Selective Multicast Communication in Distributed Systems

Chen Chen
Department of Computer Science

University of Maryland

October 5, 1992

Abstract

Most current techniques for communications between the software components of a
distributed application are limited to one-to-one communication; there is little support
for one-to-many or many-to-many communications. We have developed a framework for
selective multicast, a mechanism supporting one-to-many and many-to-many commu-
nications, where components of an application can communicate with each other. After
discussing the overall requirements for a selective multicast environment, we describe
our approach to selective multicast. An environment to support selective multicast
in distributed system is then described in detail. We demonstrate selective multicast
mechanism by providing an application of connecting Unix tools using selective multi-

cast.

1 Overview

Selective multicast, i.e. one-to-many or many-to-many communication, is important in
distributed systems. The software components of an application need to communicate
with each other. While using remote procedure call for one-to-one request-response com-
munication is widespread, facilities for one-to-many or many-to-many communication are
uncommon.

We view a software application as a system of interoperating processes distributed across
a heterogeneous network, where each process is implemented by a module, i.e. a collection
of individual data and program units. Each module has interfaces bound to one another

representing communication channels between the modules.

O

Figure 1: one-to-one communication

O

Figure 2: one-to-many communication

Figure 3: many-to-one communication

Figure 4: many-to-many communication

Modules need to interact in different ways using interfaces. Figure 1 shows a one-to-one
communication structure. We could impletement it by a remote procedure call, or a read-
write operation. Figure 2 illustrates a one-to-many communication structure. Here we have
one module needs to send messages to multiple modules. A many-to-one communication
structure is shown in Figure 3. One module may be interested in messages from more than
one module. Figure 4 shows a many-to-many communication structure. One-to-many and
many-to-many communications can be supported by selective multicast.

Our research provides a coherent framework for considering all these forms of commu-
nication in the presence of system architecture heterogeneity. In Section 2, we motivate a
need to build selective multicast facilities. In Section 3, after discussing requirements for
a selective multicast environment, we propose a set of primitives. Then in Section 4 we

provide an application of connecting Unix tools using selective multicast mechanism.

2 Motivation

This section presents a concrete problem to motivate the selective multicast problem. It
will help us to describe the requirements for a selective multicast system.
Figure 5 shows the application structure of an example. In this example, there are four

modules nodel, node2, node3 and node4, distributed across different host machines.

nodel R node3

node2 node4

Figure 5: application structure

node3 is interested in messages from nodel, i.e. node3 wants to get a certain type of
messages sent by nodel such as msgtypel3d. Similarly noded is interested in messages
from nodel, node2 and node3.

We will illustrate the application shown in Figure 5 in terms of an existing software in-
terconnection system POLYLITH[3]. It represents a software organization where interfacing
decisions can be encapsulated separately, using a software toolbus. In order to run this
example on different hosts in a heterogeneous environment, users need to provide a descrip-
tion of the application’s modular structure, in terms of a module interconnection language
(MIL). Once this is done, POLYLITH is responsible for invoking processes, and for coercing
data representation, synchronization, and marshaling of data during communication.

In the MIL program, we specify information for each module: the location of the exe-
cutable code, the name of host machine where it should run, and interface information such
as either it is a source or sink and the data type of the messages. In order to put the modules
in an application together, we also have to specify bindings between the interfaces to estab-
lish communication channels. For example, we use bind “nodel send13” “node3 receivel3d”
to establish a one way one-to-one communication channel between nodel and node3.
When nodel sends messages using interface sendl3, node3 can receive these messages
using interface receivel3.

Using asynchronous read and write one-to-one communication in this example, we find

some problems:

#i ncl ude <stdio. h>
main (argc, argv)
int argc;

char **argv;

nmh_init(&argc, &argv, NULL, NULL);
mh_write("send13", "S", NULL, NULL, "Hellol3");
Tl mh_write("send23", "S", NULL, NULL, "Hello33");

servi ce "nodel": { B

i npl ement ation: {bi nary: "/users/chenchen/nodel. exe" node2. ¢
machi ne: "cal |l oo. cs. und. edu”} B
source "sendl13": {string} #i ncl ude <stdio. h>
source "sendl4": {string} mai n (argc, argv)
} int argc;
char **argv;
servi ce "node2": { {
i mpl ement ati on: {bi nary: "/users/chenchen/ node2. exe" mh_init(&rgc, &argv, NULL, NULL);
machi ne: "cal vin. cs. und. edu"} mh_wite("send24", "S", NULL, NULL, "Hello24");
source "send34": {string} }
}
servi ce "node3": { node3. ¢
i mpl emrent ati on: {bi nary: "/users/chenchen/ node3. exe" B
machi ne: "cal l ay. cs. und. edu"} #i ncl ude <stdio. h>
source "send34": {string} mai n (argc, argv)
sink "receivel3": {string} int argc;
} char **argv;
{
servi ce "node4": { char s13[256];
i npl ement ation: {bi nary: "/users/chenchen/ node4. exe"
machi ne: "hone. cs. unmd. edu"} mh_init(&rgc, &argv, NU L, NULL);
sink "receivel4": {string} mh_wite("send34", "S", NULL, NULL, "Hello34");
sink "receive24": {string} mh_read("receivel3", "S", NULL, NULL, s13);
sink "receive34": {string} printf("s\n", s13);
} }
orchestrate "exanple": { Torriiiiio
tool "nodel" node4. c
tool "node2" Torriiiiio
tool "node3" #i ncl ude <stdio. h>
tool "node4" mai n (argc, argv)
bi nd "nodel send13" "node3 receivel3" int argc;
bi nd "nodel send14" "node4 receivel4" char **argv;
bi nd "node2 send24" "node4 receive24" {
bi nd "node3 send34" "node4 receive34" char s14[256];
} char s24[256];

char s34[256];

mh_init(&argc, &argv, NULL, NULL);
mh_read("receiveld", "S", NULL, NULL, s14);
printf("s\n", sl4);

mh_read("receive24", "S", NULL, NULL, s24);
printf("s\n", s24);

mh_read("receive34", "S", NULL, NULL, s34);
printf("s\n", s34);

nmh_shut down(0, 42, "");

Figure 6: MIL program using asynchronous read and write (left); C source code for each

module (right)

POLYLI TH

bus

\174

node4

Figure 7: application structure using POLYLITH

e Components must have configuration knowledge. A module must know what mod-
ules are interested in messages it sends, i.e. it has to declare explicitly a number of
interfaces in its MIL description. Similarly, a module must know what modules will
send messages to it, i.e. it has to declare explicitly a number of interfaces in its MIL
description. It is hard to reconfigure an application structure. We can not add new

modules dynamically.

¢ In an one-to-many communication, a message will be delivered to the software toolbus

many times. This duplicate work increases the cost of the run time performance.

In this application we are assuming that a module can only multicast one type of mes-
sage. There are cases that a module may need to multicast multiple types of messages. If
we allow multiple types of messages to be sent between modules, the situation gets more

interesting and complicated. A naive approach to supporting this scenario is to have dif-

ferent sources and sinks for different type of messages. But it is not reasonable to force
modules to know how many types of message there are.
All these problems tell us that using a one-to-one communication mechanism to support

selective multicast is not efficient. We need a better facility to support it.

3 Selective Multicast Framework

Our objective is to provide a framework for selective multicast in distributed applications.

An environment to support selective multicast must meet the following requirements:

o Users need an easy way to configure and invoke an application.

¢ The mechanism must not compromise the data type system of the programming lan-
guage. The parameters must be marshaled correctly. The low level representations of

primitive data types on diverse underlying architectures should match.

A module should be able to declare any type of message.

A module should be able to register its interest in any type of message.
¢ A module should be able to multicast any message.

¢ A module should be able to get a multicast message it is interested in it.

Selective multicast should be provided at minimum cost to programmers and without

loss of run-time performance.

Our approach to meeting the above requirements is to build upon the existing POLYLITH
interconnection system mentioned in Section 2. We made this decision because POLYLITH
already provides users with an environment that facilitates construction of applications for
execution in heterogeneous environments.

POLYLITH satisfies our goal of data type safety. The bus already manages data mar-
shaling. Datais encoded into a stream. When the stream is transmitted to another module,
it is decoded into the corresponding data structure. In addition to the data marshaling,
the bus coerces the low level representation of primitive data types on different underlying

architecture.

The first two requirements for a selective multicast environment can be met by the
existing POLYLITH interconnection system. However, our remaining requirements are not
answered yet.

Using POLYLITH, the modules interface directly with a software toolbus. This simpli-
fies our implementation of selective multicast. We expand the functionality of the software
toolbus to keep track of information about modules interests and communication channels.
Modules that want to multicast messages do not have to know which modules are interested
in this type of message. Modules that want to get multicast messages do not have to know
where the messages come from.

Now we present details concerning the environment we have constructed for experiment-
ing with selective multicast. We have added a set of primitives to POLYLITH to support

selective multicast:

o mh_msgtype(data_type, msgtype_name)

A module uses this service to declare a message type named msgtype_name with data
type data_type. For example, mh_msgtype(“S”, “msgtypel3”) declares a selective
multicast message type “msgtypel3d” of data type string. This bus service will insert
a new message type into an internal table that keeps track of module message type

registration.

o mh_rgsmulticast(msgtype_name)

A module uses this service to register its interest in message type msgtype_name.
This bus service will record this information by modifying the corresponding entry in

the internal table.

o mh_multicast(msgtype_name, data_type, message)

A module uses this service to multicast a message. This bus service will check the
internal table and enqueue a copy of this message on an interface of each module

registered in this message type.

o mh_getmsg(data_type, msgtype_name, message)

A module uses this service to receive a message. If the message queue is not empty,
this bus service will dequeue a message from the message queue and send it back to

the module , otherwise a standard null message will be sent back.

o mh_nomsg(message)

A module uses this service to declare a standard null message. For example, if the
null message is declared as “NO MESSAGE”, and a module calls mh_getmsg and
receives “NO MESSAGE”, that means that right now there are no waiting messages.

So mh_getmsg is nonblocking.

o mh_query_msgtype(msgtype_buf fer)

A module uses this service to list all message types in which it has registered an

interest. This bus service checks the internal table and sends back the result.

Figure 8 shows what the MIL and C code looks like for the example in Section 2 using
our selective multicast primitives. For example, node3 declares a message type msgtype34
causing the service to insert a new message type msgtype34 into the internal table. Then
it multicasts a string “Hello34” of message type msgtype34. Checking the internal table,
we find out that node4 is interested in msgtype34 type of message, so a copy of “Hello34”
is enqueued on interface of node4. node3 declares a standard null message to be “NO
MESSAGE” and then registers its interest in message type msgtypel3. This bus service
marks the entry of row node3 and column msgtypel3. When node3 calls to receive a
message, we find out that it is interested in messages of type msgtypel3 by checking the
internal table. If queue is not empty, then a message is dequeued from and sent back to
node3, otherwise it will get “NO MESSAGE”. A snapshot of the internal table for this

example is shown in Figure 9.

4 Application: Connecting Unix Tools Using Selective Mul-

ticast

In distributed systems in order to allow modules to be run on one machine and display
on another, some network protocol must be designed to support communication between
modules, one of which is called server, and the others are called clients[6]. This protocol
is also used by the client to send requests to the server for information; it is used by the
server to send user input or replies to requests back to the client.

POLYLITH can be viewed as a client-server based software interconnection system.

Each module in the application is a client. The software toolbus is the server. A set of

servi ce "nodel": {
i npl ement ati on: {bi nary:

machi ne:

}

service "node2": {
i mpl ement ati on: {bi nary:

machi ne:

}

servi ce "node3": {
i npl ement ati on: {bi nary:

machi ne:

}

service "node4": {
i mpl ement ati on: {bi nary:

"user s/ chenchen/ nodel.

"cal | 0o. cs. und. edu”

"user s/ chenchen/ node2.

"cal vin.cs.und. edu”

"user s/ chenchen/ node3.

“cal l ay. cs. und. edu”

"user s/ chenchen/ node4.

machi ne: "hone. cs. und. edu”
}
orchestrate "exanple":{
tool "nodel"
tool "node2"
tool "node3"
tool "node4"
}
nodel.c
#incl ude <stdio. h>
mai n (argc, argv)
int argc;
char **argv;
{
mh_init(&rgc, &argv, NULL, NULL);
mh_nmsgtype("S", "nmsgtypel3d");
mh_nsgtype("S"', "nsgtypeld");
mh_rmul ticast ("nmsgtypel3", "S', "Hello13");
mh_mul ticast ("nsgtypeld”, "S', "Hellol4d");
}
node2.c
#incl ude <stdio. h>
mai n (argc, argv)
int argc;
char **argv;
{
mh_init(&rgc, &argv, NULL, NULL);
mh_nmsgtye("S", "msgtype24");
mh_mul ticast (" nsgtype24", "S', "Hello24");

exe"

exe"

exe"

exe"

#i ncl ude <stdio. h>

main (argc, argv)

int argc;

char **argv;

{
char nsgtypebuf [256] ;
char s[256];

mh_init(&rgc, &argv, NULL, NULL);
mh_nsgtype("S"', "nsgtype34");
mh_mul ti cast ("nsgtype34", "S",
mh_nonsg(" NO MESSAGE") ;
mh_rgsmul ti cast ("nsgtypel3");

nmh_getnsg("S", s, nsgtypebuf);

if (strcnp(s, "NO MESSAGE')){
printf("$s: %\n", nsgtypebuf, s);

el se {

printf("There is no nulticast nessage.

#i ncl ude <stdio. h>

mai n (argc, argv)

int argc;

char **argv;

{
char msgt ypebuf[256];
char s[256];
int i;

mh_init(&rgc, &argv, NULL, NULL);
mh_nonsg(" NO MESSAGE") ;

mh_rgsmnul ti cast ("nsgtype24");
mh_rgsmnul ti cast ("nsgtype34");
mh_rgsmnul ti cast ("nsgtypeld");

for (i=1; i<=3; i++)
{
mh_getmsg("S", s, nsgtypebuf);
if strcenp(s, "NO MESSACGE") {
printf(%: %\n", nsgtypebuf,
el se {

printf("There is no multicast

}
mh_shut down(0, 42, "");

Figure 8: MIL and C code for the example in Section 2 using selective multicast

10

"Hel | 034");

s);

nmessage.\n");

neg type

nodul e nsgtypel3 nsgt ypeld msgt ype34 msgt ypelsd

nodel

node2

node3 J
W/ W/ V/

Figure 9: The internal table keeps track of module message type registration for the example

in Section 2

primitives defines a communication protocol. The server interprets requests from clients.
Some requests command the server to manipulate messages, like mh_multicast, while others
ask the server for information, like mh_query_msgtype.

An interesting use of our selective multicasting framework is to connect Unix tools.
Suppose we have several windows connected by Unix tools. When an event such as pressing
a key on the keyboard is generated in a window, its previously registered callback proc, a
shell script, is notified. When the callback procis triggered, it takes input from this window,
executes the corresponding shell script, and then sends its output to other windows. If
the system loads are unbalanced with one host machine overloaded, we can distribute the
callback procs to run on other hosts.

Figure 10 shows an example of this problem. In this example, we have five circles repre-
senting fives windows connected by the Unix tools awk and grep, denoted by ovals. When
an event is generated in window foo, its previously registered callback proc unixtool _awk
is triggered, taking input from foo, executing a Unix command awk ‘{print $2, $1}°, and
then sends the output to barl and new. When barl gets an event from unixtool_awk, its
callback proc unixtool_grep is also triggered. It takes input from barl, executes a Unix

command grep chen, and sending the output to bar. Similarly, mygrep takes input from

11

o
[3)
=
>

|
o
o

-
<
c
>

¢l

arnjontys voryedrdde (T 2Im3rg

o >)

awk
ne

uni xt ool

i dent

name bi nary
fool [user s/ chenchen/ f ool
foo / f1 ubber/chenchen/ f oo
bar 1 [user s/ chenchen/ bar 1
bar / user s/ chenchen/ bar
uni xt ool _awk ./ uni xt ool _awk
uni xt ool _grep ./uni xt ool _grep
new / user s/ chenchen/ new
nygrep ./ nygrep

save

machi ne
cal vin.cs.und. edu
fl ubber. cs. und. edu
cal | oo. cs. und. edu

cal | oo. cs. und. edu

cal l ay. cs. und. edu

cal l ay. cs. und. edu
hone. cs. und. edu

hore. cs. und. edu

nygrep

comand

uni xt ool _awk -

f oo

bar 1

awk ' {print$2, $1}

grep chen

uni xt ool _awk -

new

grep jim

node

out

i nout

uni xt oo

uni xt oo

i nout

uni xt oo

Figure 11: a snapshot of the spreadsheet

13

new, executes a Unix command grep jim, and then sends the output to fool. Multiple
modules may be interested in messages from one module. For example, unixtool awk
must send output to barl and new. We can use our selective multicast mechanism to
support this one-to-many communication.

In order to run this application, we need information for modules:

e ident

identifier of a module

¢ Name

name of a module

e binary

location of the binary file of a module

e machine
host machine name of a module
e in
names of modules from which it takes input

e command

if the module is a Unix tool, the shell script will be executed

e mode

in, out, inout or unixtool

Modes of modules fall into four categories: in, out, inout or unixtool. If a module
only has input from other modules, for example fool and bar, then it is of mode in. If a
module only has output to other modules(foo), then it is of mode out. If a module has both
input from other modules and output to other modules, it is of mode inout(barl and new).
A module executes a shell script is of mode unixtool (unixtool_awk, unixtool_grep and
mygrep).

We have implemented this application by building a spreadsheet-like graphical user
interface on top of multicasting software toolbus. Figure 11 shows a snapshot of the spread-

sheet interface for the example shown in Figure 10. Users do not need to edit C source files

14

#i ncl ude <stdio. h>
main (argc, argv)
int argc;

char **argv;

{

char s[256];

char msgt ypebuf [256]
char obj nane_buf[256] ;
char pnange[256] ;

char in[256];

char *p, *qg;

mh_init(&rgc, &argv, NULL, NULL);
mh_query_objattr ("IN, in, sizeof(in));

/*decode in into several pnanmes */

q = pnane;
for (p = in; p<=(in + sizeof(in)); p++){
if (*p 1= "){
while ((*p'=" ") &

((int)p<=(int)(in + sizeof(in))))
*g++ = *pt++,

*q ='\0";

mh_rgsmul ti cast (pnane) ;

}
g = pnane;
}
/* get message */
while (1) {
mh_getmsg("S", s, msgtypebuf);
while (strcnmp(s, "eof\n")){
if (strcnp(s, "NO MESSAGE'))
printf("%: %\n", nmsgtypebuf, s);
mh_getmsg("S", s, nsgtypebuf);
}

Figure 12: C code for module of modes in(left) and out(right) using selective multicast

15

#i ncl ude <stdio. h>

main (argc, argv)

int argc;

char **argv;

{
char obj name_buf [256] ;
char buffer[256];

mh_init(&argc, &argv, NULL, NULL);

mh_query_obj attr (" NAVE", objnanme_buf,

si zeof (obj name_buf));

mh_msgt ype(obj nane_buf) ;

/* read a nessage fromtermnal */
while (1) {
whi l e(strcnp(gets(buffer), "")){
strcat (buffer, "\n");
mh_mul ti cast (obj name_buf, "S",

buffer);

#i ncl ude <stdio. h> #i ncl ude <stdio. h>
main (argc, argv) {
int argc; char s[256], objnanme_buf[256], buffer[256],
char **argyv; command[256], pnane[256], nane[256],
{ i n[256], out[256], tenpin[256], tenpout]256],
char s[256]; nmsgt ypebuf [256], *p, *q;
char obj nane_buf [256] ; FILE *fpln, *fpQut;
char pnang[256] ;
char in[256]; mh_init(&argc, &argv, NULL, NULL);
char *p, *q; mh_nonsg("S", "NO MESSAGE');
mh_query_objattr (" COMAND', command,
mh_init(&rgc, &argv, NULL, NULL); si zeof (command)) ;
mh_query_objattr ("IN, in, sizeof(in)); mh_query_objattr("NAVE', nanme, sizeof(nane));
mh_nsgt ype(nane) ;
/*decode I N into several pnanmes */ mh_query_objattr("IN', in, sizeof(in));
g = pnang; mh_query_objattr("OUT", out, sizeof(out));
for (p=in; p<=(in + sizeof(in));p+t+){
if (*pl=" "){ sprintf(tenmpin, "%tenpln", nane);
while ((*p !'=" ") && sprintf(tenpout, "%tenpQut", nane);
((int)p<=(int)(in + sizeof(in))))
*Q++ = *pte+ /* decode IN into several pnanes */
*q ='\0";
mh_rgsmul ti cast (pnane) ; g=pnane;
} for (p=in;p<=(in+sizeof(in));p+t+){
q= pnane; it (rpl= ")
while ((*p!'=" ") &&
((int)p<=(int)(in + sizeof(int)))){
mh_query_obj attr (" NAME', objnanme_buf, *Qt++ = *p+
si zeof (obj name_buf)); *q="\0";
mh_nsgt ype(obj nane_buf) ; nmh_rgsnul ti cast (pnane);
}
/* get nessage */ g=pnane;
while (1) {
mh_get msg("S", s, nsgtypebuf);
while (strcnp(s, "eof\n")){ while (1) {
if (strcnmp(s, "NO MESSAGE')){ fpln =fopen(tenpin, "w');
mh_mul ti cast (obj name_buf, "S', s); mh_getmsg("S", s, nsgtypebuf);
} while (strcnmp(s, "eof\n"){
mh_mul ti cast (obj name_buf, "S*, "eof\n"); if (strcnp(s, "NO MESSAGE'))
} fputs(s, fpln);
}

}
mh_getnsg("S", s, nsgtypebuf);

fclose(fpln);

strcat (conmand, t enpi n) ;
strcat (conmand, " > ");
strcat (conmand, tenpout);
syst en(conmand) ;

fpQut = fopen(tenpout, "r");
while ((fgets(buffer, sizeof(buffer),fpQut)!=NULL)

mh_mul ti cast (nanme, "S", buffer);
mh_mul ticast("S", "eof\n");

Figure 13: C code for module of modes inout(left) and unixtool(right) using selective

multicast

16

and Makefile. All they need to do is to provide attributes associated with each module.
The source code for a module of each mode shown in Figure 12 and Figure 13 is provided
by the tool. For example, in the first row of the spreadsheet, we have a module named fool
and the executable of this module is /users/chenchen/ fool on machine calvin.cs.umd.edu.
Since fool takes input from module mygrep but does not send output to other modules,
its mode is in. Given the spreadsheet defined by users, information about modules is stored
in a file application_file by pressing button save. When button run is pressed, a copy
of the executable generated by compiling ¢n.c is sent to machine calvin.cs.umd.edu with
full path name of /users/chenchen/ fool. At the same time, actions are taken similarly to
other modules given in the spreadsheet. After installation, the software toolbus is started
up with input file application_file.

The source code for modules of each mode use the primitives described in Section 3.
For example, in the fifth row of the spreadsheet, we have a module named unixtool_awk
of mode unixtool, so the source code of unixtool_awk is uniztool.c. In uniztool.c (see
Figure 13), a call to mh_rgsmulticast() registers its interest in all modules given by attribute
in in the spreadsheet(foo). Calls to mh_getmsg() are used to receive messages from those
modules. When unixtool_awk receives a special end of file message, it stores these messages
in a templn file, executes a shell script given by attribute command(awk ‘{print $2,
$1}°) in the spreadsheet on file templn, redirects the output to file tempOut and then
calls mh_multicast() to send out the output to barl and new. Similar actions are taken
to modules of mode in, out and inout. Notice that there might be multiple modules
interested in messages from this module, so we have to use selective multicast to support
this one-to-many communication.

A feature of this tool is that it is very easy to reconfigure the application structure.
Users only need to change the attributes on the spreadsheet. For example, if a user wants
the application structure shown in Figure 14, they can achieve this goal by simply changing

the spreadsheet to a new one shown in Figure 15.

5 Performance

Our experience to date are that use of the POLYLITH bus organization does not necessarily
result in performance loss.

Using the selective multicast primitives built on POLYLITH, the cost of registering

17

- |
.—

7

Figure 14: a new application structure

messages and receiving messages is the same as the cost of reading messages in the one-
to-one communication. When multicasting a message, in addition to the cost of writing a
message, there is a cost in searching the internal table and enqueuing a copy of the message
for each module interested in it, which is dependent on the number of modules interested

in it.

6 Related Work

Our approach is based upon the software bus abstraction as currently implemented in the
POLYLITH interconnection system[3]. We benefited from Cooper’s research[l] on pro-
gramming language support for multicast communication, which discusses essential and
desirable properties of a language construct for multicast communication. Reiss’s Field
environment [5] connects tools with selective broadcasting, allowing the Unix philosophy
of letting independent tools cooperate through simple conventions. His work motivates the
need for selective multicast and inspired our work on connecting Unix tools using selective

multicast.

18

i dent

name bi nary

fool [user s/ chenchen/ f ool
foo / f1 ubber/chenchen/ f oo
bar 1 [user s/ chenchen/ bar 1
bar / user s/ chenchen/ bar

uni xt ool _awk ./ uni xt ool _awk

uni xt ool _grep ./uni xt ool _grep

new / user s/ chenchen/ new

save

machi ne
cal vin.cs.und. edu
fl ubber. cs. und. edu

cal | oo. cs. und. edu

cal | oo. cs. und. edu

cal l ay. cs. und. edu

cal l ay. cs. und. edu

hone. cs. und. edu

in comand node

- - out
- - out
- - i nout
uni xt ool _awk - in
foo fool awk ' {print$2,$1}’ unixtoo
bar 1 grep chen uni xt ool
uni xt ool _grep - in
run

Figure 15: a snapshot of the spreadsheet for a new application

19

7 Conclusion

We have described a broad framework that supports selective multicast, specifically within a
distributed programming environment. In order to run experiments within this framework,
we have constructed selective multicast facilities upon existing software interconnection
system POLYLITH. We also provided an applicaiton of connecting Unix tools using our se-
lective multicast mechanism. This paper exposes our overall approach to selective multicast.

We plan to provide more realistic applications built within our environment.

References

[1] Eric C. Cooper. Programming Language Support for Multicast Communication in Dis-

tributed System, IFFFE Transactions on Computers, July 1990.

[2] James M. Purtilo and Christine R. Hofmeister. Dynamic Reconfigurations of Dis-
tributed Programs, The 11th International Conference on Distributed Computing Sys-
tems, May 1991.

[3] James M Purtilo. The Polylith Software Bus.

[4] James M. Purtilo, Christine R. Hofmeister and Joanne Atlee. Writing Distributed
Programs in Polylith, Dept of Computer Science, University of Maryland, CS-TR-
2575, December 1990.

[5] Steven P. Reiss. Connecting Tools Using Message Passing in the Field Environment,

IEFEFE Transaction on Computers, July 1990.

[6] Dan Heller. XView Programming Manual, March 1992.

20

