
Selective Multicast Communication in Distributed SystemsChen ChenDepartment of Computer ScienceUniversity of MarylandOctober 5, 1992AbstractMost current techniques for communications between the software components of adistributed application are limited to one-to-one communication; there is little supportfor one-to-many or many-to-many communications. We have developed a framework forselective multicast, a mechanism supporting one-to-many and many-to-many commu-nications, where components of an application can communicate with each other. Afterdiscussing the overall requirements for a selective multicast environment, we describeour approach to selective multicast. An environment to support selective multicastin distributed system is then described in detail. We demonstrate selective multicastmechanism by providing an application of connecting Unix tools using selective multi-cast.1 OverviewSelective multicast, i.e. one-to-many or many-to-many communication, is important indistributed systems. The software components of an application need to communicatewith each other. While using remote procedure call for one-to-one request-response com-munication is widespread, facilities for one-to-many or many-to-many communication areuncommon.We view a software application as a system of interoperating processes distributed acrossa heterogeneous network, where each process is implemented by a module, i.e. a collectionof individual data and program units. Each module has interfaces bound to one anotherrepresenting communication channels between the modules.1

Figure 1: one-to-one communication
Figure 2: one-to-many communication
Figure 3: many-to-one communication2

Figure 4: many-to-many communicationModules need to interact in di�erent ways using interfaces. Figure 1 shows a one-to-onecommunication structure. We could impletement it by a remote procedure call, or a read-write operation. Figure 2 illustrates a one-to-many communication structure. Here we haveone module needs to send messages to multiple modules. A many-to-one communicationstructure is shown in Figure 3. One module may be interested in messages from more thanone module. Figure 4 shows a many-to-many communication structure. One-to-many andmany-to-many communications can be supported by selective multicast.Our research provides a coherent framework for considering all these forms of commu-nication in the presence of system architecture heterogeneity. In Section 2, we motivate aneed to build selective multicast facilities. In Section 3, after discussing requirements fora selective multicast environment, we propose a set of primitives. Then in Section 4 weprovide an application of connecting Unix tools using selective multicast mechanism.2 MotivationThis section presents a concrete problem to motivate the selective multicast problem. Itwill help us to describe the requirements for a selective multicast system.Figure 5 shows the application structure of an example. In this example, there are fourmodules node1, node2, node3 and node4, distributed across di�erent host machines.3

node1

node2

node3

node4Figure 5: application structurenode3 is interested in messages from node1, i.e. node3 wants to get a certain type ofmessages sent by node1 such as msgtype13. Similarly node4 is interested in messagesfrom node1, node2 and node3.We will illustrate the application shown in Figure 5 in terms of an existing software in-terconnection system POLYLITH[3]. It represents a software organization where interfacingdecisions can be encapsulated separately, using a software toolbus. In order to run thisexample on di�erent hosts in a heterogeneous environment, users need to provide a descrip-tion of the application's modular structure, in terms of a module interconnection language(MIL). Once this is done, POLYLITH is responsible for invoking processes, and for coercingdata representation, synchronization, and marshaling of data during communication.In the MIL program, we specify information for each module: the location of the exe-cutable code, the name of host machine where it should run, and interface information suchas either it is a source or sink and the data type of the messages. In order to put the modulesin an application together, we also have to specify bindings between the interfaces to estab-lish communication channels. For example, we use bind \node1 send13" \node3 receive13"to establish a one way one-to-one communication channel between node1 and node3.When node1 sends messages using interface send13, node3 can receive these messagesusing interface receive13.Using asynchronous read and write one-to-one communication in this example, we �ndsome problems: 4

service "node1":{
 implementation:{binary: "/users/chenchen/node1.exe"
 machine: "calloo.cs.umd.edu"}
 source "send13": {string}
 source "send14": {string}
}

service "node2":{
 implementation:{binary: "/users/chenchen/node2.exe"
 machine: "calvin.cs.umd.edu"}
 source "send34": {string}
}

service "node3":{
 implementation:{binary: "/users/chenchen/node3.exe"
 machine: "callay.cs.umd.edu"}
 source "send34": {string}
 sink "receive13": {string}
}

service "node4":{
 implementation:{binary: "/users/chenchen/node4.exe"
 machine: "home.cs.umd.edu"}
 sink "receive14": {string}
 sink "receive24": {string}
 sink "receive34": {string}
}

orchestrate "example":{
 tool "node1"
 tool "node2"
 tool "node3"
 tool "node4"
 bind "node1 send13" "node3 receive13"
 bind "node1 send14" "node4 receive14"
 bind "node2 send24" "node4 receive24"
 bind "node3 send34" "node4 receive34"
}

:::::::::::
node1.c
:::::::::::
#include <stdio.h>
main (argc, argv)
int argc;
char **argv;
{
 mh_init(&argc, &argv, NULL, NULL);
 mh_write("send13", "S", NULL, NULL, "Hello13");
 mh_write("send23", "S", NULL, NULL, "Hello33");
}

:::::::::::
node2.c
:::::::::::
#include <stdio.h>
main (argc, argv)
int argc;
char **argv;
{
 mh_init(&argc, &argv, NULL, NULL);
 mh_write("send24", "S", NULL, NULL, "Hello24");
}

:::::::::::
node3.c
:::::::::::
#include <stdio.h>
main (argc, argv)
int argc;
char **argv;
{
 char s13[256];

 mh_init(&argc, &argv, NUlL, NULL);
 mh_write("send34", "S", NULL, NULL, "Hello34");
 mh_read("receive13", "S", NULL, NULL, s13);
 printf("s\n", s13);
}

:::::::::::
node4.c
:::::::::::
#include <stdio.h>
main (argc, argv)
int argc;
char **argv;
{
 char s14[256];
 char s24[256];
 char s34[256];

 mh_init(&argc, &argv, NULL, NULL);
 mh_read("receive14", "S", NULL, NULL, s14);
 printf("s\n", s14);
 mh_read("receive24", "S", NULL, NULL, s24);
 printf("s\n", s24);
 mh_read("receive34", "S", NULL, NULL, s34);
 printf("s\n", s34);
 mh_shutdown(0, 42, "");
}

::::::::::::
example.cl
::::::::::::

Figure 6: MIL program using asynchronous read and write (left); C source code for eachmodule (right) 5

node1

node2

node3

node4

bus

POLYLITH

Figure 7: application structure using POLYLITH� Components must have con�guration knowledge. A module must know what mod-ules are interested in messages it sends, i.e. it has to declare explicitly a number ofinterfaces in its MIL description. Similarly, a module must know what modules willsend messages to it, i.e. it has to declare explicitly a number of interfaces in its MILdescription. It is hard to recon�gure an application structure. We can not add newmodules dynamically.� In an one-to-many communication, a message will be delivered to the software toolbusmany times. This duplicate work increases the cost of the run time performance.In this application we are assuming that a module can only multicast one type of mes-sage. There are cases that a module may need to multicast multiple types of messages. Ifwe allow multiple types of messages to be sent between modules, the situation gets moreinteresting and complicated. A naive approach to supporting this scenario is to have dif-6

ferent sources and sinks for di�erent type of messages. But it is not reasonable to forcemodules to know how many types of message there are.All these problems tell us that using a one-to-one communication mechanism to supportselective multicast is not e�cient. We need a better facility to support it.3 Selective Multicast FrameworkOur objective is to provide a framework for selective multicast in distributed applications.An environment to support selective multicast must meet the following requirements:� Users need an easy way to con�gure and invoke an application.� The mechanism must not compromise the data type system of the programming lan-guage. The parameters must be marshaled correctly. The low level representations ofprimitive data types on diverse underlying architectures should match.� A module should be able to declare any type of message.� A module should be able to register its interest in any type of message.� A module should be able to multicast any message.� A module should be able to get a multicast message it is interested in it.� Selective multicast should be provided at minimum cost to programmers and withoutloss of run-time performance.Our approach to meeting the above requirements is to build upon the existing POLYLITHinterconnection system mentioned in Section 2. We made this decision because POLYLITHalready provides users with an environment that facilitates construction of applications forexecution in heterogeneous environments.POLYLITH satis�es our goal of data type safety. The bus already manages data mar-shaling. Data is encoded into a stream. When the stream is transmitted to another module,it is decoded into the corresponding data structure. In addition to the data marshaling,the bus coerces the low level representation of primitive data types on di�erent underlyingarchitecture. 7

The �rst two requirements for a selective multicast environment can be met by theexisting POLYLITH interconnection system. However, our remaining requirements are notanswered yet.Using POLYLITH, the modules interface directly with a software toolbus. This simpli-�es our implementation of selective multicast. We expand the functionality of the softwaretoolbus to keep track of information about modules interests and communication channels.Modules that want to multicast messages do not have to know which modules are interestedin this type of message. Modules that want to get multicast messages do not have to knowwhere the messages come from.Now we present details concerning the environment we have constructed for experiment-ing with selective multicast. We have added a set of primitives to POLYLITH to supportselective multicast:� mh msgtype(data type;msgtype name)A module uses this service to declare a message type named msgtype name with datatype data type. For example, mh msgtype(\S"; \msgtype13") declares a selectivemulticast message type \msgtype13" of data type string. This bus service will inserta new message type into an internal table that keeps track of module message typeregistration.� mh rgsmulticast(msgtype name)A module uses this service to register its interest in message type msgtype name.This bus service will record this information by modifying the corresponding entry inthe internal table.� mh multicast(msgtype name; data type; message)A module uses this service to multicast a message. This bus service will check theinternal table and enqueue a copy of this message on an interface of each moduleregistered in this message type.� mh getmsg(data type; msgtype name; message)A module uses this service to receive a message. If the message queue is not empty,this bus service will dequeue a message from the message queue and send it back tothe module , otherwise a standard null message will be sent back.8

� mh nomsg(message)A module uses this service to declare a standard null message. For example, if thenull message is declared as \NO MESSAGE", and a module calls mh getmsg andreceives \NO MESSAGE", that means that right now there are no waiting messages.So mh getmsg is nonblocking.� mh query msgtype(msgtype buffer)A module uses this service to list all message types in which it has registered aninterest. This bus service checks the internal table and sends back the result.Figure 8 shows what the MIL and C code looks like for the example in Section 2 usingour selective multicast primitives. For example, node3 declares a message type msgtype34causing the service to insert a new message type msgtype34 into the internal table. Thenit multicasts a string \Hello34" of message type msgtype34. Checking the internal table,we �nd out that node4 is interested in msgtype34 type of message, so a copy of \Hello34"is enqueued on interface of node4. node3 declares a standard null message to be \NOMESSAGE" and then registers its interest in message type msgtype13. This bus servicemarks the entry of row node3 and column msgtype13. When node3 calls to receive amessage, we �nd out that it is interested in messages of type msgtype13 by checking theinternal table. If queue is not empty, then a message is dequeued from and sent back tonode3, otherwise it will get \NO MESSAGE". A snapshot of the internal table for thisexample is shown in Figure 9.4 Application: Connecting Unix Tools Using SelectiveMul-ticastIn distributed systems in order to allow modules to be run on one machine and displayon another, some network protocol must be designed to support communication betweenmodules, one of which is called server, and the others are called clients[6]. This protocolis also used by the client to send requests to the server for information; it is used by theserver to send user input or replies to requests back to the client.POLYLITH can be viewed as a client-server based software interconnection system.Each module in the application is a client. The software toolbus is the server. A set of9

::::::::::
example.cl
::::::::::
service "node1":{
 implementation:{binary: "users/chenchen/node1.exe"
 machine: "calloo.cs.umd.edu"
}

service "node2":{
 implementation:{binary: "users/chenchen/node2.exe"
 machine: "calvin.cs.umd.edu"
}

service "node3":{
 implementation:{binary: "users/chenchen/node3.exe"
 machine: "callay.cs.umd.edu"
}

service "node4":{
 implementation:{binary: "users/chenchen/node4.exe"
 machine: "home.cs.umd.edu"
}

orchestrate "example":{
 tool "node1"
 tool "node2"
 tool "node3"
 tool "node4"
}

:::::::::::
node1.c
:::::::::::
#include <stdio.h>
main (argc, argv)
int argc;
char **argv;
{
 mh_init(&argc, &argv, NULL, NULL);
 mh_msgtype("S", "msgtype13");
 mh_msgtype("S", "msgtype14");
 mh_multicast("msgtype13", "S", "Hello13");
 mh_multicast("msgtype14", "S", "Hello14");
}

::::::::::
node2.c
::::::::::
#include <stdio.h>
main (argc, argv)
int argc;
char **argv;
{
 mh_init(&argc, &argv, NULL, NULL);
 mh_msgtye("S", "msgtype24");
 mh_multicast("msgtype24", "S", "Hello24");
}

:::::::::
node3.c
:::::::::
#include <stdio.h>
main (argc, argv)
int argc;
char **argv;
{
 char msgtypebuf[256];
 char s[256];

 mh_init(&argc, &argv, NULL, NULL);
 mh_msgtype("S", "msgtype34");
 mh_multicast("msgtype34", "S", "Hello34");
 mh_nomsg("NO MESSAGE");
 mh_rgsmulticast("msgtype13");
 mh_getmsg("S", s, msgtypebuf);
 if (strcmp(s, "NO MESSAGE")){
 printf("$s: %s\n", msgtypebuf, s);
 }
 else {
 printf("There is no multicast message. \n");
 }
}

:::::::::
node4.c
:::::::::
#include <stdio.h>
main (argc, argv)
int argc;
char **argv;
{
 char msgtypebuf[256];
 char s[256];
 int i;

 mh_init(&argc, &argv, NULL, NULL);
 mh_nomsg("NO MESSAGE");
 mh_rgsmulticast("msgtype24");
 mh_rgsmulticast("msgtype34");
 mh_rgsmulticast("msgtype14");
 for (i=1; i<=3; i++)
 {
 mh_getmsg("S", s, msgtypebuf);
 if strcmp(s, "NO MESSAGE") {
 printf(%s: %s\n", msgtypebuf, s);
 }
 else {
 printf("There is no multicast message.\n");
 }
 }
 mh_shutdown(0, 42, "");
}

 Figure 8: MIL and C code for the example in Section 2 using selective multicast10

msg type

module

 node1

 node2

 node3

 node4

 ...

msgtype13 msgtype14 msgtype34 msgtype14 ...

Figure 9: The internal table keeps track of module message type registration for the examplein Section 2primitives de�nes a communication protocol. The server interprets requests from clients.Some requests command the server to manipulate messages, like mh multicast, while othersask the server for information, like mh query msgtype.An interesting use of our selective multicasting framework is to connect Unix tools.Suppose we have several windows connected by Unix tools. When an event such as pressinga key on the keyboard is generated in a window, its previously registered callback proc, ashell script, is noti�ed. When the callback proc is triggered, it takes input from this window,executes the corresponding shell script, and then sends its output to other windows. Ifthe system loads are unbalanced with one host machine overloaded, we can distribute thecallback procs to run on other hosts.Figure 10 shows an example of this problem. In this example, we have �ve circles repre-senting �ves windows connected by the Unix tools awk and grep, denoted by ovals. Whenan event is generated in window foo, its previously registered callback proc unixtool awkis triggered, taking input from foo, executing a Unix command awk `fprint $2, $1g', andthen sends the output to bar1 and new. When bar1 gets an event from unixtool awk, itscallback proc unixtool grep is also triggered. It takes input from bar1, executes a Unixcommand grep chen, and sending the output to bar. Similarly, mygrep takes input from11

foo

bar1

new

bar

foo1

unixtool_awk

unixtool_grep

 mygrep

Figure10:applicationstr
ucture 12

ident name binary machine in command mode

1 calvin.cs.umd.edu

-

-

2 /flubber/chenchen/foo

foo1

foo flubber.cs.umd.edu

-

out

/users/chenchen/foo1 in

3 bar1 /users/chenchen/bar1

calloo.cs.umd.edu unixtool_awk

-

inout

4 bar /users/chenchen/bar

calloo.cs.umd.edu

unixtool_grep

-

5 unixtool_awk unixtool

- in

./unixtool_grep

callay.cs.umd.edu

callay.cs.umd.edu

./unixtool_awk foo awk ’{print$2,$1}’

6 bar1 grep chen unixtool

7 new /users/chenchen/new home.cs.umd.edu unixtool_awk - inout

8 mygrep ./mygrep home.cs.umd.edu new grep jim unixtool

save quit run

mygrep

Figure11:asnapshotof
thespreadsheet 13

new, executes a Unix command grep jim, and then sends the output to foo1. Multiplemodules may be interested in messages from one module. For example, unixtool awkmust send output to bar1 and new. We can use our selective multicast mechanism tosupport this one-to-many communication.In order to run this application, we need information for modules:� identidenti�er of a module� namename of a module� binarylocation of the binary �le of a module� machinehost machine name of a module� innames of modules from which it takes input� commandif the module is a Unix tool, the shell script will be executed� modein, out, inout or unixtoolModes of modules fall into four categories: in, out, inout or unixtool. If a moduleonly has input from other modules, for example foo1 and bar, then it is of mode in. If amodule only has output to other modules(foo), then it is of mode out. If a module has bothinput from other modules and output to other modules, it is of mode inout(bar1 and new).A module executes a shell script is of mode unixtool (unixtool awk, unixtool grep andmygrep).We have implemented this application by building a spreadsheet-like graphical userinterface on top of multicasting software toolbus. Figure 11 shows a snapshot of the spread-sheet interface for the example shown in Figure 10. Users do not need to edit C source �les14

:::::::::::
in.c
:::::::::::
#include <stdio.h>
main (argc, argv)
int argc;
char **argv;
{
 char s[256];
 char msgtypebuf[256]
 char objname_buf[256];
 char pname[256];
 char in[256];
 char *p, *q;

 mh_init(&argc, &argv, NULL, NULL);
 mh_query_objattr("IN", in, sizeof(in));

 /*decode in into several pnames */
 q = pname;
 for (p = in; p<=(in + sizeof(in)); p++){
 if (*p !=’ ’){
 while ((*p != ’ ’) &&
 ((int)p<=(int)(in + sizeof(in))))
 *q++ = *p++;
 *q = ’\0’;
 mh_rgsmulticast(pname);
 }
 q = pname;
 }

 /* get message */
 while (1) {
 mh_getmsg("S", s, msgtypebuf);
 while (strcmp(s, "eof\n")){
 if (strcmp(s, "NO MESSAGE"))
 printf("%s: %s\n", msgtypebuf, s);
 mh_getmsg("S", s, msgtypebuf);
 }
 }
}

:::::::::::
out.c
:::::::::::
#include <stdio.h>
main (argc, argv)
int argc;
char **argv;
{
 char objname_buf[256];
 char buffer[256];

 mh_init(&argc, &argv, NULL, NULL);

 mh_query_objattr("NAME", objname_buf,
 sizeof(objname_buf));
 mh_msgtype(objname_buf);

 /* read a message from terminal */
 while (1) {
 while(strcmp(gets(buffer), "")){
 strcat(buffer, "\n");
 mh_multicast(objname_buf, "S", buffer);
 }
 }
}

Figure 12: C code for module of modes in(left) and out(right) using selective multicast
15

:::::::::::
inout.c
:::::::::::
#include <stdio.h>
main (argc, argv)
int argc;
char **argv;
{
 char s[256];
 char objname_buf[256];
 char pname[256];
 char in[256];
 char *p, *q;

 mh_init(&argc, &argv, NULL, NULL);
 mh_query_objattr("IN", in, sizeof(in));

 /*decode IN into several pnames */
 q = pname;
 for (p=in; p<=(in + sizeof(in));p++){
 if (*p != ’ ’){
 while ((*p != ’ ’) &&
 ((int)p<=(int)(in + sizeof(in))))
 *q++ = *p++;
 *q = ’\0’;
 mh_rgsmulticast(pname);
 }
 q= pname;
 }

 mh_query_objattr("NAME", objname_buf,
 sizeof(objname_buf));
 mh_msgtype(objname_buf);

 /* get message */
 while (1) {
 mh_getmsg("S", s, msgtypebuf);
 while (strcmp(s, "eof\n")){
 if (strcmp(s, "NO MESSAGE")){
 mh_multicast(objname_buf, "S", s);
 }
 mh_multicast(objname_buf, "S", "eof\n");
 }
}

:::::::::::
unixtool.c
:::::::::::
#include <stdio.h>
{
 char s[256], objname_buf[256], buffer[256],
 command[256], pname[256], name[256],
 in[256], out[256], tempin[256], tempout[256],
 msgtypebuf[256],*p,*q;
 FILE *fpIn, *fpOut;

 mh_init(&argc, &argv, NULL, NULL);
 mh_nomsg("S", "NO MESSAGE");
 mh_query_objattr("COMMAND", command,
 sizeof(command));
 mh_query_objattr("NAME", name, sizeof(name));
 mh_msgtype(name);
 mh_query_objattr("IN", in, sizeof(in));
 mh_query_objattr("OUT", out, sizeof(out));

 sprintf(tempin, "%stempIn", name);
 sprintf(tempout, "%stempOut", name);

 /* decode IN into several pnames */

 q=pname;
 for (p=in;p<=(in+sizeof(in));p++){
 if (*p!=’ ’){
 while ((*p!=’ ’) &&
 ((int)p<=(int)(in + sizeof(int)))){
 *q++ = *p++;
 *q=’\0’;
 mh_rgsmulticast(pname);
 }
 q=pname;
 }

 while (1) {
 fpIn =fopen(tempin, "w");
 mh_getmsg("S", s, msgtypebuf);
 while (strcmp(s, "eof\n"){
 if (strcmp(s, "NO MESSAGE"))
 fputs(s, fpIn);
 }
 mh_getmsg("S",s, msgtypebuf);
 }

 fclose(fpIn);
 strcat(command,tempin);
 strcat(command, " > ");
 strcat(command, tempout);
 system(command);

 fpOut = fopen(tempout, "r");
 while ((fgets(buffer, sizeof(buffer),fpOut)!=NULL)
 mh_multicast(name, "S", buffer);
 mh_multicast("S", "eof\n");
 }
}

 Figure 13: C code for module of modes inout(left) and unixtool(right) using selectivemulticast 16

and Make�le. All they need to do is to provide attributes associated with each module.The source code for a module of each mode shown in Figure 12 and Figure 13 is providedby the tool. For example, in the �rst row of the spreadsheet, we have a module named foo1and the executable of this module is =users=chenchen=foo1 on machine calvin:cs:umd:edu.Since foo1 takes input from module mygrep but does not send output to other modules,its mode is in. Given the spreadsheet de�ned by users, information about modules is storedin a �le application file by pressing button save. When button run is pressed, a copyof the executable generated by compiling in:c is sent to machine calvin:cs:umd:edu withfull path name of =users=chenchen=foo1. At the same time, actions are taken similarly toother modules given in the spreadsheet. After installation, the software toolbus is startedup with input �le application file.The source code for modules of each mode use the primitives described in Section 3.For example, in the �fth row of the spreadsheet, we have a module named unixtool awkof mode unixtool, so the source code of unixtool awk is unixtool:c. In unixtool:c (seeFigure 13), a call tomh rgsmulticast() registers its interest in all modules given by attributein in the spreadsheet(foo). Calls to mh getmsg() are used to receive messages from thosemodules. When unixtool awk receives a special end of �le message, it stores these messagesin a tempIn �le, executes a shell script given by attribute command(awk `fprint $2,$1g') in the spreadsheet on �le tempIn, redirects the output to �le tempOut and thencalls mh multicast() to send out the output to bar1 and new. Similar actions are takento modules of mode in, out and inout. Notice that there might be multiple modulesinterested in messages from this module, so we have to use selective multicast to supportthis one-to-many communication.A feature of this tool is that it is very easy to recon�gure the application structure.Users only need to change the attributes on the spreadsheet. For example, if a user wantsthe application structure shown in Figure 14, they can achieve this goal by simply changingthe spreadsheet to a new one shown in Figure 15.5 PerformanceOur experience to date are that use of the POLYLITH bus organization does not necessarilyresult in performance loss.Using the selective multicast primitives built on POLYLITH, the cost of registering17

foo

foo1

unixtool_awk bar1 unixtool_grep

bar

newFigure 14: a new application structuremessages and receiving messages is the same as the cost of reading messages in the one-to-one communication. When multicasting a message, in addition to the cost of writing amessage, there is a cost in searching the internal table and enqueuing a copy of the messagefor each module interested in it, which is dependent on the number of modules interestedin it.6 Related WorkOur approach is based upon the software bus abstraction as currently implemented in thePOLYLITH interconnection system[3]. We bene�ted from Cooper's research[1] on pro-gramming language support for multicast communication, which discusses essential anddesirable properties of a language construct for multicast communication. Reiss's Fieldenvironment [5] connects tools with selective broadcasting, allowing the Unix philosophyof letting independent tools cooperate through simple conventions. His work motivates theneed for selective multicast and inspired our work on connecting Unix tools using selectivemulticast. 18

ident name binary machine in command mode

1 calvin.cs.umd.edu

-

-

2 /flubber/chenchen/foo

foo1

foo flubber.cs.umd.edu

-

out

/users/chenchen/foo1 out

3 bar1 /users/chenchen/bar1

calloo.cs.umd.edu unixtool_awk

-

inout

4 bar /users/chenchen/bar

calloo.cs.umd.edu

unixtool_grep

-

5 unixtool_awk unixtool

- in

./unixtool_grep

callay.cs.umd.edu

callay.cs.umd.edu

./unixtool_awk foo foo1 awk ’{print$2,$1}’

6 bar1 grep chen unixtool

7 new /users/chenchen/new home.cs.umd.edu unixtool_grep - in

save quit run

-

Figure15:asnapshotof
thespreadsheetforanew

application 19

7 ConclusionWe have described a broad framework that supports selective multicast, speci�cally within adistributed programming environment. In order to run experiments within this framework,we have constructed selective multicast facilities upon existing software interconnectionsystem POLYLITH. We also provided an applicaiton of connecting Unix tools using our se-lective multicast mechanism. This paper exposes our overall approach to selective multicast.We plan to provide more realistic applications built within our environment.References[1] Eric C. Cooper. Programming Language Support for Multicast Communication in Dis-tributed System, IEEE Transactions on Computers, July 1990.[2] James M. Purtilo and Christine R. Hofmeister. Dynamic Recon�gurations of Dis-tributed Programs, The 11th International Conference on Distributed Computing Sys-tems, May 1991.[3] James M Purtilo. The Polylith Software Bus.[4] James M. Purtilo, Christine R. Hofmeister and Joanne Atlee. Writing DistributedPrograms in Polylith, Dept of Computer Science, University of Maryland, CS-TR-2575, December 1990.[5] Steven P. Reiss. Connecting Tools Using Message Passing in the Field Environment,IEEE Transaction on Computers, July 1990.[6] Dan Heller. XView Programming Manual, March 1992.
20

