
ABSTRACT

Title of Dissertation: INTERPRETABLE DEEP LEARNING
FOR TIME SERIES

Aya Abdelsalam Ismail
Doctor of Philosophy, 2022

Dissertation Directed by: Assistant Professor, Soheil Feizi
Department of Computer Science

Principal Scientist, Héctor Corrada Bravo
Data Science and Statistical Computing, Genentech, Inc.

Time series data emerge in applications across many critical domains, including neuro-

science, medicine, finance, economics, and meteorology. However, practitioners in such fields

are hesitant to use Deep Neural Networks (DNNs) that can be difficult to interpret. For example,

in clinical research, one might ask, “Why did you predict this person as more likely to develop

Alzheimer’s disease?”. As a result, research efforts to improve the interpretability of deep neural

networks have significantly increased in the last couple of years. Nevertheless, they are mainly

applied to vision and language tasks, and their applications to time series data are relatively un-

explored. This thesis aims to identify and address the limitations of interpretability of neural

networks for time series data.

In the first part of this thesis, we extensively compare the performance of various inter-

pretability methods (also known as saliency methods) across diverse neural architectures com-

monly used in time series, including Recurrent Neural Networks (RNNs), Temporal Convolu-

tional Networks (TCNs), and Transformers in a new benchmark of synthetic time series data. We

propose and report multiple metrics to empirically evaluate the performance of interpretability

methods for detecting feature importance over time using both precision and recall. We find that

network architectures and saliency methods fail to reliably and accurately identify feature im-

portance over time. For RNNs, saliency vanishes over time, biasing detection of salient features

only to later time steps, and are, therefore, incapable of reliably detecting important features at

arbitrary time intervals. At the same time, non-recurrent architectures fail due to the conflation

of time and feature domains.

The second part of this thesis focuses on improving time series interpretability by enhanc-

ing neural architectures, saliency methods, and neural training procedures. [a] Enhancing neural

architectures: To address the architectural limitations of recurrent networks, we design a novel

RNN cell structure (input-cell attention); this new cell structure preserves a direct gradient path

from the input to the output at all timesteps. As a result, explanations produced by the input-cell

attention RNN can detect important features regardless of their occurrence in time. In addition,

we introduce a generalized framework, Interpretable Mixture of Experts (IME), that provides

interpretability for structured data while preserving accuracy. IME is an inherently-interpretable

architecture, so explanations produced by IME are the exact descriptions of how the prediction is

computed. [b] Enhancing saliency methods: We substantially improve the quality of time se-

ries saliency maps by detangling time and feature importance through two-step temporal saliency

rescaling (TSR). [c] Enhancing neural training procedures: We introduce a saliency guided

training procedure for neural networks to reduce noisy gradients used in predictions, which im-

proves the quality of saliency maps while retaining the model’s predictive performance.

INTERPRETABLE DEEP LEARNING
FOR TIME SERIES

by

Aya Abdelsalam Ismail

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2022

Advisory Committee:
Professor Soheil Feizi, Chair/Advisor
Professor Héctor Corrada Bravo, Co-Advisor
Professor Tom Goldstein
Dr. Sercan Arik
Professor Joseph Jaja

© Copyright by
Aya Abdelsalam Ismail

2022

Dedication

To my aunt Eman Guemei, for inspiring me to become who I am today.

May you rest in peace.

ii

Acknowledgments

First, I want to thank my advisors Héctor Corrada Bravo and Soheil Feizi; without your

constant support and guidance, this thesis would have never been possible.

Héctor Corrada Bravo – It has been one of my greatest pleasures working with Héctor; I

enjoyed working with him so much that I decided to join Genentech just to get to work with

him for a few more years. When Héctor first met me, I knew absolutely nothing about machine

learning besides being a cool research area; he transformed me from a clueless person to the

researcher I am today. Héctor was very patient with me; he gave me the freedom to follow my

passion and work on research areas I was most interested in, even though it was not his main area

of research. Héctor is probably the most encouraging person anyone will ever meet; I remember

the draft of the first paper I ever wrote with him; he said, ”Wow! It’s great; I just need to make a

few edits,” and when he returned it every single word has been changed (obviously the draft was

a total disaster). The thing about Héctor is that he makes the person in front of him believe that

there is nothing they can’t do and that there is no research problem that is too hard for them to

solve. Graduate students dread meetings, but group meetings in Héctor’s lab were the opposite;

we waited for them every week; they were always enjoyable, and we were usually laughing so

loud that other professors would complain. Héctor invested an incredible amount of time into

my personal success and the well-being from the day I stepped foot into Maryland (he literately

called me to ask if I am settled in), through my graduate courses, to my first NeurIPS paper, even

iii

after he left UMD his support never stopped. The only thing I didn’t get to do was attend one of

Héctor’s concerts, maybe one day in California. There are no words to express my gratitude to

Héctor for everything he has done for me over the years; he made this journey unforgettable.

Soheil Feizi – In my third year, I was blessed to work with Soheil. He offered his time,

support, guidance, and occasional tough love. Soheil is a fantastic mentor; I have learned so much

by just being around him as I have by directly interacting with him. Soheil probably has one of

the highest conference acceptance rates, and there is a reason for that; he knows exactly how

to write and sell a research paper and write the perfect rebuttal that even reviewer 2 can’t argue

with; he taught me everything I need to know about paper writing. Soheil deeply cares about his

students; he is always available to discuss research ideas or for support in general. He ensures we

get the exposure we need by introducing us to other researchers in the field and recommending

us for invited talks. He tries to transfer all his knowledge to us by any means possible. He spent

hours teaching me how to present my work and give engaging presentations. We had countless

meetings where he would just provide me with career advice. He was invested not just in my

success as a graduate student but in my future as a researcher. The skills and knowledge I gained

from working with Soheil are priceless, and for that, I am eternally grateful.

During my last year, I was fortunate to work with Sercan Arik; he is an excellent mentor.

He is very dedicated and meticulous; I hope I picked up a thing or two from him. Sercan cares

about his interns and provides an excellent environment for them to succeed. That’s something I

both appreciate and plan to emulate in my future. I wish we had met earlier so I could have gotten

a chance to work and learn more from him. I’d especially like to thank Sercan for his advice and

support during my job search. In addition, I thank my defense and proposal committee members

Tom Goldstein, Joseph Jaja, and Marine Carpuat for their support and feedback on my work.

iv

During my PhD, I had the pleasure of working with excellent collaborators from my internships

and across UMD. Mahmudul Hasan and Faisal Ishtiaq were great mentors and made my two

internships at Comcast very enjoyable. Collaborations with the UMD neuroscience department

allowed me to realize how much I enjoy applying AI to medical domains. Finally, I learned about

using AI in the industry at a large scale and had great technical conversations with Googlers

during my internship at the Google Cloud AI team.

I cannot estimate the value of the support received from Tom Hust and Barbara Lewis. Tom

is UMD graduate student’s guardian angel; I don’t think the department can function without

him. He is always there to fix all our mistakes (without him, I would probably have missed every

deadline) and answer all our questions. I think I sent Tom over 50 emails titled ”Last question.”

Barbara Lewis makes Cbcb feel like home; she is always around to ensure we have everything

we need. She truly cares about each member of Cbcb, which I was lucky to be a part of.

Outside UMD, I was lucky to have great teachers and mentors; without their guidance, I

would not have been able to pursue my degree. Professor Walid Aref welcomed me into his

research group and helped me publish my first paper and apply for PhD programs; his guidance

continued throughout my PhD and job search. Great teachers are generally very rare, but their

effect on your life remains forever. I was fortunate to meet one of the best teachers. Dr. Osama

Mahrram was the first person to ever tell me I should be a doctor (I turned out to be a different

type of doctor); he believed in me and saw what I was capable of before anyone else. I am forever

grateful for everything they both did for me.

I would not have reached this point without the love and support of my friends and family

in the US and Egypt. Yasmine Eshera, Heba ElTorky, and Amira Shata, you girls made living

in the US bearable; you made me part of your family. I always felt that I have a family here.

v

Yasmine Eshera, I won’t forget your annual thanksgiving dinner, your fantastic pumpkin pie, and

our long conversations about God knows what. Heba ElTorky, I am so lucky we accidentally

discovered that we live in the same area; it amazes me how total strangers can become more than

sisters in no time. Amira Shata, your daughter owned my heart the moment I saw her, and you

became my second mother. I am very thankful to have had you as part of my journey.

At times of uncertainty, the presents of people who support you is essential. I had the

best support system anyone could ever wish for. Mona Mostafa, Yasmin Tayel, and Nourhan

El-boudy cheered me every step of the way. Mona Mostafa has been my guardian angel since the

day I met her; she believed in me more than I believed in myself; she listened to me for hours

complaining every step of the way; she was always very invested in my PhD, she made me feel

that this was her journey too. Yasmin Tayel is the best friend anyone can ever wish for; Yasmin

listened to all my research ideas and helped me think through different problems; whenever I am

stuck in anything, I just call her, and I know that she will help me figure it out. Nourhan El-boudy

always reminded me of who I am, how far I have gotten, and who I want to be; she makes me feel

invincible. Girls, I couldn’t have gotten my degree without you, nor can I ever do life without

you; your presence in my life is priceless. I am most thankful for the person who stuck by me

for the last 20 years Salma El Saharty. Salma was my backbone throughout my life, not just my

PhD. She flew three times to the USA just to check on me and ensure I was okay. She had my

back every step of the way; I would not have had the courage to travel, live abroad and get my

degree without knowing she was just one call away. I thank God for you every day.

Finally, I want to thank my immediate family. Alaa, Ahmed, Sabha, Anna, Dina, Mom,

and Dad. None of this would have been possible without you. Alaa is not just my sister and my

best friend; she is the one I rely on the most in this world, the one I can count on always and

vi

forever. I know I will never be alone because I will always have you; you are the best gift God

gave me. Dr. Loulou, I love you endlessly. My mother, Aida Guemei, is the strongest person I

have ever met. She is unstoppable; I grew up looking up to her and wondering if I would ever

be half the woman she is. She provided me with endless support, encouragement, and love. She

sacrificed so much for her family. Mommy, there are no words to express my gratitude towards

you. Abdelsalam Ismail is not just my father; he is my hero. He taught me everything in life, how

to love, be kind, genuine, and human. He made me believe that there is nothing in this world I can

not accomplish, and no matter what path I take, he will always be there for me. His unconditional

love and support got me through all the hardships I faced. Babbya, no matter what title I receive,

being your daughter will always be my highest title. I am glad you are my dad.

—Thank you all.

vii

Contents

Dedication ii

Acknowledgements iii

Table of Contents viii

List of Tables xi

List of Figures xii

Chapter 1: Introduction 1
1.1 Motivation . 1
1.2 Thesis Contributions . 3

1.2.1 Evaluating the Interpretability of Deep Learning for Time Series 3
1.2.2 Improving the Interpretability of Deep Learning for Time Series 5

Chapter 2: Background and Related Work 12
2.1 Neural Interpretability . 12

2.1.1 Relevance Detection Methods . 13
2.1.2 Evaluation of Feature Relevance . 18
2.1.3 Network Visualization . 18

2.2 Time Series . 19
2.2.1 Neural Architectures for Time Series 19
2.2.2 Neural Interpretability for Time Series 22

I Evaluating the Interpretability of Deep Learning for Time Series 23

Chapter 3: Evaluating Time Series Interpretability 24
3.1 Benchmarking Interpretability in Time Series Predictions 24

3.1.1 Problem Definition . 25
3.1.2 Saliency Methods . 26
3.1.3 Neural Net Architectures . 26
3.1.4 Dataset Design . 26
3.1.5 Feature Importance Identification . 29
3.1.6 Evaluation Metrics . 30

3.2 Performance of Different Neural Architecture 32

viii

3.2.1 Recurrent Neural Network: Vanishing Saliency 33
3.2.2 Saliency Methods Fail in Time Series Data 36

3.3 Conclusion . 41

II Improving the Interpretability of Deep Learning for Time Series 43

Chapter 4: Improvement by Architecture: Input-Cell Attention 44
4.1 Input-Cell Attention . 44
4.2 Experiments . 47

4.2.1 Synthetic Data for Evaluation . 47
4.2.2 MNIST as a Time Series . 52
4.2.3 Human Connectome Project fMRI Data 53

4.3 Related Work . 56
4.4 Conclusion . 56

Chapter 5: Improvement by Architecture: Interpretable Mixture of Experts 57
5.1 IME Framework . 58

5.1.1 Learning from past errors . 61
5.1.2 Training objectives . 62
5.1.3 Training procedure . 65
5.1.4 Interpretability capabilities . 66
5.1.5 Accuracy-interpretability trade-off with H-IME 67

5.2 Tabular Data Performance . 67
5.3 Time Series Data Performance . 68
5.4 Interpretability Results . 70
5.5 Performance Analyses . 76
5.6 Related Work . 78
5.7 Conclusion . 78

Chapter 6: Improvement by Posthoc Procedures: Temporal Saliency Rescaling 80
6.1 Temporal Saliency Rescaling . 80

6.1.1 Temporal Saliency Rescaling Optimizations 82
6.2 Experiments . 84

6.2.1 Saliency Maps Quality . 84
6.2.2 Saliency Methods versus Random Ranking 88
6.2.3 Saliency Maps for Images versus Multivariate Time Series 99

6.3 Conclusion . 100

Chapter 7: Improvement by Regularization: Saliency Guided Training 101
7.1 Notation . 102
7.2 Saliency Guided Training Procedure . 103
7.3 Experiments . 106

7.3.1 Saliency Guided Training for Images . 106
7.3.2 Saliency Guided Training for Language 113

ix

7.3.3 Saliency Guided Training for Time Series 116
7.4 Related Work . 123
7.5 Conclusion . 124

III Conclusion and Future Research 126

Chapter 8: Conclusions and Future Research 127
8.1 Summary of Contributions . 127
8.2 Technical Limitations & Open Questions . 128
8.3 Future Research Directions . 130

8.3.1 Deep Learning for Time Series Forecasting 131
8.3.2 Deep Learning Interpretability . 132

8.4 Final Thoughts . 133

Bibliography 134

x

List of Tables

3.1 Precision and recall confusion matrix. 31

4.1 Saliency performance of different LSTM variations. 49

5.1 IME performance on tabular data. 69
5.2 IME preformance on time series datasets. 71
5.3 IME Ablation study. 78

6.1 Complexity analysis of different TSR variations. 84
6.2 Model accuracy drop, precision and recall on synthetic datasets for different

saliency methods with and without TSR . 88

7.1 Image experiments details . 107
7.2 Area under accuracy drop curve on MNIST for different training procedures . . . 113
7.3 Overview of datasets in the ERASER benchmark. 115
7.4 Performance of saliency guided training on language benchmark ERASER. . . . 116
7.5 Synthetic time series dataset details. 119
7.6 Prefromance of saliency guided training on time series benchmark. 120
7.7 Difference in weighted AUP and AUR for (LSTM, saliency method) pairs. 121
7.8 Difference in weighted AUP and AUR for (LSTM with Input-Cell Attention, saliency

method) pairs. 121
7.9 Difference in weighted AUP and AUR for (TCN, saliency method) pairs. 122
7.10 Difference in weighted AUP and AUR for (Transformers, saliency method) pairs. 122

xi

List of Figures

1.1 Example dataset generated by different time series processes. 5
1.2 LSTM with input-cell attention address vanishing saliency on real world data. . . 6
1.3 The performance of saliency guided training on different image datasets. 10
1.4 Time series saliency maps for different gradient based saliency methods with and

without saliency guided training. 11

3.1 Evaluation datasets used for benchmarking saliency methods. 25
3.2 The saliency distribution of ranked features. 30
3.3 LSTM vanishing saliency on synthetic data. 34
3.4 Saliency maps produced by different (neural architecture, saliency method) pairs . 37
3.5 Effect of masking salient features by different methods against a random baseline. 38
3.6 Precision and Recall distribution box plots. 39
3.7 Saliency maps for images versus multivariate time series. 41

4.1 LSTM with input-cell attention. 45
4.2 Synthetic datasets where important features are located at different timesteps. . . 47
4.3 Synthetic dataset for moving boxes experiment. 50
4.4 The effect of changing the location of important features in time for different

models. 51
4.5 Partial interpretability experiments. 51
4.6 Saliency maps for time series MNIST. 52
4.7 HCP On-Task Off-Task Experiment. 55

5.1 Interpretable Mixture of Experts (IME) framework. 59
5.2 IME Architecture. 60
5.3 IME Partial interpretability results. 69
5.4 IME Expert interpretability. 72
5.5 IME sample-wise interpretability. 73
5.6 IME Identifies different data distribution modes. 75
5.7 IME Identifies regime changes. 75
5.8 Effect of increasing expert capacity in IME. 76
5.9 Effect of increasing number of experts in IME. 77

6.1 Saliency maps produced by different (neural architecture, saliency methods) pairs
without TSR. 81

6.2 Saliency maps produced by different (neural architecture, saliency methods) pairs
with TSR. 81

xii

6.3 Time series MNIST saliency maps produced by different (neural architecture,
saliency methods) pairs without TSR. 85

6.4 Time series MNIST saliency maps produced by different (neural architecture,
saliency methods) pairs with TSR. 86

6.5 Synthetic datasets saliency maps produced by different (neural architecture, saliency
methods) pairs with and without TSR. 87

6.6 Accuracy drop, precision and recall for Middle box datasets 89
6.7 Accuracy drop, precision and recall for Small Middle box datasets 90
6.8 Accuracy drop, precision and recall for Moving Middle box datasets 91
6.9 Accuracy drop, precision and recall for Small Moving Middle box datasets . . . 92
6.10 Accuracy drop, precision and recall for Rare Feature datasets 93
6.11 Accuracy drop, precision and recall for Moving Rare Feature datasets 94
6.12 Accuracy drop, precision and recall for Rare Time datasets 95
6.13 Accuracy drop, precision and recall for Moving Rare Time datasets 96
6.14 Accuracy drop, precision and recall for Positional Feature datasets 97
6.15 Accuracy drop, precision and recall for Positional Time datasets 98
6.16 Saliency maps for images versus multivariate time series with and without TSR. . 99

7.1 Saliency maps with and without saliency guided training. 103
7.2 Model accuracy drop when removing features with high saliency using traditional

and saliency guided training. 108
7.3 Accuracy drop in different modification-based evaluation masking approaches. . . 108
7.4 Saliency maps and saliency distribution for Traditional an Saliency Guided Train-

ing on MNIST . 110
7.5 Saliency maps and saliency distribution for Traditional an Saliency Guided Train-

ing on CIFAR10 . 111
7.6 Saliency maps and saliency distribution for Traditional an Saliency Guided Train-

ing on BIRD . 112
7.7 Saliency maps produced for (TCN, saliency method) pairs. 117
7.8 Saliency maps produced for (LSTM with Input-Cell Attention, saliency method)

pairs. 118
7.9 Saliency maps produced for (Transformers, saliency method) pairs. 118
7.10 Saliency guided training reduces vanishing saliency in RNNs. 124

xiii

Chapter 1: Introduction

1.1 Motivation

Deep Neural Networks (DNNs) [1] are successfully applied to a variety of tasks in different

domains, often achieving accuracy that was not possible with conventional statistical analysis

methods. Although time series plays an essential role in our daily life, the application of deep

learning to time series analysis [2] is very limited when compared to natural language processing

and computer vision. One reason for this is that practitioners dealing with time series data are

more comfortable using simple interpretable models that can be easily understood.

The problem of interpretability for DNNs has been tackled in various ways [3, 4, 5, 6,

7, 8, 9, 10, 11, 12, 13]. A common approach for understanding model decisions is identifying

features in the input that had high influence on the final classification decision [4, 7, 12, 14, 15,

16, 17]. Such techniques, known as saliency methods, often use gradient calculations to assign

an importance score to individual features, reflecting their influences on the model prediction.

Saliency methods produce saliency maps that aim to highlight meaningful input features in model

predictions to humans. The majority of this work has focused on vision and language tasks and

its application to time series data is limited. We argue that fundamental properties of time series

data and its analysis make the use of interpretability methods difficult.

1

What makes times series data different? First, unlike vision tasks, interpretability in time

series data requires methods that can capture changes in feature importance over time. Subse-

quently, interpretation by visual (overlaying relevance maps over images) or textual (by high-

lighting relevant words) perception is straightforward; such perception mechanisms are not read-

ily available for time series tasks. In addition, features in time series data have independent

meanings; for example, in a patient’s electronic health records (EHR), each feature can be a diag-

nosis, a medication, or a procedure; whereas in imaging (where features are pixels) or text, where

features are often dimensions of a learned word embedding.

Consider the following task classification problem from neuroimaging [18]: a subject per-

forms a particular task (e.g., a memory or other cognitive task) while scanned in an fMRI ma-

chine. After preprocessing the raw image signal, the data will consist of a multivariate time

series, with each feature measuring activity in a specific brain region. To characterize brain re-

gion activity pertinent to the task being performed, a saliency method should be able to capture

changes in feature importance (corresponding to brain regions) over time. In contrast, to similar

text classification problems [19], where the goal of saliency methods is to give a relevance score

to each word in the sequence, whereas the saliency of individual features in each word embed-

ding is not important or vision tasks where by simply looking at saliency map one can decide if

the explanation produced is meaningful.

This thesis aims to (a) Understand the applicability of existing methods to time series data,

where detecting importance of specific features at specific time intervals is necessary. (b) Iden-

tify limitations of interpretability methods when applied to time series tasks. (c) Address these

limitations and improve DNNs interpretability for time series.

2

1.2 Thesis Contributions

In this section, we discuss the structure of this thesis, and the contributions of each chapter. This

thesis is divided into three major parts. First, Part I systematically evaluates time series inter-

pretability through a benchmark, allowing us to identify limitations in existing saliency methods

and neural architectures. Then, in Part II we address these limitations by proposing new architec-

tures, saliency methods, and neural training procedures that significantly improve time series in-

terpretability. Finally, we conclude with Part III, including, closing thoughts and open problems.

1.2.1 Evaluating the Interpretability of Deep Learning for Time Series

As opposed to understanding the prediction performance of a model, measuring and understand-

ing the performance of interpretability methods is challenging [20, 21, 22, 23, 24] since there

is no ground truth to use for such comparisons. For instance, while one could identify sets of

informative features for a specific task a priori, models may not necessarily have to draw infor-

mation from these features to make accurate predictions. In multivariate time series data, these

challenges are even more profound since we cannot rely on human perception as one would

when visualizing interpretations by overlaying saliency maps over images or when highlighting

relevant words in a sentence.

In Chapter 3, we compare the performance of various saliency-based interpretability meth-

ods across diverse neural architectures in a benchmark of synthetic time series data. Our bench-

mark is designed to examine different aspects that emerge in typical time series datasets. Figure

1.1 shows an example of synthetic time series data. Since informative features are known (the red

boxes in Figure 1.1), we can empirically evaluate the performance of saliency methods for detect-

3

ing feature importance over time using both precision (i.e., whether identified important features

contain meaningful signals) and recall (i.e., the number of features with signal identified as impor-

tant). Based on our extensive experiments, we report the following observations: (i) For RNNs;

we show theoretically and empirically that saliency vanishes over time and is therefore incapable

of reliably detecting important features at arbitrary time intervals, (ii) feature importance estima-

tors that produce high-quality saliency maps in images often fail to provide similar high-quality

interpretation in time series data, (iii) saliency methods tend to fail to distinguish important vs.

non-important features in a given timestep; if a feature in a given time is assigned to high saliency,

then almost all other features in that timestep tend to have high saliency regardless of their actual

values, (iv) model architectures have significant effects on the quality of saliency maps.

Contributions

• We compare and quantify the performance of the interpretability of (architectures,
saliency method) pairs for time series data in a systematic benchmark. The bench-
mark is designed to test the ability of such techniques to capture feature importance
in various temporal-spatial datasets that emerge in typical time series data.

• We find that network architecture strongly affects saliency quality over the choice of
the saliency method.

• We find that recurrent architectures are difficult to interpret regardless of the inter-
pretation method, saliency vanishes, biasing feature importance towards last the few
timesteps in saliency maps.

• We find that for non-recurrent architectures, saliency methods seem to highlight the
correct timestep but fail to identify informative features in a given time.

Coauthors and relevant publications: Ismail AA, Gunady M, Corrada Bravo H, Feizi S.
Benchmarking deep learning interpretability in time series predictions. Advances in Neu-
ral Information Processing Systems [25]. Ismail AA, Gunady M, Pessoa L, Corrada Bravo
H, Feizi S. Input-cell attention reduces vanishing saliency of recurrent neural networks.
Advances in Neural Information Processing Systems [26].

4

Figure 1.1: Synthetic Middle box time series dataset generated by different time series processes.
The first row shows how each feature changes over time when independently sampled from time
series processes. The bottom row corresponds to the heatmap of each sample where red represents
informative features.

1.2.2 Improving the Interpretability of Deep Learning for Time Series

In Part II of this thesis, we explore multiple ways to improve time series interpretability. We

sought to achieve these with three general strategies: (a) modifying the neural architectures used

in training, (b) adapting posthoc saliency methods to time series, (c) adding a regularization to

the training procedure that promotes feature sparsity, resulting in a less noisy gradient.

1.2.2.1 Architectures

In Chapter 3, we showed that the network architecture has the largest effect on saliency map qual-

ity. So one obvious way to improve the quality of explanations is by improving the neural archi-

tecture. Chapter 4 introduces a novel RNN cell structure input-cell attention that improves gra-

dient based saliency maps produced by RNNs. Chapter 5 introduces an inherently-interpretable

framework based on the mixture of expert models interpretable mixture of experts, which pro-

vides interpretability for structured data while preserving accuracy.

5

Input-Cell Attention introduced in Chapter 4 addresses the RNN vanishing saliency problem.

At each timestep, instead of only looking at the current input vector, input-cell attention uses a

fixed-size matrix embedding, each row of the matrix attending to different inputs from current or

previous timesteps. Using the time series benchmark described in Chapter 3, we show that the

saliency map produced by the input-cell attention RNN can faithfully detect important features

regardless of their occurrence in time. We also apply the input-cell attention RNN on a neuro-

science task analyzing functional Magnetic Resonance Imaging (fMRI) data for human subjects

performing various tasks. We use saliency to characterize brain regions (input features) for which

activity is important to distinguish between tasks. In Figure 1.2, we show that standard RNN ar-

chitectures can only detect important brain regions in the last few timesteps of the fMRI data.

In contrast, the input-cell attention model can detect important brain region activity across time

without later timestep biases.

timestep = 0 timestep = 20 timestep = 40

(a) LSTM
timestep = 0 timestep = 20 timestep = 40

(b) LSTM with input-cell attention

Figure 1.2: A subject performs a task while scanned by an fMRI machine. Images are processed
and represented as a multivariate time series, with each feature corresponding to a brain region.
RNNs are used to classify time series based on the task performed by the subject. Figure (a)
shows the saliency map produced by LSTM. Importance detected at later timesteps (40) is signif-
icantly higher then that detected in earlier timesteps. Figure (b) shows the saliency map produced
by LSTM with input-cell attention. We observe no time interval bias in the detected importance.

6

Contributions

• We propose and evaluate a modification for RNNs (”input-cell attention”) that ap-
plies an attention mechanism to the input of an RNN cell allowing the RNN to ”at-
tend” to timesteps that it finds important.

• We apply input-cell attention to an openly available fMRI dataset from the Human
Connectome Project (HCP) [27], in a task classification setting and show that by
using input-cell attention we are able to capture changes in the importance of brain
activity across time in different brain regions as subjects perform a variety of tasks.

Coauthors and relevant publications: Ismail AA, Gunady M, Pessoa L, Corrada Bravo
H, Feizi S. Input-cell attention reduces vanishing saliency of recurrent neural networks.
Advances in Neural Information Processing Systems [26].

Interpretable Mixture of Experts (IME) introduced in Chapter 5 is a framework for inherently-

interpretable modeling. IME combines an assignment module and multiple interpretable models

in a mixture of experts framework, where each sample is assigned to a single interpretable ex-

pert. Resulting in an inherently-interpretable architecture so explanations produced by IME are

the exact descriptions of how the prediction is computed since the explanation for each sample is

that of the interpretable expert. In addition to constituting a standalone inherently-interpretable

architecture, an additional IME capability is that it can be integrated with existing DNNs to offer

interpretability to a subset of samples while maintaining the accuracy of the DNNs. Experiments

on various structured datasets demonstrate that IME is more accurate than a single interpretable

model and performs comparably to existing state-of-the-art deep learning models in terms of

accuracy while providing faithful explanations.

7

Contributions

• IME constitutes a new class of interpretable models that can replace or be integrated
with DNNs to achieve accuracy on par or better than state-of-art models.

• IME offers multiple framework options, each operating at a different level of
interpretability, giving the user flexibility depending on the needs of a particular
application.

• Explanations produced by IME are the exact description of predictions with an
easy-to-digest concise formula, enabling its use in high-stakes applications.

• IME can be integrated with DNNs where a DNN acts as an expert, offering
interpretability to a subset of samples while maintaining accuracy. This mechanism
can help identify “difficult” samples (i.e., those that require a DNN to make an
accurate prediction) and “easy” samples (i.e., those that can be predicted by a simple
interpretable model).

Coauthors and relevant publications: Ismail AA, Arik SÖ, Yoon J, Taly A, Feizi S,
Pfister T. Interpretable Mixture of Experts for Structured Data. [28].

1.2.2.2 Saliency Methods

In Chapter 6, we tackle the time series interpretability problem by improving existing posthoc

saliency methods. We introduce a two-step temporal saliency rescaling (TSR) approach. Inspired

by the observation made in Chapter 3, saliency methods can detect informative timesteps but are

unable to differentiate between informative and non-informative features within a given timestep;

TSR first calculates the importance of each timestep before calculating the importance of each

feature at a timestep. As a result, saliency maps produced by TSR are significantly better than

maps produced by the original saliency method.

8

Contributions

• We propose Temporal Saliency Rescaling (TSR) approach that can be used on top
of any existing saliency method adapting it to time series data.

• We show that TSR can significantly improve time series interpretability on saliency
maps and across multiple benchmark performance metrics.

• We propose different optimized versions of TSR.

Coauthors and relevant publications: Ismail AA, Gunady M, Corrada Bravo H, Feizi
S. Benchmarking deep learning interpretability in time series predictions. Advances in
Neural Information Processing Systems [25].

1.2.2.3 Training

Most existing saliency methods use backpropagation on a modified gradient function to generate

saliency maps. Thus, noisy gradients can result in unfaithful feature attributions. In Chapter

7, we tackle this issue and introduce a saliency guided training procedure for neural networks

to reduce noisy gradients used in predictions while retaining the predictive performance of the

model. Saliency guided training procedure iteratively masks features with small and potentially

noisy gradients while maximizing the similarity of model outputs for both masked and unmasked

inputs. Interestingly, we find that saliency guided training improves model interpretability across

various domains while preserving its predictive performance.

Figure 1.3 shows the effect of applying saliency guided training to image classification

tasks. In Figure 1.3 (A) and (B), saliency maps produced by a model trained with saliency

guided training were more precise than that trained traditionally. Most saliency maps produced

by saliency guided training highlight the object itself rather than the background across different

datasets. The distributions of gradient values per sample in Figure 1.3 (A) show that most features

9

have small gradient values (near zero) with a large separation of high salient features away from

zero for the saliency guided training. Similarly, in Figure 1.3 (C), we find that over the entire

dataset, gradient values produced by the saliency guided training tend to be concentrated around

zero with a large separation between the mean and outliers (highly salient features), indicating

the model’s ability to differentiate between informative and non-informative features.

Figure 1.3: (A) Comparison between different training methods on MNIST along with distribu-
tions of gradient values in each sample. (B) Saliency maps for CIFAR10 and BIRD datasets using
regular and saliency guided training. (C) Distribution of gradient means across examples. Maps
produced by saliency guided training are more precise: most features have gradient values around
zero with large gaps between mean and outliers. Here gradients around zero indicate uninforma-
tive features, while very large and very small gradients indicate informative features. Saliency
guided training helps reduce noisy fluctuating gradients in between as shown in the box plots.

For time series, we found that saliency guided training improves interpretability across

multiple benchmark performance metrics. In addition, saliency guided training improves the

saliency maps produced on MNIST when treated as a multivariate time series where one image

axis is time. Figure 1.4 shows the saliency maps produced by different (neural architecture,

10

saliency method) pairs when different training procedures are used; there is a visible improvement

in saliency quality across various networks when using saliency guided training.

Figure 1.4: Saliency maps produced for (neural architecture, saliency method) pairs. Traditional
training was used for networks in the 1st row, while saliency guided training was used for the
2nd row. Grad, DL, GS and DLS stand for Gradient, DeepLift, Gradient SHAP and DeepSHAP,
respectively. There is an improvement in the quality of saliency maps when saliency guided
training is used.

Contributions

• We propose saliency guided training procedure for neural networks to reduce noisy
gradients used in predictions while retaining the predictive performance of the model
resulting in better neural interpretations.

• We apply the saliency guided training procedure to various synthetic and real data
sets from computer vision, natural language processing, and time series across di-
verse neural architecture. Through qualitative and quantitative evaluations, we show
that saliency guided training procedure significantly improves model interpretability
across various domains while preserving its predictive performance.

Coauthors and relevant publications: Ismail AA, Corrada Bravo H, Feizi S. Improving
Deep Learning Interpretability by Saliency Guided Training. Advances in Neural Infor-
mation Processing Systems [29].

11

Chapter 2: Background and Related Work

This chapter provides an essential background that we build on in the following chapters. We

start by giving an overview of different types of neural network interpretability. We then shift to

time series, reviewing neural network architectures and models used for time series. Finally, we

review related work on time series interpretability.

2.1 Neural Interpretability

As the use of machine learning models grows in various fields [30, 31], the need for reliable

model explanations is crucial [32, 33]. This need resulted in a diverse area of research known as

‘Interpretability,’ with a common goal of understanding how a network makes a prediction. We

can divide interpretability research into three categories: (a) Relevance detection methods these

are interpretability methods used to identify input features or concepts used by a network. (b)

Evaluation of feature relevance this area focus on evaluating interpretability methods by mea-

suring their reliability and faithfulness. (c) Network visualization this area aims to understand

the network by visualizing its inner structure. We review relevant details about each category in

the following sections.

12

2.1.1 Relevance Detection Methods

Interpretability methods can be grouped regarding when these methods are applicable: before

(pre-model), during (in-model), or after (post-model) building the model [34, 35].

2.1.1.1 Pre-model

Pre-model interpretability techniques are independent of the model, they aim to get a better un-

derstanding of the data itself this can be done by data visualization method, including principle

component analysis (PCA) [36] and t-SNE [37], and clustering methods, such as k-means [38]

and approaches that identify “informative” examples in the training data [39].

2.1.1.2 In-model

In-model interpretability includes models that are inherently interpretable, self-explaining net-

works, and attention-based networks. However, the use of attention values in neural attention

models like Transformer [40] as model explanation is debatable [41, 42, 43].

Inherently interpretable models include classical machine learning methods (such as support

vector machines (SVM) [44], linear regression, logistic regression, and decision trees) and DNNs

that are interpretable by design. Such models aim to provide high accuracy while maintaining

interpretability. N-Beats [45] was created for univariate time series with a residual stack of MLP

layers constraining to trend and seasonality functional forms to generate interpretable stacks. To

make DNNs more interpretable, soft decision trees were proposed [46, 47, 48]. Shulman and

Wolf [49] creates a per-user decision tree for tabular data recommendation systems. Wu et al.

13

[50] trains deep time series models so their class-probability predictions have high accuracy while

being closely modeled by decision trees with few nodes. NAM [51] uses a DNN per feature; it

does not consider feature-feature interactions and thus is not suitable for high-dimensional data.

To address this, NODE-GAM [52] was introduced, modifying NODE [53] into a generalized

additive model.

Self-explaining networks are explanation-producing systems with architectures that are de-

signed to simplify interpretation of their own behavior. Self Explaining Neural Networks (SENN)

[54] proposes a generalized linear model where coefficients are a function of input; SENN suffers

from a tradeoff between interpretability and accuracy. To address SENN’s shortcomings, FLINT

[55] learns interpretations by designing the interpreter as a small-size dictionary of high level

attribute functions whose outputs are feed a linear classifier. However, it is challenging to train

FLINT on large datasets. INVASE [56] and FRESH [57] offer local explanations by preforming

selection over raw features.

2.1.1.3 Post-model

Posthoc (post-model) interpretability refers to explanation methods applied after model train-

ing. There are different posthoc methods, such as (a) Feature-level explanations (also known

as saliency or attribution methods); such methods aim to identify the importance of the input

feature to the final model predictions. (b) Instance-based explanations, where one instance is

explained with another. (c) Concept-based explanations, where the network is explained with

a set of human-defined concepts. Below we describe some of the popular methods from each

group, more detailed explanation of different methods can be found in [58].

14

Feature-level explanations methods can be divided into (a) gradient-based methods, where

the attribution is computed by backpropagating through a modified gradient function; (b) perturbation-

based methods that perturb areas of the input and measure how much this changes the model

output; and (c) others like surrogate models.

• Gradient-based methods:

– Gradient (GRAD) [14] the gradient of the output with respect to input.

– Guided Backpropagation [5] computes the gradient of the target output with respect

to the input but only backpropagates non-negative gradients.

– Input×Gradient [59], computes relevance by taking the partial derivatives of the out-

put with respect to the input then multiplying them with the input itself.

– Integrated Gradients (IG) [15] uses the average gradient while input changes from a

non-informative reference point to input. The relevance will depend upon the choice

the reference point (which is often set to zero).

– SmoothGrad (SG) [12] computes the gradient n times adding Gaussian noiseN (0, σ2)

with standard deviation σ to the input at each time.

– LRP [6], uses the network weights and the neural activations created by the forward-

pass to propagate the output back through the network up until the input layer.

– DeepLIFT (DL) [7] a back-propagation based approach that defines a reference point

and compares the activation of each neuron to its reference activation; assigning rele-

vance according to the difference.

15

– Gradient SHAP (GS) [16] relevance is computed by adding Gaussian noise to each

input sample multiple times (similar to SmoothGrad), Gradient Shap selects a point

along the path between a reference point and input is, and computes the gradient of

outputs with respect to those selected points. The Shapley value is the expected value

of the gradients multiplied by the difference between input and reference point.

– Deep SHAP (DeepLIFT + Shapley values) (DLS) [16] Approximates the SHAP val-

ues using DeepLIFT; instead of a single reference point DeepLIFT takes a distribu-

tion of baselines computes the attribution for each input-baseline pair and averages

the resulting attributions per input example; Shapley equations are used to linearize

components such as max, softmax, products, divisions, etc..

• Perturbation-based:

– Feature Occlusion (FO) [4] computes attribution as the difference in output after

replacing each contiguous region with a given baseline. For time series we consid-

ered continuous regions as features with in same timestep or multiple continuous

timesteps.

– Feature Ablation (FA) [60] involves replacing each input feature with a given base-

line, and computing the difference in output. Input features can also be grouped and

ablated together rather than individually.

– Feature permutation (FP) [58] randomly permutes the feature values within a batch

and computes the change in output as a result of this modification. Similarly, to

feature ablation input features can also be grouped and ablated together rather than

individually.

16

• Others:

– LIME [61] fits a sparse linear model to approximate model predictions locally.

– Shapley Value Sampling (SVS) [62] Shapley value measure the contribution of each

input features by taking each permutation of the feature and adding them one-by-

one to a given baseline and measuring the difference in the output after adding the

features. Shapley Value Sampling is an approximation of Shapley values that involves

sampling some random permutations of the input features and average the marginal

contribution of features based the differences on these permutations.

– RISE [63] estimates importance empirically by probing the model with randomly

masked versions of the input image and obtaining the corresponding outputs

– Deep Taylor decomposition [8] views each neuron of a deep network as a function

that can be expanded and decomposed on its input variables.

Instance-based explanations including (a) influence functions [64] that identify training points

most responsible for a given prediction; (b) counterfactual explanations [65] that tell us how an

instance has to change to significantly change its prediction, note that adversarial examples [66]

are also considered counterfactuals but are used to flip the prediction rather than not explaining it.

Concept-based explanations provides an interpretation of a neural net’s internal state in terms

of human-friendly concepts. TCAV [67] that uses directional derivatives to quantify the degree

to which a user-defined concept is important to a classification result. Initially, concepts were

predefined by humans; more recent work [68, 69] tries to learn concepts directly from training

data without human interference.

17

2.1.2 Evaluation of Feature Relevance

It is challenging to evaluate whether an explanation of model behavior is reliable. There is no

ground truth. Also, it is unclear which of the numerous proposed interpretability methods that

estimate feature importance should be selected for a given task [20]. It was shown [70] that

saliency methods tend to disagree on feature importance, and there is no clear way for practition-

ers to identify which method is more reliable. This line of work aims to examine the reliability

of explanations produced by different interpretability methods.

One way to address this problem is by creating standardized benchmarks with interpretabil-

ity metrics [10, 20, 63, 71, 72] or debugging explanations [21, 22, 23, 73] by identifying test cases

where explanations fail. To evaluate interpretability methods on real-world datasets, modification-

based evaluation methods [10, 63, 74] were introduced. Modification-based evaluation involves:

applying the saliency method, ranking features according to the saliency values, recursively elim-

inating higher ranked features (masking or replacing them with meaningless values), and mea-

suring degradation to the trained model accuracy. However, it is debatable whether or not the

drop in accuracy is a result of removing the informative feature. Hooker et al. [20] suggests that

accuracy drop can be an adversarial effect of showing the model an out-of-distribution sample;

to address this, they propose retraining the model after feature elimination rather than re-scoring

the modified input at inference time.

2.1.3 Network Visualization

This line of research attempts to understand neural networks by visualizing the network’s hidden

states. Simonyan et al. [3], visualises image classification models learnt using deep convolu-

18

tional networks. Hasani et al. [75] ranks the contribution of individual cells to the final output to

help understand LSTM hidden state dynamics. LSTMVis [76] explains an individual cell’s func-

tionality by matching local hidden-state patterns to similar ones in larger networks. IMV-LSTM

[77], uses a mixture of attention mechanisms to summarize the contribution of specific features

to a hidden state. Karpathy et al. [78], uses character-level language models as an interpretable

testbed. Olah et al. [79], presents general user visual interfaces to explore model interpretation

measures from DNNs. Clark et al. [80], proposes a series of analysis methods for understanding

the attention mechanisms in pre-trained Transformer-based models.

2.2 Time Series

Due to the wide applications of time series data, various methods have been proposed specifi-

cally for time series, this ranges from (a) Statistical methods such as autoregressive (AR) [81],

ARMIA [82] and Exponential Smoothing [83]. (b) Classical machine learning models such as

support vector machines (SVM) [84, 85, 86] and linear regression. (c) Deep learning models

including recurrent architectures [77, 87, 88, 89, 90, 91], convolutional architectures [92, 93, 94]

and Transformers architectures [40, 95, 96]. In this section, we look into neural networks and

explanation methods designed specifically for time series data.

2.2.1 Neural Architectures for Time Series

We categorize time series research in deep learning based on neural architecture proposed by

each method.

19

Recurrent-based architectures: DeepAR [87] fuses traditional AR models with RNNs by

modeling a probabilistic distribution in an encoder-decoder fashion. Wen et al. [97], uses an

RNN as an encoder and Multi-layer Perceptrons (MLPs) as a decoder and conducts multi-horizon

forecasting in parallel. Deep State-Space Models [88] utilizes LSTMs to generate parameters of

a predefine linear state-space model with predictive distributions, Wang et al. [98] extended this

for multivariate time series data. IndRNN [99], proposes a new type of RNN where neurons

in the same layer are independent of each other and are connected across layers; this prevents

the gradient exploding and vanishing problems while allowing the network to learn long-term

dependencies. Che et al. [100], introduces GRU-D based on Gated Recurrent Unit (GRU) to

forecast time series with missing values. Ismail et al. [101], injects bias into LSTMs to improve

long horizon forecasting when forecasts are made for a large number of timesteps beyond the last

recorded observations. Guo et al. [77] creates an interpretable multi-variable LSTM by partition-

ing the hidden state such that each variable contributes uniquely to its own memory segment and

weights memory segments to determine variable contributions. RETAIN [90], trains two RNN

in a reverse time order to efficiently generate the appropriate attention variables while keeping

the representation learning part simple for interpretation, making the entire algorithm accurate

and interpretable. A dual-stage attention-based recurrent neural network (DA-RNN) [91] uses an

encoder with an input attention mechanism and a decoder with a temporal attention mechanism

to make forecasts. Fan et al. [102], uses a multi-modal attention mechanism with LSTM encoders

to construct context vectors for a bi-directional LSTM decoder.

Convolutional-based architectures: Temporal Convolutional Network (TCN) [93] combines

dilations and residual connections with the causal convolutions needed for autoregressive predic-

20

tion. Wavenet [92] uses stacked convolution layers to model the conditional probability distribu-

tion. Zheng et al. [103] proposes a multichannel deep convolution neural network that separates

multivariate time series into univariate ones to learn features individually. This contrasts to Zhao

et al. [104] where the multivariate time series is jointly trained in the CNN for feature extraction.

Some networks combine recurrent networks and convolutional networks to improve performance.

LSTNet [89] combines the strengths of convolutional and recurrent neural networks and an au-

toregressive component to extract short-term local dependency patterns among variables and dis-

cover long-term patterns for time series trends. Quasi Recurrent Neural Network (QRNN) [105]

alternates convolutional layers with a recurrent pooling operation that can be applied in parallel.

Transformer-based architectures Temporal Fusion Transformers [96], learns temporal rela-

tionships at different scales by utilizing recurrent layers for local processing and self-attention

layers for learning long-term dependencies. However, one main limitation of Transformer archi-

tectures, in general, is the quadratic computation of self-attention (O(T 2) where T is the length

of the input sequence); this limitation is more significant in long sequence forecasting problem.

Sparse Transformer [106], LogSparse Transformer [107] , and Longformer [108] use heuris-

tic method to reduce the complexity of self-attention to O(T log T). Linformer [109], shows

that self-attention matrix can be approximated by a low-rank matrix achievingO(T) complexity.

Compressive Transformer [110] compresses past memories for long-range sequence learning. In-

former [109] combines a ProbSparse self-attention mechanism with self-attention distillation to

reduce time complexity and memory usage; a generative style decoder is added to improve the

inference speed of long-sequence predictions.

21

2.2.2 Neural Interpretability for Time Series

Explanation methods for time series FIT [111] defines the importance of an observation based

on its contribution to the distributional shift under a KL-divergence that contrasts the predictive

distribution. While WinIT [112], quantifies the shift in predictive distribution over multiple in-

stances in a windowed setting. dCAM [113] highlights both the temporal and dimensional dis-

criminant information in CNN-based forecasting models. TimeSHAP [114] extends KernelSHAP

to the sequential domain for recurrent networks. PERT [115] proposes a perturbation-based ap-

proach for generating saliency maps for time series. Tonekaboni et al. [116] and Lang et al. [117]

use counterfactual explanations to interpret time series.

Inherently-interpretable architectures for time series N-BEATS [45] explains the time se-

ries trend and seasonality by creating a residual stack of MLP layers these functional forms. SEIR

[118] uses interpretable encoders to incorporate covariates into a domain-specific encoding, un-

derstandable by experts.

22

Part I

Evaluating the Interpretability of Deep Learning for Time Series

23

Chapter 3: Evaluating Time Series Interpretability

In this chapter, we compare the performance of different interpretability methods, both perturbation-

based and gradient-based methods, across diverse neural architectures including Recurrent Neu-

ral Network, Temporal Convolutional Networks, and Transformers when applied to the classifica-

tion of multivariate time series. We quantify the performance of every (architectures, estimator)

pair for time series data in a systematic way through a benchmark.

3.1 Benchmarking Interpretability in Time Series Predictions

To benchmark time series interpretability, we design and generate multiple synthetic datasets to

capture different temporal-spatial aspects (e.g., Figure 3.1). Saliency methods must be able to

distinguish important and non-important features at a given time, and capture changes in the im-

portance of features over time. The positions of informative features in our synthetic datasets are

known a priori (colored boxes in Figure 3.1); however, the model might not need all informative

features to make a prediction. To identify features needed by the model, we progressively mask

the features identified as important by each interpretability method and measure the accuracy

degradation of the trained model. We then calculate the precision and recall for (architectures,

estimator) pairs at different masks by comparing them to the known set of informative features.

24

Figure 3.1: Different evaluation datasets used for benchmarking saliency methods. Some datasets
have multiple variations shown as sub-levels. N/S: normal and small shapes, T/F: temporal and
feature positions, M: moving shape. All datasets are trained for binary classification, except
MNIST. Examples are shown above each dataset, where dark red/blue shapes represent informa-
tive features.

3.1.1 Problem Definition

We study a time series classification problem where all timesteps contribute to making the final

output; labels are available after the last timestep. In this setting, a network takes multivariate

time series input X = [x1, . . . , xT] ∈ RN×T , where T is the number of timesteps and N is

the number of features. Let xi,t be the input feature i at time t. Similarly, let X:,t ∈ RN and

Xi,: ∈ RT be the feature vector at time t, and the time vector for feature i, respectively. The

network produces an output S(X) = [S1(X), ..., SC(X)], where C is the total number of classes

(i.e. outputs). Given a target class c, the saliency method finds the relevance R(X) ∈ RN×T

which assigns relevance scores Ri,t(X) for input feature i at time t.

25

3.1.2 Saliency Methods

We compare popular backpropagation-based and perturbation based post-hoc saliency methods;

each method provides feature importance, or relevance, at a given timestep to each input feature.

All methods are compared with random assignment as a baseline control.

In this benchmark, the following saliency methods† are included: Gradient-based: Gradi-

ent (GRAD) [14], Integrated Gradients (IG) [15], SmoothGrad (SG) [12], DeepLIFT (DL), Gra-

dient SHAP (GS) [16] and Deep SHAP (DeepLIFT + Shapley values) (DLS) [16]. Perturbation-

based: Feature Occlusion (FO) [4], Feature Ablation (FA) [60], and Feature permutation (FP)

[58]. Other methods: Shapley Value Sampling (SVS) [62]. Details of different methods is

available in Chapter 2.

3.1.3 Neural Net Architectures

In this benchmark, we consider 3 main neural architectures groups; Recurrent networks, Con-

volution neural networks (CNN) and Transformer. For each group we investigate a subset of

models that are commonly used for time series data. For Recurrent models we examined LSTM

[119]. For CNN, Temporal Convolutional Network (TCN) [92, 93, 94] a CNN that handles

long sequence time series. Finally, we consider the original Transformers [40] implementation.

3.1.4 Dataset Design

Since evaluating interpretability through saliency maps in multivariate time series datasets is

nontrivial, we design multiple synthetic datasets where we can control and examine different

†Captum implementation of different methods was used.

26

https://captum.ai/

design aspects that emerge in typical time series datasets. We consider how the discriminating

signal is distributed over both time and feature axes, reflecting the importance of time and feature

dimensions separately. We also examine how the signal is distributed between classes: difference

in value, position, or shape. Additionally, we modify the classification difficulty by decreasing the

number of informative features (reducing feature redundancy), i.e., small box datasets. Different

dataset combinations are shown in Figure 3.1. The specific features and the time intervals (dark

red/blue areas) that are considered informative is varied between datasets to capture different

scenarios of how features vary over time. As shown in Figure 3.1, we consider the following

sub-levels:

• Shape Normal/Small: We modify the classification difficulty by decreasing the number of

informative features. For Middle box and Moving box datasets we consider two scenarios:

Normal shape where more than 35% of overall features are informative. Small shape less

then 10% of overall features are informative.

• Signal Normal/Moving: The location of the importance box differs in each sample.

• Positional Temporal/Feature: The classification does not depend on the value of informa-

tive signal µ, rather the position of informative features. Temporal position each class has

a constant temporal position; however, the informative features in the informative temporal

window change in between samples. Feature position each class has a constant group of

features that are informative; however, the time at which these groups are informative is

different between samples.

• Rare Time/Feature: Mimic anomalies in time series variables, identification of such de-

viations is important in anomaly detection tasks. Rare Time Most features in a small

27

temporal window are informative; this can be static or moving, i.e., N/M. Rare Feature a

small group features are informative in most timesteps. Note that in both rare cases, less

than 5% of overall features are informative.

Each synthetic dataset is generated by seven different processes as shown in Figure 1.1. Data

generation and time sampling was done in an non-uniform manner using python TimeSynth*

package. The base time series were generation by the following processes note that εt ∼ N (0, 1)

• Gaussian noise with zero mean and unit variance.

Xt = εt

• Independent sequences sampled from a harmonic function. A sinusoidal wave was used
with f = 2.

X(t) = sin(2πft) + εt

• Independent sequences sampled from a pseudo period function, where, At ∼ N (0, 0.5)

and ft ∼ N (2, 0.01)

X(t) = At sin(2πftt) + εt

• Independent sequences of an autoregressive time series process, where, p = 1 and φ = 0.9

Xt =

p∑
i=1

φiXt−i + εt

• Independent sequences of a continuous autoregressive time series process, where, φ = 0.9

and σ = 0.1.
Xt = φXt−1 + σ(1− φ)2 ∗ ε+ εt

• Independent sequences of non–linear autoregressive moving average (NARMA) time se-
ries, where, the equation is given below, where n = 10 and U ∼ U(0, 0.5) is a uniform
distribution.

Xt = 0.3Xt−1 + 0.05Xt−1

n−1∑
i=0

Xt−i + 1.5U (t− (n− 1)) ∗ U(t) + 0.1 + εt

*https://github.com/TimeSynth/TimeSynth

28

• Independent sequences sampled according to a Gaussian Process mixture model with se-
lected covariance function [120].

Informative features are then highlighted by the addition of a constant µ to positive class and

subtraction of µ from negative class (unless specified, µ = 1).

Along with synthetic datasets, we included MNIST as a multivariate time series as a more

general case (treating one of the image axes as time), each sample has 28 timesteps, and the

feature embedding size is 28.

3.1.5 Feature Importance Identification

Modification-based evaluation metrics [10, 63, 121] have two main issues. First, they assume that

feature ranking based on saliency faithfully represents feature importance. Consider the saliency

distributions shown in Figure 3.2. Saliency decays exponentially with feature ranking, meaning

that features that are closely ranked might have substantially different saliency values. A second

issue, as discussed by [20], is that eliminating features changes the test data distribution violating

the assumption that both training and testing data are independent and identically distributed

(i.i.d.). Hence, model accuracy degradation may be a result of changing data distribution rather

than removing salient features. In our synthetic dataset benchmark, we address these two issues

by the following:

• Sort relevance R(X), so that Re (xi,t) is the eth element in ordered set {Re (xi,t)}T×N
e=1 .

• Find top k relevant features in the order set such that
∑k

e=1 Re(xi,t)∑N,T
i=1,t=1 R(xi,t)

≈ d (where d is a

pre-determined percentage).

29

• Replace xi,t, where R (xi,t) ∈ {Re (xi,t)}ke=1 with the original distribution (known since

this is a synthetic dataset).

• Calculate the drop in model accuracy after the masking, this is repeated at different values

of d = [0, 10, . . . , 100].

We address the first issue by removing features that represent a certain percentage of the

overall saliency rather than removing a constant number of features. Since we are using synthetic

data and masking using the original data distribution, we are not violating i.i.d. assumptions.

Figure 3.2: The saliency distribution of ranked features produced by different saliency methods
for three variations of the Middle Box dataset (Gaussian, Harmonic, Continous Autoregressive
(CAR)). Top row shows gradient-based saliency methods while bottom row shows the rest.

3.1.6 Evaluation Metrics

Masking salient features can result in (a) a steep drop in accuracy, meaning that the removed

feature is necessary for a correct prediction or (b) unchanged accuracy. The latter may result

from the saliency method incorrectly identifying the feature as important, or that the removal

of that feature is not sufficient for the model to behave incorrectly. Some neural architectures

tend to use more feature information when making a prediction (i.e., have more recall in terms

of importance); this may be the desired behavior in many time series applications where impor-

tance changes over time, and the goal of using an interpretability measure is to detect all relevant

30

features across time. On the other hand, in some situations, where sparse explanations are pre-

ferred, then this behavior may not be appropriate. This in mind, one should not compare saliency

methods solely on the loss of accuracy after masking. Instead, we should look into features iden-

tified as salient and answer the following questions: (1) Are all features identified as salient

informative? (precision) (2) Was the saliency method able to identify all informative features?

(recall)

Given the synthetic data described earlier, informative features are known (dark areas in

Figure 3.1), and we can calculate precision and recall of each (neural architecture, saliency

method) pair using the confusion matrix in Table 3.1.

XXXXXXXXXXXXSaliency
Actual

Informative Noise

High True Positive (TP) False Positive (FP)
Low False Negative (FN) True Negative (TN)

Table 3.1: Confusion Matrix, for precision and recall calculation.

Precision

The fraction of informative high saliency features among all high saliency features. Since the

saliency value varies dramatically across features, we do not look at the number of true positive

and false negative instead their saliency value; the (weighted) precision is calculated by:

∑
R (xti) {xti : xti ∈ TP}∑

R (xti) {xti : xti ∈ TP}+
∑

R (xti) {xti : xti ∈ FP}

31

Recall

The fraction of the total informative features that had high saliency, similar to the precision we

use the saliency value rather than the count. (Weighted) the recall is defined as:

∑
R (xti) {xti : xti ∈ TP}∑

R (xti) {xti : xti ∈ TP}+
∑

R (xti) {xti : xti ∈ FN}

Through our experiments, we report area under the precision curve (AUP), the area under

the recall curve (AUR), and area under precision and recall (AUPR). The curves are calculated

by the precision/recall values at different levels of degradation. We also consider feature/time

precision and recall (a feature is considered informative if it has information at any timestep and

vice versa). For the random baseline, we stochastically select a saliency method then permute the

saliency values producing arbitrary ranking.

3.2 Performance of Different Neural Architecture

In this section, we investigate failures of different architectures when it comes to time series

interpretability. Based on our extensive experiments, we observe a difference in behavior between

recurrent neural networks (RNNs) and non-recurrent neural networks when it comes to time

series interpretability.

Recurrent networks involve “Gating mechanisms”, that were introduced in LSTMs [119],

these mechanisms help RNN models carry information from previous timesteps, thus diminishing

the vanishing gradient problem to improve prediction accuracy. We show, however, that these

32

mechanisms do not diminish the vanishing gradient problem enough to allow saliency to capture

feature importance at arbitrary time intervals.

For non-recurrent networks such as TCNs and Transformers, we report the following ob-

servations: (i) feature importance estimators that produce high-quality saliency maps in images

often fail to provide similar high-quality interpretation in time series data, (ii) saliency methods

tend to fail to distinguish important vs. non-important features in a given timestep; if a feature

in a given time is assigned to high saliency, then almost all other features in that timestep tend

to have high saliency regardless of their actual values, (iii) model architectures have significant

effects on the quality of saliency maps.

3.2.1 Recurrent Neural Network: Vanishing Saliency

Consider the synthetic dataset shown in figure (3.3a), where all important features are located in

the first few timesteps (red box) and the rest is Gaussian noise. One would expect the saliency

map to highlight the important features at the beginning of the time series. However, the saliency

produced by LSTM (Figure 3.3b) shows some feature importance at the last few timesteps with

no evidence of importance at the earlier ones.

3.2.1.1 Vanishing saliency on real word datasets

For example, consider the following task classification problem from neuroimaging [18]: a sub-

ject is performing a certain task (e.g., a memory or other cognitive task) while being scanned in

an fMRI machine. After preprocessing of the raw image signal, the data will consist of a multi-

variate time series, with each feature measuring activity in a specific brain region. To characterize

33

(a) Example (b) LSTM

Figure 3.3: (a) A sample from a simulated dataset where the horizontal axis represents time and
vertical axis represents feature values. (b) Saliency map produced by LSTM; importance is only
captured in the last few timesteps.

brain region activity pertinent to the task performed by the subject, a saliency method should be

able to capture changes in feature importance (corresponding to brain regions) over time. This is

in contrast to similar text classification problems [19], where the goal of saliency methods is to

give a relevance score to each word in the sequence, whereas the saliency of individual features

in each word embedding is not important. The first row in Figure 1.2 shows the saliency map

produced by an LSTM applied to the task classification. In this case, the LSTM reports feature

importance only in the last few timesteps, ignoring the earlier ones.

3.2.1.2 Understanding vanishing saliency

In this section we investigate the reasons behind LSTM’s bias towards last few timesteps in

saliency maps. The gating mechanisms of LSTM [119] are shown in equation (3.1), where σ(·)

denotes the sigmoid (i.e. logistic) function and ⊙ denotes element-wise vector product. LSTM

has three gates: input , forget and output gates, given as it, ft and ot respectively. These gates

determine whether or not to let new input in (it), delete information from all previous timesteps

34

(ft) or to let it impact the output at the current timestep (ot).

it = σ (Wxixt +Whiht−1 + bi)

ft = σ (Wxfxt +Whfht−1 + bf)

ot = σ (Wxoxt +Whoht−1 + bo)

c̃t = tanh (Wxc̃xt +Whc̃ht−1 + bc̃)

ct = ft ⊙ ct−1 + it ⊙ c̃t

ht = ot ⊙ tanh (ct)

(3.1)

The amount of saliency preserved is controlled by ft; this can be demonstrated by calcu-

lating the saliency Rc
T (xT) for feature embedding x at last timestep T given output c is fairly

simple,

Rc
T (xT) =

∣∣∣∣∂Sc(xT)

∂xT

∣∣∣∣
∂Sc(xT)

∂xT
=

∂Sc

∂hT

∂hT
∂xT

The value of xT directly contributes to Sc(xT); hence, Rc
T (xT) is relatively high. Now let’s consider

saliency for xt where t < T .

Rc
t(xt) =

∣∣∣∣∂Sc(xT)

∂xt

∣∣∣∣
∂Sc(xT)

∂xt
=

∂Sc

∂hT

∂hT
∂ht

∂ht
∂xt

∂Sc(xT)

∂xt
=

∂Sc

∂hT

(
t+1∏
i=T

∂hi
∂hi−1

)
∂ht
∂xt

∂hi
∂hi−1

is the only term affected by the number of timesteps; we can expand it as:

∂ht
∂ht−1

=
∂ht
∂ot

∂ot
∂ht−1

+
∂ht
∂ct

∂ct
∂ht−1

=
∂ht
∂ot

∂ot
∂ht−1

+
∂ht
∂ct

[
∂ct
∂ft

∂ft
∂ht−1

+
∂ct
∂it

∂ht−1

∂ct
+

∂ct
∂c̃t

∂c̃t
∂ht−1

+
∂ct
∂ct−1

]
Plugging the partial derivative in the above formula, we get:

35

∂ht
∂ht−1

= tanh (ct)
(

Who (ot ⊙ (1− ot))
)
+ ot ⊙

(
1− tanh2 (ct)

)[
ct−1

(
Whf (ft ⊙ (1− ft))

)
+

c̃t

(
Whi (it ⊙ (1− it))

)
+

it

(
Whc̃ (1− c̃t ⊙ c̃t)

)
+ ft

]

As t decreases (i.e earlier timesteps), those terms multiplied by the weight matrix (black box in

above equation) will eventually vanish if the largest eigenvalue of the weight matrix is less then 1; this is

known as the ”vanishing gradient problem”. ∂ht
∂ht−1

will be reduced to :

∂ht
∂ht−1

≈ ot ⊙
(
1− tanh2 (ct)

) [
ft

]

From the equation above, one can see that the amount of information preserved depends on the LSTM’s

“forget gate” (ft); hence, as t decreases (i.e earlier timesteps) its contribution to the relevance decreases

and eventually disappears as we empirically observe in figure (3.3b).

3.2.2 Saliency Methods Fail in Time Series Data

The results reported in the following section are for models that produce accuracy above 95% in the

classification task.

3.2.2.1 Saliency map quality

Consider synthetic examples in Figure 3.4; given that the model was able to classify all the samples

correctly, one would expect a saliency method to highlight only informative features. However, we find

that for the Middle Box and Rare Feature datasets, many different (neural architecture, saliency method)

pairs are unable to identify informative features. For Rare time, methods identify the correct timesteps

36

but are unable to distinguish informative features within those times. Similarly, methods were not able to

provide quality saliency maps produced for the multivariate time series MNIST digit. Overall most (neural

architecture, saliency method) pairs fail to identify importance over time.

Figure 3.4: Saliency maps produced by Grad, Integrated Gradients, and DeepSHAP for 2 differ-
ent models on synthetic data and time series MNIST (white represents high saliency). Saliency
seems to highlight the correct timestep in some cases but fails to identify informative features in
a given time.

3.2.2.2 Saliency methods versus random ranking

Here we look into distinctions between each saliency method and a random ranking baseline. The effect of

masking salient features on the model accuracy is shown in Figure 3.5. In a given panel, the leftmost curve

indicates the saliency method that highlights a small number of features that impact accuracy severely (if

correct, this method should have high precision); the rightmost curve indicates the saliency method that

highlights a large number of features that impact accuracy severely (if correct, this method should show

high recall).

37

Model accuracy drop

We were unable to identify a consistent trend for saliency methods across all neural architectures through-

out experiments. Instead, saliency methods for a given architecture behave similarly across datasets. TCN

Grad and SmoothGrad also had very similar curves that were on the left. In comparison to other architec-

tures TCN had the largest variance between random assignment and saliency methods. Transformers For

different datasets leftmost curve was either GRAD while rightmost SmoothGrad or random.

Figure 3.5: The effect of masking features identified as salient by different methods against a
random baseline. Gradient-based and non-gradient based saliency methods are shown in the left
and right plots, respectively. The rate of accuracy drop is not consistent; in many cases there is
not much improvement over random baseline.

38

Precision and recall

Looking at precision and recall distribution box plots Figure 3.6, we observe the following: (a) Model

architecture has the largest effect on precision and recall. (b) Results do not show clear distinctions be-

tween saliency methods. (c) Methods can identify informative timesteps while fail to identify informative

features; AUPR in the time domain (second-row Figure 3.6) is higher than that in the feature domain

(third-row Figure 3.6). (d) Methods identify most features in an informative timestep as salient, AUR in

feature domain is very high while having very low AUP. This is consistent with what we see in Figure 3.4,

where all features in informative timesteps are highlighted regardless of there actual values. (e) Looking

at AUP, AUR, and AUPR values, we find that the steepness in accuracy drop depends on the dataset. A

steep drop in model accuracy does not indicate that a saliency method is correctly identifying features used

by the model since, in most cases, saliency methods with leftmost curves in Figure 3.5 have the lowest

precision and recall values.

(a) (b)

Figure 3.6: Precision and Recall distribution box plots, the top row represents overall Preci-
sion/Recall, while the second two rows show Precision/Recall distribution on time and feature
axes (a) Distribution across architectures. (b) Distribution across saliency methods.

39

3.2.2.3 Saliency maps for images versus multivariate time series

Since saliency methods are commonly evaluated on images, we compare the saliency maps produced

from models like CNN, which fit images, to the maps produced by temporal models like TCN, over our

evaluation datasets by treating the complete multivariate time series as an image. Figure 3.7(a) shows

two examples of such saliency maps. The maps produced by CNN can distinguish informative pixels

corresponding to informative features in informative timesteps. However, maps produced from TCN fall

short in distinguishing important features within a given timestep. Looking at the saliency distribution of

gradients for each model, stratified by the category of each pixel with respect to its importance in both time

and feature axes; we find that CNN correctly assigns higher saliency values to pixels with information in

both feature and time axes compared to the other categories, which is not the case with TCN, that is biased

in the time direction. That observation supports the conclusion that even though most saliency methods

we examine work for images, they generally fail for multivariate time series. It should be noted that this

conclusion should not be misinterpreted as a suggestion to treat time series as images (in many cases this

is not possible due to the decrease in model performance and increase in dimensionality).

Finally, we examine the effect of reshaping a multivariate time series into univariate or bivariate

time series. Figure 3.7 (b) shows a few examples of saliency maps produced by the various treatment

approaches of the same sample (images for CNN, uni, bi, multivariate time series for TCN). One can see

that CNN and univariate TCN produce interpretable maps, while the maps for the bivariate and multivariate

TCN are harder to interpret. That is due to the failure of these methods to distinguish informative features

within informative timesteps, but rather focusing more on highlighting informative timesteps.

These observations suggest that saliency maps fail when feature and time domains are conflated.

When the input is represented solely on the feature domain (as is the case of CNN), saliency maps are

relatively accurate. When the input is represented solely on the time domain, maps are also accurate.

40

However, when feature and time domains are both present, the saliency maps across these domains are

conflated, leading to poor behavior. This observation motivates our proposed method to adapt existing

saliency methods to multivariate time series data.

Figure 3.7: (a) Saliency maps and distribution produced by CNN versus TCN for Middle Box.
(b) Saliency Maps for samples treated as image (CNN) vs. uni-, bi- or multi-variate time series
(TCN).

3.3 Conclusion

In this chapter, we have studied deep learning interpretation methods when applied to multivariate time

series data on various neural network architectures. To quantify the performance of each (interpretation

method, architecture) pair, we have created a comprehensive synthetic benchmark where positions of

informative features are known. We measure the quality of the generated interpretation by calculating the

degradation of the trained model accuracy when inferred salient features are masked. These feature sets

are then used to calculate the precision and recall for each pair.

We have shown empirically and theoretically that saliency maps produced by LSTMs vanish over

time. Importance is only ascribed to later timesteps in a time series and earlier timesteps are not considered.

In addition, we have found that commonly-used saliency methods, including both gradient-based, and

perturbation-based methods, fail to produce high-quality interpretations when applied to multivariate time

41

series data. However, they can produce accurate maps when multivariate time series are represented as

either images or univariate time series. That is, when temporal and feature domains are combined in a

multivariate time series, saliency methods break down in general. The exact mathematical mechanism

underlying this result is an open question. Consequently, there is no clear distinction in performance

between different interpretability methods on multiple evaluation metrics when applied to multivariate

time series, and in many cases, the performance is similar to random saliency.

42

Part II

Improving the Interpretability of Deep Learning for Time Series

43

Chapter 4: Improvement by Architecture: Input-Cell Attention

In this chapter, we address the vanishing saliency problem described in Section 3.2.1. We found that the

main reason for this phenomenon is the lack of a direct gradient path from input to the output as shown

theoretically in Section 3.2.1.2. To address this, we propose a novel RNN cell structure, called “input-cell

attention”.

The input-cell attention mechanism uses a fixed-size matrix embedding at each timestep t, to repre-

sent the input sequence up to time t. Each row of the embedding matrix is designed to attend to different

inputs including time t or previous timesteps. This provides a direct gradient path from the output at the

final timestep, through the embedding matrix, to all input timesteps thereby circumventing the vanishing

saliency problem. We show via simulation and application to our illustrative neuroimaging task classifi-

cation problem, that saliency maps produced by input-cell attention are able to faithfully detect important

features regardless of their occurrence in time.

4.1 Input-Cell Attention

The proposed cell structure is shown in figure (4.1); at each timestep t, instead of looking only at the

current input vector xt, all inputs accumulated and available to current timesteps are considered by passing

them through an attention mechanism. The attention module provides a set of summation weight matrices

for the inputs. The set of summation weight vectors is multiplied with the inputs, producing a fixed size

matrix of weighted inputs Mt attending to different timesteps. Mt is then passed to the LSTM cell. To

44

Figure 4.1: LSTM with input-cell attention, at time t matrix Xt = [x0, x1, . . . , xt] is passed to an
attention mechanism; the output At is multiplied with Xt to produce Mt (i.e Mt = AtXt). Matrix
Mt is now the input to LSTM cell (Mt has dimension r ×N , where r is the attention parameter
and N is the number of inputs).

accommodate the changes in gates inputs, the classical LSTM gating equations are changed from those

shown in (3.1) to the new ones shown (4.1). Note that input-cell attention can be added to any RNN cell

architecture; however, the LSTM architecture is the focus of this chapter.

it = σ
(

WMiMt +Whiht−1 + bi

)
ft = σ

(
WMfMt +Whfht−1 + bf

)
ot = σ

(
WMoMt +Whoht−1 + bo

)
c̃t = tanh

(
WMc̃Mt +Whc̃ht−1 + bc̃

)
ct = ft ⊙ ct−1 + it ⊙ c̃t

ht = ot ⊙ tanh (ct)

(4.1)

We use the same attention mechanism that was introduced for self-attention [122]. However, in

our architecture attention is performed at the cell level rather than the hidden layer level. Using the same

notation as in section 3.1.1, matrix Xt = [x1, . . . , xt] with dimensions t × N where N is the size of the

45

feature embedding. The attention mechanism takes Xt as input, and outputs a matrix of weights At:

At = softmax
(
W2 tanh

(
W1X

T
t

))
(4.2)

W1 is a weight matrix with dimensions da ×N where da is a hyper-parameter. The number of timesteps

the attention mechanism will attend to is r, known as “attention hops”. W2 is also a weight matrix that

has dimension r × da. Finally, the output weight matrix At has dimension r × t; At has a weight for each

timestep and the softmax() ensures that all the computed weights sum to 1. The inputs Xt are projected

linearly according to the weights provided by At to get a matrix Mt = AtXt with fixed dimension r×N .

One can the view attention mechanism as a two-layer unbiased feed-forward network, with parameters

{W1,W2} and da hidden units. Mt is flattened to a vector of length r ∗ N and passed as the input to the

LSTM cell as shown in Figure 4.1. The dimensions of each learned weight matrix Wx in the standard

LSTM equation (3.1) is N × h, where h is size of hidden layer. The input-cell attention weight matrix

WM the learned parameters in equation (4.1) have dimensions h× (r ∗N).

Approximation: To reduce the dimensionality of the LSTM input at each timestep, matrix Mt can

be modified to be the average of features across attention hops. By doing so, the value of a feature in the

embedding will equal its average value across all timesteps the model attends to. As mentioned previously,

Mt has dimensions r ×N let mij be value of feature j at attention hop i

m̃j =

∑r
i=1mij

r
(4.3)

This reduces matrix Mt to vector m̃t with dimension N . The dimensions of weight matrix WM

equations (4.1) return to N×h as in original LSTM equations (3.1). Self-attention [122] used this approx-

imation in the github code they provided. We used this version of input-cell attention for the experiments

in Section (4.2).

46

4.2 Experiments

Since the goal of this chapter is to study the behavior of feature importance detection in RNNs, we have

chosen saliency (Gradient), perhaps the simplest gradient-based attribution method, to represent the other,

more complex, gradient-based attribution methods.

4.2.1 Synthetic Data for Evaluation

To capture the behavior of saliency methods applied to RNNs, we used the synthetic datasets introduced in

Chapter 3. Figure 4.2 shows multiple example datasets. The same figure also shows how important time

intervals and features are specified in various experimental setups.

(a) Earlier Box (b) Middle Box (c) Latter Box (d) 3 Earlier Boxes

(e) 3 Middle Boxes

Figure 4.2: Example of synthetic datasets, where red represents important features and blue is
Gaussian noise

4.2.1.1 Performance metrics

Euclidean distance: Since we know the time interval of important features in each example, we create

a reference sample which has value 1 for important features and 0 for noise. We measure the normalized

47

Euclidean distance between the saliency map R(X) produced by each model for given sample X (where

X = [x1, . . . , xn]) and its reference sample ref , the distance is calculated by the equation below, where

n = N × T ∑n
i=1

√
(refi −R (xi))

2∑n
i=1 refi

(4.4)

Weighted Jaccard similarity [123]: The value of saliency represents the importance of the feature at a

specific time. We measure the concordance between the set of high saliency features to the known set of

important features in simulation. Jaccard measures similarity as the size of the intersection divided by the

size of the union of the sample sets, meaning that high values and low ones have equal weight. Weighted

Jaccard addresses this by considering values, since the higher saliency value represents higher importance,

it is a better measure of similarity for this problem. Weighted Jaccard similarity J between absolute value

of sample |X| and its saliency R(X) is defined as

J (|X| , R(X)) =

∑n
i=1min (|xi| , R(xi))∑n
i=1max (|xi| , R(xi))

(4.5)

4.2.1.2 Results on synthetic datasets

We compared LSTMs with input-cell attention with standard LSTMs [119], bidrectional LSTMs [124],

LSTMs with self-attention [122] and other LSTMs with various pooling architectures were also compared.

Static Box Experiments: To test how the methods perform when important features are located at

different timesteps we create: “Earlier Box” dataset figure (3.3a), “Middle Box” dataset figure (4.2a) and

“Latter Box” datasets figure (4.2b); important features are located from t0 to t30, from t30 to t70 and from

t70 to t100 respectively. To avoid bias we also tested on [1] “Mixed Boxes” dataset in which the location

of the importance box differs in each sample. [2] “3 Earlier Boxes”, “3 Latter Boxes” and “3 Middle

48

Boxes”(similar to figure 4.2c) where not all features are important at one specific time; the results are

shown in the table (4.1b).

Ealier Box Middle Box Latter Box
Model WJac Euc Acc WJac Euc Acc WJac Euc Acc
LSTM 0.000 1.006 53.4 0.000 1.003 98.6 0.019 0.985 100.0
Bi-LSTM 0.000 1.004 50.7 0.000 1.003 53.2 0.013 0.990 100.0
LSTM+in.cell 0.103 0.914 100.0 0.124 0.891 100.0 0.110 0.903 100.0
LSTM+Max pl 0.002 1.006 99.9 0.001 1.004 100.0 0.002 1.006 100.0
LSTM+Max pl+in.cell 0.076 0.931 100.0 0.015 0.990 99.8 0.011 1.002 100.0
LSTM+Mean pl 0.007 1.024 99.9 0.038 0.974 100.0 0.033 0.997 99.9
LSTM+Mean pl+in.cell 100.0 0.904 100.0 0.029 0.982 99.9 0.003 1.010 98.0
LSTM+self At. 0.048 0.973 100.0 0.048 0.963 100.0 0.045 0.973 100.0
LSTM+self At.+in.cell 0.124 0.878 100.0 0.014 0.994 99.9 0.014 0.995 100.0

(a)
Mixed Boxes 3 Ealier Boxes 3 Middle Boxes

Model WJac Euc Acc WJac Euc Acc WJac Euc Acc
LSTM 0.000 1.003 49.1 0.000 1.003 52.2 0.000 1.004 51.8
Bi-LSTM 0.000 1.002 51.5 0.000 1.003 51.3 0.000 1.003 51.3
LSTM+in.cell 0.104 0.912 77.6 0.108 0.903 100.0 0.106 0.905 100.0
LSTM+Max pl 0.003 1.003 100.0 0.002 1.003 100.0 0.002 1.004 99.9
LSTM+Max pl+in.cell 0.009 0.997 100.0 0.053 0.953 100.0 0.012 0.993 99.9
LSTM+Mean pl 0.034 0.979 100.0 0.014 1.005 100.0 0.067 0.946 100.0
LSTM+Mean pl+in.cell 0.033 0.977 100.0 0.124 0.879 100.0 0.012 0.995 100.0
LSTM+self At. 0.060 0.953 100.0 0.025 0.985 100.0 0.075 0.939 99.9
LSTM+self At.+in.cell 0.014 0.992 100.0 0.091 0.916 100.0 0.043 0.967 100.0

(b)

Table 4.1: Saliency performance: weighted Jaccard (WJac) and Euclidean distance (Euc). For the
following architectures: (1) LSTM (2) bidirectional LSTM (3) LSTM with input-cell attention
(4) LSTM with Max pooling (5) LSTM with Max pooling and input-cell attention (6) LSTM with
Mean pooling (7) LSTM with Mean pooling and input-cell attention (8) LSTM with self-attention
(9) LSTM with self-attention and input-cell attention on different datasets where important fea-
tures are located at different timesteps (ACC is the model accuracy on test data).

LSTM with input-cell attention outperforms other methods in both metrics for all datasets. One

important observation is that LSTM performance is higher in the latter box problem, which aligns with

our observed bias towards reporting importance in later timesteps.

49

Moving Box Experiments: To identify the timestep effect on the presence of a feature in a saliency

map, we created five datasets that differ in the start and end time of importance box; images from the

datasets are shown in Figure 4.3. This experiment reports the effect of changing the feature importance

time interval on the ability of each method to detect saliency.

Figure 4.3: Datasets with different start and end time for important features

We plot the change of weighted Jaccard and Euclidean distance against the change in starting

timestep of important features in Figure 4.4. LSTM with input-cell attention and LSTM with self-attention

are unbiased towards time. However, LSTM with input-cell attention outperforms LSTM with self-

attention in both metrics. Classical LSTM and bidirectional LSTM are able to detect salient features

at later timesteps only.

Partial Attention Experiments: The following experiment we study the effect of having partial

input-cell attention (input-cell attention is only applied to some timesteps). Figure 4.5 shows an exper-

iment where we applied attention only to the last 10 timesteps for middle box dataset (Figure 4.2b) .

The Figure illustrates that attention on the last few timesteps in the partial attention case helped preserve

saliency longer then that of vanilla LSTM; however, saliency eventually vanishes in both cases. To pre-

serve importance through time, at each timestep model needs to attend to different inputs from current or

previous timesteps.

50

Figure 4.4: The effect of changing the location of important features in time on weighted Jaccard
(WJac) and Euclidean distance (Euc) for different models.

(a) LSTM (b) LSTM + partial input-cell At. (c) LSTM + input-cell At.

Figure 4.5: This Figure shows saliency map from different models on a sample from middle box
simulated dataset. (a) Saliency map produced by LSTM; importance is only captured in the last
few timesteps. (a) Saliency map produced by LSTM with input-cell attention applied to the last
10 timesteps only; importance is captured longer then LSTM however it eventually vanishes. (c)
Saliency map produced by LSTM with input-cell attention; our architecture is able to differentiate
between important and non-important feature regardless of there location in time.

51

4.2.2 MNIST as a Time Series

In the previous synthetic datasets, we evaluated saliency maps obtained by different approaches on a sim-

ple setting were continuous blocks of important features are distributed over time. In order to validate the

resulting saliency maps in cases where important features have more structured distributions of different

shapes, we treat the MNIST image dataset as a time series. In other words, a 28× 28 image is turned into

a sequence of 28 timesteps, each of which is a vector of 28 features. Time is represented in the y-axis. For

more interpretable visualization of saliency maps, we trained the models to perform a three-class classifi-

cation task by subsetting the dataset to learn only the digits “1”, “6”, and “7”. These digits were selected

since the three share some common features, while having distinctive features at different timesteps.

Figure 4.6: Saliency maps for more samples from MNIST on 3 digits “1”, “6”, “7” with time
as y-axis. Heatmaps are shown for both Vanilla LSTM and LSTM with input-cell attention.
Important features are present at different timesteps for each class (“7” important features are in
early timesteps, whereas they are in middle/late timesteps for “6”). The vanishing gradients in
the saliency is clear in LSTM, whereas adding input-cell attention recovers gradient values for
features in early timesteps.

Both standard LSTMs and LSTMs with input-cell attention were trained to convergence. Figure

4.6 shows the saliency maps for random samples; saliency maps obtained from LSTMs exhibit consistent

decay over time. When assisted with input-cell attention mechanism, our architecture overcomes that

decay and can successfully highlight important features at different timesteps.

52

4.2.3 Human Connectome Project fMRI Data

To evaluate our method in a more realistic setting, we apply input-cell attention to an openly available fMRI

dataset of the Human Connectome Project (HCP)[27]. In this dataset, subjects are performing certain tasks

while scanned by an fMRI machine. Our classification problem is to identify the task performed given

the fMRI scans. Recurrent networks have been used for this task before, e.g. in the DLight framework

[18]. DLight uses LSTM to analyze whole-brain neuro-imaging data then applies layer-wise relevance

propagation (LRP) [6, 19] to the trained model identifying those regions of interest in the brain (ROIs)

whose activity the model used to make a prediction. However, this framework gives a single interpretation

for the entire time series; applying input-cell attention enables us to see changes in the importance of brain

region activity across time.

4.2.3.1 Dataset description:

We used three tasks in HCP data:

• Gambling: Participants play a card guessing game where they are asked to guess the number on a

mystery card (represented by a ?) in order to win or lose money.

• Relational Processing: Participants are presented with 2 pairs of objects, with one pair at the top of

the screen and the other pair at the bottom of the screen. They are told that they should first decide

what dimension differs across the top pair of objects (differed in shape or differed in texture) and

then they should decide whether the bottom pair of objects also differ along that same dimension.

• Working Memory: Participants were presented pictures of places, tools, faces and body parts we

refer to pictures as stimulus. Participants performed a “2-back” working memory task, where they

53

indicated if the current stimulus matched the one presented two stimuli before, or a control condition

called “0-back” (without a memory component).

HCP provides a minimally prepossessed released dataset; in addition to their preprocessing, we

regressed out 12 motion-related variables using the 3dDeconvolve routine of the AFNI package [125]

and low frequency signal. We only considered cortical data, then we employed the cortical parcellation

developed by the HCP research group [126]. The parcellation produced 360 cortical regions of interest

(ROIs); meaning at each timestep we have a feature vector of size 360, representing various brain regions

4.2.3.2 Experiments:

We performed two types of experiments: (1) On-Task: data was taken while the subject was actively

performing task. (2) On-Task off-Task: data was taken while the subject was both actively performing

task (on-task) and during rest period between tasks (off-task). The off-task time is used as a negative

control for importance at the end of the time series since models should not be able to differentiate between

tasks based on data obtained during off-task periods.

All experiments were performed using data from 566 subjects for training and 183 for testing. HCP

data is divided into blocks, there are two types of blocks (a) active blocks: where subjects were actively

performing the task. (b) non-active blocks: subjects are resting this includes task cues and time between

different runs.

On-Task Experiment: First we trained an LSTM on a binary classification task until convergence.

On each correctly classified task we produced a saliency map. We plotted the saliency map to see which

ROIs are important while the subject is performing the task. Figure (1.2a) shows that the LSTM was only

able to capture changes in ROI importance at the last few timesteps. We repeated the same experiment

54

using LSTM with input-cell attention with results shown in figure (1.2b). Input-cell attention was able to

capture changes in importance for different brain regions across time that were not recovered by LSTM.

On-Task Off-Task Experiment: Models were first trained on the off-task period only, accuracy

produced by the models was random confirming our assumption that off-task period data does not contain

any useful information for task classification. Models were then trained on the on-task period followed by

off-task period, saliency maps were used to identify important features. Figure (4.7 a) shows the effect of

removing features identified as salient on model accuracy (note that the model with the ability of correctly

detect salient features will result in a larger drop in accuracy on feature removal). Figure (4.7 b) shows

percentage of on-task off-task features identified as salient by each model. Our architecture is faithfully

able to detect salient features during on-task portions of time.

(a) (b)

Figure 4.7: (a) The effect of dropping salient features identified by each model. Dropping
LSTM’s top 10% salient features reduces accuracy by 2%, while for LSTM with input-cell atten-
tion accuracy dropped by 9.5%. If features identified as salient by LSTM with input-cell attention
are removed from standard LSTM its accuracy drops 6%. (b) Percentage of on-task off-task fea-
tures identified as salient, more than 70% of top 10% salient features identified by LSTM are
from off-task period.

55

4.3 Related Work

Neural attention mechanisms are popular techniques that allow models to attend to different input fea-

tures of interest. Bahdanau et al. [127] used attention for alignment in machine translation. Xu et al.

[128] implemented attention for computer vision to identify important regions of an image. In addition,

attention was also used to extract important portions of text in a document [129, 130]. Lin et al. [122]

deployed self-attention to create a sentence embedding by attending to the hidden state of each word in the

sentence. Vaswani et al. [40] introduced the Transformer, a neural architecture based solely on attention

mechanisms. Current attention mechanisms are mainly applied to hidden states across timesteps. In con-

trast, we utilize attention in this method to detect salient features over time without bias towards the last

timesteps, by attending on different timesteps of an input at the cell level of RNNs.

4.4 Conclusion

In section 3.2.1, we have shown empirically and theoretically that saliency maps produced by LSTMs

vanish over time. Importance is only ascribed to later timesteps in a time series and earlier timesteps

are not considered. In this chapter, we reduced this vanishing saliency problem by applying an attention

mechanism at the cell level. By attending to inputs across different timesteps, the LSTM was able to

consider important features from previous timesteps. We applied our methods to fMRI data from the

Human Connectome Project and observed the same phenomenon of LSTM vanishing saliency in a task

detection problem. This last result, taken together with a belief that assigning importance only to the last

few timesteps in this neuro-imaging application severely limits the interpretability of LSTM models, and

considering our results on synthetic data, indicates that our method opens a path towards solving a critical

shortcoming in the application of modern recurrent DNNs to problems where interpretability of time series

models is important.

56

Chapter 5: Improvement by Architecture: Interpretable Mixture of Experts

In this chapter, we address time series interpretability by proposing a novel framework for inherently-

interpretable modeling, with the idea of combining multiple interpretable models in a mixture of experts

(ME) framework. ME frameworks are composed of multiple “experts” and an assignment module that

decides which expert should be picked for each sample. Recent works [131, 132] have used ME to replace

layers of DNNs to scale the model capacity efficiently. In contrast, we use a single ME to fit different

data subsets by interpretable experts. Intuitively, although complex distributions cannot be fit by simple

interpretable models, small subsets of them can be fit with low-capacity interpretable models. By follow-

ing such an approach, one could preserve accuracy while providing useful interpretability capabilities by

replacing black-box models with multiple interpretable models. The key contributions of this chapter can

be summarized as follows:

• Enabled by innovations in its design, IME constitutes a new class of interpretable models that can

replace or encapsulate DNNs to achieve accuracy on par with or better than the state-of-the-art on

multiple real-world tabular and time series datasets.

• We propose multiple options for IME that offer flexibility depending on the interpretability needs

of particular applications. Single-level assignment S-IMEii and S-IMEdi (Figure 5.1 (a) and (b))

employs an assignment module that can be interpretable (yielding both assignment and expert inter-

pretability) or a DNN (yielding only expert interpretability) with interpretable experts. Hierarchical

57

assignment H-IMEii and H-IMEdi (Figure 5.1 (c) and (d)) first selects between a pretrained black-

box expert and an IME, and then between different interpretable experts.

• S-IMEii (Figure 5.1 (a)) can generate explanations in the form of the exact description of predictions

with an easy-to-digest concise formula, enabling its use in high-stakes applications.

• S-IMEdi (Figure 5.1 (b)) can be used for local interpretability, as a separate interpretable function

expresses the predictions in each cluster.

• H-IMEii and H-IMEdi (Figure 5.1 (c) and (d)) offer interpretable decision making for a subset of

samples while maintaining accuracy. E.g., we show that on one real-world Retail task, ∼ 40% of

samples can be assigned to an interpretable expert while preserving the same accuracy. The trade-

off can be adjusted by the user, enabling the ability to trade between interpretability and accuracy

based on application needs. This can be used to identify ‘difficult’ samples (i.e., samples requiring a

DNN for an accurate prediction) and ‘easy’ samples (i.e., samples that can be predicted by a simple

interpretable model), offering another form of explainability.

5.1 IME Framework

Figure 5.2 shows the proposed IME architecture. IME consists of a set of ‘interpretable experts’ and

an ‘assignment module’. The experts can be any interpretable differentiable model, each with its own

trainable weights. Experts can be different architectures (assuming they accept inputs and generate outputs

of particular sizes), e.g. one expert can be linear regression (LR) while the other can be a soft decision

tree (DT) [46, 47, 48]. The only requirement for experts is being differentiable (please refer to [133] for

an overview of various differentiable models that can be adopted as experts). The assignment module can

be either an interpretable model or a DNN, as shown in Figure 5.1. When we have a pretrained DNN as

one of the experts (in H-IMEii and H-IMEdi), we employ a hierarchical assignment structure so that the

58

Figure 5.1: Interpretable Mixture of Experts (IME) framework for time series and tabular data,
with single-level and hierarchical assignment options. Solid lines denote the selected assign-
ments. (a) shows S-IMEii, a single-level assignment IME where both the assignment module
and the experts are interpretable. (b) shows S-IMEdi, a single-level assignment IME where the
assignment module is a DNN, and where interpretability is provided only via the experts. For
hierarchical assignment, the primary assignment module chooses between a pretrained black box
expert or S-IMEii/di, offering partial interpretability by giving insights into which samples benefit
from the complexity of black box models. (c) shows H-IMEii, a hierarchical IME where both the
assignment and expert modules are interpretable. (d) shows H-IMEdi, a hierarchical IME where
assignment modules are DNNs and experts are interpretable.

59

Figure 5.2: IME consists of a set of ‘interpretable experts’ (3 in this example) and an ‘assignment
module’. The input to IME can be time series or tabular data. Each expert produces a single
prediction. The input to the assignment module is both a feature embedding and the past error
made by the experts (when the time dimension exists). The assignment module selects a single
expert during inference to make the final prediction. We define various losses (shown in red
boxes) that are used to supervise the assignment module and expert weights.

60

first assignment module (DNN assignment module) decides whether a sample should go to a DNN; if the

assignment for the is not a DNN, a second (expert assignment module) selects the interpretable model to

assign. Furthermore, we introduce a mechanism to control the use of the pretrained DNN, enabling an

accuracy-interpretability trade-off (see Section 5.1.5). Note that this hierarchical assignment is essential

when we have a pretrained DNN, since adding a pretrained DNN as an expert candidate (along with other

interpretable experts) biases the assignment module, which may lead to choosing the DNN over other

experts. During training, the assignment module outputs the selection likelihood for each expert as well as

the target prediction for guidance. During inference, the most probable expert is selected.

IME can be used for any structured data, including tabular data (where a sample consists of a single

observation at a given timestep) or time series (where a sample consists of multiple observations over a

time period). Broadly, consider a regression problem for input data with S samples {(Xi, Yi)}Si=1; with

X = [x1, . . . , xT] ∈ RN×T , where T is the number of timesteps (for tabular data, we have T = 1) and N

is the number of features. Outputs are Y = [y1, . . . , yH] ∈ RH , where H is the horizon (for tabular data

H = 1). For notational simplicity, we denote Xt as the input until timestep t. For an IME with n experts,

we denote each expert as fi where i is the expert index. The prediction made by the expert i is given as

fi(X) = Ŷi and the corresponding prediction error at a given horizon h, for which we use mean squared

error (MSE), is denoted as ei,h 1
S

∑S
i=1 (yh − ŷh)

2. The errors made by all experts at time t are denoted as

Et = [e1,t, · · ·, en,t]. The assignment module A outputs prediction ŶA along with an n-dimensional vector

representing the weight wi as the probability of choosing a particular expert such that
∑n

i=1wi = 1.

5.1.1 Learning from past errors

IME is applicable to general tabular data without any time-related feature. However, in cases where time-

related features are available, IME benefits from incorporating past errors (as shown in Section 5.5, this re-

sults in additional performance improvements). For most datasets, the input-output relationships between

61

consecutive timesteps are relevant. This is due to either consecutive timesteps having overlapping informa-

tion, or external conditions not changing rapidly. For data with time information, we propose to use past

errors as informative signals for the assignment. We input both the feature embedding Xt and past error

made by the experts Et−1 (we concatenate Xt and Et−1 creating new input Xt, where Xt = [Xt;Et−1]).

The assignment module considers these errors while assigning weights for the next timestep. Note that by

causal masking, we ensure that the forecasting error never overlaps with the forecasting horizon.

5.1.2 Training objectives

We design IME with the following goals: [a] Overall model accuracy should be high. [b] The assignment

module should be accurate in selecting the most appropriate experts. [c] Utilization of individual experts

should not be imbalanced; it is desired to avoid all samples being assigned to a single expert. [d] Experts

should yield diverse predictions and not converge to same models, helping the assignment module to better

choose between the experts. [e] For inputs with time information, assignments should be smooth over time

for consecutive inputs. Smoother assignment is also beneficial for interpretability. Correspondingly, we

propose the following objective:

L
(
f,A,X,X, Y

)
=Lpred

(
f,A,X,X, Y

)
+ βLutil

(
A,X

)
+ γLdiv (f,X)+

δLsmooth

(
A,X

)
+ λLA pred

(
A,X, Y

)
,

(5.1)

where β, γ, δ and λ are hyperparameters. Lpred,Lutil,Ldiv,Lsmooth andLA pred refers to overall accuracy

loss, expert utilization loss, expert diversity loss, assignment smoothness loss and assignment accuracy

loss, respectively. Next, we explain each term in detail.

62

(a) Prediction accuracy: We adopt the maximum likelihood loss under a Mixture of Gaussians mod-

eling assumption:

Lpred(f,A,X,X, Y) = − log
∑n

i=1
A(X)ike

− 1
2
∥Y−fi(X)∥2 , (5.2)

where k = 1/
√
2π is a normalizing constant. This loss was used for ME models by [134] to

encourage expert specialization by comparing each expert separately with the target and training to

reduce the average of all these discrepancies.

(b) Expert utilization: The assignment module can converge to a state where it produces large assign-

ment weights for the same few experts, which results in some experts being trained more rapidly

and selected even more by the assignment module. This phenomenon is also observed in previous

works. To circumvent this, Eigen et al. [135] uses hard constraints at the beginning of training to

avoid local minimum, Bengio et al. [136] uses soft constraints on the batch-wise average of each

expert, and Shazeer et al. [131] encourages all experts to have equal importance (i.e, uniform expert

utilization) by penalizing the coefficient of variation between different expert utilization. For IME,

we propose that each expert should focus on a subset of the distribution. These subsets do not have

to be equal in size, so all experts should be utilized but not necessarily in a uniform manner. Given

this, we propose the following utilization objective:

Lutil =
1

N

∑N

i=1
e−kUi − e−k, (5.3)

where Ui is the utilization of expert i such that Ui = 1
N

∑N
j=1wi,j and k is a hyperparameter to

encourage utilization without enforcing uniformity across experts.

63

(c) Expert diversity: Ideally, each expert should produce different predictions as they focus on differ-

ent subsets and specialize in them. Diversity in predictions would also help the assignment module

to choose between different experts. To promote diversity between the outputs of experts, we pro-

pose using contrastive loss which is based on minimizing the distance between similar samples,

and maximizing the distance between different samples. For IME, we adapt it as minimizing the

distance between outputs from the same expert and maximizing the distance between outputs from

different experts. We add Gaussian noise η with zero mean and unit variance to the inputs, and

define positive pairs as outputs coming from the same expert (with and without the noise) and neg-

ative pairs as outputs coming from two different experts (both without noise). We propose the loss

function:

Ldiv(f,X) = −
∑n

i=1
log

exp (S (fi(X), fi(X + η)) /τ)∑n
k=1 1[k ̸=i] exp (S (fi(X), fk(X)) /τ)

, (5.4)

where S(u, v) = uT v/∥u∥∥v∥ denote the dot product between l2 normalized u and v, 1[k ̸=i] ∈

{0, 1} is an indicator function such that 1 iff k ̸= i, and τ denotes the temperature parameter.

(d) Assignment smoothness: For data with time component, consecutive inputs have mostly overlap-

ping information, so one would expect mostly similar assignment for them. To promote smooth

transition of assignments over time, we adopt the Kullback–Leibler (KL) divergence [137] between

the weights output by the assignment module for consecutive timesteps t−1 and t:

Lsmooth

(
A,X

)
= DKL

(
A
(
Xt−1

)
∥ A(Xt)

)
, (5.5)

where DKL(P ∥ Q) denote the KL divergence between two distributions P and Q defined on the

same probability space X . Assignment smoothness can also be helpful for improving the inter-

pretability, as users can build more reliable insights.

64

(e) Assignment module accuracy: We propose to have the assignment module produce a prediction

(only used during training) along with the weights, and encourage it to be accuracy via error mini-

mization:

LA pred

(
A,X, Y

)
=

1

N

∑N

i=1

(
Y −A

(
X
))2

. (5.6)

Although such a loss isn’t typical for ME, we observe that it helps improving assignment accuracy.

5.1.3 Training procedure

The model first is trained in an end-to-end way to minimize the loss in Equation 5.1 until convergence.

Then, the experts are frozen, and the assignment module is trained independently to minimize the loss

in Equation 5.2. This alternating optimization approach first promotes expert specialization, and then

improves the assignment module accuracy on trained experts. Since experts and the assignment module

might have different architectures, they may converge at different rates [138]. Hence, different learning

rates are employed for them. Training algorithm is shown below.

Algorithm 1: Training Interpretable Mixture of Experts
Input: Features X , targets Y , expert learning rate τ , assignment learning rate ρ,

hyperparameters β, γ, δ, λ
Initialize: All experts parameters fθ, the assignment module Aϕ & set previous error

E = 0
while not converged do

X = [X;E];
L = Lpred

(
f, A,X,X, Y

)
+ βLutil

(
A,X

)
+ γLdiv (f,X) + δLsmooth

(
A,X

)
+ λLA pred

(
A,X, Y

)
;

fθ = fθ − τ ∇L;
Aϕ = Aϕ − ρ ∇L;
Update E;

Freeze experts and train assignment module;
while not converged do
L = Lpred

(
fθ, Aϕ, X,X, Y

)
;

Aϕ = Aϕ − ρ ∇L;

65

5.1.4 Interpretability capabilities

IME offers different forms of interpretability:

• [S-IMEii] Single-level interpretable assignment and interpretable experts: Each prediction can be

expressed as a switch statement with the cases specifying the prediction functions of experts, and the

case conditions specifying the assignment predicate corresponding to each expert. Thus, we effectively

have a single interpretable function defining each prediction as a globally-interpretable model. This can

be useful for regulation-sensitive applications where the exact input-output relationships are needed,

such as criminal justice systems.

• [S-IMEdi] Single-level DNN assignment and interpretable experts: When the assignment logic isn’t

interpretable, the stability property of IME allows the data to be clustered into n subsets such that

the prediction in each subset comes from a single interpretable expert. This can be likened to local

interpretability, as a separate interpretable function expresses the prediction in each cluster. Post-hoc

interpretability methods can be used to assess feature importance for different assignments. This can be

used for model debugging to verify that each expert’s logic is correct.

• [H-IMEii] Hierarchical interpretable assignment with DNN and interpretable experts and [H-

IMEdi] Hierarchical DNN assignment with DNN and interpretable experts: For hierarchical assign-

ment, the DNN assignment module decides whether a sample are easy i.e. it can be accurately predicted

by simple interpretable models vs. difficult i.e. it requires complex models. Similar to S-IMEdi, one

can obtain local interpretations for the easy samples. If explainability for the difficult samples is de-

sired, post-hoc interpretability methods such as SHAP [16] may be adapted, however, their fidelity and

faithfulness would be worse than the explanations coming from the inherently-interpretable experts. In

addition, understanding why particular samples are assigned as easy vs. difficult can give insights into

different data distribution modes (e.g. different seasonal climates and clothing sales), significant regime

66

changes over time (e.g. after an ad campaign is launched for a product), and data anomalies (e.g. when

pandemic outbreak occurs).

5.1.5 Accuracy-interpretability trade-off with H-IME

The main difference between H-IME and S-IME is using a pretrained DNN as an expert. To avoid all

samples being assigned to the pretrained DNN expert, an additional loss term is added to Equation 5.1:

αUDNN, where UDNN is the DNN expert utilization as described in Section 5.1.2. Increasing α yields

less samples being assigned to the DNN expert, and hence constitutes a mechanism to increase the ratio

of samples for which we use interpretable decision making. The effect of changing the value of α is

empirically shown in Section 3. For some real-world datasets, H-IME can be highly valuable in preserving

the accuracy (better than fully-interpretable S-IME) while utilizing interpretable models for a significant

majority of samples.

5.2 Tabular Data Performance

Rossmann: The Rossmann Store Sales dataset [139] consists of samples from 1115 stores. The goal is

to predict daily product sales based on sales history and other factors, including promotions, competition,

school and state holidays, seasonality, and locality. Overall, the dataset consists of 30 different features.

We perform a 70/10/20 train/validation/test split.

Baselines: We compare IME to black-box models including Multi-layer Perceptron (MLP) [140], Cat-

Boost [141], LightGBM [142] and XGBoost [143]; and Inherently-interpretable Neural Additive models

(NAM) [51], linear regression (LR) and shallow DTs. Our goal is to analyze the achievable performance

and the accuracy vs. interpretability trade-off.

67

Training and evaluation: We use n=20 experts that are modeled as either LR, shallow soft DTs

[48], or a mixture of both. For interpretable assignment, a LR is used as the assignment module. For DNN

assignment, an MLP is used. We run hyperparameter tuning using a random grid search.

Results: Table 5.1 shows the performance of baselines and IME in RMSE. The best-performing black-

box model is MLP. There is a huge performance gap between a single interpretable model and any black

box model. Using S-IMEii with an interpretable assignment module (the first two rows in the IME sec-

tion in Table 5.1), we observe significant outperformance compared to a single interpretable model, but

underperformance compared to black-box models – as expected. The performance becomes comparable

to black-box models with S-IMEdi, using a DNN assignment module. This underlines the importance and

value of high capacity assignment for some problems. IME with hierarchical-level assignment, H-IMEii

and H-IMEdi, yields the the best accuracy, while offering partial interpretability. This partial interpretabil-

ity is demonstrated in Figure 5.3, and is achieved by changing the penalty for assigning samples to the

DNN expert. As expected, the more samples are assigned to interpretable experts, the less accurate the

model becomes. Surprisingly, we observe that 20% of samples can be assigned to interpretable models

with LR experts and 40% with soft DT experts, with almost no loss in accuracy. This shows that a large

portion of the data is sufficiently easy to be captured by interpretable models.

5.3 Time Series Data Performance

We conduct experiments on multiple real-world time series datasets, including Electricity [144], Climate

[145] and ETT [95]. We perform a 70/10/20 train/validation/test split for each.

Datasets: Electricity measures the electricity consumption of 321 clients. We convert the dataset into

hourly-level measurements and forecast the consumption of different clients over time. Climate dataset

68

Model category Model name RMSE

Black-box models

MLP 457.72
CatBoost 520.07
LightGBM 490.57
XGBoost 567.80

Interpretable models
Linear 1499.45
Soft DTs (SDT) 1181.17
NAM 1497.47

Assigner Expert Framework Expert type RMSE

IME

Interp. Interp. S-IMEii Linear 1298.57
Interp. Interp. S-IMEii SDT 820.83
DNN Interp. S-IMEdi Linear 671.46
DNN Interp. S-IMEdi SDT 547.72
DNN Interp. S-IMEdi Linear/SDT 565.20
Interp. Interp./DNN H-IMEii DNN/Linear 453.33
Interp. Interp./DNN H-IMEii DNN/SDT 486.94
DNN Interp./DNN H-IMEdi DNN/Linear 506.53
DNN Interp./DNN H-IMEdi DNN/SDT 451.93

Table 5.1: Performance on Rossmann. S-IMEii performs better than a single interpretable model
but worse than black-box models. S-IMEdi is comparable with black-box models. H-IMEdi

outperforms all, while offering partial interpretability.

Figure 5.3: Partial interpretability results by H-IMEii and H-IMEdi. Different accuracy values for
H-IME are obtained by adjusting the DNN penalty hyperparameter α. When assigning ∼ 40%
of samples to soft DT experts, almost no degradation in accuracy is observed.

69

consists of 14 different quantities (air temperature, atmospheric pressure, humidity, wind direction, etc.),

recorded every 10 minutes between 2009-2016. We convert the dataset into hourly-level measurements

and forecast the hourly temperature over time. ETT Electricity Transformer Temperature [95], consists of

three datasets: two hourly-level datasets (ETTh) and one 15-minute-level dataset (ETTm), measuring six

power load features and “oil temperature”, the chosen target value for univariate forecasting.

Baselines: We compare to DNNs including LSTM [119], Transformer [40], TCN [93] and Informer

[95]; and interpretable models including LR and autoregressive (AR) models [81].

Training and evaluation: We use n=10 LR experts for IME. We use either LR and LSTM as assign-

ment modules for S-IMEii and S-IME id respectively. We conduct hyperparameter tuning using a grid

search based on the validation performance. To measure performance in Table 5.2, we use MSE.

Results: Table 5.2 shows the MSE for different datasets at different forecasting horizons. For univariate

forecasting, IME outperforms black-box models. For multivariate forecasting IME performance is compa-

rable with black-box models (second-best accuracy after TCN). We also observe that using an interpretable

assignment doesn’t degrade the accuracy.

5.4 Interpretability Results

Global interpretability: In S-IMEii, where both the assignment module and experts are interpretable,

explanations are reduced to merely the equations of assignment and experts. We use the Electricity dataset

to exemplify this capability of IME. Algorithm 2 shows the global IME rules with input sequence length

t = 3 and the number of experts n = 2, with e denoting the error made by each expert.

70

Black Box Models White Box Models IME

Features Datasets Forecast horizon LSTM Informer Transformer TCN AR LR S-IMEii S-IMEdi

Univariate

Electricity
24 .178 .159 .163 .172 .173 .167 .158 .158
48 .204 .188 .199 .195 .198 .188 .180 .180

168 .251 .234 .252 .235 .242 .224 .217 .224

Climate
24 .094 .106 .094 .092 .095 .098 .090 .091
48 .128 .176 .131 .134 .140 .141 .137 .140

168 .230 .313 .242 .209 .228 .234 .222 .220

ETTh1
24 .085 .075 .077 .084 .030 .034 .027 .027
48 .202 .109 .131 .133 .049 .054 .040 .042

168 .293 .228 .140 .225 .089 .109 .071 .071

ETTh2
24 .093 .121 .073 .076 .067 .071 .065 .066
48 .122 .145 .108 .110 .104 .101 .096 .096

168 .256 .253 .169 .248 .176 .173 .167 .167

ETTm1
24 .017 .055 .017 .017 .013 .011 .012 .011
48 .029 .056 .361 .032 .020 .020 .021 .020

168 .161 .117 .166 .110 .060 .049 .047 .044

Multivariate

Climate
24 .066 .088 .092 .067 .127 .079 .072 .072
48 .098 .119 .216 .095 .171 .106 .097 .097

168 .204 .220 .252 .188 .285 .197 .192 .191

ETTh1
24 .112 .282 .138 .129 .392 .051 .047 .047
48 .301 .694 .274 .148 1.167 .085 .072 .070

168 .518 1.027 .303 .172 1.788 .142 .124 .144

ETTh2
24 .224 .385 .346 .263 .244 .105 .098 .091
48 .590 1.557 .582 .772 .738 .390 .260 .263

168 .923 2.110 1.124 .817 .770 .578 .477 .548

ETTm1
24 .034 .070 .029 .035 .024 .022 .017 .017
48 .065 .109 .074 .038 .067 .031 .029 .029

168 .242 .371 .430 .127 .929 .069 .078 .078

Table 5.2: The MSE of baselines and IME for various time series datasets at different forecasting
horizons.

71

Algorithm 2: A global inherently-interpretable model discovered by S-IMEii

Aexpert1 = −.05xt−1+.03xt−2+.9xt−3+.38e1−.06e2

Aexpert2 = −.03xt−1+.11xt−2+.08xt−3+.23e1+.05e2

if Aexpert1 > Aexpert2 then

yt+1 = −.049xt−1 − .29xt−2 + 1.17xt−3;

else
yt+1 = −.081xt−1 − .23xt−2 + 1.13xt−3

Figure 5.4: Expert interpretability, weights for different LR experts on Rossmann, allowing ex-
pert behavior to be easily interpreted.

Expert interpretability: All IME options provide local expert interpretability. Explanations can be

given as equations for each expert, or can be conveniently visualized as plots when there is a higher number

of features or experts. Figure 5.4 exemplifies this for Rossmann – “Expert 1” puts high positive weights

on ‘the number of customers’, ‘open’ and ‘competition distance’; “Expert 2” puts high negative weights

on ‘assortment’; and “Expert 3” makes its prediction mainly based on ‘the number of customers’. Figure

5.5 shows sample-wise interpretability examples, the Figure shows feature weights of the interpretable LR

model for different samples on Rossmann. For the first sample shown in Figure 5.5a, the most influential

feature was the number of customers entering the store. Whereas for the second sample shown in Figure

5.5b, multiple features influence the model output.

72

(a) For this sample, the most influential feature was the number of customers.

(b) For this sample, multiple features influence the model output.

Figure 5.5: Sample-wise feature weights on Rossmann dataset.

Identifying data distribution modes : We construct a synthetic dataset (Figure 5.6a) to showcase

additional interpretability capabilities offered by IME. We run S-IMEii with LR assignment (Figure 5.1a)

and S-IMEdi with MLP assignment (Figure 5.1b). Figure 5.6b shows that both S-IMEii and S-IMEdi

assign most samples so that Y = x1 are assigned to Expert 1, Y = x2 to Expert 2 and Y = x3 to Expert

3. In this way, IME gives insights into how different subsets can be split based on unique characteristics –

e.g. different seasonal climates and clothing sales in Retail.

Identifying temporal regime changes: Figure 5.7a shows a synthetic univariate dataset where the

feature distribution changes over time. S-IMEii with an LR assignment module and S-IMEdi with an

LSTM assignment module are used, and all interpretable experts are simple auto-regressive models. Figure

5.7b and 5.7c show that IME can identify changes over time and uses different experts for distribution

73

modes. This capability can be used to get insights into temporal characteristics and major events, e.g. to

understand the impact of introducing new drugs for disease prediction.

Identifying incorrect model behavior: Another use case for interpretability is model debugging and

identifying undesired behaviours. To showcase IME for use case, we use synthetic data from Figure 5.6a.

Figure 5.6c shows the weights for the experts for S-IME with interpretable (top) and DNN assignment

(bottom) respectively. S-IMEii yields almost ideal behavior; Expert 1 assigns highest weight to feature x1,

Expert 2 to x2 and Expert 3 to x3. However, Expert 1 in S-IMEdi incorrectly assigns the highest weights to

feature x2. Investigating different weights in this way can help verify whether the expert logic is correct.

Model builders can benefit from this insights to debug and improve model performance, e.g. by replacing

or down-weighing certain experts.

User study on IME explanations: IME offers faithful local explanations, as the actual interpretable

models behind each prediction are known. This is in contrast to post-hoc methods used to explain black-

box methods such as SmoothGrad [12], SHAP [16], Integrated Gradients [15], DeepLift [7]. Such post-

hoc methods may be unreliable [20, 21, 22], especially so for time series as shown in Section 3.1. To

demonstrate the quality of IME’s explanations, we design a user study that focuses on comparisons with

the commonly-used post-hoc method, SHAP [16]. We base the objective component on human-grounded

metrics [146], where the tasks conducted by users are simplified versions of the original task. We use sales

prediction on Rossmann as the task, and experiment with S-IMEii (LR assignment and 20 experts) and

MLP as the black-box model. First, we consider a counterfactual simulation scenario: for each sample, the

users are given an input and an explanation (along with access to training data for analyses) and asked how

the model output (sales prediction) would change with the input changes. The user can choose: no change,

increase or decrease. Explanations are provided by the chosen interpretable expert of IME vs. SHAP [16].

We collect 77 samples from 15 users. When provided with IME explanations, users can predict model

74

Figure 5.6: Identifying different data distribution modes for S-IMEii and S-IMEid. (a) Synthetic
tabular data with three features x1, x2, x3 and target Y . (b) Number of samples from different
modes assigned to each expert. (c) Weights given to each feature by different experts.

Figure 5.7: Identifying regime changes. (a) Synthetic univariate time series where feature distri-
bution changing over time. (b) S-IMEii is able to identify changes in time regime and utilize all
3 experts. (c) S-IMEdi identified changes in regime but only 2 experts were used.

75

behavior with an accuracy of 69% vs. 42% of SHAP. This shows that explanations provided by IME can

be easily understood by users and are more faithful. Next, we also ask the users which explanations they

trust more for each sample: explanation A/B, both, or neither. IME is chosen in 87% of the cases vs. 6.5%

of SHAP (and neither gets 6.5%), demonstrating the trustworthiness of IME’s explanations.

5.5 Performance Analyses

Comparison to black-box model performance: Table 5.2 shows that IME can outperform black-

box models. To further shed light on when this is the case, we investigate the effect of changing the

interpretable model’s capacity. For LR models, as we increase the input sequence length (and hence

the number of learnable coefficients), the model accuracy increases as shown in Figure 5.8. Note that

increasing the sequence length doesn’t affect the number of parameters for an LSTM. IME outperforms

a single interpretable model for any sequence length, and starts outperforming LSTM when the accuracy

gap between LR and LSTM gets smaller (e.g. with 160 timesteps). IME’s performance depends on the

performance of its experts. It has been shown [147] that interpretable models preform particularly well for

time series forecasting, explaining why IME may outperform DNNs for time series.

Figure 5.8: Effect of increasing interpretable model capacity for LR and S-IME with LR experts
on the Electricity dataset.

76

Effect of the number of experts: Figure 5.9 shows the effect of changing the number of experts on

IME’s accuracy on the Rossmann dataset. As the number of experts increases, the accuracy increases until

the optimal number of experts is reached (40 for LR experts, 20 for soft DTs). After this value, increasing

the number of experts causes a slight decrease in accuracy as experts become underutilized. The number

of experts can be treated as a hyperparameter that can be optimized on a validation dataset. Note that IME

with fewer experts is desirable for improving overall model interpretability.

Figure 5.9: Number of experts vs. accuracy on the Rossmann dataset.

Ablation studies: We perform ablation studies on the performance benefits brought by each compo-

nent. Table 5.3 shows that removing various IME components yields worse performance. Note that IME

can be used for any tabular dataset without a time component by removing the past error from the in-

put to the assignment module, i.e A([Xt;Et−1]) −→ A(X). However, the availability of errors over time

improves the performance of the assignment module.

IME in comparison to other ME variants: Sparsely-gated ME [131] assigns samples to a subset

of experts and then combines the outputs of gates. Switch ME [132] assigns each sample to a single

expert. For fair comparison, at inference a single expert is used. Table 5.3 shows that IME’s assignment

mechanism yields superior results.

77

Loss Function S-IMEii S-IMEdi

Proposed IME 1298.57 671.46

Without Lutil 1369.54 710.61
Without Lsmooth 1481.87 844.15
Without LA pred 1342.89 701.50
Without using past errors 1338.57 745.23
Without freezing step (Section 5.1.3) 1315.70 760.25

Sparsely-gated ME [131] 1575.18
Switch ME [132] 2839.56

Table 5.3: Ablation study on the Rossmann dataset (metrics in RSME).

5.6 Related Work

Mixture of experts: [134] introduced ME over three decades ago. Since then many expert architectures

have been proposed such as SVMs [148] , Dirichlet Processes [149] and Gaussian Processes [150]. Jordan

and Jacobs [151] introduced hierarchical assignment for MEs. Shazeer et al. [131] proposed an effective

deep learning method that stacked ME as a layer between LSTM layers. Others [132, 152, 153], incorpo-

rated ME as a layer in Transformers. Pradier et al. [154] introduced human-ML ME where the assignment

module depends on human-based rules, and the experts themselves are black-box DNNs. IME combines

interpretable experts with DNNs to produce an inherently-interpretable architecture with accuracy compa-

rable to DNNs. IME also, (1) provides explanations that accurately describe the overall prediction process

with minimal loss in accuracy, (2) supports both tabular and time series data, and (3) can be easily used

for complex large-scale real-world datasets.

5.7 Conclusion

We propose IME, a novel inherently-interpretable framework for structured data. IME has different forms:

while one can provide explanations that are the exact description of how prediction is computed via inter-

78

pretable models, the other can be used to adjust what ratio of samples can be predicted with interpretable

models. We show that on real-world tabular and time series data, while achieving useful interpretability

capabilities, the accuracy of IME is on par with, and in some cases even better than, state-of-the-art black-

box DNNs. Future work can address current limitations of IME, for example by enabling feature sparsity

for easier-to-understand explanations with a high number of features, and making model selection more

efficient with the multiple loss functions.

79

Chapter 6: Improvement by Posthoc Procedures: Temporal Saliency Rescaling

In this chapter, we improve time series interpretability by adjusting existing saliency methods to adapt to

time series properties. Specifically, we propose a two-step Temporal Saliency Rescaling (TSR) approach

that can be used on top of any existing saliency method adapting it to time series data. Briefly, the approach

works as follows: (a) we first calculate the time-relevance score for each time by computing the total

change in saliency values if that timestep is masked; then (b) in each timestep whose time-relevance score

is above a certain threshold, we calculate the feature-relevance score for each feature by computing the

total change in saliency values if that feature is masked. The final (time, feature) importance score is

the product of associated time and feature relevance scores. This approach substantially improves the

quality of saliency maps produced by various methods when applied to time series data. Figure 6.1 shows

the initial performance of multiple methods, while Figure 6.2 shows their performance coupled with our

proposed TSR method.

6.1 Temporal Saliency Rescaling

From the results presented in section 3.2.2, we find that most saliency methods identify informative

timesteps successfully while they fail in identifying feature importance in those timesteps. In this section,

we propose a method that can be used on top of any generic interpretation method to boost its performance

in time series applications. The key idea is to decouple the (time,feature) importance scores to time and

feature relevance scores using a two-step procedure called Temporal Saliency Rescaling (TSR). In the

80

Figure 6.1: Saliency maps produced by Grad, Integrated Gradients, and DeepSHAP for 3 differ-
ent models on synthetic data and time series MNIST (white represents high saliency). Saliency
seems to highlight the correct timestep in some cases but fails to identify informative features in
a given time.

Figure 6.2: Saliency maps when applying the proposed Temporal Saliency Rescaling (TSR)
approach.

first step, we calculate the time-relevance score for each time by computing the total change in saliency

values if that timestep is masked. Based on our experiments presented in the Chapter 3, many existing

interpretation methods would provide reliable time-relevance scores. In the second step, in each timestep

whose time-relevance score is above a certain threshold α, we compute the feature-relevance score for

each feature by computing the total change in saliency values if that feature is masked. By choosing a

proper value for α, the second step can be performed in a few highly-relevant timesteps to reduce the

81

overall computational complexity of the method. Then, the final (time, feature) importance score is the

product of associated time and feature relevance scores. The method is formally presented in Algorithm 3.

Algorithm 3: Temporal Saliency Rescaling (TSR)
Input: input X , a baseline interpretation method R(.)
Output: TSR interpretation method RTSR(.)
for t← 0 to T do

Mask all features at time t: X :,t = 0, otherwise X = X;
Compute Time-Relevance Score ∆time

t =
∑

i,t |Ri,t(X)−Ri,t(X)|;
for t← 0 to T do

for i← 0 to N do
if ∆time

t > α then
Mask feature i at time t: X i,: = 0, otherwise X = X;
Compute Feature-Relevance Score ∆feature

i =
∑

i,t |Ri,t(X)−Ri,t(X)|;
else

Feature-Relevance Score ∆feature
i = 0;

Compute (time,feature) importance score RTSR
i,t = ∆feature

i ×∆time
t ;

6.1.1 Temporal Saliency Rescaling Optimizations

The proposed rescaling approach improves the ability of saliency methods to capture feature importance

over time but the main back draw of Temporal Saliency Rescaling (Algorithm 3) is the increase in com-

plexity that is a result of performing multiple gradient calculations. Other approaches [12, 20] have relied

on a similar trade-off between interpretability and computational complexity. In this section, we look into

possible optimizations for temporal saliency rescaling.

Algorithm 4 shows a variation of the algorithm that calculates the contribution of a group of features

within a timestep. Algorithm 5 calculates the contribution of each timestep and feature independently; the

total contribution of a single feature at a given time is the product of feature and time contributions.

The approximate relevance calculations needed for each variation is shown in table 6.1. The com-

plexity TSR and TSR With Feature Grouping highly depends on α. In many time series applications

82

Algorithm 4: Temporal Saliency Rescaling (TSR) With Feature Grouping
Input: input X , a baseline interpretation method R(.), feature group size G
Output: TSR interpretation method RTSR+FG(.)
for t← 0 to T do

Mask all features at time t: X :,t = 0, otherwise X = X;
Compute Time-Relevance Score ∆time

t =
∑

i,t |Ri,t(X)−Ri,t(X)|;
for t← 0 to T do

for i← 0, G, 2G, . . . , N do
if ∆time

t > α then
Mask features i : i+G at time t: X i:i+G,t = 0, otherwise X = X;
Compute Feature-Relevance Score ∆feature

i:i+G =
∑

i,t |Ri,t(X)−Ri,t(X)|;
else

Feature-Relevance Score ∆feature
i:i+G = 0;

Compute (time,feature) importance score RTSR+FG
i,t = ∆feature

i:i+G ×∆time
t ;

Algorithm 5: Temporal Feature Saliency Rescaling (TFSR)
Input: input X , a baseline interpretation method R(.)
Output: TFSR interpretation method RTFSR(.)
for t← 0 to T do

Mask all features at time t: X :,t = 0, otherwise X = X;
Compute Time-Relevance Score ∆time

t =
∑

i,t |Ri,t(X)−Ri,t(X)|;
for i← 0 to N do

Mask all timesteps for feature i: X i,: = 0, otherwise X = X;
Compute Feature-Relevance Score ∆feature

i =
∑

i,t |Ri,t(X)−Ri,t(X)|;
for t← 0 to T do

for i← 0 to N do
Compute (time,feature) importance score RTFSR

i,t = ∆feature
i ×∆time

t ;

such as anomaly detection, α can be set to be close to 1. TFSR complexity is comparable to SmoothGrad.

Other approaches have proposed similar trade-offs between interpretability and computational complexity,

i.e., Hooker et al. [20] proposed retraining the entire network after removing salient features, retraining

even most simple networks is very expensive in comparison to extra gradient calculations.

83

Algorithm Approximate number of Relevance Calculations
Algorithm 3: RTSR(.) T + (T ∗ (1− α) ∗N)
Algorithm 4: RTSR+FG(.) T + (T ∗ (1− α) ∗N/G)
Algorithm 5: RTFSR(.) T +N

Table 6.1: Complexity analysis of different TSR variations.

6.2 Experiments

In the following experiments we follow time series benchmark [25]. Saliency methods, datasets and neural

architectures used in the following experiments are described in Chapter 3.

6.2.1 Saliency Maps Quality

Figure 6.2 shows updated saliency maps when applying TSR on the same examples in Figures 6.2. There

is a definite improvement in saliency quality across different architectures and interpretability methods

except for SmoothGrad; this is probably because SmoothGrad adds noise to gradients, and using a noisy

gradient as a baseline may not be appropriate. Additional examples are shown in figures 6.3, 6.4 and 6.5,

when applying temporal saliency rescaling we observe a definite improvement in saliency quality across

different architectures and interpretability methods except for Gradient SHAP and SmoothGrad.

MNIST Figure 6.3 shows saliency maps produced by each (neural architecture, saliency method) pair

on samples from time series MNIST; Figure 6.4, show the samples after applying TSR. There is a sig-

nificant improvement in the quality of the saliency map after applying the temporal saliency rescaling

approach.

Synthetic Datasets Figure 6.5 shows saliency maps produced by each (neural architecture, saliency

method) pair on samples from different synthetic datasets before and after applying TSR.

84

Figure 6.3: Saliency maps produced by Gradient-based saliency methods including Grad, Inte-
grated Gradients, DeepLIFT, Gradient SHAP, DeepSHAP and SmoothGrad and non-gradient-
based saliency method including Shap value sampling, Feature Ablation and Feature Occlusion
for 4 different models on time series MNIST (white represents high saliency).

85

Figure 6.4: Saliency maps when applying the proposed Temporal Saliency Rescaling (TSR) ap-
proach on different saliency methods.

86

(a) (b)

Figure 6.5: (a) Saliency maps produced by Grad, Integrated Gradients, DeepLIFT, Gradient
SHAP, DeepSHAP, and SmoothGrad for three different models on static synthetic datasets. (b)
Saliency maps when applying the proposed Temporal Saliency Rescaling (TSR) approach.

87

6.2.2 Saliency Methods versus Random Ranking

Table 6.2 shows the performance of TSR with simple Gradient compared to some standard saliency

method on the benchmark metrics described in Section 3.1. TSR + Grad outpreforms other methods

on all metrics.

Middle Box Moving Box
Saliency Methods AUPR AUP AUR AUC AUPR AUP AUR AUC
Grad 0.331 0.328 0.457 64.90 0.225 0.229 0.394 95.35
DLS 0.344 0.344 0.452 68.30 0.288 0.288 0.435 94.05
SG 0.294 0.300 0.451 64.00 0.241 0.247 0.395 92.90
TSR + Grad 0.399 0.381 0.471 62.20 0.335 0.326 0.456 84.00

Table 6.2: Results from TCN on Middle Box and Moving Box synthetic datasets. Higher AUPR,
AUP, and AUR values indicate better performance. AUC lower values are better as this indicates
that the rate of accuracy drop is higher.

Model accuracy drop, precision and recall The effect of masking salient features on the model

accuracy is shown in the first row of Figures [6.6-6.15]. Similarly, precision and recall at different levels

of degradtion are shown in second row of Figures [6.6-6.15].

88

Figure 6.6: Accuracy drop, precision and recall for Middle box datasets

89

Figure 6.7: Accuracy drop, precision and recall for Small Middle box datasets

90

Figure 6.8: Accuracy drop, precision and recall for Moving Middle box datasets

91

Figure 6.9: Accuracy drop, precision and recall for Small Moving Middle box datasets

92

Figure 6.10: Accuracy drop, precision and recall for Rare Feature datasets

93

Figure 6.11: Accuracy drop, precision and recall for Moving Rare Feature datasets

94

Figure 6.12: Accuracy drop, precision and recall for Rare Time datasets

95

Figure 6.13: Accuracy drop, precision and recall for Moving Rare Time datasets

96

Figure 6.14: Accuracy drop, precision and recall for Positional Feature datasets

97

Figure 6.15: Accuracy drop, precision and recall for Positional Time datasets

98

6.2.3 Saliency Maps for Images versus Multivariate Time Series

Figure 6.16 shows a few examples of saliency maps produced by the various treatment approaches of

the same sample (images for CNN, uni, bi, multivariate time series for TCN). One can see that CNN

and univariate TCN produce interpretable maps. In contrast, the maps for the bivariate and multivariate

Grad are harder to interpret, applying the proposed temporal saliency rescaling approach on bivariate and

multivariate time series significantly improves the quality of saliency maps and in some cases even better

than images or univariate time series.

Figure 6.16: Saliency Maps for samples when treated as an image (CNN) versus univariate (1
feature x 784 timesteps), bivariate (2 features x 392 timesteps), or multivariate (28 features x 28
timesteps) time series (TCN) before and after applying TSR.

99

6.3 Conclusion

Through experiments preformed in Section 3.2.2, we observe that methods generally identify salient

timesteps but cannot distinguish important vs. non-important features within a given timestep. Build-

ing on this observation, in this chapter we propose a two-step temporal saliency rescaling approach to

adapt existing saliency methods to time series data. This approach has led to substantial improvements in

the quality of saliency maps produced by different methods.

100

Chapter 7: Improvement by Regularization: Saliency Guided Training

In this chapter, we propose a new training procedure that naturally leads to improved model explanations

using current saliency methods. Our proposed training procedure, called saliency guided training, trains

models that produce sparse, meaningful, and less noisy gradients without degrading model performance.

This is done by iteratively masking input features with low gradient values (i.e., less important features)

and then minimizing a loss function that combines (a) the KL divergence [137] between model outputs

from the original and masked inputs, and (b) the appropriate loss function for the model prediction. This

procedure reduces noise in model gradients without sacrificing its predictive performance.

To demonstrate the effectiveness of our proposed saliency guided training approach, we consider

a variety of classification tasks for images, language, and multivariate time series across diverse neural

architectures, including Convolutional Neural Networks (CNNs), Recurrent Neural Network (RNNs), and

Transformers. In particular, we observe that using saliency guided training in image classification tasks

leads to a reduction in visual saliency noise and sparser saliency maps, as shown in Figure 7.4, Figure 7.5,

and Figure 7.6. Saliency guided training also improves the comprehensiveness of the produced explana-

tions for sentiment analysis, and fact extraction tasks as shown in Table 7.4. In multivariate time series

classification tasks, we observe an increase in the precision and recall of saliency maps when applying the

proposed saliency guided training. Interestingly, we also find that the saliency guided training reduces the

vanishing saliency issue of RNNs discussed in Section 3.2.1 as shown in Figure 7.10. Finally, we note

that although we use the vanilla gradient for masking in the saliency guided training procedure, we ob-

101

serve significant improvements in the explanations produced after training by several other gradient-based

saliency methods.

7.1 Notation

First, consider a classification problem on the input data {(Xi, yi)}ni=1 such that each X = [x1, . . . , xN] ∈

RN has N features and y is the label. Let fθ denote a neural network parameterized by θ. The standard

training of the network involves minimizing the cross-entropy loss L over the training set as follows:

minimize
θ

1

n

n∑
i=1

L (fθ (Xi) , yi) (7.1)

The gradient of the network output fθ (X) with respect to the input X is given by ∇Xfθ (X). Let S(.)

be a sorting function such that Se(Z) is the eth smallest element in Z. Hence, S (∇Xfθ (X)) is the

sorted gradient. We define the input mask function Mk(.) such that Mk(S(X), X) replaces all xi where

S(xi) ∈ {Se (xi)}ke=0 with a mask distribution, i.e., Mk(S(X), X) removes the k lowest features from X

based on the order provided by S(X).

For a language input, we use X = [x1, . . . , xN] where xi ∈ Rd is the feature embedding represent-

ing the ith word of the input. In that case, S(X) would sort elements of X based on the sum of the gradient

of the embeddings for each word x and Mk(S(X), X) would mask the bottom k words according to that

sorting. For a multivariate time series input, we use X = [x1,1, . . . , xF,1, . . . , xF,T] ∈ RF×T where T is

the number of timesteps and F is the number of features per timestep. xi,t is the input feature i at time t;

sorting and masking would be done at the xi,t level.

102

For two discrete probability distributions P and Q defined on the same probability space X , the

Kullback–Leibler (KL) divergence [137] (or, relative entropy) from Q to P is given as DKL:

DKL(P ∥ Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
. (7.2)

7.2 Saliency Guided Training Procedure

Existing gradient-based methods can produce noisy saliency maps as shown in Figure 7.1. The saliency

map noise may be partially due to some uninformative local variations in partial derivatives. Using a

standard training procedure based on ERM (expectation risk minimization), the gradient of the model

w.r.t. the input (i.e.,∇Xfθ (X)) may fluctuate sharply via small input perturbations [12].

Figure 7.1: Saliency maps produced by typical training versus saliency guided training.

If gradient-based explanation methods faithfully interpret the model’s predictions, irrelevant fea-

tures should have gradient values close to zero. Building on this intuition, we introduce saliency guided

training, a procedure to train neural networks such that input gradients computed from trained models pro-

vide more faithful measures to downstream (gradient-based) saliency methods. Saliency guided training

aims to reduce gradient values of irrelevant features without sacrificing the model performance. During

saliency guided training, for every input X , we create a new input X̃ by masking the features with low

103

gradient values as follows:

X̃ = Mk(S(∇Xfθ (X)), X) (7.3)

X̃ is then passed through the network which results in an output fθ(X̃). In addition to the clas-

sification loss, the saliency guided training minimizes the KL divergence between fθ (X) and fθ(X̃) to

ensure that the trained model produces similar output probability distributions over labels for both masked

and unmasked inputs. The optimization problem for the saliency guided training is:

minimize
θ

1

n

n∑
i=1

[
L
(
fθ (Xi) , yi

)
+ λDKL

(
fθ (Xi) ∥ fθ(X̃i)

)]
(7.4)

where λ is a hyperparameter to balance between the cross-entropy classification loss and the KL divergence

term. Since this loss function is differentiable with respect to θ, it can be optimized using existing gradient-

based optimization methods. The KL divergence term encourages the model to produce similar outputs

for the original input X and masked input X̃ . For this to happen, the model will need to learn to assign

low gradient values to irrelevant features in model predictions. This potentially results in sparse and more

faithful gradients as shown in Figure 7.1.

Masking functions: In images and time series data, features with low gradients are replaced with

random values within the feature range. In language tasks, the masking function replaces the low salient

word with the previous high salient word. This allows us to emphasize on high salient words and remove

non-salient ones while maintaining the sentence length. The selection of k is dataset-dependent. It depends

on the amount of irrelevant information in a training sample. For example, since most pixels in MNIST

are uninformative, a larger k is desired. Detailed hyperparameters used is available in the appendix. Note

that, only input features are masked during the saliency guided training.

104

Limitations: (a) Compared to traditional training, our proposed training procedure is more computa-

tionally expensive. Specifically, the memory needed is doubled since now in addition to storing the batch,

we are storing the masked batch as well. Similar to adversarial training, this training process is slow and

takes a larger number of epochs to converge. For example, the standard training of a CIFAR-10 model usu-

ally takes on average 118 epochs to converge where each epoch is roughly 24 seconds. Using the saliency

guided training, the convergence takes about 124 epochs where each epoch takes roughly 75 seconds (all

experiments on the same GPU). (b) Our training procedure requires two hyperparameters k and λ which

might require a hyperparameter search (we find that λ = 1 works well in all of our experiments).

Algorithm 6: Saliency Guided Training
Input: Training samples X , # of features to be masked k, learning rate τ , hyperparameter λ

Initialize: fθ

for i← 1 to epochs do

for minibatch do
Compute the masked input:

Get sorted index I for the gradient of output with respect to the input.

I = S
(
∇Xfθi (X)

)
Mask bottom k features of the original input.

X̃ = Mk(I,X)

Compute the loss function:

Li = L
(
fθi (X) , y

)
+ λDKL

(
fθi (X) ∥ fθi(X̃)

)
Use the gradient to update network parameters:

fθi+1
= fθi − τ ∇θiLi

end

end

105

7.3 Experiments

In this chapter, we evaluate our learning procedure with the following saliency methods: Gradient (GRAD)

[14], Integrated Gradients (IG) [15], DeepLIFT (DL) [7], SmoothGrad (SG) [12], and Gradient SHAP

(GS) [16]. For more details on different methods please refer to Chapter 2.

We demonstrate the effectiveness of our training procedure using several neural network archi-

tectures: Convolution neural networks (CNNs) including VGG-16 [155], ResNet [156] and Temporal

Convolutional Network (TCN) [92, 93, 94], a CNN that handles sequences; Recurrent neural networks

(RNNs) including LSTM [119] and LSTM with Input-Cell Attention [26]; as well as Transformers [40].

All experiments have been repeated 5 times; the results reported below are the average of the 5 runs.

7.3.1 Saliency Guided Training for Images

In the following section, we compare gradient-based explanations produced by regular training versus

saliency guided training for MNIST [157] trained on a simple CNN [158], for CIFAR10 [159] trained on

ResNet18 [156] and for BIRD [160] trained on VGG-16 [155].

Datasets and Classifiers

• MNIST [157] a database of handwritten digits. The classifier consists of two CNN layers with

kernel size 3 and stride of 1 followed by two fully connected layers, two dropout layers with p =

0.25 and p = 0.5, and the 10 output neurons.

• CIFAR10 [159] a low-resolution classification dataset with 10 different classes representing air-

planes, cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks. ResNet18 [156] was used as a

classifier, ResNet18 is a very deep CNN with “identity shortcut connection,” i.e., skip connections,

that skip one or more layers to solve the vanishing gradient problem faced by deep networks.

106

• BIRD [160] A kaggle datasets of 260 bird species. Images were gathered from internet searches by

species name. VGG16 [155] was used as a classifier, the last few dense layers and the output layer

were modified to accommodate the number of classes in this dataset.

Dataset # Training # Testing # Classes Features Test Accuracy λ k
Tradtional Sal. Guided (as a % of feature)

MNIST 60000 10000 10 1× 28× 28 99.4 99.3 1 50%
CIFAR10 50000 10000 10 3× 32× 32 92.0 91.5 1 50%
BIRD 38518 1350 260 3× 224× 224 96.6 96.9 1 50%

Table 7.1: Datasets used for Image experiments.k is the percentage of overall features masked
during saliency guided training. For example, in MNIST number of features masked ⌈0.5× 28×
28⌉ = 392.

Masking For images, low salient features are replaced by a random variable within the color channel

input range. For example, in an RGB image, if pixel 2 × 3 is to be masked 1 × 2 × 3 would be replaced

with a random variable within R channel range, similarly 2× 2× 3 and 3× 2× 3 would be replaced with

a random variable within G and B channel range respectively.

Model Accuracy Drop

We compare the saliency guided training and traditional training for different saliency methods with

modification-based evaluation [10, 63, 121]: First, features are ranked according to the saliency values.

Then, higher-ranked features are recursively eliminated (the original background in MNIST replaces the

eliminated features). Finally, the degradation to the trained model accuracy is reported. This is done at

different feature percentages. A steeper drop indicates that the removed features affected the model accu-

racy more. Figure 7.2 compares the model performance degradation on different gradient-based methods;

the saliency guided training shows a steeper accuracy drop regardless of the saliency method used.

107

Figure 7.2: Model accuracy drop when removing features with high saliency using traditional
and the saliency guided training for different gradient-based methods against a random baseline.
A steeper drop indicates a better performance. We find that regardless of the saliency method
used, the performance improves by the saliency guided training.

Figure 7.3: Accuracy drop in different
modification-based evaluation masking ap-
proaches.

This experiment can only be performed on a

dataset like MNIST since the uninformative feature dis-

tribution is known (black background), while this is

not the case in other datasets that we have considered.

Although such modification-based evaluation methods

have been applied to other datasets, [10, 63, 121];

Hooker et al. [20] showed that removing features pro-

duces samples from a different data distribution vio-

lating the underlying IID assumption (i.e., the training

and evaluation data come from identical distributions).

When the feature replacement comes from a different

distribution, it is unclear whether the degradation in the

model performance is from the distribution shift or the removal of informative features. For that reason, we

need to make sure that the model is trained on the mask used during testing to avoid this undesired effect.

Hooker et al. [20] proposes ROAR where the model is retrained after the feature elimination. How-

ever, due to the data redundancy, the retrained model can rely on different features to achieve the same

108

accuracy. Figure 7.3 shows the model accuracy drop on traditionally trained MNIST when removing the

salient features. The IID line represents replacing features with the black MNIST background (known

uninformative distribution), which acts as the ground truth in this particular dataset. The OOD line rep-

resents replacing the features with the mean image pixel value as done by [10, 63, 121]; and ROAR

shows replacing features with the mean value and retraining the model as proposed by [20]. Since neither

OOD nor ROAR produce results similar to those produced by the IID feature replacement, we argue that

modification-based evaluation methods may provide unreliable results unless the uninformative IID distri-

bution is known. We leave further exploration of modification-based evaluation methods to future work.

Quality of Saliency Maps for Images

For an image classification problem, in many cases, most features are redundant and not needed by the

model to make the prediction. Consider the background of an object in an image; although it covers most

of the image, backgrounds are often not essential in the classification task. If the model is focusing on the

object rather than the background, we would want the background gradient (i.e., most of the features) to

be close to zero.

The examples shown in Figure 7.4, Figure 7.5, and Figure 7.6 were correctly classified by both

models. Gradients are scaled per sample to have values between -1 and 1. Overall, saliency maps produced

by saliency guided training are less noisy than those produced by traditional training and tend to highlight

the object itself rather than the background. The distributions of gradient values per sample show that most

features have small values (near zero) with a higher separation of high saliency features away from zero

for saliency guided training.

109

Figure 7.4: Saliency maps and saliency distribution for Traditional an Saliency Guided Training
on MNIST

110

Figure 7.5: Saliency maps and saliency distribution for Traditional an Saliency Guided Training
on CIFAR10

111

Figure 7.6: Saliency maps and saliency distribution for Traditional an Saliency Guided Training
on BIRD

112

Fine-tuning with Saliency Guided Training

We investigate the effect of training traditionally and fine-tuning with saliency guided training. This would

be particularly useful for large datasets like imagenet. Table 7.2 shows the area under accuracy drop

curve (AUC) on MNIST Figure 7.2 for gradient when training traditionally, training using saliency guided

procedure and fine-tuning (smaller AUC indicates better performance). We find that fine-tuning improves

the performance over traditionally trained networks.

Training Procedures AUC

Traditional 3360.4
Saliency Guided 1817.6
Fine-tuned 2258.8

Table 7.2: Area under accuracy drop curve on MNIST for different training procedures

Note that, there is not much gain in training performance when training from scratch versus fine-

tuning for small datasets like MNIST. However, for larger datasets like CIFAR10, we observed a clear

decrease in the number of epochs when fine-tuning the network. The number of epochs for traditional

training CIFAR10 is on average 118, saliency training is 124 while fine-tuning takes only 70 epochs.

7.3.2 Saliency Guided Training for Language

We compare the interpretability of recurrent models trained on language tasks using the ERASER [71]

benchmark. ERASER was designed to capture how well an explanation provided by models aligns with

human rationales and how faithful these explanations are (i.e., the degree to which explanation influences

the predictions). For our purpose, we only focus on the faithfulness of the explanations.

Metrics ERASER provides two metrics to measure interpretability. Comprehensiveness evaluates if all

features needed to make a prediction are selected. To calculate an explanation comprehensiveness, a new

113

input Xi is created such that Xi = Xi−Ri where Ri is predicted rationales. Let fθ (Xi)j be the prediction

of model for class j. The model comprehensiveness is calculated as:

Comprehensiveness = fθ (Xi)j − fθ
(
Xi

)
j

A high score here implies that the explanation removed was influential in the predictions. The second

metric is Sufficiency that evaluates if the extracted explanations contain enough signal to make a prediction.

The following equation gives the explanation sufficiency:

Sufficiency = fθ (Xi)j − fθ (Ri)j

A lower score implies that the explanations are adequate for a model prediction.

To evaluate the faithfulness of continuous importance scores assigned to tokens by models, the soft

score over features provided by the model is converted into discrete rationales Ri by taking the top-kd

values, where kd is a threshold for dataset d. Denoting the tokens up to and including bin k, for instance,

i by Rik, an aggregate comprehensiveness measure is defined as:

1

|B|+ 1

 |B|∑
k=0

fθ (Xi)j − fθ
(
Xik

)
j


Sufficiency is defined similarly. Here tokens are grouped into k = 5 bins by grouping them into

the top 1%, 5%, 10%, 20% and 50% of tokens, with respect to the corresponding importance score. This

metrics is referred to as Area Over the Perturbation Curve (AOPC). For reference, we report these when

random scores are assigned to tokens.

Datasets We focus on datasets that can be formulated as a classification problem: Movie Reviews:

[161] positive/negative sentiment classification for movie reviews. FEVER: [162] a fact extraction and

114

verification dataset where the goal is verifying claims from textual sources; each claim can either be

supported or refuted. e-SNLI: [163] a natural language inference task where sentence pairs are labeled as

entailment, contradiction, neutral and, supporting. Details about each dataset is available in Table 7.3 Word

embeddings are generated from Glove [164]; then passed to a bidirectional LSTM [119] for classification.

Dataset # Training # Testing # Classes Tokens Sentences Test Accuracy λ k
Tradtional Sal. Guided (as a % of tokens)

Movie Review 1600 200 2 774 36.8 0.8890 0.8980 1 60%
FEVER 97957 6111 2 327 12.1 0.7234 0.7255 1 80%
e-SNLI 911928 16429 3 16 1.7 0.9026 0.9068 1 70%

Table 7.3: Overview of datasets in the ERASER benchmark. Number of labels, dataset size, and
average numbers of sentences and tokens in each document. k is the percentage of overall tokens
within a particular document.

Masking For language tasks, masking is a bit more tricky. We tried the following masking functions:

• Removing the masking function creates new input such that X̃ contains only high salient word

from the original input X .

• Replace with token “[UNK]” the masking function replaces the low salient word with the token

“[UNK]” i.e., unknown.

• Replace with token “[SEP]” the masking function replaces the low salient word with the token

“[SEP]” i.e., white space.

• Replace with random word the masking function replaces the low salient with a random word

from vocabulary.

• Replace with last high salient word the masking function replaces the low salient word with the

previous high salient word.

115

Over the three datasets, we found that the last masking function (replace with last high salient word)

gave the best results. We believe that the masking function can also be dataset-dependent. This particular

experiment aims to prove that saliency guided training improves interpretability on language tasks. We

will consider finding the optimal masking function for different language tasks in our future work.

Results Table 7.4 compares the scores produced by different saliency methods for traditional and

saliency guided training against random assignment baseline. We found that saliency guided training re-

sults in a significant improvement in both comprehensiveness and sufficiently for sentiment analysis task

Movie Reviews dataset. While for fact extraction task FEVER dataset, and natural language inference task

e-SNLI dataset saliency guided training improves comprehensiveness and there is no obvious improvement

in sufficiency (this might be due to the adversarial effect of shrinking the sentence to a much smaller size

since the number of words identified as “rationales” is smaller than the remaining words).

Gradient Integrated Gradient SmoothGrad Random
Trad. Sal. Guided Trad. Sal. Guided Trad. Sal. Guided

Movies
Comprehensiveness ↑ 0.200 0.240 0.265 0.306 0.198 0.256 0.056
Sufficiency ↓ 0.042 0.013 0.054 0.002 0.034 0.008 0.294
FEVER
Comprehensiveness↑ 0.007 0.008 0.008 0.009 0.007 0.008 0.001
Sufficiency↓ 0.012 0.011 0.005 0.004 0.006 0.006 0.003
e-SNLI
Comprehensiveness ↑ 0.117 0.126 0.099 0.104 0.117 0.118 0.058
Sufficiency↓ 0.420 0.387 0.461 0.419 0.476 0.455 0.366

Table 7.4: Eraser benchmark scores: Comprehensiveness and sufficiency are in terms of AOPC.
‘Random’ is a baseline when words are assigned random scores.

7.3.3 Saliency Guided Training for Time Series

We evaluated saliency guided training for multivariate time series, both quality on multivariate time series

MNIST and quantitatively through synthetic data.

116

Saliency Maps Quality for Multivariate Time Series

We compare the saliency maps produced on MNIST treated as a multivariate time series with 28 timesteps

each having 28 features. Figure 7.7, Figure 7.8, and Figure 7.9 shows the saliency maps produced by

different saliency methods for Temporal Convolutional Network (TCN), LSTM with Input-Cell Atten-

tion and, Transformers respectively. There is a visible improvement in saliency quality across different

networks when saliency guided training is used. The most significant improvement was found in TCNs.

Figure 7.7: Saliency maps produced for (TCN, saliency method) pairs.

117

Figure 7.8: Saliency maps produced for (LSTM with Input-Cell Attention, saliency method) pairs.

Figure 7.9: Saliency maps produced for (Transformers, saliency method) pairs.

118

Quantitative Analysis on Synthetic Data

We evaluated the saliency guided training on a multivariate time series benchmark proposed in Section 3.1.

The benchmark consists of 10 synthetic datasets, each examining different design aspects in typical time

series datasets. Informative features are highlighted by the addition of a constant µ to the positive class

and subtraction of µ from the negative class. Following Section 3.1, we compare 4 neural architectures:

LSTM [119], LSTM with Input-Cell Attention [26], Temporal Convolutional Network (TCN) [93] and,

Transformers [40]. Details of each dataset is available in table 7.5.

Dataset # Training # Testing # Time Steps # Feature # Informative # Informative
Timesteps Features

Middle 1000 100 50 50 30 30
Small Middle 1000 100 50 50 15 15
Moving Middle 1000 100 50 50 30 30
Moving Small Middle 1000 100 50 50 15 15
Rare Time 1000 100 50 50 6 40
Moving Rare Time 1000 100 50 50 6 40
Rare Features 1000 100 50 50 40 6
Moving Rare Features 1000 100 50 50 40 6
Postional Time 1000 100 50 50 20 20
Postional Feature 1000 100 50 50 20 20

Table 7.5: Synthetic dataset details: Number of training samples, number of testing samples,
number of timesteps per sample, number of features per timestep, number of timesteps with
informative features, and number of informative features in an informative timestep.

Metrics Quantitatively measuring the interpretability of a (neural architecture, saliency method) pair

involves applying the saliency method, ranking features according to the saliency values, replacing high

salient features with uninformative features from the original distribution at different percentages. Finally,

the area under the precision curve (AUP) and the area under the recall curve (AUR) is calculated by the

precision/recall values at different levels of degradation. We compare the AUP and AUR with a random

baseline; since the baseline might be different for different models, we reported the difference between

metrics values generated using the saliency method and the baseline. For example, the difference between

119

gradient and random baseline Diff (AUP) when the model is trained traditionally is calculated as:

Diff (AUP)Grad,Trad. = AUPGrad,Trad. −AUPRandom,Trad. (7.5)

Similarly difference when the model is trained using saliency guided training is:

Diff (AUP)Grad,Sal. = AUPGrad,Sal. −AUPRandom,Sal. (7.6)

Results The mean metrics over all 10 datasets is shown in Table 7.6. Higher values indicate better

performance; negative values indicate performance similar to random feature assignment. Overall, the

best performance was achieved by (TCN, Integrated gradients) when using saliency guided training.

Metric Architecture
Gradient Integrated Gradient DeepLIFT Gradient SHAP DeepSHAP SmoothGrad

Trad. Sal. Trad. Sal. Trad. Sal. Trad. Sal. Trad. Sal. Trad. Sal.

Diff (AUP)

LSTM -0.113 -0.119 -0.083 -0.024 -0.097 -0.108 -0.088 -0.069 -0.098 -0.109 -0.110 -0.097
LSTM + Input. 0.060 0.118 0.188 0.245 0.202 0.263 0.198 0.250 0.214 0.272 0.040 0.084
TCN 0.106 0.168 0.233 0.291 0.248 0.270 0.235 0.288 0.263 0.280 0.088 0.155
Transformer -0.054 -0.062 0.061 0.044 -0.040 -0.032 0.069 0.023 -0.014 -0.055 -0.018 -0.046

Diff (AUR)

LSTM -0.017 0.019 0.062 0.121 0.047 0.089 0.060 0.102 0.031 0.075 0.007 0.004
LSTM + Input. 0.075 0.136 0.185 0.198 0.187 0.204 0.182 0.196 0.183 0.201 0.043 0.111
TCN 0.125 0.171 0.191 0.210 0.202 0.204 0.185 0.209 0.196 0.192 0.046 0.138
Transformer 0.102 0.104 0.182 0.176 0.145 0.146 0.171 0.162 0.101 0.065 0.040 0.018

Table 7.6: The mean difference in weighted AUP and AUR for different (neural architecture,
saliency method) pairs. Overall, the best preference was achieved by TCN when using Integrated
gradients as a saliency method and saliency guided training procedure.

The results in Tables [7.7-7.10] show the performance of each (neural architecture, saliency method)

on each dataset. LSTM: Saliency guided training along with Integrated Gradient has the best precision

and recall. LSTM with Input Cell Attention: Saliency guided training improves the performance of

different saliency methods and datasets. DeepSHAP gives the best precision, while DeepSHAP gives the

best recall. TCN: overall, saliency guided training improves the performance of different saliency methods

and datasets. Integrated Gradient, Gradient SHAP, and DeepSHAP are best performing saliency methods.

Transformers: have the worst interpretability. Here, using saliency guided training improved recall but

not precision.

120

Metric Datasets λ k
Gradient Integrated Gradient DeepLIFT Gradient SHAP DeepSHAP SmoothGrad

Trad. Sal. Trad. Sal. Trad. Sal. Trad. Sal. Trad. Sal. Trad. Sal.

Diff (AUP)

Middle 1 30% -0.280 -0.280 -0.261 -0.036 -0.267 -0.270 -0.263 -0.124 -0.267 -0.271 -0.283 -0.269
Small Middle 1 60% -0.071 -0.066 -0.053 0.052 -0.070 -0.055 -0.056 -0.033 -0.070 -0.055 -0.072 -0.044
Moving Middle 1 60% -0.265 -0.277 -0.218 -0.169 -0.237 -0.264 -0.222 -0.237 -0.239 -0.264 -0.259 -0.263
Moving Small Middle 1 5% -0.059 -0.060 -0.035 0.051 -0.043 -0.045 -0.042 -0.013 -0.044 -0.046 -0.056 -0.037
Rare Time 1 30% -0.076 -0.076 -0.075 -0.065 -0.076 -0.076 -0.075 -0.071 -0.076 -0.076 -0.076 -0.068
Moving Rare Time 1 50% -0.067 -0.058 -0.042 0.016 -0.053 -0.042 -0.045 -0.010 -0.054 -0.043 -0.061 -0.032
Rare Feature 1 30% -0.063 -0.075 -0.039 0.006 -0.047 -0.073 -0.038 -0.027 -0.048 -0.073 -0.069 -0.059
Moving Rare Feature 1 10% -0.062 -0.069 -0.021 0.012 -0.040 -0.056 -0.032 -0.029 -0.041 -0.056 -0.059 -0.044
Postional Time 1 30% -0.116 -0.119 -0.040 -0.006 -0.107 -0.112 -0.058 -0.046 -0.108 -0.113 -0.111 -0.102
Postional Feature 1 2% -0.064 -0.104 -0.042 -0.104 -0.028 -0.089 -0.043 -0.105 -0.031 -0.091 -0.055 -0.053

Diff (AUR)

Middle 1 30% 0.072 0.076 0.128 0.153 0.125 0.135 0.122 0.132 0.114 0.126 0.070 0.031
Small Middle 1 60% -0.043 0.037 0.048 0.157 0.029 0.116 0.038 0.129 0.007 0.102 -0.032 0.009
Moving Middle 1 60% 0.060 0.073 0.119 0.124 0.110 0.124 0.119 0.117 0.099 0.115 0.061 0.042
Moving Small Middle 1 5% -0.032 -0.004 0.046 0.135 0.043 0.073 0.042 0.093 0.025 0.060 -0.023 -0.025
Rare Time 1 30% -0.244 -0.137 -0.132 0.043 -0.169 -0.021 -0.116 0.005 -0.189 -0.043 -0.145 -0.108
Moving Rare Time 1 50% -0.222 -0.070 -0.092 0.075 -0.103 0.018 -0.065 0.060 -0.131 0.002 -0.144 -0.035
RareFeature 1 30% 0.182 0.197 0.219 0.218 0.217 0.223 0.216 0.216 0.211 0.219 0.191 0.166
Moving Rare Feature 1 10% 0.143 0.162 0.191 0.196 0.191 0.202 0.194 0.196 0.183 0.197 0.162 0.107
Postional Time 1 30% -0.032 -0.073 0.072 0.119 0.029 0.021 0.046 0.082 0.012 0.001 -0.019 -0.064
Postional Feature 1 2% -0.053 -0.070 0.016 -0.005 -0.002 -0.005 0.004 -0.009 -0.018 -0.025 -0.056 -0.083

Table 7.7: The difference in weighted AUP and AUR for (LSTM, saliency method) pairs. Overall,
the best preference was achieved when using Integrated Gradients as a saliency method and
saliency guided training as a training procedure.

Metric Datasets λ k
Gradient Integrated Gradient DeepLIFT Gradient SHAP DeepSHAP SmoothGrad

Trad. Sal. Trad. Sal. Trad. Sal. Trad. Sal. Trad. Sal. Trad. Sal.

Diff (AUP)

Middle 1 40% 0.014 0.046 0.233 0.252 0.218 0.237 0.244 0.261 0.232 0.247 -0.006 0.026
Small Middle 1 60% 0.049 0.150 0.161 0.273 0.169 0.305 0.170 0.273 0.180 0.312 0.038 0.091
Moving Middle 1 80% 0.044 0.082 0.262 0.251 0.260 0.256 0.276 0.256 0.277 0.261 0.010 0.044
Moving Small Middle 1 5% 0.044 0.055 0.181 0.201 0.179 0.196 0.187 0.200 0.190 0.204 0.022 0.029
Rare Time 1 40% 0.186 0.278 0.271 0.378 0.323 0.412 0.279 0.373 0.338 0.424 0.133 0.209
Moving Rare Time 1 80% 0.144 0.276 0.233 0.388 0.269 0.417 0.238 0.381 0.282 0.429 0.103 0.167
Rare Feature 1 30% 0.032 0.101 0.163 0.270 0.166 0.266 0.174 0.278 0.180 0.274 0.039 0.105
Moving Rare Feature 1 5% -0.002 -0.004 0.120 0.124 0.116 0.116 0.124 0.127 0.126 0.126 -0.003 -0.004
Postional Time 1 40% 0.117 0.186 0.184 0.225 0.236 0.314 0.197 0.252 0.248 0.316 0.093 0.187
Postional Feature 1 5% -0.021 0.007 0.072 0.083 0.080 0.113 0.089 0.101 0.088 0.122 -0.031 -0.012

Diff (AUR)

Middle 1 40% 0.028 0.084 0.163 0.176 0.160 0.180 0.162 0.173 0.157 0.177 -0.001 0.044
Small Middle 1 60% 0.064 0.176 0.186 0.217 0.189 0.217 0.182 0.212 0.183 0.213 0.031 0.159
Moving Middle 1 80% 0.060 0.117 0.174 0.180 0.175 0.187 0.173 0.177 0.175 0.183 0.021 0.072
Moving Small Middle 1 5% 0.079 0.101 0.202 0.201 0.199 0.194 0.198 0.196 0.194 0.186 0.029 0.052
Rare Time 1 40% 0.139 0.203 0.214 0.225 0.214 0.233 0.211 0.223 0.211 0.233 0.103 0.191
Moving Rare Time 1 80% 0.118 0.213 0.198 0.226 0.200 0.233 0.193 0.224 0.194 0.232 0.070 0.197
RareFeature 1 30% 0.077 0.181 0.196 0.223 0.197 0.224 0.193 0.222 0.193 0.223 0.074 0.172
Moving Rare Feature 1 5% 0.059 0.039 0.188 0.189 0.191 0.186 0.182 0.183 0.186 0.180 0.038 0.028
Postional Time 1 40% 0.140 0.201 0.188 0.200 0.203 0.225 0.185 0.202 0.201 0.224 0.109 0.188
Postional Feature 1 5% -0.017 0.043 0.141 0.146 0.145 0.166 0.141 0.150 0.132 0.157 -0.041 0.005

Table 7.8: The difference in weighted AUP and AUR for different (LSTM with Input-Cell At-
tention, saliency method) pairs. The use of saliency guided training improved the performance
of most saliency methods. Overall, DeepSHAP and DeepLIFT produced the best precision and
recall, respectively, when combined with saliency guided training.

121

Metric Datasets λ k
Gradient Integrated Gradient DeepLIFT Gradient SHAP DeepSHAP SmoothGrad

Trad. Sal. Trad. Sal. Trad. Sal. Trad. Sal. Trad. Sal. Trad. Sal.

Diff (AUP)

Middle 1 50% 0.127 0.217 0.283 0.393 0.350 0.398 0.290 0.384 0.365 0.416 0.090 0.194
Small Middle 1 40% 0.164 0.260 0.299 0.433 0.312 0.419 0.302 0.418 0.328 0.442 0.156 0.253
Moving Middle 1 70% 0.122 0.197 0.287 0.342 0.332 0.367 0.286 0.329 0.345 0.387 0.047 0.182
Moving Small Middle 1 80% 0.065 0.043 0.194 0.151 0.169 0.191 0.190 0.152 0.183 0.200 0.037 0.023
Rare Time 1 50% 0.184 0.290 0.314 0.363 0.324 0.309 0.314 0.360 0.352 0.319 0.177 0.226
Moving Rare Time 1 50% 0.142 0.182 0.260 0.333 0.257 0.243 0.258 0.330 0.275 0.251 0.122 0.179
Rare Feature 1 30% 0.058 0.244 0.246 0.451 0.252 0.422 0.249 0.453 0.286 0.450 0.085 0.259
Moving Rare Feature 1 5% -0.003 0.004 0.116 0.134 0.112 0.114 0.122 0.129 0.122 0.123 0.007 0.005
Postional Time 1 70% 0.115 0.072 0.180 0.114 0.233 0.069 0.187 0.117 0.237 0.035 0.106 0.066
Postional Feature 1 10% 0.082 0.176 0.151 0.199 0.136 0.162 0.155 0.203 0.137 0.175 0.058 0.159

Diff (AUR)

Middle 1 50% 0.133 0.161 0.190 0.207 0.202 0.209 0.188 0.205 0.201 0.205 0.054 0.128
Small Middle 1 40% 0.086 0.230 0.194 0.240 0.202 0.240 0.189 0.239 0.196 0.241 0.039 0.230
Moving Middle 1 70% 0.134 0.144 0.191 0.195 0.201 0.208 0.186 0.194 0.201 0.203 0.036 0.121
Moving Small Middle 1 80% 0.118 0.117 0.204 0.199 0.193 0.195 0.196 0.196 0.186 0.190 -0.001 0.065
Rare Time 1 50% 0.173 0.215 0.199 0.233 0.225 0.221 0.193 0.230 0.226 0.204 0.125 0.151
Moving Rare Time 1 50% 0.106 0.198 0.177 0.220 0.195 0.189 0.167 0.224 0.191 0.179 -0.057 0.149
RareFeature 1 30% 0.152 0.222 0.222 0.239 0.223 0.239 0.219 0.239 0.224 0.239 0.130 0.217
Moving Rare Feature 1 5% 0.101 0.122 0.198 0.204 0.206 0.205 0.195 0.201 0.196 0.198 0.048 0.055
Postional Time 1 70% 0.126 0.128 0.156 0.172 0.194 0.160 0.147 0.165 0.181 0.110 0.039 0.102
Postional Feature 1 10% 0.126 0.174 0.177 0.196 0.180 0.175 0.172 0.194 0.164 0.154 0.049 0.160

Table 7.9: The difference in weighted AUP and AUR for different (TCN, saliency method) pairs.
The use of saliency guided training improved the performance of most saliency methods. Overall,
when combined with saliency guided training, Integrated Gradients and DeepSHAP produced the
best precision. For recall, Integrated Gradients, DeepLift, Gradient SHAP, and DeepSHAP seem
to perform similarly, again, the best performance was achieved when saliency guided training is
used.

Metric Datasets λ k
Gradient Integrated Gradient DeepLIFT Gradient SHAP DeepSHAP SmoothGrad

Trad. Sal. Trad. Sal. Trad. Sal. Trad. Sal. Trad. Sal. Trad. Sal.

Diff (AUP)

Middle 1 30% -0.179 -0.213 0.051 -0.004 -0.116 -0.176 0.067 -0.064 -0.062 -0.222 -0.069 -0.150
Small Middle 1 60% -0.034 -0.057 0.054 0.042 -0.018 -0.034 0.066 0.024 0.009 -0.060 0.006 -0.022
Moving Middle 1 90% -0.188 -0.146 0.062 0.018 -0.142 -0.067 0.065 -0.011 -0.130 -0.143 -0.091 -0.157
Moving Small Middle 1 70% -0.002 -0.008 0.031 0.039 0.017 0.029 0.026 0.037 0.036 0.016 -0.021 -0.035
Rare Time 1 50% 0.038 -0.006 0.118 0.057 -0.019 0.017 0.132 0.049 0.014 -0.010 -0.029 -0.031
Moving Rare Time 1 50% 0.066 0.062 0.110 0.049 -0.021 0.046 0.117 0.055 -0.009 0.033 -0.026 -0.027
Rare Feature 1 30% -0.049 -0.045 0.029 0.139 -0.002 -0.004 0.033 0.088 0.008 -0.015 0.005 0.028
Moving Rare Feature 1 10% -0.034 -0.031 0.041 0.055 0.008 0.014 0.038 0.049 0.008 0.022 -0.003 -0.013
Postional Time 1 60% -0.060 -0.078 0.084 0.029 -0.048 -0.047 0.102 -0.001 0.013 -0.072 0.026 -0.057
Postional Feature 1 10% -0.094 -0.099 0.032 0.012 -0.061 -0.097 0.046 0.008 -0.029 -0.098 0.019 0.006

Diff (AUR)

Middle 1 30% 0.087 0.053 0.167 0.146 0.155 0.112 0.157 0.111 0.119 -0.051 0.040 -0.025
Small Middle 1 60% 0.085 0.030 0.186 0.189 0.128 0.113 0.173 0.171 0.077 -0.025 0.060 0.036
Moving Middle 1 90% 0.071 0.134 0.164 0.185 0.136 0.181 0.150 0.183 0.057 0.130 0.019 0.040
Moving Small Middle 1 70% 0.118 0.137 0.171 0.177 0.157 0.171 0.160 0.171 0.098 0.117 -0.004 -0.019
Rare Time 1 50% 0.152 0.139 0.206 0.172 0.116 0.135 0.199 0.157 0.077 0.088 -0.027 -0.073
Moving Rare Time 1 50% 0.184 0.185 0.198 0.170 0.124 0.175 0.186 0.168 0.059 0.127 -0.033 -0.013
RareFeature 1 30% 0.115 0.152 0.184 0.217 0.187 0.188 0.173 0.203 0.144 0.129 0.087 0.135
Moving Rare Feature 1 10% 0.101 0.122 0.179 0.183 0.174 0.180 0.165 0.176 0.125 0.149 0.060 0.034
Postional Time 1 60% 0.091 0.071 0.193 0.172 0.154 0.150 0.184 0.151 0.145 0.059 0.103 -0.004
Postional Feature 1 10% 0.017 0.013 0.170 0.149 0.123 0.057 0.160 0.131 0.105 -0.072 0.094 0.073

Table 7.10: The difference in weighted AUP and AUR for different (Transformers, saliency
method) pairs. In this benchmark, Transformers seem to have the worst interpretability. Using
saliency guided training improved recall but not precision. Overall best precision was achieved
when combining traditional training with Gradient SHAP. While best recall was achieved when
using saliency guided training and Integrated Gradients.

122

Saliency Guided Training Reduces Vanishing Saliency of RNNs

We showed in Section 3.2.1 that saliency maps in RNNs vanish over time, biasing detection of salient

features only to later timesteps. This section investigates if using saliency guided training reduces the

vanishing saliency issue in RNNs. Repeating experiments done in Section 3.2.1, three synthetic datasets

were generated as shown Figure 7.10 (A). The specific features and the time intervals (boxes) on which

they are considered important are varied between datasets to test the model’s ability to capture importance

at different time intervals. We trained an LSTM with traditional and saliency guided training procedures.

The area under precision curve (AUP) and the area under the recall curve (AUR) are calculated by

the precision/recall values at different levels of degradation. Higher AUP and AUR suggest better perfor-

mance. Results are shown in Figure 7.10 (B). A traditionally trained LSTM shows clear bias in detecting

features in the later timesteps; AUP and AUR increase as informative features move to later timesteps.

When saliency guided training is used, LSTM was able to identify informative features regardless of their

locations in time.

7.4 Related Work

Similar to our line of work, Ghaeini et al. [165] and Ross et al. [166] incorporate explanations into the

learning process. However, Ghaeini et al. [165] relies on the existence of the ground truth explanations

while Ross et al. [166] relies on the availability of annotations about incorrect explanations for a particular

input. Our proposed learning approach does not rely on such annotations; since most datasets only have

ground truth labels, it may not be practical to assume the availability of positive or negative explanations.

Input level perturbation during training has been previously explored. Others [167, 168, 169, 170],

use attention maps to improve segmentation for weakly supervised localization. Wang et al. [171] incorpo-

rates attention maps into training to improve classification accuracy. DeVries and Taylor [172] masks out

123

Figure 7.10: (A) Samples from 3 different simulated datasets, informative features are located
at the earlier, intermediate, and later timesteps. (B) AUP and AUR were produced by LSTM by
traditional and saliency guided training procedures. Traditionally trained LSTM shows clear bias
in detecting features in the later timesteps. When saliency guided training is used, there is no
time bias.

square regions of input during training as a regularization technique to improve the robustness and overall

performance of convolutional neural networks. Our work focuses on a different task which is increasing

model interpretability through training in a self-supervised manner.

7.5 Conclusion

We propose saliency guided training as a new training procedure that improves the quality of explanations

produced by existing gradient-based saliency methods. Saliency guided training is optimized to reduce

gradient values for irrelevant features. This is done by masking input features with low gradients and then

minimizing the KL divergence between outputs from the original and masked inputs along with the main

loss function. We demonstrated the effectiveness of the saliency guided training on images, language, and

multivariate time series.

124

Our proposed training method encourages models to sharpen the gradient-based explanations they

provide. It does this however without requiring explanations as input. It instead may be cast as a regular-

ization procedure where regularization is provided by feature sparsity driven by a gradient-based feature

attribution. This is an alternative approach to using ground truth explanations to force the model to be

right for the right reasons [166]. We found that training model explanations in an unsupervised fash-

ion also improves model faithfulness. This opens an interesting avenue for other unsupervised, perhaps

regularization-based, methods to improve the interpretability of prediction models.

125

Part III

Conclusion and Future Research

126

Chapter 8: Conclusions and Future Research

The challenge presented by meaningful interpretation of Deep Neural Networks (DNNs) is a technical

barrier preventing their serious adoption by practitioners in many fields [173, 174]. Accurate DNNs are

not, by themselves, sufficient to be used routinely in high-stakes applications such as healthcare. Many

critical applications involve time series data, e.g., electronic health records, functional Magnetic Reso-

nance Imaging (fMRI) data, and market data; nevertheless, most research on interpretability focuses on

vision and language tasks. This thesis studied deep learning interpretability when applied to multivariate

time series data. This included identifying limitations of existing explanation methods when used in time

series and developing new approaches to improve time series interpretability.

8.1 Summary of Contributions

In Part I of this thesis, we began by creating a benchmark to quantify the performance of existing (inter-

pretation method, neural architecture) pairs when applied to time series; to verify that the explanations

they produced were correct. Unfortunately, we have found that commonly-used saliency methods, includ-

ing both gradient-based and perturbation-based methods, fail to produce high-quality interpretations when

applied to time series data. For recurrent networks, we empirically and theoretically showed that saliency

maps produced by RNN vanish over time, limiting the detection of important features to only the later time

steps. For non-recurrent networks, we observed that when temporal and feature domains are combined in

a multivariate time series, saliency methods generally break down.

127

Then in Part II, we developed new neural architectures, saliency methods, and training procedures

to address deep learning interpretability limitations for time series. For recurrent networks, we proposed

attending to inputs across different time steps, enabling RNNs to consider important features in any ar-

bitrary timestep. We introduced an inherently-interpretable framework for structured data, Interpretable

Mixture of Experts, where different samples are assigned to different interpretable experts achieving state-

of-the-art accuracy while maintaining interpretability. We adapted existing saliency methods to time series

by a two-step temporal saliency rescaling approach, which substantially improved the quality of saliency

maps produced by different methods. Finally, we introduced saliency guided training, a new training pro-

cedure that enhances the quality of explanations by optimizing the networks to reduce gradient values for

irrelevant features.

8.2 Technical Limitations & Open Questions

The methods proposed in Part II significantly improve time series interpretability offering highly accurate

models and reliable explanations, but like any research, our methods have their limitations. In this section,

we will highlight some limitations and open questions of the proposed methods.

Input-Cell Attention An attention mechanism is applied to the input at the cell level to allowing the

RNN to attend to timesteps. Traditionally, self-attention [122] is done at the hidden layer level, meaning

that one attention operation is performed to the entire input sequence, which is quite inexpensive. Having

attention at the cell level results in repeating attention operation at every timestep in the input sequence,

although this gives better interpretability results (as shown in Table 4.1b) it is expensive, especially for

long input sequences.

128

Open questions

• How can we apply self-attention on the hidden layer level of a recurrent network to improve

efficiency while maintaining the same level of interpretability and preserving the network’s

ability to detect important features over time?

Interpretable Mixture of Experts IME is trained by optimizing five different loss functions as

shown in Figure 5.2; with the increase in loss functions, extensive hyperparameter tuning is required

to get good accuracy. In addition, the user needs to specify the assignment module architecture, expert

architectures, and the number of experts, which complicates training even more. Another limitation is that

even white box models like LR and decision trees become hard to interpret at high dimensions, so IME

becomes less interpretable with the increase in the number of features.

Open questions

• How can we improve the efficiency of model selection by reducing the number of loss func-

tions and maintaining accuracy?

• How can we maintain interpretability at high feature dimensions?

Temporal Saliency Rescaling TSR involves first calculating the time-relevance score for each timestep

by computing the total change in saliency values when masking that timestep, here a saliency method is

applied T times where T is the number of timesteps. Then high saliency timesteps are identified, and

individual feature contribution is calculated by a backpropagation operation. So if one would like to cal-

culate the contribution of each feature N in every timesteps T , the number of backpropagation operations

would be T + TN for each example, which is O(TN) operations. Since the algorithm generally suggests

just focusing on the top few timesteps, it can be viewed as O(N); even so, with the increase in the num-

ber of features N , the use of temporal saliency rescaling is not practical. In Section 6.1.1, we suggested

129

some possible optimizations for TSR; nevertheless, even with such optimizations, TSR is very expensive

compared to a simple saliency method like Gradient with costs O(1).

Open questions

• Can we develop a saliency method that is able to accurately calculate the contribution of

each feature in different timesteps while only performingO(1) backpropagation operations?

Saliency Guided Training To improve interpretability, saliency guided training iteratively masks k

percent of input features with low gradient values and then minimizes a loss function of the KL divergence

between model outputs from the original and masked inputs. k is dataset dependent; the choice of k is

essential for this method to work correctly. Increasing the value of k will decrease the model’s accuracy,

while reducing it will affect its interpretability. Another limitation, is that this training procedure (similar

to other training procedures like adversarial training as an example) is more expensive than traditional

training.

Open questions

• Can we detect the appropriate percentage k of features to be masked from the dataset in an

unsupervised fashion?

8.3 Future Research Directions

In this section, we present future research directions that originated from the research performed as part of

this thesis or discussions with other practitioners for advancing interpretability and time series research in

deep learning.

130

8.3.1 Deep Learning for Time Series Forecasting

Deep Neural Networks have revolutionized computer vision and natural language processing, achieving

accuracy that was not possible with conventional statistical and machine learning methods, although a

significant amount of data processed daily is time series, applying deep learning to time series analysis [2]

is very limited compared to other domains. Aside from DNNs’ lack of interpretability, the main reason

is that accuracy gains when using DNNs over statistical models are insignificant, so it is unjustifiable for

practitioners to use DNNs.

Godahewa et al. [147] introduced a comprehensive time series forecasting benchmark where they

compared the performance of statistical, machine learning, and deep learning methods across 26 different

time series datasets. Their experiments showed that in many cases, simple models outperform DNNs;

even in datasets where DNNs perform better than traditional models, the gain is relatively minimal. We

observed similar results in Chapter 5 Table 5.2, the performance of autoregressive models was similar to

DNNs for univariate time series datasets.

The exact reason for this phenomenon is still unclear. Godahewa et al. [147] stated that simple

models could properly learn the patterns in datasets with a higher degree of trend and first-degree autocor-

relation, while machine learning and deep learning models are generally better at forecasting datasets with

a higher degree of entropy or uncertainty. Others argue that DNNs require a large amount of data to learn

good parameters, for time series data is often limited. For instance, the prognosis of neurodegenerative

diseases such as Alzheimer’s requires forecasting a patient’s conditions years in advance; yet, training data

is limited to a couple of hundred samples with a maximum of 20 timesteps. In contrast, a standard question

and answering (SQuAD) dataset [175] contains of 100,000 question-answer pairs and an object recogni-

tion ImageNet dataset [176] has around 14 million images. Another possibility is that time series datasets

131

often suffer from non-stationarity, so the high capacity models developed under the IID (independent and

identically distributed) assumption can suffer from poor generalization.

8.3.2 Deep Learning Interpretability

With the increase in the use of posthoc explanation methods in high-stakes domains [177, 178, 179], it

has become critical to ensure that the explanations generated by these methods are reliable. As a result,

benchmarks [20, 25, 71, 180] have been designed to quantify how faithfully or accurately a given ex-

planation mimics the behavior of the underlying model. Most benchmarks [25, 71, 180, 181] evaluate the

faithfulness of the explanations using synthetic datasets where the explanation is compared with the ground

truth. Unfortunately, such ground truth is typically unavailable in most real-world applications. Prior work

[10, 63, 74] has also suggested using modification-based evaluation methods that measure model accuracy

with and without the features deemed most important by the explanation. However, these methods have

been shown to produce false-positive results since removing features can have an adversarial effect on

the model, causing accuracy to drop regardless of the importance of the feature itself. Hooker et al. [20]

proposed ”Remove and Retrain” (ROAR), which measures the fidelity of an explanation by retraining the

underlying model before measuring accuracy degradation. In Chapter 7, we showed that ROAR could also

produce false results due to data redundancy; the retrained model can use new features without a significant

accuracy drop; this does not mean that the removed features were not important for the original model. So

modification-based evaluation methods with or without retraining may provide unreliable results.

132

8.4 Final Thoughts

Having interpretable DNNs has many positive outcomes. It can help increase the transparency of neural

models and ease their applications in various research areas. However, relying on misleading explana-

tions may lead to catastrophic consequences – e.g., trusting and deploying racially-biased models, trusting

incorrect model predictions, and recommending sub-optimal treatments to patients [70, 182]. Having no

interpretation at all is, in many situations, better than trusting an incorrect interpretation. Therefore we be-

lieve that evaluating saliency methods in real-world settings is probably the most important open question

in this area of research. Once we have reliable explanation methods, we can use such explanations to un-

derstand how neural models make their decisions in time series tasks which can help guide modifications

to the model architecture, eventually leading to better and fairer results.

133

Bibliography

[1] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[2] George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. Time series
analysis: forecasting and control. John Wiley & Sons, 2015.

[3] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional
networks: Visualising image classification models and saliency maps. In IEEE Conference
on Computer Vision and Pattern Recognition, 2014.

[4] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks.
In European Conference on Computer Vision, 2014.

[5] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller.
Striving for simplicity: The all convolutional net. In International Conference on Learning
Representations Workshop, 2015.

[6] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-
Robert Müller, and Wojciech Samek. On pixel-wise explanations for non-linear classifier
decisions by layer-wise relevance propagation. PloS one, 10(7):e0130140, 2015.

[7] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important fea-
tures through propagating activation differences. In International Conference on Machine
Learning, 2017.

[8] Grégoire Montavon, Sebastian Lapuschkin, Alexander Binder, Wojciech Samek, and
Klaus-Robert Müller. Explaining nonlinear classification decisions with deep taylor de-
composition. In Pattern Recognition, 2017.

[9] Grégoire Montavon, Wojciech Samek, and Klaus-Robert Müller. Methods for interpreting
and understanding deep neural networks. In Digital Signal Processing, 2018.

[10] Wojciech Samek, Alexander Binder, Grégoire Montavon, Sebastian Lapuschkin, and
Klaus-Robert Müller. Evaluating the visualization of what a deep neural network has
learned. IEEE transactions on neural networks and learning systems, 2016.

[11] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam,
Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep networks via
gradient-based localization. In Proceedings of the IEEE international conference on com-
puter vision, 2017.

134

http://www.deeplearningbook.org

[12] Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Wattenberg.
Smoothgrad: removing noise by adding noise. In IEEE Conference on Computer Vision
and Pattern Recognition, 2017.

[13] Luisa M Zintgraf, Taco S Cohen, Tameem Adel, and Max Welling. Visualizing deep
neural network decisions: Prediction difference analysis. In International Conference on
Learning Representations, 2017.

[14] David Baehrens, Timon Schroeter, Stefan Harmeling, Motoaki Kawanabe, Katja Hansen,
and Klaus-Robert MÃžller. How to explain individual classification decisions. In Journal
of Machine Learning Research, 2010.

[15] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep net-
works. In International Conference on Machine Learning, 2017.

[16] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions.
In Advances in Neural Information Processing Systems, 2017.

[17] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning
deep features for discriminative localization. In Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016.

[18] Armin W Thomas, Hauke R Heekeren, Klaus-Robert Müller, and Wojciech Samek. Inter-
pretable lstms for whole-brain neuroimaging analyses. arXiv preprint arXiv:1810.09945,
2018.

[19] Leila Arras, Grégoire Montavon, Klaus-Robert Müller, and Wojciech Samek. Explaining
recurrent neural network predictions in sentiment analysis. In Conference on Empirical
Methods in Natural Language Processing Workshop, 2017.

[20] Sara Hooker, Dumitru Erhan, Pieter-Jan Kindermans, and Been Kim. A benchmark for
interpretability methods in deep neural networks. In NeurIPS, 2019.

[21] Amirata Ghorbani, Abubakar Abid, and James Zou. Interpretation of neural networks is
fragile. In AAAI Conference on Artificial Intelligence, 2019.

[22] Julius Adebayo, Justin Gilmer, Michael Muelly, Ian Goodfellow, Moritz Hardt, and Been
Kim. Sanity checks for saliency maps. In Advances in Neural Information Processing
Systems, 2018.

[23] Pieter-Jan Kindermans, Sara Hooker, Julius Adebayo, Maximilian Alber, Kristof T Schütt,
Sven Dähne, Dumitru Erhan, and Been Kim. The (un) reliability of saliency methods. In
Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, 2019.

[24] Sahil Singla, Eric Wallace, Shi Feng, and Soheil Feizi. Understanding impacts of high-
order loss approximations and features in deep learning interpretation. In International
Conference on Machine Learning. PMLR, 2019.

135

[25] Aya Abdelsalam Ismail, Mohamed Gunady, Hector Corrada Bravo, and Soheil Feizi.
Benchmarking deep learning interpretability in time series predictions. Advances in neural
information processing systems, 2020.

[26] Aya Abdelsalam Ismail, Mohamed Gunady, Luiz Pessoa, Héctor Corrada Bravo, and So-
heil Feizi. Input-cell attention reduces vanishing saliency of recurrent neural networks. In
Advances in Neural Information Processing Systems, 2019.

[27] David C Van Essen, Stephen M Smith, Deanna M Barch, Timothy EJ Behrens, Essa Ya-
coub, Kamil Ugurbil, Wu-Minn HCP Consortium, et al. The wu-minn human connectome
project: an overview. In Neuroimage, 2013.

[28] Aya Abdelsalam Ismail, Sercan Ö. Arik, Jinsung Yoon, Ankur Taly, Soheil Feizi, and
Tomas Pfister. Interpretable mixture of experts for structured data, 2022. URL https:
//arxiv.org/abs/2206.02107.

[29] Aya Abdelsalam Ismail, Hector Corrada Bravo, and Soheil Feizi. Improving deep learning
interpretability by saliency guided training. Advances in Neural Information Processing
Systems, 2021.

[30] Michael L Rich. Machine learning, automated suspicion algorithms, and the fourth amend-
ment. In University of Pennsylvania Law Review, 2016.

[31] Ziad Obermeyer and Ezekiel J Emanuel. Predicting the future—big data, machine learn-
ing, and clinical medicine. In The New England journal of medicine, 2016.

[32] Rich Caruana, Yin Lou, Johannes Gehrke, Paul Koch, Marc Sturm, and Noemie Elhadad.
Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day read-
mission. In International Conference on Knowledge Discovery and Data mining, 2015.

[33] Zachary C Lipton. The mythos of model interpretability. In Queue, 2018.

[34] Been Kim and F Doshi-Velez. Introduction to interpretable machine learning. Proceedings
of the CVPR Tutorial on Interpretable Machine Learning for Computer Vision., 2018.

[35] Diogo V Carvalho, Eduardo M Pereira, and Jaime S Cardoso. Machine learning inter-
pretability: A survey on methods and metrics. In Electronics, 2019.

[36] Ian T Jolliffe. Principal components in regression analysis. In Principal component anal-
ysis, 1986.

[37] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. In Journal of
machine learning research, 2008.

[38] John A Hartigan and Manchek A Wong. Algorithm as 136: A k-means clustering algo-
rithm. In Journal of the Royal Statistical Society, 1979.

[39] Been Kim, Rajiv Khanna, and Oluwasanmi O Koyejo. Examples are not enough, learn
to criticize! criticism for interpretability. In Advances in Neural Information Processing
Systems, 2016.

136

https://arxiv.org/abs/2206.02107
https://arxiv.org/abs/2206.02107

[40] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in
Neural Information Processing Systems, 2017.

[41] Sarthak Jain and Byron C. Wallace. Attention is not explanation. In Conference of the
North American chapter of the Association for Computational Linguistics, 2019.

[42] Sarah Wiegreffe and Yuval Pinter. Attention is not not explanation. In Conference on
Empirical Methods in Natural Language Processing, 2019.

[43] Sofia Serrano and Noah A Smith. Is attention interpretable? In Association for Computa-
tional Linguistics, 2019.

[44] Corinna Cortes and Vladimir Vapnik. Support-vector networks. In Machine learning,
1995.

[45] Boris N Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. N-beats:
Neural basis expansion analysis for interpretable time series forecasting. arXiv preprint
arXiv:1905.10437, 2019.

[46] Haoran Luo, Fan Cheng, Heng Yu, and Yuqi Yi. Sdtr: Soft decision tree regressor for
tabular data. IEEE Access, 9:55999–56011, 2021.

[47] Ozan Irsoy, Olcay Taner Yıldız, and Ethem Alpaydın. Soft decision trees. In ICPR, pages
1819–1822. IEEE, 2012.

[48] Nicholas Frosst and Geoffrey Hinton. Distilling a neural network into a soft decision tree.
arXiv preprint arXiv:1711.09784, 2017.

[49] Eyal Shulman and Lior Wolf. Meta decision trees for explainable recommendation sys-
tems. In Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, pages
365–371, 2020.

[50] Mike Wu, Michael C Hughes, Sonali Parbhoo, Maurizio Zazzi, Volker Roth, and Finale
Doshi-Velez. Beyond sparsity: Tree regularization of deep models for interpretability. In
Conference of Association for the Advancement of Artificial Intelligence, 2018.

[51] Rishabh Agarwal, Nicholas Frosst, Xuezhou Zhang, Rich Caruana, and Geoffrey E Hinton.
Neural additive models: Interpretable machine learning with neural nets. arXiv preprint
arXiv:2004.13912, 2020.

[52] Chun-Hao Chang, Rich Caruana, and Anna Goldenberg. Node-gam: Neural generalized
additive model for interpretable deep learning. arXiv preprint arXiv:2106.01613, 2021.

[53] Sergei Popov, Stanislav Morozov, and Artem Babenko. Neural oblivious decision ensem-
bles for deep learning on tabular data. arXiv preprint arXiv:1909.06312, 2019.

[54] David Alvarez-Melis and Tommi S Jaakkola. Towards robust interpretability with self-
explaining neural networks. arXiv preprint arXiv:1806.07538, 2018.

137

[55] Jayneel Parekh, Pavlo Mozharovskyi, and Florence d’Alché Buc. A framework to learn
with interpretation. arXiv preprint arXiv:2010.09345, 2020.

[56] Jinsung Yoon, James Jordon, and Mihaela van der Schaar. INVASE: Instance-wise variable
selection using neural networks. In International Conference on Learning Representations,
2019.

[57] Sarthak Jain, Sarah Wiegreffe, Yuval Pinter, and Byron C Wallace. Learning to faithfully
rationalize by construction. arXiv preprint arXiv:2005.00115, 2020.

[58] Christoph Molnar. Interpretable Machine Learning. Lulu. com, 2020.

[59] Pieter-Jan Kindermans, Kristof Schütt, Klaus-Robert Müller, and Sven Dähne. Investi-
gating the influence of noise and distractors on the interpretation of neural networks. In
Advances in Neural Information Processing Systems Workshop, 2016.

[60] Harini Suresh, Nathan Hunt, Alistair Johnson, Leo Anthony Celi, Peter Szolovits, and
Marzyeh Ghassemi. Clinical intervention prediction and understanding using deep net-
works. arXiv preprint arXiv:1705.08498, 2017.

[61] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ” why should i trust you?”
explaining the predictions of any classifier. In International Conference on Knowledge
Discovery and Data mining, 2016.

[62] Javier Castro, Daniel Gómez, and Juan Tejada. Polynomial calculation of the shapley
value based on sampling. Computers & Operations Research, 36(5):1726–1730, 2009.

[63] Vitali Petsiuk, Abir Das, and Kate Saenko. Rise: Randomized input sampling for expla-
nation of black-box models. arXiv preprint arXiv:1806.07421, 2018.

[64] Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence func-
tions. In International Conference on Machine Learning, 2017.

[65] Sandra Wachter, Brent Mittelstadt, and Chris Russell. Counterfactual explanations without
opening the black box: Automated decisions and the gdpr. Harv. JL & Tech., 31:841, 2017.

[66] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian
Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199, 2013.

[67] Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viegas,
and Rory Sayres. Interpretability beyond feature attribution: Quantitative testing with
concept activation vectors (tcav). In International Conference on Machine Learning, 2018.

[68] Amirata Ghorbani, James Wexler, James Y Zou, and Been Kim. Towards automatic
concept-based explanations. Advances in Neural Information Processing Systems, 32,
2019.

138

[69] Chih-Kuan Yeh, Been Kim, Sercan Arik, Chun-Liang Li, Tomas Pfister, and Pradeep
Ravikumar. On completeness-aware concept-based explanations in deep neural networks.
Advances in Neural Information Processing Systems, 33:20554–20565, 2020.

[70] Satyapriya Krishna, Tessa Han, Alex Gu, Javin Pombra, Shahin Jabbari, Steven Wu, and
Himabindu Lakkaraju. The disagreement problem in explainable machine learning: A
practitioner’s perspective. arXiv preprint arXiv:2202.01602, 2022.

[71] Jay DeYoung, Sarthak Jain, Nazneen Fatema Rajani, Eric Lehman, Caiming Xiong,
Richard Socher, and Byron C Wallace. Eraser: A benchmark to evaluate rationalized
nlp models. arXiv preprint arXiv:1911.03429, 2019.

[72] Richard Tomsett, Dan Harborne, Supriyo Chakraborty, Prudhvi Gurram, and Alun Preece.
Sanity checks for saliency metrics. In AAAI, 2020.

[73] Julius Adebayo, Michael Muelly, Ilaria Liccardi, and Been Kim. Debugging tests for
model explanations. arXiv preprint arXiv:2011.05429, 2020.

[74] Pieter-Jan Kindermans, Kristof T. Schütt, Maximilian Alber, Klaus-Robert Müller, Du-
mitru Erhan, Been Kim, and Sven Dähne. Learning how to explain neural networks: Pat-
ternnet and patternattribution. In International Conference on Learning Representations,
2018.

[75] Ramin M Hasani, Alexander Amini, Mathias Lechner, Felix Naser, Radu Grosu, and
Daniela Rus. Response characterization for auditing cell dynamics in long short-term
memory networks. arXiv preprint arXiv:1809.03864, 2018.

[76] Hendrik Strobelt, Sebastian Gehrmann, Hanspeter Pfister, and Alexander M Rush. Lst-
mvis: A tool for visual analysis of hidden state dynamics in recurrent neural networks. In
IEEE transactions on visualization and computer graphics, 2017.

[77] Tian Guo, Tao Lin, and Nino Antulov-Fantulin. Exploring interpretable lstm neural net-
works over multi-variable data. In International Conference on Machine Learning, 2019.

[78] Andrej Karpathy, Justin Johnson, and Li Fei-Fei. Visualizing and understanding recurrent
networks. arXiv preprint arXiv:1506.02078, 2015.

[79] Chris Olah, Arvind Satyanarayan, Ian Johnson, Shan Carter, Ludwig Schubert, Katherine
Ye, and Alexander Mordvintsev. The building blocks of interpretability. In Distill, 2018.

[80] Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D Manning. What does
bert look at? an analysis of bert’s attention. arXiv preprint arXiv:1906.04341, 2019.

[81] Oskar Triebe, Nikolay Laptev, and Ram Rajagopal. Ar-net: A simple auto-regressive
neural network for time-series. arXiv preprint arXiv:1911.12436, 2019.

[82] George EP Box and David A Pierce. Distribution of residual autocorrelations in
autoregressive-integrated moving average time series models. In Journal of the Ameri-
can statistical Association, 1970.

139

[83] Rob Hyndman, Anne B Koehler, J Keith Ord, and Ralph D Snyder. Forecasting with
exponential smoothing: the state space approach. Springer Science & Business Media,
2008.

[84] U Thissen, R Van Brakel, AP De Weijer, WJ Melssen, and LMC Buydens. Using support
vector machines for time series prediction. In Chemometrics and intelligent laboratory
systems, 2003.

[85] Argyro Kampouraki, George Manis, and Christophoros Nikou. Heartbeat time series clas-
sification with support vector machines. In IEEE Transactions on Information Technology
in Biomedicine, 2008.

[86] Mohammed Alweshah, Hasan Rashaideh, Abdelaziz I Hammouri, Hanadi Tayyeb, and
Mohammed Ababneh. Solving time series classification problems using support vector
machine and neural network. In International journal of data analysis techniques and
strategies, 2017.

[87] David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. Deepar: Prob-
abilistic forecasting with autoregressive recurrent networks. In International Journal of
Forecasting, 2019.

[88] Syama Sundar Rangapuram, Matthias W Seeger, Jan Gasthaus, Lorenzo Stella, Yuyang
Wang, and Tim Januschowski. Deep state space models for time series forecasting. In
Advances in Neural Information Processing Systems, 2018.

[89] Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and
short-term temporal patterns with deep neural networks. In International ACM SIGIR
Conference on Research & Development in Information Retrieval, 2018.

[90] Edward Choi, Mohammad Taha Bahadori, Jimeng Sun, Joshua Kulas, Andy Schuetz, and
Walter Stewart. Retain: An interpretable predictive model for healthcare using reverse
time attention mechanism. In Advances in Neural Information Processing Systems, 2016.

[91] Yao Qin, Dongjin Song, Haifeng Chen, Wei Cheng, Guofei Jiang, and Garrison Cottrell.
A dual-stage attention-based recurrent neural network for time series prediction. In Inter-
national Joint Conference on Artificial Intelligence, 2017.

[92] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex
Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A genera-
tive model for raw audio. arXiv preprint arXiv:1609.03499, 2016.

[93] Colin Lea, Michael Flynn, Rene Vidal, Austin Reiter, and Gregory Hager. Temporal con-
volutional networks for action segmentation and detection. In IEEE Conference on Com-
puter Vision and Pattern Recognition, 2017.

[94] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convo-
lutional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271,
2018.

140

[95] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wan-
cai Zhang. Informer: Beyond efficient transformer for long sequence time-series forecast-
ing. In AAAI, 2021.

[96] Bryan Lim, Sercan O Arik, Nicolas Loeff, and Tomas Pfister. Temporal fusion
transformers for interpretable multi-horizon time series forecasting. arXiv preprint
arXiv:1912.09363, 2019.

[97] Ruofeng Wen, Kari Torkkola, Balakrishnan Narayanaswamy, and Dhruv Madeka. A multi-
horizon quantile recurrent forecaster. arXiv preprint arXiv:1711.11053, 2017.

[98] Yuyang Wang, Alex Smola, Danielle C Maddix, Jan Gasthaus, Dean Foster, and Tim
Januschowski. Deep factors for forecasting. In International Conference on Machine
Learning, 2019.

[99] Shuai Li, Wanqing Li, Chris Cook, Ce Zhu, and Yanbo Gao. Independently recurrent neu-
ral network (indrnn): Building a longer and deeper rnn. In IEEE Conference on Computer
Vision and Pattern Recognition, 2018.

[100] Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, and Yan Liu. Re-
current neural networks for multivariate time series with missing values. In Scientific
reports, 2018.

[101] Aya Abdelsalam Ismail, Timothy Wood, and Héctor Corrada Bravo. Improv-
ing long-horizon forecasts with expectation-biased lstm networks. arXiv preprint
arXiv:1804.06776, 2018.

[102] Chenyou Fan, Yuze Zhang, Yi Pan, Xiaoyue Li, Chi Zhang, Rong Yuan, Di Wu, Wensheng
Wang, Jian Pei, and Heng Huang. Multi-horizon time series forecasting with temporal
attention learning. In International Conference on Knowledge Discovery and Data mining,
2019.

[103] Yi Zheng, Qi Liu, Enhong Chen, Yong Ge, and J Leon Zhao. Time series classification
using multi-channels deep convolutional neural networks. In International Conference on
Web-Age Information Management, 2014.

[104] Bendong Zhao, Huanzhang Lu, Shangfeng Chen, Junliang Liu, and Dongya Wu. Convo-
lutional neural networks for time series classification. In Journal of Systems Engineering
and Electronics, 2017.

[105] James Bradbury, Stephen Merity, Caiming Xiong, and Richard Socher. Quasi-recurrent
neural networks. arXiv preprint arXiv:1611.01576, 2016.

[106] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences
with sparse transformers. arXiv preprint arXiv:1904.10509, 2019.

[107] Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and
Xifeng Yan. Enhancing the locality and breaking the memory bottleneck of transformer
on time series forecasting. In Advances in Neural Information Processing Systems, 2019.

141

[108] Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document trans-
former. arXiv preprint arXiv:2004.05150, 2020.

[109] Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-
attention with linear complexity. arXiv preprint arXiv:2006.04768, 2020.

[110] Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, and Timothy P Lillicrap. Compres-
sive transformers for long-range sequence modelling. arXiv preprint arXiv:1911.05507,
2019.

[111] Sana Tonekaboni, Shalmali Joshi, Kieran Campbell, David Duvenaud, and Anna Gold-
enberg. What went wrong and when? instance-wise feature importance for time-series
models. arXiv preprint arXiv:2003.02821, 2020.

[112] Clayton Rooke, Jonathan Smith, Kin Kwan Leung, Maksims Volkovs, and Saba Zuberi.
Temporal dependencies in feature importance for time series predictions. arXiv preprint
arXiv:2107.14317, 2021.

[113] Paul Boniol, Mohammed Meftah, Emmanuel Remy, and Themis Palpanas. dcam:
Dimension-wise class activation map for explaining multivariate data series classification.
Proceedings of the 2022 International Conference on Management of Data (SIGMOD’22),
2022.

[114] João Bento, Pedro Saleiro, André F Cruz, Mário AT Figueiredo, and Pedro Bizarro. Time-
shap: Explaining recurrent models through sequence perturbations. In Proceedings of the
27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pages 2565–
2573, 2021.

[115] Prathyush S Parvatharaju, Ramesh Doddaiah, Thomas Hartvigsen, and Elke A Runden-
steiner. Learning saliency maps to explain deep time series classifiers. In Proceedings of
the 30th ACM International Conference on Information & Knowledge Management, pages
1406–1415, 2021.

[116] Sana Tonekaboni, Shalmali Joshi, David Duvenaud, and Anna Goldenberg. Explaining
time series by counterfactuals, 2020. URL https://openreview.net/forum?
id=HygDF1rYDB.

[117] Jana Lang, Martin Giese, Winfried Ilg, and Sebastian Otte. Generating sparse counterfac-
tual explanations for multivariate time series. arXiv preprint arXiv:2206.00931, 2022.

[118] Sercan Arik, Chun-Liang Li, Jinsung Yoon, Rajarishi Sinha, Arkady Epshteyn, Long Le,
Vikas Menon, Shashank Singh, Leyou Zhang, Martin Nikoltchev, et al. Interpretable se-
quence learning for covid-19 forecasting. Advances in Neural Information Processing
Systems, 33:18807–18818, 2020.

[119] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. In Neural computa-
tion, 1997.

142

https://openreview.net/forum?id=HygDF1rYDB
https://openreview.net/forum?id=HygDF1rYDB

[120] Carl Edward Rasmussen. Gaussian processes in machine learning. In Summer School on
Machine Learning, 2003.

[121] Pieter-Jan Kindermans, Kristof T Schütt, Maximilian Alber, Klaus-Robert Müller, Du-
mitru Erhan, Been Kim, and Sven Dähne. Learning how to explain neural networks:
Patternnet and patternattribution. arXiv preprint arXiv:1705.05598, 2017.

[122] Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos, Mo Yu, Bing Xiang, Bowen
Zhou, and Yoshua Bengio. A structured self-attentive sentence embedding. In Interna-
tional Conference on Learning Representation, 2017.

[123] Sergey Ioffe. Improved consistent sampling, weighted minhash and l1 sketching. In IEEE
International Conference on Data Mining, 2010.

[124] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks. In IEEE
Transactions on Signal Processing, 1997.

[125] Robert W Cox. Afni: software for analysis and visualization of functional magnetic reso-
nance neuroimages. In Computers and Biomedical research, 1996.

[126] Matthew F Glasser, Timothy S Coalson, Emma C Robinson, Carl D Hacker, John Harwell,
Essa Yacoub, Kamil Ugurbil, Jesper Andersson, Christian F Beckmann, Mark Jenkinson,
et al. A multi-modal parcellation of human cerebral cortex. In Nature, 2016.

[127] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. In International Conference on Learning Represen-
tations, 2015.

[128] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhudi-
nov, Rich Zemel, and Yoshua Bengio. Show, attend and tell: Neural image caption gen-
eration with visual attention. In International conference on machine learning, pages
2048–2057, 2015.

[129] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy. Hier-
archical attention networks for document classification. In Association for Computational
Linguistics, 2016.

[130] Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will Kay,
Mustafa Suleyman, and Phil Blunsom. Teaching machines to read and comprehend. In
Advances in Neural Information Processing Systems, 2015.

[131] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey
Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-
of-experts layer. arXiv preprint arXiv:1701.06538, 2017.

[132] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion
parameter models with simple and efficient sparsity. arXiv preprint arXiv:2101.03961,
2021.

143

[133] Alireza Ghods and Diane J Cook. A survey of deep network techniques all classifiers can
adopt. Data mining and knowledge discovery, 35(1):46–87, 2021.

[134] Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive
mixtures of local experts. Neural computation, 1991.

[135] David Eigen, Marc’Aurelio Ranzato, and Ilya Sutskever. Learning factored representations
in a deep mixture of experts. arXiv preprint arXiv:1312.4314, 2013.

[136] Emmanuel Bengio, Pierre-Luc Bacon, Joelle Pineau, and Doina Precup. Conditional com-
putation in neural networks for faster models. arXiv preprint arXiv:1511.06297, 2015.

[137] Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals of
mathematical statistics, 1951.

[138] Aya Abdelsalam Ismail, Mahmudul Hasan, and Faisal Ishtiaq. Improving multimodal
accuracy through modality pre-training and attention. arXiv preprint arXiv:2011.06102,
2020.

[139] Rossmann dataset. https://www.kaggle.com/c/rossmann-store-sales/
data.

[140] Matt W Gardner and SR Dorling. Artificial neural networks (the multilayer perceptron)—a
review of applications in the atmospheric sciences. Atmospheric environment, 1998.

[141] Anna Veronika Dorogush, Vasily Ershov, and Andrey Gulin. Catboost: gradient boosting
with categorical features support. arXiv preprint arXiv:1810.11363, 2018.

[142] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye,
and Tie-Yan Liu. LightGBM: A highly efficient gradient boosting decision tree. NIPS,
2017.

[143] Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. In KDD,
2016.

[144] Uci-electricity dataset. https://archive.ics.uci.edu/ml/datasets.

[145] Jena-climate dataset. https://www.kaggle.com/mnassrib/jena-climate.

[146] Finale Doshi-Velez and Been Kim. Considerations for evaluation and generalization in
interpretable machine learning. Explainable and interpretable models in computer vision
and machine learning, 2018.

[147] Rakshitha Godahewa, Christoph Bergmeir, Geoffrey I Webb, Rob J Hyndman, and
Pablo Montero-Manso. Monash time series forecasting archive. arXiv preprint
arXiv:2105.06643, 2021.

[148] Ronan Collobert, Samy Bengio, and Yoshua Bengio. A parallel mixture of SVMs for very
large scale problems. Neural computation, 2002.

144

https://www.kaggle.com/c/rossmann-store-sales/data
https://www.kaggle.com/c/rossmann-store-sales/data
https://archive.ics.uci.edu/ml/datasets
https://www.kaggle.com/mnassrib/jena-climate

[149] Babak Shahbaba and Radford Neal. Nonlinear models using dirichlet process mixtures.
JMLR, 2009.

[150] Volker Tresp. Mixtures of gaussian processes. NIPS, 2001.

[151] Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and the em algo-
rithm. Neural computation, 1994.

[152] Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin Tran, Ashish Vaswani, Penporn
Koanantakool, Peter Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff Young, et al.
Mesh-tensorflow: Deep learning for supercomputers. arXiv preprint arXiv:1811.02084,
2018.

[153] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping
Huang, Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models
with conditional computation and automatic sharding. arXiv preprint arXiv:2006.16668,
2020.

[154] Melanie F Pradier, Javier Zazo, Sonali Parbhoo, Roy H Perlis, Maurizio Zazzi, and Finale
Doshi-Velez. Preferential mixture-of-experts: Interpretable models that rely on human
expertise as much as possible. In AMIA Annual Symposium Proceedings, volume 2021,
page 525. American Medical Informatics Association, 2021.

[155] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[156] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016.

[157] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database, 2010.

[158] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 1998.

[159] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny
images. 2009.

[160] Gerry. 265 bird species, 2021. URL https://www.kaggle.com/gpiosenka/
100-bird-species/.

[161] Omar Zaidan and Jason Eisner. Modeling annotators: A generative approach to learning
from annotator rationales. In Proceedings of the 2008 conference on Empirical methods
in natural language processing, 2008.

[162] James Thorne, Andreas Vlachos, Christos Christodoulopoulos, and Arpit Mittal. Fever: a
large-scale dataset for fact extraction and verification. arXiv preprint arXiv:1803.05355,
2018.

145

https://www.kaggle.com/gpiosenka/100-bird-species/
https://www.kaggle.com/gpiosenka/100-bird-species/

[163] Oana-Maria Camburu, Tim Rocktäschel, Thomas Lukasiewicz, and Phil Blunsom. e-
snli: Natural language inference with natural language explanations. arXiv preprint
arXiv:1812.01193, 2018.

[164] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors
for word representation. In Proceedings of the 2014 conference on empirical methods in
natural language processing (EMNLP), 2014.

[165] Reza Ghaeini, Xiaoli Z Fern, Hamed Shahbazi, and Prasad Tadepalli. Saliency learning:
Teaching the model where to pay attention. arXiv preprint arXiv:1902.08649, 2019.

[166] Andrew Slavin Ross, Michael C Hughes, and Finale Doshi-Velez. Right for the right
reasons: Training differentiable models by constraining their explanations. arXiv preprint
arXiv:1703.03717, 2017.

[167] Kunpeng Li, Ziyan Wu, Kuan-Chuan Peng, Jan Ernst, and Yun Fu. Tell me where to look:
Guided attention inference network. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018.

[168] Qibin Hou, Peng-Tao Jiang, Yunchao Wei, and Ming-Ming Cheng. Self-erasing network
for integral object attention. arXiv preprint arXiv:1810.09821, 2018.

[169] Yunchao Wei, Jiashi Feng, Xiaodan Liang, Ming-Ming Cheng, Yao Zhao, and Shuicheng
Yan. Object region mining with adversarial erasing: A simple classification to semantic
segmentation approach. In Proceedings of the IEEE conference on computer vision and
pattern recognition, 2017.

[170] Krishna Kumar Singh and Yong Jae Lee. Hide-and-seek: Forcing a network to be metic-
ulous for weakly-supervised object and action localization. In 2017 IEEE international
conference on computer vision (ICCV). IEEE, 2017.

[171] Lezi Wang, Ziyan Wu, Srikrishna Karanam, Kuan-Chuan Peng, Rajat Vikram Singh,
Bo Liu, and Dimitris N Metaxas. Sharpen focus: Learning with attention separability
and consistency. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2019.

[172] Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural
networks with cutout. arXiv preprint arXiv:1708.04552, 2017.

[173] Zachary C Lipton. The doctor just won’t accept that! arXiv preprint arXiv:1711.08037,
2017.

[174] Sana Tonekaboni, Shalmali Joshi, Melissa D McCradden, and Anna Goldenberg. What
clinicians want: contextualizing explainable machine learning for clinical end use. arXiv
preprint arXiv:1905.05134, 2019.

[175] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+
questions for machine comprehension of text. In Conference on Empirical Methods in
Natural Language Processing, 2016.

146

[176] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009.

[177] Radwa Elshawi, Mouaz H Al-Mallah, and Sherif Sakr. On the interpretability of machine
learning-based model for predicting hypertension. BMC medical informatics and decision
making, 19(1):1–32, 2019.

[178] Mark Ibrahim, Melissa Louie, Ceena Modarres, and John Paisley. Global explanations
of neural networks: Mapping the landscape of predictions. In Proceedings of the 2019
AAAI/ACM Conference on AI, Ethics, and Society, pages 279–287, 2019.

[179] Leanne S Whitmore, Anthe George, and Corey M Hudson. Mapping chemical perfor-
mance on molecular structures using locally interpretable explanations. arXiv preprint
arXiv:1611.07443, 2016.

[180] Mengjiao Yang and Been Kim. Benchmarking attribution methods with relative feature
importance. arXiv preprint arXiv:1907.09701, 2019.

[181] Yang Liu, Sujay Khandagale, Colin White, and Willie Neiswanger. Synthetic benchmarks
for scientific research in explainable machine learning. arXiv preprint arXiv:2106.12543,
2021.

[182] Dylan Slack, Sophie Hilgard, Emily Jia, Sameer Singh, and Himabindu Lakkaraju. Fool-
ing lime and shap: Adversarial attacks on post hoc explanation methods. In Proceedings
of the AAAI/ACM Conference on AI, Ethics, and Society, pages 180–186, 2020.

147

	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Motivation
	Thesis Contributions
	Evaluating the Interpretability of Deep Learning for Time Series
	Improving the Interpretability of Deep Learning for Time Series

	Background and Related Work
	Neural Interpretability
	Relevance Detection Methods
	Evaluation of Feature Relevance
	Network Visualization

	Time Series
	Neural Architectures for Time Series
	Neural Interpretability for Time Series

	I Evaluating the Interpretability of Deep Learning for Time Series
	Evaluating Time Series Interpretability
	Benchmarking Interpretability in Time Series Predictions
	Problem Definition
	Saliency Methods
	Neural Net Architectures
	Dataset Design
	Feature Importance Identification
	Evaluation Metrics

	Performance of Different Neural Architecture
	Recurrent Neural Network: Vanishing Saliency
	Saliency Methods Fail in Time Series Data

	Conclusion

	II Improving the Interpretability of Deep Learning for Time Series
	Improvement by Architecture: Input-Cell Attention
	Input-Cell Attention
	Experiments
	Synthetic Data for Evaluation
	MNIST as a Time Series
	Human Connectome Project fMRI Data

	Related Work
	Conclusion

	Improvement by Architecture: Interpretable Mixture of Experts
	IME Framework
	Learning from past errors
	Training objectives
	Training procedure
	Interpretability capabilities
	Accuracy-interpretability trade-off with H-IME

	Tabular Data Performance
	Time Series Data Performance
	Interpretability Results
	Performance Analyses
	Related Work
	Conclusion

	Improvement by Posthoc Procedures: Temporal Saliency Rescaling
	Temporal Saliency Rescaling
	Temporal Saliency Rescaling Optimizations

	Experiments
	Saliency Maps Quality
	Saliency Methods versus Random Ranking
	Saliency Maps for Images versus Multivariate Time Series

	Conclusion

	Improvement by Regularization: Saliency Guided Training
	Notation
	Saliency Guided Training Procedure
	Experiments
	Saliency Guided Training for Images
	Saliency Guided Training for Language
	Saliency Guided Training for Time Series

	Related Work
	Conclusion

	III Conclusion and Future Research
	Conclusions and Future Research
	Summary of Contributions
	Technical Limitations & Open Questions
	Future Research Directions
	Deep Learning for Time Series Forecasting
	Deep Learning Interpretability

	Final Thoughts

	Bibliography

