1 (dashed) and σ2 = 0.5 (dash-dot).

variance. figure 4.4(b) plots the effect of m for σ2 = 1. As m is increased from 8π

to 10π the marginal stability curve shrinks substantially. With a further increase

in m to 10.4π, the marginal stability curve again splits up, similar to the case for

m = 10π and σ2 = 1.1 shown in figure 4.4(a). The lower branch disappears entirely

with a further increase in m to 12π.

The physical basis for reduced instability at larger values of m and σ2, indi-

cated in figure 4.4, is explained with the help of figure 4.5. The profiles for scaled

concentration perturbations observed in figure 4.5(a) are not sensitive to σ2. The

corresponding peak velocity perturbations are similarly not sensitive to σ2, but the

profiles move slightly inwards into the boundary layer when σ2 is increased, as
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shown in figure 4.5(b). Permeability profiles plotted in figure 4.5(c) indicate that k

undergoes a relatively smaller increase in the neighborhood of the peak of c̃/||c̃||∞

with an increase in σ2 compared with the case for m = 6π shown in figure 4.2(c).

Consequently, the increase in the corresponding vorticity contribution, η̂c, is rela-

tively smaller for m = 10π as shown in figure 4.5(d) compared with the case for

m = 6π shown in figure 4.3(a). The permeability gradients on the other hand are

now much larger and lead to significantly larger values of η̂w with an increase in

σ2, as shown in figure 4.5(e). The effect on η̂, plotted in figure 4.5(f), shows that

vorticity is now confined to a narrower region of the boundary layer. This results in

a decrease in the net vorticity, I = (2.40, 2.32, 2.23), with an increase in variance,

σ2 = (0.1, 0.5, 1.0), which coincides with a corresponding decrease in the growth

rate, ω∞ = (1.43, 1.22, 0.70).

The overall effect of the interaction of the two mechanisms of vorticity pro-

duction described above is summarized in figure 4.6, which plots contours of tc in

the plane of σ2 and m. These results are obtained with the DMA, given by (4.11).

Figure 4.6 indicates that tc decreases with an increase in σ2 for small values of m

and increases with an increase in m for larger values of m. A transition from one

type of behavior to the other is observed to occur at intermediate values of m. A

sharp jump in the critical time, tc, occurs for large values of σ2 because the lower

of the two stability branches, shown in figure 4.4, vanishes, and tc jumps to the

larger value on the upper branch. For smaller values of σ2 the transition is gradual.

Such transitions are associated with the relative strength of the vorticity produc-

tion mechanisms, see equation (4.14), related to the magnitude and the gradient of
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Figure 4.6: Effect of σ2 and m, on the critical time for the onset of insta-
bility, tc, determined by the DMA, (4.11). Numbers indicate the mag-
nitude of tc. Gray scale emphasizes the direction of increasing and de-
creasing values of tc, with lighter (darker) color indicating higher (lower)
values.

permeability. The mode of instability switches from being dominated by the mag-

nitude of permeability for smaller values of m to being dominated by the gradients

of permeability for large values of m. Note that the effect of mode switching is most

prominent when high permeability regions are located closer to the top boundary,

z = 0, for −3π/4 < γ < 3π/8. In this range, the effects of mode switching observed

in figures 4.4 and 4.6 extend to the onset of nonlinear convection, as described next

in §4.4.

4.4 Onset of natural convection

The onset of natural convection that marks the beginning of a period of en-

hanced dissolution, occurs in response to perturbation amplification within the linear
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regime. At the time of the onset of convection, the flux of CO2 into brine transi-

tions from a diffusive to a convective regime. The critical time for the onset of

convection is defined as the minimum onset time for the onset of convection over

all perturbation wavenumbers. The onset of convection is associated with the onset

of nonlinear effects that are triggered when the perturbation amplitude becomes

sufficiently large. With the help of 2-D numerical simulation, this study explores

the dependence of the onset time of nonlinear convection on the amplification of

perturbations that are predicted using linear theory. It is shown that due to the

dependence, the mode switching behaviors in the linear regime are also observed in

the onset of convection.

A direct numerical simulation (DNS) based on the vorticity streamfunction

formulation is used to solve equations (4.1) (Riaz et al., 2006). The numerical

method uses a spectral discretization in the x-direction, compact finite differences

in the z-direction and a 3rd order Runga-Kutta, explicit time integration. Periodic

boundary conditions are used in the x-direction. Initial conditions for the DNS are

set as, u = w = 0 and

c(x, z, to) = co(z, to) + ε cos(`x)c̃o(z) , (4.17)

where to is the time at which the system is perturbed, co(z, to) = erfc(z
√
Ra/4to) is

the base state for the linear stability analysis, ε is the initial perturbation amplitude,

` is the perturbation wavenumber and c̃o(z) is the initial perturbation defined in

(2.44). The minimum amplitude is ε = 0, which cannot lead to instability because

of the quiescent initial state, u = w = 0. As in Chapter 2, the maximum value
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Figure 4.7: (a) Flux, J(t), for Ra = 500, ` = 20, σ2 = 0, ar = 2π/`
and to = 0.01 for various values of the perturbation amplitude. Symbols
represent the flux associated with the diffusive boundary layer (b). Time
for convection onset, tn, as a function of ` obtained from DNS (solid
lines). Amplification, Φ, at tn is only a function of ε. The critical onset
time, tnc, (symbols) occurs on the path of maximum amplification, Φ∗(t),
(dashed line) in the linear regime.

of ε is constrained by the requirement, c(x, z, to) > 0; ∀(x, z), to ensure that no

unphysical negative values of concentration occur at t = to and beyond. Tilton et al.

(2013) derived an asymptotic scaling that showed how the onset time of convection

approaches infinity as the amplitude goes to zero.

4.4.1 Critical time of convection onset

The time at which convection initiates for the first time is typically associated

with the point of deviation of the flux from the diffusive behavior. The flux of CO2

into brine is obtained by integrating the normal concentration gradient across the
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boundary at z = 0 from x = 0 to the domain width, x = ar,

J(t) = − 1

arRa

∫ ar

0

∂c

∂z

∣∣∣∣
z=0

dx . (4.18)

The time at which the onset of natural convection occurs is taken to be the time, tn,

when dJ/dt = 0. The flux, J(t), obtained from the DNS for various values of the

initial amplitude, ε, is shown in figure 4.7(a) for Ra = 500, ` = 20, σ2 = 0, ar = 2π/`

and to = 0.01. Symbols represent the diffusive flux in the linear regime, 1/
√
πRat.

Figure 4.7(a) shows that the flux follows the diffusive path initially. Eventually,

nonlinear interactions between the perturbed mode and its harmonics modify the

mean concentration to deviate the flux from the diffusive behavior (Tilton & Riaz,

2014).

The onset time tn is plotted as a function of ` in figure 4.7(b). A critical time

for the onset of convection, tnc, can be defined as the minimum value of tn over

all perturbation wavenumbers. In order to associate tnc with the dynamics in the

linear regime, the amplification attained by a given perturbation over a specific time

interval, {to, t}, is defined as,

Φ(t; `) =
‖c̃(z, t; `)‖2

‖c̃(z, to)‖2

= exp

∫ t

to

ω2(t; `)dt . (4.19)

Note that the growthrates, ω2 (IVP), and the perturbation profile, c̃, are obtained

using linear theory, while the onset of convection is calculated via DNS. The term on

the right in (4.19) indicates explicitly that the amplification measures the combined

effect of the instantaneous growth rates, summed over a specific period of time.

Clearly, Φ(t; `) is a function of to, see Chapter 2. The initial time is to = 0.01

which is about an order of magnitude smaller than the onset time for instability in

117



homogeneous media. The maximum amplification at any given time can then be

defined as,

Φ∗(t) = sup
`
{Φ(t; `)} . (4.20)

Tilton & Riaz (2014) show that the amplification based on the linear analysis accu-

rately predicts the nonlinear amplification at the onset of convection because of the

weak nonlinearity at tnc. The critical time for the onset of convection thus occurs

along the path followed by Φ∗(t) in (t, `)-space, as shown in figure 4.7(b) with the

dashed line. The minimum level of amplification needed to trigger the onset is also

noted for different values of ε. Next, it is considered how the specific profile of the

path of Φ∗(t) and its magnitude influence the time for the onset of convection.

4.4.2 Influence of mode switching on convection onset

The dependence of tnc on ε, Φ∗(t) and the heterogeneity parameters is exam-

ined in figure 4.8 for Ra = 500, to = 0.01 and ar = 2π/`. Figure 4.8(a) shows the

effect of variance for three different values of σ2 and ε = 10−2. In each case, tnc

transitions from a set of small to large values with an increase in m. The transition

is gradual when σ2 = 0.1 but becomes progressively steeper for larger values of σ2.

Figure 4.8(a) further shows that with an increase in the variance, tnc decreases to

the left of the transition region but increases to the right. This transition is similar

to the one observed in figure 4.6 with respect to the critical time for the onset of

instability, tc. The behavior of tnc depicted in figure 4.8(a) is a consequence of the

mode switching mechanisms in the linear regime as discussed in §4.3.
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In order to understand the effect of mode switching on the behavior of tnc

observed in figure 4.8(a), let us consider the temporal evolution of Φ∗(t) in figure

4.8(b-d). Figure 4.8(b) illustrates Φ∗(t) as a function of time for m = 4π and two

different values of σ2 = 0.1 and 0.5. The critical time for the onset of convection, tnc,

corresponding to ε = 10−3, 10−2 and 10−1 is marked with symbols. Figure 4.8(b)

shows that for all values of ε the amplification, Φ∗(t), is greater when the variance

is larger. Therefore, the minimum amplification required for the onset is attained

more quickly for the case of σ2 = 0.5 resulting in an earlier onset time. This explains

the behavior of the decrease in tnc with an increase in σ2 for small values of m, as

shown in figure 4.8(b). Note further in figure 4.8(b) that the amplification needed

to trigger the onset of convection for a fixed value of ε is similar to that in the

homogeneous case shown in figure 4.7(b).

To examine the transition region noted in figure 4.8(b), let us consider the

case of m = 6.5π in figure 4.8(c). In this case, Φ∗(t) is greater for σ2 = 0.5 until

about t = 3. A point of crossover occurs beyond this time where the amplification is

greater for the case of σ2 = 0.1. As a consequence of the crossover, the critical onset

time, tnc, for various values of σ2 depend additionally on ε. The crossover can be

attributed to the mode switching effects that are brought about in this case by the

shift in the relative strength of vorticity contributions as a result of boundary layer

growth. For larger values of ε, tnc occurs earlier for σ2 = 0.5. On the other hand,

for smaller values of ε, tnc occurs later for σ2 = 0.5 because the level of amplification

needed to trigger the onset of convection is attained beyond the point of crossover.

Finally, in the case of a large value of m = 12π shown in figure 4.8(d), the crossover
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Figure 4.8: (a) Influence of permeability variance, σ2 on the critical onset
time, tnc, for Ra = 500, to = 0.01 and ε = 10−2. (b), (c) and (d) show
Φ∗(t) vs. time for m = 4π, 6.5π and 12π, respectively. Solid symbols
mark tnc for three different values of ε.
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occurs relatively early in time. Consequently, Φ∗(t) attains the threshold for the

onset well beyond the point of crossover for all values of ε. This explains why tnc is

delayed with an increase in variance for large m, as observed in figure 4.8(a).

Note that in this chapter, the problem is studied with respect to a single value

of the Rayleigh number. This is because a simple rescaling based on an internal

length scale formed with buoyancy velocity and diffusivity can be used to obtain

corresponding results at other values of the Rayleigh number, see §2.4.3 in Chapter 2.

This type of rescaling is also appropriate for characterizing the onset of the nonlinear

convection as long as the boundary layer does not interact with the bottom aquifer

boundary.

4.5 Conclusions

This study explores the instability behavior with respect to interactions be-

tween the permeability and perturbation profiles within the transient boundary

layer. Two main vorticity modes are discussed. The first mode is related to the

coupling between the concentration field and the magnitude of permeability within

the boundary layer. The second mode of vorticity is associated with the coupling

of the velocity perturbation with the gradients of permeability within the bound-

ary layer. The gradients of permeability become important when the wavelength of

permeability oscillation is small compared with the thickness of the boundary layer.

Perturbations in the velocity field either enhance or diminish the vorticity produced

by the first mode, depending on the permeability phase. The time required by any
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perturbation to amplify sufficiently and trigger the onset of nonlinear convection

depends on the instantaneous contribution of each vorticity mode, which changes

in time with an increase in the boundary layer thickness. Vorticity production can

transition quickly from one mode the other in response to small changes in the per-

meability field when the variance is high, resulting in abrupt changes in the onset

time for convection.

Our description of physical mechanisms provides a framework for the evalu-

ation of practical problems. For example, heterogeneity may be characterized by

multiple length scales and sharp changes in the permeability field whose effect on the

onset of convection can be understood with respect to the interaction of individual

vorticity modes. In the case of multiple permeability lengths scales, mode switching

effects are expected to be present depending upon the magnitude of permeability

gradients in the boundary layer. In the limit of high permeability and high variance,

the periodic model can also account for abrupt changes in permeability.
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Chapter 5: Natural convection in vertically layered porous media

5.1 Overview

This chapter explores the onset of natural convection in a vertically layered

porous medium in which permeability varies perpendicular to the direction of grav-

ity. Past studies that have dealt with steady diffusive boundary layers (McKibbin,

1986; Nield, 1986) model the horizontally varying permeability field using discrete

slabs. These studies also report higher instability compared to the constant perme-

ability case. The distinguishing feature of the present stability problem, in addition

to the transient nature of the base-state, is that the shape of the eigenmodes in the

horizontal direction can no longer be represented by pure Fourier modes. Due to

interaction with permeability field, perturbation modes are no longer independent

of each other. The stability analysis therefore, cannot be performed using the clas-

sical normal mode decomposition. Instead, this chapter utilizes a multi-dimensional

eigenvalue problem (Theofilis, 2011).

The chapter is outlined as follows. The governing equations are presented

in §5.2. The linear stability results are shown in §5.3 and the onset of nonlinear

convection in §5.4. The conclusions are discussed in §5.5.
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5.2 Governing equations and methodology

The geometry and modeling assumptions are similar to those in previous chap-

ters. This study considers a two-dimensional isotropic porous medium of infinite

width and height H. To analyze the instability characteristics, a periodic perme-

ability is adopted,

K∗ = Kg exp [a cos (kx)] , (5.1)

where Kg = (KmaxKmin)0.5 is the geometric mean, Kmax and Kmin refer to the

maximum and minimum values of permeability, a is the permeability amplitude,

k is the permeability wavenumber, and x is the horizontal direction perpendicular

to the direction of gravity. Note that permeability phase is not modeled because

linear stability results are independent of phase. The variations in dispersivity, D,

and porosity, φ, are assumed to be small compared to the permeability variations.

Viscosity is treated as a constant and the density profile is linear of the form, ρ =

ρ0 + ∆ρc, where ρ0 is the density of pure brine, ∆ρ is the density difference of CO2-

saturated brine and pure brine. Because density differences are small, ∆ρ/ρ � 1,

Boussinesq approximation is applied. Using the characteristic length, Lc = H,

time Tc = H/(φUc), permeability Kc = Kg, buoyancy velocity Uc = Kg∆ρg/µ

and pressure Pc = ∆ρgH, one obtains the non-dimensional form of the governing

equations,

K v +∇p− cez = 0, ∇ · v = 0,
∂c

∂t
+ v · ∇c− 1

Ra
∇2c = 0, (5.2)
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These equations are the Darcy’s law and the volume averaged forms of the continuity

and concentration advection-diffusion equations respectively. The Rayleigh number

is defined as Ra = UcH/(φD). The symbol v = [u,w] is the nondimensional velocity

vector, c is the nondimensional concentration and p is the nondimensional pressure

obtained from the dimensional pressure p̂ through the relation p = (p̂ − ρ0gz)/P.

The symbol ez is the unit vector in the z direction.

The boundary conditions for (5.2) are,

c
∣∣
z=0

= 1,
∂c

∂z

∣∣∣
z=1

= 0, w
∣∣
z=0

= w
∣∣
z=1

= 0, t ≥ 0. (5.3)

Equations (5.2) admit the transient base state,

vb = 0, cb(z, t) = 1− 4

π

∞∑

n=1

1

2n−1
sin

[(
n− 1

2

)
πz

]
exp

[
−
(

n− 1

2

)2
π2t

Ra

]
, (5.4)

The linear stability of base-state (5.4) is studied with respect to infinitesimal

perturbations. The linear stability problem is formulated in terms of perturbations

of the concentration field ĉ(x, z, t) and of the stream function ψ(x, z, t),

∂ĉ

∂t
+
∂ψ̂

∂x

∂cb

∂z
− 1

Ra
Dĉ = 0, Dψ̂ − 1

K

∂K

∂x

∂ψ̂

∂x
−K ∂ĉ

∂x
= 0, (5.5)

ĉ
∣∣∣
z=0

= 0,
∂ĉ

∂z

∣∣∣
z=1

= 0, ψ̂
∣∣∣
z=0

= ψ̂
∣∣∣
z=1

= 0, (5.6)

ĉ
∣∣
x=0

= ĉ
∣∣
x=xp

, ψ̂
∣∣
x=0

= ψ̂
∣∣
x=xp

, (5.7)

where D = ∂2/∂z2 +∂2/∂x2, and xp is the cut-off length in the horizontal direction.

The concentration and stream function perturbations are split into spatial and

temporal components,

ĉ = ce(x, z)e
σt, ψ̂ = ψe(x, z)e

σt. (5.8)
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Substituting (5.8) in (5.5)–(5.11) and after transforming the regular (x, z, t) space to

the self-similar (x, ξ, t) space, where ξ = za is the self-similar variable of the diffusive

boundary layer with a =
√

Ra/4t, the resultant generalized eigenvalue problem may

be expressed as,

σce −
ξ

2

∂ce
∂ξ

+ a
∂ψe
∂x

∂cb

∂ξ
− 1

Ra

(
a2 ∂

2

∂ξ2
+

∂

∂x2

)
ce = 0, (5.9)

(
a2 ∂

2

∂ξ2
+

∂

∂x2

)
ψe −

1

K

∂K

∂x

∂ψe
∂x
−K∂ce

∂x
= 0, (5.10)

ce
∣∣
ξ=0

= ce
∣∣
ξ=ξc

= 0, ψe
∣∣
ξ=0

= ψe
∣∣
ξ=ξc

= 0, (5.11)

ce
∣∣
x=0

= ce
∣∣
x=xp

, ψe
∣∣
x=0

= ψe
∣∣
x=xp

, (5.12)

where ξc = 8 is the cut off length chosen such that the perturbations tend to zero

at ξ = ξc, and xp = 2π such that discrete integer wavenumbers are resolved in the

x direction.

The spatial derivatives in (5.9)–(5.10) are discretized using fourth order finite

difference schemes. The two-dimensional (2D) eigenmodes are obtained using the

sparse matrix eigenvalue solver ‘eigs’ in MATLAB. For a given t and Ra, the eigen-

mode with the largest eigenvalue, σ, represent the dominant perturbation structure.

The corresponding eigenvalue represents the dominant perturbation growth rate.

Note that growth rate, σ, obtained in the self-similar (x, ξ, t) space is equivalent

to perturbation growth rate in the regular (x, z, t) space when the perturbation

amplitude is measured using the L∞ norm (Tilton et al., 2013).

126



(a)

0 1 2 3 4 5 6
−1

−0.5

0

0.5

1

c e
,
K

x

(b)

0 1 2 3 4 5 6
−1

−0.5

0

0.5

1

c e
,
K

x

Figure 5.1: Concentration eigenmode, ce (solid line), and permeability,
K (dashed line), in the horizontal x direction for Ra = 500 and t = 2
for (a) Homogeneous porous media of a = 0. (b) Heterogeneous porous
media of a = 0.1 and k = 10.
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5.3 Linear growth characteristics

5.3.1 Quasi-steady 2D eigenmodes

Figure 5.1 illustrates the concentration eigenmode, ce (solid line), and per-

meability, K (dashed line), in the spanwise x direction for t = 2 and Ra = 500.

Note that these concentration shapes are identical at any horizontal slice within

the boundary layer. Panel (a) illustrates the profile shapes for homogeneous porous

media with a = 0. The least unstable eigenmode varies sinuisoidally in the x direc-

tion with wavenumber of 25. This is in excellent agreement with results obtained

using a normal mode decomposition, see figure 2.44(d) in Chapter 2. Figure 5.1(b)

illustrates the profiles for heterogeneous porous media with permeability amplitude,

a = 0.1, and permeability wavenumber, k = 10. The concentration eigenmodes, ce,

has a irregular wavy structure consisting of multiple sinusoidal or Fourier modes. It

is unclear whether these modes are in phase with each other.

To further investigate the structure of the quasi-steady eigenmodes, a Fourier

transform is applied in order to examine the individual Fourier components of the

eigenmode. Figure 5.2 illustrates the Fourier sine coefficients, al (solid line), and

cosine coefficients, bl (dashed line), for t = 2, Ra = 500, and permeability amplitudes

and wavenumbers of: a = 0 (panel a), a = 0.1 and k = 1 (panel b), a = 0.1 and

k = 10 (panel c), and a = 0.1 and k = 50 (panel d). Figure 5.2(a) shows that for

a homogeneous porous medium, a = 0, a single Fourier component is recovered at

l = 25. This case corresponds to the eigenmode illustrated in figure 5.1(a).
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Figure 5.2: Fourier sine coefficients, al (solid line), and cosine coefficients,
bl (dashed line), for the horizontal variation of ce for t = 2 and Ra = 500
in homogeneous porous media (panel a) and in heterogeneous porous
media with a = 0.1, and k = 1 (panel b), k = 10 (panel c), and k = 50
(panel d) respectively.
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For a = 0.1 and k = 1 (figure 5.2b), the least stable eigenmode consist of

pure modes in the frequency band, 18 < l < 35, clustered around the homogeneous

dominant wavenumber of l = 25. The presence of both al and bl components

indicates that the eigenmode contains Fourier modes or harmonics that are not in

phase with each other. With increasing permeability wavenumber, k = 10 (figure

5.2c), the sinusoidal modes are located wider apart in the spectrum. Interestingly,

the Fourier component with the maximum magnitude is still located close to the

homogenous dominant wavenumber, l = 25. The other modes located at l = 14,

34, and 44 are much smaller in magnitude. This case corresponds to the eigenmode

illustrated in figure 5.1(b). When permeability wavenumber is increased to k = 50

(figure 5.2d), there is only one Fourier component at l = 25. This indicates that

with increasing permeability wavenumber, the quasi-steady 2D eigenmodes recover

the dominant perturbation structures observed for homogeneous porous media.

5.3.2 Perturbation growth

Figure 5.3 illustrates the effect of permeability wavenumber on the temporal

evolution of growth rate, σ, for Ra = 500. Figure 5.3(a) illustrates σ versus t for the

homogeneous case of a = 0 (circles) and the heterogeneous cases of a = 0.1 and k = 1

(crosses), k = 10 (squares), and k = 50 (diamonds) respectively. Perturbations

experience an initial decay period, σ < 0, before experiencing positive growth rates,

σ > 0, due to destabilizing effects. The smallest values for the growth rate are

observed when a = 0, i.e. for homogeneous porous media. For a = 0.1, the largest
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Figure 5.3: Effect of permeability wavenumber on the temporal evolution
of growth rate, σ, for (a) a = 0.1 and k = 1 (crosses), k = 10 (squares),
and k = 50 (diamonds). (b) a = 0.5 and k = 10 (crosses), k = 50
(squares), and k = 100 (diamonds). The results for homogeneous porous
medium for Ra = 500 is shown using circles.

growth rates, σ, are observed for a smaller permeability wavenumber, k = 1. When

permeability wavenumber is increased to k = 10, the magnitude of the growth rates

decreases but remains larger than the homogeneous growth rates, a = 0. When

k = 50, better agreement is observed with the homogenous case. With decreasing

permeability length scales, the linear stability characteristics of a vertically layered

porous medium are similar to that of a homogeneous medium.

Figure 5.3(b) illustrates σ versus t for a larger permeability amplitude, a = 0.5,

for the heterogeneous cases with k = 10 (crosses), k = 50 (squares), and k = 100

(diamonds) respectively and the homogeneous case of a = 0 (circles). For k = 10,

one observes the largest deviation of the growth rate from the homogeneous case

. With increasing permeability wavenumbers, k = 50 and 100, better agreement

is found with the homogeneous case. With increasing permeability amplitude, the
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Figure 5.4: (a) Effect of permeability amplitude, a, on σ vs. k for t = 1
and Ra = 500 for a = 0 (solid line) , a = 0.2 (circles) , a = 0.5 (squares),
and a = 1 (crosses). (b) Effect of time on σ vs k curves forRa = 500 and
t = 1 (crosses), t = 2 (squares) and t = 4 (circles).

instabilities are found to be more stronger. Our results suggest that the effect of

horizontal permeability is to increase the instability of transient diffusive boundary

layers. This instability enhancing effect of a horizontally varying permeability field

is similar to the previous studies of McKibbin (1986) and Nield (1986) on steady

diffusive boundary layers.

Studies on viscous fingering in heterogeneous media (DeWit & Homsy, 1997;

Riaz & Meiburg, 2004) have reported a resonance behavior when the length scale of

the viscous fingering instability is close to that of the heterogeneous instability. To

examine whether similar effects exist for the case of a gravitational instability, let

us look at the perturbation growth rate for a fixed time, t = 1, for Ra = 500 and

vary the length scale of the horizontal heterogeneity field. Figure 5.4(a) illustrates

growth rate, σ, for the permeabiity wavenumbers, 1 < k < 100, for a = 0 (solid line)

and a = 0.2 (circles), a = 0.5 (squares), and a = 1 (crosses). As observed earlier,
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the maximum growth rates are bounded by the maximum value of permeability and

occurs for large permeability length scales. In the limit of k approaching zero, k → 0,

the growth rate is equal to that of a homogeneous porous media with a constant

permeability of Kg exp(a). Resonance behavior is observed for heterogeneous media

when k is large. For a = 0.2, after the initial decay, the growth rate starts to

increase at k = 42, reaches a local maxima at k = 59, and begins to decrease again.

The local maxima is approximately twice the value of the dominant perturbation

wavenumber, `max = 28, for a homogeneous media of permeability Kg. For larger

values of the permeability amplitude a, the resonance behavior occurs for higher

permeability wave numbers k.

Because of the unsteady nature of the boundary layer, these resonance effects

are also time dependent. Figure 5.4(b) illustrates σ versus k curves for a = 0.1

and t = 1 (crosses), t = 2 (squares), and t = 4 (circles). Note that the maximum

growth rates are observed at t = 2. It is known that the dominant wavenumbers

for a homogeneous porous medium decrease monotonically with time, see figure

2.44(d). Consequently, the location of the resonance behavior, which is approxi-

mately around permeability wavenumbers that are twice in magnitude to that of

the homogeneous dominant perturbation wavenumbers, shifts with time. With in-

creasing time, resonance occurs for smaller permeability wavenumbers. In §5.4, it is

shown how these resonance behaviors observed in the linear regime affect the onset

of nonlinear convection.
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Figure 5.5: σRa−1 vs. tRa, for a = 0.5 and combinations of Ra = 500
and k = 10 (circles), Ra = 250 and k = 5 (crosses), and Ra = 750 and
k = 15 (squares).

5.3.3 Scaling with Rayleigh number

Figure 5.5 illustrates the temporal evolution of the perturbation growth rate

for a fixed perturbation amplitude of a = 0.5 and different combinations of Ra =

500 and k = 10 (circles), Ra = 250 and k = 5 (crosses), and Ra = 750 and

k = 15. The growthrates and times are scaled such that the plot shows curves of

σRa−1 versus tRa. The results for different Ra and k collapse to a single curve.

Consequently, all the results in this study can be generalized using the following

scaling. If (σ, t, k) is known for a given Ra, then the corresponding values for Ra∗

are (σRa∗/Ra, tRa/Ra∗, kRa∗/Ra).
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5.4 Onset of natural convection

Two-dimensional direct numerical simulations (DNS) are performed using a

vorticity stream function formulation of the nonlinear governing equations (5.2)–

(5.3). This scheme uses a spectral discretization in the x-direction, compact finite

differences in the z-direction and a 3rd order Runga-Kutta, explicit time integration.

The horizontal domain is truncated to x ∈ [0, 2π] with periodic boundary conditions

on x = 0 and x = 2π. The initial conditions are u = w = 0 with initial concentration

field prescribed at t = 0.1,

c(x, z) = cb(z) + ε cos(`x+ γ)
ci(z)

‖ci(z)‖∞
, (5.13)

where cb is the base state from the linear stability analysis, ε = 0.1 is the initial

perturbation amplitude, ` is the perturbation wavenumber, γ is the perturbation

phase, and ci(z) = z exp(−z2
√

Ra/(4t)), is the initial perturbation. This initial

condition was found previously in Chapter 2 to be a good approximation of the

optimal shape for linear growth.

As in previous chapters, the onset time of natural convection, to, occurs when

dJ/dt = 0, where J is the mean flux of CO2 into the brine given by,

J(t) = − 1

2π

∫ 2π

0

1

Ra

∂c

∂z

∣∣∣
z=0

dx. (5.14)

Simulations are first performed to measure to as a function of the perturbation

wavenumber ` for a fixed permeability wavenumber k and perturbation phase γ.

The critical time for the onset of convection is defined as follows

tmino (k, γ) = min
0≤`<∞

to(`, k, γ). (5.15)
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Figure 5.6 illustrates the critical onset times of natural convection, tmino (ver-

tical axis) versus the permeability wavenumbers (horizontal axis) for Ra = 500 and

for perturbation phases of γ = 0 (circles) and γ = π/2 (crosses). The dashed line

without symbols measures the onset times of linear instabilities, tc, i.e the time cor-

responding to σ = 0, obtained using the 2D eigenvalue problem. The linear onset

time, tc, decreases with increase in permeability wavenumber. As explained earlier

in §5.3.2, the maximum linear growth rates are observed for k → 0. For permeability

amplitude of a = 0.1 (panel a), the onset of instabilities is close to the onset time

predicted by linear theory for homogeneous media, tc ∼ 0.34. The values for critical

nonlinear onset times are much greater with tmino ∼ 1.

For a = 0.5 (panel b), the boundary layer is more unstable. When k < 50,

the values for the linear onset time, tc, and the nonlinear onset time, tmino , are

smaller compared to a = 0.1. When k > 50, the values for tc are similar to the

case of a = 0.1, but the corresponding values for nonlinear onset times, tmino ∼ 0.9,

are smaller than the previous case of a = 0.1. The earlier onset times for tmino

for larger permeability wavenumbers may be due to stronger resonance between

instability and permeability structures, see §5.3.2. At small times, resonance effects

are observed for much larger permeability wavenumbers while for large times, they

are observed for smaller permeability wavenumbers. Because to occurs much later

than tc, perturbation structures are more prone to resonance effects when k > 50.

Resonance effects are notably enhanced when the permeability amplitude is

increased to a = 1 (panel c). Nonlinear onset times, tmino , when k > 60, occur

even earlier even though linear onset times, tc, have been delayed compared to the
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a = 0.5 case. The variation of onset times due to different perturbation phase,

γ, may signify the resonance interactions taking place between perturbation and

permeability structures.
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5.5 Conclusions

This chapter explores the linear instability of transient, diffusive boundary

layers in a vertically layered isotropic porous media using a multi-dimensional eigen-

value formulation. Due to interactions between permeability and perturbation struc-

tures, the shape of dominant quasi-steady eigenmodes in the transverse direction

may consist of multiple sinusoidally varying modes. This is in contrast to previous

linear stability analysis on transient, diffusive boundary layers. The boundary layer

is more unstable in a vertically layered porous medium and is bounded by the max-

imum local value of permeability. The perturbation growth rates are always larger

than the corresponding values for homogeneous media. Furthermore, resonant inter-

actions between the permeability and perturbation fields are found to enhance the

growth rates for large permeability wavenumbers. Because of the transient bound-

ary layer, these resonant interactions are also time-dependent. The location around

which these effects act vary from large permeability wavenumbers at small times to

small permeability wave numbers at large times. Our results suggest that resonant

interactions play an important role in determining the onset of nonlinear convection

in aquifers with small permeability length scales.
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Chapter 6: Contributions and Future work

6.1 Contributions

The following journal articles have been published/submitted as part of this

work on gravitationally driven instabilities in porous media:

• “Optimal perturbations of gravitationally unstable, transient boundary lay-

ers in porous media”, D. Daniel, N. Tilton, and A. Riaz, Journal of Fluid

Mechanics, 727, 456-487, 2013.

• “Effect of viscosity contrast on gravitationally, unstable, diffusive boundary

layers”, D. Daniel and A. Riaz, Physics of Fluids, 26, 116601, 2014.

• “Onset of natural convection in layered saline aquifers”, D. Daniel, A.Riaz,

and H. Tchelepi, Journal of Fluid Mechanics, in review.

• “Onset of natural convection in a vertically layered porous medium”, D. Daniel

and A. Riaz, in preparation.

In addition to the above works, the dissertation author D. Daniel has made

scientific contributions via the following articles:
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• “The linear transient period of gravitationally unstable, diffusive boundary

layers developing in porous media”, N. Tilton, D. Daniel, and A. Riaz, Physics

of Fluids, 25, 092107, 2013

Contribution: In the development and analysis of modal and nonmodal linear

stability procedures.

• “An empirical theory for gravitationally unstable flow in porous media”, R.

Farajzadeh, B. Meulenbroek, D. Daniel, A. Riaz, J. Bruining, Computational

Geosciences, 17, 515-527, 2013

Contribution: In the analysis of nonlinear computational simulations.

6.2 Future work

The following areas have been identified for future exploration:

• In chapter 2 of this study, an optimization procedure was employed to exam-

ine the perturbation structure with the maximum amplification in the linear

regime. Similarly, one could carry out an optimization procedure to find the

optimal initial profile that results in the earlier onset of nonlinear convection.

The new optimization procedure would consist of a weakly nonlinear analysis

that can efficiently predict the onset of nonlinear convection.

• This study predominantly explores gravity-driven instabilities of CO2 seques-

tration using a fixed interface model which assumes a fixed two-phase interface

between CO2 and underlying brine. On the other hand, experimental studies
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of CO2 sequestration, see Chapter 3, model a moving two-phase interface. The

degree to which either the fixed, or the moving interface model corresponds

to the actual physical problem of two-phase flow remains to be determined

because of the difficulty of setting up such an experiment and making quan-

titative measurements. Further work in developing suitable models of CO2

sequestration is vital to understand CO2 storage mechanisms in subsurface

saline aquifers, and consequently, improve estimates for the onset times of

natural convection.

• This study provides a robust foundation on the effect of horizontal and vertical

variation of permeability on the stability of transient, diffusive boundary layers

in porous media. Characterizing the stability behavior in random permeability

fields is an avenue for future work.

• This study explores the time scales associated with the onset of linear insta-

bilities and the onset of natural convection. A further exploration into the

regime beyond the onset of natural convection is beckoning and is currently

missing in literature.
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