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blood cell is one of the simplest in the body, yet its complex behaviors are not 

fully understood.  The ability to perform accurate simulations of the cell will 

assist efforts to treat disorders of the cell.  In this thesis, a computational model of 

a human red blood cell that combines preexisting mechanical and metabolic 

models is proposed.  The mechanical model is a coarse-grained molecular 

dynamics model, while the metabolic model considers the set of chemical 

reactions as a system of first-order ordinary differential equations.  The models 

are coupled via the connectivity of the cytoskeleton with a novel method.  A 

simulation environment is developed in MATLAB® to evaluate the combined 

model.  The combined model and the simulation environment are described in 

detail and illustrated in this thesis. 
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Chapter 1: Introduction 

1.1 Motivation 

 This thesis initially began as an extension of project described in “Multi-

scale Modeling of soft matter: Gas Vesicles and Red Blood Cells” by Hussein 

Ezzeldin [1].  The aim of this project was to incorporate and evaluate metrics for 

hemolysis of hRBC’s as they travel through artificial (mitral) heart valves, 

depicted in FIGURE 1-1. The motivating hypothesis was that these artificial heart 

valves change the flow regime from laminar to turbulent, and that this turbulent 

flow causes hemolysis of the hRBC that results in its premature death. 

 

FIGURE 1-1: Comparison between heart valves, biological valve [2] on the left and mechanical valve [3] on 

the right. 

 Upon the completion Hussein Ezzeldin’s project, it was decided that a 

supplemental project was required to further investigate the behavior of the 

hRBC.  This project investigated preexisting models of the hRBC in detail with 

the intent of combining and modifying these models in order to create a more 
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complete model of the hRBC that better mimics the behavior observed in blood 

flow.  This complete model, in a similar spirit to other efforts [4, 5, 6], could be 

used by researchers in multiple fields in order to investigate the behavior of the 

hRBC under a variety of simulation conditions, such as stretching of the cell. 
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1.2 Research Objectives 

 The primary objective of this project was to combine current mathematical 

models of hRBC’s in order to create a unified model that more accurately 

reproduces the behavior of actual hRBC’s. Current models of hRBC’s either 

model the mechanical deformations of the cell or the metabolism of the cell, but 

not both. This thesis is motivated by the hypothesis that the mechanical behavior 

and the metabolism of the hRBC are coupled, and cannot be modeled separately. 

The combined model uses coupling conditions to link the mechanical behavior to 

the metabolism to define their interaction and simulate them together.  Ideally, 

when they are simulated together, the results obtained are more accurate than the 

individual simulations alone. 

 The secondary objective of this project, after the creation of a unified 

model, is to implement the model in MATLAB® [7] so that simulations on the 

model can be performed. The implementation of the coded model would then 

become a simulation environment.  This environment can be used by researchers 

to gain a better understanding of hRBC behavior in a variety of conditions.  

Ideally, simulations could be used to confirm of experimental results, and to 

predict hRBC behavior in conditions that have not been experimentally tested yet.   

 The tertiary objective of this project is to increase interest in modeling and 

simulation of human red blood cells in the community. The hope is that the 

creation of a unified model of the hRBC and the implementation of the model into 

a simulation environment that is easily accessible to researchers will renew 

interest in the investigation of the hRBC.  
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Chapter 2: Background 

 Chapter 2 is intended to refresh the reader’s memory regarding several 

concepts that form the basis of mathematical modeling and computational 

simulation used in this thesis.  It is also intended to introduce sufficient 

background information regarding the human red blood cell (hRBC) itself, as well 

as information specific to the modeling/simulation of the hRBC, to readers not 

familiar with the topic.  Chapter 2 is not a comprehensive review of the extremely 

extensive history of hRBC modeling/simulation, and number of important 

milestones in the history of hRBC modeling/simulation are not mentioned.  A 

more comprehensive review (up to 2006) is provided by Lim et al. [8]. 

2.1 The Human Red Blood Cell 

2.1.1 The Human Red Blood Cell in Blood Flow 

 The hRBC is one of the main components of blood and it is critical to the 

transport of oxygen and carbon dioxide in the body.  It makes up about 45% of 

blood by volume.  The measurement of the concentration of red blood cells is 

known as hematocrit.  The other major solid constitutes of blood are white blood 

cells and platelets.  The fluid phase of blood is called plasma.  The hRBC (also 

known as an erythrocyte) is anucleate, meaning it does not have a nucleus.  In 

addition, it lacks the majority the organelles found in most other eukaryotic cells.  

As a consequence, the hRBC is unable to perform many of the normal regulatory 

functions of eukaryotic cells.  This results in a finite lifespan of around 120 days 

in circulation, significantly less than other cells.  Upon the completion of its life in 
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circulation, the hRBC is recycled in the spleen [9, 10].  It is important to note, 

however, that the hRBC does possess an active metabolism in its cytoplasm that 

assists in some functions of cell upkeep, such as glycolysis and ion transport 

across the membrane [11, 12, 13, 14, 15].   

 The lack of organelles is necessary to the hRBC being able to fulfil its role 

in the body, however, because it makes space for the protein hemoglobin.  

Hemoglobin makes up about 70% of the dry weight of a hRBC, and it is the 

physical carrier of the oxygen molecule.  In order to fulfill this role, the hRBC has 

to be highly deformable.  Under normal conditions, a hRBC is a biconcave 

discoid with a diameter of about 8 μm, a height of about 2.5 μm, a surface area of 

about 135 μm2, and a volume of about 94 μm3 [9, 16].  To effectively deliver 

oxygen to tissues, the hRBC has to significantly deform into an ellipsoid-like 

shape in order to transit through capillaries as narrow as 2 μm.  The hRBC is able 

to assume its original shape upon exiting the capillary [17].  Part of their 

significant deformability is due to the surface area-to-volume ratio (a sphere with 

equal surface area would have a volume of about 147 μm3).  The excess surface 

area is also beneficial to hRBC function, providing a significantly larger surface 

for oxygen diffusion than a sphere of the same volume would provide.  The 

deformability of a hRBC is governed by three main factors [11, 18]: 

1) The geometry of the cell (specifically, the surface area-to-volume ratio) 

2) The rheological properties of the hRBC cytoplasm (specifically viscosity) 

3) The rheological properties of the cell membrane (specifically viscosity) 



6 

 

In addition to providing the hRBC itself with some interesting mechanical and 

rheological responses, the hRBC has a significant impact on blood flow. 

 Blood flow displays non-Newtonian behavior, which means the apparent 

viscosity of blood varies with applied shear stress.  This non-Newtonian behavior 

is primarily due to the presence of hRBC’s.  Blood is considered to be a two 

phase suspension, with the hRBC’s viewed as either the solid suspended phase or 

an additional liquid phase (since the majority of the volume of a healthy hRBC is 

the cytoplasm).  Since hRBC’s make up such a large percentage of blood volume, 

their effect on blood flow is significant.  The study of blood flow is known as 

hemorheology or hemodynamics [18]. 

 The hRBC can display a wide variety of shapes as a function of the 

conditions the cell is subject to, as depicted in FIGURE 2-1. 

 

FIGURE 2-1: Classification of some hRBC shapes [19]. 

As long as the deformations of the hRBC are sufficiently small, the Stomatocyte-

Discocyte-Echinocyte (SDE) transformation is reversible.  Significant enough 

deformations of the hRBC, however, lead to vesiculation of the cell and can cause 

permanent damage.  The shapes in FIGURE 2-1 are just a subset of the shapes 

observed in experiments (not all shapes are stable, however) [19]. 
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2.1.2 Structure of the Human Red Blood Cell 

 Compared to other cells found in the human body, the hRBC appears 

relatively simple.  Lacking organelles (as stated previously in SUBSECTION 

2.1.1), the primary components of the hRBC are hemoglobin, cytoplasm, the 

cytoskeleton, and the cell membrane. Of particular interest to the mechanical 

modeling and simulation of the hRBC are the cytoskeleton and the cell 

membrane. 

 The cytoskeleton serves to provide support and structure to the hRBC to 

ensure proper morphology.  The cytoskeleton is located on the inner face of the 

cell membrane (inside the hRBC, in the cytoplasm).  It forms a disordered, two-

dimensional (2D), triangular network, as can be seen in FIGURE 2-2.  

 

FIGURE 2-2: Negative-stain electron microscopy image of membrane skeleton [20] 

The links are the physical connection between the nodes in the network.  The 

nodes in the network are the locations where the links meet and the cytoskeleton 
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is anchored to the cell membrane.  The links in the cytoskeletal network 

(indicated by “SP4” in FIGURE 2-2) are a protein known as spectrin.   The nodes 

in the cytoskeletal network (indicated by “JC” in FIGURE 2-2) are another protein 

know as actin.  A representation of this network is shown in FIGURE 2-3. 

 

FIGURE 2-3: Abstraction of the cytoskeleton of the hRBC to a 2D network [21]. 

In a perfect triangular network, each node in the network has exactly six links 

connected to it.  The degree of a network is the average number of links per node 

in the network.  The degree of a single node in the network, however, is simply 

the number of links connected to that particular node.  A perfectly triangular 

network is of degree-6, since each node has exactly six links connected to it.  Not 

all degree-6 networks are triangular networks, however, since the degree is an 

average quantity.  A network with an equal number of nodes with five links and 

nodes with seven links would still be a degree-6 network, but it is clear that such a 

network is not perfectly triangular.  The cytoskeletal network of the hRBC is not a 

perfect network.  Imaging of the hRBC cytoskeleton suggests that the actual 

degree of the cytoskeletal network is somewhere between 4.2 and 5.5 [22]. 
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 Spectrin is a long, filamentous protein that actually consists of the head-to-

head association of two antiparallel heterodimers, 𝛼-spectrin and β-spectrin.  𝛼-

spectrin has 22 triple-helical repeats of 106 amino acids and a molecular weight 

of about 280 kDa, while β-spectrin had 17 triple-helical repeats of 106 amino 

acids and a molecular weight of about 246 kDa.  Actin is another filamentous 

protein.  It has a molecular weight of about 40 kDa.  It is sometimes referred to as 

a protofilament because it is shorter than spectrin [9, 10, 23, 22, 24, 25].   

 The actual structure of the cytoskeleton is considerably more complicated 

than what was described above.  A more complete picture of the interaction is can 

be seen in FIGURE 2-4.  Additional detail on the structure is provided by Burton 

et al. [26]. 

 

FIGURE 2-4: Cartoon depiction of the cytoskeleton-lipid bilayer interaction [9] 
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 The cell membrane serves as a boundary between the cytoplasm and the 

blood plasma.  It consists two sheets made up primarily by lipids.  For this reason, 

it is often referred to as a lipid bilayer.  The lipids self-assemble so that the 

hydrophobic tails of each sheet are facing those of the other sheet, leaving only 

the heads of the lipid molecules exposed to the cytoplasm/blood plasma.  There 

are a number of integral membrane proteins located in the lipid bilayer that 

provide the attachment points between the bilayer and the cytoskeleton.  Some of 

these integral proteins also serve as active transport channels.  These channels 

consume chemical energy in order to actively transport larger molecules in or out 

of the hRBC.  Smaller molecules, such as oxygen, can passively diffuse through 

the lipid bilayer.  An understanding of the hRBC structure is important because it 

directly impacts the properties and behavior of the hRBC [27, 28]. 
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2.1.3 Mechanical Properties of the Human Red Blood Cell 

 The mechanical properties of the hRBC can be measured by a variety of 

different means [29].  Several of the common measurement techniques are shown 

in FIGURE 2-5. 

 

FIGURE 2-5: Methods of determining cell properties [30].  Micropipette aspiration (c) and optical tweezers 

stretching (d) are of particular interest to the work performed in this thesis. 

A wide variety of mechanical properties can be measured using these techniques.  

A number of these measurement techniques are described in more detail by 

Leckband et al. [31].  Two of these techniques are of particular interest to the 

work performed in this thesis, and will be discussed in more detail below. 

 Micropipette aspiration used to be the primary method of determining 

hRBC cell properties [32, 33].  In this measurement technique, part of the hRBC 

is aspirated into a micropipette, as illustrated in FIGURE 2-6. 
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FIGURE 2-6: Image from a micropipette aspiration experiment on a hRBC [34]. 

The length of the aspirated portion is recorded using optical microscopy. Using 

the diameter of the micropipette tube and the aspiration pressure, elastic 

properties can be extracted using constitutive relationships [35].  A depiction of 

the results from computationally simulating the micropipette aspiration of a hRBC 

model is illustrated in FIGURE 2-7. 

 

FIGURE 2-7: Depiction of the results from computationally simulating the micropipette aspiration of a hRBC 

model [36]. 



13 

 

The micropipette aspiration measurement technique has lost some popularity in 

recent years because the results from aspiration experiments can be rather 

inaccurate, depending upon experimental conditions.  The aspirated portion of the 

hRBC is subject to very uneven deformations and severe bending in both the cap 

and entrance regions.  Together, these effects can produce significant errors in the 

experimental results [37, 38].  An alternative measurement technique, known as 

optical tweezers stretching, can deform the hRBC more evenly during 

experiments, potentially providing more accurate mechanical property data. 

 In the optical tweezers measurement technique, silica microbeads are 

attached to the hRBC at diametrically opposed points.  One bead is anchored to 

part of the experimental setup that will apply stretching forces.  The other bead is 

“trapped” using a laser beam.  The experimental setup is illustrated in FIGURE 

2-8. 

 

FIGURE 2-8: Experimental setup for optical tweezers stretching of the hRBC [39]. 

When a stretching force is applied to the anchored node (the left node in FIGURE 

2-8) the intensity of the laser beam is increased so that trapped node (the right 

node in FIGURE 2-8) remains stationary.  Another benefit to the optical tweezers 
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measurement technique is that very large stretching forces can be applied using 

this stretching method.  Mechanical property data from optical tweezers stretching 

experiments on the hRBC can be found in [40]. 

 The optical tweezers measurement technique [32, 33, 39, 41, 42, 43] is of 

particular interest in this thesis.  This measurement technique can be “mimicked” 

in simulations of the hRBC [44] in order to determine the corresponding 

mechanical properties of the hRBC model.  At a minimum, these computational 

measurements performed on a hRBC model must produce the same results as the 

measurements performed on the actual hRBC for the hRBC model to be valid. 

This mechanical property data is obtained by evaluating the response of the hRBC 

undergoing these measurements.  For the hRBC model to be accurate, it should 

have the same response as the actual hRBC when subject to the same 

measurement.  In general, an understanding of both the structure of the hRBC and 

its properties is of the utmost importance in the efforts of modeling the cell.  The 

Structure-Property-Function relationship is ubiquitous in biology in general, and 

provides guidance in the modeling of biological systems [45]. 
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2.2 Metabolism 

 A metabolism is the set of chemical reactions that support the life of an 

organism.  The participants of a chemical reaction are commonly known as 

metabolites.  In a metabolism, the products of the previous reaction become the 

reactants of the next reaction.  Reactions can be either reversible or irreversible 

(depending upon the specific metabolites involved) and either spontaneous or 

nonspontaneous (depending upon the free energy change of the reaction).  Rates 

of individual reactions can depend on the concentration of metabolites who do not 

directly participate in the reaction (such as enzyme reactions). 

 The dependence of reaction rates on metabolite concentrations allows for 

regulation of the metabolism (either as a whole or just a specific part, depending 

of the specific structure of the metabolism).  Since reaction rates tend to increase 

with increasing reactant concentrations (and decrease with increasing product 

concentrations), the metabolism exhibits negative feedback that allows for self-

regulation.  A metabolism that is not subject to any external influences will reach 

a homeostatic state (steady-state condition). 

 The rate of a chemical reaction can be mathematically modeled using a 

first-order, ordinary differential equation (ODE).  The concentration of a 

metabolite participating in the reaction as a function of time can be can be 

obtained from the solution to the reaction rate ODE.  Combining the mathematical 

representations of reactions rates into a system of equations allows for a 

metabolism to be modeled as a coupled set of first-order ODE’s.  Because an 

individual reaction can depend on the concentrations of other metabolites (which 
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are varying), the ODE representing the reaction rate is often nonlinear.  Because 

of this nonlinearity, an analytical solution of the coupled set of ODE’s is generally 

not possible and numerical techniques must be used. 

 The concentrations of the metabolites cannot be negative at any point 

during the simulation because a negative concentration is physically impossible.  

If the concentration of a metabolite decreases to less than zero during a 

simulation, the simulation itself will often become unstable.  The non-negative 

metabolite concentration requirement is extremely important in the mathematical 

modeling of chemical reactions, but it is rarely mentioned because it is considered 

trivial.  The non-negative requirement is easily enforced when the metabolism 

contains a small number of reactions that can be modeled analytically.  When the 

number of reactions and/or the complexity of the rate equations increases to the 

point where numerical methods are needed, enforcing the non-negative 

requirement on the concentrations becomes more difficult.  Simply adding 

provisions to the metabolic simulation that set negative metabolite concentration 

back to zero violate the mass balance of the system.  The parameters in the 

metabolism itself must be adjusted to ensure that negative metabolite 

concentrations do not occur.  A method of checking the concentrations during 

simulation should also be implemented to halt unstable simulations [46]. 

 The phenomenon of stiffness is often observed when numerical methods 

are used to solve the ODE’s used to model chemical reactions.  The definition of 

stiffness is qualitative and based on observed behavior of the numerical solution 

rather than precise mathematical terms.  A stiff equation is a differential equation 
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that exhibits numerical instability when certain numerical methods applied to 

solve the equation, unless an extremely small time step is used.  This instability is 

present even when the solution is not varying rapidly, and therefore is a property 

of the differential system itself.  The stiffness observed in the ODE’s used to 

model chemical reactions is often attributed to the widely varying values of the 

parameters and variables in the equations (sometimes orders of magnitude 

different from one another).  As a result, numerical methods that are designed to 

handle stiff equations must be used.  These numerical methods often combine 

explicit and implicit numerical integration schemes to obtain a solution [15]. 
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2.3 Continuum Mechanics 

 Continuum mechanics (CM) forms the basis of the majority of the 

methods used to describe the kinematics and mechanical behavior of the hRBC.  

The main quantities of interest in CM are stress, strain, and displacement.  Both 

stress and strain are field quantities (second order tensors), while displacement is 

a vector quantity.  The majority of the information presented in this section is 

borrowed from a solid mechanics text [47] and a cell mechanics text [48].  As an 

aside, the cell mechanics text is an excellent didactic tool for illustrating the 

application of CM principles to biological materials, specifically the cytoskeleton 

and cell membrane. 

 The fundamental assumption of CM is that the object of interest is a 

continuous distribution of matter and that the matter that makes up the object 

completely fills the region of space that the object occupies.  This allows the 

object to be modeled as a continuum and, after the application of fundamental 

physical laws (e.g. conservation of mass, conservation of linear momentum, 

conservation of angular momentum, and conservation of energy) and constitutive 

equations (e.g. Hooke’s law), differential equations describing the behavior of the 

object can be derived and engineering analyses can be performed on it.  The 

continuum assumption appears incorrect upon first glance because it neglects the 

fact that all objects are made up of atoms.  However, at length scales considerably 

larger than the atomic scale, this assumption becomes more valid. 

 The continuum assumption hinges upon the concept of a representative 

volume element (RVE).  A RVE is the smallest volume of the material that has 
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properties/behavior identical to that of the bulk material (measurements 

performed on the RVE yield results identical to the same measurements 

performed upon the bulk material).  At scales larger than the RVE, the inherent 

heterogeneity of the microstructure of the material can be ignored and the material 

can be treated as an equivalent homogeneous material.  At scales smaller than the 

RVE, the continuum assumption is no longer valid.  If a continuum description of 

the material is needed at scales smaller than the RVE, a statistical volume element 

(SVE) needs to be defined.  The properties of a SVE are defined using probability 

theory, leading to random continuum fields.  The concept of the SVE will be 

discussed later in SECTION 2.5. 

 Another assumption commonly made in CM analysis (and hRBC analysis) 

is that the object in question is a Cauchy elastic material.  Assuming an object is a 

Cauchy elastic material has several important implications in the stress analysis of 

the object.  The first implication is that the stress is independent of the 

deformation path and the deformation history (stress is a state function) as well as 

the rate of deformation (no viscous/viscoelastic behavior).  It is important to note 

that, even though the stress is independent of the deformation path, the work done 

by the stress may not be independent of the deformation path (a Cauchy Elastic 

material is not necessarily conservative).  The second implication is that the stress 

and constitutive relations are spatially local, which means that the stress at a point 

is a function of only the deformation at that point (not the total deformation or 

motion of the object).  The third implication is that the properties of the object are 

independent of body forces and inertial forces.  The fourth implication is that the 
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object is homogeneous, which means that the properties do not vary as a function 

of location in the object. 

 A number of these assumptions are made in CM analyses of the hRBC, 

either explicitly stated or implicitly assumed through the use of certain equations.  

The use of these assumptions in a hRBC model can have a significant impact of 

the results of a simulation.  An understanding of the implications resulting from 

these assumptions is very important in ensuring that a CM analysis of the hRBC is 

physically meaningful.  

 Relationships between the main quantities of interest in CM can be 

derived.  Strain is related to displacement (the strain-displacement relation) by: 

휀𝑖𝑗 =
1

2
(
𝜕𝑢𝑖

𝜕𝑢𝑗
+
𝜕𝑢𝑗

𝜕𝑢𝑖
−
𝜕𝑢𝑘
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𝜕𝑢𝑘

𝜕𝑢𝑗
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1

2
(
𝜕𝑢𝑖

𝜕𝑢𝑗
+
𝜕𝑢𝑗

𝜕𝑢𝑖
)       (2.1) 

where u is the displacement.  The second part of EQUATION 2.1 is an 

approximation that is commonly used when deformations are small, since it 

results in simpler calculations.  The stress field is independent of the material in 

question (but strain and displacement are not).  Stress can be related to strain 

through a constitutive relationship.   

 Under the assumption of linear elasticity (which assumes that stress is 

linearly proportional to strain), the constitutive relation between stress and strain 

is given by: 

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙휀𝑘𝑙             (2.2) 

where σ is the stress, C is the stiffness tensor, and ε is the strain.  This linear 

relationship is only valid for small deformations.  Since stress and strain are 

second order tensors, the stiffness tensor is a fourth order tensor.  Due to 
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symmetry requirements in the stress and strain (due to conservation of angular 

momentum) and existence requirements on the strain energy density, there are 

only 21 independent elastic constants in the stiffness tensor (out of 81 total elastic 

constants) for a fully anisotropic material (material properties vary with 

direction).  If symmetries are present in the material itself, the number of 

independent elastic constants can be reduced further.  The simplest case is that of 

an isotropic material (material properties do not vary with direction).  An 

isotropic material only has two independent elastic constants.  Despite the fact 

that no real-world materials are truly isotropic, the isotropy assumption is 

commonly made in CM analysis (e.g. in the continuum modeling of the hRBC) 

because it greatly simplifies the stress analysis. 

 A nonlinear elastic formulation for the constitutive relation between stress 

and strain can be used for materials subject to deformations large enough that the 

linear elastic assumption is no longer valid.  Under the assumption that 

constitutive relation between stress and strain can be derived from a strain energy 

density function.  These materials are known as hyperelastic, and the stress-strain 

relationship is given by: 

𝑆 =
𝜕𝑊

𝜕𝐸
         (2.3) 

where W is the strain-energy density function.  Rubber is often modeled as a 

hyperelastic material.  A hyperelastic material is a special case of a Cauchy elastic 

material.  Note that a hyperelastic material is conservative, meaning that all of the 

strain energy can be recovered when the applied loads are removed from the 

object and it is allowed to return to its reference configuration.  A linear elastic 
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material is a special case of a hyperelastic material, and therefore is conservative 

as well.  The concept of a hyperelastic material will be revisited later in 

SUBSECTION 3.2.1. 

 Under the assumptions of linear elasticity and isotropy, relationships 

between the elastic constants can be derived: 

𝑌 =
9𝐾𝜇

3𝐾+𝜇
           (2.4) 

𝜈 =
3𝐾−2𝜇

2(3𝐾+𝜇)
            (2.5) 

Y is Young’s modulus, μ is the shear modulus, K is the bulk modulus, and ν is 

Poisson’s ratio.  The shear modulus and the bulk modulus must be positive.  This 

requirement results in bounds on Poisson’s ratio: 

−1 ≤ 𝜈 ≤
1

2
               (2.6) 

 

 Sometimes, for simplification reasons, an object is assumed to be 

incompressible.  For an incompressible, three-dimensional (3D) object: 

𝜈 =
1

2
 

𝐾 = ∞ 

𝑌 = 3𝜇              (2.7) 

The strains in an incompressible object are not completely independent from one 

another, since the volume of the object must be preserved under deformation.  In 

stress analysis, the incompressibility assumption is used to reduce the number of 

degrees of freedom of the object, streamlining the analysis. 
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2.4 Molecular Dynamics 

 Molecular dynamics (MD) is a computational method of simulating the 

motion of interacting particles in an N-body problem.  MD is used in this thesis to 

simulate the hRBC.  MD envisions the particles of interest in the system as point 

masses and allows them to interact.  The interaction between particles is governed 

by a predefined set of rules.  The interaction between particles results in forces 

acting on the particles, which in turn result in accelerations, and ultimately 

motions of the particles.  The motions of the particles are governed by classical 

mechanics (Newton’s laws of motion).  The force acting on each particle is the 

negative gradient of the interaction energy with respect to separation distance.  

The force due to the interaction takes the form: 

�⃑�𝑖 = −
𝜕𝑈(𝑟𝑖𝑗)

𝜕𝑟𝑖𝑗
= −∇⃑⃑⃑𝑈(𝑟𝑖𝑗)   (2.8) 

where 𝑈(𝑟𝑖𝑗) is the interaction energy between particle i and particle j, 𝑟𝑖𝑗 is the 

vector between the particles, 𝑟𝑖𝑗 is the magnitude of 𝑟𝑖𝑗, 𝐹𝑖⃑⃑⃑ is the force acting on 

particle i as a result of the interaction, and ∇⃑⃑⃑ is the gradient operator.  The force on 

particle j will have the same magnitude as the force on particle i, but will act in 

the opposite direction (�⃑�𝑗 = −�⃑�𝑖) due to Newton’s third law.  The acceleration of 

a particle due to this force can be found using Newton’s second law: 

�⃑�𝑖 = 𝑚𝑖�⃑�𝑖 = 𝑚𝑖
𝑑2𝑟𝑖

𝑑𝑡2
= 𝑚𝑖𝑟𝑖

̈     (2.9) 

where mi is the mass of particle i and �⃑�𝑖 is the acceleration of particle i, which is 

the second derivative of the position of the particle, 𝑟𝑖, with respect to time. 
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 In the ideal case, the interaction energy goes to zero as the separation 

distance goes to infinity (no interaction at large separations) and the interaction 

energy goes to infinity as the separation distance goes to zero (steric repulsion to 

prevent particle overlap).  There exists an equilibrium separation distance 

between two particles where the attractive and repulsive portions of the 

interaction energy between the particles balance each other out and neither 

particle experiences a force as a result of the interaction between the two.  At this 

equilibrium separation distance, the interaction energy is at a minimum. 

 For most systems, Newton’s laws of motion need to be integrated 

numerically.  Often, the Verlet algorithm is used to calculate the trajectories of the 

particles.  The Verlet algorithm is a type of finite difference method that is used to 

numerically integrate second order ordinary differential equations.  It offers 

greater stability than the simple Euler method with no additional computational 

cost.  The basic form of the Verlet algorithm is:  

𝑟𝑡+∆𝑡 = 𝑟𝑡 + �⃑�𝑡∆𝑡 +
1

2
�⃑�𝑡∆𝑡

2          (2.10) 

 where t is the current time step, ∆𝑡 is the duration of the time step, 𝑟𝑡 is the 

position of the particle at the beginning of the time step, �⃑�𝑡 is the velocity of the 

particle at the beginning of the time step, �⃑�𝑡 is the acceleration of the particle at 

the beginning of the time step, and  𝑟𝑡+∆𝑡 is the position of the particle at the end 

of the time step.  An initial position and velocity (𝑟0 and �⃑�0) must be provided at 

the start of the integration.  EQUATION 2.10 is for a single particle (the particle 

identifier subscript was left off to prevent the equation from becoming congested).  
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An alternate version of the Verlet algorithm exists (known as Störmer’s method).  

The basic form of Störmer’s method is: 

𝑟𝑡+∆𝑡 = 2𝑟𝑡 − 𝑟𝑡−∆𝑡 + �⃑�𝑡∆𝑡
2         (2.11) 

EQUATION 2.11 is also for a single particle.  Note that the velocity of the particle 

does not appear in Störmer’s method.  This is because the velocity term 

introduces error into the calculation.  The local error in the position is O(𝛥t4), but 

the local error in velocity is O(𝛥t2), using big-O notation.  This means that 

Störmer’s method is two orders of magnitude more accurate than the basic Verlet 

algorithm.  Additional calculations, however, must be performed if the velocity is 

to be obtained from Störmer’s method, and the local error in the velocity obtained 

this way will be O(𝛥t2) [49].  The numerical integration method used in this 

thesis is explained later in SECTION 3.5. 

 The concept of a force field is critical to MD analysis and simulation.  A 

force field is the set of potential energy functions that define the interaction 

between the particles (the potential energy contribution to the Hamiltonian of the 

system).  These interactions generally included two-body, three-body, and four-

body interaction potentials as well as non-bonded interaction potentials.  The 

exact form of and values of the parameters in the potential energy functions is 

usually determined experimentally.  In some cases, high-level quantum 

mechanical calculations can be used to determine the form and parameter values.  

One of the major assumptions made about the interaction potentials is that they 

are spherically symmetric, which means that the magnitude of the interaction 

potential is only a function of the separation distance between the particles (it 
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does not vary with the orientation of the particles with respect to one another).  

This assumption is only accurate for the most simple of systems (e.g. charged 

particles in a vacuum).  In most systems, especially systems with chemical bonds, 

the interaction potentials are directionally dependent. 

 A direct relationship between MD and a 2D spring network can be 

obtained for a 2D system with only two-body interaction potentials between the 

particles.  In this case, the springs in the network directly correspond to the two-

body interaction potentials.  The two-body interaction potentials are sometimes 

referred to as in-plane interactions.  This relationship is important in the context 

of hRBC modeling because, during the formulation of the hRBC model, the 

membrane of the hRBC is visualized as an infinite, 2D spring network.  The 

concept of a spring network is revisited in SECTION 2.6. 

 MD is often used for simulation on an atomic scale.  The particles in these 

simulations are typically the atoms that make up the system of interest.  The 

complexity of a MD system increases nonlinearly with the number of particles in 

the system.  This can result in a simulation that is very computationally intensive, 

even for a small increase in the number of atoms in the system.  There are a 

number of “workarounds” that help alleviate the computational expense.  Of most 

significance to this thesis is the method of coarse-graining. 

 Coarse-graining is a method of reducing the number of degrees of freedom 

of a system by treating a subset of the particles as a single particle.  This reduces 

the effective number of particles in the simulations, which in turn reduces the 

number of interactions between particles that need to be calculated.  Depending 
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on the level of coarse-graining, simulation times can be orders of magnitude 

shorter.  The tradeoff of coarse-graining is that some of the finer details of the 

dynamics of the system are lost as a result of the reduction in the number of 

degrees of freedom.  The model of the hRBC presented in SUBSECTION 3.2.2 is 

highly coarse-grained as compared to a system modeled on the atomic scale.  The 

loss of resolution is acceptable in the case of the hRBC model because the 

motions of the individual atoms relative to each other do not affect the overall 

behavior of the hRBC to a significant degree. 

 It is important to note that many systems required a potential energy 

minimization procedure before MD simulations of system can be performed.  This 

procedure consists of performing a steepest descent energy minimization 

simulation of the system under no external interactions at zero Kelvin.  The 

steepest descent (also known as gradient descent) simulation seeks the global 

potential energy minimum, which is a function of the configuration of the system.  

Performing the minimization at zero Kelvin ensures that the system will remain in 

its minimum potential energy configuration.  The zero Kelvin condition is 

enforced by setting the velocity of all particles in the system to zero (since 

temperature is a measure of the average kinetic energy of the system) after each 

time step.  The drawback of the steepest descent minimization is that the potential 

energy asymptotically approaches its global minimum value, but never actually 

reaches it.  Because of this, an energy threshold has to be defined and the 

minimization is run until the changes in the potential energy between time steps 

are less than this threshold value [49]. 
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 There is a variant of MD known as steered molecular dynamics (SMD).  

In SMD, the system is probed by an external force to examine its response.  The 

external force is applied in such a way that mimics probing of the actual system 

(e.g. stretching of a folded protein to examine its unfolding behavior).  SMD is 

important in the context of hRBC simulations because the mechanical properties 

of the hRBC are obtained through probing of the hRBC and examination of its 

response.  Likewise, the mechanical properties of a hRBC model can be obtained 

through the computational version of probing the hRBC.  SMD simulation of a 

hRBC model can be used to determine if the model accurately reproduces the 

response of the actual hRBC. 
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2.5 Statistical Mechanics 

2.5.1 Statistical Mechanics Background 

 Statistical mechanics (SM) uses probability theory to calculate the average 

bulk behavior of a system (classical thermodynamic properties) given some 

information about the nature and behavior of the constituents of the system.  This 

is in contrast to MD, which explicitly models the positions and velocities of the 

particles in the system.  The predictions given by SM can be very accurate, even 

though not all the microscopic details of the system are known.  As mentioned 

previously in SECTION 2.4, the complexity of MD simulations increases 

nonlinearly with the number of particles in the system, causing MD simulations to 

be computationally limited.  SM can overcome this limitation by reducing the 

exact information of the system (positions and velocities of the particles) into a 

compact statistical form.  The information in this subsection is primarily 

borrowed from a statistical mechanics text [50] and a computational biology text 

[51]. 

 The critical concept of SM is that of microstates.  A microstate is a 

particular configuration of the particles in the system.  SM assumes that the 

particles in the system are indistinguishable, in accordance with the Heisenberg 

uncertainty principle.  A macrostate is bulk state specified by a smaller number of 

parameters (usually classical thermodynamics properties such as temperature, 

pressure, volume, etc.).  There is not a one-to-one correspondence between 

microstates and macrostates; in general, a large number of microstates correspond 
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to a single macrostate.  Each microstate has an energy associated with it.  Multiple 

microstates can have the same energy, even if their configurations are different. 

 The two fundamental postulates of SM are the equal a priori probability 

postulate and the ergodic hypothesis.  The equal a priori probability postulate 

assumes that microstates with the same energy have the same probability of 

occurrence.  The equal a priori probability postulate is a pure assumption, but it 

has not been contradicted by experimental evidence.  The ergodic hypothesis 

assumes that the time average of a mechanical property of the system is equal the 

average value of the property over all of the microstates of the system, weighted 

by the probability of occurrence of the microstate.  When the time average is 

sufficiently long (compared to the timescale of the system), the ergodic 

hypothesis allows for the time average to be replace by the ensemble average. 

 As alluded to in SECTION 2.3, a connection exists between CM and SM.  

The boundary where the transition from RVE to SVE occurs is known as the 

separation of scales.  The equivalence of the RVE and the SVE at the separation 

of scales provides the connection between SM and CM.  At the microscale, the 

stress-strain relationship of a material is governed by the Helmholtz free energy.  

The Helmholtz free energy is given by: 

𝐴 = 𝑈 − 𝑇𝑆           (2.12) 

where U  is the internal energy of the system, T  is the temperature, and S  is the 

entropy.  Systems tend towards configurations that minimize the Helmholtz free 

energy.  This is why MD simulations need to be minimized from their initial 

configuration to their reference configuration before worthwhile simulations can 
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be performed.  Equating the Helmholtz free energy across the separation of scales 

provides the connection between CM and SM. 

2.5.2 Polymer Physics 

 An understanding of SM is important in the context of this thesis because 

SM is used the field of polymer physics to model polymer chains.  The worm-like 

chain (WLC) model of polymer elasticity is used to model the force-extension 

relationship of the spectrin links in the unified hRBC model.  It is part of the two-

body interaction potential in the force field of the hRBC model (described in 

SUBSECTION 3.2.2).  A brief background on polymer physics, culminating with 

the WLC model, follows. 

 Any discussion of the history of polymer physics would be remiss to not 

mention Dr. Paul Flory.  Considered by some to be the father of polymer physics, 

his contributions were critical to the development of the field, and many are still 

in use today.  A collection of his lectures was published in 1953 [52], and this text 

became standard in the field of polymer physics. 

 A polymer is a chain composed of repeated subunits known as monomers.  

Polymers are ubiquitous in biology (all proteins, including spectrin and actin, are 

polymers).  Two of the main quantities of interest in polymer physics are the 

molecular weight of the polymer chain and the end-to-end length of a polymer 

chain.  The end-to-end length is different than the contour length of a polymer 

chain.  The contour length is the sum of the lengths of the individual subunits in 

the chain.  If the ends of the polymer chain were pulled in opposite directions 

until the chain was completely straight, the end-to-end length would be equal to 
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the contour length.  Polymer chains are almost never found completely extended, 

like in the situation depicted previously.  Instead, polymer chains in a solvent tend 

to form coils [48].  This is because the coil arrangement is more energetically 

favorable, as will be explained after the basic model of a polymer chain is 

introduced.  The end-to-end length of a polymer chain can be affected by a variety 

of factors, including solvent conditions, temperature, and the application of a 

stretching force to the ends of the polymer chain.  The stretching of polymer 

chains due to loading is most applicable to this thesis [53]. 

 The most basic model of a polymer is the ideal chain model.  In this 

formulation, the monomers of a polymer chain are modeled as identical, rigid 

links in a chain.  The bonds between the links form the joints in the chain.  The 

chain has N links, each of length b, giving the chain a contour length, Lm = Nb.  

This contour length is fixed, since neither the links nor the bonds between them 

can stretch (the ideal chain is inextensible).  The chain is “freely-jointed”, which 

means that there is no resistance to inhibit links from rotating about a joint or 

bending at a joint with respect to one another (for this reason, the ideal chain 

model is sometimes referred to as the freely-jointed chain model).  FIGURE 2-9 is 

a depiction of the ideal chain model. 

 

FIGURE 2-9: Depiction of the ideal chain model [54]. 
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The end-to-end vector of the ideal chain model is given by: 

�⃑⃑� = ∑ 𝑟𝑖
𝑁
𝑖=1           (2.13) 

where 𝑟𝑖 is the vector position of the i-th link in the polymer chain (note, that 𝑟 

corresponds to �̂� in FIGURE 2-9). 

 In the absence of additional information about the configuration of the 

polymer chain, the end-to-end length of the ideal chain can be modeled as a 3D 

random walk.  In a random walk, the probability that a particle will be a particular 

displacement from its initial position after a certain number of steps can be 

described by a binomial distribution.  The binomial distribution is a discrete 

probability distribution commonly used to model random sampling with 

replacement.  In this context, it directly corresponds to a one-dimensional (1D) 

random walk where the number of steps is the number of links in the polymer 

chain and the length of each step is the length of the individual links in the 

polymer chain.  A 3D random walk is equivalent to three 1D random walks in 

directions orthogonal to one another.  As a result of the central limit theorem 

(more specifically, the de Moivre-Laplace theorem), the binomial distribution can 

be approximated by a Gaussian distribution for a larger number of steps in the 

random walk (links in the polymer chain) [48].  This distribution is given by: 
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𝑃(�⃑⃑�, 𝑁) = (
3

2𝜋𝑁𝑏2
)
3
2⁄
𝑒𝑥𝑝 (−

3�⃑⃑�2

2𝑁𝑏2
)          (2.14) 

where �⃑⃑� is the end-to-end vector of the polymer chain, N is the number of links in 

the chain, and b is the length of an individual link.  This formulation is known as 

a Gaussian chain model.  Note that, even though the contour length of the 

Gaussian chain model is Nb, extensions greater that the contour length are 

possible (although, they are highly improbable).  Using the equal a priori 

probability postulate, this probability can be related to the number of possible 

microstates for each end-to-end length of the polymer chain: 

Ω(�⃑⃑�) ≈ 𝑃(�⃑⃑�, 𝑁)    (2.15) 

Note, this relation is approximate, since determining the actual form for the 

number of possible microstates requires quantum mechanical calculations.  The 

entropy of the Gaussian chain is given by using Boltzmann’s entropy equation: 

𝑆 = 𝑘𝐵𝑙𝑛 (Ω(�⃑⃑�))    (2.16) 

The Helmholtz free energy can be calculated using EQUATION 2.12.  Taking the 

negative of the derivative of the Helmholtz free energy with respect to �⃑⃑� (and 

assuming that the internal energy is constant since the polymer chain is 

inextensible) yields a force-extension relationship for the Gaussian chain model: 

�⃑� = −
𝜕𝐴

𝜕�⃑⃑�
= −

3𝑘𝐵𝑇

𝑁𝑏2
�⃑⃑�      (2.17) 

Somewhat surprisingly, this relationship is linear (Hooke’s law).  A number of 

serious assumptions were made in this derivation, so it is not directly applicable 

for use in simulations.  One of these assumptions is that the subunits of the 
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polymer can overlap one another.  Because of this assumption, the ideal chain 

model does not display any excluded volume effects.  Polymer chains that do not 

exhibit excluded volume effects are often known as phantom chains.  Sometimes, 

a self-avoiding random walk is used in the derivation of the Gaussian chain model 

to account for some of these effects. 

 The force-extension relationship derived from the ideal chain model is an 

example of an entropic spring (because the free energy of the spring is a function 

of the entropy, not the internal energy).  This change in entropy is directly related 

to a change in the number of microstates that the polymer chain can occupy.  As 

the end-to-end length of the polymer chain is increased, the number of available 

microstates decreases, corresponding to a decrease in entropy.  The concept of the 

entropic spring can also be observed in the WLC model. 

 A noted earlier, the Gaussian chain model is not very accurate in 

reproducing the force-extension behavior of polymer chains that is observed in 

experiments.  An alternative derivation of the force-extension relationship for a 

polymer chain, known as the WLC model, represents an attempt to better 

reproduce these behaviors.  The WLC model is applicable to “stiff” polymers.  It 

is the continuous analogue to the discrete ideal chain model [55].  The WLC 

model was originally developed with the intent of modeling the force-extension 

relationship of DNA [56].  Since its development, the usage of the WLC model 

has been expanded to describe the behaviors of other polymers.  FIGURE 2-10 is a 

depiction of the WLC model. 
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FIGURE 2-10: Depiction of the WLC model [54]. 

 The WLC model envisions the polymer chain as a continuously flexible, 

isotropic rod.  The derivation of the WLC produces an expression for the free 

energy of the polymer chain that depends on the bending of the chain.  This 

equation is not differentiable, however, so an exact expression for the force-

extension relationship does not exists.  The force-extension relationship for the 

WLC model is approximated by an interpolation using the free energy expression 

and experimental results from DNA stretching tests as reference.  The WLC 

model force-extension relationship is given by: 

𝐹 =
𝑘𝐵𝑇

𝐿𝑝
(

1

4(1−𝐿 𝐿𝑚
⁄ )

2 −
1

4
+

𝐿

𝐿𝑚
)       (2.18) 

where Lp is a quantity known as the persistence length.  The persistence length is 

a measure of the stiffness of a polymer chain (a longer persistence length 

corresponds to a stiffer polymer).  Mathematically, the persistence length is 

defined as the length where the polymer chain becomes uncorrelated with itself.  

Practically, the persistence length is often taken to be twice the length of a single 

link in the equivalent ideal chain (Lp = 2b).  The stiffness of the WLC model 

(derivative of force with respect to extension) about zero extension is given by: 
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𝐾𝑊𝐿𝐶(𝐿 = 0) =
3𝑘𝐵𝑇

2𝐿𝑚𝐿𝑝
       (2.19) 

An equivalence between the WLC model and the Gaussian chain model in the 

limit of small extensions can be obtained by comparing EQUATION 2.19 to the 

coefficient in EQUATION 2.17 (the spring constant) and using the relation that Lm 

= Nb.  This completes the subsection on polymer physics.  The WLC model will 

be revisited in SUBSECTION 3.2.2. 

2.6 Spring Networks and Percolation Theory 

 A spring network is a model of a system where the mass of the system is 

concentrated at specific points in space and springs with a defined stiffness 

connect the point masses.  A spring network is a type of generalization of 

Hooke’s law to two or three dimensions.  The spring network formulation of an 

object is similar to a finite element formulation that can be utilized to solve statics 

problems.   In general, spring networks are conservative and energy minimization 

methods are commonly employed in order to solve problems relating to the spring 

network.  The exact connection between a 2D spring network and the hRBC 

model (hinted at in SECTION 2.4) will be fully detailed in SUBSECTION 3.2.2. 

 The overall response of the network as a function of its parameters and 

geometry has been of great interest to researchers for years [57, 58].  There has 

been no shortage of attempts to model disordered spring networks as well [59, 60, 

61, 62, 63].  Some spring network models replace the commonly used Hookean 

springs with other types of springs [64, 65, 66].  Some aspects of disordered 

models and the alternative spring models can be applied to biological materials 

[67, 68, 69, 70], and the cytoskeleton of the hRBC specifically [22, 23, 71, 72].  
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The spring network representation of the cytoskeleton is an attempt to model the 

micromechanics of the hRBC membrane. 

 A common theme in many of the disordered spring network models is the 

usage of mean field theory (MFT).  The disordered nature of the spring network 

can be extremely intricate, with varying numbers of disconnected links in 

numerous locations in the network.  MFT allows for a connection to be made 

between the connectivity of the spring network and the bulk proper ties of the 

spring network by allow the complex interactions to be approximated by an 

average effect.  This reduces the number of degrees of freedom of the problem, 

making it easier to gain insight from the analysis of the spring network.  The 

accuracy of the approximated average effect varies, but in general the 

approximation is better for networks with a large number of springs and a high 

level of disorder (disconnected links are randomly distributed).  In the context of 

obtaining bulk elastic properties from a discrete spring network, MFT represents a 

type of homogenization of the spring network.  Percolation theory is commonly 

used as part of the MFT to describe these disordered spring networks [73, 74, 75, 

76]. 

 Percolation theory makes uses of probability theory to predict the 

formation of long-range connectivity in random lattice systems.  The theory gets 

its name from the flow of fluids through porous media, but it has been employed 

to help solve multiple other problems, the most common of which is the problem 

of conduction on a network of resistors.  Most important to the problem at hand is 

the extension of percolation theory to the modeling of spring networks and 
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composite materials.  Percolation theory can be generalized into two basic types: 

bond percolation and site percolation.  In bond percolation, vacancies can form in 

the links that make up the lattice.  In site percolation, vacancies can form in the 

vertices that make up the lattice.  The results from bond percolation and site 

percolation are similar, but not identical.  Bond percolation is of greater interest 

for the purposes of modeling spring networks. 

 In the case of bond percolation of a spring network, links are occupied 

with probability p, and vacant with probability 1 – p.  The value of p is the 

connectivity of the network.  There are two critical values of the connectivity of 

the network: the connectivity percolation threshold (pc) and the rigidity 

percolation threshold (pr).  The connectivity percolation threshold is the more 

commonly discussed of the two, and it is the value of the connectivity at which no 

continuous path of links exists from one side of the network to the other.  The 

connectivity percolation threshold is commonly used when discussing resistor 

networks, where the global conductivity of the network is of interest.  The rigidity 

percolation threshold is specific to the case of a spring network, and it is the value 

of the connectivity at which force can no longer be transmitted across the network 

due to an insufficient number of links.  These are both mean field quantities, 

which means that they are averaged over the entire network surface.  Even when 

the connectivity of the network is near one of these thresholds, the local behavior 

at a specific point in the network may not conform to the predictions obtained 

through percolation theory. 
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 Both percolation thresholds are functions of the geometry of the network 

only, not the properties of the springs in the network, and can be calculated 

analytically for some lattice geometries.  Using graph theory and probability 

theory arguments, the connectivity percolation threshold for the triangular lattice 

is calculated in [77], and is shown to be the solution of: 

1 − 3𝑝 + 𝑝3 = 0               (2.20) 

which has only one root between 0 and 1: 

𝑝𝑐 = 2 sin (
𝜋

18
) ≈ 0.347296            (2.21) 

Often, this value is approximated as: 

𝑝𝑐 =
1

3
          (2.22) 

 Using effective-medium estimates and making a constraints argument, the 

rigidity percolation threshold is estimated in [74] by calculating the number of 

zero-frequency modes (floppy modes), which is given by the number of degrees 

of freedom minus the number of constraints: 

𝑓 ≈
𝑁𝑑−

1

2
𝑧𝑁𝑝

𝑁𝑑
     (2.23) 

where N is the number of links in the network, d is the dimensionality of the 

network (d = 2 for the case of a 2D spring network), and z is the degree of the 

network (z = 6 for the case of a perfectly triangular network).  EQUATION 2.23 is 

an approximation because some links in the network are redundant (they do not 

provide an additional constraint on the number of degrees of freedom) [48].  

Solving EQUATION 2.23 for p for the case where the number of zero-frequency 

modes is zero yields: 



41 

 

𝑝𝑟 =
2𝑑

𝑧
          (2.24) 

In the case of the 2D triangular network, the rigidity percolation threshold is: 

𝑝𝑟 =
2

3
         (2.25) 

 

 

 

It is apparent from EQUATION 2.24 and EQUATION 2.25 that: 

𝑝𝑟 > 𝑝𝑐        (2.26) 

This relationship implies that rigidity in a spring network requires more intact 

links than connectivity.  This is significant because the local behavior of the 

cytoskeleton is closely related to the connectivity percolation threshold, while the 

global behavior (macroscopic elastic properties) is closely related to the rigidity 

percolation threshold [74]. 

 An argument is presented by Feng et al. [74] (and reproduced by Zhang et 

al. [78]) that makes a connection the effective spring constant and the 

connectivity of a randomly diluted spring network using the rigidity percolation 

threshold.  A graphical representation of the concept behind this formulation is 

shown in FIGURE 2-11. 
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FIGURE 2-11: Effective medium formulation of diluted spring network used by Feng et al. [74]. 

The network is populated by springs with identical spring constants (𝛼m), as 

shown in the left portion of FIGURE 2-11.  When examining the force-extension 

interaction between sites 1 and 2, the entire spring network can be reduced to a 

spring with an effective spring constant (𝛼’m) in parallel with the spring between 

sites 1 and 2, as shown in the right portion of FIGURE 2-11.  The effective spring 

constant accounts for the contributions from the rest of the network towards the 

force-extension behavior of the spring between sites 1 and 2.  If the spring 

between 1 and 2 is disconnected (its spring constant is zero), the force-extension 

interaction between sites 1 and 2 is governed by the contribution from the rest of 

the network only.  Then, by using an effective-medium assumption to relate the 

fluctuations in the value of the extension between sites 1 and 2 to its time-average 

value, a mean spring constant for the spring between sites 1 and 2 as a function of 

the connectivity can be obtained.  This relationship is given by: 
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𝛼

𝛼𝑚
=
𝑝−𝑝𝑐𝑒𝑛

1−𝑝𝑐𝑒𝑛
           (2.27) 

where 𝛼 is the mean spring constant between sites 1 and 2, and pcen is the rigidity 

percolation threshold in their formulation. 

A relationship between the spring constants and elastic moduli was 

presented by Boal [48].  For the shear modulus and the bulk modulus, these 

relationships are: 

𝜇 =
√3

4
𝑘𝑠𝑝 

𝐾𝐴 = 2𝜇        (2.28) 

where µ is the shear modulus, KA is the bulk modulus, and ksp is the spring 

constant of the springs in the network.  Combining EQUATION 2.27 with 

EQUATION 2.28 provides a relationship for the elastic moduli of a diluted spring 

network as a function of the connectivity of the network (used in SUBSECTION 

3.4.1). 

 An understanding of percolation theory is important in the context of 

hRBC modeling because the cytoskeleton can be formulated as a disordered 

triangular spring network, as hinted at earlier in SUBSECTION 2.1.2.  In this 

network, the probability of an individual spring being connected is p.  As the 

connectivity of the spring network changes (the local “character”), it follows 

logically that the response of the network as a whole will change also.  The 

relationship between connectivity and macroscopic elastic properties that is used 

in this thesis is presented in SECTION 3.4. 
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2.7 Triangulation 

 A triangulation is the creation of mesh from a set of points distributed on 

the surface of an object.  The mesh consists of a set of 2D, triangular elements 

(hence, the name triangulation).  The points in the triangulation are called vertices 

(or nodes), and the elements are sometimes referred to as triangles.  Neighboring 

elements share vertices and edges (there is no empty, unaccounted for space).  

The concept behind triangulation is the representation of a smooth, continuous 

surface with a set of discrete elements.  Computer simulations can be performed 

utilizing this representation (similar to the idea behind the finite element method) 

[79].  In a triangulation, each node is assigned a unique number (between one and 

the number of nodes in the triangulation) that is used as an identifier.  The set of 

elements and the set of links in the triangulation are both defined in terms of this 

unique identifier (as opposed to being in terms of the coordinates of the node 

positions).  The concept is similar to the use of indices to identify components in a 

vector or matrix. 

 Triangulation is important in the context of MD simulations of the hRBC 

because the hRBC is represented by a set of points in space, and the connectivity 

of these points needs to be determined so that the force-field can be correctly 

applied.  The discrete, inhomogeneous structure of the hRBC (as mentioned in 

SUBSECTION 2.1.2) actually lends itself to discretization.  In the process of the 

triangulation, the initial positions of the points are also defined.  These initial 

positions are used in the MD simulation as initial conditions for the first step of 

the numerical integration of the equations of motion. 
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 The triangulation method required for this thesis is a bit unusual and was 

difficult to find.  Most triangulations are of 2D surfaces that lie in a plane.  Most 

“triangulations” of 3D objects actually mesh the volume itself (forming 

tetrahedrons instead of triangles), instead of creating elements that represent just 

the surface of the object.  In order to properly triangulate the hRBC, a surface 

meshing routine that can operate on closed surfaces is needed. 

 Neglecting the edges of the triangulation (assuming that the triangulation 

is infinite in a 2D plane), relationships between the number of vertices 

(nodes/points), the number of elements (triangles), and the number of edges 

(links/sides) in the network can be expressed: 

𝑁𝑡 = 2𝑁𝑣 

𝑁𝑠 =
3

2
𝑁𝑡         (2.29) 

where Nv is the number of vertices, Nt is the number of triangles, and Ns is the 

number of edges.  The first relationship can be determined through the 

observation that each vertex is shared among 6 elements and each element has 3 

vertices.  The second relationship can be determined through the observation that 

each element has three edges and each edge is shared between two elements. 

 Creating the point cloud and defining the connectivity between the points 

is the first step in creating the virtual version of the hRBC model that can be used 

in simulations.  Then, analytical analysis can relate the parameters of the 

individual springs in the network to the bulk parameters of the spring network as a 

whole, under the assumption of a perfectly triangular network.  The closer the 

connectivity of virtual model is to that of the perfectly triangular network (entirely 
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degree-6), the closer the behavior of the virtual model will be to the behavior 

predicted by the analytical analysis.  Any deviation of the triangular elements in 

the virtual network from the ideal, equilateral shape will result in error in the 

simulation results.  Therefore, it is important that the initial triangulation be of 

high-quality. 

 However, no closed triangulation is perfect, even with the best algorithm 

and the triangulation in its reference configuration and/or minimum energy state.  

These triangulations will have defects, which means that not all the vertices will 

be degree-6 [80].  Both Descartes’ law of closure deficit and the Euler 

characteristic formula can be used to determine that a closed triangulation will 

have at least 12 defects.  Because of this, a different relationship between the 

number of elements and the number of vertices exists: 

𝑁𝑡 = 2𝑁𝑣 − 4           (2.30) 

The relationship between the number of edges and the number of elements is the 

same as above.  The presence of these defects can result in unexpected stress 

concentrations in the hRBC model.  As the number of nodes in the triangulation is 

increased, the effect that these defects have on the overall character of the 

triangulation is decreased. 

 There are a number of measures of triangulation quality.  Since the hRBC 

model used in this thesis is borrowed from Fedosov et al. [44], the quality of the 

triangulation utilized for simulations is compared to the quality of their 

triangulations using the measures of triangulation quality presented in [44]. 
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The two measures of triangulation quality used by Fedosov et al. are: 

1. Distribution of the link (edge) lengths 

2. Distribution of the vertex degrees (number of links in the vertex junction) 

A smaller distribution of link length and a higher distribution of vertex degree 

corresponds to a higher quality triangulation.  Their best average mesh quality 

was obtained from the “energy relaxation” method.  The distribution of link 

length is given by: 

𝑑(𝑙) =
𝜎(𝑙)

𝑙 ̅
             (2.31) 

where 𝜎(𝑙) is the standard deviation of link lengths and 𝑙 ̅is the average link 

length. 

 In addition, another measure of triangulation quality from [81] is utilized 

in this thesis: 

𝑄 =
(𝐿𝐵+𝐿𝐶−𝐿𝐴)(𝐿𝐶+𝐿𝐴−𝐿𝐵)(𝐿𝐴+𝐿𝐵−𝐿𝐶)

𝐿𝐴𝐿𝐵𝐿𝐶
           (2.32) 

where 𝐴 is the area of the element in question and 𝐿𝑖 is the length of each side (i = 

A,B,C).  Effectively, this quality measure is the ratio of the radius of the largest 

inscribed circle of the triangle to the radius of the smallest circumscribed circle.  

Using this quality measure, an equilateral triangle has a quality Q = 1, while a 

degenerate triangle (zero area) has a quality Q = 0.  The quality of the entire 

triangulation is the average of the individual element qualities over the entire 

triangulation.  In general, a quality Q ≥ 0.5 indicates that the triangulation is of 

good quality. 
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Chapter 3: Research Methods and Techniques 

3.1 Triangulation of the hRBC 

 The triangulation used in this thesis is created using distmeshsurface.m 

(and its related functions) from “A Simple Mesh Generator in MATLAB” [81].  

This triangulation function was chosen because it generates a high-quality, closed 

triangulation for the provided geometry in a reasonable amount of time.  A brief 

description of the algorithm with respect to its usage in the hRBC simulation in 

this thesis follows.  The specific usage of distmeshsurface.m and related functions 

is detailed after the description of the algorithm.  A full description of the 

algorithm and its MATLAB® implementation can be found in [79, 81]. 

 The concept behind the algorithm used in the distmeshsurface.m function 

is the analogy between a mesh and a truss structure.  The nodes and links in the 

mesh correspond to the joints and members of the truss.  The geometry of the 

surface is represented by a signed distance function that is negative inside the 

surface, zero on the boundary, and positive outside the surface.  Initially, an 

implicit expression for the surface of the hRBC surface is given to the algorithm.  

The expression is given by: 

0 = 𝑧 ± 𝐷0√1 −
4(𝑥2 + 𝑦2)

𝐷0
2 [𝑎0 + 𝑎1

𝑥2 + 𝑦2

𝐷0
2 + 𝑎2

(𝑥2 + 𝑦2)2

𝐷0
4 ] 

𝑥2 + 𝑦2 ≤
𝐷0
2

4
    (3.1) 

where z is the height (in μm) of the hRBC surface above the x-y plane, D0 is the 

major diameter (in μm) of the hRBC in its unstressed, reference configuration, 
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and a0, a1, and a2 are shape constants.  Next, a 3D box that completely 

encompasses the shape given in the implicit expression is generated (bounding 

box).  The box is then populated with points that are equally spaced (specified 

spacing) on a 3D grid.  Points that lie outside a specified threshold distance of the 

surface are discarded.  The remaining points (Nv) are then triangulated using the 

Delaunay triangulation routine in MATLAB®.  An iterative process is then used 

to enhance this initial triangulation.  During this process, the node locations are 

optimized using a force-based smoothing procedure and the topology is updated 

according to the Delaunay triangulation routine.  The force-based smoothing 

procedure adjusts the positions of the nodes in an attempt to the make the links in 

the triangulation have equal lengths (which drives the shape of the individual 

elements towards equilateral triangles).  After the adjustment of node positions, 

the positions are then projected back onto the boundary of the surface (as 

specified by the signed distance function).  If there are significant changes in node 

positions, all the nodes are retriangulated.  This whole process is repeated until 

the changes in node positions are less than a specified distance, and the vertex 

locations and the elemental connectivity are then output. 

 The triangulation is generated by running the hRBC_Triangulation.m 

script.  This script is a wrapper for the triangulation generation procedure.  The 

implicit expression for the surface of the hRBC (and its associated shape 

constants), the locations of the corners of the bounding box, and the grid spacing 

for the points in the bounding box are specified in the hRBC_Triangulation.m 

script.  The distmeshsurface.m function is then called with these quantities as 
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inputs, as well as with the huniform argument.  This argument sets the condition 

that the lengths of the links in the triangulation should be equal. 

 In the distmeshsurface.m function, parameters for the triangulation 

generation are specified (termination condition for the procedure, maximum nodal 

displacement before a retriangulation is required to update the topology, the 

“internal pressure” that drives the node location optimization, the time step length 

for the force-based smoothing procedure, and the geometric tolerance used in the 

numerical differentiation of the signed distance function).  Next, the built-in 

MATLAB® function ndgrid is used to populate the bounding box with points.  

Next, the built-in MATLAB® function isosurface is used to select the points from 

the grid that are inside the surface (interior points) and within a specified distance 

of surface.  The isosurface function also outputs a set of elements that form the 

initial triangulation of the remaining points.  The remaining points now form the 

set of nodes in the hRBC network.  The mkt2t.m function is then used to compute 

the connectivity of the elements from the output of the isosurface function. 

 The newly initialized mesh is now optimized iteratively through 

triangulation refinement and the use of the force-based smoothing procedure, as 

discussed above.  The triangulation is updated every time the change in a node’s 

position is greater than the specified tolerance using the trisurfupd.cpp function.  

This function (called through the use of a –MEX wrapper) updates the 

triangulation by flipping the edges of neighboring elements in the triangulation 

and/or adding new elements as necessary.  It is coded in C++ to improve the 

computational efficiency of the distmeshsurface.m function (since the 
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retriangulation is often the most computationally expensive portion of the entire 

triangulation process).  The triangulation progress is then graphically output to the 

screen.  After the triangulation is updated, the positions of the nodes are updated 

using the force-based smoothing procedure.  This procedure calculates the lengths 

of all the links in the triangulation and then then the forces that are required to 

obtain a triangulation with uniform link lengths.  These forces are then applied to 

the appropriate nodes in the triangulation, and the positions are updated.  The 

magnitude of the force is proportional to the specified “internal pressure”.  After 

the nodal positions are updated by the force-based smoothing procedure, each 

node is projected back onto the boundary of the surface using the signed distance 

function.  The gradient of the signed distance function is numerically calculated 

and then used to find a vector that passes through the node and is normal to the 

surface.  The node is then shifted along the vector in the direction of the surface.  

The magnitude of the shift is such that the signed distance function will be zero 

after the node is shifted (meaning that the node is back on the surface).  This 

completes one iteration of the optimization.  The optimization procedure is 

complete when the change in position for all nodes (after both the force-based 

smoothing procedure and the projection of the nodes back onto the boundary of 

the surface are performed) is less than the tolerance specified at the beginning of 

the distmeshsurface.m function.  The distmeshsurface.m function outputs the 

location of the nodes (Nv-by-3 matrix that contains the x, y, and z coordinates of 

the node locations) and the set of elements in the triangulation (Nt-by-3 matrix 

that contains the three nodes that form each element). 
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 The output from the distmeshsurface.m function is then used as input to 

create a TriRep class in the hRBC_Triangulation.m script file.  The set of links 

(Ns-by-2 matrix that specifies which nodes are connected to one another) is 

calculated from the TriRep class using the edges function.  The set of links and 

the set of elements are then input into the f_connectivity.m function in order to 

determine which elements in the triangulation are neighbors.  Neighboring 

elements share one edge, and the faces of two elements can bend with respect to 

one another about this edge (this is the bending that is defined in SUBSECTION 

3.2.2).  The f_connectivity.m function then uses the list of neighboring triangles to 

determine the set of bending points (Ns-by-4 matrix that contains the four nodes 

that can be used to describe neighboring elements).  The node locations, set of 

elements, set of links, and set of bending points as well as the number of nodes, 

number of elements, and number of links are saved in hRBC_Triangulation.mat 

for use in simulations of the hRBC. 

 In the matrices that contain the set of elements, the set of links, and the set 

of bending points, the relevant nodes are stored using their unique identifiers.  

Because of this, the order of the nodes in the matrices is extremely important.  

The code used to simulate the hRBC assumes that the nodes are in the correct 

order.  If the order of the nodes is incorrect in the matrix that contains the set of 

elements, the normal vectors from the elements will be calculated incorrectly.  If 

the order of the nodes is incorrect in the set of bending points, the link about 

which the two elements are bending with respect to each other will be incorrect.  
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This is obviously undesirable, so the connectivity.m function contains checks to 

ensure that the order of the nodes is correct in each matrix. 

 This completes the triangulation used for the hRBC.  Next, a coarse-

grained MD force field is defined and interactions between the nodes are defined 

so as to reproduce the morphology and mechanical behavior of the hRBC. 
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3.2 Mechanical Model of the Human Red Blood Cell 

3.2.1 Past Models of the Human Red Blood Cell 

 Past models of the hRBC treated the cell as a continuous elastic body or a 

thin elastic shell enclosing an incompressible fluid (the cytoplasm) [32, 33, 82].  

If the hRBC membrane is modeled as an incompressible effective continuum, the 

in-plane shear stress is given by: 

𝑇𝑠 = 𝜇(휀1 − 휀2)               (3.2) 

where μ is the shear modulus and ε are the in-plane strains.  The incompressibility 

condition is enforced by requiring: 

(휀1 + 1)(휀2 + 1) = 1        (3.3) 

 If the hRBC membrane is modeled using a hyperelastic effective material 

model using the first order neo-Hookean formulation, the strain energy potential 

function is given by: 

𝑈 =
𝐺0

2
[(휀1 + 1)

2 + (휀2 + 1)
2 + (휀3 + 1)

2 − 3]  (3.4) 

where G0 is the initial bulk shear modulus.  If the membrane is assumed to be 

incompressible, the incompressibility condition is enforced by requiring: 

(휀1 + 1)(휀2 + 1)(휀3 + 1) = 1 

The in-plane shear stress is given by: 

𝑇𝑠 =
𝐺0ℎ0

2
((휀1 + 1)

1.5 − (휀1 + 1)
−1.5)          (3.5) 

where h0 is the initial membrane thickness.  The instantaneous shear modulus is 

given by: 
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𝜇 =
1

2

𝜕𝑇𝑠
𝜕𝛾𝑠

=
3𝐺0ℎ0((휀1 + 1)

0.5 − (휀1 + 1)
−2.5)

4((휀1 + 1) + (휀1 + 1)−3)
 

Note that, in the hyperelastic formulation, the shear modulus in not constant.  

Instead, it rapidly decreases from its initial value of μ0 = 0.75G0h0, and then 

asymptotically approaches a relatively smaller value μ1. 

 While having the advantages of simplicity and a clear connection with CM 

principles, simulations making use of the above continuum models were unable to 

reproduce the behaviors of hRBC’s observed in experiments.  In addition, “Fully 

continuum (fluid and solid) modeling often suffers from difficulties in coupling 

nonlinear solid motions and fluid flow without excessive computational expense” 

[44].  Because of these issues, recent hRBC modeling efforts have taken an 

alternate approach.  Instead of treating the hRBC as a continuous elastic body, the 

surface of the hRBC (the cytoskeleton and the lipid bilayer) are modeled as 

discrete elements (somewhat similar to a FEM formulation).  This approach 

allows for better coupling between the fluid and solid domains, as well as the 

possibility of better reproducing hRBC morphologies in the future.  The hRBC 

model used in this thesis is described next in SUBSECTION 3.2.2. 

 It is important to note that, in the majority of these discrete models of the 

hRBC, the cytoskeleton and the lipid bilayer are modeled as a single component.  

As discussed in SUBSECTION 2.1.2, this is not actually correct, because the 

cytoskeleton and the lipid bilayer are free to move relative to each other at points 

other than their attachment points (and there is even some drift at the attachment 

points due to lateral diffusion in the lipid bilayer of the proteins the cytoskeleton 

is anchored to).  That being said, the bilayer-cytoskeleton couple hypothesis 
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seems to be a fair approximation in reproducing the mechanical behavior of the 

hRBC [83, 84]. 

 Some other important efforts of discrete modeling of the hRBC were not 

mentioned above.  The efforts by Boey et al. [85] provided information regarding 

the behavior of single polymer chains in the cytoskeletal network as well as the 

cytoskeletal network as a whole.  These efforts also made micropipette aspiration 

simulations of hRBC models possible [86].  The efforts of Li et al. [87] produced 

a model of the hRBC membrane that was used to determine the individual 

contributions from the cytoskeleton and the lipid bilayer to the overall response of 

the hRBC under loading.  The efforts of Jiang et al. [88] provided information on 

the relationship between the stiffness of the individual spectrin fibers and the 

deformability of the cell as a whole.  The efforts by Li et al. [80, 89] produced 

simulations of a coarse-grained hRBC model with varying number of vertices and 

network connectivities.  The efforts by Peng et al. [90, 91] studied models of 

hRBC components at different length scales and ultimately produced a 

methodology for simulating a hRBC model in Stokes flow.  
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3.2.2 Current Model of the Human Red Blood Cell 

 The hRBC model that is used in this thesis was initially developed by 

Discher et al. [86], modified by Pivkin et al. [92], and then further improved upon 

by Fedosov et al. [44, 93, 94].  It will be referred to as the CG-hRBC (Coarse-

Grained – human Red Blood Cell) model in this thesis.  The CG-hRBC model 

was chosen because, in addition to having been used in previous hRBC 

modeling/simulation efforts [1], it also corrects some discrepancies in a previous 

analysis of the connection between model parameters and mechanical properties 

of the hRBC (performed by Dao et al. [95]). 

 The basis of the formulation of the CG-hRBC model is the treatment of 

the cytoskeleton of the hRBC as an infinite, 2D, triangular spring network with 

the actin nodes as point masses at the junctions of the springs.  This 

approximation is valid locally for a high enough node density (large number of 

nodes in the model) where the curvature of the hRBC surface vanishes.  Linear 

elastic response and affine deformations are also assumed.  A brief description of 

the model follows. 

 The free energy of the CG-hRBC model is given by the expression: 

𝑈𝑇𝑂𝑇 = 𝑈𝑖𝑛−𝑝𝑙𝑎𝑛𝑒 + 𝑈𝑎𝑟𝑒𝑎 + 𝑈𝑣𝑜𝑙𝑢𝑚𝑒 + 𝑈𝑏𝑒𝑛𝑑𝑖𝑛𝑔        (3.6) 

This is the basis of the force field for the MD simulation.  The first term in the 

free energy expression accounts for the two body interaction between 

topologically connected nodes.  It takes the form: 
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𝑈𝑖𝑛−𝑝𝑙𝑎𝑛𝑒 = ∑ (𝑈𝑃𝑂𝑊 − 𝑈𝑊𝐿𝐶)

𝑗∈1…𝑁𝑠

 

= ∑ (
𝑘𝑝

(1−𝑚)𝐿𝑚−1
−
𝑘𝐵𝑇𝐿𝑚

4𝐿𝑝

3𝑥2−2𝑥3

1−𝑥
)𝑗∈1…𝑁𝑠             (3.7) 

where Ns is the number of links in the triangulation, kp is the power law spring 

parameter, m is the exponent in the power law, L is the length of link extension, 

kB is Boltzmann’s constant, T is the temperature, Lm is the contour length of the 

link (maximum length of spectrin extension), Lp is the persistence length of the 

link, and x = L/Lm.  The power law portion (POW) accounts for the steric 

repulsion between topologically connected nodes as well as the energy required to 

severely bend a local portion of the cell membrane.  The worm-like chain portion 

(WLC) accounts for the attraction between topologically connected nodes due to 

the spectrin links. 

 The second term in the free energy expression accounts for the three body 

interaction between topologically connected nodes (local area conservation) as 

well as a global area conservation.  It has the form: 

𝑈𝑎𝑟𝑒𝑎 = 𝑈𝑔𝑙𝑜𝑏𝑎𝑙 𝑎𝑟𝑒𝑎 + 𝑈𝑙𝑜𝑐𝑎𝑙 𝑎𝑟𝑒𝑎 

=
𝑘𝑎(𝐴−𝐴0

𝑡𝑜𝑡)
2

2𝐴0
𝑡𝑜𝑡 + ∑

𝑘𝑑(𝐴𝑗−𝐴0)
2

2𝐴0
𝑗∈1…𝑁𝑡          (3.8) 

where ka is the global area conservation constraint, A is the total surface area of 

the hRBC, A0tot is the equilibrium total surface area of the hRBC, Nt is the total 

number of elements (triangles) in the triangulation, kd is the local area 

conservation constraint, Aj is the area of each individual element in the 
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triangulation, and A0 is the equilibrium area of each individual element in the 

triangulation. 

 The third term in the free energy expression accounts for global volume 

conservation.  It has the form: 

𝑈𝑣𝑜𝑙𝑢𝑚𝑒 =
𝑘𝑣(𝑉−𝑉0

𝑡𝑜𝑡)
2

2𝑉0
𝑡𝑜𝑡           (3.9) 

where kv is the global volume conservation constraint, V is the total volume of the 

hRBC, and V0tot is the equilibrium total volume. 

 The fourth term in the free energy expression accounts for bending 

between adjacent elements in the triangulation.  It accounts for the four body 

interaction between the nodes in neighboring elements.  It has the form: 

𝑈𝑏𝑒𝑛𝑑𝑖𝑛𝑔 = ∑ 𝑘𝑏[1 − cos(𝜃𝑗 − 𝜃0)]𝑗∈1…𝑁𝑠           (3.10) 

where Ns again is the number of links in the triangulation, kb is the bending 

constraint, 𝜃𝑗  is the angle between the normal vectors of adjacent elements 

(illustrated in FIGURE 3-1), and 𝜃0 is the equilibrium angle between the normal 

vectors of adjacent elements. 

 

FIGURE 3-1: Depiction of bending angle between the normal vectors (n1 and n2) of adjacent elements [93] 



60 

 

This force field, as described above, is a conservative force field, meaning that the 

total energy of the system is conserved.  It is also independent of time.  The 

inclusion of viscoelastic terms (designed to account for the viscosity of the cell 

membrane, the cytoplasm, and the blood plasma) can transform the force field 

into a non-conservative one.  By taking the gradient with respect to displacement, 

the forces acting on the set of particles under the influence of these interaction 

potentials can be derived.  The exact forms of the force expressions can be found 

in Appendix A of [93]. 

 Now that the functional forms of the terms in the free energy expression 

(EQUATION 3.6) have been chosen, the parameters in those expressions have to 

be related to physical properties of the hRBC that have been measured in 

experiments.  The shear modulus μ and the bulk modulus K have been measured 

experimentally, and found to be μ ≈ 6.3e-6 N/m and K ≈ 3.3e-4 N/m, respectively 

(Note that these are 2D moduli of the membrane, therefore the units differ from 

the pressure units used with the usual, 3D).  A connection between the parameters 

and the properties can be derived by using the virial stress (from the virial 

theorem) [95]. 

 The virial stress is used to determine the macroscopic (continuum) stress 

in molecular dynamics simulations.  It is the microscopic (discrete) analog to the 

Cauchy stress.  The 2D version of the virial stress used in this derivation takes the 

form: 
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𝜏𝛼𝛽 = −
1

2𝐴
[
𝑓(𝑎)

𝑎
𝑎𝛼𝑎𝛽 +

𝑓(𝑏)

𝑏
𝑏𝛼𝑏𝛽 +

𝑓(𝑐)

𝑐
(𝑏𝛼 − 𝑎𝛼)(𝑏𝛽 − 𝑎𝛽)] 

−
(𝑘𝑎+𝑘𝑑)(𝐴0−𝐴)

𝐴0
𝛿𝛼𝛽     (3.11) 

where f(∙) is the in-plane force, and the indices 𝛼 and β can be either x or y.  The 

link lengths a, b, c are indicated on the representative area element (RAE) in 

FIGURE 3-2.  

 

FIGURE 3-2: Representative area element (RAE) from cytoskeletal network [93] 

Note that τ acts in the plane of the network (2D stress), and it only has x and y 

components.  As an aside, the RAE in FIGURE 3-2 is the 2D equivalent of the 

RVE introduced in SECTION 2.3.  The surface area of the RAE is: 

𝐴 =
1

2
|𝑎𝑥𝑏𝑦 − 𝑎𝑦𝑏𝑥|       (3.12) 

 The shear modulus of the RAE can be determined by taking the derivative 

of the shear stress (𝛼 = x, β = y) about the reference configuration when an 

infinitesimal shear strain is applied [95].  The shear modulus is: 
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𝜇0
𝑊𝐿𝐶−𝑃𝑂𝑊 =

√3𝑘𝐵𝑇

4𝐿𝑝𝐿𝑚𝑥0
(

𝑥0

2(1−𝑥0)
3
−

1

4(1−𝑥0)
2
+
1

4
) +

√3𝑘𝑝(𝑚+1)

4𝐿0
𝑚+1     (3.13) 

where x0 = L0/Lm, and L0 is the equilibrium length of the links.  It is important to 

note that the neither the area conservation constraints (ka and kd) nor the volume 

conservation constraint (kv) appear in the shear modulus. 

 A major assumption made in the above derivation of the bulk elastic 

properties of the model network is that the deformations are affine, which means 

deformations to the network are independent of scale (local deformations are 

linearly proportional to global deformations).  The affine deformation assumption 

is commonly made in CM analysis (especially with the use of RVEs/RAEs). 

 The bulk modulus of the representative element can be determined by 

taking the derivative of an area expansion stress (𝛼 = x, β = x or 𝛼 = y, β = y) 

about the reference configuration when an infinitesimal area expansion strain is 

applied [44].  The bulk modulus is: 

𝐾 = 2𝜇0
𝑊𝐿𝐶−𝑃𝑂𝑊 + 𝑘𝑎 + 𝑘𝑑            (3.14) 

 The shear and bulk moduli can be related to Young’s modulus (Y) and 

Poisson’s ratio (ν) through the expressions: 

𝑌 =
4𝐾𝜇0

𝐾+𝜇0
           (3.15) 

𝜈 =
𝐾−𝜇0

𝐾+𝜇0
           (3.16) 

Note that the above expressions differ from the elastic moduli relationships 

commonly found in elasticity analysis (EQUATION 2.4 and EQUATION 2.5).  This 

discrepancy is because the first set of relationships are for 2D moduli, while the 
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second set of relationships is for 3D moduli.  Relationships between the 2D 

moduli and the 3D moduli can be derived under the assumption that the 2D 

relationships between the 2D moduli were derived from the 3D relationships 

between the 3D moduli for the conditions of either plane stress or plane strain [96, 

57].  Under the assumption of plane stress, the relationships between the 2D 

moduli and the 3D moduli are: 

𝑌2 = 𝑌3       (3.17) 

𝜈2 = 𝜈3        (3.18) 

where the subscripts 2 and 3 refer to 2D and 3D, respectively.  It is interesting to 

note that, under the assumption of plane strain, the 2D and 3D moduli are equal in 

magnitude (but they had different units).  Under the assumption of plane strain, 

the relationships between the 2D moduli and the 3D moduli are: 

𝑌2 =
𝑌3

(1−𝜈32)
           (3.19) 

𝜈2 =
𝜈3

(1−𝜈3)
          (3.20) 

where the subscripts again refer to the dimensionality of the moduli.  The 

assumption of plane strain is made in this thesis. 

 For an incompressible, 2D material, ν = 1 (this differs from an 

incompressible 3D material, where ν = 0.5).  For the incompressible membrane 

assumption to be true, K >> μ0.  This in turn implies that ka + kd >> μ0. 

 Setting the in-plane force to zero when the link is at its equilibrium length 

provides the final relationship between parameters: 
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𝑘𝑝

𝐿0
𝑚 =

𝑘𝐵𝑇

𝐿𝑝
(

1

4(1−𝑥0)
2
−
1

4
+ 𝑥0)             (3.21) 

 Qualitatively, the response of a network with the force field described 

above is isotropic for small deformation, but anisotropic for large deformations 

(even if the deformation is area-preserving).  The lipid bilayer behaves as if it 

were a 2D fluid.  The cytoskeleton accounts for the all of the deviatoric resistance, 

while the lipid bilayer accounts for nearly all of the hydrostatic resistance. 

 In the CG-hRBC model, dissipative and random forces are also included 

as part of the force field so that dissipative particle dynamics (DPD) [97] 

simulations of the model can be performed.  The contributions from these forces 

are calculated according to the fluid particle model [98].  As discussed in 

SUBSECTION 4.5.6, it is the belief of the author of this thesis that the fluid particle 

model is not applicable in coarse-grained MD simulations of the hRBC for both 

theoretical and computational reasons.  Instead, an alternate formulation to 

account for the viscosity (described in SUBSECTION 3.2.3) is used.  
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3.2.3 Modifications to CG-hRBC Model 

 The worm-like chain model does not exhibit the same behavior as an 

actual spectrin filament at large extensions.  The worm-like chain model is 

inextensible, like the ideal chain model.  As a result of the mathematical 

formulation of the worm-like chain model, the restoring force of the link goes to 

infinity as the length of the stretched link approaches its contour length.  This is 

not physically accurate, as there should be some point where the force in the links 

reaches a critical value and the link yields or fractures.  The rupture of spectrin 

has been modeled in simulation [99, 100]. 

 The idea of implementing yielding/fracturing links was inspired the 

cytoskeletal dynamics model proposed by Li et al. [101].  Seemingly paradoxical 

behavior was observed between classical membrane theory [102] and simulations 

used to determine the equilibrium shape of the hRBC.  Calculations using 

classical membrane theory [103, 104, 35, 105] required that only the bending 

energy of the membrane needs to be minimized in order to reproduce the 

biconcave equilibrium shape of the hRBC.  The minimization of only the bending 

energy in simulations of hRBC models, however, did not result in the biconcave 

shape of the hRBC at equilibrium.  The in-plane energy is several orders of 

magnitude greater than the bending energy, and the biconcave shape can only be 

reached if both energy terms are minimized.  Even with minimization of the in-

plane energy, stress concentrations can still result in the network due to an 

imperfect triangulation and/or the defects present in any closed surface 

triangulation [80].  Li et al. [101] propose a hypothesis that, “In an ideal limit, for 
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any RBC shape, the cytoskeleton always undergoes remodeling in topological 

connectivity at a certain rate to relax its in-plane shear elastic energy to zero”. To 

test this hypothesis, they propose a “minimal representation of the cytoskeleton 

geometry that can self-organize and dynamically evolve” and include 

“mechanisms for nonthermal energies such as the strain energy or specific 

biochemical energy to influence and regulate structural evolution”.  This dynamic 

evolution of the connectivity of the cytoskeletal network in order to eliminate 

stress concentrations is the underlying motivation in this thesis. 

 To test this hypothesis, Li et al. created a computation model of the hRBC 

cytoskeleton network, known as the cytoskeletal dynamics model.  The spectrin 

links in the network are modeled as chains of 39 beads each (intended to represent 

the 22 triple-helical repeats in 𝛼-spectrin and the 17 triple-helical repeats in the β-

spectrin).  The actin nodes in the network are also represented by beads.  Beads 

that are topologically connected in the chains are linked by a harmonic potential 

with a nonzero equilibrium distance.  The spectrin beads that are at the ends of the 

chains are linked to their respective actin beads with a Lennard-Jones (LJ) 

potential.  The beads were arranged to form a hexagonal network, with the actin 

nodes forming the vertices of the network.  Simulations using this network could 

be performed.  Some simulations involved stretching of the network in order to 

obtain its elastic properties, while other simulations attempted to imitate the 

effects of ATP on the cytoskeletal network through the addition of kinetic energy 

to random beads in the network.  The use of ATP inspired further investigation 
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into its effects on the cytoskeleton, while the bead structure of the network 

motivated a modification of the CG-hRBC model. 

 This modification was made to the in-plane interaction energy expression 

used in the model in order to better reproduce the behavior of a spectrin filament 

at large extensions.  This modification involved changing the expression to a 

piecewise function, where the force-extension relationship is still given by the 

WLC-POW expression in the low extension regime, but is now given by a 

modified LJ force expression in the high extension regime.  The new in-plane 

force-extension relationship (referred to as the WLC-POW-LJ) is now: 

𝐹 = {

𝑘𝑝

𝐿𝑚
−
𝑘𝐵𝑇

𝐿𝑝
(

1

4(1−𝑥)2
−
1

4
+ 𝑥) , 𝐿 ≤ 𝐿𝑐𝑢𝑡 

𝑘𝑝

𝐿𝑚
+ 24휀 (2

𝜎12

(𝐿−𝐿𝑎𝑑𝑗)
13 −

𝜎6

(𝐿−𝐿𝑎𝑑𝑗)
7) , 𝐿 > 𝐿𝑐𝑢𝑡

       (3.22) 

where ε is the energy of the spectrin-actin bond (the depth of the LJ energy 

potential well), σ is the characteristic interaction length scale, Ladj is the shift of 

the LJ force expression, and Lcut is point where the in-plane force expression 

switches from the WLC-POW portion to the POW-LJ portion of the expression.  

A comparison between the WLC-POW-LJ and the WLC-POW force-extension 

relationship is shown in FIGURE 3-3.  Note that the force resulting from the POW 

term is effectively zero at large extensions (such as when the force expression is 

in the range of L > Lcut).  For these cases, the POW force is not computed in 

simulations in the interest of increasing simulation speed. 
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FIGURE 3-3: Comparison between WLC-POW-LJ and WLC-POW force-extension relationships. 

 

The energy of the spectrin-actin bond is given by: 

휀 = 𝑘𝐵𝑇𝑙𝑛(𝐾𝑎,𝑆𝐴)            (3.23) 

where kB is the Boltzmann constant, T is the temperature, and Ka,SA is the 

equilibrium association constant of the spectrin-actin bond.  The characteristic 

interaction length scale is given by: 

𝜎 =
2𝑟0

2(
1
6⁄ )

          (3.24) 

where r0 is the equilibrium distance of the bonds between topologically connected 

spectrin beads in a chain.  The equilibrium distance of the bonds is given by: 
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𝑟0 =
𝐿𝑚

𝑆−1
          (3.25) 

where S is the number of beads in the spectrin chain (39, in this case) and Lm is 

the contour length of the chain.  The characteristic interaction length scale takes 

the form in EQUATION 3.24 so that the equilibrium distance of the bond between 

the end spectrin bead of the chain and the actin bead is 2r0.  The shift in the LJ 

force expression is given by: 

𝐿𝑎𝑑𝑗 = 𝐿𝑐𝑢𝑡 − 𝐿𝑚𝑖𝑛    (3.26) 

where Lmin is the location of the minimum value of the force in the LJ force 

expression (which is the location of the inflection point on the LJ energy potential 

well).  The location of the minimum of the force in the LJ force expression is 

given by: 

𝐿𝑚𝑖𝑛 = 𝜎 (
26

7
)
(1 6⁄ )

             (3.27) 

Finally, Lcut can be determined by finding the point on the WLC-POW force 

expression where the magnitude of the force is equal to the minimum value of the 

force in the LJ force expression: 

𝑘𝑝

𝐿𝑐𝑢𝑡
𝑚 −

𝑘𝐵𝑇

𝐿𝑝
(

1

4(1−𝑥𝑐𝑢𝑡)
2
−
1

4
+ 𝑥𝑐𝑢𝑡) = 24휀 (2

𝜎12

(𝐿𝑐𝑢𝑡)
13
−

𝜎6

(𝐿𝑐𝑢𝑡)
7)  (3.28) 

where xcut = Lcut/Lm.  Solving the above expression for Lcut completes the 

derivation of the new parameters in the WLC-POW-LJ force expression.  The 

resulting force expression is continuous, but its derivative is not. 

 In the WLC-POW-LJ, it is possible for the separation distance between the 

corresponding actin nodes of a spectrin link to be greater than the contour length 

of the link.  Physically, under these circumstances, the spectrin link is not being 
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stretched along with the actin nodes (the link is still inextensible, as was assumed 

in the formulation of the WLC model in SUBSECTION 2.5.2).  Instead, a fracture 

has occurred, either between the spectrin link and one of the actin nodes or within 

the spectrin link itself.  The implications resulting from this situation are 

described in detail in SUBSECTION 3.4.5 and SUBSECTION 3.4.6. 

 The hRBC is a viscoelastic object suspended in a viscous medium, so an 

accurate model of hRBC behavior must account for these effects.  The effect from 

the membrane viscosity is modeled by adding a liner dashpot in the parallel with 

the spring representing the spectrin link (in-plane contribution to the force field).  

This arrangement is similar to the Kelvin-Voigt model of viscoelasticity [106], 

except the spring representing the spectrin link is nonlinear in the Combined 

hRBC model.  The dissipative force acting on node i is given by: 

�⃑�𝐷,𝑟 =
√3

4
𝜂𝑚(�⃑�𝑗 − �⃑�𝑖)       (3.29) 

where ηm is the membrane viscosity and vi,j are the velocities of nodes i and j, 

respectively.  This forces opposes changes in the relative velocities between 

nodes. 

 In addition to the dissipative force described above, a second dissipative 

force acting on the nodes is defined, based on the relative velocity between a 

particular node and the center of mass of the hRBC.  In this formulation, the actin 

node is modeled as a sphere in Stokes flow.  The dissipative force acting on node 

i is given by: 
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�⃑�𝐷,𝑟 = 6𝜋𝐶𝑒𝑓𝑓𝑅𝑒𝑓𝑓(�⃑�𝑐𝑚 − �⃑�𝑖)   (3.30) 

where �⃑�𝑐𝑚 is the velocity of the center of mass of the hRBC.  Ceff is an effective 

viscosity given by: 

𝐶𝑒𝑓𝑓 = √𝜂𝑜𝜂𝑖           (3.31) 

and Reff is an effective radius given by: 

𝑅𝑒𝑓𝑓 = √
3𝑚𝑎𝑐𝑡𝑖𝑛

4𝜋𝜌𝑎𝑐𝑡𝑖𝑛

3
    (3.32) 

In EQUATION 3.31 and EQUATION 3.32, ηo is the viscosity of the blood plasma, 

ηi is the viscosity of the cytoplasm, mactin is the mass of a single actin node, and 

ρactin is density of an actin node.  Including this additional term, in addition to 

making the Combined hRBC model more physically accurate, also helps to damp 

unusual high-frequency fluctuations that may occur in simulations and cause them 

to diverge. 
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3.3 Metabolic Model of the Human Red Blood Cell 

 The metabolic model used in this thesis is taken from “Modelling 

Metabolism with Mathematica” [15].  This model was chosen as the basis for 

representing the metabolism of the hRBC because it is one of the more 

comprehensive metabolic models found during a literature review that included 

the kinetics of the chemical reactions in the metabolism.  In a dynamic simulation, 

the reaction kinetics are extremely important (just as the mass/viscosity/damping 

coefficient are important in a dynamic simulation of a purely mechanical system).  

Without the kinetic parameters, the system of ODE’s modeling the metabolism 

can only be used to solve for the steady-state concentrations of the metabolites 

(where the rates of change of the metabolite concentrations are zero). 

 The Modelling Metabolism with Mathematica (MMwM) model has 56 

metabolites (participants in chemical reactions) and 53 chemical reactions.  The 

metabolite concentrations are in terms of mol/L.  The MMwM model includes 

reactions that are part of the glycolytic and pentose phosphate pathways.  These 

two pathways are responsible for MgATP generation (from glucose in the 

bloodstream) and producing the necessary reducing equivalents.  A metabolic 

map that helps to illustrate the metabolism is shown in FIGURE 3-4. 
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FIGURE 3-4: Metabolic map of hRBC metabolism [15] 

The MMwM model was formulated with the intention of simulating the 2-3 BPG 

pathway (Rapoport-Luebering shunt), but it contains the basic reactions in the 

hRBC metabolism to a sufficient level of detail that it is able to be used in a 

simulation more concerned with MgATP production.  The generation of MgATP 

is of special interest to this thesis because the mechanical behavior of the hRBC is 

connected to the metabolism through the MgATP concentration.  This connection 

is explained in detail in SECTION 3.4. 
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  FIGURE 3-5 shows the mathematical form of the hexokinase reaction rate 

in the MMwM model. 

 

FIGURE 3-5: Mathematical form of hexokinase reaction rate in MMwM model [15]. 

The hexokinase reaction converts glucose to glucose 6-phosphate through the 

consumption of MgATP.  The equation for the hexokinase reaction rate is 

included to illustrate the complexity that the equation for a single reaction can 

take (in the case of hexokinase, the reaction rate depends on 11 reaction constants 

and 7 metabolite concentrations).  The reaction constants (listed at the top of 

FIGURE 3-5) are specific to the hexokinase reaction.  In total, the MMwM model 

has 242 unique reaction constants, which are provided in the f_metabolism.m 

function in APPENDIX A.1.6. 
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 In this thesis, the system of ODE’s that represents the metabolism is 

numerically integrated using the MATLAB® function ode15s.  The system is 

integrated each time step using the current metabolite concentrations as the initial 

conditions.  After integration, the intermediate metabolite concentrations are 

discarded, and the final metabolite concentrations at the end of the time step are 

taken as the new metabolite concentrations.  The new metabolite concentrations 

are then used as the initial conditions for the integration in the next time step. 

 In the MMwM model, the glucose concentration is held constant.  This is 

justified by assuming that the concentration of glucose in the blood plasma is 

constant and the rate of the transport of glucose across the cell membrane occurs 

much more quickly than the rate of any other reaction in the metabolism.  In 

addition, the intercellular pH as well as the extracellular concentrations of 

inorganic phosphate, lactate, and pyruvate are also held constant.  The effect of 

holding the glucose concentration constant is that the cell never runs out of 

metabolic energy.  There is a delay, however, between a decrease in the 

concentration of MgATP (occurring after significant consumption) and an 

increase in the rate of MgATP production.  This delay is due to a signaling 

cascade that has to occur backwards through the metabolic network before the 

rate of glucose consumption can be increased (which will eventually lead to an 

elevated MgATP concentration). 

 By simulating the MMwM model using the initial conditions provided in 

the text, a steady-state condition can be achieved.  This is a dynamic equilibrium, 

however, because the reactions are still taking place despite that the observed 
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metabolite concentrations are not varying.  The authors of “Modelling 

Metabolism with Mathematica” suggest simulating the metabolism for 1e6 

seconds (~12 days) of simulation time (not wall time) in order to get the 

metabolism to reach its steady-state.  During subsequent simulations of the hRBC 

model used in this thesis, the steady-state metabolite concentrations are used at 

the initial conditions for the metabolite concentrations at the beginning of the 

simulation. 
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3.4 Relationship Between Mechanical and Metabolic Models 

 It has been known for some time that the metabolism of the hRBC has an 

effect on the mechanics of the hRBC [5, 107, 108, 109, 110, 111].  It was 

proposed, from a theoretical standpoint, by Gov et al. [112, 113] that the 

hydrolysis of MgATP at the actin nodes in the cytoskeletal network results in the 

phosphorylation of the spectrin links, thereby causing them to dissociate from the 

actin node (In the article by Gov et al., the interaction is described as being 

between ATP and spectrin.  MgATP, however, is the functional form of ATP that 

participates in energy expenditure reactions).  This proposition has been 

investigated in earnest, and is one of the leading hypotheses proposed to explain 

hRBC membrane behavior [114, 115]. The modeling efforts in this thesis build 

upon the proposition by Gov et al.  The dissociation of the spectrin links may be 

driven by a stress-relaxation of the cytoskeletal network [116]. 

 The dissociation of a spectrin link eliminates the in-plane interaction 

between the corresponding actin nodes.  The other force field terms, however, are 

unaffected by the dissociation of the link and still act on both nodes.  The 

dissociation of many links can result in changes in the global hRBC properties.  

Changes in global hRBC properties will result in changes the morphology of the 

hRBC.  The hRBC can regulate the dissociation of spectrin links through its 

metabolism [117, 118, 119, 120].  Theories based on experimentally observed 

hRBC shape changes (from discocyte to echinocyte) under metabolically induced 

stress suggest that the loss of MgATP is linked to a stiffer cytoskeleton [83].  In 

the actual hRBC, the phosphorylation of the spectrin is reversible 
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(dephosphorylation) and the spectrin link can reassociate with an actin node (not 

necessarily the same one it originally dissociated from).  This results in a network 

with a dynamic topology that is regulated by the concentration of MgATP in the 

cytoplasm of the hRBC [121].  The behavior of the hRBC model used in this 

thesis deviates slightly in this regard from the behavior of the actual hRBC.  This 

deviation is in the interest of simplicity of the model, as is justified in the 

following subsections. 

 In order to combine the mechanical model of the hRBC with the metabolic 

model of the hRBC, modifications to both the CG-RBC model and the MMwM 

model need to be made so the models can be coupled and work in unison.  The 

details of the connection between the models are described in the following 

subsections. 

  



79 

 

3.4.1 Mechanical-Connectivity Relationship 

 The relationship between the shear modulus of the hRBC and the 

proportion of associated spectrin links (as mentioned in SECTION 2.6) is given 

by: 

𝜇 = {
𝜇𝑚𝑎𝑥 (

𝑝−𝑝𝑟

1−𝑝𝑟
) , 𝑝 ≥ 𝑝𝑟

          0,            𝑝 < 𝑝𝑟
   (3.33) 

where µmax is the maximum shear modulus of the hRBC, pr is the rigidity 

percolation threshold (defined earlier in SECTION 2.6), and p is the proportion of 

associated spectrin links.  For a fully intact network (all spectrin links connected) 

p = 1.  The proportion of associated links is also referred to as the connectivity.  A 

plot of the shear modulus as a function of connectivity is shown in FIGURE 3-6. 
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FIGURE 3-6: Shear modulus as a function of the connectivity of the network.  Note that the x-axis is inverted. 

Note that the shear modulus decays linearly from its maximum value (at p = 1) 

until the rigidity percolation threshold is reached (at p = 2/3).  The shear modulus 

is zero if the connectivity of the network is less than the rigidity percolation 

threshold. 

 Under the assumption that the maximum shear modulus of the hRBC is 

twice the shear modulus observed in experimental conditions (µmax = 2µ) [112], 

the connectivity of the hRBC in its reference configuration can be found to be p0 

= 5/6 (where the subscript indicates that the hRBC is in its reference 

configuration).  This means that, when the hRBC is at rest in its reference 
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configuration, only 5/6 of its links are associated.  This corresponds to 68,355 

links in the hRBC model used in this thesis. 
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3.4.2 Metabolic-Connectivity Relationship 

 Zhang et al. [78] defined a “naive” model of spectrin phosphorylation with 

the following kinetic equations: 

𝑆𝑎 + 𝐴𝑇𝑃
𝜅𝑑
→ 𝑆𝑑 + 𝐴𝐷𝑃 

𝑆𝑑 + 𝐻2𝑂
𝜅𝑐
→ 𝑆𝑎 + 𝐻𝑃𝑂4

2−
        (3.34) 

where Sa is the associated form of the spectrin links, Sd is the dissociated form of 

the spectrin links, κd is the rate of the dissociation reaction, and κc is the rate of 

the reassociation reaction.  This model of spectrin phosphorylation is consistent 

with other models of the reaction in literature [122].  The relationship between the 

concentration of dissociated spectrin links and the concentration of associated 

spectrin links is given by: 

[𝑆𝑑] = [𝑆𝑇] − [𝑆𝑎]    (3.35) 

where [Sd] is the concentration of dissociated links, [ST] is the total concentration 

of spectrin links in the hRBC (defined by the number of spectrin links in the 

model, Ns), and [Sa] is the concentration of associated spectrin links.  The 

proportion of associated links in a network that is governed by this set of reactions 

is given by: 

𝑝 =
[𝑆𝑎]

[𝑆𝑇]
       (3.36) 

Under the assumption that the dissociations and reassociations of the spectrin 

links are independent, the proportion of associated spectrin links is the probability 

that a randomly selected link in the network will be in an associated state.  This is 

the same probability that was defined in SECTION 2.6. 
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 By treating the reactions in EQUATION 3.34 as a simple two-state kinetic 

model (assuming that only the concentrations of associated and dissociated 

spectrin links vary in the reaction) and invoking the law of mass action, a 

relationship between the reaction rates and the connectivity of the network can be 

determined at steady-state: 

𝑝 =
𝜅𝑐

𝜅𝑐+𝜅𝑑[𝐴𝑇𝑃]
            (3.37) 

Under the same assumptions, the equilibrium association constant of the two 

reactions is given by: 

𝐾𝑎 =
𝜅𝑐

𝜅𝑑[𝐴𝑇𝑃]
           (3.38) 

This equilibrium association constant was introduced earlier (in SUBSECTION 

3.2.2).  It is for the reaction between the spectrin links and the actin node.  Note 

how the equilibrium association constant is inversely proportional to the ATP 

concentration. 

 The hRBC model used in this thesis uses a modified set of the reactions in 

EQUATION 3.34: 

𝑆𝑎 +𝑀𝑔𝐴𝑇𝑃
𝜅𝑑
→ 𝑆𝑑 +𝑀𝑔𝐴𝐷𝑃 

𝑆𝑑
𝜅𝑐
→ 𝑆𝑎           (3.39) 

In this modified version, the additional metabolites in the second reaction have 

been eliminated (since these metabolites do not appear in the MMwM model).  

Also, ATP and ADP have been replaced by MgATP and MgADP, respectively.  

The relations derived above are still valid for this modified set of reactions.  The 

reactions in EQUATION 3.39 are integrated into the set of reactions in the MMwM 
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model so that the metabolic model can account for dissociations and 

reassociations of the spectrin links. 

 Utilizing the result from SUBSECTION 3.4.1 and EQUATION 3.37, a 

relationship between the connectivity of the network and the concentration of 

MgATP can be derived.  This relationship assumes an equivalence between the 

reference configuration of the hRBC (when it is at rest) and the metabolism of 

hRBC (when it is at steady-state).  This connectivity of the network when the 

metabolism is at steady-state is given by: 

𝑝0 =
𝜅𝑐

𝜅𝑐+𝜅𝑑[𝑀𝑔𝐴𝑇𝑃]0
      (3.40) 

where the subscript on the MgATP concentration indicates that it is the steady-

state concentration of MgATP.  EQUATION 3.40 can be solved for κc, yielding: 

𝜅𝑐 = 5𝜅𝑑[𝑀𝑔𝐴𝑇𝑃]0    (3.41) 

By substituting this result back into EQUATION 3.37, the relationship between the 

connectivity of the network and the MgATP concentration can be defined.  This 

relationship is given by: 

𝑝 =
5[𝑀𝑔𝐴𝑇𝑃]0

5[𝑀𝑔𝐴𝑇𝑃]0+[𝑀𝑔𝐴𝑇𝑃]
         (3.42) 

The form of EQUATION 3.42 ensures that p = p0 = 5/6 when                    

[MgATP] = [MgATP]0.  A plot of the connectivity as a function of the MgATP 

concentration is shown in FIGURE 3-7. 
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FIGURE 3-7: Connectivity as a Function of MgATP Concentration 

Note that the relationship is nonlinear.  The slope is steep in the region near the 

physiological MgATP concentration, but flattens out as the MgATP concentration 

increases.  Although it is not used in this thesis, the connectivity percolation 

threshold is indicated on this plot for comparison reasons. 

 A very important stipulation of the hRBC model used in this thesis is that 

the spectrin link can only reassociate with the same actin node it originally 

dissociated from.  Other spring network models [101, 123] allow for “links” to 

reassociate with different nodes.  Topological remodeling of the cytoskeleton to 

the same degree as was done in the above articles adds unnecessary complication 

to the hRBC model, and is ultimately beyond the scope of this thesis. 
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3.4.3 Mechanical-Metabolic Relationship 

 A relationship between the shear modulus of the hRBC and the 

concentration of MgATP can be defined.  This relationship is given by: 

𝜇 = {
𝜇𝑚𝑎𝑥 (

[𝑀𝑔𝐴𝑇𝑃]

(5[𝑀𝑔𝐴𝑇𝑃]0+[𝑀𝑔𝐴𝑇𝑃])(𝑝𝑟−1)
+ 1) , [𝑀𝑔𝐴𝑇𝑃] ≤ 3.8𝑒−3 𝑚𝑜𝑙/𝐿

                                 0,                                    [𝑀𝑔𝐴𝑇𝑃] > 3.8𝑒−3 𝑚𝑜𝑙/𝐿
      (3.43) 

The cutoff MgATP concentration used above is the concentration of MgATP that 

would cause the connectivity of the network to be equal to the rigidity percolation 

threshold (p = 2/3).  A plot of the shear modulus as a function of the MgATP 

concentration is shown in FIGURE 3-8. 

 

FIGURE 3-8: Shear modulus as a function of MgATP concentration. 

Note that the relationship between the shear modulus and the MgATP 

concentration is not linear.  This is due to the nonlinear relationship between the 
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connectivity and the MgATP concentration.  The shear modulus predicted by 

EQUATION 3.43 is consistent with the stiffer cytoskeleton observed under 

MgATP depletion [83].  EQUATION 3.43 is not used as part of the simulation of 

the hRBC, but it is included so as to complete the derivation of the mechanical-

metabolic relationship. 

  



88 

 

3.4.4 Discrete-Continuum Transformation 

 Since the results of simulating the metabolism of the hRBC produces 

“continuum” results (concentration of associated spectrin links in units of mol/L) 

and the links that make up the hRBC cytoskeleton are discrete entities, a 

connection between the concentration of associated spectrin links and the number 

of associated spectrin links is needed.  This mapping between the continuum and 

discrete domains is achieved by converting the number of links to a concentration.  

The maximum concentration of spectrin links for a given hRBC volume is given 

by: 

[𝑆𝑇] =
𝑁𝑠

𝑁𝐴𝑉𝐿
            (3.44) 

where NA is Avogadro’s constant (in units of links/mole in this context) and VL is 

the volume of the hRBC (in liters).  This transformation produces a concentration 

in units of moles/liter.  (Note, in the simulation of the hRBC, the volume of the 

hRBC is calculated in terms of cubic meters.  This volume needs to be converted 

to liters before the transformation to concentration can be performed).  Using 

EQUATION 3.44, the concentration of associated links can be determined.  The 

associated link concentration is given by: 

[𝑆𝑎] = 𝑝[𝑆𝑇] = 𝑝
𝑁𝑠
𝑁𝐴𝑉𝐿

=
𝑁𝑎𝑠𝑐
𝑁𝐴𝑉𝐿

         (3.45) 

where Nasc is the number of associated links. 

 This transformation offers a simple method of converting from the discrete 

domain to the continuum domain.  If the connectivity and the total number of 

links in the network are known, the concentration of associated spectrin links can 
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be determined using EQUATION 3.45.  However, if the concentration of 

associated spectrin links and the connectivity are known, EQUATION 3.45 can 

only be used to determine the number of associated links, not which specific links 

are associated.  This is because information about the links is lost in the discrete 

to continuum transformation.  Additional provisions are required in the Combined 

hRBC model in order to preserve the information about the connectivity of 

specific links through the transformation, as well as to determine the changes in 

the connectivity after the metabolic simulations outputs changes the concentration 

of associated links. 
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3.4.5 Continuum-Discrete Transformation 

 The number of associated links is calculated using EQUATION 3.45 and 

the concentration of associated links is output from the metabolism simulation.  

This is the number of associated links as dictated by the metabolism.  The 

metabolically-dictated number of associated links is then compared to the actual 

number of associated links.  A discrepancy between the metabolically-dictated 

number of associated links and the actual number of associated links may exist 

because the simulations are dynamic, and the connectivity of the network is 

allowed to vary.  In the case where the metabolically-dictated number of 

associated links is less than the actual number of associated links, then a specified 

number of links (equal to the difference between the metabolically-dictated 

number of associated links and the actual number of associated links) are 

dissociated so that the actual number of associated links matches the 

metabolically-dictated number of associated links.  In the case where the 

metabolically-dictated number of associated links is greater than the actual 

number of associated links, dissociated links are not reassociated in order to meet 

this requirement (the metabolism can only dissociate links, not reassociate link). 

 The reason the link reassociation process cannot directly follow the results 

from the reassociation reaction is rooted in the activation-controlled vs. diffusion-

controlled nature of the spectrin phosphorylation and dephosphorylation 

reactions.  In reality, once a link dissociates, the spectrin filament no longer 

experiences a force from the actin node it dissociated from.  This causes the 

filament to drift towards a configuration where the end-to-end length of the 
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filament is close to the equilibrium length of the filament.  This drifting will likely 

cause a separation between the end of the filament and the previously associated 

actin node.  After the phosphorylation of the spectrin filament, it should be unable 

to immediately reassociate with the actin node.  Only after the spectrin filament 

has been dephosphorylated can it reassociate with the actin node.  This 

dephosphorylation process should take some time.  During this “down time” the 

spectrin filament is drifting away from the actin node.  After the spectrin filament 

has been dephosphorylated, it is some distance away from the actin node and has 

to drift back toward the node in order to reassociate with it.  The time between 

when the spectrin link is dissociated and when it is able to reassociate is referred 

to as the wait time.  Because the spectrin link is only able to reassociate with the 

actin node it originally dissociated from, rapid dissociation and reassociation 

between the spectrin link and the actin node can occur if there is no wait time 

between the dissociation of the spectrin link and its reassociation.  This 

unphysical behavior is not desirable, especially in simulations being performed to 

determine the mechanical properties as a function of network connectivity.  In 

simulations performed as a part of this thesis, the wait time was selected rather 

arbitrarily, but it should be directly related to the reaction rate of the spectrin-actin 

dissociation/reassociation reactions and the relaxation time of the spectrin link.  

Now that the idea behind the link selection has been introduced, the details of the 

selection process will be explained. 
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 The specific links that are dissociated to meet the connectivity requirement 

set by the metabolism are selected using a weighted random selection without 

replacement (WRSWOR) algorithm.  The basis for the selection of links is 

random because the exact details of the spectrin phosphorylation and 

dephosphorylation reactions are unknown.  Using the equal a priori probability 

postulate, the probability can be related to the energy of the link.  In the hRBC 

model used in this thesis, the potential energy stored in a link is only a function of 

the extension of that link (the individual link’s “microstate”).  In the absence of 

information regarding the spectrin phosphorylation and dephosphorylation 

reactions and the nanoscale behavior of a free spectrin filament, the best 

assumption regarding spectrin link selection is that the selection process is 

weighted by the extension of the spectrin links.  Because configurations with a 

lower Helmholtz free energy are more desirable, it is assumed that the probability 

that stretched links will be selected is greater than the probability that less 

stretched links will be selected, since the dissociation of these stretched link will 

result in a greater reduction in the potential energy of the hRBC model.  The 

selection is performed without replacement to ensure that links are not selected 

multiple times (the chance that a link is selected multiple times decreases as the 

number of links in the network increases). 

 When a spectrin link is selected for dissociation by the WRSWOR 

algorithm, the connectivity of that spectrin link is set to zero.  This is equivalent 

to turning off the attractive portion of the WLC-POW-LJ force-extension 

relationship.  The weight of a selected spectrin link (probability it will be selected 
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by the WRSWOR algorithm) is set to zero to prevent it from being selected 

multiple times.  A wait time counter is also started when the spectrin link is 

selected.  This counter starts at the specified wait time and decreased by the time 

step length each time step after the spectrin link is dissociated.  This dissociation 

portion is repeated multiple times for every spectrin link that is selected to be 

dissociated during the current time step.  After the required number of links are 

dissociated, the updated number of associated links is used to back calculate the 

concentration of associated links using EQUATION 3.45.  This is to ensure 

consistency in the simulation.  The updated associated link concentration is used 

in the simulation of the metabolism. 

 When the wait time counter of a spectrin link reaches zero, the current 

separation distance between the actin nodes corresponding to the spectrin link is 

checked against the contour length of the spectrin filament.  In the case where the 

separation distance is less than the contour length of the spectrin filament, the 

spectrin link is allowed to reassociate.  When the spectrin link reassociates, the 

connectivity of the spectrin link is set to one, which is equivalent to turning back 

on the attractive portion of the WLC-POW-LJ force-extension relationship.  The 

selection weight of the reassociated spectrin links is also updated using the current 

separation distance between the actin nodes that correspond to the spectrin link. 

 In the case where the separation distance is greater than the contour length 

of the spectrin filament, the spectrin link is not allowed to reassociate.  The 

connectivity of the spectrin link stays at zero, preventing attractive interactions 

between the actin nodes corresponding to the spectrin link.  The separation 



94 

 

distance between the corresponding actin nodes is checked against the contour 

length every time step, and the connectivity of the spectrin link remains at zero 

until the separation distance is less than the contour length.  At this point, the 

spectrin filament is allowed to reassociate as described previously.  Spectrin links 

that cannot reassociate after their wait time is up still count as dissociated links. 

 The selection of a specific link to dissociate is independent of the 

dissociation and reassociation history of the specific spectrin link, the 

connectivity of any of the other spectrin links in the network, and the dissociation 

and reassociation history of any of the other spectrin links in the network.  The 

dissociation of a particular spectrin link does not affect the evaluation of any of 

the other force field terms.  The use of the WRSWOR algorithm makes the 

Combined hRBC model in this thesis nondeterministic. 
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3.4.6 Additional Modification to CG-hRBC Model 

 Note that the use of the larger shear modulus requires a rederivation of a 

significant number of the force field parameters.  The use of the rederived 

parameters in the force field results in a modified WLC-POW-LJ force-extension 

relationship.  This modified relationship is shown in FIGURE 3-9. 

 

FIGURE 3-9: Comparison between WLC-POW-LJ force-extension relationships for different shear moduli. 

The red curve in FIGURE 3-9 illustrates the force-extension relationship of the in-

plane portion of the force field that is used in this thesis.  Note how the larger 

shear modulus results in a stiffer WLC-POW-LJ force-extension response of the 

spectrin link.  As a consequence of this, the location of the maximum attractive 

force of the stiffer WLC-POW-LJ force-extension relationship is shifted to a 
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shorter extension.  Likewise, the location of the equilibrium position (location 

where force is equal to zero) is shifted to a shorter extension. 

 An additional modification to the WLC-POW-LJ force-extension 

relationship is incorporated in the hRBC model used in this thesis in order to 

account for damage incurred by spectrin-actin junction when the spectrin is 

stretched beyond its contour length.  This modification permanently “turns off” 

the attractive portion of the WLC-POW-LJ force-extension relationship, leaving 

only the repulsive POW portion.  The switch from the WLC-POW-LJ force-

extension relationship to only the repulsive POW force-extension relationship for 

a particular link occurs when that link is stretched to a length greater than its 

contour length.  A link that has undergone this switch is referred to as a “broken” 

link.  In addition to having the attractive portion of the WLC-POW-LJ force-

extension relationship permanently turned off, broken links also do not contribute 

to the concentrations of spectrin links.  The number of broken spectrin links is 

subtracted from the total number of links in the Combined hRBC model, since 

these spectrin links effectively no longer exist.  The selection weight of broken 

links is also set to zero, since they cannot be selected for dissociation by the 

WRSWOR algorithm. 

 There is a caveat, however, in the breaking of spectrin links.  In the case 

when a link is dissociated (due to phosphorylation of the spectrin link because of 

the metabolism), and the separation distance between the corresponding actin 

nodes then increases, while the link is dissociated, to a separation greater than the 

contour length of the link, the link is not broken.  Instead, the link remains 
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dissociated until its wait time counter reaches zero.  At this point, the spectrin link 

either reassociates (if the separation distance between its corresponding actin 

nodes is less than the contour length of the link) or remains dissociated until the 

separation distance is less than the contour length of the link.  This is the same as 

the treatment introduced in SUBSECTION 3.4.5 for the reassociation of links 

where the separation distance between their corresponding actin nodes increases 

to lengths greater than the contour length (which would prevent the link from 

reassociating when the wait time counter finishes).  Basically, this caveat ensures 

that dissociated links cannot be broken, regardless of separation distance.  

Keeping this treatment still allows the for the Combined hRBC model to be able 

to recover from larger deformations and return to its reference configuration.  
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3.5 Simulation of the Human Red Blood Cell 

 In SECTION 3.1, the computation methods used create the initial 

triangulation of the hRBC model were introduced.  In this section, the specific 

computational methods used to simulate the models introduced in SECTION 3.2 

and SECTION 3.3, along with the interaction between the models introduced in 

SECTION 3.4, are discussed.  The coupling of the mechanical CG-hRBC model 

with the metabolic MMwM model through the connectivity of the cytoskeleton 

forms the hRBC model that will be used for simulations in this thesis.  From this 

point on, this model will be referred to as the Combined hRBC model. 

 MD simulations on the Combined hRBC model can be performed to 

determine the response of the model to external conditions.  These MD 

simulations on the Combined hRBC model are performed using a modified 

version of the Verlet algorithm introduced earlier in SECTION 2.4.  This modified 

version is known as the Velocity Verlet (it is similar to the Leapfrog method).  

The form of the Velocity Verlet is: 

𝑟𝑡+∆𝑡 = 𝑟𝑡 + �⃑�𝑡∆𝑡 +
1

2
�⃑�𝑡∆𝑡

2 

�̃⃑�𝑡+𝜆∆𝑡 = �⃑�𝑡 + 𝜆�⃑�𝑡∆𝑡 

�⃑�𝑡+∆𝑡 = 𝑓𝑢𝑛(𝑟𝑡+∆𝑡, �̃⃑�𝑡+𝜆∆𝑡) 

�⃑�𝑡+∆𝑡 = �⃑�𝑡 +
1

2
(�⃑�𝑡 + �⃑�𝑡+∆𝑡)∆𝑡           (3.46) 

The �̃⃑�𝑡+𝜆∆𝑡 term is an intermediate velocity, at a time between t and 𝛥t.  𝜆 is a 

weighing factor that determines the time the intermediate velocity is calculated at 

(0 < 𝜆 < 1).  𝜆 is usually taken to be 0.5 (this means that the intermediate velocity 
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is calculated exactly in the middle of the time step).  The “fun” notation indicates 

that the acceleration at the t + 𝛥t is a function of the position at t + 𝛥t and the 

intermediate velocity.  The Velocity Verlet is used instead of Störmer’s method 

because the velocities are needed if dissipative interactions are to be calculated.  

To decrease the amount of real-time it takes a simulation to run, the largest time 

step for which the simulation remains stable should be used.  The optimization of 

the computation is discussed in detail in SECTION 4.6.  Ultimately, the proper 

time step length to use in simulations performed as a part of this thesis was 

determined heuristically. 
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3.5.1 Simulation Setup 

 Before simulations can be performed with the Combined hRBC model, the 

rest of the parameters required in the simulations need to be determined.  The 

parameters used in the mechanical portion of the model are calculated and/or 

declared in the hRBC_Parameter_Derivation.m script file.  This scripts loads the 

results from the hRBC_Triangulation.m script file (hRBC_Triangulation.mat file) 

in order to calculate the rest of the force field parameters.  All the parameters are 

then saved in the hRBC_Parameters.mat file. 

3.5.2 Energy Minimization 

 A potential energy minimization needs to be performed on the Combined 

hRBC model using the node locations saved in hRBC_Triangulation.mat as initial 

locations.  As described in SECTION 2.4, this minimization is performed at zero 

Kelvin (which means that the velocity of each node is set back to zero) and the 

Velocity Verlet described above is used to update the positions of the nodes every 

time step.  The zero Kelvin condition is an attempt to ensure that an actual global 

minimum of potential energy is reached.  Only the mechanical model is simulated 

during this minimization.  (A true energy minimization cannot be performed 

while the metabolism is being simulated because the metabolism is continuously 

adding chemical energy to the system, in the form of MgATP). 

 A minimization of the Combined hRBC model is then performed.  The 

MMwM model is simulated using the initial conditions provided in [15] (as 

described in SECTION 3.3).  The mechanical model is simulated using the 

potential energy minimization method described above and allowed to interact 
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with the metabolic model.  The interaction is necessary due to the coupling 

between the models.  This minimization is also performed until both a potential 

energy minimum of the mechanical model and steady-state conditions for the 

metabolic portion are reached.  The results of the second minimization are saved 

in hRBC_Minimized.mat.  This includes the connectivity data from the 

triangulation, the node locations, the surface area and volume, and the steady-state 

metabolite concentrations at the end of the minimization. 

3.5.3 Simulation Execution 

 After the Combined hRBC model has been minimized, a simulation can be 

performed using the data from hRBC_Minimized.mat as initial conditions.  

Because the minimization is performed at zero Kelvin, the initial velocity of all 

nodes is set to zero.  An example simulation is described in detail in this section 

in order to illustrate the simulation process.  The simulation is executed using the 

hRBC_Stretching_Simulation.m script file, which serves as a wrapper for the 

function files that perform the calculations in the simulation.  The example 

simulation is the computational equivalent of an optical tweezers stretching 

experiment of a hRBC [32, 33, 39, 41].  Forces are applied to specific nodes in the 

Combined hRBC model.  These forces perturb the model away from its reference 

configuration, towards a new configuration that minimizes the potential energy.  

The three sections (and relevant subsections) of hRBC_Stretching_Simulation.m 

script file are described in detail below. 
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 The first section of the code file sets up the simulation.  First, the date and 

time at the beginning of the simulation are saved.  Next, global variables are 

declared and the data from hRBC_Parameters.mat and hRBC_Minimized.mat is 

loaded.  Then, flags for simulation options are set.  These flags are logicals that 

turn on/off the stretching simulation as well as the saving, plotting, and exporting 

(of the plotted results) of simulation results.  Next, the number of time steps, 

length of each time step, and the applied force in the simulation are defined.  The 

integration time step weighing factor (𝜆 in EQUATION 3.46) is also defined.  

Next, all matrices and vector not already defined are initialized to zero.  The wait 

times of currently dissociated links are set using times selected from a uniform 

random distribution.  The selection weights for all links is calculated using their 

current extensions.  Then, the nodes that the stretching force is applied to are 

selected, and the force is distributed evenly between these nodes.  This completes 

the first section of the code file. 

 The second section of the hRBC_Stretching_Simulation.m code file 

performs the actual time step iterations in the simulation process.  Each individual 

time step has five subsections.  In the first subsection, some variables are updated 

for use in the current time step, links that are supposed to be reassociating (wait 

times are up) are reconnected, and links that are supposed to be dissociating due 

to non-metabolic reasons are disconnected.  In the second subsection, the 

metabolism is simulated.  In the third subsection, the number of links that are to 

be dissociated due to the metabolism is calculated, and the specific links are 

selected and disconnected.  In the fourth subsection, the mechanical portion of the 
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Combined hRBC model is simulated.  In the fifth subsection, the rest of the 

variables are updated in preparation for the next time step.  The specifics of each 

subsection are described next. 

 In the first subsection, the time step span for the current time step is set 

(for use in the numerical integration of the metabolism).  Then, the wait times of 

dissociated spectrin links are updated.  Next, currently connected spectrin links 

that have an extension greater than the contour length of the spectrin filament are 

permanently broken (achieved by setting their connectivities to zero).  Then, 

spectrin links that are reassociating during the current time step are allowed to 

reassociate and their connectivities are updated.  Next, the selection weights are 

updated for the newly reassociated spectrin links using the current separation 

distance between the actin nodes associated with each link.  Then, a check is 

performed to ensure that a spectrin link that has been broken previously still has a 

connectivity of zero.  Next, using the number of links that have been broken, the 

maximum possible number of spectrin links is calculated and convert to a 

maximum concentration. 

 In the second subsection, the metabolism is then simulated using ode15s 

and the time span calculated at the beginning of the time step.  The concentration 

of all metabolites is updated to reflect the concentrations obtained at the end of 

the time span (“final” concentrations from the output from ode15s). 

In the third subsection, the concentration spectrin links (determined from 

the metabolism) is then used to calculate the number of links that need to be 

dissociated so that the actual concentration of spectrin links is equal to the desired 
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concentration of spectrin links (as determined from the metabolism).  The number 

of links to dissociate (num_dis in code) is checked to ensure that it is a valid 

number of nodes (integer, numeric, positive).  If the number of nodes to dissociate 

is invalid, the simulation is halted and the current simulation data is saved to an 

error dump.  If the number of nodes to dissociate is valid, the simulation proceeds.  

The actual links that are dissociated (using the WRSWOR algorithm introduced in 

SUBSECTION 3.4.5) using the datasample function in MATLAB®.  This function 

takes the number of links to dissociate, a vector containing the unique identifying 

numbers of all the links, and a vector of the selection weights of the links.  It also 

has an option for selection with or without replacement (in its usage in this thesis, 

the selection without replacement is used).  The datasample function then outputs 

a vector containing the identifying numbers of the links that have been selected 

for dissociation.  This vector is fed into the f_diss.m function, which performs the 

dissociation of the selected links.  In the f_diss.m function, the connectivities of 

the selected links and the selection weights are set to zero, and the wait time 

counters for the links are set to the specified wait time.  Another check is 

performed to determine if the number of nodes dissociated by the metabolism 

causes the connectivity of the network to decrease to less than half of the 

maximum possible value.  (Through testing, it has been determined that 

simulations using reasonable stretching forces in which the connectivity drops to 

such a low value are unstable, or on the brink of diverging).  If this is the case, the 

simulation is halted and the current simulation data is saved to an error dump.  If 

the connectivity is valid, the simulation proceeds. 
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 In the fourth subsection, the MD portion of the simulation is performed.  

The nodal mass is calculated using the volume and density.  The new 

accelerations are calculated (using the updated total forces determined in the 

previous time step).  The new positions are then calculated using the current 

accelerations and the previous velocities.  The intermediate velocities are also 

calculated using the current forces and the previous velocities.  The updated 

forces are then calculated using the new positions and intermediate velocities.  

The conservative forces are calculated using the f_cons_forces.m function.  This 

function uses the positions and connectivity to calculate the forces on the nodes 

resulting from the terms in the force field (EQUATION 3.6) using the equations 

from Appendix A of [93].  The contributions to the free energy due to the links, 

the local area, and the bending are also calculated and output.  In addition, the link 

lengths, the areas of individual elements, the total area, and the total volume are 

calculated and output.  The dissipative forces are calculated using the 

f_diss_forces.m function with the intermediate velocities as input.  The total 

forces acting on the Combined hRBC model are then calculated as the sum of the 

conservative forces, the dissipative forces, and the applied stretching forces.  This 

updated total force is used next time step to calculate the accelerations.  The 

energetic contributions from each force field term are also calculated and saved 

(so that the energy of the model as a function time can be plotted and analyzed 

later).  The total potential energy is checked, and if it is above a threshold value, 

the simulation is halted and the current simulation data is save to an error dump.  

An unusually high total potential energy typically indicates that one or more 
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nodes has been “ejected” from the model due to an artificially high force (most 

likely from the error dissipative forces).  If the total potential energy is below this 

threshold value, the simulation proceeds. 

 In the fifth subsection, the variables required for the next time step are 

updated.  These variables included the nodal mass of the hRBC (calculated from 

the updated volume), the maximum concentration of spectrin links, and the 

current concentration of associated spectrin links.  The wall time elapsed during 

the simulation up to this point is also calculated.  This completes the second 

section of the code file. 

 The third section of the hRBC_Stretching_Simulation.m code file performs 

the post-processing calculations of the simulation results, plots the results (if 

desired), and saves the results.  The date and time of the end of the simulation are 

also recorded.  In the post-processing calculations, the averages energies, axial 

and transvers diameters, triangulation quality, and relative shape anisotropy are 

calculated.  The wall time per time step is also calculated for simulation 

evaluation.  The simulation results that can be plotted are shown in SECTION 4.1.  

The results of the simulation are saved to .mat file with a filename specific to the 

individual simulation.  The form of the filename is 

DATA_Stretching_Simulation__“number of time steps in simulation”__“length of 

each time step”__“ending date and time of simulation”.mat.  This completes a 

simulation of the Combined hRBC model.  The plots of the results from this 

example simulation of the Combined hRBC model are presented in SECTION 4.1. 
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Chapter 4: Results, Discussion, and Analysis 

4.1 Simulation Environment 

 A major result from the efforts put forth in this thesis was the creation of a 

unified simulation environment in MATLAB®.  A comprehensive simulation of 

the hRBC, from mesh creation and triangulation to plotting and visualization of 

the simulation results, can be performed utilizing the set of code files provided in 

APPENDIX A.1.  The functionality of the simulation environment was described 

in SECTION 3.5.  This section presents plots of the results from the example 

simulation used in SUBSECTION 3.5.3, beginning on the next page.  Some basic 

observations from the data are presented in conjunction with the plots.  This 

stretching simulation was run for 100,000 time steps (with a time step length of 

100 nanoseconds) under an applied force of 100 piconewtons. 
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 FIGURE 4-1 is a plot of the final configuration of the Combined hRBC 

model.  The stretching forces are applied to the highlighted nodes.  (Note, this is 

actually the tenth plot produced by the simulation output, but it is presented first 

to help illustrate the example simulation itself as well as the degree of 

deformation experienced by the Combined hRBC model at the conclusion of the 

simulation). 

 

FIGURE 4-1: Visualization of the final configuration of the Combined hRBC model for the example 

simulation. 

As expected, the model extends in the direction of the stretching forces, while 

simultaneously contracting in the transverse direction.  The deformed model can 
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be described by an axial diameter (DA) and a transverse diameter (DT).  

Together, these dimensions can be used to quantify the deformation of the model. 

 FIGURE 4-2 is a plot of the potential energy contribution from the spectrin 

links in the Combined hRBC model as a function of time elapsed in the 

simulation. 

 

FIGURE 4-2: Plot of the contribution to the potential energy from the in-plane term in the force field of the 

Combined hRBC model as a function of time for the example simulation. 
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FIGURE 4-3 is a plot of the potential energy contribution from the areas of the 

individual elements (local area energy) in the Combined hRBC model as a 

function of time elapsed in the simulation. 

 

FIGURE 4-3: Plot of the contribution to the potential energy from the local area term in the force field of the 

Combined hRBC model as a function of time for the example simulation. 
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FIGURE 4-4 is a plot of the potential energy contribution from the total area 

(global area energy) of the Combined hRBC model as a function of time elapsed 

in the simulation. 

 

FIGURE 4-4: Plot of the contribution to the potential energy from the global area term in the force field of 

the Combined hRBC model as a function of time for the example simulation. 
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FIGURE 4-5 is a plot of the potential energy contribution from the total volume of 

the Combined hRBC model as a function of time elapsed in the simulation. 

 

FIGURE 4-5: Plot of the contribution to the potential energy from the volume term in the force field of the 

Combined hRBC model as a function of time for the example simulation. 
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FIGURE 4-6 is a plot of the potential energy contribution from the bending 

between the faces of neighboring elements in the Combined hRBC model as a 

function of time elapsed in the simulation. 

 

FIGURE 4-6: Plot the contribution to the potential energy from the bending term in the force field of the 

Combined hRBC model as a function of time for the example simulation. 
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FIGURE 4-7 is a plot of the total potential energy of the Combined hRBC model 

as a function of time elapsed in the simulation.  From analysis of FIGURE 4-7, it 

can be concluded that the Combined hRBC model had reached potential energy 

equilibrium at the point when the example simulation ended. 

 

FIGURE 4-7: Plot of the total potential energy of the Combined hRBC model as a function of time for the 

example simulation. 

Under inspection, the shape of the total potential energy curve appears 

qualitatively similar to the shape of the links energy curve (in FIGURE 4-2).  

Under the further investigation, it is apparent that they are equal magnitude.  

Additionally, the other energies are of lesser magnitudes.  From this, it is apparent 

that the links energy term dominates the other potential energy terms.  
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FIGURE 4-8 is a plot comparing the final configuration of the Combined hRBC 

model to the initial configuration. 

 

FIGURE 4-8: Visualization comparing the final configuration of the Combined hRBC model (red) to the 

initial configuration (black) for the example simulation. 
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FIGURE 4-9 is a plot of the final configuration of the Combined hRBC model that 

highlights the dissociated spectrin links. 

 

FIGURE 4-9: Visualization of the final configuration of the Combined hRBC model with dissociated spectrin 

links (green) for the example simulation. 

From an analysis of the connectivity of the spectrin links in the Combined hRBC 

model as a function of time elapsed in the simulation, it can be concluded that the 

Combined hRBC model was not under any type of metabolic loading that would 

alter its connectivity.  It can also be concluded that the forces applied to the 

Combined hRBC model during the simulation were not large enough to cause any 

of the spectrin links in the model to break.  
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FIGURE 4-10 is a plot of the final configuration of the Combined hRBC model 

overlaid with the vertex strains.  The vertex strain of a particular vertex is the 

average of the area strains of the individual elements that share that vertex.  From 

visual analysis of FIGURE 4-10, it is apparent that the majority of the elements 

are in a minimal strain state. 

 

FIGURE 4-10: Visualization of the vertex strains in the final configuration of the Combined hRBC model for 

the example simulation.  The colorbar on the right side indicates the magnitude of the strains. 
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FIGURE 4-11 is a plot of the final configuration of the Combined hRBC model 

overlaid with the local area strains (area strains of the individual elements).  Areas 

of higher strain can be observed where the stretching forces are applied. 

 

FIGURE 4-11: Visualization of local area strains in the final configuration of the Combined hRBC model for 

the example simulation.  The colorbar on the right side indicates the magnitude of the strains. 
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FIGURE 4-12 is a plot of the final configuration of the Combined hRBC model 

overlaid with the link strains.  From visual analysis of FIGURE 4-12, the spectrin 

links with a higher likelihood dissociation can be observed.  In this particular 

case, only a few of the spectrin links seem to have undergone severe deformation. 

 

FIGURE 4-12: Visualization of the link strains in the final configuration of the Combined hRBC model for the 

example simulation.  The colorbar on the right side indicates the magnitude of the strains. 
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 In addition to outputting all the required data to produce the above plots, 

the simulation also outputs: 

 Information that can be used to uniquely identify the simulation 

o The starting and ending date and time of the simulation 

o The number of time steps in the simulation 

o The length of a single time step 

o The magnitude of applied force to the Combined hRBC model (if 

the simulation was a stretching simulation) 

 Information about the final configuration of the Combined hRBC model 

o Total area 

o Total volume 

o Axial and transvers diameters 

o Relative shape anisotropy 

o Areas of individual elements 

o Velocities of individual nodes 

o Quality of the triangulation (to determine the deviation from the 

ideal network assumed in the theory) 

 The final metabolite concentrations 

 Wall-clock time per time step (to evaluate computational efficiency) 
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4.2 Triangulation Quality 

 The quality of the triangulation of the Combined hRBC model was 

evaluated using the metrics that were introduced in [44] to evaluate the quality of 

the CG-hRBC model.  The results from this triangulation quality analysis are 

tabulated in TABLE 4-1. 

Results from Triangulation Quality Analysis 

 

Distribution 

of Link 

Lengths 

Distribution 

of Degree-6 

Vertices 

Distribution of 

Degree-5 and 

Degree-7 Vertices 

Equilateral 

Triangulation 

Quality 

CG-hRBC 

Model 
0.05 to 0.08 75% to 90% 10% to 25% - 

Combined 

hRBC 

Model 
0.587 88.89% 11.11% 0.9903 

TABLE 4-1: Results from triangulation quality analysis.  Results for CG-hRBC model taken from [44].  The 

distribution of link lengths of the Combined hRBC model was determined using EQUATION 2.13.  The 

equilateral triangulation quality of the Combined hRBC model was determined using EQUATION 2.14. 

The results from the triangulation quality analysis for both the distribution of link 

lengths and the distribution of vertex degrees of the Combined hRBC model are 

near the upper end of the range of the results from the triangulation quality 

analysis of the CG-hRBC (recall, a lower value for the distribution of link lengths 

corresponds to a higher quality triangulation).  This implies a good correlation 

between the two models.  In addition, the equilateral triangle quality of the hRBC 

model is 0.9903, with a minimum individual element quality of 0.9009.  This 

implies a good correlation between the Combined hRBC model and the ideal 

network used in the theoretical analysis.  The improvement that the 

distmeshsurface.m function offers over other methods is evidenced by the 

comparison between FIGURE 4-13 and FIGURE 4-14 (on the next two pages).
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FIGURE 4-13: Visualization of the initial triangulation for the Combined hRBC model, obtained using the isosurface function only.
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FIGURE 4-14: Visualization of the final triangulation for the Combined hRBC model, after optimization of the triangulation shown in FIGURE 4-13 through use of the 

distmeshsurface.m function.
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The triangulation in FIGURE 4-13 is the output obtained from just the isosurface 

function.  The triangulation in FIGURE 4-14 is the output from the 

distmeshsurface.m function using the triangulation from FIGURE 4-13 as input.  

Clearly, given the quantitative results from the triangulation quality analysis and 

from qualitative analysis of FIGURE 4-13 and FIGURE 4-14, the usage of the 

distmeshsurface.m function produces a triangulation that is much more regular 

(the elements are closer to equilateral triangles). 

 The quality analysis presented above was performed on the hRBC model 

in its reference configuration, but the same analysis can be performed on the 

hRBC model at any time during a simulation, regardless of the amount of 

deformation of the hRBC model.  A quality analysis performed on a deformed 

hRBC model could be used to determine the deviation of the deformed network 

from the ideal network used in the theoretical analysis. 
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4.3 Breaking of Spectrin Links 

 Under the application of a large enough force, breaking of individual 

spectrin links in the Combined hRBC model can be observed.  This behavior 

corresponds to the extension of the individual links beyond the contour length of 

the spectrin fiber, as explained in SUBSECTION 3.2.3.  The results from a 

stretching simulation of the Combined hRBC model using an applied force of 1 

nanonewton is depicted in FIGURE 4-15.  (Note, this force is unrealistic in the 

context of optical tweezers stretching experiments on the hRBC, but it was used 

in the simulation simply for illustrative forces).   

 

FIGURE 4-15: Visualization of the final configuration of the Combined hRBC model with dissociated spectrin 

links (green) and broken spectrin links (black) for the breaking links simulation. 
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The dissociated links are highlighted in green (same as in the previous stretching 

simulation), and the broken links in are now highlighted in black.  Note how the 

broken links are concentrated near the areas where the stretching forces are 

applied to the cell.  This results in strain concentrations (and subsequent stress 

concentrations) in those areas, as shown in FIGURE 4-16. 

 

FIGURE 4-16: Visualization of vertex strains in the Combined hRBC model for the breaking links simulation.  

The colorbar on the right indicated the magnitude of the strains. 

Note how the shape of the cell for the breaking links simulation is qualitatively 

different than the shape of the cell in FIGURE 4-10.  This is due to the extremely 

high stretching force causing the nodes where the force is applied to accelerate 

outward before the rest of the nodes in the body can respond.  The connectivity of 
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the Combined hRBC model as a function of time is shown in FIGURE 4-17.  A 

slight decrease in connectivity can be observed. 

 

FIGURE 4-17: Plot of the connectivity of the Combined hRBC model as a function of time for the breaking 

links simulation. 

During this simulation, 841 spectrin links are permanently broken as a result of 

over extension (leaving only 81185 links in the model).  The broken links are a 

small fraction of the total number of links, so the in connectivity seems small in 

the plot in FIGURE 4-17.  The final connectivity of the Combined hRBC model at 

the end of this simulation of breaking links is still p = 5/6 (67608 associated 

links).  Since the MgATP concentration is at its steady-state value (which dictates 

that the connectivity of the network should be p = 5/6), this indicates that code is 

operating correctly. 
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4.4 Connectivity as a Function of MgATP Concentration 

 The dynamic evolution of the connectivity as a function of the MgATP 

concentration can be observed in simulations of the Combined hRBC model.  

FIGURE 4-18 illustrates the connectivity results from three separate simulations in 

which the MgATP concentration is artificially held fixed at a critical value for the 

duration of the simulation.  These simulations are analogous to step function 

inputs to mechanical simulations.  In all three simulations, the initial connectivity 

is p = 5/6. 

 

FIGURE 4-18: Plot of connectivity of Combined hRBC model as a function of time for three cases where the 

MgATP concentration is held fixed at critical values. 
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In the first simulation (blue line), the MgATP concentration is held fixed at 0 

mol/L.  The connectivity increases to a new steady-state value of p = 1 after 5e-6 

seconds.  In the second simulation (green line), the MgATP concentration is held 

fixed at 3.8e-3 mol/L.  The connective decreases to a new steady-state value of p 

= 2/3 by 5e-7 seconds.  This case corresponds to the rigidity percolation threshold 

of the model network.  In the third simulation (black line), the MgATP 

concentration is held fixed at 15.2e-3 [mol/L].  The connectivity decreases to a 

new steady-state value of p = 1/3.  This case corresponds to the connectivity 

percolation threshold of the model network.  All three steady-state results from 

the simulations agree with the values predicted by EQUATION 3.42 (shown in 

FIGURE 3-7). 

 The connectivity as a function of time curve is not smooth in the first 

simulation because the links are reassociating at discrete points in time, according 

to when their individual wait time counters reach zero.  Note that in the second 

two simulations (where the MgATP is increased from its physiological), the new 

steady-state connectivities were achieved earlier than in the first simulation 

(where the MgATP concentration was decreased from its physiological value).  

This also relates back to the wait time counters restricting the reassociation of the 

spectrin links. 
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4.5 Discussion and Analysis of hRBC Model 

4.5.1 Mechanical Behavior 

 The Combined hRBC model was tested in stretching simulations and was 

found to be stable under applied forces as large as 200 piconewtons.  This value 

appears to be the largest values used by Fedosov et al. in stretching simulations of 

the CG-hRBC model [44].  Stability of the model under similar conditions is the 

first indication that the mechanical portion of the Combined hRBC model 

(adopted from the CG-hRBC model) can be used to model deformations of the 

hRBC.  Additional simulations are required to compare the behaviors between the 

two models.  Adjustment to the parameters in the Combined hRBC model may be 

required to ensure that experimentally observed behaviors can be reproduced 

during simulations. 

 The response of the hRBC model observed under loading (SECTION 4.1) 

can be attributed to the force field used to model the hRBC.  Since the WLC-

POW-LJ force-extension relationship is linear about the equilibrium length of 

spectrin extension and the other terms in the force field are harmonic potentials 

(which means that the forces obtained from these potentials are linear about their 

equilibrium values), a linear response to infinitesimal strains is expected.  The 

observed strain-stiffening behavior of the hRBC model under finite strains can be 

attributed to the stiffening of the WLC-POW-LJ force-extension relationship 

when the extensions are sufficiently larger than the equilibrium length of spectrin 

extension.  The strain-softening behavior of the hRBC model under finite strains 

can be attributed to the transition in the WLC-POW-LJ force-extension 
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relationship from the WLC-POW portion to the POW-LJ portion.  The force 

resulting from increasing extension 

 The use of the modified version of the in-plane force expression 

(EQUATION 3.22) may result in the observation of “plastic” behavior under large 

deformations of the network.  This can again be attributed to the use of the WLC-

POW-LJ force-extension relationship, since the restoring force in the individual 

link will start to decrease after the link has been stretched beyond a certain 

extension.  This effect on a global scale (network-scale) corresponds to a type of 

“yielding” of the spring network. 

 The strain-stiffening behavior of the hRBC observed in experiments [124] 

is the opposite of the expected behavior of the Combined hRBC model.  From the 

arguments presented earlier, under increasing shear strain conditions one would 

expect to observe some type of strain-softening behavior, where the hRBC 

becomes more compliant in order to better fit through the narrow capillaries.  This 

seemingly paradoxical behavior, however, can be explained by examining the 

nanomechanics of the hRBC cytoskeleton.  At large bulk deformations of the 

hRBC, both the individual links and the network as a whole are significantly 

deformed from their equilibrium/reference configurations.  The force-extension 

response of the individual links is known to be highly nonlinear [56], so as the 

network is deformed one would expect to observe some degree of strain-stiffening 

resulting from the links themselves.  In addition, the geometry of the network will 

be altered from its regular, triangular reference configuration.  Under 

deformation, the links of the network will be more aligned with the direction of 
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the applied force, which would also result in observed strain-stiffening behavior.  

Note that this strain-stiffening behavior is strictly in the direction of the applied 

force.  The behavior in other directions may vary differently due to the anisotropic 

nature of the network. 

 An interesting, stretching rate-dependent behavior may be observed in 

simulations.  As stated above, large forces applied to the hRBC can cause the 

spectrin links to break, while small forces will not.  If the hRBC is deformed 

sufficiently quickly, but with a force whose magnitude is not great enough to 

immediately break links outright, a special case of completely reversible finite 

deformation may be observed.  When the force is applied to the hRBC and it 

begins deforming, the process of selecting links to dissociate is shifted in favor of 

the more stretched links.  When links are dissociated, the restoring force (between 

the actin nodes they were previous connected to) is reduced and the separation 

distance between the nodes can increase more easily.  If the stretching rate is 

sufficiently large, the separation distance between actin nodes may increase to a 

value greater than the contour length of the spectrin filament before the wait time 

on the reassociation of the spectrin link is up.  In this case, separation distances 

between actin nodes greater than the contour length are achieved without 

permanent breaking of the spectrin link.  This may allow the hRBC to undergo the 

large deformations observed in circulation and return to its equilibrium, biconcave 

discoid shape when the forces causing the deformation are removed.  This is 

speculation about the behavior of the hRBC model, however.  Whether or not this 

corresponds to behavior of the actual hRBC is unknown. 
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 More stretching simulations of the Combined hRBC model are required to 

fully evaluate the behavior of the model.  These stretching simulations should 

calculate the elongation index for the hRBC model with two different sets of 

parameters.  The first simulation should use the set of parameters from the 

original CG-hRBC model (with no metabolic simulation).  The second simulation 

should use the set of parameters from the Combined hRBC model (with metabolic 

simulation).  Stretching simulations performed using the Combined hRBC model 

(with its metabolism at steady-state, so that the connectivity of the network is p = 

5/6) should have the same results as the same simulations performed on the CG-

hRBC model.  This test could be used to evaluate if the MFT assumptions made 

about the shear modulus being a function of the connectivity is valid (and whether 

the equations used to relate the shear modulus to the connectivity are accurate). 

 Although the WLC-POW-LJ force-extension relationship is continuous, 

the use of the Heaviside function in the functional form of the relationship to 

switch between the WLC-POW portion and the POW-LJ portion causes 

discontinuities in the integral and derivative of the relationship at the switching 

point.  With proper matching of integration constants, the integral (energy-

extension relationship) can be made continuous, but the derivative (stiffness-

extension relationship) cannot be made continuous.  This undesirable 

discontinuity could be eliminated if a continuous approximation of the Heaviside 

function were used (such as modified logistic function). 
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4.5.2 Metabolic Behavior 

 Using the provided initial conditions [15], the metabolic model was able to 

reach steady-state within 100,000 seconds of simulation time.  Some adjustments 

to the parameters in the model were required after the dissociation and 

reassociation reactions for the spectrin links were added to the MMwM model in 

order to ensure that the proper steady-state connectivity was achieved.  Further 

adjustments to the metabolic parameters may be required to ensure that the 

metabolite concentrations are accurately reproduced during simulations. 

 An analysis of the connectivity of the Combined hRBC model as a 

function of the glucose concentration was also performed.  In this analysis, a 

series of simulations were performed using different values for the glucose 

concentration (fixed value).  Each simulation was run until the metabolism 

reaches steady-state.  The results from this analysis are plotted in FIGURE 4-19.  

From these results, it can be determined that the connectivity of the Combined 

hRBC model is unaffected by increases in the glucose concentration to 

concentrations greater than its physiological concentration (5e-3 mol/L).  The 

connectivity is also relatively insensitive to changes to the glucose concentration 

around its physiological concentration.  A decrease in the glucose concentration 

from 5e-3 mol/L to 5e-5 mol/L results in a connectivity change from 0.83 to 

~0.84.  The connectivity is highly sensitive, however, to changes in glucose 

concentration when the glucose concentration is ~10% of its physiological value.  

A decrease in the glucose concentration from 5e-4 mol/L to 1e-4 mol/L results in 

a connectivity change from ~0.84 to ~0.98. 
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FIGURE 4-19: Plot of connectivity of Combined hRBC model as a function of glucose concentration on a 

semilog plot. 

The insensitivity of the connectivity to increases in the glucose concentration is 

most likely due to limitations in the maximum rates of some of the reactions in 

the metabolism, since the MgATP concentration does not increase with the 

glucose concentration in these cases. 
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4.5.3 Mechanical-Metabolic Behavior 

 A state of dynamic equilibrium can be observed when the hRBC is at rest 

in its reference configuration and the metabolism is at steady-state.  In this state, 

the connectivity of the Combined hRBC model remains constant at p = 5/6.  

Dissociations and reassociations of spectrin links are occurring every time step, 

but in equal amounts.  This indicates that the coupling between the two models is 

working correctly.  However, the observed equilibrium state is the result of 

several assumptions that were required in the derivation process due to the lack of 

experimental data on the dynamic dissociation-reassociation of the hRBC 

cytoskeleton.  Experiments on the hRBC, specifically on the interaction between 

the metabolism and the cytoskeleton, would help to validate these assumptions. 

4.5.4 Stress-Free Condition 

 It was originally thought that the use of the stress-free condition may be 

necessary if the observed shape memory behavior of the actual hRBC [125] was 

to be reproduced in simulations.  In the stress-free condition, each spectrin link in 

the model has unique parameters, chosen to eliminate stress concentration in the 

cytoskeletal network resulting from an imperfect triangulation [80].  A network 

consisting of unique springs is thought to have a single reference configuration, 

which means that hRBC models may be able to reproduce the shape memory 

behavior.  The use of the stress-free condition [44] in the Combined hRBC model, 

where, active dissociation and reassociation of links are taking place during 

simulations, may not be feasible for two reasons. 
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 First, from a theoretical standpoint, the active dissociation and 

reassociation of the links can have a similar purpose as enforcing the stress-free 

condition, which is to help eliminate stress concentrations in the computational 

membrane that result from an imperfect triangulation.  The active dissociation and 

reassociation of links is weighted towards eliminating tensile stress concentrations 

in the membrane, resulting from individual links that are extended a distance 

greater than their equilibrium lengths, while the stress-free condition eliminates 

both tensile and compressive concentrations by rescaling the equilibrium lengths 

of individual links until no stress concentrations exist anywhere in the membrane 

(computational annealing).  Second, from a computational standpoint, it would be 

difficult to enforce the stress-free condition because the active dissociation and 

reassociation of links is a dynamic process and link lengths are constantly 

changing, even when the model hRBC is at a potential energy minimum.  The 

shape memory behavior may be able to reproduce through other means, as 

discussed in SUBSECTION 5.2.1. 
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4.5.5 Mass Scaling Discrepancy 

 The simulations performed Fedosov et al. [44, 93, 94] scale the CG-hRBC 

model so that the simulation form has non-dimensional units.  Some of the 

parameters Fedosov et al. provide are only in the non-dimensional form. For these 

parameters to be used in simulations in this thesis, they needed to be converted 

back into their dimensional form using the dimensional scaling relations provided 

by Fedosov et al.  One of the parameters presented without a dimensional 

equivalent is the nodal mass (mass of the hRBC per node) of the CG-hRBC.  

Fedosov et al. assume that the non-dimensional mass is equal to 1.  This 

assumption, however, is four to five orders of magnitude greater than the actual 

nodal mass.  The mass scaling discrepancy results are tabulated in TABLE 4-2. 

Results from Mass Scaling Discrepancy Analysis 

 Non-dimensional Dimensional 

CG-hRBC 

Model 

Total Mass: 27344 
2.34e-9 [kg] 

1.71e-8 [kg] 

Nodal Mass: 1 
8.56e-14 [kg/node] 

6.24e-13 [kg/node] 

Combined 

hRBC 

Model 

Total Mass: 
1.25 

1.07e-13 [kg] 
0.17 

Nodal Mass: 
4.59e-5 

3.93e-18 [kg/node] 
6.30e-6 

TABLE 4-2: Results from mass scaling discrepancy analysis.  hRBC density was taken to be ρrbc = 1.15ρwater. 

An error in the mass would not affect the results from static stretching test, but 

would result in errors in dynamic tests (or any time-dependent test).  An error of 

this magnitude may cause the simulation to be unstable under any conditions. 
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4.5.6 Dissipative Forces Error 

 It is the belief of this author that the use of the fluid particle model [98] is 

invalid at the length scales of interest for hRBC modeling.  The fluid particle 

model is a generalization of dissipative particle dynamics (DPD) [97].  It attempts 

to balance the dissipative and random (due to thermal fluctuations) forces acting 

on a particle suspended in a fluid according to the fluctuation-dissipation theorem.  

The fluid particle model is used in simulations of the CG-hRBC model to account 

for the viscosity of the cell membrane, cytoplasm, and blood plasma by applying 

dissipative forces (functions of nodal velocities) and random forces to the nodes 

in the model. 

 When the dissipative forces derived from the fluid particle model were 

applied to the nodes of the Combined hRBC model in simulations, an extremely 

small time step length (on the order of 1 femtosecond) was required to mitigate 

the instabilities that were introduced.  Specifically, the magnitudes of the 

dissipative forces were several orders of magnitude greater than the magnitudes of 

the conservative forces.  This resulted in the dissipative forces dominating the 

simulations.  This in turn resulted in the simulations diverging and failing to 

complete due to errors in the in the calculations of the conservative force 

expressions (due to the fact that the nodes of the hRBC were now many meters 

apart). 

 This instability introduced by the dissipative forces may be due, in part, to 

the usage of the incorrect mass in the CG-hRBC model (SUBSECTION 4.5.5).  

When the new dissipative force expressions are used (SUBSECTION 3.2.3), a more 
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reasonable time step length (as large as 25 nanoseconds) can be used without 

causing the simulation to diverge.  It is important to note that the use of 

dissipative force in purely stretching simulations is unnecessary, since only the 

final configuration of the model is of interest.   

 Despite the reformulation of the viscous contribution from the membrane 

to the behavior of the hRBC (EQUATION 3.29 and EQUATION 3.30), 

unrealistically large dissipative forces may still be obtained during simulations.  

The nature of this error is currently unknown (since the dissipative force is based 

off of the measured viscosity of the hRBC membrane), but the effect can be 

negated somewhat in order to prevent the simulations from diverging.  After the 

calculation of the dissipative forces for each node, the magnitude of the 

dissipative force for each node is calculated and compared to the magnitude of the 

conservative force acting on that node (total conservative force, include 

contributions from in-plane, local area, global area, bending, and volume).  If the 

magnitude of the dissipative force acting on a particular node is greater than the 

magnitude of the conservative force acting on that node, the magnitude of the 

conservative force is scaled back so that it is equal to the magnitude of the 

conservative force.  This method, while not perfect, maintains the directionality of 

the dissipative force.  Improvement upon the modeling of the viscoelasticity of 

the hRBC would be a huge step forward in terms of the accuracy of the Combined 

hRBC model, as discussed in SUBSECTION 5.2.1. 
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4.6 Computational Efficiency Results 

 Computational analysis of the code used to simulate the Combined hRBC 

was initially not a research objective, but it became apparent very quickly that 

computational efficiency was going to be a major concern if simulation results 

were to be obtained in a reasonable time period.  The wall time for a single time 

step in early versions of the mechanical model simulation code (performing 

potential energy minimizations mechanical only) was on the order of 5 to 10 

seconds. 

 This computational inefficiency was also observed in simulations of the 

metabolism.  Early versions of the metabolic model simulation code used a simple 

Euler method to numerically integrate the system of equations.  The wall time per 

time step was small (only ~6 microseconds per time step), but an enormous 

number of time steps were necessary to reach steady-state because a small time 

step length was required (20 nanoseconds of simulation time per step).  Using 

100,000 seconds of simulation time (which is an order of magnitude less than the 

simulation time suggested in by the authors in [15]) as the condition to ensure that 

steady-state is reached requires 5e12 time steps, which equates to 30,000,000 

seconds (~347 days) of wall time. 

 Most of the non-built-in functions used in this thesis are coded as MEX-

files (MATLAB® Executable-file).  These functions were originally coded as 

MATLAB® function files, and then converted to MEX-files using the 

MATLAB® Coder.  The conversion of the functions to MEX-files resulted in 

significant gains in computation speed. 
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 After optimization, the wall time for a single time step in a simulation is 

~0.2 seconds.  In general, the simulations performed as part of this thesis ranged 

from 1e5 to 1e6 time steps, resulting in a simulation wall time between ~5.8 and 

~55.5 hours. 

 All simulations were performed locally on an Intel® Core ™ i5-2400 CPU 

operating at 3.10 GHz with 4.00 GB of RAM running MATLAB® 2012a. 
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Chapter 5: Conclusions and Future Outlook 

5.1 Intellectual Contributions, Anticipated Benefits, and 

Progress on Research Objectives 

 A Combined hRBC model was created.  This model mode integrates the 

MMwM model of the hRBC metabolism into the CG-hRBC model of the 

mechanical behavior of the hRBC and couples them thought the connectivity of 

the cytoskeleton.  Originally, a slightly different model of the hRBC was 

envisioned as the goal for this thesis.  This model, while still a combined 

mechanical-metabolic model, would also account for the effects of physically 

loading the hRBC (such as in blood flow) on the metabolism.  The idea was that 

the cell would operate as a pseudo-control system with biochemical feedback.  

This idea represents a baseline for a complete model of the hRBC.  Possible 

methods for the creation of such a model are discussed in SUBSECTION 5.2.2. 

 A simulation environment for the Combined hRBC model was also 

created in MATLAB®.  This environment is described in detail in the body of the 

thesis, and the relevant code files are included in APPENDIX A.1 of this thesis. 

 It will take some time after this thesis is published for its impact on the 

interest in modeling and simulation of the hRBC to be determined.  To the best 

knowledge of the author, the Combined hRBC model presented in this thesis 

represents the only coarse-grained MD model of a hRBC with a cytoskeleton that 

has dynamic connectivity, controlled through a concurrent simulation of the 

hRBC metabolism. 
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5.2 Potential Future Work 

 There are a multitude of directions future work could take that would build 

upon the work performed as part of this thesis.  A number of possible future 

projects have been grouped according to similar end goal, and are described in 

some detail in the following subsections. 

5.2.1 Accuracy of Model 

 The primary goal of this thesis was to improve the accuracy of current 

hRBC models with respect to reproducing the behavior of an actual hRBC.  There 

are numerous areas where the accuracy of the current model can be improved.  In 

general, the greatest improvements in the accuracy of the Combined hRBC model 

would be gained through additional experimentation upon the cell.  This would 

provide more accurate information regarding the response of the hRBC under a 

variety of conditions, which could then be used to update the parameters in the 

model. 

 In addition to updating the parameters themselves, incorporating more 

accurate expressions for the interaction potentials in the force field will improve 

simulation accuracy.  The in-plane, two body interaction between topologically 

connected nodes (the WLC-POW force-extension relationship) is relatively 

accurate, since the expression for attraction is was obtained from force-extension 

tests of individual polymers [56].  Unfortunately, the WLC model cannot fully 

reproduce all the behaviors of spectrin as a polymer chain.  One of the 

assumptions made in the derivation of the WLC model is that the polymer chain is 

structure-less.  Stretching experiments on single spectrin chains, however, 
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produce results with complex behaviors that are not possible if the spectrin chain 

is structure-less [31].  The most significant of these is the observed folding-

unfolding behavior of spectrin [126].  More accurate models of the force-

extension response of the spectrin chain could be determined from stretching 

experiments on single chains, alternative models [99, 100] and/or simulations of 

individual chains [127, 128]. 

 The POW term in the WLC-POW force-extension relationship is intended 

to account for all repulsive effects between actin nodes connected by spectrin 

links.  This includes steric repulsion between the actin nodes, the repulsion 

experienced from severely bending a section of a relatively stiff polymer, and the 

repulsion experienced from severely bending a local portion of the cell 

membrane.  The form of the POW term is too simple to account for the complex 

nature of the interactions between actin nodes connected by spectrin links that 

result in the observed repulsive force.  In addition, it does not account for 

interactions between actin nodes not connected by spectrin links, which should 

also experience repulsion (from the same sources as connected actin nodes, 

although to less of a degree).  By treating the lipid bilayer as a bend elastic 

cylindrical shell, Li et al. [101] were able to incorporate a repulsive force between 

connected actin nodes that had a physical basis in the bending of the lipid bilayer. 

 The bending of the lipid bilayer is already incorporated into the force field 

of the Combined hRBC model.  However, the bending term in the force field 

accounts for four body interactions between the nodes in neighboring elements, 

not two body interactions between actin nodes connected by spectrin links.  The 
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discrepancy between the effects of the two body interactions and the four body 

interactions decreases as the number of nodes in the Combined hRBC model 

increases, but it still needs to be considered in the interest of completeness.  

Replacing the POW term in the WLC-POW force-extension relationship with a 

repulsive force term based upon the bending of the lipid bilayer may improve the 

accuracy of the Combined hRBC model. 

 The use of the LJ force-extension relationship in the expression for the in-

plane forces in the force field allows for dynamic dissociation and reassociation of 

the links as a function of the stretching of the link.  As detailed in SUBSECTION 

3.2.3, this modification was inspired by the cytoskeletal dynamics model 

proposed by Li et al. [101].  Since the spectrin chain is not explicitly modeled in 

the Combined hRBC model, the exact approach used in the cytoskeletal dynamics 

model would not work.  Instead, the LJ force-extension relationship is integrated 

into the WLC-POW force-extension relationship, forming the WLC-POW-LJ 

force-extension relationship.  The LJ force-extension relationship was selected 

because, in addition to being used in the cytoskeletal dynamics model, the force 

response goes to zero for large extensions, thereby allow for the dissociations to 

occur.  In addition, the link automatically reassociates when the two actin nodes 

come within a threshold distance of one another. 

 The LJ is commonly used in atomistic MD simulations, since the term 

raised to the 6th power directly relates to the van der Waals forces.  The scale of 

the hRBC model is much greater, so the LJ may not accurately account for the 

behavior of the spectrin chains at large extensions.  Other force-extension 
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relationships that exhibit the same qualitative behavior as the LJ may actually 

provide more accurate behavior when incorporated into the WLC-POW force-

extension expression. 

 The other expressions for interaction potentials (the area, volume, and 

bending) are simple harmonic approximations.  They may be adequate for small 

deformations of the hRBC, but not for the large deformation the hRBC 

experiences every cycle through the body.  A more accurate term for the area 

conservation could be explicitly based on the microscopic “conservation” of area 

of a lipid bilayer due to the hydrophobic nature of the lipid tails.  A more accurate 

term for the volume conservation could be explicitly based on the ion exchange 

across the cell membrane (and the resulting osmosis) [129].  In addition, the 

parameters for the area and volume conservation were chosen rather arbitrarily 

with the only constraint being that their magnitude had to be large enough to 

ensure the area “incompressibility” and volume incompressibility of the 

membrane and the hRBC as a whole, respectively.  More accurate physical 

parameters would result in a more accurate model.  The derivation of the bending 

interaction potential in [44] assumed that the hRBC was a sphere.  A more 

accurate term for the bending interaction potential could take the actual biconcave 

disc morphology of the hRBC into account.  This formulation of the bending term 

may result in a bending interaction potential that varies with location on the 

hRBC surface, which may help to ensure that the hRBC model exhibits the 

observed shape memory behavior [125]. 
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 The Combined hRBC model is unable to reproduce the vast morphologies 

of the cell that are observed in experiments [19].  However, mathematical 

expressions for a subset of hRBC shapes exist [130].  These shapes include the 

stomatocyte and the echinocyte.  The use of these expressions in the derivation of 

the hRBC model may allow for simulations to produce hRBCs with these shapes. 

 Incorporating a more biologically accurate model for the spectrin-actin 

junction complex will improve simulation accuracy.  The current model treats the 

actin node as a point mass, when in fact it is a short, semi-cylindrical 

protofilament.  In addition, the spectrin links attach at multiple points along the 

length of the protofilament, resulting in the generation of moments and the 

rotation of the protofilament, which in turn could result in a non-spherically 

symmetric interaction between topologically connected nodes [131, 132, 133, 

134, 135].  A revision of the model for the spectrin-actin junction complex may 

also have an effect on the chemical reactions used to model the dissociation and 

reassociation of the spectrin links from the actin nodes.  A simple, two-state 

model is currently implemented in the metabolism.  The structure of the junction 

complex contains more than just two components (see FIGURE 2-4).  There is 

evidence that a different protein (protein 4.1) is actually the subject of the 

phosphorylation/dephosphorylation reactions that are responsible for the 

dissociation/reassociation of the spectrin links [136, 137].  Better equations in the 

metabolic model for the dissociation/reassociation reactions would help 

significantly in the reproduction of the actual hRBC behaviors [138, 139]. 



149 

 

 The method of transforming the number of links to a concentration is 

rather ad hoc.  The total volume of the hRBC is used, when the cytoskeleton 

actually only resides on the inner surface of the membrane.  This transformation 

method was employed out of necessity, and its form was chosen purely for its 

simplicity.  A more accurate method could employ an effective volume that better 

represents the actual volume occupied by the cytoskeleton of the hRBC.   

 Currently, the reaction rates for the dissociation and reassociation of the 

spectrin links in the Combined hRBC model are constant.  Reaction rates for 

proteins (and in general), however, are functions of external forces acting on the 

participants [31].  A more accurate model could use reaction rates that are 

functions of the force and/or extension of a specific link [140, 141, 142]. 

The modified reaction rates could be a function of the average extension of the 

spectrin links in the model and/or a function of the average force exerted by the 

spectrin links.  In this case, all the spectrin link would be subject to the same 

reaction rate.  Alternatively, the reaction rate for a specific spectrin link could be a 

function of the extension of that link and/or the force exerted by that link alone.  

In this case, each spectrin link would potentially experience a different reaction 

rate.  The first case would be simpler to implement, since the MMwM model 

assumes a continuum nature to the reactions.  The second case would be much 

more difficult to implement.  It may be impossible to incorporate dissociation-

reassociation reactions of the spectrin links into the metabolic model, as was done 

in the Combined hRBC model. 
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 Currently, the viscous effects due to the hRBC membrane, the cytoplasm, 

and the blood plasma are accounted for in the Combined hRBC model through the 

use of EQUATION 3.29 and EQUATION 3.30.  While these equations represent an 

improvement over the previous models for viscous effects, there is still room for 

improvement in the model.  Several attempts have been made by Lubarda et al. in 

an effort to account for the viscoelasticity of the hRBC through the use of a 

continuum model of a thin membrane [143, 144, 145].  This continuum approach 

is relevant to the modeling of the hRBC because a more complete viscoelastic 

model known as the standard linear solid (SLS) model is used.  The SLS model is 

able to reproduce stress relaxation behavior better than the Kelvin-Voigt model of 

viscoelasticity that is currently used in the Combined hRBC model.  A separate 

effort by Kloppel et al. uses a discrete, finite element approach to account for the 

nonlinear elastic and viscoelastic behaviors of the hRBC [146].  This discrete 

approach could be used to incorporate the continuum equations of viscoelasticity 

used by Lubarda et al. into the Combined hRBC model.  
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5.2.2 Comprehensiveness of Model 

 The primary objective of this thesis was to combine current models of the 

hRBC in order to create a more “complete” model that is able to reproduce of the 

observed hRBC behaviors.  Despite the contributions from this thesis, the 

Combined hRBC model is still unable to reproduce many of the observed hRBC 

behaviors.  A number of modifications to the Combined hRBC model would 

improve the “completeness” of this model. 

 Enhancements to the metabolic model used in the Combined hRBC model 

would provide a huge step towards being able to accurately reproduce the hRBC 

metabolism in simulations of the Combined hRBC model.  The MMwM model 

[15] has 56 metabolites and 53 reactions, but these are only a fraction of the 

metabolites and reactions found in the actual hRBC.  The true number is currently 

unknown, but other metabolic models with more metabolites and reactions exist.  

The iAB-RBC-283 model of the hRBC metabolism [147], for example, has 292 

intracellular reactions, 77 transporters, and 267 unique small metabolites.  

Unfortunately, the iAB-RBC-283 model does not include any information on the 

kinetics of the intracellular reactions, which means that only steady-state analysis 

of the hRBC metabolism can be performed using the iAB-RBC-283 model.  The 

addition of rate equations to the iAB-RBC-283 model, however, would make it a 

more complete model of hRBC metabolism.  The form of the rate equations could 

be determined through the use of available biochemical resources [148], and the 

parameters in the rate equations could be determined through additional 

experiments on the hRBC metabolism. 
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 The main function of the hRBC is the delivery of oxygen to tissues, but 

the Combined hRBC model does not include any provisions to account for that 

oxygen transport.  A more complete model should include the oxygenation and 

deoxygenation of the hemoglobin in the hRBC as part of the circulatory cycle. 

 Some simulations of the CG-hRBC model traveling through an artificial 

heart valve were performed by Hussein Ezzeldin as part of his thesis [1].  In these 

simulations, however, the hRBC model was treated as a point mass traveling 

along pathline obtained from independent computational fluid dynamics (CFD) 

simulations of the heart valves [149].  This treatment of the hRBC model prevents 

some of the more interesting dynamic behaviors of the hRBC (such as the 

tumbling to tank-treading transition [150]) from being observed in simulations.  

Simulations of a single hRBC model in blood flow [151] would provide some 

insight into these behaviors.  These simulations could be elaborated upon to better 

include the actual characteristics of blood flow in the human body, such as its 

pulsatile nature.  Full simulations of multiple discrete hRBC models in blood flow 

have yet to be performed.  It still may be a number of years before these 

simulations can be performed due to computational limitations, but they would 

provide the most accurate and compete representation of blood flow in the human 

body. 

 As mentioned in SECTION 5.1, one of the initial goals of this thesis was to 

include the mechanosensitivity of the actual hRBC in the Combined hRBC model.  

Unfortunately, at the time of this thesis, not enough is known about the 

mechanisms behind the observed mechanosensitivity for it to be incorporated in 
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the model at this time [152, 153].  The leading hypothesis is that the calcium 

concentration in the hRBC serves as a signaling mechanism [154, 155, 156, 157].  

It would be very interesting to see the effect that this mechanosensitivity would 

have on simulations of the Combined hRBC model, especially simulations of the 

model in under the conditions experienced in blood flow. 
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5.2.3 Computational Improvements 

 A considerable amount of effort was expended to increase the speed of the 

hRBC simulations.  Initial versions of the code were too slow to allow the 

simulation to run to a point where conclusion could be drawn about the results.  

That being said, there are still multiple areas of the simulation where significant 

improvements in simulation speed can be gained. 

 Restructuring code architecture to run in parallel to improve computation 

speed. 

 Conversion of code to another language (e.g. C, C++, Fortran) that would 

provide better computation speed. 

 Usage of a better numerical integration algorithm to obtain the solution of 

the equations of motion.  The Velocity Verlet algorithm was used for 

numerical integration of the equations of motion because it offers greater 

accuracy than the Euler method without any additional computational cost.  

Other numerical integration methods were not investigated in this thesis.  

It is possible that another method, although more computationally 

expensive, may allow for the use of a longer time step length, thereby 

resulting in faster simulations. 

 Usage of a variable time step that changes dynamically during simulation 

to decrease the total number of time steps required to complete a 

simulation 

 Conversion of the hRBC model to an even more coarse-grained version to 

decrease the number of degrees of freedom in the system and increase 
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simulation speed.  Even when it was highly coarse-grained (Nv = 250), the 

CG-hRBC model was still able to adequately reproduce an accurate and 

smooth hRBC shape description with correct mechanical deformation 

results [44].  The Combined hRBC model corresponds to the spectrin-

level model of the CG-hRBC (the number of degrees of freedom are not 

reduced through the systematic coarse-graining procedure used by 

Fedosov et al.).  In the spectrin-level model, each link in the model 

directly represents a spectrin link in the cytoskeleton of the hRBC.  This 

high level of detail was required because the links in the model are 

individually dissociated/reassociate as dictated by the mechanical-

metabolic connection described earlier.  If the hRBC model was 

systematically coarse-grained, additional provisions would need to be 

introduced in order to correct the mechanical-metabolic connection, since 

a link in the coarse-grained model no longer corresponds to a spectrin link 

in the actual hRBC. 

 Increasing the robustness of the code.  Currently, the evaluation of certain 

mathematical expressions in the code with particular values of simulation 

variables (e.g. zero, Inf, NaN) will result in errors that prevent the 

simulations from converging.  There are some error checks built into the 

code that check the values of specific variables each time step in order to 

determine if the values of those variable will cause an error when they are 

used by the simulation.  If an error check is tripped, the simulation is 

halted and the simulation data is saved.  This approach helps mitigate 
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some headaches that result from performing simulation, but it is in no way 

a complete solution to the problem.  In addition, the data that is saved is 

data from a simulation that is unstable and it may be unusable.  The error 

checks themselves only check the values of several variables.   There are 

other conditions that may cause a simulation to become unstable that are 

not accounted for by the currently implemented error checks.  There are 

also conditions that will not trip an error check, but still results in 

simulation data that is unusable.  There are also no provisions in the code 

to prevent invalid simulation parameters from being used, specifically too 

large of a time step.  Ideally, the simulation would be able to predict far 

enough ahead of time that the simulation is becoming unstable and make 

adjustments in order to keep the simulation stable.  The simulation would 

also be able to recognize when invalid simulation parameters are used. 
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Appendix 

A.1 Code Files 

 This appendix contains the code files used as part of the simulation 

environment.  The files are provided in alphabetical order.  The code files are 

distributed in the hope that they will be useful, but WITHOUT ANY 

WARRANTY; without even the implied warranty of MERCHANTABILITY or 

FITNESS FOR A PARTICULAR PURPOSE. 

 The code files associated with the distmeshsurface.m set of functions are 

the work of Professor Per-Olof Persson and Professor Gilbert Strang [81].  These 

code files are protected under the GNU GPL and are not included in this appendix 

to avoid license and copyright infringement.  At the time of this thesis, all the 

associated code files are available on Professor Per-Olof Persson’s web page: 

http://persson.berkeley.edu/distmesh/. 

 Additionally, the code files associated with the export_fig.m set of 

functions (that were used to produce many of the plots in this thesis) are the work 

of Oliver Woodford [158] and are not included in this this appendix to avoid 

license and copyright infringement.  At the time of this thesis, all the associated 

code files are available on the MATLAB® Central File Exchange: 

http://www.mathworks.com/matlabcentral/fileexchange/23629-exportfig 
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A.1.1 f_connectivity.m 

function [TRILinks,bending_pts] = f_connectivity(Links,Elements) %#codegen 

% 

% Generates TRILinks and bending_pts arrays using Links and Elements arrays as 

inputs 

% 

% Written by Hussein Ezzeldin 

% Reproduced in MATLAB by Stephen Oursler as a part of "A Proposed 

% Mechanical-Metabolic Model of the Human Red Blood Cell". 

% 

% CALLED BY: 

%   hRBC_Triangulation.m 

% 

% LOAD FILES: 

%   none 

% 

% INPUTS: 

%   Links: array of nodes that form links 

%   Elements: array of nodes that form elements 

% 

% OUTPUTS: 

%   TRILinks: array of neighboring elements 

%   bending_pts: array of nodes that form bending points 

% 

% GLOBAL VARIABLES: 

%   none 

% 

% SAVE FILES: 

%   none 

 

k = 1; 

nele = length(Elements); 

ns = 3*nele/2; 

TRILinks = zeros(length(Links),2); 

bending_pts = zeros(length(Links),4); 

 

    for i = 1:ns 

 

        kk = 1; 

 

        for j = 1:nele 

 

            if Links(i,1) == Elements(j,1) || Links(i,1) == Elements(j,2) || 

Links(i,1) == Elements(j,3) 

 

                if Links(i,2) == Elements(j,1) || Links(i,2) == Elements(j,2) || 

Links(i,2) == Elements(j,3) 

 

                    TRILinks(k,kk) = j; 
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                    if kk == 1 

 

                        for ii = 1:3 

 

                            if Elements(j,ii) ~= Links(i,1) && Elements(j,ii) ~= 

Links(i,2) 

 

                                bending_pts(i,1:3) = [Elements(j,ii) Links(i,:)]; 

 

                            end 

 

                        end 

 

                    elseif kk == 2 

 

                        for ii = 1:3 

 

                            if Elements(j,ii) ~= Links(i,1) && Elements(j,ii) ~= 

Links(i,2) 

 

                                bending_pts(i,4) = Elements(j,ii); 

 

                            end 

 

                        end 

 

                    end 

 

                    kk = kk + 1; 

 

                    if kk > 2 

 

                        break 

 

                    end 

 

                end 

 

            end 

 

        end 

 

        k = k + 1; 

 

    end 

 

end 
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A.1.2 f_cons_forces.m 

function [F_C,U1,U2,U3,LEN,Ak,AREA] = 

f_cons_forces(Links,Elements,bending_pts,r,CON) %#codegen 

% 

% Calculates conservative forces acting on nodes in the Combined hRBC model 

% 

% Produced in MATLAB by Stephen Oursler as a part of "A Proposed 

% Mechanical-Metabolic Model of the Human Red Blood Cell". 

% 

% CALLED BY: 

%   hRBC_Stretching_Simulation.m 

% 

% LOAD FILES: 

%   none 

% 

% INPUTS: 

%   Links: array of nodes that form links 

%   Elements: array of nodes that form elements 

%   bending_pts: array of nodes that form bending points 

%   r: array of node locations 

%   CON: vector of connectivity of links 

% 

% OUTPUTS: 

%   F_C: array of conservative forces acting on nodes 

%   U1: current link potential energy 

%   U2: current bending potential energy 

%   U3: current local area potential energy 

%   LEN: vector of link lengths 

%   Ak: vector of areas of individual elements 

%   AREA: global area 

% 

% GLOBAL VARIABLES: 

%   A0: equilibrium local area 

%   A0t: equilibrium global area 

%   adjx: effective length in LJ 

%   Eng: association energy of spectrin-actin bond 

%   kB: Boltzmann constant 

%   ka: global area constraint 

%   kb: bending constraint 

%   kd: local area constraint 

%   kp: POW constraint 

%   kv: volume constraint 

%   Lm: contour length of links 

%   Lp: persistence length of links 

%   m: exponent in POW 

%   Ns: number of links 

%   Nt: number of elements 

%   Nv: number of nodes 

%   sig: characteristic interaction length scale 

%   T: temperature 
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%   theta0: equilibrium bending angle 

%   V0t: equilibrium volume 

%   VOLUME: actual volume 

%   xcut: location of maximum attractive force in LJ 

% 

% SAVE FILES: 

%   none 

 

% Declare Global Variables and Initialize Terms: 

global A0 A0t adjx Eng kB ka kb kd kp kv Lm Lp m Ns Nt Nv sig T theta0 V0t VOLUME 

xcut 

 

f_links = zeros(Nv,3); % initialize in-plane force array [N] 

f_area_loc = zeros(Nv,3); % initialize local area force array [N] 

f_area_g = zeros(Nv,3); % initialize global area force array [N] 

f_volume = zeros(Nv,3); % initialize volume force array [N] 

f_bending = zeros(Nv,3); % initialize bending force array [N] 

F_C = zeros(Nv,3); %#ok<NASGU> % initialize total force array [N] 

 

LEN = zeros(Ns,1); % initialize link length vector [m] 

Ak = zeros(Nt,1); % initialize element-wise area vector [m^2] 

Vk = zeros(Nt,1); % initialize element-wise volume vector [m^3] 

 

U1 = 0; % initialize links energy term [J] 

U2 = 0; % initialize bending energy term [J] 

U3 = 0; % initialize local area energy term [J] 

 

    % Calculate In-Plane and Bending Forces and Energies: 

    for i = 1:1:Ns 

 

        % In-Plane (2-point interaction): 

        a1 = Links(i,1); % index of node 1 [unitless] 

        b1 = Links(i,2); % index of node 2 [unitless] 

 

        x_a1 = r(a1,1); % x-coordinate of node 1 [m] 

        y_a1 = r(a1,2); % y-coordinate of node 1 [m] 

        z_a1 = r(a1,3); % z-coordinate of node 1 [m] 

        x_b1 = r(b1,1); % x-coordinate of node 2 [m] 

        y_b1 = r(b1,2); % y-coordinate of node 2 [m] 

        z_b1 = r(b1,3); % z-coordinate of node 2 [m] 

 

        r_21_1 = [(x_b1 - x_a1) (y_b1 - y_a1) (z_b1 - z_a1)]; % relative position 

vector (from node 1 to node 2) [m] 

        len = sqrt(r_21_1(1,1)*r_21_1(1,1) + r_21_1(1,2)*r_21_1(1,2) + 

r_21_1(1,3)*r_21_1(1,3)); % distance between node 1 and node 2 [m] 

        e_21_1 = r_21_1./len; % unit relative position vector (from node 1 to node 

2)  [m] 

        LEN(i,1) = len; % save length of current link [m] 

        xn = len/Lm; % normalized length of spring extension [unitless] 

 

        f_wlc_1 = (-kB*T/Lp)*(1/(4*(1 - xn)^2) - (1/4) + xn).*(-e_21_1); % WLC 

contribution to force on node 1 [N] 

        f_wlc_2 = -f_wlc_1; % WLC contribution to force on node 2 [N] 
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        f_pow_1 = (kp/(len^m)).*(-e_21_1); % POW contribution to force on node 1 

[N] 

        f_pow_2 = -f_pow_1; % POW contribution to force on node 2 [N] 

        f_lj_1 = 24*Eng*(2*(sig^12)/((len - adjx)^13) - (sig^6)/((len - 

adjx)^7)).*(-e_21_1); % LJ contribution to force on node 1 [N] 

        f_lj_2 = -f_lj_1; % LJ contribution to force on node 2 [N] 

 

        h1 = (xcut - len) >= 0; % logical Heaviside (extension less than cutoff; 

in WLC-POW reigme) [unitless] 

        h2 = (len - xcut) >= 0; % logical Heaviside (extension greater than 

cutoff; in POW-LJ reigme) [unitless] 

 

        f_links(a1,:) = f_pow_1 + f_wlc_1*h1*CON(i,1) + f_lj_1*h2*CON(i,1) + 

f_links(a1,:); % total in-plane force on node 1 [N] 

        f_links(b1,:) = f_pow_2 + f_wlc_2*h1*CON(i,1) + f_lj_2*h2*CON(i,1) + 

f_links(b1,:); % total in-plane force on node 2 [N] 

 

        U_wlc = (kB*T*Lm/(4*Lp))*((3*xn^2 - 2*xn^3)/(1 - xn)); % WLC contribution 

to in-plane potential energy [J] 

        U_pow = kp/((m - 1)*len^(m - 1)); % POW contribution to in-plane potential 

energy [J] 

        U_lj = 4*Eng*((sig/(len - adjx))^12 - (sig/(len - adjx))^6); % LJ 

contribution to in-plane potential energy [J] 

        U1 = U1 + U_wlc*h1*CON(i,1) + U_pow + U_lj*h2*CON(i,1); % total in-plane 

potential energy [J] 

 

     % Bending (4-point interaction): 

        a2 = bending_pts(i,1); % index of node 1 [unitless] 

        b2 = bending_pts(i,2); % index of node 2 [unitless] 

        c2 = bending_pts(i,3); % index of node 3 [unitless] 

        d2 = bending_pts(i,4); % index of node 4 [unitless] 

 

        x_a2 = r(a2,1); % x-coordinate of node 1 [m] 

        y_a2 = r(a2,2); % y-coordinate of node 1 [m] 

        z_a2 = r(a2,3); % z-coordinate of node 1 [m] 

        x_b2 = r(b2,1); % x-coordinate of node 2 [m] 

        y_b2 = r(b2,2); % y-coordinate of node 2 [m] 

        z_b2 = r(b2,3); % z-coordinate of node 2 [m] 

        x_c2 = r(c2,1); % x-coordinate of node 3 [m] 

        y_c2 = r(c2,2); % y-coordinate of node 3 [m] 

        z_c2 = r(c2,3); % z-coordinate of node 3 [m] 

        x_d2 = r(d2,1); % x-coordinate of node 4 [m] 

        y_d2 = r(d2,2); % y-coordinate of node 4 [m] 

        z_d2 = r(d2,3); % z-coordinate of node 4 [m] 

 

        r_21_2 = [(x_b2 - x_a2) (y_b2 - y_a2) (z_b2 - z_a2)]; % relative position 

vector (from node 1 to node 2) [m] 

        r_31_2 = [(x_c2 - x_a2) (y_c2 - y_a2) (z_c2 - z_a2)]; % relative position 

vector (from node 3 to node 1) [m] 

        r_34_2 = [(x_c2 - x_d2) (y_c2 - y_d2) (z_c2 - z_d2)]; % relative position 

vector (from node 3 to node 4) [m] 

        r_24_2 = [(x_b2 - x_d2) (y_b2 - y_d2) (z_b2 - z_d2)]; % relative position 

vector (from node 2 to node 4) [m] 
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        r_32_2 = [(x_c2 - x_b2) (y_c2 - y_b2) (z_c2 - z_b2)]; % relative position 

vector (from node 3 to node 2) [m] 

        r_13_2 = -r_31_2; % relative position vector (from node 1 to node 3) [m] 

        r_42_2 = -r_24_2; % relative position vector (from node 4 to node 2) [m] 

        r_23_2 = -r_32_2; % relative position vector (from node 2 to node 3) [m] 

 

        tc_1 = [(x_a2 + x_b2 + x_c2) (y_a2 + y_b2 + y_c2) (z_a2 + z_b2 + 

z_c2)]./3; % center of mass of element 1 [m] 

        tc_2 = [(x_b2 + x_c2 + x_d2) (y_b2 + y_c2 + y_d2) (z_b2 + z_c2 + 

z_d2)]./3; % center of mass of element 2 [m] 

 

        ksi_1 = vcross(r_21_2,r_31_2); % normal vector from surface of element 1 

        zeta_1 = vcross(r_34_2,r_24_2); % normal vector from surface of element 2 

 

        ksi_1_n = ksi_1(1,1)*ksi_1(1,1) + ksi_1(1,2)*ksi_1(1,2) + 

ksi_1(1,3)*ksi_1(1,3); 

        zeta_1_n = zeta_1(1,1)*zeta_1(1,1) + zeta_1(1,2)*zeta_1(1,2) + 

zeta_1(1,3)*zeta_1(1,3); 

        ksi_1_ns = sqrt(ksi_1_n); 

        zeta_1_ns = sqrt(zeta_1_n); 

 

        cosine = sum((ksi_1/ksi_1_ns).*(zeta_1/zeta_1_ns)); 

        check = sum((ksi_1 - zeta_1).*(tc_1 - tc_2)); 

 

        if cosine > 0.999999500000042 

 

            cosine = 0.999999500000042; 

 

        end 

 

        if check >= 0 

 

            sine = sqrt(1 - cosine^2); 

 

        else 

 

            sine = -sqrt(1 - cosine^2); 

 

        end 

 

        beta_bending = kb*(sine*cos(theta0) - cosine*sin(theta0))/sine; % bending 

force coefficient 

 

        b11 = -beta_bending*cosine/(ksi_1_n); 

        b12 = beta_bending/(ksi_1_ns*zeta_1_ns); 

        b22 = -beta_bending*cosine/(zeta_1_n); 

 

        f_bending_1 = b11.*vcross(ksi_1,r_32_2) + b12.*vcross(zeta_1,r_32_2); % 

bending force 1 [N] 

        f_bending_2 = b11.*vcross(ksi_1,r_13_2) + b12.*(vcross(ksi_1,r_34_2) + 

vcross(zeta_1,r_13_2)) + b22*vcross(zeta_1,r_34_2); % bending force 2 [N] 

        f_bending_3 = b11.*vcross(ksi_1,r_21_2) + b12.*(vcross(ksi_1,r_42_2) + 

vcross(zeta_1,r_21_2)) + b22*vcross(zeta_1,r_42_2); % bending force 3 [N] 
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        f_bending_4 = b12.*vcross(ksi_1,r_23_2) + b22.*vcross(zeta_1,r_23_2); % 

bending force 4 [N] 

 

        f_bending(a2,:) = f_bending_1 + f_bending(a2,:); % bending force on node 1 

[N] 

        f_bending(b2,:) = f_bending_2 + f_bending(b2,:); % bending force on node 2 

[N] 

        f_bending(c2,:) = f_bending_3 + f_bending(c2,:); % bending force on node 3 

[N] 

        f_bending(d2,:) = f_bending_4 + f_bending(d2,:); % bending force on node 4 

[N] 

 

        v_1 = cosine; % sum(ksi_1.*zeta_1)/(ksi_1_ns*zeta_1_ns); 

 

        if v_1 <= - 1 

 

            v_2 = -1; 

 

        elseif v_1 >= 1 

 

            v_2 = 1; 

 

        else 

 

            v_2 = v_1; 

 

        end 

 

        theta = acos(v_2); angle between elements [rad] 

        U2 = U2 + kb*(1 - cos(theta - theta0)); % total bending potential energy 

[J] 

 

    end 

 

    % Calculate Area and Volume: 

    for i = 1:1:Nt 

 

        a3 = Elements(i,1); % index of node 1 [unitless] 

        b3 = Elements(i,2); % index of node 2 [unitless] 

        c3 = Elements(i,3); % index of node 3 [unitless] 

 

        x_a3 = r(a3,1); % x-coordinate of node 1 [m] 

        y_a3 = r(a3,2); % y-coordinate of node 1 [m] 

        z_a3 = r(a3,3); % z-coordinate of node 1 [m] 

        x_b3 = r(b3,1); % x-coordinate of node 2 [m] 

        y_b3 = r(b3,2); % y-coordinate of node 2 [m] 

        z_b3 = r(b3,3); % z-coordinate of node 2 [m] 

        x_c3 = r(c3,1); % x-coordinate of node 3 [m] 

        y_c3 = r(c3,2); % y-coordinate of node 3 [m] 

        z_c3 = r(c3,3); % z-coordinate of node 3 [m] 

 

        r_13_3 = [(x_a3 - x_c3) (y_a3 - y_c3) (z_a3 - z_c3)]; % relative position 

vector (from node 1 to node 3) [m] 
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        r_21_3 = [(x_b3 - x_a3) (y_b3 - y_a3) (z_b3 - z_a3)]; % relative position 

vector (from node 2 to node 1) [m] 

        r_31_3 = -r_13_3; % relative position vector (from node 3 to node 1) [m] 

 

        tc_3 = [(x_a3 + x_b3 + x_c3) (y_a3 + y_b3 + y_c3) (z_a3 + z_b3 + z_c3)]/3; 

% location of center of mass of individual element [m] 

        ksi_2 = vcross(r_21_3,r_31_3); % vector normal to surface of element [m^2] 

        Ak(i,1) = sqrt(ksi_2(1,1)*ksi_2(1,1) + ksi_2(1,2)*ksi_2(1,2) + 

ksi_2(1,3)*ksi_2(1,3))/2; % area contribution of individual element [m^2] 

        Vk(i,1) = sum(ksi_2.*tc_3)/6; % volume contribution of individual element 

[m^3] 

 

    end 

 

    AREA = sum(Ak); % sum individual element area contributions to find total area 

[m^2] 

    VOLUME = sum(Vk);  % sum individual element volume contributions to find total 

volume [m^3] 

    beta_area = -ka*(AREA - A0t)/A0t; % coefficient in global area force 

calculation 

 

    % Calculate Local Area, Global Area and Volume Forces and Local Area Energies: 

    for i = 1:1:Nt 

 

        a3 = Elements(i,1); % index of node 1 [unitless] 

        b3 = Elements(i,2); % index of node 2 [unitless] 

        c3 = Elements(i,3); % index of node 3 [unitless] 

 

        x_a3 = r(a3,1); % x-coordinate of node 1 [m] 

        y_a3 = r(a3,2); % y-coordinate of node 1 [m] 

        z_a3 = r(a3,3); % z-coordinate of node 1 [m] 

        x_b3 = r(b3,1); % x-coordinate of node 2 [m] 

        y_b3 = r(b3,2); % y-coordinate of node 2 [m] 

        z_b3 = r(b3,3); % z-coordinate of node 2 [m] 

        x_c3 = r(c3,1); % x-coordinate of node 3 [m] 

        y_c3 = r(c3,2); % y-coordinate of node 3 [m] 

        z_c3 = r(c3,3); % z-coordinate of node 3 [m] 

 

        r_32_3 = [(x_c3 - x_b3) (y_c3 - y_b3) (z_c3 - z_b3)]; % relative position 

vector (from node 3 to node 2) [m] 

        r_13_3 = [(x_a3 - x_c3) (y_a3 - y_c3) (z_a3 - z_c3)]; % relative position 

vector (from node 1 to node 3) [m] 

        r_21_3 = [(x_b3 - x_a3) (y_b3 - y_a3) (z_b3 - z_a3)]; % relative position 

vector (from node 2 to node 1) [m] 

        r_31_3 = -r_13_3; % relative position vector (from node 3 to node 1) [m] 

 

        ksi_2 = vcross(r_21_3,r_31_3); % normal vector from surface of element 

[m^2] 

 

        % Local Area (3-point interactions): 

        alpha_area_loc = -kd*(Ak(i,1) - A0)/(4*A0*Ak(i,1)); % local area force 

coefficient 
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        f_area_loc_1 = alpha_area_loc.*vcross(ksi_2,r_32_3); % local area force 1 

[N] 

        f_area_loc_2 = alpha_area_loc.*vcross(ksi_2,r_13_3); % local area force 2 

[N] 

        f_area_loc_3 = alpha_area_loc.*vcross(ksi_2,r_21_3); % local area force 3 

[N] 

 

        f_area_loc(a3,:) = f_area_loc_1 + f_area_loc(a3,:); % local area force on 

node 1 [N] 

        f_area_loc(b3,:) = f_area_loc_2 + f_area_loc(b3,:); % local area force on 

node 2 [N] 

        f_area_loc(c3,:) = f_area_loc_3 + f_area_loc(c3,:); % local area force on 

node 3 [N] 

 

        U3 = U3 + kd*((Ak(i,1) - A0)^2)/(2*A0); % total local area energy 

potential energy [J] 

 

        % Global Area (3-point interactions): 

        alpha_area_g = beta_area/(4*Ak(i,1)); % global area force coefficient 

 

        f_area_g_1 = alpha_area_g.*vcross(ksi_2,r_32_3); % global area force 1 [N] 

        f_area_g_2 = alpha_area_g.*vcross(ksi_2,r_13_3); % global area force 2 [N] 

        f_area_g_3 = alpha_area_g.*vcross(ksi_2,r_21_3); % global area force 3 [N] 

 

        f_area_g(a3,:) = f_area_g_1 + f_area_g(a3,:); % global area force on node 

1 [N] 

        f_area_g(b3,:) = f_area_g_2 + f_area_g(b3,:); % global area force on node 

2 [N] 

        f_area_g(c3,:) = f_area_g_3 + f_area_g(c3,:); % global area force on node 

3 [N] 

 

        % Volume (3-point interactions): 

        beta_volume = -kv*(VOLUME - V0t)/V0t; % volume force coefficient 

        bv = beta_volume/6; 

        tc_3 = [(x_a3 + x_b3 + x_c3) (y_a3 + y_b3 + y_c3) (z_a3 + z_b3 + z_c3)]/3; 

% center of mass of element [m] 

 

        f_volume_1 = bv.*(ksi_2./3 + vcross(tc_3,r_32_3)); % volume force 1 [N] 

        f_volume_2 = bv.*(ksi_2./3 + vcross(tc_3,r_13_3)); % volume force 1 [N] 

        f_volume_3 = bv.*(ksi_2./3 + vcross(tc_3,r_21_3)); % volume force 1 [N] 

 

        f_volume(a3,:) = f_volume_1 + f_volume(a3,:); % volume force on node 1 [N] 

        f_volume(b3,:) = f_volume_2 + f_volume(b3,:); % volume force on node 2 [N] 

        f_volume(c3,:) = f_volume_3 + f_volume(c3,:); % volume force on node 3 [N] 

 

    end 

 

    F_C = f_links + f_area_g + f_area_loc + f_volume + f_bending; % total 

conservative force on all nodes [N] 

 

end 
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A.1.3 f_diss.m 

function [WT,CON,WEIGHTS] = f_diss(WT,CON,WEIGHTS,num_dis,nwt,V_links) %#codegen 

% 

% Dissociates links selected by datasample 

% 

% Produced in MATLAB by Stephen Oursler as a part of "A Proposed 

% Mechanical-Metabolic Model of the Human Red Blood Cell". 

% 

% CALLED BY: 

%   hRBC_Stretching_Simulation.m 

% 

% LOAD FILES: 

%   none 

% 

% INPUTS: 

%   WT: vector of wait time counters for dissociated links 

%   CON: vector of connectivity of links 

%   WEIGHTS: vector of selection weights of links 

%   num_dis: number of links to be dissociated 

%   nwt: maximum wait time 

%   V_links: vector of links selected by datasample 

% 

% OUTPUTS: 

%   WT: vector of wait time counters for dissociated links 

%   CON: vector of connectivity of links 

%   WEIGHTS: vector of selection weights of links 

% 

% GLOBAL VARIABLES: 

%   none 

% 

% SAVE FILES: 

%    none 

 

% Dissociate selected links and update wait time counters/weights 

    for i = 1:1:num_dis 

 

        WT(V_links(i,1),1) = nwt; % set number of time steps in wait time counters 

for selected link 

        CON(V_links(i,1),1) = 0; % set connectivity of selected link to 0 

        WEIGHTS(V_links(i,1),1) = 0; % set weight of selected link to 0 

 

    end 

 

end 
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A.1.4 f_diss_forces.m 

function F_D = f_diss_forces(Links,vel,F_C) %#codegen 

% 

% Calculates dissipative forces on nodes in the Combined hRBC model 

% 

% Produced in MATLAB by Stephen Oursler as a part of "A Proposed 

% Mechanical-Metabolic Model of the Human Red Blood Cell". 

% 

% CALLED BY: 

%   hRBC_Stretching_Simulation.m 

% 

% LOAD FILES: 

%   none 

% 

% INPUTS: 

%   Links: array of nodes that form links 

%   vel: array of node velocities 

%   F_C: array of conservative forces acting on nodes 

% 

% OUTPUTS: 

%   F_D: array of dissipative forces acting on nodes 

% 

% GLOBAL VARIABLES: 

%   ma: mass of an actin node 

%   Ns: number of links 

%   Nv: number of nodes 

%   ni: viscosity of cytoplasm 

%   nm: viscosity of cell membrane 

%   no: viscosity of blood plasma 

%   rho_a: density of an actin node 

% 

% SAVE FILES: 

%   none 

 

global ma Ns Nv ni nm no rho_a 

 

    F_D_r = zeros(Nv,3); % initialize relative dissipative force array 

    F_D_a = zeros(Nv,3); % initialize absolute dissipative force array 

 

    Cf = sqrt(no*ni); % combined fluid viscosity [N s/m^2] 

    radius = (3*ma/(4*pi*rho_a))^(1/3); % representative radius of actin protein 

[m] 

    Cm = 4*nm/sqrt(3); % membrane damping coefficient [N s/m] = 0.050806823688687 

 

    % Relative Dissipative Force Calculation (Membrane Damping): 

    for i = 1:1:Ns 

 

        a = Links(i,1); % index of node 1 [unitless] 

        b = Links(i,2); % index of node 2 [unitless] 
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        v_x_a = vel(a,1); % x-velocity of node 1 [m/s] 

        v_y_a = vel(a,2); % y-velocity of node 1 [m/s] 

        v_z_a = vel(a,3); % z-velocity of node 1 [m/s] 

        v_x_b = vel(b,1); % x-velocity of node 2 [m/s] 

        v_y_b = vel(b,2); % y-velocity of node 2 [m/s] 

        v_z_b = vel(b,3); % z-velocity of node 2 [m/s] 

 

        v_21 = [(v_x_b - v_x_a) (v_y_b - v_y_a) (v_z_b - v_z_a)]; % relative 

velocity vector (from node 1 to node 2) [m/s] 

 

        F_D_r(a,:) = F_D_r(a,:) + Cm*v_21; % relative dissipative force on node 1 

[N] 

        F_D_r(b,:) = F_D_r(b,:) - Cm*v_21; % relative dissipative force on node 2 

[N] 

 

    end 

 

    % Relative Dissipative Force Magnitude Check: 

    for i = 1:1:Nv 

 

        n_F_C = norm(F_C(i,:)); % norm of F_C 

        n_F_D_r = norm(F_D_r(i,:)); % norm of F_D_r 

 

        if n_F_D_r > n_F_C % if the magnitude of the dissipative force is greater 

than the magnitude of the conservative force 

 

            F_D_r(i,:) = F_D_r(i,:)*n_F_C/n_F_D_r; % then, set the dissipative 

force to the negative of the conservative force (so that acc = 0 [m/s^2]) 

 

        end 

 

    end 

 

 v_cm_x = mean(vel(:,1)); % x-velocity of center of mass [m/s] 

 v_cm_y = mean(vel(:,2)); % y-velocity of center of mass [m/s] 

 v_cm_z = mean(vel(:,3)); % z-velocity of center of mass [m/s] 

 v_cm = [v_cm_x v_cm_y v_cm_z]; % velocity of center of mass [m/s] 

 

    % Absolute Dissipative Force Calculation (Blood Plasma and Cytoplasm Damping): 

    for i = 1:1:Nv 

 

        F_D_a(i,:) = F_D_a(i,:) - 6*pi*Cf*radius*(v_cm - vel(i,:)); % absolute 

dissipative force [N] 

 

    end 

 

    F_D = F_D_r + F_D_a; % total dissipative force [N] 

 

end 
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A.1.5 f_ke.m 

function KE = f_ke(vel,MASS) %#codegen 

% 

% Calculates total kinetic energy of Combined hRBC model 

% 

% Produced in MATLAB by Stephen Oursler as a part of "A Proposed 

% Mechanical-Metabolic Model of the Human Red Blood Cell". 

% 

% CALLED BY: 

%   hRBC_Stretching_Simulation.m 

% 

% LOAD FILES: 

%   none 

% 

% INPUTS: 

%   vel: vector of wait time counters for dissociated links 

%   MASS: nodal mass 

% 

% OUTPUTS: 

%   KE: total kinetic energy 

% 

% GLOBAL VARIABLES: 

%   Nv: number of nodes 

% 

% SAVE FILES: 

%    none 

 

global Nv 

 

    TEMP_1 = zeros(Nv,1); 

 

    for i = 1:1:Nv 

 

        TEMP_1(i,1) = vel(i,1)*vel(i,1) + vel(i,2)*vel(i,2) + vel(i,3)*vel(i,3); % 

squared velocity of node [m^2/s^2] squared velocity of node [m^2/s^2] 

 

    end 

 

    KE = 0.5*MASS*sum(TEMP_1); % total kinetic energy [J] 

 

end 
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A.1.6 f_metabolism.m 

function dX = f_metabolism(~,X) %#codegen 

% 

% Calculates reaction rates of metabolism in Combined hRBC model 

% 

% Adapted From "Modelling Metabolism with Mathematica" 

% By Peter J. Mulquiney and Philip W. Kuchel 

% 

% Reproduced in MATLAB by Stephen Oursler as a part of "A Proposed 

% Mechanical-Metabolic Model of the Human Red Blood Cell". 

% 

% CALLED BY: 

%   hRBC_Stretching_Simulation.m 

% 

% LOAD FILES: 

%   none 

% 

% INPUTS: 

%   X: vector of metabolite concentration 

% 

% OUTPUTS: 

%   dX: vector of rates of change of metabolite concentrations 

% 

% GLOBALS VARIABLE: 

%   VOLUME: actual volume 

%   CONC_SA_max: maximum possible concentration of associated spectrin 

%       links 

% 

% SAVE FILES: 

%   none 

 

global VOLUME CONC_SA_max 

 

    dX = zeros(57,1); % initialize rate of change of metabolite concentrations 

vector 

 

    % Metabolism Parameters 

    VHK = 2.5e-8; 

    Kihkmgatp = 0.0010; 

    Kmhkmgatp = 0.0010; 

    Kihkglc = 4.7e-5; 

    Kihkglc6p = 4.7e-5; 

    Kihkmgadp = 0.0010; 

    Kmhkmgadp = 0.0010; 

    Kdihkbpg = 0.0040; 

    Kdihkglc16p2 = 3.0e-5; 

    Kdihkglc6p = 1.0e-5; 

    Kdihkgsh = 0.0030; 

    VGPI = 2.18e-7; 

    Kmgpiglc6p = 1.81e-4; 
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    Kmgpifru6p = 7.1e-5; 

    kcatfgpi = 1470.0; 

    kcatrgpi = 1760.0; 

    VPFK = 1.1e-7; 

    Kmpfkfru6p = 7.5e-5; 

    Kmpfkmgatp = 6.8e-5; 

    Kmpfkfru16p2 = 5.0e-4; 

    Kmpfkmgadp = 5.4e-4; 

    KTpfkatp = 1.0e-4; 

    KTpfkmg = 0.0040; 

    KTpfkb23pg = 0.0050; 

    KRpfkamp = 3.0e-4; 

    KRpfkphos = 0.03; 

    KRpfkglc16p2 = 0.01; 

    kcatfpfk = 822.0; 

    kcatrpfk = 36.0; 

    Kapfk = 8.91250938133746e-8; 

    npfk = 5.0; 

    VALD = 3.7e-7; 

    Kmaldfru16p2 = 7.1e-6; 

    Kialdfru16p2 = 1.98e-5; 

    Kmaldgrnp = 3.5e-5; 

    Kialdgrnp = 1.1e-5; 

    Kmaldgrap = 1.89e-4; 

    Kialdb23pg = 0.0015; 

    kcatfald = 68.0; 

    kcatrald = 234.0; 

    VTPI = 1.14e-6; 

    Kmtpigrap = 4.46e-4; 

    Kmtpigrnp = 1.624e-4; 

    kcatftpi = 14560.0; 

    kcatrtpi = 1280.0; 

    VGDH = 7.66e-6; 

    Kmgapdhnad = 4.5e-5; 

    Kigapdhnad = 4.5e-5; 

    Kmgapdhphos = 0.00316; 

    Kigapdhphos = 0.00316; 

    Kmgapdhgrap = 9.5e-5; 

    Kidgapdhgrap = 3.1e-5; 

    Kmgapdhb13pg = 6.71e-7; 

    Kidgapdhb13pg = 1.0e-6; 

    VPGK = 2.74e-6; 

    Kmpgkmgadp = 1.0e-4; 

    Kipgkmgadp = 8.0e-5; 

    Kmpgkb13pg = 2.0e-6; 

    Kipgkb13pg = 1.6e-6; 

    Kmpgkmgatp = 0.0010; 

    Kipgkmgatp = 1.86e-4; 

    Kmpgkp3ga = 0.0011; 

    Kipgkp3ga = 2.05e-4; 

    kcatfpgk = 2290.0; 

    kcatrpgk = 917.0; 

    VPGM = 4.1e-7; 
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    Kmpgmp3ga = 1.68e-4; 

    Kmpgmp2ga = 2.56e-5; 

    kcatfpgm = 795.0; 

    kcatrpgm = 714.0; 

    VENO = 2.2e-7; 

    Kienop2ga = 1.4e-4; 

    Kmenop2ga = 1.4e-4; 

    Kienopep = 1.105e-4; 

    Kmenopep = 1.105e-4; 

    Kienomg = 4.6e-5; 

    Kmenomg = 4.6e-5; 

    kcatfeno = 190.0; 

    kcatreno = 50.0; 

    VPK = 8.7e-8; 

    KTpkatp = 0.00339; 

    KRpkpyr = 0.0020; 

    KRpkpep = 2.25e-4; 

    KRpkmgatp = 0.0030; 

    KRpkmgadp = 4.74e-4; 

    KRf16p2 = 5.0e-6; 

    KRg16p2 = 1.0e-4; 

    kcatfpk = 1386.0; 

    kcatrpk = 3.26; 

    VLDH = 3.43e-6; 

    Kmldhnadh = 8.44e-6; 

    Kildhnadh = 2.45e-6; 

    Kmldhnad = 1.07e-4; 

    Kildhnad = 5.03e-4; 

    Kidldhpyr = 1.01e-4; 

    kcatfldh = 458.0; 

    kcatrldh = 115.0; 

    Kmldhppyr = 4.14e-4; 

    Kmldhplac = 4.14e-4; 

    kfldhp = 0.00346; 

    krldhp = 5.43e-7; 

    VG6PDH = 9.3e-8; 

    kg6pdh1 = 1.1e8; 

    kg6pdh2 = 870.0; 

    kg6pdh3 = 2.6e7; 

    kg6pdh4 = 300.0; 

    kg6pdh5 = 750.0; 

    kg6pdh6 = 2000.0; 

    kg6pdh7 = 220000.0; 

    kg6pdh8 = 1.1e9; 

    kg6pdh9 = 10000.0; 

    kg6pdh10 = 1.4e9; 

    VLactonase = 1.4e-5; 

    klactonase1 = 1.3e7; 

    klactonase2 = 1000.0; 

    klactonase3 = 29.0; 

    kspontaneouspglhydrolysis = 7.1e-4; 

    VP6GDH = 2.1e-6; 

    kp6gdh1 = 2400000.0; 
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    kp6gdh2 = 410.0; 

    kp6gdh3 = 2.0e9; 

    kp6gdh4 = 26000.0; 

    kp6gdh5 = 48.0; 

    kp6gdh6 = 30.0; 

    kp6gdh7 = 630.0; 

    kp6gdh8 = 36000.0; 

    kp6gdh9 = 800.0; 

    kp6gdh10 = 225000.0; 

    kp6gdh11 = 300.0; 

    kp6gdh12 = 4950000.0; 

    VGSSGR = 1.25e-7; 

    kgssgr1 = 8.5e7; 

    kgssgr2 = 510.0; 

    kgssgr3 = 1.0e9; 

    kgssgr4 = 72000.0; 

    kgssgr5 = 810.0; 

    kgssgr6 = 1000.0; 

    kgssgr7 = 1000000.0; 

    kgssgr8 = 5.0e7; 

    kgssgr9 = 1000000.0; 

    kgssgr10 = 5.0e7; 

    kgssgr11 = 7000.0; 

    kgssgr12 = 1.0e8; 

    VRu5PE = 4.22e-6; 

    kru5pe1 = 3910000.0; 

    kru5pe2 = 438.0; 

    kru5pe3 = 305.0; 

    kru5pe4 = 1490000.0; 

    VR5PI = 1.42e-5; 

    kr5pi1 = 60900.0; 

    kr5pi2 = 33.3; 

    kr5pi3 = 14.2; 

    kr5pi4 = 21600.0; 

    ktk1 = 216000.0; 

    ktk2 = 38.0; 

    ktk3 = 34.0; 

    ktk4 = 156000.0; 

    ktk5 = 329000.0; 

    ktk6 = 175.0; 

    ktk7 = 40.0; 

    ktk8 = 44800.0; 

    ktk9 = 2240000.0; 

    ktk10 = 175.0; 

    ktk11 = 40.0; 

    ktk12 = 21300.0; 

    VTA = 6.9e-7; 

    kta1 = 580000.0; 

    kta2 = 45.3; 

    kta3 = 16.3; 

    kta4 = 1010000.0; 

    kta5 = 490000.0; 

    kta6 = 60.0; 
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    kta7 = 17.0; 

    kta8 = 79000.0; 

    kbpgsp2 = 400.0; 

    kbpgsp5 = 1.0e8; 

    kbpgsp7 = 1000.0; 

    kbpgsp8 = 10000.0; 

    kbpgsp9 = 0.55; 

    kbpgsp10 = 1979.0; 

    kbpgsp11 = 0.01; 

    kbpgsp12 = 1000.0; 

    kbpgsp14 = 1.0e9; 

    kbpgsp15 = 610000.0; 

    kbpgsp16 = 0.19; 

    Khamp = 3090000.0; 

    Kkamp = 1.8; 

    katpase = 5.85e-4; 

    kox = 3.4e-5; 

    koxNADH = 0.0163; 

    kpyrtransporti = 0.018; 

    klactransporti = 0.0036; 

    kphostransporti = 5.6e-4; 

    Kmgatp = 43200.0; 

    Khatp = 9070000.0; 

    Kmghatp = 748.0; 

    Kkatp = 14.0; 

    kmgatpd = 1200.0; 

    Kmgadp = 3290.0; 

    Khadp = 5420000.0; 

    Kmghadp = 107.0; 

    Kkadp = 4.8; 

    kmgadpd = 1200.0; 

    Kmgbpg = 7410.0; 

    Khbpg = 1.62e8; 

    Kmghbpg = 513.0; 

    Kh2bpg = 4270000.0; 

    Kkbpg = 85.1; 

    Kkhbpg = 8.9; 

    kmgbpgd = 1200.0; 

    kmgb13pgd = 1200.0; 

    Kmgfru16p2 = 363.0; 

    Khf = 7560000.0; 

    Kmghf = 89.0; 

    Kh2f = 1120000.0; 

    Kkf = 10.7; 

    Kkhf = 3.3; 

    kmgf16p2d = 1200.0; 

    Khphos = 5680000.0; 

    Kkphos = 3.0; 

    kmgphosd = 1200.0; 

    Kahb = 2.511886431509582e-7; 

    khbmgatpd = 1200.0; 

    khbatpd = 1200.0; 

    khbadpd = 1200.0; 
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    khbbpgd = 1200.0; 

    khbb13pgd = 1200.0; 

 

    MgATP_0 = 0.001518299902639; 

    ksaf = 1e7; 

    ksar = ksaf/(5*MgATP_0); 

 

    alpha = 0.7; 

    Ht = 0.5; 

    Ve = 2*VOLUME*(1e3)*Ht; 

    Vi = alpha*VOLUME*(1e3); 

    rtv = 0.69; 

    k1 = 0.15; 

    pH1 = 7.2; 

 

    Glc = 5e-3; % actual glucose concentration 

    CO2 = 1.2e-3; 

    Lace = 1.82e-3; 

    Pyre = 8.5e-5; 

    Phose = 1.92e-3; 

 

    % Reaction Rates (54 Reactions) 

    vhk = (1/Vi)*VHK*Vi*(-1.92792*X(17)*X(30)/((1 + 1.0471285480509*10^7/10^pH1 + 

2.81838293126445*10^(-10)*10^pH1)*Kihkglc6p*Kmhkmgadp) + 299.16*Glc*X(31)/((1 + 

1.0471285480509*10^7/10^pH1 + 2.81838293126445*10^(-

10)*10^pH1)*Kihkglc*Kmhkmgatp))/(1 + Glc/Kihkglc + Glc*X(5)/(Kdihkbpg*Kihkglc) + 

Glc*X(16)/(Kdihkglc16p2*Kihkglc) + Glc*X(17)/(Kdihkglc6p*Kihkglc) + 

X(17)/Kihkglc6p + Glc*X(20)/(Kdihkgsh*Kihkglc) + X(30)/Kihkmgadp + 

X(17)*X(30)/(Kihkglc6p*Kmhkmgadp) + X(31)/Kihkmgatp + 

Glc*X(31)/(Kihkglc*Kmhkmgatp)); 

    vgpi = VGPI*(-X(15)*kcatrgpi/Kmgpifru6p + X(17)*kcatfgpi/Kmgpiglc6p)/(1 + 

X(15)/Kmgpifru6p + X(17)/Kmgpiglc6p); 

    vpfk = VPFK*(-X(14)*kcatfpfk*X(30)/(Kmpfkfru16p2*Kmpfkmgadp) + 

X(15)*kcatfpfk*X(31)/(Kmpfkfru6p*Kmpfkmgatp))/((1 + X(14)/Kmpfkfru16p2 + 

X(15)/Kmpfkfru6p + X(30)/Kmpfkmgadp + X(14)*X(30)/(Kmpfkfru16p2*Kmpfkmgadp) + 

X(31)/Kmpfkmgatp + X(15)*X(31)/(Kmpfkfru6p*Kmpfkmgatp))*(1 + 

(1/(10^pH1*Kapfk))^npfk*(1 + X(3)/KTpfkatp)^4*(1 + X(5)/KTpfkb23pg)^4*(1 + 

X(29)/KTpfkmg)^4/((1 + X(14)/Kmpfkfru16p2 + X(15)/Kmpfkfru6p)^4*(1 + 

X(2)/KRpfkamp)^4*(1 + X(16)/KRpfkglc16p2)^4*(1 + X(46)/KRpfkphos)^4))); 

    vald = VALD*(X(14)*kcatfald/Kmaldfru16p2 - 

X(18)*X(19)*kcatrald/(Kialdgrnp*Kmaldgrap))/(1 + X(19)/Kialdgrnp + 

X(14)/Kmaldfru16p2 + X(18)*X(19)/(Kialdgrnp*Kmaldgrap) + 

X(14)*X(18)*Kmaldgrnp/(Kialdfru16p2*Kialdgrnp*Kmaldgrap) + (X(5) + 

X(33))/Kialdb23pg + X(18)*Kmaldgrnp*(1 + (X(5) + 

X(33))/Kialdb23pg)/(Kialdgrnp*Kmaldgrap)); 

    vtpi = VTPI*(X(18)*kcatftpi/Kmtpigrap - X(19)*kcatrtpi/Kmtpigrnp)/(1 + 

X(18)/Kmtpigrap + X(19)/Kmtpigrnp); 

    vgapdh = VGDH*((-5.40304497429925)*10^35*X(4)*X(38)/10^pH1 + 

1.45911949685535*10^21*X(18)*X(37)*X(46)/(Kigapdhphos*Kmgapdhnad))/(2.195177633774

12*10^20*(1 + 3.16227766016838*10^7/10^pH1 + 1*10^(-10)*10^pH1)*X(4)*(1 + 

X(18)/Kidgapdhgrap) + 2.0985345932935*10^18*(1 + 3.16227766016838*10^7/10^pH1 + 

1*10^(-10)*10^pH1)*X(18)*(1 + X(18)/Kidgapdhgrap) + 

1/Kigapdhnad*2.19517763377412*10^20*(1 + 3.16227766016838*10^7/10^pH1 + 1*10^(-
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10)*10^pH1)*X(4)*X(37) + 1/Kigapdhnad*2.0985345932935*10^18*(1 + 

3.16227766016838*10^7/10^pH1 + 1*10^(-10)*10^pH1)*X(18)*X(37) + 

1.05427942060955*10^33*(1 + 3.16227766016838*10^7/10^pH1 + 1*10^(-

10)*10^pH1)*Kmgapdhb13pg*X(38)/10^pH1 + 1.05427942060955*10^33*(1 + 

3.16227766016838*10^7/10^pH1 + 1*10^(-10)*10^pH1)*X(4)*X(38)/10^pH1 + 

3.32595319105503*10^30*(1 + 3.16227766016838*10^7/10^pH1 + 1*10^(-

10)*10^pH1)*X(18)*X(38)/10^pH1 + 1/Kigapdhphos*2.0985345932935*10^18*(1 + 

3.16227766016838*10^7/10^pH1 + 1*10^(-10)*10^pH1)*X(18)*(1 + 

X(18)/Kidgapdhgrap)*X(46) + 2.0985345932935*10^18*(1 + 

3.16227766016838*10^7/10^pH1 + 1*10^(-

10)*10^pH1)*Kmgapdhgrap*X(37)*X(46)/(Kigapdhphos*Kmgapdhnad) + 

2.0985345932935*10^18*(1 + 3.16227766016838*10^7/10^pH1 + 1*10^(-

10)*10^pH1)*Kmgapdhgrap*X(4)*X(37)*X(46)/(Kidgapdhb13pg*Kigapdhphos*Kmgapdhnad) + 

2.0985345932935*10^18*(1 + 3.16227766016838*10^7/10^pH1 + 1*10^(-

10)*10^pH1)*X(18)*X(37)*X(46)/(Kigapdhphos*Kmgapdhnad) + 

1/Kigapdhphos*1.05427942060955*10^33*(1 + 3.16227766016838*10^7/10^pH1 + 1*10^(-

10)*10^pH1)*Kmgapdhb13pg*X(38)*X(46)/10^pH1 + 1.05427942060955*10^33*(1 + 

3.16227766016838*10^7/10^pH1 + 1*10^(-

10)*10^pH1)*Kmgapdhb13pg*X(4)*X(38)*X(46)/10^pH1/(Kidgapdhb13pg*Kigapdhphos) + 

1/Kigapdhphos*3.32595319105503*10^30*(1 + 3.16227766016838*10^7/10^pH1 + 1*10^(-

10)*10^pH1)*X(18)*X(38)*X(46)/10^pH1); 

    vpgk = VPGK*(X(4)*kcatfpgk*X(30)/(Kipgkmgadp*Kmpgkb13pg) - 

kcatrpgk*X(31)*X(42)/(Kipgkmgatp*Kmpgkp3ga))/(1 + X(4)/Kipgkb13pg + 

X(30)/Kipgkmgadp+X(4)*X(30)/(Kipgkmgadp*Kmpgkb13pg) + X(31)/Kipgkmgatp + 

X(42)/Kipgkp3ga + X(31)*X(42)/(Kipgkmgatp*Kmpgkp3ga)); 

    vpgm = VPGM*(-kcatrpgm*X(41)/Kmpgmp2ga + kcatfpgm*X(42)/Kmpgmp3ga)/(1 + 

X(41)/Kmpgmp2ga + X(42)/Kmpgmp3ga); 

    veno = VENO*(kcatfeno*X(29)*X(41)/(Kienomg*Kmenop2ga) - 

kcatreno*X(29)*X(45)/(Kienopep*Kmenomg))/(1 + X(29)/Kienomg + X(41)/Kienop2ga + 

X(29)*X(41)/(Kienomg*Kmenop2ga) + X(45)/Kienopep + 

X(29)*X(45)/(Kienopep*Kmenomg)); 

    vpk = VPK*(kcatfpk*X(30)*X(45)/(KRpkmgadp*KRpkpep) - 

kcatrpk*X(31)*X(47)/(KRpkmgatp*KRpkpyr))/((1 + X(30)/KRpkmgadp + X(31)/KRpkmgatp + 

X(45)/KRpkpep + X(30)*X(45)/(KRpkmgadp*KRpkpep) + X(47)/KRpkpyr + 

X(31)*X(47)/(KRpkmgatp*KRpkpyr))*(1 + 1.58489319246111*10^(-7)*10^pH1*(1 + 

X(3)/KTpkatp)^4/((1 + X(14)/KRf16p2 + X(16)/KRg16p2)^4*(1 + X(45)/KRpkpep + 

X(47)/KRpkpyr)^4))); 

    vldh = VLDH*(-1306.64221547056*kcatrldh*X(28)*X(37)/((1 + 

6.30957344480193*10^6/10^pH1)*Kildhnad) + 

2.5634207529267e4*kcatfldh*X(38)*X(47)/((1 + 1.58489319246111*10^(-

7)*10^pH1)*Kildhnadh))/(X(37)/Kildhnad + 1306.64221547056*X(28)*X(37)/((1 + 

6.30957344480193*10^6/10^pH1)*Kildhnad) + X(38)/Kildhnadh + 

1306.64221547056*Kmldhnad*X(28)*X(38)/((1 + 

6.30957344480193*10^6/10^pH1)*Kildhnad*Kildhnadh) + 

2.5634207529267e4*Kmldhnadh*X(37)*X(47)/((1 + 1.58489319246111*10^(-

7)*10^pH1)*Kildhnad*Kildhnadh) + 2.01262239795994*10^7*X(28)*X(37)*X(47)/((1 + 

6.30957344480193*10^6/10^pH1)*(1 + 1.58489319246111*10^(-7)*10^pH1)*Kildhnad) + 

2.5634207529267e4*X(38)*X(47)/((1 + 1.58489319246111*10^(-7)*10^pH1)*Kildhnadh) + 

4.88940918937581*10^6*X(28)*X(38)*X(47)/((1 + 6.30957344480193*10^6/10^pH1)*(1 + 

1.58489319246111*10^(-7)*10^pH1)*Kildhnadh) + (1 + X(47)/Kidldhpyr)*(1 + 

1306.64221547056*Kmldhnad*X(28)/((1 + 6.30957344480193*10^6/10^pH1)*Kildhnad) + 

2.5634207529267e4*Kmldhnadh*X(47)/((1 + 1.58489319246111*10^(-

7)*10^pH1)*Kildhnadh))); 
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    vldhp = (-krldhp*X(28)*X(39)/Kmldhplac + kfldhp*X(40)*X(47)/Kmldhppyr)/(1 + 

X(28)/Kmldhplac + X(47)/Kmldhppyr); 

    vbpgsp1 = 2.80950914520767*10^8*X(4)*X(6)/(1 + 1.58489319246111*10^(-

7)*10^pH1) - kbpgsp2*X(11); 

    vbpgsp2 = 17.4099179927889*X(11)/(1 + 4.78630092322638*10^28/10^(4*pH1)); 

    vbpgsp3 = (-kbpgsp5)*X(9) + 3.25336851380399*10^8*X(7)*X(42)/(1 + 

4.78630092322638*10^28/10^(4*pH1)); 

    vbpgsp4 = (-kbpgsp7)*X(8) + 1758.57757502918*X(7)*X(41)/(1 + 

4.78630092322638*10^28/10^(4*pH1)); 

    vbpgsp5 = kbpgsp8*X(9) - kbpgsp9*X(12); 

    vbpgsp6 = kbpgsp10*X(8) - kbpgsp11*X(12); 

    vbpgsp7 = -6.32139557671725*10^6*X(5)*X(6)/(1 + 1.58489319246111*10^(-

7)*10^pH1) + kbpgsp12*X(12); 

    vbpgsp8 = kbpgsp14*X(7)*X(46) - kbpgsp15*X(10); 

    vbpgsp9 = kbpgsp16*X(10); 

    vg6pdh = VG6PDH*(X(17)*kg6pdh1*kg6pdh3*kg6pdh5*kg6pdh7*kg6pdh9*X(39) - 

kg6pdh2*kg6pdh4*kg6pdh6*kg6pdh8*kg6pdh10*X(40)*X(44))/(X(17)*kg6pdh3*kg6pdh5*kg6pd

h7*kg6pdh9 + kg6pdh2*(kg6pdh4*kg6pdh6 + kg6pdh4*kg6pdh7 + kg6pdh5*kg6pdh7)*kg6pdh9 

+ kg6pdh1*(kg6pdh4*kg6pdh6 + kg6pdh4*kg6pdh7 + kg6pdh5*kg6pdh7)*kg6pdh9*X(39) + 

X(17)*kg6pdh1*kg6pdh3*(kg6pdh5*kg6pdh7 + kg6pdh5*kg6pdh9 + kg6pdh6*kg6pdh9 + 

kg6pdh7*kg6pdh9)*X(39) + X(17)*kg6pdh3*kg6pdh5*kg6pdh7*kg6pdh10*X(40) + 

kg6pdh2*(kg6pdh4*kg6pdh6 + kg6pdh5*kg6pdh6 + kg6pdh5*kg6pdh7)*kg6pdh10*X(40) + 

kg6pdh2*kg6pdh4*kg6pdh6*kg6pdh8*X(44) + 

kg6pdh1*kg6pdh4*kg6pdh6*kg6pdh8*X(39)*X(44) + X(17)*kg6pdh1*kg6pdh3*(kg6pdh5 + 

kg6pdh6)*kg6pdh8*X(39)*X(44) + X(17)*kg6pdh3*(kg6pdh5 + 

kg6pdh6)*kg6pdh8*kg6pdh10*X(40)*X(44) + (kg6pdh2*kg6pdh4 + kg6pdh2*kg6pdh5 + 

kg6pdh2*kg6pdh6 + kg6pdh4*kg6pdh6)*kg6pdh8*kg6pdh10*X(40)*X(44)); 

    vpglhydrolysis = kspontaneouspglhydrolysis*X(44) + 

VLactonase*klactonase3*X(44)/((klactonase2 + klactonase3)/klactonase1 + X(44)); 

    vp6gdh = VP6GDH*(kp6gdh1*kp6gdh3*kp6gdh5*kp6gdh7*kp6gdh9*kp6gdh11*X(39)*X(43) 

- 

CO2*kp6gdh2*kp6gdh4*kp6gdh6*kp6gdh8*kp6gdh10*kp6gdh12*X(40)*X(49))/(CO2*kp6gdh2*kp

6gdh4*kp6gdh6*kp6gdh8*kp6gdh11 + kp6gdh2*(kp6gdh4*kp6gdh6 + kp6gdh4*kp6gdh7 + 

kp6gdh5*kp6gdh7)*kp6gdh9*kp6gdh11 + 

CO2*kp6gdh1*kp6gdh4*kp6gdh6*kp6gdh8*kp6gdh11*X(39) + kp6gdh1*(kp6gdh4*kp6gdh6 + 

kp6gdh4*kp6gdh7 + kp6gdh5*kp6gdh7)*kp6gdh9*kp6gdh11*X(39) + 

CO2*kp6gdh2*kp6gdh4*kp6gdh6*kp6gdh8*kp6gdh12*X(40) + kp6gdh2*(kp6gdh4*kp6gdh6 + 

kp6gdh4*kp6gdh7 + kp6gdh5*kp6gdh7)*kp6gdh9*kp6gdh12*X(40) + 

kp6gdh3*kp6gdh5*kp6gdh7*kp6gdh9*kp6gdh11*X(43) + CO2*kp6gdh1*kp6gdh3*(kp6gdh5 + 

kp6gdh6)*kp6gdh8*kp6gdh11*X(39)*X(43) + kp6gdh1*kp6gdh3*(kp6gdh5*kp6gdh7*kp6gdh9 + 

kp6gdh5*kp6gdh7*kp6gdh11 + kp6gdh5*kp6gdh9*kp6gdh11 + kp6gdh6*kp6gdh9*kp6gdh11 + 

kp6gdh7*kp6gdh9*kp6gdh11)*X(39)*X(43) + 

kp6gdh3*kp6gdh5*kp6gdh7*kp6gdh9*kp6gdh12*X(40)*X(43 )+ 

CO2*kp6gdh2*kp6gdh4*kp6gdh6*kp6gdh8*kp6gdh10*X(49) + 

CO2*kp6gdh1*kp6gdh4*kp6gdh6*kp6gdh8*kp6gdh10*X(39)*X(49) + 

kp6gdh2*(kp6gdh4*kp6gdh6 + kp6gdh4*kp6gdh7 + 

kp6gdh5*kp6gdh7)*kp6gdh10*kp6gdh12*X(40)*X(49) + CO2*(kp6gdh2*kp6gdh4 + 

kp6gdh2*kp6gdh5 + kp6gdh2*kp6gdh6 + 

kp6gdh4*kp6gdh6)*kp6gdh8*kp6gdh10*kp6gdh12*X(40)*X(49) + 

kp6gdh1*kp6gdh3*kp6gdh5*kp6gdh7*kp6gdh10*X(39)*X(43)*X(49) + 

CO2*kp6gdh1*kp6gdh3*(kp6gdh5 + kp6gdh6)*kp6gdh8*kp6gdh10*X(39)*X(43)*X(49) + 

kp6gdh3*kp6gdh5*kp6gdh7*kp6gdh10*kp6gdh12*X(40)*X(43)*X(49) + CO2*kp6gdh3*(kp6gdh5 

+ kp6gdh6)*kp6gdh8*kp6gdh10*kp6gdh12*X(40)*X(43)*X(49)); 
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    vgssgr = VGSSGR*((-

X(20))^2*kgssgr2*kgssgr4*kgssgr6*kgssgr8*kgssgr10*kgssgr12*X(39) + 

X(21)*kgssgr1*kgssgr3*kgssgr5*kgssgr7*kgssgr9*kgssgr11*X(40))/(X(20)^2*kgssgr2*kgs

sgr4*kgssgr6*kgssgr8*kgssgr10 + X(20)*kgssgr2*kgssgr4*kgssgr6*kgssgr8*kgssgr11 + 

X(21)*kgssgr3*kgssgr5*kgssgr7*kgssgr9*kgssgr11 + kgssgr2*(kgssgr4*kgssgr6 + 

kgssgr4*kgssgr7 + kgssgr5*kgssgr7)*kgssgr9*kgssgr11 + 

X(20)*kgssgr2*kgssgr4*kgssgr6*kgssgr8*kgssgr12*X(39) + 

X(21)*kgssgr3*kgssgr5*kgssgr7*kgssgr9*kgssgr12*X(39) + kgssgr2*(kgssgr4*kgssgr6 + 

kgssgr4*kgssgr7 + kgssgr5*kgssgr7)*kgssgr9*kgssgr12*X(39) + 

X(20)*X(21)*kgssgr3*kgssgr5*kgssgr7*kgssgr10*kgssgr12*X(39) + 

X(20)*kgssgr2*(kgssgr4*kgssgr6 + kgssgr4*kgssgr7 + 

kgssgr5*kgssgr7)*kgssgr10*kgssgr12*X(39) + X(20)^2*X(21)*kgssgr3*(kgssgr5 + 

kgssgr6)*kgssgr8*kgssgr10*kgssgr12*X(39) + X(20)^2*(kgssgr2*kgssgr4 + 

kgssgr2*kgssgr5 + kgssgr2*kgssgr6 + 

kgssgr4*kgssgr6)*kgssgr8*kgssgr10*kgssgr12*X(39) + 

X(20)*X(21)*kgssgr1*kgssgr3*kgssgr5*kgssgr7*kgssgr10*X(40) + 

X(20)^2*kgssgr1*kgssgr4*kgssgr6*kgssgr8*kgssgr10*X(40) + 

X(20)^2*X(21)*kgssgr1*kgssgr3*(kgssgr5 + kgssgr6)*kgssgr8*kgssgr10*X(40) + 

X(20)*kgssgr1*kgssgr4*kgssgr6*kgssgr8*kgssgr11*X(40) + 

X(20)*X(21)*kgssgr1*kgssgr3*(kgssgr5 + kgssgr6)*kgssgr8*kgssgr11*X(40) + 

kgssgr1*(kgssgr4*kgssgr6 + kgssgr4*kgssgr7 + 

kgssgr5*kgssgr7)*kgssgr9*kgssgr11*X(40) + 

X(21)*kgssgr1*kgssgr3*(kgssgr5*kgssgr7*kgssgr9 + kgssgr5*kgssgr7*kgssgr11 + 

kgssgr5*kgssgr9*kgssgr11 + kgssgr6*kgssgr9*kgssgr11 + 

kgssgr7*kgssgr9*kgssgr11)*X(40)); 

    vru5pe = VRu5PE*(kru5pe1*kru5pe3*X(49)/(kru5pe2 + kru5pe3) - 

kru5pe2*kru5pe4*X(56)/(kru5pe2 + kru5pe3))/(1 + kru5pe1*X(49)/(kru5pe2 + kru5pe3) 

+ kru5pe4*X(56)/(kru5pe2 + kru5pe3)); 

    vr5pi = VR5PI*(-kr5pi2*kr5pi4*X(48)/(kr5pi2 + kr5pi3) + 

kr5pi1*kr5pi3*X(49)/(kr5pi2 + kr5pi3))/(1 + kr5pi1*X(49)/(kr5pi2 + kr5pi3) + 

kr5pi4*X(56)/(kr5pi2 + kr5pi3)); 

    vtk1 = ktk1*X(51)*X(56) - ktk2*X(55); 

    vtk2 = ktk3*X(55) - ktk4*X(52)*X(18); 

    vtk3 = ktk5*X(52)*X(48) - ktk6*X(54); 

    vtk4 = ktk7*X(54) - ktk8*X(51)*X(50); 

    vtk5 = ktk9*X(52)*X(13) - ktk10*X(53); 

    vtk6 = ktk11*X(53) - ktk12*X(51)*X(15); 

    vta = VTA*((-X(13))*X(15)*kta2*kta4*kta6*kta8 + 

X(18)*kta1*kta3*kta5*kta7*X(50))/(X(18)*(kta2 + kta3)*kta5*kta7 + 

X(13)*kta2*kta4*(kta6 + kta7) + X(15)*X(18)*(kta2 + kta3)*kta5*kta8 + X(15)*(kta2 

+ kta3)*kta6*kta8 + X(13)*X(15)*kta4*(kta2 + kta6)*kta8 + X(18)*kta1*kta5*(kta3 + 

kta7)*X(50) + kta1*kta3*(kta6 + kta7)*X(50) + X(13)*kta1*kta4*(kta6 + 

kta7)*X(50)); 

    vak = 4300*(1 + Khadp/10^pH1 + Kkadp*k1)*X(1)*X(30) - 1400*(1 + Khamp/10^pH1 + 

Kkamp*k1)*X(2)*X(31); 

    vatpase = katpase*X(31); 

    vox = kox*X(20); 

    voxnadh = koxNADH*X(38); 

    vlactransport = (1/Vi)*((-klactransporti)*Lace*Ve + klactransporti*Ve*X(28)/(1 

+ 10^(-3.73 + pH1))*(1 + 10^(-3.73 + pH1)/rtv)); 

    vpyrtransport = (1/Vi)*((-kpyrtransporti)*Pyre*Ve + 

kpyrtransporti*Ve*X(47)/rtv); 

    vphostransport = (1/Vi)*((-kphostransporti)*Phose*Ve + kphostransporti*(10^(-
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6.75 + pH1)/rtv^2 + 1/rtv)*Ve*X(46)/(1 + 10^(-6.75 + pH1))); 

    vmgatp = 2620.8*X(3)*(Kmgatp + Khatp*Kmghatp/10^pH1)*X(29)/(1 + Khatp/10^pH1 + 

k1*Kkatp) - kmgatpd*X(31); 

    vmgadp = 1711.2*X(1)*(Kmgadp + Khadp*Kmghadp/10^pH1)*X(29)/(1 + Khadp/10^pH1 + 

k1*Kkadp) - kmgadpd*X(30); 

    vmgb23pg = 2572.8*X(5)*(Kmgbpg + Khbpg*Kmghbpg/10^pH1)*X(29)/(1 + Khbpg/10^pH1 

+ Kh2bpg*Khbpg/10^(2*pH1) + k1*Kkbpg + k1*Khbpg*Kkhbpg/10^pH1) - kmgbpgd*X(33); 

    vmgb13pg = 729.6*X(4)*(Kmgbpg + Khbpg*Kmghbpg/10^pH1)*X(29)/(1 + Khbpg/10^pH1 

+ Kh2bpg*Khbpg/10^(2*pH1) + k1*Kkbpg + k1*Khbpg*Kkhbpg/10^pH1) - kmgb13pgd*X(32); 

    vmgfru16p2 = 3984*X(14)*(Kmgfru16p2 + Khf*Kmghf/10^pH1)*X(29)/(1 + Khf/10^pH1 

+ Kh2f*Khf/10^(2*pH1) + k1*Kkf + k1*Khf*Kkhf/10^pH1) - kmgf16p2d*X(34); 

    vmgglc16p2 = 3984*X(16)*(Kmgfru16p2 + Khf*Kmghf/10^pH1)*X(29)/(1 + Khf/10^pH1 

+ Kh2f*Khf/10^(2*pH1) + k1*Kkf + k1*Khf*Kkhf/10^pH1) - kmgf16p2d*X(35); 

    vmgphos = (-kmgphosd)*X(36) + 40800*(1 + 6.30957344480193*10^(-8)*Khphos + 

0.15*Kkphos)*X(29)*X(46)/(1 + Khphos/10^pH1 + k1*Kkphos); 

    vhbmgatp = (-X(27))*khbmgatpd + 46800*X(22)*(1 + 3.16978638492223*10^7*Kahb + 

2.51188643150958*10^14*Kahb^2)*X(31)/(1 + 2^(1 + pH1)*5^pH1*Kahb + 

10^(2*pH1)*Kahb^2); 

    vhbatp = -X(24)*khbatpd + 432000*X(3)*X(22)*(1 + 3.16978638492223*10^7*Kahb + 

2.51188643150958*10^14*Kahb^2)/(1 + 2^(1 + pH1)*5^pH1*Kahb+10^(2*pH1)*Kahb^2); 

    vhbadp = -X(23)*khbadpd + 300000*X(1)*X(22)*(1 + 3.16978638492223*10^7*Kahb + 

2.51188643150958*10^14*Kahb^2)/(1 + 2^(1 + pH1)*5^pH1*Kahb + 10^(2*pH1)*Kahb^2); 

    vhbbpg = -X(26)*khbbpgd + 300000*X(5)*X(22)*(1 + 3.16978638492223*10^7*Kahb + 

2.51188643150958*10^14*Kahb^2)/(1 + 2^(1 + pH1)*5^pH1*Kahb + 10^(2*pH1)*Kahb^2); 

    vhbb13pg = -X(25)*khbb13pgd + 380000*X(4)*X(22)*(1 + 

3.16978638492223*10^7*Kahb + 2.51188643150958*10^14*Kahb^2)/(1 + 2^(1 + 

pH1)*5^pH1*Kahb + 10^(2*pH1)*Kahb^2); 

    vSA = ksaf*(CONC_SA_max - X(57)) - ksar*X(31)*X(57); % reaction rate of 

spectrin dissociation 

 

    % Rate of Change of Metabolite Concentrations (57 Metabolites) 

    dX(1) = -vak - vmgadp - vhbadp; 

    dX(2) = vak; 

    dX(3) = -vmgatp - vhbatp; 

    dX(4) = vgapdh - vpgk - vbpgsp1 - vmgb13pg - vhbb13pg; 

    dX(5) = vbpgsp7 - vmgb23pg - vhbbpg; 

    dX(6) = -vbpgsp1 + vbpgsp7 + vbpgsp9; 

    dX(7) = vbpgsp2 - vbpgsp3 - vbpgsp4 - vbpgsp8; 

    dX(8) = vbpgsp4 - vbpgsp6; 

    dX(9) = vbpgsp3 - vbpgsp5; 

    dX(10) = vbpgsp8 - vbpgsp9; 

    dX(11) = vbpgsp1 - vbpgsp2; 

    dX(12) = vbpgsp5 + vbpgsp6 - vbpgsp7; 

    dX(13) = -vtk5 + vta; 

    dX(14) = vpfk - vald - vmgfru16p2; 

    dX(15) = vgpi - vpfk + vtk6 + vta; 

    dX(16) = -vmgglc16p2; 

    dX(17) = vhk - vgpi - vg6pdh; 

    dX(18) = vald - vtpi - vgapdh + vtk2 - vta; 

    dX(19) = vald + vtpi; 

    dX(20) = 2*vgssgr - 2*vox; 

    dX(21) = -vgssgr + vox; 

    dX(22) = -vhbmgatp - vhbatp - vhbadp - vhbbpg - vhbb13pg; 
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    dX(23) = vhbadp; 

    dX(24) = vhbatp; 

    dX(25) = vhbb13pg; 

    dX(26) = vhbbpg; 

    dX(27) = vhbmgatp; 

    dX(28) = vldh + vldhp - vlactransport; 

    dX(29) = -vmgatp - vmgadp - vmgb23pg - vmgb13pg - vmgfru16p2 - vmgglc16p2 - 

vmgphos; 

    dX(30) = vhk + vpfk - vpgk - vpk - vak + vatpase + vmgadp - vSA*(vSA < 0); % 

(vSA < 0) term prevents reaction from proceeding in reverse direction (vSA 

reaction not allowed to reattach links according to mathematical model) 

    dX(31) = -vhk - vpfk + vpgk + vpk + vak - vatpase + vmgatp - vhbmgatp + 

vSA*(vSA < 0); % (vSA < 0) term prevents reaction from proceeding in reverse 

direction (vSA reaction not allowed to reattach links according to mathematical 

model) 

    dX(32) = vmgb13pg; 

    dX(33) = vmgb23pg; 

    dX(34) = vmgfru16p2; 

    dX(35) = vmgglc16p2; 

    dX(36) = vmgphos; 

    dX(37) = -vgapdh + vldh + voxnadh; 

    dX(38) = vgapdh - vldh - voxnadh; 

    dX(39) = vldhp - vg6pdh - vp6gdh + vgssgr; 

    dX(40) = -vldhp + vg6pdh + vp6gdh - vgssgr; 

    dX(41) = vpgm - veno - vbpgsp4; 

    dX(42) = vpgk - vpgm + vbpgsp2 - vbpgsp3; 

    dX(43) = vpglhydrolysis - vp6gdh; 

    dX(44) = vg6pdh - vpglhydrolysis; 

    dX(45) = veno - vpk; 

    dX(46) = -vgapdh - vbpgsp8 + 2*vbpgsp9 + vatpase - vphostransport - vmgphos; 

    dX(47) = vpk - vldh - vldhp - vpyrtransport; 

    dX(48) = vr5pi - vtk3; 

    dX(49) = vp6gdh - vru5pe - vr5pi; 

    dX(50) = vtk4 - vta; 

    dX(51) = -vtk1 + vtk4 + vtk6; 

    dX(52) = vtk2 - vtk3 - vtk5; 

    dX(53) = vtk5 - vtk6; 

    dX(54) = vtk3 - vtk4; 

    dX(55) = vtk1 - vtk2; 

    dX(56) = vru5pe - vtk1; 

    dX(57) = vSA; 

 

end  
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A.1.7 f_plotting.m 

function 

f_plotting(nt,dt,U_LINKS,U_AREA_loc,U_AREA_g,U_VOLUME,U_BENDING,V_TOT,CON_t,CON_p,

r,r0,Fx,Xmin,Xmax,Ak,Elements,Links,LEN,CON,print_flag) 

% 

% Plots the results of a simulation of the Combined hRBC model 

% 

% Produced in MATLAB by Stephen Oursler as a part of "A Proposed 

% Mechanical-Metabolic Model of the Human Red Blood Cell". 

% 

% CALLED BY: 

%   hRBC_Stretching_Simulation.m 

% 

% LOAD FILES: 

%   none 

% 

% INPUTS: 

%   nt: number of time steps in simulation 

%   dt: time step length 

%   U_LINKS: vector of link potential energies wrt time 

%   U_AREA_loc: vector of local area potential energies wrt time 

%   U_AREA_g: vector of global area potential energies wrt time 

%   U_VOLUME: vector of volume potential energies wrt time 

%   U_BENDING: vector of bending potential energies wrt time 

%   V_TOT: vector of total kinetic energies wrt time 

%   CON_t: vector of connectivity wrt time 

%   CON_p: vector of permanently broken links 

%   r: array of node locations 

%   r0: array of initial node locations 

%   Fx: magnitude applied stretching force 

%   Xmin: array of nodes with negative stretching force 

%   Xmax: array of nodes with positive stretching force 

%   Ak: vector of areas of individual elements 

%   Elements: array of nodes that form elements 

%   Links: array of nodes that form links 

%   LEN: vector of link lengths 

%   CON: vector of connectivity of links 

%   print_flag: flag to print plot to .png files using export_fig 

% 

% OUTPUTS: 

%   none 

% 

% GLOBAL VARIABLES: 

%   A0t: equilibrium global area 

%   L0: equilibrium link length 

%   Ns: number of links 

%   Nt: number of elements 

%   Nv: number of nodes 

% 

% SAVE FILES: 
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%   none 

 

global A0t L0 Ns Nt Nv 

 

    % Pre-Plotting Calculations: 

    Nv = length(r); 

    Nt = length(Elements); 

    Ns = length(Links); 

    ELM_NUM = zeros(Nv,1); 

    ELM_LOC = zeros(Nv,7); 

    VERT_COL = zeros(Nv,1); 

    COL = zeros(Ns,3); 

    U_TOT = U_LINKS + U_AREA_loc + U_AREA_g + U_VOLUME + U_BENDING; % potential 

energy [J] 

    E_TOT = U_TOT + V_TOT; % total energy [J] 

    nn = round(0.02*Nv); % number of nodes being stretched (in stretching 

simulation) 

    tri_strain = (Ak - A0t/Nt)./(A0t/Nt); % area strains [unitless] 

    link_strain = (LEN - L0)./L0; % link strain [unitless] 

 

    for i = 1:1:Nv 

 

        temp1 = transpose(find(Elements == i)); 

        ELM_NUM(i,1) = length(temp1); 

 

        for j = 1:1:2 

 

            for k = 1:1:ELM_NUM(i,1) 

 

                if temp1(1,k) > Nt 

 

                    temp1(1,k) = temp1(1,k) - Nt; 

 

                end 

 

            end 

 

        end 

 

        ELM_LOC(i,1:ELM_NUM(i,1)) = temp1; 

 

    end 

 

    for i = 1:1:Nv 

 

        temp2 = 0; 

 

        for j = 1:1:ELM_NUM(i,1) 

 

            temp2 = temp2 + tri_strain(ELM_LOC(i,j)); 

 

        end 
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        VERT_COL(i,1) = temp2/ELM_NUM(i,1); 

 

    end 

 

    MAP_LS = transpose(linspace(min(link_strain),max(link_strain),65)); 

    colormap(jet) 

    cmp = colormap; close; 

 

    for i = 1:1:Ns 

 

        for j = 1:1:64 

 

            if link_strain(i,1) >= MAP_LS(j,1) && link_strain(i,1) <= MAP_LS(j + 

1,1) 

 

                COL(i,:) = cmp(j,:); 

 

            end 

 

        end 

 

    end 

 

 

    % Plotting: 

 

    % 1) Links Energy 

    f1 = figure(1); 

    h11 = plot(dt:dt:dt*nt,U_LINKS); 

    axis([0 dt*nt 0.99*min(U_LINKS) 1.01*max(U_LINKS)]) 

    a1 = gca; 

    hXL1 = xlabel('Time [s]'); 

    hYL1 = ylabel('Energy [J]'); 

    hT1 = title({'Links Energy',['(nt = ',num2str(nt),', dt = ',num2str(dt),' [s], 

Fx = ',num2str(Fx),' [N])']}); 

    set(f1,'Color','w','MenuBar','none','Position',[400,138,1120,840]) 

    

set(a1,'FontName','Helvetica','FontSize',12,'box','off','TickDir','out','TickLengt

h',[0.01 0.01],'XMinorTick','on','YMinorTick','on','YGrid','on','LineWidth',1) 

    set([hXL1,hYL1],'FontName','Helvetica','FontSize',16) 

    set(hT1,'FontName','Helvetica','FontSize',20) 

    set(h11,'Color','b','LineWidth',2) 

 

    % 2) Local Area Energy 

    f2 = figure(2); 

    h21 = plot(dt:dt:dt*nt,U_AREA_loc); 

    axis([0 dt*nt 0.99*min(U_AREA_loc) 1.01*max(U_AREA_loc)]) 

    a2 = gca; 

    hXL2 = xlabel('Time [s]'); 

    hYL2 = ylabel('Energy [J]'); 

    hT2 = title({'Local Area Energy',['(nt = ',num2str(nt),', dt = ',num2str(dt),' 

[s], Fx = ',num2str(Fx),' [N])']}); 

    set(f2,'Color','w','MenuBar','none','Position',[400,138,1120,840]) 
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set(a2,'FontName','Helvetica','FontSize',12,'box','off','TickDir','out','TickLengt

h',[0.01 0.01],'XMinorTick','on','YMinorTick','on','YGrid','on','LineWidth',1) 

    set([hXL2,hYL2],'FontName','Helvetica','FontSize',16) 

    set(hT2,'FontName','Helvetica','FontSize',20) 

    set(h21,'Color','b','LineWidth',2) 

 

    % 3) Global Area Energy 

    f3 = figure(3); 

    h31 = plot(dt:dt:dt*nt,U_AREA_g); 

    axis([0 dt*nt 0.99*min(U_AREA_g) 1.01*max(U_AREA_g)]) 

    a3 = gca; 

    hXL3 = xlabel('Time [s]'); 

    hYL3 = ylabel('Energy [J]'); 

    hT3 = title({'Global Area Energy',['(nt = ',num2str(nt),', dt = 

',num2str(dt),' [s], Fx = ',num2str(Fx),' [N])']}); 

    set(f3,'Color','w','MenuBar','none','Position',[400,138,1120,840]) 

    

set(a3,'FontName','Helvetica','FontSize',12,'box','off','TickDir','out','TickLengt

h',[0.01 0.01],'XMinorTick','on','YMinorTick','on','YGrid','on','LineWidth',1) 

    set([hXL3,hYL3],'FontName','Helvetica','FontSize',16) 

    set(hT3,'FontName','Helvetica','FontSize',20) 

    set(h31,'Color','b','LineWidth',2) 

 

    % 4) Volume Energy 

    f4 = figure(4); 

    h41 = plot(dt:dt:dt*nt,U_VOLUME); 

    axis([0 dt*nt 0.99*min(U_VOLUME) 1.01*max(U_VOLUME)]) 

    a4 = gca; 

    hXL4 = xlabel('Time [s]'); 

    hYL4 = ylabel('Energy [J]'); 

    hT4 = title({'Volume Energy',['(nt = ',num2str(nt),', dt = ',num2str(dt),' 

[s], Fx = ',num2str(Fx),' [N])']}); 

    set(f4,'Color','w','MenuBar','none','Position',[400,138,1120,840]) 

    

set(a4,'FontName','Helvetica','FontSize',12,'box','off','TickDir','out','TickLengt

h',[0.01 0.01],'XMinorTick','on','YMinorTick','on','YGrid','on','LineWidth',1) 

    set([hXL4,hYL4],'FontName','Helvetica','FontSize',16) 

    set(hT4,'FontName','Helvetica','FontSize',20) 

    set(h41,'Color','b','LineWidth',2) 

 

    % 5) Bending Energy 

    f5 = figure(5); 

    h51 = plot(dt:dt:dt*nt,U_BENDING); 

    axis([0 dt*nt 0.99*min(U_BENDING) 1.01*max(U_BENDING)]) 

    a5 = gca; 

    hXL5 = xlabel('Time [s]'); 

    hYL5 = ylabel('Energy [J]'); 

    hT5 = title({'Bending Energy',['(nt = ',num2str(nt),', dt = ',num2str(dt),' 

[s], Fx = ',num2str(Fx),' [N])']}); 

    set(f5,'Color','w','MenuBar','none','Position',[400,138,1120,840]) 

    

set(a5,'FontName','Helvetica','FontSize',12,'box','off','TickDir','out','TickLengt
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h',[0.01 0.01],'XMinorTick','on','YMinorTick','on','YGrid','on','LineWidth',1) 

    set([hXL5,hYL5],'FontName','Helvetica','FontSize',16) 

    set(hT5,'FontName','Helvetica','FontSize',20) 

    set(h51,'Color','b','LineWidth',2) 

 

    % 6) Total Potential Energy 

    f6 = figure(6); 

    h61 = plot(dt:dt:dt*nt,U_TOT); 

    axis([0 dt*nt 0.99*min(U_TOT) 1.01*max(U_TOT)]) 

    a6 = gca; 

    hXL6 = xlabel('Time [s]'); 

    hYL6 = ylabel('Energy [J]'); 

    hT6 = title({'Total Potential Energy',['(nt = ',num2str(nt),', dt = 

',num2str(dt),' [s], Fx = ',num2str(Fx),' [N])']}); 

    set(f6,'Color','w','MenuBar','none','Position',[400,138,1120,840]) 

    

set(a6,'FontName','Helvetica','FontSize',12,'box','off','TickDir','out','TickLengt

h',[0.01 0.01],'XMinorTick','on','YMinorTick','on','YGrid','on','LineWidth',1) 

    set([hXL6,hYL6],'FontName','Helvetica','FontSize',16) 

    set(hT6,'FontName','Helvetica','FontSize',20) 

    set(h61,'Color','b','LineWidth',2) 

 

    % 7) Total Kinetic Energy 

    f7 = figure(7); 

    h71 = plot(dt:dt:dt*nt,V_TOT); 

    axis([0 dt*nt 0.99*min(V_TOT) 1.01*max(V_TOT)]) 

    a7 = gca; 

    hXL7 = xlabel('Time [s]'); 

    hYL7 = ylabel('Energy [J]'); 

    hT7 = title({'Total Kinetic Energy',['(nt = ',num2str(nt),', dt = 

',num2str(dt),' [s], Fx = ',num2str(Fx),' [N])']}); 

    set(f7,'Color','w','MenuBar','none','Position',[400,138,1120,840]) 

    

set(a7,'FontName','Helvetica','FontSize',12,'box','off','TickDir','out','TickLengt

h',[0.01 0.01],'XMinorTick','on','YMinorTick','on','YGrid','on','LineWidth',1) 

    set([hXL7,hYL7],'FontName','Helvetica','FontSize',16) 

    set(hT7,'FontName','Helvetica','FontSize',20) 

    set(h71,'Color','b','LineWidth',2) 

 

    % 8) Total Energy 

    f8 = figure(8); 

    h81 = plot(dt:dt:dt*nt,E_TOT); 

    axis([0 dt*nt 0.99*min(E_TOT) 1.01*max(E_TOT)]) 

    a8 = gca; 

    hXL8 = xlabel('Time [s]'); 

    hYL8 = ylabel('Energy [J]'); 

    hT8 = title({'Total Energy',['(nt = ',num2str(nt),', dt = ',num2str(dt),' [s], 

Fx = ',num2str(Fx),' [N])']}); 

    set(f8,'Color','w','MenuBar','none','Position',[400,138,1120,840]) 

    

set(a8,'FontName','Helvetica','FontSize',12,'box','off','TickDir','out','TickLengt

h',[0.01 0.01],'XMinorTick','on','YMinorTick','on','YGrid','on','LineWidth',1) 

    set([hXL8,hYL8],'FontName','Helvetica','FontSize',16) 
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    set(hT8,'FontName','Helvetica','FontSize',20) 

    set(h81,'Color','b','LineWidth',2) 

 

    % 9) Connectivity 

    f9 = figure(9); 

    h91 = plot(dt:dt:dt*nt,CON_t); 

    axis([0 dt*nt 0 1]) 

    a9 = gca; 

    hXL9 = xlabel('Time [s]'); 

    hYL9 = ylabel('Connectivity [unitless]'); 

    hT9 = title({'Connectivity',['(nt = ',num2str(nt),', dt = ',num2str(dt),' [s], 

Fx = ',num2str(Fx),' [N])']}); 

    set(f9,'Color','w','MenuBar','none','Position',[400,138,1120,840]) 

    

set(a9,'FontName','Helvetica','FontSize',12,'box','off','TickDir','out','TickLengt

h',[0.01 0.01],'XMinorTick','on','YMinorTick','on','YGrid','on','LineWidth',1) 

    set([hXL9,hYL9],'FontName','Helvetica','FontSize',16) 

    set(hT9,'FontName','Helvetica','FontSize',20) 

    set(h91,'Color','b','LineWidth',2) 

 

    % 10) hRBC Final Configuration (With Attachment Point Nodes Highlighted) 

    f10 = figure(10); 

    hold on 

    h101 = trimesh(Elements,r(:,1),r(:,2),r(:,3),'EdgeColor','red'); %#ok<NASGU> 

 

    for i = 1:1:nn 

 

        plot3(r(Xmin(i,1),1),r(Xmin(i,1),2),r(Xmin(i,1),3),'.k','MarkerSize',20); 

        plot3(r(Xmax(i,1),1),r(Xmax(i,1),2),r(Xmax(i,1),3),'.k','MarkerSize',20); 

 

    end 

 

    hold off 

    view(3) 

    axis equal off 

    hT10 = title({'hRBC Final Configuration','(With Attachment Point Nodes 

Highlighted)'}); 

    set(f10,'Color','w','MenuBar','none','Position',[400,138,1120,840]) 

    set(hT10,'FontName','Helvetica','FontSize',20) 

 

    % 11) hRBC Final Configuration (With Initial Configuration) 

    f11 = figure(11); 

    hold on 

    h111 = trimesh(Elements,r(:,1),r(:,2),r(:,3),'EdgeColor','red'); 

    h112 = plot3(r0(:,1),r0(:,2),r0(:,3),'.k'); 

    hold off 

    view(3) 

    axis equal off 

    hT11 = title({'hRBC Final Configuration','(With Initial Configuration)'}); 

    set(f11,'Color','w','MenuBar','none','Position',[400,138,1120,840]) 

    set(hT11,'FontName','Helvetica','FontSize',20) 

    set(h111,'FaceAlpha',0.3) 

    set(h112,'MarkerSize',10) 
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    % 12) hRBC Final Configuration (With Dissociations) 

    f12 = figure(12); 

    hold on 

    h121 = trimesh(Elements,r(:,1),r(:,2),r(:,3),'EdgeColor','red'); %#ok<NASGU> 

 

    for i = 1:1:Ns 

 

        if CON(i,1) == 0 

 

            line([r(Links(i,1),1) r(Links(i,2),1)],[r(Links(i,1),2) 

r(Links(i,2),2)],[r(Links(i,1),3) r(Links(i,2),3)],'Color','g','LineWidth',2) 

 

        end 

 

        if CON_p(i,1) == 0 

 

            line([r(Links(i,1),1) r(Links(i,2),1)],[r(Links(i,1),2) 

r(Links(i,2),2)],[r(Links(i,1),3) r(Links(i,2),3)],'Color','k','LineWidth',2) 

 

        end 

 

    end 

 

    hold off 

    view(3) 

    axis equal off 

    hT12 = title({'hRBC Final Configuration','(With Dissociations)'}); 

    set(f12,'Color','w','MenuBar','none','Position',[400,138,1120,840]) 

    set(hT12,'FontName','Helvetica','FontSize',20) 

 

    % 13) hRBC Final Configuration (With Vertex Strains) 

    f13 = figure(13); 

    h131 = 

trisurf(Elements,r(:,1),r(:,2),r(:,3),'FaceVertexCData',VERT_COL,'FaceColor','inte

rp'); 

    colorbar 

    caxis([min(tri_strain) max(tri_strain)]) 

    view(3) 

    axis equal off 

    hT13 = title({'hRBC Final Configuration','(With Vertex Strains)'}); 

    set(f13,'Color','w','MenuBar','none','Position',[400,138,1120,840]) 

    set(hT13,'FontName','Helvetica','FontSize',20) 

    set(h131,'EdgeAlpha',0) 

 

    % 14) hRBC Final Configuration (With Area Strains) 

    f14 = figure(14); 

    h141 = trisurf(Elements,r(:,1),r(:,2),r(:,3),tri_strain); %#ok<NASGU> 

    colorbar 

    caxis([min(tri_strain) max(tri_strain)]) 

    view(3) 

    axis equal off 

    hT14 = title({'hRBC Final Configuration','(With Area Strains)'}); 
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    set(f14,'Color','w','MenuBar','none','Position',[400,138,1120,840]) 

    set(hT14,'FontName','Helvetica','FontSize',20) 

 

    % 15) hRBC Final Configuration (With Link Strains) 

    f15 = figure(15); 

    set(f15,'Renderer','OpenGL') 

    hold on 

 

    for i = 1:1:Ns 

 

        line([r(Links(i,1),1) r(Links(i,2),1)],[r(Links(i,1),2) 

r(Links(i,2),2)],[r(Links(i,1),3) r(Links(i,2),3)],'Color',COL(i,:)) 

 

    end 

 

    hold off 

    colorbar 

    caxis([min(link_strain) max(link_strain)]) 

    view(3) 

    axis equal off 

    hT15 = title({'hRBC Final Configuration','(With Link Strains)'}); 

    set(f15,'Color','w','MenuBar','none','Position',[400,138,1120,840]) 

    set(hT15,'FontName','Helvetica','FontSize',20) 

 

    % Saving Plots: 

    if print_flag == 1 

 

        export_fig(f1,'1_Links_Energy.png','-q101','-painters') 

        export_fig(f2,'2_Local_Area_Energy.png','-q101','-painters') 

        export_fig(f3,'3_Global_Area_Energy','-q101','-painters') 

        export_fig(f4,'4_Volume_Energy','-q101','-painters') 

        export_fig(f5,'5_Bending_Energy.png','-q101','-painters') 

        export_fig(f6,'6_Total_Potential_Energy.png','-q101','-painters') 

        export_fig(f7,'7_Total_Kinetic_Energy.png','-q101','-painters') 

        export_fig(f8,'8_Total_Energy.png','-q101','-painters') 

        export_fig(f9,'9_Connectivity.png','-q101','-painters') 

        export_fig(f10,'10_hRBC_Final.png','-q101') 

        export_fig(f11,'11_hRBC_Final.png','-q101') 

        export_fig(f12,'12_hRBC_Final.png','-q101') 

        export_fig(f13,'13_hRBC_Final.png','-q101') 

        export_fig(f14,'14_hRBC_Final.png','-q101') 

        export_fig(f15,'15_hRBC_Final.png','-q101') 

 

    end 

 

end 

  



190 

 

A.1.8 f_pp.m 

function 

[ts_len,ts_ratio,t_sim_t,U_AVG,V_AVG,E_AVG,DT,DA,EI,r_deg,dL,pdeg6,Qa,Qh,RSA] = 

f_pp(r,t_end,nt,dt,Elements,Links,LEN,U_TOT,V_TOT) 

% 

% Performs post-processing calculations after a simulation of the Combined 

% hRBC model 

% 

% Produced in MATLAB by Stephen Oursler as a part of "A Proposed 

% Mechanical-Metabolic Model of the Human Red Blood Cell". 

% 

% CALLED BY: 

%   hRBC_Stretching_Simulation.m 

% 

% LOAD FILES: 

%   none 

% 

% INPUTS: 

%   r: array of node locations 

%   t_end: wall time of simulation 

%   nt: number of time steps 

%   dt: length of time step 

%   Elements: array of nodes that form elements 

%   Links: array of nodes that form links 

%   LEN: vector of link lengths 

%   U_TOT: vector of potential energies of model 

%   V_TOT: vector of kinetic energies of model 

% 

% OUTPUTS: 

%   ts_len: wall time per time step 

%   ts_ratio: ratio of wall time per time step to length of time step 

%   t_sim: total simulation time elapsed 

%   U_AVG: time-averaged potential energy 

%   V_AVG: time-averaged kinetic energy 

%   E_AVG: time-averaged total energy 

%   DT: transverse diameter 

%   DA: axial diameter 

%   EI: elongation index 

%   r_deg: table of vertex degree results 

%   dL: distribution of link lengths 

%   pdeg6: percentage of degree 6 nodes 

%   Qa: arithmetic mean of triangulation quality measure 

%   Qh: harmonic mean of triangulation quality measure 

%   RSA: relative shape anisotropy 

% 

% GLOBAL VARIABLES: 

%   Nt: number of elements 

% 

% SAVE FILES: 

%    none 
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global Nt 

 

    % Simulation Time Calculations: 

    ts_len = t_end/nt; % wall time per time step [s] 

    ts_ratio = ts_len/dt; % ratio of wall time per time step to length of time 

step [unitless] 

    t_sim_t = dt*nt; % total simulation time elapsed [s] 

 

    % Time Average Energy Calculations: 

    U_AVG = mean(U_TOT); % time-average potential energy at end of simulation [J] 

    V_AVG = mean(V_TOT); % time-average kinetic energy at end of simulation [J] 

    E_AVG = mean(U_TOT + V_TOT); % time-average total energy at end of simulation 

[J] 

 

    % Elongation Index Calculations: 

    Dt = zeros(length(r),1); % initialize nodal radius vector 

 

    cx = mean(r(:,1)); % x-coordinate of center of mass [m] 

    cy = mean(r(:,2)); % y-coordinate of center of mass [m] 

    cz = mean(r(:,3)); % z-coordinate of center of mass [m] 

 

    for i = 1:1:length(r) 

 

        Dt(i,1) = sqrt((r(i,2) - cy)^2 + (r(i,3) - cz)^2); % nodal distance (from 

center of mass) 

 

    end 

 

    DT = 2*max(Dt); % transverse diameter (smaller diameter) [m] 

    DA = max(r(:,1)) - min(r(:,1)); % axial diameter (larger diameter) [m] 

    EI = (DA - DT)/(DA + DT); % elongation index [unitless] 

 

    % Triangulation Quality Calculations: 

 

 % Vertex Degree Quality 

    bc = histc(Links,unique(Links)); % count number of times each node appears in 

Links 

    deg = bc(:,1) + bc(:,2); % degree of each node 

    dn = histc(deg,unique(deg)); % number of nodes of each degree 

    r_deg = [unique(deg) dn]; % table of vertex degree results 

 

    min_deg = min(deg); %#ok<NASGU> % minimum degree present 

    max_deg = max(deg); %#ok<NASGU> % maximum degree present 

    avg_deg = mean(deg); %#ok<NASGU> % average degree of all nodes 

    std_deg = std(deg); %#ok<NASGU> % standerd deviation of all node degrees 

    avg_len = mean(LEN); % average length of all edges 

    std_len = std(LEN); % standerd deviation of all edge lengths 

    dL = std_len/avg_len; % distribution of link length 

    pdeg6 = dn(unique(deg) == 6)/sum(dn); % percentage of degree 6 nodes 

 

 % Element Area Quality 

    Q = zeros(Nt,1); % initialize element quality vector 
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    for i = 1:1:Nt 

 

        a = Elements(i,1); 

        b = Elements(i,2); 

        c = Elements(i,3); 

 

        xa = r(a,1); % x-coordinate of node a 

        ya = r(a,2); % y-coordinate of node a 

        za = r(a,3); % z-coordinate of node a 

        xb = r(b,1); % x-coordinate of node b 

        yb = r(b,2); % y-coordinate of node b 

        zb = r(b,3); % z-coordinate of node b 

        xc = r(c,1); % x-coordinate of node c 

        yc = r(c,2); % y-coordinate of node c 

        zc = r(c,3); % z-coordinate of node c 

 

        rab = [(xa - xb) (ya - yb) (za - zb)]; 

        rbc = [(xb - xc) (yb - yc) (zb - zc)]; 

        rca = [(xc - xa) (yc - ya) (zc - za)]; 

 

        Lab = sqrt(rab(1,1)*rab(1,1) + rab(1,2)*rab(1,2) + rab(1,3)*rab(1,3)); 

        Lbc = sqrt(rbc(1,1)*rbc(1,1) + rbc(1,2)*rbc(1,2) + rbc(1,3)*rbc(1,3)); 

        Lca = sqrt(rca(1,1)*rca(1,1) + rca(1,2)*rca(1,2) + rca(1,3)*rca(1,3)); 

 

        Q(i,1) = (Lbc + Lca - Lab)*(Lca + Lab - Lbc)*(Lab + Lbc - 

Lca)/(Lab*Lbc*Lca); % triangle quality 

        % % NOTE: Q >= 0.5 indicates triangle is of acceptable quality 

  % % max(Q) = 1 (for an equilateral triangle) 

  % % min(Q) = 0 (for a degenerate triangle) 

 

    end 

 

    Qa = sum(Q)/Nt; % arithmetic mean quality 

    Qh = Nt/sum(1./Q); % harmonic mean quality 

 

    % Gyration Tensor Calculations 

    Gyr = zeros(3,3); 

    Nv = length(r); 

    rx = r(:,1) - cx; 

    ry = r(:,2) - cy; 

    rz = r(:,3) - cz; 

    Gyr(1,1) = sum(rx.*rx)/Nv; 

    Gyr(1,2) = sum(rx.*ry)/Nv; 

    Gyr(1,3) = sum(rx.*rz)/Nv; 

    Gyr(2,1) = sum(ry.*rx)/Nv; 

    Gyr(2,2) = sum(ry.*ry)/Nv; 

    Gyr(2,3) = sum(ry.*rz)/Nv; 

    Gyr(3,1) = sum(rz.*rx)/Nv; 

    Gyr(3,2) = sum(rz.*ry)/Nv; 

    Gyr(3,3) = sum(rz.*rz)/Nv; 

    [eVect,eVals] = eig(Gyr); %#ok<ASGLU> 
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    L1 = eVals(1,1); 

    L2 = eVals(2,2); 

    L3 = eVals(3,3); 

    Rg = sqrt(L1^2 + L2^2 + L3^2); %#ok<NASGU> 

    asphericity = L3^2 - 0.5*(L1^2 + L2^2); %#ok<NASGU> 

    acylindricity = abs(L1^2 - L2^2); %#ok<NASGU> 

    RSA = sqrt((3/2)*((L1^4 + L2^4 + L3^4)/(L1^2 + L2^2 + L3^2)^2) - 1/2); % 

relative shape anisotropy 

 

end  
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A.1.9 f_save.m 

function [DATE_END] = f_save(save_flag,alert_case) 

% 

% Saves data from simulation of the Combined hRBC model to .mat file 

% 

% Produced in MATLAB by Stephen Oursler as a part of "A Proposed 

% Mechanical-Metabolic Model of the Human Red Blood Cell". 

% 

% CALLED BY: 

%   hRBC_Stretching_Simulation.m 

% 

% LOAD FILES: 

%   none 

% 

% INPUTS: 

%   save_flag: flag for saving data 

%       (0 = data is not saved, 1 = data is saved) 

%   alert_case: successful or unsuccessful completion 

%       (0 = unsuccessful completion, 1 = successful completion) 

% 

% OUTPUT: 

%   DATE_END: date and time of end of simulation 

% 

% GLOBAL VARIABLES: 

%   none 

% 

% SAVE FILE: 

%   DATA_hRBC_Stretching_Simulation... .mat 

%                              -or- 

%   ERROR_hRBC_Stretching_Simulation... .mat 

 

    DATE_END = datestr(now,'mm_dd_yyyy__HH_MM_SS'); % date and time of simulation 

completion 

 

    % Collect Variables from Workspace 

    TEMP_2 = evalin('caller','whos'); % record all variables from workspace 

 

    for i = 1:length(TEMP_2) 

 

        TEMP_3 = evalin('caller',[TEMP_2(i).name ';']); %#ok<NASGU> % get variable 

name 

        eval([TEMP_2(i).name,'= TEMP_3;']); % assign value to variable name 

 

    end 

 

    clear TEMP_2 TEMP_3 i 

 

    % Save Variables in .mat File 

    if save_flag == 1 
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        if alert_case == 0 % if unsuccessful completion 

 

            FILE_NAME = 

['ERROR_hRBC_Stretching_Simulation__',num2str(nt,2),'__',num2str(dt,2),'__',DATE_E

ND]; % file name 

 

        elseif alert_case == 1 % if successful completion 

 

            FILE_NAME = 

['DATA_hRBC_Stretching_Simulation__',num2str(nt,2),'__',num2str(dt,2),'__',DATE_EN

D]; % file name 

 

        end 

 

        

save([FILE_NAME,'.mat'],'DATE_START','DATE_END','NOTE','A0t','Ak','AREA','CON','CO

N_p','CON_t','CONC','Elements','Fx','dt','L0','Links','LEN','Lm','n_error','nt','n

um_dis','r','r0','t_end','U_LINKS','U_AREA_loc','U_AREA_g','U_VOLUME','U_BENDING',

'U_TOT','V_TOT','VOLUME','vel','Xmax','Xmin') 

 

    end 

 

end 
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A.1.10 hRBC_Parameter_Derivation.m 

% hRBC_Parameter_Derivation 

% 

% Calculates all the parameters of the hRBC model that are used in 

% simulations and saves the results in a .mat file. 

% 

% Produced in MATLAB by Stephen Oursler as a part of "A Proposed 

% Mechanical-Metabolic Model of the Human Red Blood Cell". 

% 

% CALLED BY: 

%   none 

% 

% LOAD FILES: 

%    hRBC_Triangulation.mat 

% 

% INPUTS: 

%   none 

% 

% OUTPUTS: 

%   none 

% 

% GLOBAL VARIABLES: 

%   none 

% 

% SAVE FILES: 

%   hRBC_Parameters.mat 

 

clear all 

close all 

clc 

 

 

% Load Data: 

load('hRBC_Triangulation.mat') % triangulation and initial node locations 

 

 

% Given Parameters: 

% Constants 

Na = 6.0221415e23; % Avogadro constant [1/mol] 

kB = 1.380653e-23; % Boltzmann constant [J/K] 

T = 23 + 273.15; % temperature [K] 

kBT = kB*T; 

 

% hRBC 

D0 = 7.82e-6; % diameter [m] 

rho_w = 993.68; % density of water [kg/m^3] 

rho_hRBC = 1.15*rho_w; % density of hRBC [kg/m^3] 

A0t = 135e-12; % equilibrium global area [m^2] 

V0t = 94e-18; % equilibrium volume [m^3] 

u0 = 6.3e-6; % observed linear elastic shear modulus [N/m] 
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    % % NOTE: 

    % % Shear deformation is area-preserving, therefore only spring forces 

    % % contribute to the membrane shear modulus 

 

% WLC 

x0 = 1/2.2; % L0/Lm ratio [unitless] 

 

% POW 

m = 2; % power law exponent [unitless] 

kc = 2.4e-19; % bending rigidity [J] 

 

% LJ 

S = 22 + 17; % number of links in spectrin chain (imaginary quanity) [unitless] 

Ka = 1e12; % equilibrium association constant of S-A bond [unitless] 

 

% Dissociation 

wt = 1/(1e7/5); % wait-time (before link reassociation) [s] 

    % % NOTE: 

    % % wt = 1/k_d, where k_d is the rate of link dissociation 

 

% Viscosity 

no = 1.2e-3; % blood plasma viscosity [N s/m^2] 

ni = 5*no; % cytoplasm viscosity [N s/m^2] 

nm = 22e-3; % membrane viscosity [N s/m^2] 

ma = 6.974263464e-23; % mass of Actin node [kg] 

rho_a = 1.41e3; % density of Actin node [kg/m^3] 

 

 

% Derived Parameters: 

% WLC-POW 

Nt = 2*Nv - 4; % number of triangles (elements) 

Ns = 3*Nt/2; % number of sides (links) 

A0 = A0t/Nt; % average area of individual triangle [m^2] 

L0_eff = sqrt(4*A0/sqrt(3)); % effective equilibrium length [m] 

up = 2*u0; % actual linear elastic shear modulus [N/m] 

    % % NOTE: 

    % % enforcing condition that u0 = up/2 due to partially connected network 

 

Y = 3.92453*up; % Young's modulus [N/m] 

K = (Y*up)/(4*up - Y); % Area-compression modulus (2-D Bulk modulus) [N/m] 

v = (K - up)/(K + up); % Poisson's ratio (since 2-D, v = 1 gives a incompressible 

material, instead of v = 0.5) [unitless] 

Lm = L0_eff/x0; % maximum length of spectrin extension (contour length) [m] 

kb = 2*kc/sqrt(3); % bending stiffness [J] 

theta0 = acos((sqrt(3)*(Nv - 2) - 5*pi)/(sqrt(3)*(Nv - 2) - 3*pi)); % equilibrium 

angle [rad] 

 

syms Lp kp 

eqn1 = (sqrt(3)*kBT)/(4*Lp*Lm*x0)*(x0/(2*(1 - x0)^3) - 1/(4*(1 - x0)^2) + 1/4) + 

sqrt(3)*kp*(m + 1)/(4*L0_eff^(m + 1)); % symbolic expression for WLC-POW shear 

modulus at effective equilibrium length, f(Lp,kp) 

Lp = eval(solve(eqn1 - u0,Lp)); % symbolic expression for persistence length 

eqn2 = kp/(L0_eff^m) - (kBT/Lp)*(1/(4*(1 - x0)^2) - 1/4 + x0); % symbolic 
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expression for spring forces at effective equilibrium length, f(kp) 

kp = eval(solve(eqn2,kp)); % POW spring constant [N m^2] 

Lp_p = eval(Lp); % original persistence length [m] 

clear Lp 

syms L Lp 

xn = L/Lm; % normalized extension [unitless] 

eqn3 = (sqrt(3)*kBT)/(4*Lp*L)*((L/Lm)/(2*(1 - (L/Lm))^3) - 1/(4*(1 - (L/Lm))^2) + 

1/4) + sqrt(3)*kp*(m + 1)/(4*L^(m + 1)); % symbolic expression for WLC-POW shear 

modulus, f(L,Lp) 

eqn4  = (kBT/kp)*(L^m)*(1/(4*(1 - xn)^2) - 1/4 + xn); % symbolic expression for 

persistence length, f(L) 

eqn5 = subs(eqn3,Lp,eqn4); % symbolic expression for WLC-POW shear modulus, f(L) 

val = solve(eqn5 - up,L); % symbolic expression for equilibrium length 

L0 = eval(val(2,1)); % equilibrium length [m] 

clear val 

Lp = subs(eqn4,L,L0); % persistence length [m] 

Lavg = sqrt(2*Lp*Lm - 2*(Lp^2)*(1 - exp(-Lm/Lp))); % average end-to-end spring 

length [m] (from polymer dynamics) 

clear L 

 

% LJ 

r0 = Lm/(S - 1); % equilibrium length of links in spectrin chain [unitless] 

Eng = kB*T*log(Ka); % association energy of S-A bond [J] 

sig = 2*r0/(2^(1/6)); % characteristic interaction length scale [m] 

xmin = sig*(26/7)^(1/6); % location of minimum of LJ force curve (point of 

inflection on LJ energy curve) [m] 

eff_a = L0 - 2*r0; % effective length #1 [m] 

xmin1 = sig*(26/7)^(1/6) + eff_a; % location of minimum of LJ force (when shifted 

to align with L0 for Ft1) [m] 

 

syms L 

Flj = 24*Eng*(2*(sig^12)/((L - eff_a)^13) - (sig^6)/((L - eff_a)^7)); % attractive 

LJ force (shifted to align with L0 for Ft1) [N] 

Fmin = subs(Flj,L,xmin1); % magnitude of force required to break S-A bond (minimum 

of LJ force curve) [N] 

Fpow = kp/(L^m); % repulsive POW force [N] 

xn = L/Lm; % normalized length [unitless] 

Fwlc = -(kB*T/Lp)*(1/(4*(1 - xn)^2) - 1/4 + xn); % attractive WLC force [N] 

F0 = Fpow + Fwlc; % total force in original model [N] 

xmin2 = solve(F0 - Fmin,L); % symbolic expression for location of maximum 

attractive force (before spectrin filament "breaks" due to S-A bond) on original 

model [m] 

xcut = eval(xmin2(3,1)); % location of maximum attractive force (before spectrin 

filament "breaks" due to S-A bond) on original model [m] 

adjx = xcut - xmin; % effective length #2 [m] 

 

 

% Scaling Parameters: 

% Necessary because parameters given in Fedosov are non-dimensionalized 

 

D0_M = 15.87; % scaled diameter (for Nv_M = 27344) [unitless] 

Y0_M = 392.453; % scaled Young's modulus [unitless] 

ka_M = 4900; % scaled global area constraint constant [unitless] 
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kd_M = 100; % scaled local area constraint constant [unitless] 

kv_M = 5000; % scaled volume constraint constant [unitless] 

 

r_M = D0/D0_M; % length scaling parameter [m] 

kBT_M = (Y/Y0_M)*(D0/D0_M)^2; % energy scaling parameter [J] 

N_M = kBT_M/r_M; % force scaling parameter [N] 

 

 

% Solve for Other Spring Parameters: 

% Using Scaling Parameters 

ka = ka_M*N_M/r_M; 

kd = kd_M*N_M/r_M; 

kv = kv_M*N_M/(r_M^2); 

 

 

% Save Parameters: 

DATE_hRBC_Parameters = datestr(now,'mm_dd_yyyy__HH_MM_SS'); % date and time of 

completion of parameter derivation 

save('hRBC_Parameters.mat','DATE_hRBC_Parameters','A0','A0t','adjx','Eng','kB','ka

','kb','kd','kp','kv','L0','Lm','Lp','m','ma','Na','Ns','Nt','Nv','ni','nm','no','

rho_a','rho_hRBC','sig','T','theta0','V0t','x0','xcut','wt') 
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A.1.11 hRBC_Stretching_Simulation.m 

% hRBC_Stretching_Simulation 

% 

% Performs a stretching simulation of the Combined hRBC model 

% 

% Produced in MATLAB by Stephen Oursler as a part of "A Proposed 

% Mechanical-Metabolic Model of the Human Red Blood Cell". 

% 

% CALLED BY: 

%   none 

% 

% LOAD FILES: 

%   hRBC_Triangulation.mat 

%   hRBC_Parameters.mat 

% 

% INPUTS: 

%   none 

% 

% OUTPUTS: 

%   none 

% 

% GLOBAL VARIABLES: 

%   A0: equilibrium local area 

%   A0t: equilibrium global area 

%   adjx: effective length in LJ 

%   CONC_SA_max: 

%   Eng: association energy of spectrin-actin bond 

%   kB: Boltzmann constant 

%   ka: global area constraint 

%   kb: bending constraint 

%   kd: local area constraint 

%   kp: POW constraint 

%   kv: volume constraint 

%   L0: equilibrium length of links 

%   Lm: contour length of links 

%   Lp: persistence length of links 

%   m: exponent in POW 

%   ma: mass of an actin node 

%   Na: Avogadro constant 

%   Ns: number of links 

%   Nt: number of triangles 

%   Nv: number of nodes 

%   ni: viscosity of cytoplasm 

%   nm: viscosity of cell membrane 

%   no: viscosity of blood plasma 

%   rho_a: density of an actin node 

%   sig: characteristic interaction length scale in LJ 

%   T: temperature 

%   theta0: 

%   V0t: equilibrium volume 
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%   VOLUME: actual volume 

%   x0: ratio of equilibrium length of links to contour length of links 

%   xcut: location of maximum attractive force in LJ 

% 

% SAVE FILES: 

%   none (see f_save.m) 

 

clear all 

close all 

clc 

 

 

% Pre-Simulation Setup: 

DATE_START = datestr(now,'mm_dd_yyyy__HH_MM_SS'); % date and time of simulation 

initiation 

 

global A0 A0t adjx CONC_SA_max Eng kB ka kb kd kp kv L0 Lm Lp m ma Na Ns Nt Nv ni 

nm no rho_a sig T theta0 V0t VOLUME x0 xcut 

 

load('hRBC_Parameters.mat') % parameters 

load('hRBC_Minimized.mat','Elements','Links','bending_pts','r','CON','CONC','LEN',

'VOLUME') % triangulation and initial conditions 

 

% Flags (0 = off, 1 = on): 

save_flag = 0; % flag for saving variables 

SS_flag = 1; % flag for running stretching simulation 

plotting_flag = 0; % flag for plotting results of stretching simulation 

print_flag = 0; % flag for saving plots 

 

% Basic Simulation Parameters: 

nt = 2e4; % number of time steps [unitless] 

dt = 2.5e-8; % length of time step [s] 

Fx = 50e-12; % magnitude of applied force [N] 

NOTE = ''; % details about simulation (for saving) 

 

nwt = round(wt/dt); % maximum number of time steps in wait time counter [unitless] 

Lam = 0.63; % verlet integration term [unitless] 

MASS = rho_hRBC*VOLUME/Nv; % nodal mass of hRBC [kg] 

r0 = r; % record initial positions [m] 

 

options = odeset('AbsTol',1e-12,'RelTol',1e-12,'MassSingular','no'); % ode15s 

options 

 

% Initialize/Declare Arrays/Vectors/Terms: 

vel = zeros(Nv,3); % initialize current velocity array to zero [m/s] 

acc = zeros(Nv,3); % initialize current acceleration array to zero [m/s^2] 

vel_p = zeros(Nv,3); % initialize previous velocity array to zero [m/s] 

 

U_LINKS = zeros(nt,1); % initialize in-plane potential energy vector [J] 

U_AREA_loc = zeros(nt,1); % initialize local area potential energy vector [J] 

U_AREA_g = zeros(nt,1); % initialize global area potential energy vector [J] 

U_VOLUME = zeros(nt,1); % initialize volume potential energy vector [J] 

U_BENDING = zeros(nt,1); % initialize bending potential energy vector [J] 
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U_TOT = zeros(nt,1); % initialize total potential energy vector [J] 

V_TOT = zeros(nt,1); % initialize total kinetic energy vector [J] 

E_TOT = zeros(nt,1); % initialize total energy vector [J] 

 

F_C = zeros(Nv,3); % initialize conservative force array 

F_D = zeros(Nv,3); % initialize dissipative force array 

F_TOT = zeros(Nv,3); % initialize total force array 

F_TOT_p = zeros(Nv,3); % initialize previous total force array 

F_APP = zeros(Nv,3); % array of applied force 

 

CON_p = ones(Ns,1); % initialize permanent connnectivity vector 

NUM = transpose(1:1:Ns); % declare vector of numerics 

V_links = zeros(Ns,1); % initialize selected links vector 

WT = zeros(Ns,1); % initialize wait time counter vector 

CON_t = zeros(nt,1); % initialize connectivity as a function of time vector 

 

for i = 1:1:Ns 

 

    if CON(i,1) == 0 

 

        WT(i,1) = randi(nwt,1); % set wait time counters of initially disconnected 

links to values selected from uniform random distribution 

 

    end 

 

end 

 

WEIGHTS = LEN; % vector of selection weights, based on current stretch of links 

WEIGHTS(CON == 0) = 0; % set selection weights of initially disconnected links to 

0 

weights = WEIGHTS./sum(WEIGHTS); % normalized vector of selection weights 

VL = VOLUME*1e3; % update volume [L] 

num_avail = Ns; % initial number of links available to dissociate 

CONC_SA_max = (num_avail/Na)/VL; % set current maximum concentration of links 

[mol/L], [M] 

 

% Setup Stretching Parameters: 

nn = round(0.02*Nv); % number of nodes force is applied to 

Xv(:,1) = r(:,1); 

[~,sI] = sort(Xv); 

Imin = sI; 

Imax = flipud(sI); 

Xmin = Imin(1:nn,1); % indicies of nodes negative force is applied to 

Xmax = Imax(1:nn,1); % indicies of nodes positive force is applied to 

 

if SS_flag == 1 

 

    for i = 1:1:nn 

 

        F_APP(Xmin(i,1),1) = -Fx/nn; 

        F_APP(Xmax(i,1),1) = Fx/nn; 

 

    end 
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else 

 

    Fx = 0; 

 

end 

 

clear Xv sI Imax Imin 

 

 

% Simulation: 

tstart = tic; % initialize start time of simulation (wall time) 

 

for t = 1:1:nt 

 

    % Update Numerical Integration Time Span: 

    tb = t*dt - dt; % (time before) time at beginning of time step [s] 

    ta = t*dt; % (time after) time at end of time step [s] 

 

 % Break Overextended Links: 

 CON_p((LEN > Lm) & (CON == 1)) = 0; % break currently connected links with 

with a length > Lm 

    CON(CON_p == 0) = 0; %#ok<SAGROW> % set connectivity of links permanently to 

zero 

    num_avail = sum(CON_p); % update maximum number of links available to 

reconnect 

    CONC_SA_max = (num_avail/Na)/VL; %#ok<NASGU> % update current maximum 

concentration of links [mol/L], [M] 

 

    % Reconnect Links and Update Wait Time Counters: 

    num_reas = sum(WT == 1); % number of links reassociating this time step 

[unitless] 

    WT(WT > 0) = WT(WT > 0) - 1; % decrement number of timesteps left in wait time 

counter by one 

    WT(WT < 0) = 0; % set wait time counters less than zero back to zero (should 

only happen due to an error) 

    CON(WT == 0) = 1; %#ok<SAGROW> % update connectivity of reassociateded links 

 

    % Update Selection Weights: 

    WEIGHTS(WT == 0) = LEN(WT == 0); % update vector of selection weights to 

current link lengths 

 

 

    WEIGHTS(LEN > Lm) = 0; % set selection weights of links with a length > Lm to 

zero 

    weights = WEIGHTS./sum(WEIGHTS); % update normalized vector of positive 

weights 

 

    % Solve for Current Metabolite Concentrations: 

    [~,X] = ode15s(@f_metabolism_mex,[tb ta],CONC,options); 

    CONC = transpose(X(end,:)); % update current metabolite concentrations 

[mol/L], [M] 

    clear X % clear array of metabolite concentrations during timestep [mol/L], 
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[M] 

 

    % Solve for Number of Links to Dissociate: 

    num_dis = round(sum(CON) - floor(CONC(57,1)*Na*VL)); % number of links to 

dissociate in current timestep [unitless] 

 

    if ~(isscalar(num_dis) && isnumeric(num_dis) && (num_dis == round(num_dis))) % 

error if number of nodes to dissociate greater than threshold value 

 

        n_error = t; %#ok<NASGU> % record timestep where error occured 

        f_save(save_flag,0); % save data to error dump 

        error('Error: Invalid number of nodes to dissociate'); 

 

    end 

 

    num_dis(num_dis < 0) = 0; % set number of links dissociated in current 

timestep < 0 to 0 (for datasample, num_dis must be >= 0) [unitless] 

 

    % Select Links to Dissociate and Dissociate Links: 

    V_links(1:num_dis,1) = 

datasample(NUM,num_dis,'Replace',false,'Weights',weights); % selection of links to 

dissociate in current timestep [unitless] 

    [WT,CON,WEIGHTS] = f_diss_mex(WT,CON,WEIGHTS,num_dis,nwt,V_links); % 

dissociates selected links 

    V_links = zeros(Ns,1); % re-initialize selected links vector 

 

    if sum(CON) < 0.3*num_avail % error if connectivity is less than threshold 

value 

 

        n_error = t; %#ok<NASGU> % record timestep where error occured 

        f_save(save_flag,0); % save data to error dump 

        error('Error: Invalid connectivity'); 

 

    end 

 

    % Solve for New Positions and Intermediate Velocities Based on Current Forces: 

    MASS = rho_hRBC*VOLUME/Nv; % update mass per node [kg] 

    acc = F_TOT./MASS; % current accelerations [m/s^2] 

    r = r + vel.*dt + 0.5.*acc.*(dt^2); % new positions [m] 

    vel_p = vel; % update previous velocities [m/s] 

    vel = vel + Lam.*acc.*dt; % intermediate velocities [m/s] 

 

    % Solve for Forces and Potential Energies: 

    [F_C,U1,U2,U3,LEN,Ak,AREA] = 

f_cons_forces_mex(Links,Elements,bending_pts,r,CON); % calculate conservative 

forces and energies 

    F_D = f_diss_forces_mex(Links,vel,F_C); % calculate dissipative forces 

    F_TOT = F_C + F_D + F_APP; % new total forces [N] 

 

    U_LINKS(t,1) = U1; % links potential energy [J] 

    U_BENDING(t,1) = U2; % bending potential energy [J] 

    U_AREA_loc(t,1) = U3; % local area potential energy [J] 

    U_AREA_g(t,1) = ka*((AREA - A0t)^2)/(2*A0t); % global area potential energy 
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[J] 

    U_VOLUME(t,1) = kv*((VOLUME - V0t)^2)/(2*V0t); % volume potential energy [J] 

    U_TOT(t,1) = U_LINKS(t,1) + U_AREA_loc(t,1) + U_AREA_g(t,1) + U_VOLUME(t,1) + 

U_BENDING(t,1); % total potential energy [J] 

 

    if U_TOT(t,1) > 1e-3 % error if potential energy is greater than threshold 

value 

 

        n_error = t; %#ok<NASGU> % record timestep where error occured 

        f_save(save_flag,0); % save data to error dump 

        error('Error: Invalid potential energy'); 

 

    end 

 

    % Solve for New Velocities and Kinetic Energy: 

    MASS = rho_hRBC*VOLUME/Nv; % update mass per node [kg] 

    acc = (F_TOT_p + F_TOT)./MASS; % current accelerations [m/s^2] 

    vel = vel_p + acc.*dt; % new velocities [m/s] 

    F_TOT_p = F_TOT; % update previous forces [N] 

    V_TOT(t,1) = f_ke_mex(vel,MASS); % total kinetic energy [J] 

 

    % Update Connected Link Concentrations and Total Energy: 

    VL = VOLUME*1e3; % update volume (in Liters) [L] 

    CONC_SA_max = (num_avail/Na)/VL; % update current maximum concentration of 

links [mol/L], [M] 

    CONC(57,1) = (sum(CON)/Na)/VL; % update current connected link concentration 

[mol/L], [M] 

    CON_t(t,1) = sum(CON)/Ns; % record current connected link ratio (debugging) 

[unitless] 

    E_TOT(t,1) = U_TOT(t,1) + V_TOT(t,1); % total energy [J] 

 

    % Calculate Simulation Time and Output Progress: 

    t_end = toc(tstart); % total elapsed time (real-time) at end of current 

timestep [s] 

    n_error = nt; % record last step of simulation 

    fprintf('After %d timesteps, the total potential energy is %e 

[J].\n',t,U_TOT(t,1)) 

    fprintf('The elapsed time is %d minute(s) and %f 

seconds.\n\n',floor(t_end/60),rem(t_end,60)) 

 

end 

 

 

% Post-Simulation: 

[ts_len,ts_ratio,t_sim_t,U_AVG,V_AVG,E_AVG,DT,DA,EI,r_deg,dL,pdeg6,Qa,Qh,RSA] = 

f_pp(r,t_end,nt,dt,Elements,Links,LEN,U_TOT,V_TOT); % post processing calculations 

n_end = t; % save final time step 

[DATE_END] = f_save(save_flag,1); % save data 

 

if plotting_flag == 1 

 

    

f_plotting(nt,dt,U_LINKS,U_AREA_loc,U_AREA_g,U_VOLUME,U_BENDING,V_TOT,CON_t,CON_p,
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r,r0,Fx,Xmin,Xmax,Ak,Elements,Links,LEN,CON,print_flag); % plotting of data and 

exporting of plots 

 

end 
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A.1.12 hRBC_Triangulation.m 

% hRBC_Triangulation 

% 

% Generates a triangulation for the Combined hRBC model using 

% the distmeshsurface function 

% 

% Produced in MATLAB by Stephen Oursler as a part of "A Proposed 

% Mechanical-Metabolic Model of the Human Red Blood Cell". 

% 

% CALLED BY: 

%   none 

% 

% LOAD FILES: 

%   none 

% 

% INPUTS: 

%   none 

% 

% OUTPUTS: 

%   none 

% 

% GLOBAL VARIABLES: 

%   none 

% 

% SAVE FILES: 

%   hRBC_Triangulation.mat 

 

clear all 

close all 

clc 

 

 

% Create Triangulation: 

D0 = 7.82e-6; % hRBC diameter [m] 

a0 = 0.00518; % shape equation constant 1 [unitless] 

a1 = 2.0026; % shape equation constant 2 [unitless] 

a2 = -4.491; % shape equation constant 3 [unitless] 

 

bbox = [-4e-6,-4e-6,-4e-6;4e-6,4e-6,4e-6]; % extreme corners of bounding box (for 

triangulation) [m] 

h0 = 0.08108966e-6; % initial grid spacing in bounding box [m] 

 

fd = @(p) D0^2*(1 - 4*(p(:,1).^2 + p(:,2).^2)/(D0^2)).*(a0 + a1*(p(:,1).^2 + 

p(:,2).^2)/(D0^2) + a2*((p(:,1).^2 + p(:,2).^2).^2)/(D0^4)).^2 - p(:,3).^2; 

[p,tri] = distmeshsurface(fd,@huniform,h0,bbox); % perform triangulation 

 

 

% Extract Data from Triangulation: 

TR = TriRep(tri, p(:,1), p(:,2), p(:,3)); % create TriRep class 

Links = edges(TR); % generate Links array 
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nodes = p; % assign p to nodes 

Elements = tri; % assign tri to Elements 

Nv = length(nodes); % number of nodes [unitless] 

Nt = length(Elements); % number of elements [unitless] 

Ns = length(Links); % number of links [unitless] 

 

[TRILinks,bending_pts] = f_connectivity(Links,Elements); % generate TRILinks and 

bending_pts matrices 

 

 

% Evaluate Triangulation Quality: 

% Vertex Degree Quality: 

bc = histc(Links,unique(Links)); % count number of times each node appears in 

Links array 

deg = bc(:,1) + bc(:,2); % total degree of each node 

dn = histc(deg,unique(deg)); % number of nodes of each degree 

r_deg = [unique(deg) dn]; % table of vertex degree results 

 

min_deg = min(deg); %#ok<NASGU> % minimum degree present 

max_deg = max(deg); %#ok<NASGU> % maximum degree present 

avg_deg = mean(deg); %#ok<NASGU> % average degree of all nodes 

std_deg = std(deg); %#ok<NASGU> % standerd deviation of all node degrees 

avg_len = mean(LEN); % average length of all edges 

std_len = std(LEN); % standerd deviation of all edge lengths 

dL = std_len/avg_len; % distribution of link length 

pdeg6 = dn(unique(deg) == 6)/sum(dn); % percentage of degree 6 nodes 

 

% Element Area Quality: 

Q = zeros(Nt,1); % initialize element quality vector 

 

for i = 1:1:Nt 

 

    a = Elements(i,1); 

    b = Elements(i,2); 

    c = Elements(i,3); 

 

    xa = r(a,1); % x-coordinate of node a 

    ya = r(a,2); % y-coordinate of node a 

    za = r(a,3); % z-coordinate of node a 

    xb = r(b,1); % x-coordinate of node b 

    yb = r(b,2); % y-coordinate of node b 

    zb = r(b,3); % z-coordinate of node b 

    xc = r(c,1); % x-coordinate of node c 

    yc = r(c,2); % y-coordinate of node c 

    zc = r(c,3); % z-coordinate of node c 

 

    rab = [(xa - xb) (ya - yb) (za - zb)]; 

    rbc = [(xb - xc) (yb - yc) (zb - zc)]; 

    rca = [(xc - xa) (yc - ya) (zc - za)]; 

 

    Lab = sqrt(rab(1,1)*rab(1,1) + rab(1,2)*rab(1,2) + rab(1,3)*rab(1,3)); 

    Lbc = sqrt(rbc(1,1)*rbc(1,1) + rbc(1,2)*rbc(1,2) + rbc(1,3)*rbc(1,3)); 
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    Lca = sqrt(rca(1,1)*rca(1,1) + rca(1,2)*rca(1,2) + rca(1,3)*rca(1,3)); 

 

    Q(i,1) = (Lbc + Lca - Lab)*(Lca + Lab - Lbc)*(Lab + Lbc - Lca)/(Lab*Lbc*Lca); 

% triangle quality 

    % % NOTE: Q >= 0.5 indicates triangle is of acceptable quality 

    % % max(Q) = 1 (for an equilateral triangle) 

    % % min(Q) = 0 (for a degenerate triangle) 

 

end 

 

Qa = sum(Q)/Nt; % arithmetic mean quality 

Qh = Nt/sum(1./Q); % harmonic mean quality 

 

% Gyration Tensor Calculations: 

Gyr = zeros(3,3); 

Nv = length(r); 

rx = r(:,1) - cx; 

ry = r(:,2) - cy; 

rz = r(:,3) - cz; 

Gyr(1,1) = sum(rx.*rx)/Nv; 

Gyr(1,2) = sum(rx.*ry)/Nv; 

Gyr(1,3) = sum(rx.*rz)/Nv; 

Gyr(2,1) = sum(ry.*rx)/Nv; 

Gyr(2,2) = sum(ry.*ry)/Nv; 

Gyr(2,3) = sum(ry.*rz)/Nv; 

Gyr(3,1) = sum(rz.*rx)/Nv; 

Gyr(3,2) = sum(rz.*ry)/Nv; 

Gyr(3,3) = sum(rz.*rz)/Nv; 

[eVect,eVals] = eig(Gyr); %#ok<ASGLU> 

 

L1 = eVals(1,1); 

L2 = eVals(2,2); 

L3 = eVals(3,3); 

Rg = sqrt(L1^2 + L2^2 + L3^2); %#ok<NASGU> 

asphericity = L3^2 - 0.5*(L1^2 + L2^2); %#ok<NASGU> 

acylindricity = abs(L1^2 - L2^2); %#ok<NASGU> 

RSA = sqrt((3/2)*((L1^4 + L2^4 + L3^4)/(L1^2 + L2^2 + L3^2)^2) - 1/2); % relative 

shape anisotropy 

 

 

% Save Triangulation Data: 

DATE_hRBC_Triangulation = datestr(now,'mm_dd_yyyy__HH_MM_SS'); % date and time of 

simulation completion 

save('hRBC_Triangulation.mat','DATE_hRBC_Triangulation','bending_pts','Elements','

Links','Ns','Nt','Nv','nodes')  



210 

 

A.1.13  vcross.m 

function o = vcross(s,t) %#codegen 

% 

% Accelerated version of the cross product 

% 

% Produced in MATLAB by Stephen Oursler as a part of "A Proposed 

% Mechanical-Metabolic Model of the Human Red Blood Cell". 

% 

% CALLED BY: 

%   f_cons_forces.m 

% 

% LOAD FILES: 

%   none 

% 

% INPUTS: 

%   s: vector 1 

%   t: vector 2 

% 

% OUTPUTS: 

%   o: cross product of vector 1 and vector 2 

% 

% GLOBAL VARIABLES: 

%   none 

% 

% SAVE FILES: 

%   none 

 

    o = [(s(1,2)*t(1,3) - s(1,3)*t(1,2)) (s(1,3)*t(1,1) - s(1,1)*t(1,3)) 

(s(1,1)*t(1,2) - s(1,2)*t(1,1))]; 

 

end 
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