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Carbon emission from human activities has changed the Earth’s overall climate and 

intensified extreme weather and climate events. Climate risks are regionally uneven 

due to different vulnerability levels of populations, infrastructures, and natural 

resources. Assessing local-scale risk is important in supporting climate preparation, 

adaptation planning, and policy development for cities to overcome climate change. 

 

This dissertation developed the Asynchronous Regional Regression Model (ARRM) 

that statistically downscales data of Coupled Model Intercomparison Project Phase 

Five (CIMP5) into locations of observing stations, employed the Weather Research 

and Forecasting (WRF) model that dynamically downscales data of Community Earth 

System Model version one (CESM1) into fine-grid results, and proposed a framework 

to assess adaptation strategies for vulnerable infrastructure systems incorporating the 



  

probabilistic risk approach. Based on those models and methods, this dissertation 

projected the trend and level of the urban heat island (UHI) effect and heat waves in 

the rest of the 21st century for Washington D.C. and its surrounding areas, evaluated 

mitigation options for heat waves, and assessed adaptation strategies for electrical 

power systems in such area.  

 

Projections based on the higher greenhouse gas (GHG) concentration scenario, 

Representative Concentration Pathway (RCP) 8.5, indicate a growing trend of heat 

waves at Washington D.C. in the rest of the century. The amplitude of heat waves 

may grow by 5.7°C, and frequency and duration may increase by more than twofold 

by the end of the century. The UHI effect may increase in summer and decrease in 

winter. The lower scenario, RCP 2.6, leads to slight decay of heat waves after a half-

century of increase, and a minor change in the UHI effect. 

 

Five heat wave mitigation strategies based on cool roofs, green roofs, and reflective 

pavements were evaluated in three future time periods. Results indicated that 

applying cool roofs and green roofs in the city scale can effectively reduce heat wave 

amplitude and duration, whereas the effectiveness of reflective pavements is 

negligible. However, reflective pavements can be more cost-effective than green 

roofs because of their low initial and maintenance costs. 

 

Electrical power systems are particularly vulnerable to extreme heat. Results 

indicated that power outage risk caused by temperature rise may increase seventyfold 



  

in the Washington metro area by the end of the century. If summer peak load on the 

electrical grid is cut by three quarters, there would be a twentyfold increase instead. 

This reduction is achievable by installing solar panels on building roofs, which can 

add an average generation capacity of 13.02 GW to the existing power system. 

Increasing the use of rooftop photovoltaics (PV) can increase the level of benefits.  
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Chapter 1: Introduction 

1.1 Climate change 

1.1.1 Definition of climate change 

Carbon emission from human activities has changed the Earth’s overall climate and 

intensified extreme weather and climate events (IPCC 2013). Many of the observed 

changes are unprecedented over decades to millennia since the 1950s, including 

warmed atmosphere and ocean, diminished snow and ice, risen sea level, and 

increased concentration of greenhouse gasses (IPCC 2013). Carbon dioxide 

concentration has increased by 40% since the pre-industrial times, which is primarily 

attributable to fossil fuel combustion and secondarily to land use change (IPCC 

2013). Other greenhouse gases such as methane and nitrous oxide have augmented to 

levels unprecedented in the last 800,000 years (IPCC 2013). Increased greenhouse 

gases absorb and re-radiate extra Sun’s energy that is originally reflected back to 

space, heating the atmosphere and the Earth’s surface. 

 

Climate change is defined as: 

 A change in the state of the climate that can be identified (e.g., 

by using statistical test) by changes in the mean and/or the 

variability of its properties, and that persists for an extended 

period, typically decades or longer. Climate change may be due 

to natural internal processes or external forcings such as 
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modulations of the solar cycles, volcanic eruptions and persistent 

anthropogenic changes in the composition of the atmosphere or 

in land use (IPCC 1990).   

 

The United Nations Framework Convention on Climate Change (UNFCCC) defines 

climate change as: 

 A change of climate which is attributed directly or indirectly to 

human activity that alters the composition of the global 

atmosphere and which is in addition to natural climate variability 

observed over comparable time periods (United Nations 1992).   

 

 

The major difference between the two definitions is that the Intergovernmental Panel 

on Climate Change (IPCC) considers natural and anthropogenic impacts on the 

change of climate, while UNFCCC accounts for human’s contribution alone to such 

change. However, the four concentration trajectories adopted by IPCC ignore natural 

factors (e.g., volcano eruption) and focus on anthropogenic influence on future 

climate change (IPCC 2013). Therefore, IPCC and UNFCCC are consistent in 

projecting and evaluating climate change and its impacts. 
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1.1.2 Impacts of climate change 

• Temperature changes 

The global combined land and ocean surface temperature grew by 0.85°C on average 

over the last 140 years (IPCC 2013). The last three decades, 1983–2012, are likely the 

warmest 30-year period over the last 1,400 years for the North Hemisphere (IPCC 

2013). The annual average temperatures across the contiguous United States have 

risen by 1°C since the beginning of the 20th century, and additional increment of 2.8–

4.8°C is expected by the end of the 21st century (USGCRP 2017). 

 

• Precipitation changes 

The change in precipitation is seasonally and regionally different. The annual average 

precipitation across the United States has increased by 4% over the period of 1901–

2015 (USGCRP 2017). Precipitation increases largest in fall (10%), then in spring 

and summer (3.5%), and little change was observed in winter at the national level 

(USGCRP 2017). The Northeast, Midwest, and Great Plains regions experience 

increased precipitation, whereas Southwest and Southeast regions suffer from 

decreased precipitation (USGCRP 2017). 

 

• Sea level rise 

Sea level rise is driven by ice melting from mountain glaciers and the Antarctic and 

Greenland ice sheets, and by thermal expansion of ocean because rising temperature 

raises the volume of seawater. In addition, the change in global land-water storage 

(e.g., dams, reservoirs, groundwater, inland seas, wetlands) slightly affects the total 



 

 

4 

 

amount of ocean water. From the year 1901–2010, global mean sea level rose by 0.19 

m at an average rate of 1.7 mm/year (IPCC 2013). The rate of sea level rise increased 

to 2.0 mm/year during 1971–2010, and 3.2 mm/year during 1993–2010 (IPCC 2013).  

 

• Others 

The increase of temperature accelerates evapotranspiration, resulting in drier soils and 

fewer runoffs in the long run. The change in precipitation pattern may lead to 

increased drought in dry regions and intensified floods in wet regions. Climate 

change also propels ocean acidification, alters land use, and affects the ecosystem in a 

variety of ways (IPCC 2013; USGCRP 2017; USGCRP 2018). 

 

1.1.3 Methods to study climate change 

• Energy balance models (1950s) 

Energy balance models are the earliest and most basic numerical climate models, 

which simulate the balance between the energy entering the Earth’s atmosphere from 

the sun and the energy released back to space. The surface temperature of the Earth is 

the only variable considered in those models. 

 

• Radiative convective models (1960s – 1970s) 

Later researchers developed radiative-convective models by incorporating the vertical 

dimension (air convection) into energy balance models. These models can simulate 

energy transfer through the height of the atmosphere and calculate the temperature 

and humidity of different layers of the atmosphere.  
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• General circulation models/Global climate models (1970s – 1980s) 

The biggest challenge associated with general circulation models is high computation 

demand. Early general circulation models are designed to characterize the evolution 

of the dynamic and thermodynamic state of atmosphere or ocean. They can capture 

air and water flows and heat transfer in the atmosphere and oceans. Latterly, 

atmosphere and ocean models are coupled and named the coupled atmosphere-ocean 

general circulation models (AOGCMs). They are able to simulate the exchange of 

heat and water between the land, atmosphere, and ocean.  

 

• Earth system models (1990s – present) 

More complicated treatments of sea ice and land surface are then included into 

AOGCMs, along with sub-models of vegetation, ecosystems, and biogeochemical 

cycles (National Research Council of the National Academies 2012). These formed 

the Earth system model, which can simulate the carbon cycle, nitrogen cycle, 

atmospheric chemistry, ocean ecology, and changes in vegetation and land use. Earth 

system models greatly improve the understanding of how climate responses to 

increased greenhouse gas emission. 
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• Regional climate models (2000s – present) 

Regional climate models (RCMs) do similar work as global climate models/general 

circulation models (GCMs) but for a limited area of the Earth. Compared to GCMs, 

RCMs run more quickly and generate higher resolution results. RCMs (e.g., Weather 

Research and Forecasting model) can also be used to downscale global climate 

information to a local scale.   

 

• Integrated assessment models (2010s – present) 

Integrated assessment models incorporate socioeconomic factors (e.g., population, 

economic growth, energy use) into climate models, which allow projecting future 

greenhouse gas emissions, and evaluating policy options that could be deployed to 

tackle the emission problem. Six integrated assessment models have been developed 

so far to predict the impacts of climate change on the future world under five 

socioeconomic development pathways (Riahi et al. 2017).  

 

1.1.4 Current status of climate change studies 

• Climate projection 

The coupled model intercomparison project 

There are roughly 30 research groups that have developed their own climate models. 

These models are similar in the structure but different in details, such as physical 

schemes and the number of vertical layers. To enable comparison between the results 

of different models, the Coupled Model Intercomparison Project (CMIP) set up those 

models in the same way and used the same inputs. The Coupled Model 
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Intercomparison Project Phase Five (CMIP5) was published in the fifth IPCC climate 

change assessment report (IPCC 2013; IPCC 2014), incorporating the latest and most 

sophisticated climate model experiments worldwide (Wuebbles et al. 2014; Taylor et 

al. 2012). Compared to a single AOGCM, a multiple model ensemble has shown 

superior performance for historical climate assessment (Pierce et al. 2009), because 

coupling these models can take advantages of their strengths and compensate 

limitations. Compared to the previous model ensemble CMIP3, CMIP5 model 

ensemble has an increased spatial resolution, improved parametrizations, and 

additional trajectories for future assumptions, facilitating simulations for regional 

climate and projections under complicated future uncertainties (Sheffield et al. 2013a; 

Sheffield et al. 2013b; Taylor et al. 2012). The latest Coupled Model Intercomparison 

Project, CMIP6, is on the way and will form the basis of the sixth IPCC assessment 

report to be released in 2020 (Eyring et al. 2016). 

 

Weighted and unweighted multiple model ensemble 

The CMIP5 archive contains simulations of 29 institutions and 62 models. Some of 

the models are similar to the others because they share the same physical schemes and 

numerical methods. The fifth climate assessment of IPCC (IPCC 2013) and the third 

national climate assessment (USGCRP 2014) considered each model to be equally 

likely in depicting future climate change, whereas the fourth national climate 

assessment (USGCRP 2017) adopted a weighting strategy to coupling models based 

on their skills and independence. Sanderson et al. (2017) indicated that the overall 

performance of the weighted model ensemble can be better than that of model 
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democracy, especially when selected models are significantly independent of each 

other. However, there is a tradeoff between model skills and model uniqueness, 

which may weaken the performance of weighted models. Model skills determine if 

the simulation is of sufficient accuracy, while model uniqueness ensures that 

uncertainties and bias are small enough. It should be noted that the weighting varies 

for varied regions because the capacity of models is different in simulating the 

climate of different geographical regions. 

 

Representative Concentration Pathways  

The inputs for CMIP5 standard model ‘r1i1p1’ include NO/NO2/NH3 emissions 

caused by deposition and fertilization in croplands, anthropogenic land use change, 

interactive carbon-nitrogen cycling, carbon-nitrogen dynamics, and CH4 emissions on 

peatlands (Stocker et al. 2013). Four trajectories are devised to address the future 

uncertainties regarding emissions and concentrations of greenhouse gasses, aerosols, 

land change, and solar radiations (IPCC 2013). The four trajectories are 

Representative Concentration Pathways (RCP) 2.6, RCP 4.5, RCP 6.0, and RCP 8.5, 

corresponding to radiative forcing of 2.6, 4.5, 6.5, and 8.5 W/m2 by 2100, 

respectively (IPCC 2013). Radiative forcing is defined as the net change in the energy 

balance of the Earth system because of natural and anthropogenic substances and 

processes, relative to the reference year of 1750 (IPCC 2013). The four trajectories 

assume CO2 concentrations of 421, 538, 670, and 936 ppm by 2100, and greenhouse 

gas concentrations (CO2, CH4, N2O) of 475, 630, 880, and 1313 ppm by 2100, 

respectively (IPCC 2013).  
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Downscaling techniques 

Climate change impacts regions and populations unevenly, dependent on 

geographical, socioeconomic, and technological conditions. Assessing local-scale 

climate impacts requires high-resolution climate data, and therefore downscaling 

techniques were utilized to generate local detailed information based on global coarse 

simulation. Downscaling is a procedure to take information known at large scales 

to make a prediction at local scales. The dynamical downscaling technique uses the 

data of GCMs as initial and lateral boundaries of the outermost domain and employs 

RCMs to calculate climate conditions of nested domains. The nested domains have a 

much higher resolution compared to parent domains. Increasing the number of nested 

domains can improve the grid resolution of simulation exponentially. The statistical 

downscaling technique utilizes statistical approaches to adjust information of GCM to 

local results, including the use of mean bias correction, mean and variance bias 

correction, and quantile methods.  

 

• Climate mitigation and adaptation 

Climate change mitigation intends to reduce greenhouse gas emission and 

concentration in the atmosphere. Climate change adaptation means to take 

appropriate action to prevent and minimize damages and to take advantages of 

opportunities created by such change. 
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Paris Agreement 

The Paris Agreement took effect in 2016 and brought all nations into a common cause 

to prevent the rise of global temperatures this century above 2°C relative to pre-

industrial levels, and to make further efforts to limit the temperature increase to 1.5°C 

(UNFCCC 2016). The Paris Agreement has acted as a signal to the world that it is 

time for strong climate actions, and a large number of governments, businesses, and 

individuals have joined the movement.  

 

Climate plans of Washington D.C. 

Washington D.C. including its surrounding suburbs is rated the sixth-largest 

metropolitan area in the United States with an estimate of six million residents 

(Census 2019). The local government has started to evaluate and address climate 

impacts on its community since 2013. The Sustainable DC Plan published in 2013 set 

a goal to reduce 50% and 80% of greenhouse gas emissions in the district by 2032 

and 2050 respectively, relative to the emission level of 2006 (DOEE 2013). To 

achieve this goal, the government made following plans: retrofitting 100% of existing 

commercial and multi-family buildings to meet requirements of net-zero energy 

standards; deploying the highest standards of green building design to new 

construction projects; improving energy efficiency and reducing overall consumption 

by 50%; increasing the share of renewable energy in energy supply to 50%; 

increasing the use of public transit to 50% of all commuter trips; and increasing 

biking and walking to 25% of all commuter trips. 
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The adaptation plan Climate Ready DC released in 2016 highlighted the needs to 

improve the resilience of energy, water, communication, transportation, and other 

critical infrastructure systems in response to climate change (DOEE 2016). The plan 

involves 77 actions/subactions in improving transportation and utility infrastructure to 

maintain variability during extreme weather events (e.g., heat waves, severe storm, 

flooding); upgrading existing buildings and designing new buildings and 

development projects to withstand climate change impacts; strengthening community, 

social, and economic resilience to make neighborhoods and communities safer and 

more prepared; and establishing the policies, structures, and monitoring and 

evaluation procedures to ensure successful implementation of adaptation plans.  

 

The climate and energy plan Clean Energy DC published in 2018 adjusted the climate 

goal to 100% reduction of greenhouse gas emission by 2050 (DOEE 2018). This 

adjustment shows increased ambition of local governments in mitigating climate 

change, and rising importance and urgency in doing so. The plan proposed to 

implementing net-zero energy building code for new construction, retrofitting 

existing buildings to improve their energy efficiency and reduce their reliance on 

fossil fuels for heating and cooling, developing renewable portfolio standard in order 

to steadily increase the use of renewable energy, increasing electricity generation and 

optimize energy distribution system, and reducing dependence on private vehicles 

and deploy zero-emission electric vehicles. 
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1.2 The urban heat island effect 

1.2.1 Definition of the urban heat island effect 

The urban heat island (UHI) effect describes the phenomenon whereby metropolitan 

areas are significantly warmer than their surroundings (EPA 2016; Santamouris 2015; 

Kolokotroni et al. 2012). The UHI effect is attributable to the rapid growth of 

population and large-scale replacement of vegetation with roads and buildings. 

Asphalt and concrete as building materials absorb more solar radiation and release 

more sensible heat to the atmosphere compared to the vegetation. Moreover, waste 

heat from human activities, such as vehicles, factories, and air conditioners, adds 

warmth to the surrounding environment. The global warming effect due to increased 

GHG concentration further exacerbates thermal comfort in urban communities 

(Kenward et al. 2014).  

 

1.2.2 Impacts of the urban heat island effect 

The UHI effect has a very significant impact on human life: increasing cooling 

energy consumption (Konopacki and Akbari 2002), deteriorating comfort levels, 

increasing pollution concentration (Ebi et al. 2008; Leung and Gustafson 2005), 

threatening human health (Tan et al. 2010; Kenward et al. 2014), and affecting urban 

economy. 
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1.2.3 Methods to project the urban heat island effect 

Analyzing the future trend of the UHI effect requires projecting temperatures of urban 

and rural areas. The following methods were widely used in literature to predict 

temperatures. 

 

• Trend extrapolation 

The trend extrapolation method assumes that the recent trend is likely to continue in 

the future. Trends are sensitive to the choice and length of records and instrument 

used in the measurement (Wilby et al. 2009). If data are of good quality and enough 

length (e.g., 30 years), it may be valid to extrapolate the trend for up to a decade. 

Extrapolation is unreliable beyond one decade because of many uncertainties 

associated with future conditions, such as land use change. 

 

• Raw GCM or RCM data analysis 

Raw GCM and RCM data can be employed directly to analyze the future trend of 

climate variables. The data have a coarse spatial resolution, and the grid space may 

range between 100–500 km. Raw GCM and RCM data are often biased compared to 

observed data, and therefore bias correction is required before use. 

 

• Weather generators 

Weather generators use precipitation as the primary variable to estimate other 

meteorological variables, which is called secondary variables, including maximum 

and minimum temperature, sunshine or cloudiness, vapor pressure and wind speed 
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(Kilsby et al. 2007). The relationships between secondary variables and daily 

precipitation are characterized by a range of regression functions, and the 

relationships are assumed to be constant over time. The performance of weather 

generators in reproducing observation is dependent on the accuracy in simulating 

precipitation and the relationship between precipitation and other variables. Most 

weather generators have been developed to software packages for easy access, such 

as WGEN (Richardson and Wright 1984), EARWIG (Kilsby et al. 2007), LARS-WG 

(Semenov 2012), and MarkSim GCM (Jones and Thornton 2013). 

 

• Dynamical downscaling 

The dynamical downscaling method uses RCMs to adjust coarse-grid simulations of 

GCM to fine-grid results that are suitable for local climate study. RCMs use data 

provided by GCMs as initial and lateral boundaries and generate results for nested 

domain based on the solutions of the parent domain. The grid resolution of the nested 

domain is several times of the present domain. Increasing the number of nested 

domains can exponentially improve the resolution of simulation. The limitation of 

dynamical downscaling method is that systematic bias in GCMs and RCMs can 

degrade the accuracy of climate simulation. This can be solved by removing the bias 

of GCM data prior to downscaling and correcting the bias of downscaling results 

using statistical methods. 
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• Statistical downscaling 

Compared to dynamical methods, statistical methods are inexpensive computing and 

easy to use and apply (Chen et al. 2012). Statistical methods assume the relationship 

between the model simulation and observation is stationary, and hence the 

relationship derived from the historical period can be applied to projecting future 

conditions (Stoner et al. 2013). However, the real relationship can change slightly 

over time, which may weaken the accuracy of future projections (Barsugli et al. 

2013). The statistical downscaling technique includes the use of Pseudo method, 

mean bias correction, quantile method, and bias correction for multiple model 

ensemble.  

 

Pseudo method 

The Pseudo method uses simulated mean climate change between the future and 

historical periods to represent the potential change of a climate variable as follows: 

 

 𝑂𝐵𝐹 = 𝑂𝐵𝐻 + (𝐺𝐶𝑀𝐹
̅̅ ̅̅ ̅̅ ̅̅ − 𝐺𝐶𝑀𝐻

̅̅ ̅̅ ̅̅ ̅̅ ) (1.1) 

 

where 𝑂𝐵𝐹 is the projected observation. 𝑂𝐵𝐻 is the historical observation. 𝐺𝐶𝑀𝐹
̅̅ ̅̅ ̅̅ ̅̅  is 

averaged projection of a global climate model. 𝐺𝐶𝑀𝐻
̅̅ ̅̅ ̅̅ ̅̅  is averaged historical 

simulation of a global climate model. The average can be over a day or over a month 

dependent on data availability. Observations and model simulations should be of the 

same variable. 
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Mean bias correction 

This method removes the mean bias of model simulation over the historical period 

assuming that the mean bias does not change over time, which is written as follows: 

 

 𝑂𝐵𝐹 = 𝐺𝐶𝑀𝐹 − (𝐺𝐶𝑀𝐻
̅̅ ̅̅ ̅̅ ̅̅ − 𝑂𝐵𝐻

̅̅ ̅̅ ̅̅ ) (1.2) 

 

where 𝑂𝐵𝐻
̅̅ ̅̅ ̅̅  is averaged historical observation. The average can be over a day or over 

a month dependent on data availability. Observations and model simulations should 

be of the same variable. 

 

Quantile method 

Assuming the quantile relationship between historical observation and simulation is 

time-invariant, model projected distribution can be corrected using this quantile 

relationship. The correction alters the probability distribution function (PDF) of 

model projection and removes all model biases including mean and variance biases. 

However, this method fails to retain the intervariable dependencies and introduces 

additional bias in the spatial gradient of variables. In contrast, mean bias correction 

can retain first-order spatial and intervariable dependencies (White and Toumi 2013). 

 

Bias correction for multiple model ensemble 

Assuming the bias of a model ensemble (e.g., CMIP5) does not change over time, the 

bias of model projection can be removed by subtracting the mean difference between 

historical simulation (𝐺𝐶𝑀𝐸𝐻
̅̅ ̅̅ ̅̅ ̅̅ ̅) and observation (𝑂𝐵𝐻

̅̅ ̅̅ ̅̅ ). Model ensemble cancels out 
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the internal variability of coupled models, resulting in underestimation of variability 

and extreme climate conditions. To mitigate this defect, an anomaly portion is added 

to the projection (Equation 1.4). The anomaly portion is derived from one selected 

model (𝐺𝐶𝑀𝐹
∗) and is calculated as the difference between future weather (e.g., 

hourly, daily) and averaged future weather over a period (e.g., several months or 

years). 

 

 𝑂𝐵𝐹 = 𝐺𝐶𝑀𝐸𝐹
̅̅ ̅̅ ̅̅ ̅̅ ̅ − (𝐺𝐶𝑀𝐸𝐻

̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝑂𝐵𝐻
̅̅ ̅̅ ̅̅ ) + 𝐺𝐶𝑀𝐹

∗  (1.3) 

  

𝐺𝐶𝑀𝐹
∗ = 𝐺𝐶𝑀𝐹 − 𝐺𝐶𝑀𝐹

̅̅ ̅̅ ̅̅ ̅̅  

 

(1.4) 

 

It is worth noting that the anomaly portion derived from a selected model (𝐺𝐶𝑀𝐹
∗) 

still contains variance biases. Moreover, such linear adjustment (Equation 1.3) may 

cause inconsistence between different climate variables (e.g., temperature, humidity, 

wind) because they are nonlinearly related. Dai et al. (2017) indicated that the 

inconsistency is small and hardly impacts results in the downscaled fields away from 

the lateral boundaries. 

 

• Weather classification 

Weather classification methods include analog analysis, cluster analysis, artificial 

neural network, and self-organizing map (Cavazos 2000; Yin 2011). These methods 

group historical simulations into several clusters, and link historical observations with 

the most similar simulation clusters. Future projections generated by GCMs are used 



 

 

18 

 

as local predictions according to their clusters. Since these methods cannot predict 

new values that are outside the range of the historical record, a large amount of 

observation data is required (e.g., 30 years daily data) in order to evaluate all possible 

weather conditions. 

 

1.2.4 Current status of urban heat island studies 

• Observation and projection 

The fourth national assessment (USGCRP 2018) reported that U.S. cities are now 

0.5–4.0 °C warmer during the day and 1.0–2.5 °C warmer at night compared to rural 

areas. Kenward et al. (2014) analyzed summer average temperature of 60 U.S. cities 

during 2004–2013 and ranked them based on the urban heat island (UHI) intensity, 

which is measured as the temperature difference between urban and nearby rural 

areas. Figure 1.1 presents the UHI intensity ranking of 60 U.S. cities, and Figure 1.2 

shows the change rate of UHI intensity in the last decade. Cities tended to be warmer 

than the other places, and the maximum difference appeared in Las Vegas with a 

magnitude of 4°C/7.3°F (Figure 1.1). In addition, most of the cities suffered from 

strengthened UHI effect, whereas several cities experienced declined UHI intensity 

due to the rapid growth of rural areas (Figure 1.2). Kenward et al. (2014) attributed 

the increase of the UHI effect in most cities to climate change. In contrast, Scott et al. 

(2018) analyzed summer temperatures of 54 U.S. cities during 2000–2015 and found 

that the UHI intensity decreased as temperature rose. They also argued that cities did 

not experience increased UHI effect, and climate change did not exacerbate the UHI 

effect. One possible reason for their contradictory finding is that the urbanization of 
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rural areas reduced the temperature difference between city and surrounding areas 

(Scott et al. 2018). 
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Figure 1.1 Urban heat island ranking for 60 U.S. cities (Kenward et al. 2014). 
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Figure 1.2 The change rate of urban heat island intensity in 60 U.S. cities (Kenward et 

al. 2014). 
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• Mitigation of urban heat islands 

Cool roofs 

Cool roofs, also called reflective roofs, are installed to elevate urban albedo. Cool 

roofs are generally in white color and of high albedos. Santamouris (2014) indicated 

that per 0.1 increase of the albedo of cool roofs can lead to 0.1–0.33°C decrease of 

urban temperature. 

 

Green roofs 

Green roofs, also termed living roofs, are deployed to adjust the environmental 

temperature. Green roofs can be treated as part of urban green spaces, which provide 

shading and evaporative cooling for buildings and surroundings. Santamouris (2014) 

estimated that applying green roofs on a city scale can reduce the overall temperature 

by 0.3–3°C. 

 

Reflective pavements 

Reflective pavements are either made of cold materials or painted with white, highly 

reflective paints or infrared-reflective paints. Cold materials are distinguished by their 

high reflectivity to solar radiation and high spectral emissivity (Santamouris et al. 

2011). Santamouris et al. (2012) found that using cool paving materials in the park 

(4500 m2) of greater Athens area reduced peak ambient temperature in summer by 

1.9°C and lowered pavement surface temperature by 12°C. 
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1.3 Heat waves 

1.3.1 Definition of heat waves 

Although heat waves are natural climate events, they are identified based on the 

capacity of the population to withstand the extreme heat (Robinson 2001). There is no 

universal definition for a heat wave. Existing studies defined a heat wave based on 

one or several of the following indicators: daytime high temperatures, nighttime low 

temperatures, mean daily temperatures, heat index, and so forth. The widely used 

definitions are summarized in Table 1.1. The heat index (HI) was proposed by the 

National Weather Station (NWS 1994; NWS 2016) to estimate the physiological 

stress of humans when given an apparent temperature value. The apparent 

temperature is the air temperature in a standard environment that would produce the 

same thermal stress as the actual environment (Jendritzky and Tinz 2009).  

 

In this dissertation, a heat wave is defined as at least six consecutive days in 

which maximum temperatures exceed the local 90th percentile of the control 

period from 1961 to 1990. This definition was employed by Fischer and Schar 

(2010) and recommended by the fifth report of IPCC (IPCC 2013). In the following, 

we examined the definition by varying the least number of days for a heat wave. We 

used the temperature data of a weather station (USC00186350, 38.9 °N, 76.9667 °W) 

in Washington D.C. from 1961 to 2015 (NOAA 2017). The 90th and 95th percentiles 

of local maximum daily temperatures from 1961 to 1990 are 31.7 °C and 33.3 °C, 

respectively. Figure 1.3 presents the statistics results for the maximum amplitude of 

heat waves each year and occurrence numbers. Defining heat waves to a smaller 
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number of days tends to capture extreme hot temperatures better. However, for most 

cases, four days and six days generate the same results for maximum heat wave 

amplitudes. The average heat wave amplitudes each year hardly change when the 

threshold of day numbers decreases.  

 

In addition, defining heat waves to a smaller number of days results in higher 

occurrence numbers. The requirement for at least four days results in a high value of 

occurrence, which is up to eight. The requirement for at least six days can lead to 

some years without a heat wave, but starting from the 21st century, heat wave 

occurred every year except the year 2004. The warming trend in the future may 

improve the performance of six days in characterizing heat wave frequency. The 

average duration of heat waves each year tends to be smaller for less required days. 

Overall, six days can well characterize the variation of heat wave characteristics. 

Compared to five and four days, six days can lead to lower amplitude, lower 

frequency and longer duration of heat wave results. For future projections, six days 

can better characterize the duration change of heat waves but may be less sensitive to 

frequency change.  
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Table 1.1 Definition of a heat wave (Zhang and Ayyub 2018). 

Study Definition 

NWS (1995);  

Robinson (2001) 

A period of at least 48 hours during which neither the 

nocturnal low nor the diurnal high heat index value falls 

below 26.7 °C and 40.6 °C, respectively.  

 

Monteiro et al. 

(2013) 

At least two consecutive days with the heat index equal to or 

above level III of heat-related danger; that is, the value of 

heat index should be no less than 41 °C. 

 

Huth et al. (2000); 

Meehl and Tebaldi 

(2004); Zhou and 

Shepherd (2010) 

The longest period of consecutive days in which: (1) the 

maximum temperature is above T1 for at least three days, (2) 

the average maximum temperature is above T1 for the entire 

period, and (3) the maximum temperature is above T2 for the 

whole period. T1 and T2 are the 97.5th and 81st percentile of 

the distribution of maximum daily temperature in the current 

climate, respectively. 

 

Frich et al. (2002) More than five consecutive days in which the daily 

maximum temperatures exceed the average maximum 

temperature by 5 °C. The average maximum temperature is 

determined in the period of 1961 to 1990. 
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Table1. Definition of a heat wave (continued). 

Study Definition 

Anderson and Bell 

(2011); Lombardo 

and Ayyub (2015) 

Two or more consecutive days during which the mean daily 

temperatures exceed local 95th percentile threshold of mean 

daily temperature in the control period from 1961 to 1990. 

 

Perkins and 

Alexander (2012) 

At least three consecutive days in which the maximum 

temperatures exceeding local 90th percentile of daily 

maximum temperature in the control period from 1961 to 

1990. 

 

Fischer and Schar 

(2010) 

At least six consecutive days in which the maximum 

temperatures exceeding local 90th percentile of daily 

maximum temperature in the control period from 1961 to 

1990. 
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Figure 1.3 Heat waves in Washington D.C. from 1961 to 2015. (a) The maximum amplitude of heat waves each 

year; (b) The occurrence numbers each year for heat waves at least 6-, 5-, and 4-day long. For years without 

heat waves, local 90th percentile temperature (31.7 °C) is used as the amplitude value.  
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1.3.2 Impacts of heat waves 

• Heat-related mortality 

Exposure to extremely hot weather can lead to increased risk of deaths. The statistics 

of the Center for Disease Control and Prevention (CDC) indicated that from the year 

1999 to 2017, extreme hot weather caused more than 7,500 deaths, greater than death 

tolls resulted from any other natural hazards (CDC 2018). The statistics of 43 U.S. 

cities from the year 1987 to 2005 suggested that the mortality risk increased by 2.65–

5.04% during heat wave days relative to normal days (Anderson and Bell 2011). In 

addition, mortality risk may increase by 2.49% per 1 °F (0.56 °C) escalation of heat 

wave intensity, and increase by 0.38% per 1-day increment in heat wave duration 

(Anderson and Bell 2011). The elderly, children, and infants are vulnerable to 

extreme heat (Gouveia et al. 2003; O’Neill et al. 2005; Diaz et al. 2006; Basu and 

Ostro 2008; Basu 2009). Moreover, patients receiving psychotropic drug treatment 

for mental disorders and those taking medications that affect the body’s heat 

regulatory system or have anticholinergic effects are susceptible to heat exposure 

(Berko et al. 2014).  

 

• Building energy consumption 

The building energy consumption pattern is altered due to the increase in temperature. 

Heating demand drops during winters while cooling demand soars during summers. 

Space heating is largely provided by oil- or gas-fired boiler plants, while space 

cooling relies on electricity. Santamouris et al. (2015) estimated that 1°C of 

temperature increment that starts from 18 °C may result in 0.45–4.6% rise of peak 
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electricity load and 0.5–8.5% growth of total electricity demand, dependent on 

building characteristics, climate zones, urban morphologies, and the type of energy 

services provided (e.g., fans, air conditioners). Moreover, the efficiency of air 

conditioners declines in a hot environment, which may oblige designers to increase 

the size of the installed air conditioner system (Santamouris et al. 2001; Wang and 

Chen 2014). This elevates pressure on electricity grids and causes unstable energy 

supply in turn.  

 

• Transportation system 

Extreme heat can cause asphalt melting, concrete hogging, and malfunction of 

signaling equipment (McEvoy et al. 2012). McEvoy et al. (2012) indicated that rail 

infrastructure and operation is most vulnerable to heat waves in transportation 

systems. Extreme heat affects train operations in two ways: rail track buckling and air 

conditioning failure. The previous bolt joints among tracks have now been replaced 

with welded joints, which have no expansion gap. When new tracks expand due to 

heat exposure, the lack of expansion joints can result in buckling at spots of 

weakness. The structural weakness can be caused by one or several of the following 

reasons: the tracks are in poor condition due to a lack of maintenance; the tracks are 

not pre-stressed or welded adequately; old wooden sleepers are moved out of place 

due to decay or loose fastening (Osborne and McKeown 2009). The failure of air 

conditioning is the main reason for train cancellation during extreme hot days. The air 

conditioning units are typically designed to operate under 38°C, and temperature 



 

 

30 

 

above can cause electronic fault and serious damages to electronic units (McEvoy et 

al. 2012).  

 

• Air quality 

Heat waves also worsen outdoor air quality (Keith et al. 2005; Filleul et al. 2006; Pu 

et al. 2017; Kalisa et al. 2018). The high temperature and abundant sunshine during 

heat waves can speed up the rate of chemical reactions, which propels the formation 

of ozone and fine particular matters. Ozone in the upper atmosphere plays a key role 

in blocking harmful solar radiation, whereas ozone in the ground level adversely 

affects human health. Moreover, high atmosphere pressure during heat waves 

constrains air convection and hinders dissipation of pollutants, which can result in a 

dangerously high-level concentration of ozone and fine particular matters. 

 

1.3.3 Methods to project heat waves 

The methods discussed in the UHI effect section for projecting temperature are 

applicable to heat waves. Heat wave projection relies on accurate temperature 

prediction. 

 

1.3.4 Current statues of heat wave studies 

• Observation and projection 

The fourth national assessment (USGCRP 2018) reported that heat waves have 

become more frequent in the United States since the mid-1960s, and the season length 
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of heat waves in many U.S. cities has increased by more than 40 days since 1960. The 

formation of heat waves starts with air sinking due to high pressure in the upper 

atmosphere. The subsided air acting as a dome caps atmosphere inhibits air 

convection and traps warm and humid air under it, resulting in continuous heat near 

the ground for several days or weeks (NWS 2016). The high pressure in the upper 

atmosphere is indicated by the 500-hPa height anomaly. Meehl and Tebaldi (2004) 

projected that mean height anomaly may escalate over the contiguous United States in 

the 21st century due to increased greenhouse gases, meaning intensified heat waves in 

the future. On the other hand, the UHI effect can prolong the duration of heat waves 

(Tan et al. 2010), and hinder cooling process at night, causing excessive mortality 

during heat waves (Basara et al. 2010; Laaidi et al. 2012). Heat waves, in turn, inhibit 

surface evapotranspiration and advection cooling, exacerbating the UHI effect. The 

synergistic effect of UHI and heat waves can be greater than the sum of its parts (Li 

and Bou-Zeid 2013).  

 

• Mitigation of heat waves 

The mitigation strategies for climate change and UHI can be utilized to mitigating 

heat wave impacts.  

 

• Adaptation to heat waves 

Adaptation for electricity systems 

Electricity systems are vulnerable to temperature rise due to various reasons. First, the 

increase in summer temperatures leads to escalated cooling demand, intensified 
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electricity consumption, and rising pressure on power grids. Second, the capacity and 

efficiency of power generation, transmission, and distribution decline as temperature 

increases. Third, high ambient temperatures can cause damage to electronic devices 

and equipment. Adapting electricity systems to extreme hot weather is important to 

the nation’s energy security. The following bulleted list summarizes the adaptation 

strategies proposed by recent studies (Sathaye et al. 2013; Bartos et al. 2016; Burillo 

et al. 2016): 

• Improve cooling equipment technologies for power plants and substations 

• Adopt more heat-resistant conductor technologies (e.g., aluminum conductor 

steel supported conductors)  

• Place overhead power lines underground 

• Deploy smart grid power flow controls 

• Diversify the power generation mix (e.g., solar energy, wind) 

• Design effective demand-side management programs  

• Improve customer energy efficiency  

• Upgrade infrastructure to be more thermal resistant 

 

Rooftop photovoltaics 

Rooftop photovoltaics (PV) is gaining increased attention as a clean energy 

technology that converts the sun’s rays into electricity directly for building use. The 

benefits of solar PV have been discussed extensively in the literature, including 

lowering energy costs, reducing greenhouse gas emissions, decreasing harmful air 

pollutants, improving public health, providing work opportunities, and enhancing the 
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reliability and security of electric power systems (Tsoutsos et al. 2005; Kats and 

Glassbrook 2016). Gagnon et al. (2016) estimated that small buildings can provide 

731 GW of PV capacity and generate 926 TWh/year of PV energy, and medium and 

large buildings have a total installed capacity potential of 386 GW and energy 

generation potential of 506 TWh/year in the United States. The total national 

technical potential of rooftop PV is 1,118 GW of installed capacity and 1,432 TWh of 

annual energy generation, which equals to 39% of total national electric-sector sales 

(Gagnon et al. 2016). 

 

1.4 Knowledge gap, objectives, and research questions 

The urban heat island (UHI) effect and heat waves are becoming more intense across 

most U.S. cities due to global climate change (Kenward et al. 2014; Habeeb et al. 

2015). The UHI effect often leads to increased cooling energy demand (Konopacki 

and Akbari 2002), decreased air quality (Ebi et al. 2008; Leung and Gustafson 2005), 

and rising risks of heat-related health problems (Tan et al. 2010; Kenward et al. 

2014). Heat waves are among the deadliest natural hazards, which caused more than 

7,500 deaths in the U.S. from the year 1999 to 2017 (CDC 2018). Characterizing the 

future trends and levels of the UHI effect and heat waves is important for cities to 

plan and initiate appropriate climate adaptations. 

 

Analyzing future trends of heat-related conditions for cities needs high-resolution 

temperature projections. However, the spatial resolution of a typical global climate 

model is 1×1 degree, corresponding to a grid size of 110.03 km (in latitude) × 85.39 
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km (in longitude) at latitude 40 degrees, which does not meet the requirement of 

local-scale studies. Increasing the resolution of global climate models can be very 

expensive, as raising the resolution by a factor of two needs ten times as much 

computing power. To solve this problem, climate researchers developed statistical 

and dynamical downscaling techniques to adjust global simulations to local results. 

 

Many studies have used the downscaled results of a single or multiple global climate 

models archived in the Coupled Model Intercomparison Project Phase Three 

(CMIP3) to analyze the UHI effect and heat waves for the U.S. cities (e.g., Hayhoe et 

al. 2010; Dole et al. 2011; Lau and Nath 2012; Cowan et al. 2014; Schoetter et al. 

2015), whereas few studies used the Coupled Model Intercomparison Project Phase 

Five (CMIP5) data for such purpose. The CMIP5 incorporates the latest and most 

sophisticated climate model experiments worldwide (Taylor et al. 2012; Wuebbles et 

al. 2014), and shows superior performance in simulating climate change and its 

uncertainties compared to the CMIP3 (Sheffield et al. 2013a; Sheffield et al. 2013b; 

Taylor et al. 2012). Therefore, this dissertation utilized CMIP5 data to improve heat-

related projections for cities. 

 

The communities that have experienced heat waves may suffer from greater 

frequencies and intensities in the future (Meehl and Tebaldi 2004; Kunkel et al. 2010; 

Russo et al. 2014). With urban sprawling, the influence of heat waves may expand to 

new regions. The communities newly exposed to extreme heat can be vulnerable due 

to the lack of experience and preparedness. Therefore, it would be important to 
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understand the spatial and temporal variation of heat waves so that appropriate 

actions can be taken to improve the community’s resilience to extreme heat. This 

dissertation projected the variation of heat waves in the Washington metro area, as 

this area has more than six million residents (Census 2019) and suffered from 

increased heat waves in past decades (Habeeb et al. 2015; Lombardo and Ayyub 

2015). 

 

A large number of studies (Kalnay and Cai 2003; Tan et al. 2010; Stone et al. 2013; 

Li and Bou-Zeid 2013; Habeeb et al. 2015) have demonstrated that UHIs can 

intensify heat waves, which suggests a promising way to reduce the impacts of heat 

waves by mitigating the UHI effect. The popular mitigation technologies for UHIs 

include cool roofs, green roofs, and reflective pavements (Santamouris et al. 2012; 

Santamouris 2014; Li et al. 2014). However, those technologies were tested under 

current climate condition, and their performance under intensified heat conditions is 

unclear. In addition, to what degree those technologies can moderate heat waves has 

not been assessed, which is critical to developing effective heat mitigation strategies 

and policies for cities.  

 

Electrical power systems are particularly vulnerable to extreme heat, as heat waves 

not only increase electricity consumption, but also decrease the capacity and 

efficiency of electricity generation, transmission, and distribution sectors. The 

vulnerability of national power grids has been extensively studied (e.g., DOE 2013; 

Bartos et al. 2016), but those studies used coarse, national temperature projection and 
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general information on energy resources and infrastructure. As a result, their results 

do not accurately reflect local susceptibility levels. On the other hand, local-scale 

studies mostly focused on the power grids of the western (e.g., Sathaye et al. 2013; 

Bartos and Chester 2015; Burillo et al. 2016) and southern (e.g., Allen et al. 2016) 

United States, whereas the vulnerability of the eastern region was less studied. To fill 

the gap, this dissertation incorporated high-resolution temperature projections, 

summer cooling load predictions, electrical network model, and system failure model 

into a quantitative and systematical assessment on the potential change of grid 

vulnerability in the Washington metro area.  

 

Rooftop photovoltaics (PV) is a clean energy technology that converts sunlight into 

electricity directly for building use. The benefits of Rooftop PV include, among 

others, lowering energy costs, reducing greenhouse gas emissions, decreasing harmful 

air pollutants, improving public health, and enhancing the resilience of electrical 

power systems (Tsoutsos et al. 2005; Kats and Glassbrook 2016). The government of 

Washington D.C. has launched a smart roof program and solar incentive programs to 

encourage rooftop PV installation in the district (BLUEFIN 2013; DOEE 2016). 

Moreover, the government attempts to maximize renewable energy generation, 

especially solar energy, in order to achieve the goal of carbon neutrality by 2050 

(DOEE 2018). Investigating adoption potential and cost-effectiveness of rooftop PV 

would help cities, like Washington D.C., make the best use of solar energy and 

achieve the resilience and sustainability goal. 
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In summary, this dissertation addressed three questions that are critical for improving 

urban heat-related projection and adaptation techniques. First, how to generate 

accurate and reliable projections for the UHI effect and heat waves at a local scale? 

Second, to what degree can cool roofs, green roofs, and reflective pavements mitigate 

heat waves, and will their performance change under intensified warming climate? 

Third, how does the increase in temperature affect the vulnerability of electricity 

systems, and how to make the best use of rooftop photovoltaics to improve the 

resilience of electricity systems? 

 

1.5 Organization of the dissertation 

Chapter 1 provides the definitions of climate change, the UHI effect, and heat waves, 

and describes their impacts on the environment and society. A literature review is 

included to introduce the methods and models employed by climate studies as well as 

the current status of climate mitigation and adaptation practice. Knowledge gaps, 

objectives, and research questions addressed in this dissertation are elaborated. 

 

Chapter 2 describes the work that was published in the ASCE journal last year. In this 

work, an observational analysis was conducted to reveal the trends of the UHI effect 

and heat waves at Washington D.C. in the last six decades. In addition, the future 

trends and levels of the UHI effect and heat waves were projected using an improved 

downscaling strategy. The new strategy used the Asynchronous Regional Regression 

Model (ARRM) that statistically downscales CMIP5 simulations into the location of 

observing stations. This downscaling method develops a quantile relationship 
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between historical observations and simulations, and employs this relationship to 

project future temperatures at the location of stations. Simulation datasets were 

created by coupling ten global climate models archived in CMIP5 with the same 

weight. Observation datasets were obtained from two stations in the city and two 

stations in suburbs. The developed ARRMs were validated using three reliability 

measures. Downscaled temperature projections were then utilized to predict the UHI 

effect and heat waves. The highest and lowest concentration scenarios, RCP 8.5 and 

RCP 2.6, were considered in the projection to account for future climate uncertainties.  

 

Chapter 3 presents the study carried out on heat wave projection and mitigation. The 

projection was made by using the Weather Research and Forecasting (WRF) model 

that dynamically downscales the Community Earth System Model version one 

(CESM1) data into fine-grid results. This projection helps to understand the temporal 

and spatial variation of heat waves in the rest of the current century and to locate 

potential vulnerable population and assets in the Washington metro area. The impacts 

of climate change and UHIs to heat wave growth were assessed respectively. In 

addition, five strategies based on cool roofs, green roofs, and reflective pavements 

were evaluated in three future time periods regarding their effectiveness in reducing 

heat wave amplitude and warm spell duration. Uncertainties associated with the 

efficacy of those strategies were analyzed, including land use types, the magnitude of 

roof and pavement albedos, the replacement rate of green roofs, and daytime and 

nighttime conditions.  
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Chapter 4 describes our recent progress in assessing the vulnerability of electricity 

systems to temperature rise in the rest of the century. The high-resolution temperature 

projections made in previous work were used to predict summer peak loads and 

failure probability of single component and the entire electricity system in a future 

warming climate. An electrical network model and system failure model were created 

to assist vulnerability analysis. In addition, an adaptation assessment framework that 

incorporates the probabilistic risk approach was developed to improve uncertainty 

and sophisticated relations modeling. This framework consists of four steps: exposure 

projection, sensitivity measurement, adaptation capacity evaluation, and decision 

making. Each step generates a set of conditional probabilities to support risk 

assessment. This framework was applied to evaluating and optimizing rooftop PV 

strategies in order to help make the best use of solar energy and improve power 

system resilience.  

 

Chapter 5 concluded and discussed the implications of the dissertation to future 

research. Appendix A compared statistical and dynamical downscaling results. 

Appendix B explained physical mechanisms employed in the WRF model. Appendix 

C described the electrical network model created for failure analysis. Appendices D 

and E provided detailed information on cost-benefit analysis for rooftop PV, cool 

roof, green roof, and reflective pavement strategies. 
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Chapter 2: Urban Heat Projections in a Changing Climate: 

Washington D.C. as a Case Study 

2.1 Introduction 

The urban heat island (UHI) effect and heat waves are becoming more intense across 

most U.S. cities due to global climate change (Kenward et al. 2014; Habeeb et al. 

2015). The UHI effect often leads to increased cooling energy demand (Konopacki 

and Akbari 2002), decreased air quality (Ebi et al. 2008; Leung and Gustafson 2005), 

and rising risks of heat-related health problems (Tan et al. 2010; Kenward et al. 

2014). Heat waves are among the deadliest natural hazards, which caused more than 

7,500 deaths in the U.S. from the year 1999 to 2017 (CDC 2018).  

 

This dissertation proposes and develops a new method to project the UHI effect and 

heat waves on a local scale using downscaled Coupled Model Intercomparison 

Project Phase Five (CMIP5) data. A statistical downscaling technique, named 

Asynchronous Regional Regression Model (ARRM), is applied to adjust CMIP5 

simulation to the location of station-based observation. Additionally, the dissertation 

projects future trends and levels of the UHI effect and heat waves in Washington D.C. 

Overall, this study provides new insights for climate-change studies regarding heat 

unbalance and extreme heat events. The projection results would help engineering 

practitioners evaluate and foresee heat-related problems in Washington D.C. and 

other similar cities, and assist public policy development on urban climate 

adaptations. 
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The UHI effect describes the phenomenon whereby metropolitan areas are 

significantly warmer than their surroundings (EPA 2016; Santamouris 2015; 

Kolokotroni et al. 2012). The UHI effect is usually attributable to the intense human 

activities that release considerable heat and replacement of large-scale vegetation 

with roads, buildings, and other structures (Memon et al. 2008). Heat waves are 

extended periods of excessive heat that cause abnormal stress on humans (Robinson 

2001). The formation of heat waves starts with air sinking due to high pressure in the 

upper atmosphere. The subsided air acting as a dome caps atmosphere inhibits air 

convection and traps warm and humid air under it, resulting in continuous heat near 

the ground for several days or weeks (NWS 2016). 

 

Although heat waves are natural climate events, they are identified based on the 

capacity of the population to withstand the extreme heat (Robinson 2001). Several 

different criteria, as presented in Table 1.1, have been suggested to define heat waves. 

The heat index (HI) was proposed by the National Weather Station (NWS 1994; 

NWS 2016) to estimate the physiological stress of humans when given an apparent 

temperature value. The apparent temperature is the air temperature in a standard 

environment that would produce the same thermal stress as the actual environment 

(Jendritzky and Tinz 2009). Consistent with the 5th Assessment Report of the 

Intergovernmental Panel on Climate Change (IPCC), this study defines a heat wave 

as a spell of at least 6 consecutive days in which maximum temperatures exceeding 
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the local 90th percentile of the control period from 1961 to 1990 (IPCC 2013; IPCC 

2014).  

 

CMIP5 model ensemble was published in the 5th IPCC climate change assessment 

report (IPCC 2013; IPCC 2014), incorporating the latest and most sophisticated 

climate model experiments worldwide (Wuebbles et al. 2014; Taylor et al. 2012). 

Compared to single AOGCM, a multiple model ensemble has shown superior 

performance for historical climate assessment (Pierce et al. 2009), because coupling 

these models can take advantages of their strengths and compensate limitations. 

Compared to the previous model ensemble CMIP3, CMIP5 has a higher spatial 

resolution, improved parametrizations, and additional trajectories for future 

assumptions, facilitating simulations for regional climate and projections under 

complicated future uncertainties (Sheffield et al. 2013a; Sheffield et al. 2013b; Taylor 

et al. 2012). 

 

The UHI effect and heat waves are projected based on temperature data. Most studies 

utilized temperature data of a single or multiple Atmosphere-Ocean General 

Circulation Models (AOGCMs) to project the UHI effect (Wilby 2003) and heat 

waves (Hayhoe et al. 2010; Dole et al. 2011; Lau and Nath 2012; Cowan et al. 2014; 

Schoetter et al. 2015) for the entire 21st century. A small number of studies relied on 

regional climate models (Li and Bou-Zeid 2013; Diffenbaugh et al. 2005). However, 

few studies employed downscaled CMIP5 projections to the climate-change study of 

U.S. cities, and hence the performance for this purpose has not been assessed yet. 
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Existing studies for extreme heat events indicated that CMIP5 can capture well the 

observed mean heat wave characteristics of past decades for Europe (Schoetter et al. 

2015) and Australia (Cowan et al. 2014). Studies assessing North America climate 

change implied that median values produced by CMIP5 can represent central 

tendencies of climate variables well, though CMIP5 has a hard time in reproducing 

extreme temperature values in dry periods of dryer regions due to complex land 

hydrology (Sheffield et al. 2013a). The overall performance of CMIP5 is dependent 

on the coupled AOGCMs, and these AOGCM may perform well for several metrics 

but poorly for other metrics (Sheffield et al. 2013a; Sheffield et al. 2013b; Maloney et 

al. 2014). 

 

Washington D.C. is selected to demonstrate the proposed approach because of its 

rising heat-related risk. In 2014, Washington D.C. including its surrounding suburbs 

was rated the seventh-largest metropolitan area in the U.S. with an estimate of six 

million residents. Meanwhile, Washington D.C. was ranked the sixth among U.S. 

cities for the worst UHI effect (Kenward et al. 2014). Moreover, the frequency and 

duration of heat waves are increasing. Compared to the years 1950–1980, the number 

of occurrences increased by 1.4, the duration of heat waves rose by 25 %, 

corresponding to an increase of 0.6 days, during the years 1981–2012 (Lombardo and 

Ayyub 2015). The definition of this heat wave is given in Table 1.1.  
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The chapter is organized as follows. The next section introduces the CMIP5 model 

ensemble and ARRM downscaling model and discussing their strengths and 

weaknesses when applied to climate projections. Then the UHI effect of Washington 

D.C. is analyzed based on historical observation and projected to the end of the 21st 

century. In the projection process, downscaling models are developed and assessed by 

three reliability measures. Next, heat waves and extreme temperature indices of 

Washington D.C. are investigated and projected for the entire 21st century. The last 

section concludes the study and discusses the implications of the findings. 

 

2.2 Models and methods 

2.2.1 CMIP5 model ensemble  

The inputs for CMIP5 standard model ‘r1i1p1’ include NO/NO2/NH3 emissions 

caused by deposition and fertilization in croplands, anthropogenic land use change, 

interactive carbon-nitrogen cycling, carbon-nitrogen dynamics, and CH4 emissions on 

peatlands (Stocker et al. 2013). Four trajectories are devised to address the future 

uncertainties regarding emissions and concentrations of greenhouse gasses and 

aerosols, land change, and solar radiations (IPCC 2013). The four trajectories are 

Representative Concentration Pathways (RCP) 2.6, RCP 4.5, RCP 6.0, and RCP 8.5, 

corresponding to radiative forcing of 2.6, 4.5, 6.5, and 8.5 W/m2 by 2100, 

respectively (IPCC 2013). Radiative forcing is defined as the net change in the energy 

balance of the Earth system because of natural and anthropogenic substances and 

processes, relative to the reference year of 1750 (IPCC 2013). The four trajectories 
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assume CO2 concentrations of 421, 538, 670, and 936 ppm by 2100, and greenhouse 

gas concentrations (CO2, CH4, N2O) of 475, 630, 880, and 1313 ppm by 2100, 

respectively (IPCC 2013).  

 

The highest concentration scenario RCP 8.5 and the lowest concentration scenario 

RCP 2.6 are studied to account for future uncertainties.  Scenario RCP 8.5, also called 

business-as-usual scenario, describes a heterogeneous world where economy and 

technology develop slowly and restrict the improvement of energy efficiency, and 

global population grows continuously and consumes considerable energy, resulting in 

long-term high greenhouse gas emissions and the absence of mitigation policies for 

climate change (Riahi et al. 2011). In contrast, scenario RCP 2.6 (also named RCP3-

PD) assumes that strong mitigation actions are taken, and thereby the radiative 

forcing will increase to 3 W/m2 and then decline to 2.6 W/m2 at the end of the 21st 

century (IPCC 2013). 

 

The grid resolution of CMIP5 model ensemble is 1×1 degree, corresponding to the 

length of 110.03 km (in latitude) × 85.39 km (in longitude) at latitude 40 degrees. 

Coupled AOGCMs are adjusted to this resolution for consistency. However, the gird 

resolution is still too coarse for local climate simulation (ASCE Committee on 

Adaptation to a Changing Climate 2015). Therefore, dynamical and statistical 

techniques are developed to downscale global projections to finer-grid results. 

Compared to dynamical methods, statistical methods have advantages of inexpensive 

computation and are simple to use and apply (Chen et al. 2012), although the 



 

 

46 

 

assumption of stationary predicator–predictand relationships may weaken the 

accuracy of future projections (Barsugli et al. 2013). The predictor refers to model 

simulation, and predictand is observation. Statistical methods assume the relationship 

between the model simulation and observation is stationary, and hence the 

relationship derived from the historical period can be applied to projecting future 

conditions (Stoner et al. 2013). However, this relationship may change slightly over 

time, which is discussed in the later section. 

 

2.2.2 ARRM downscaling model 

ARRM is one of the empirical statistical downscaling models, capable of 

downscaling global projections to the station- or fine grid-based observations (as used 

in Dettinger et al. 2004; Hayhoe et al. 2010; Themeßl et al. 2011; Gudmundsson et 

al. 2012; Stoner et al. 2013). ARRM relies on empirical quantile mapping technique 

which assumes that two independent time series should have similar probability 

density functions (PDF) if they describe the same variable and are at approximately 

the same location, such as the temperatures simulated by a climate model and 

observed by a weather station for the same location (Hayhoe et al. 2010; Stoner et al. 

2013).  

 

In probability theory, quantiles are cut points that divide the range of a probability 

distribution into contiguous intervals with equal probability. In statistics, quantiles 

divide an ascending dataset [x1, x2... xn] of variable x into q equal-sized subsets. 

Assuming the ith quantile corresponds to the value xi, then the ith quantile implies the 
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probability of i/q that the variable is equal to or less than the value xi, and the 

probability of (q – i)/q that the variable is greater than the value xi (Stoner et al. 

2013).  

 

Themeßl et al. (2011) summarized three features of the empirical quantile mapping 

technique as follows: (1) Distribution-based. The data are calibrated on their 

empirical cumulative distribution function (CDF), rather than the paired data. (2) 

Direct. The predictor and predictand depict the same variable. The predictor is model 

simulated variable, and predictand is observed same variable. (3) Parameter-free. The 

simulation uses empirical CDF, rather than theoretical CDFs (e.g., normal, 

exponential distribution). Such a model feature makes ARRM more competitive in 

meteorological and hydrological predictions, because the distribution of most 

variables may not conform to any theoretical distributions. 

 

Figure 2.1 presents the flow chart of applying ARRM to downscaling the information 

of global climate model. The first step of ARRM is to rank the observed historical 

data and model simulated historical data in ascending sequences based on respective 

values regardless of timestamps. The second step is to develop a mathematical 

relationship between observation and model simulation by using quantile regression 

function to fit the ranked results. The last step is to downscale (also called correct or 

train) model projections using the developed regression function.  
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Figure 2.1 Asynchronies Regional Regression Modeling (ARRM) system flow chart 

(Stoner et al. 2013). 

 

Piecewise linear regression (also termed segmented linear regression) is commonly 

used to simulate the predictor-predictand relationship for its advantages in capturing 

the values near the tails of the distribution and avoiding overfitting when appropriate 

breakpoints are chosen (Dettinger et al. 2004; Stoner et al. 2013). The number and 

position of breakpoints are set by users manually, and appropriate breakpoints should 

prevent negative slopes in any segments when fitted by linear functions. Literature 

has suggested using a fixed window width to set breakpoints, and adding more 

breakpoints to the tail of distribution to capture extreme values (Stoner et al. 2013).  

The window width (e.g., 5 % or 10 % of the distribution) is dependent on the 

variability of the predictor-predictand relationship. Once breakpoints are selected, 

piecewise regression creates regression functions for each segment based on the least-

squares scheme, which minimizes the sum of squared residuals in each segment to 
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generate the best fitting results. The details for creating the ARRM downscaling 

model are demonstrated as follows. 

 

Firstly, ranking the historical time series of model simulated variable (x) and 

observed same variable (y) to ascending datasets, [x1, x2... xn] and [y1, y2... yn], where 

xi and yi are in the same quantile of their respective CDF. The piecewise regression 

function with one breakpoint (BP) can be written as follows:  

 

 
𝑦𝑝,ℎ = {

𝐴1,𝑖𝑛𝑡𝑥ℎ + 𝐵1,𝑖𝑛𝑡        𝑥ℎ < 𝐵𝑃 

𝐴2,𝑖𝑛𝑡𝑥ℎ + 𝐵2,𝑖𝑛𝑡        𝑥ℎ ≥ 𝐵𝑃
 

(2.1) 

 

where xh = model simulated value in the historical period; yp,h = predicted value for a 

particular value of xh; A1,int, A2,int = initial coefficients implying slopes of the linear 

regressions; and B1,int, B2,int = initial constants implying the intercepts of the linear 

segments at the y-axis. 

 

The prediction errors or residuals, e, can be expressed as follows: 

 

 
𝑒 = {

𝑦 − 𝐴1𝑥 − 𝐵1        𝑥 < 𝐵𝑃 

𝑦 − 𝐴2𝑥 − 𝐵2        𝑥 ≥ 𝐵𝑃
 

(2.2) 

 

Using the least-squares method to minimize fitting errors of each segment yields the 

optimized parameters A1,opt, A2,opt, and B1,opt, B2,opt. The least-squares optimization 

was conducted on a commercial software package MATLAB (R2016a) that is 
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developed by the MathWork Inc. Substituting these parameters into Equation 2.1, the 

piecewise regression model is formulated as follows:  

 

 
𝑦𝑝,𝑓 = {

𝐴1,𝑜𝑝𝑡𝑥𝑓 + 𝐵1,𝑜𝑝𝑡        𝑥𝑓 < 𝐵𝑃 

𝐴2,𝑜𝑝𝑡𝑥𝑓 + 𝐵2,𝑜𝑝𝑡        𝑥𝑓 ≥ 𝐵𝑃
 

(2.3) 

 

where xf = model projected value in the future; yp,f = predicted value for a particular 

value of xf.  

 

Equation 3 is then employed to downscale model projections. The model projected 

values that are out of the range found in the historical simulation should be adjusted 

using the regression function developed for the end segment. It should be noted that 

the projection results, yp,f , are mapped in quantiles with model projections, xf . To 

obtain the time series of the variable, prediction results should be sorted via the 

timestamp provided by model projections. 

 

2.3 The UHI effect 

2.3.1 Measurement of the UHI effect 

The strength of the UHI effect is generally measured by the UHI intensity. The UHI 

intensity is determined as the spatially averaged temperature difference between the 

urban and surrounding areas (Magee et al. 1999; Kim and Baik 2005). The mean and 

maximum UHI intensity are two major indicators, referring to the differences in mean 

and maximum temperatures, respectively. The period of comparison can be a year, a 
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season, a month, a few days, or even the portion of a day (Velazquez-Lozada et al. 

2006). Temperature types (e.g., air or surface temperatures) and measurement 

methods (e.g., automobile data, satellite data, or weather stations) can affect the 

observed results for UHI intensity (Memon et al. 2008). 

 

The U.S. Census (2010) defined ‘urban areas’ as two parts: urbanized areas where 

population densities are greater than 1,930 people/km2 and urban clusters where 

populations are between 965 and 1,930 people/km2. For rural areas, populations are 

less than 965 people/km2. This study selected four weather stations that provide the 

most complete temperature records for Washington D.C. and its surroundings. The 

spatial distributions of these weather stations are illustrated in Figure 2.2. Stations 1 

and 2 are located in Washington D.C. and surrounded by urban parks. Temperatures 

measured by the two stations can be lower than that at dense residential and 

commercial areas because of the cooling effect of vegetation. Station 3 is in Dulles, 

VA, and Station 4 is in Greater Upper Marlboro, MD. The regions where Stations 3 

and 4 located are suburbs because their populations are lower than the threshold of 

urban areas. Temperatures measured by Stations 3 and 4 can be higher than other 

suburban and rural areas because the two are nearby urban boundaries. 
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Figure 2.2 Spatial distribution of four weather stations. Yellow areas denote urban 

areas in the year 2015. 

 

 

2.3.2 Observational analysis 

The annual UHI intensity is measured as the annual temperature difference between 

the city (Stations 1 and 2) and suburbs (Stations 3 and 4). The annual maximum and 

minimum temperatures observed by four stations from 1950 to 2015 are compared in 

Figure 2.3. Data are obtained from NOAA daily summary (NOAA 2016). Annual 

maximum and minimum temperatures are calculated by averaging daily maximum 

and minimum temperatures of 365 days. Daily maximum and minimum temperatures 

are higher at Washington D.C. (Stations 1 and 2) compared to suburbs (Stations 3 and 

4), though the difference between the city and suburbs shows a declining trend 



 

 

53 

 

because of ongoing urbanization in suburbs. These observations are consistent with 

the study of Tan et al. (2010) for Shanghai, China, and the study of Zhou and 

Shepherd (2010) for Atlanta, GA. They both indicated that temperature gaps are 

growing between urban and rural areas, but shrinking between urban and suburban 

areas. 

 

2.3.3 Model creation and evaluation 

The reference period for creating ARRM should be long enough to capture a general 

relationship between the observation and simulation and prevent disturbances from 

minor abnormal observations. Considering the availability and quality of data as well, 

the reference period determined for the four stations is from 1965 to 2000. The 

CMIP5 simulated daily temperatures in the nearest grid point are extracted from 

Lawrence Livermore National Laboratory (LLNL) netCDF software packages (LLNL 

2016). Ten AOGCMs from CMIP5 are coupled using equal weights, as listed in 

Table 2.1. Details for these AOGCMs are documented in the Program for Climate 

Model Diagnosis and Intercomparison (PCMDI 2016) and Maloney et al. (2014). The 

data points missing in observation sets should be removed in simulation sets (the 

same timestamp) to maintain correspondence and consistency.  
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Figure 2.3 Annual temperatures observed by four stations during 1950–2015 and 

corresponding linear trend lines: (a) maximum temperatures; (b) minimum 

temperatures. 
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Table 2.1 The CMIP5 models coupled for urban heat study. 

Model Institution 

BCC-CSM1.1 Beijing Climate Center, China Meteorological 

Administration, China 

CanESM2 Canadian Centre for Climate Modeling and Analysis, Canada 

CCCSM4 National Center for Atmospheric Research (NCAR), USA 

CSIRO-Mk3.6.0 Australian Commonwealth Scientific and Industrial Research 

Organization, Australia 

GFDL-CM3 NOAA Geophysical Fluid Dynamics Laboratory, USA 

GFDL-ESM2G NOAA Geophysical Fluid Dynamics Laboratory, USA 

IPSL-CM5A-LR Institut Pierre-Simon Laplace, France 

MIROC5 AORI (Atmosphere and Ocean Research Institute), NIES 

(National Institute for Environmental Studies), JAMSTEC 

(Japan Agency for Marine-Earth Science and Technology), 

Japan 

MPI-ESM-LR Max Planck Institute for Meteorology, Germany 

MRI-CGCM3 Meteorological Research Institute, Japan 
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Six data points are evenly selected from each month to construct observation and 

simulation sets for the four stations. These sets are then ranked respectively in 

ascending sequence, as shown in Figure 2.4 for daily maximum and minimum 

temperatures at Station 1, which is similar to the other stations. A striking correlation 

can be observed between the observed and CMIP5 simulated daily maximum and 

minimum temperatures. Based on visual testing, seven breakpoints are set at the 1st, 

10th, 25th, 50th, 75th, 90th, and 99th quantile of distribution for linear piecewise 

regression to fit the scatter profile of those points. Figure 2.4a illustrates quantile 

mapping between observations and simulations and linear piecewise regression 

function employed in simulating the quantile relationship. Two more breakpoints are 

added at the 40th and 60th quantile for the regression function of Station 4, because of 

the variability in the mid-section of its scatter profiles. After adjusted by piecewise 

regression function, the distributions of CMIP5 simulation are close to those of local 

observation, as shown in Figure 2.5 for daily maximum and minimum temperatures at 

Station 1, respectively.   



 

 

57 

 

 

Figure 2.4 Scatter plot of observed versus CMIP5 simulated temperatures at Station 1 

during 1965–2000 (ordered by rank), and linear piecewise regression fitting: (a) 

maximum daily temperatures and quantile mapping between observations and 

simulations (1st, 10th, 25th, 50th, 75th, 90th, 99th quantiles); (b) minimum daily 

temperatures.  
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Figure 2.5 Probability density distributions of observed, CMIP5 simulated, and 

downscaled CMIP5 simulated temperatures at Station 1 during 1965–2000: (a) 

maximum daily temperatures; (b) minimum daily temperatures. 

 

Three measures are taken to evaluate the performance of the downscaling model. 

Firstly, the method of Root-Mean-Square errors (RMSEs) is employed to assess the 

ability of the downscaling model to reproduce observations. RMSE is the standard 

deviation of the differences between predicted values and observed values. Figure 2.6 

displays the RMSE results for daily maximum and minimum temperatures at the four 

stations. All RMSEs are lower than 0.25 °C, indicating the high accuracy of 

developed downscaling models.  
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Figure 2.6 Root-mean-square errors for downscaled CMIP5 results relative to 

observations. 

 

The second measure evaluates the capacity of the downscaling model to recreate the 

probability distribution of observed temperatures. Seven quantiles of the distribution, 

consisting of the 1st, 10th, 25th, 50th, 75th, 90th, and 99th quantiles, were assessed as 

shown in Figure 2.7. The error is calculated as the difference between downscaled 

CMIP5 simulation and observation. A positive error implies over-prediction and a 

negative error means under-prediction. All the errors analyzed are within ±0.65 °C, 

with no clear attributions of negative or positive, large or small (Figure 2.7). 

 

Like any other statistical downscaling models, ARRM is built on the assumption that 

the relationship between observation and simulation is time-invariant. However, such 

an assumption is often arguable (Hayhoe et al. 2008), and the potential shift of their 

relationship can affect the ability of the downscaling model to project future 
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conditions. Therefore, the third measure is to assess the variation of observation-

simulation relationship by using the cross-validation method.  

 

 

Figure 2.7 Errors in quantile of downscaled CMIP5 results relative to observations for 

four stations during the day (maximum daily temperatures) and at night (minimum 

daily temperatures). Positive values indicate overestimation, while negative values 

imply underestimation. 

 

Cross validation has been employed by many studies to evaluate the performance of 

statistical forecasting models (Michaelsen 1987; Elsner and Schmertmann 1994; 

Kharin and Zwiers 2002; Stoner et al. 2013). Testing a prediction function on the 

same data that are used to determine the parameters for the function often yields a 

perfect score; however, the score cannot indicate anything for the function to predict 

using yet-unseen data. Cross validation solves this problem by randomly partitioning 

the original sample into four subsamples and designating two subsamples as the 

training data and the other two as the testing data. The training data are used to 
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discover potentially predictive relationships, and the testing data are used to verify the 

relationships. Since testing data do no repeat the training data, the test results can 

reflect the forecasting capability of the developed function.  

 

In this study, the time series of observation and simulation from 1965 to 2000 are 

selected as training datasets, and time series from 2001 to 2005 are testing datasets. 

Since downscaling models for the four stations have been created for the reference 

period 1965–2000, the developed piecewise regression functions are employed 

directly to downscale CMIP simulations during 2001–2005. The cross-validation 

error measures the difference between the downscaled model simulation and 

observation. Figure 2.8 presents the results of cross-validation errors for the four 

stations. All the errors are less than 8°C and most of them are less than 4°C. Compare 

Figure 2.7 and Figure 2.8, the cross-validation errors generally have no correlation 

with the fitting errors of downscaling models. Therefore, it is hard to say how fitting 

errors of downscaling models may affect future projections.  

 

To further understand the cross-validation errors, Figure 2.9 plots the ranked 

observations and simulations during 1965–2000 and 2001–2005 for Station 1 at 

daytime and nighttime. The curves of two time periods almost overlap, though a 

minor shift can be observed at tails of the distribution. Overall, the above analyses 

prove that ARRM method is valid in downscaling CMIP5 daily simulation.  
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Figure 2.8 Cross-validation errors in quantile of projected 2001–2005 temperatures 

relative to observations for four stations during the day (maximum daily 

temperatures) and at night (minimum daily temperatures). Positive values indicate 

overestimation, while negative values imply underestimation. 

 

 

Figure 2.9 The shift of observation-simulation relationship in 2001–2005 relative to 

1965–2000 at Station 1: (a) maximum daily temperatures; (b) minimum daily 

temperatures. 
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2.3.4 Projections for the UHI effect 

The projected daily maximum and minimum temperatures in three time horizons: 

2016–2035, 2046–2065, and 2086–2099 for the four weather stations are presented in 

Figure 2.10 and compared to the observation during 1965–2000. The temperatures 

projected for Stations 1 and 2 are averaged to obtain projections of Washington D.C., 

and the average temperatures of Stations 3 and 4 represent suburban projections. The 

seven quantiles of the 1st, 10th, 25th, 50th, 75th, 90th, and 99th correspond to extremely 

low, low, slightly low, mean, slightly high, high, and extremely high temperatures, 

respectively.  

 

The similar trends of change can be observed in daily maximum and minimum 

temperatures (Figure 2.10). For scenario RCP 2.6, the temperature of Washington 

D.C. and its suburbs would keep at the same level in the next 80 years, but slightly 

greater than that of the reference period 1965–2000. The peak temperature (the 99th 

percentile) of the city would reach 40.9 °C during the day and 28 °C at night in 2086–

2099. Scenario RCP 8.5 leads to a continually warming trend in the whole century. 

The peak temperature (the 99th percentile) of the city would rise to 48.2 °C during the 

day and 35.1 °C at night in 2086–2099. Overall, the projected trend for the 

temperature is consistent with the trend assumed for radiative forcing by climate 

scenarios. 
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Figure 2.10 Projected temperatures in quantiles for three time horizons: 2016–2035, 

2046–2065, and 2086–2099, and observed temperatures during 1965–2000: (a) 

maximum daily temperatures; (b) minimum daily temperatures. 

 

The projected maximum UHI intensities for three time horizons: 2016–2035, 2046–

2065, and 2086–2099 are presented in Figure 2.11 and compared to the observations 

during 1965–2000. UHI intensities are analyzed based on the quantiles of temperature 

distribution. Projections based on scenario RCP 2.6 indicate that UHI intensity would 

remain the same as the present, and daytime and nighttime UHI intensities would 
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range between 1–2 °C and 1–3 °C in the next 80 years, respectively (Figure 2.11a and 

2.11c). The range implies the variability of UHI intensities in the seven quantiles of 

temperature. Projections conducted for scenario RCP 8.5 suggest that the magnitude 

of UHI intensity would decline at low temperatures but rise at hot temperatures, 

especially at night (Figure 2.11b and 2.11c). UHI intensities at hot temperatures 

would grow continuously, and the growth is faster at hotter temperatures. Peak 

daytime and nighttime UHI intensities (at the 99th quantile of temperature) would 

reach 2.7 °C and 6.5 °C during 2086–2099, respectively. The projected UHI 

intensities based on the two scenarios are summarized in Table 2.2. 

 

CMIP5 model ensemble considers the impacts of urban expansion on climate change 

from a general perspective. In those AOGCMs, urban expansion is indicated by the 

anthropogenic land-cover change that accounts for transitions between cropland, 

pasture, primary land, and secondary (recovering) land, the effect of wood harvest, 

shifting cultivation and urban land-use changes, and transitions from/to urban land. 

The value of land-cover change is updated every year for model inputs. For previous 

years (before 2006), the update relies on observations. For the future (since 2006), the 

update depends on projections made by climate scenarios. Scenarios RCP 2.6 and 8.5 

result in different land-cover change due to different assumptions for radiative 

forcing. Overall, the downscaled CMIP5 projections reflect the impact of climate 

change on the temperature, and climate change is driven by a range of factors 

including urban expansion. 
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Figure 2.11 Projected UHI intensities in quantile of temperature for three time 

horizons: 2016–2035, 2046–2065, and 2086–2099, and observed UHI intensities 

during 1965–2000: (a) RCP 2.6 during the day; (b) RCP 8.5 during the day; (c) RCP 

2.6 at night; (d) RCP 8.5 at night. 
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Table 2.2 Summary of the observed and projected UHI intensities. 

Year 

Quantiles 

1st 10th 25th 50th 75th 90th 99th 

Daytime UHI intensities (°C) based on RCP 2.6  

1961–2000 1.7 1.2 1.1 2.2 1.7 1.1 1.1 

2016–2035 1.8 1.4 1.5 1.9 1.3 1.0 1.4 

2046–2065 1.7 1.4 1.5 1.9 1.2 1.0 1.4 

2086–2099 1.7 1.4 1.5 1.9 1.2 1.0 1.4 

Daytime UHI intensities (°C) based on RCP 8.5 

2016–2035 1.8 1.4 1.5 1.9 1.3 1.0 1.4 

2046–2065 1.5 1.4 1.5 1.8 1.0 1.4 1.9 

2086–2099 1.4 1.4 1.6 1.7 1.2 2.0 2.7 

Nighttime UHI intensities (°C) based on RCP 2.6  

1961–2000 3.4 2.3 1.7 1.6 1.2 1.7 1.1 

2016–2035 2.3 1.6 1.5 1.5 1.4 1.1 2.8 

2046–2065 2.2 1.6 1.5 1.5 1.4 1.0 2.8 

2086–2099 2.1 1.6 1.5 1.5 1.4 1.0 2.8 

Nighttime UHI intensities (°C) based on RCP 8.5 

2016–2035 2.3 1.6 1.5 1.5 1.4 1.0 2.7 

2046–2065 1.8 1.5 1.5 1.7 1.3 2.6 4.0 

2086–2099 1.6 1.5 1.5 1.7 1.7 4.2 6.5 
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Furthermore, precipitation is expected to increase in the future. Fall may experience 

the largest increase while winter precipitation would increase the smallest (USGCRP 

2017). The cloud cover can amplify the UHI effect and result in higher value 

compared to this projection. In this study, the four stations are located within the 

same grid of CMIP5 simulation, and the same CMIP5 data are utilized to develop 

downscaling models and project temperatures. Due to different observation data, the 

observation-simulation relationships and thereby the projection results are different 

among the four stations. Therefore, the quality of observation data and the accuracy 

of the downscaling model dominate the reliability of projected UHI intensities. 

 

2.4 Heat waves 

2.4.1 Measurement of heat waves 

Figure 2.12 presents the Cumulative Distribution Function (CDF) of daily maximum 

and minimum temperatures at Washington D.C. (Station 1) in the control period 

1961–1990. The 90th percentile of maximum and minimum temperatures are 31.7 °C 

and 19.9 °C, respectively (Figure 2.12a and 12b). Therefore, a heat wave for 

Washington D.C. is defined as a spell of at least 6 consecutive days in which the 

maximum temperature exceeds 31.7 °C. Such definition allows identifying heat 

waves simply using temperature data, rather than estimating thermal stresses of 

humans to determine thermal indices (Matzarakis and Amelung 2008; Jendritzky and 

Tinz 2009), or collecting temperature, humidity, and regional information to calculate 

heat index (NWS, 1994; Robinson 2001; NWS 2016).  
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Figure 2.12 Cumulative Distribution Function (CDF) of temperature in Washington 

D.C. during 1961–1990: (a) maximum daily temperature: T90 = 31.7 °C and (b) 

minimum daily temperature: T90 = 19.9 °C. 

 

Heat waves are usually characterized by temperature amplitude, the number of 

occurrences, and maximum duration (Fischer and Schar 2010; Anderson and Bell 

2011). Furthermore, the Expert Team on Climate Change Detection and Indices 

(ETCCDI) proposed a set of climate change indices to measure and predict the 

evolution of extreme events (Sillmann et al. 2013a; Sillmann et al. 2013b). These 

indices have been published in IPCC reports (e.g., IPCC 2013, IPCC 2014) for 

extreme weather and climate events analysis. Three of the indices related to heat 

waves are as follows:  

 WSDI (warm spell duration index): defined as the annual count of days with at 

least 6 consecutive days in which the maximum temperature exceeds the 90th 
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percentile (31.7 °C for Washington D.C.) of the base period 1961–1990. WSDI is 

affected by the frequency and length of heat waves. 

 TX90p: defined as the percentage of calendar days in which the maximum 

temperature exceeds the 90th percentile (31.7 °C for Washington D.C.) for the 

base period 1961–1990. TX90p also refers to the annual percent of warm days.  

 TN90p: defined as the percentage of calendar days when the minimum 

temperature exceeds the 90th percentile (19.9 °C for Washington D.C.) for the 

base period 1961–1990. TN90p also means the annual percent of warm nights.  

 

Literature has indicated that the presence of warm nights is the main reason that 

results in excess mortality during heat waves (Grize et al. 2005) because warm nights 

prevent people from heat relief and keep people from sleep at night (Fischer and 

Schar 2010).  

 

2.4.2 Observational analysis 

The trend and variation of heat waves during 1961–2015 is shown in Figure 2.13 for 

Washington D.C. case. The maximum amplitude of the year without a heat wave is 

assigned a value of 31.7°C, which is the temperature threshold of a heat wave. During 

the 55 years, the maximum amplitude of heat waves shows a median growth of 

0.025 °C per year, and the occurrence number shows a median increment of 0.017 per 

year. The maximum duration of a single heat wave also grew by about 0.1 days per 

year.  
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Figure 2.13 Observed maximum amplitude of heat waves and the number of 

occurrences in Washington D.C. (Station 1) during 1961–2015 and corresponding 

linear trend lines. 
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Figure 2.14 Observed extreme temperature indices of Washington D.C. (Station 1) 

during 1961–2015 and corresponding linear trend lines: (a) WSDI; (b) TX90p; and 

(c) TN90p. 
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Figure 2.14 shows the trends of the three extreme indices changing during 1961–2015 

at Washington D.C. The median WSDI increased from 13.9 to 25.2 days, 

corresponding to an increment of 0.19 days per year (Figure 2.14a). The median 

TX90p grew from 12.2 % to 14.6 %, indicating an average increment of 0.04 % warm 

days per year (Figure 2.14b). The median TN90p rise from 9.5 % to 15.9 %, implying 

an average increase of 0.12 % warm nights per year (Figure 2.14c). The annual rate of 

warm nights (TN90p) grew faster than that of warm days (TX90p), which can be 

attributable to the UHI effect that slows the cooling process at night and makes nights 

warmer than usual (Zhou and Shepherd 2010). 

 

2.4.3 Projections for heat waves 

The downscaled CMIP5 projections for daily maximum and minimum temperatures 

are employed to predict heat waves and extreme temperature indices. Figure 2.15 

presents projected heat waves at Washington D.C. (Station 1) in three time horizons: 

2016–2035, 2046–2065, and 2086–2099. Projections of the single year are averaged 

to obtain the projections in the three periods. For scenario RCP 2.6, the maximum 

temperature amplitude would increase by 5 °C relative to the reference period 1996–

2015 and keep at about 42 °C in the next eight decades (Figure 2.15a). The annual 

duration would double and peak in 2046–2065 (Figure 2.15c). For scenario RCP 8.5, 

a continuously growing trend is found for the heat waves. The maximum amplitude 

would increase by 15 °C relative to the reference period and reach 52 °C during 

2086–2099 (Figure 2.15b). The annual duration would increase nearly threefold to 

104 days during 2086–2099 (Figure 2.15d). 



 

 

74 

 

 

Figure 2.15 Projected heat waves of Washington D.C. (Station 1) in 2016–2035, 

2046–2065, and 2086–2099, and observed heat waves in 1996–2015: (a) maximum 

amplitude based on RCP 2.6; (b) maximum amplitude based on RCP 8.5; (c) annual 

duration/WSDI based on RCP 2.6; and (d) annual duration/WSDI based on RCP 8.5. 

The cross “x” denotes mean; the top, middle, and bottom lines of the box represent 

25, 50, and 75 quantiles, respectively; the top and bottom of whisker imply the 

minimum and maximum values, respectively. 
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The similar trend is observed in warm days and warm nights for the two scenarios, as 

shown in Figure 2.16. Projections based on scenario RCP 2.6 indicate that the annual 

percent of warm days and warm nights would peak in 2046–2065 and be 6% and 5% 

greater than that of the reference period, respectively (Figure 2.16a and 2.16c). 

Scenario RCP 8.5 results in a continually growing trend of warm days and warm 

nights in the whole century (Figure 2.16b and 2.16d). The mean values of TX90p and 

TN90p would double by the end of the century. The projected heat waves and 

extreme temperature indices based on the two climate scenarios are summarized in 

Table 2.3. 

 

The frequency and maximum duration of heat waves are not investigated here. 

CMIP5 projections are the mean of ten AOGCMs’ results, and thereby the variance of 

CMIP5 projections is less than that of single model’s results, which results in 

consecutive hot days (daily maximum temperature greater than the 90th percentile) in 

the summer. Therefore, heat waves cannot be distinguished from each other based on 

the time series of projected temperatures. This also explains the fact that the projected 

annual duration of heat waves is much longer than the observed duration during the 

reference period. 
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Figure 2.16 Projected extreme temperature indices of Washington D.C. (Station 1) in 

2016–2035, 2046–2065, and 2086–2099, and observed indices in 1996–2015: (a) 

TX90p based on RCP 2.6; (b) TX90p based on RCP 8.5; (c) TN90p based on RCP 

2.6; and (d) TN90p based on RCP 8.5. The cross “x” denotes mean; the top, middle, 

and bottom lines of the box represent 25, 50, and 75 quantiles, respectively; the top 

and bottom of whisker imply the minimum and maximum values, respectively. 
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Table 2.3 Summary of observed and projected mean (standard deviation) heat waves 

and extreme temperature indices. 

Year Maximum 

amplitude (°C) 

Annual duration/ 

WSDI (days) 

Percent of 

warm days/ 

TX90p (%) 

Percent of 

warm nights/ 

TN90p (%) 

Observed     

1996–2015 37.3 (2.0)a 26.5 (13.3)a 14.7 (3.9) 15.7 (3.5) 

Projected for scenario RCP 2.6 

2016–2035 42.4 (1.5) 62.2 (8.7) 18.9 (2.1) 18.8 (2.1) 

2046–2065 42.0 (1.9) 68.3 (8.0) 20.7 (1.6) 20.6 (1.6) 

2086–2099 42.2 (1.7) 65.6 (5.7) 19.7 (1.6) 19.6 (1.4) 

Projected for scenario RCP 8.5 

2016–2035 41.3 (1.6) 64.0 (9.6) 19.2 (1.8) 18.8 (2.1) 

2046–2065 46.3 (2.1) 86.3 (8.1) 25.0 (1.9) 25.0 (1.9) 

2086–2099 52.4 (2.5) 104.3 (5.8) 30.7 (1.5) 28.5 (1.3) 

Note: a Only the year with at least one heat wave is counted.  

 

2.5 Conclusions 

This study proposes a method to project the UHI effect and heat waves by using 

statistical downscaling model, ARRM, that downscales CMIP5 projections to the 

locations of station-based observations. Three reliability measurements are taken to 

validate the proposed model. Results indicate the superior performance of the 
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downscaling model in reproducing observed temperatures and temperature 

distributions. However, the errors of projection caused by the shift of the observation-

simulation relationship are not treatable by statistical means and they require 

modeling the underlying physics which is outside the scope of the dissertation. 

 

The trends and levels of the UHI effect and heat waves of Washington D.C. are 

projected based on two climate scenarios: the highest greenhouse gas concentration 

scenario RCP 8.5 and the lowest scenario RCP 2.6. For the next eight decades, 

projections of scenario RCP 2.6 indicate that UHI intensity would stay the same as 

the present, though the nighttime intensity may increase slightly at hot temperatures 

and decrease a little at low temperatures. Scenario RCP 8.5 suggests that UHI effect 

would be stronger at hotter temperatures, and weaker at lower temperatures, 

especially at nighttime. The UHI intensity at hot temperatures would increase 

continuously throughout the 21st century. The maximum amplitude and annual 

duration of heat waves would increase to the mid of the century and then decline 

slightly for scenario RCP 2.6. The same trend of change is found for warm days and 

nights. In contrast, projections based on scenario RCP 8.5 indicate that heat wave 

characteristics and warm days and nights would increase continuously in the whole 

century.  

 

The contribution of this study consists of two parts. First, a new method is proposed 

to generate high-accuracy local UHI effect and heat wave projections. The 

downscaling model, ARRM, transforms data from global grid points to local station 
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points by employing a set of statistical techniques, which produces high-accuracy 

projections and saves a large amount of computation resource. The CMIP5 data that 

combine solutions of multiple global climate models input to the downscaling model 

can ensure high accuracy of outputs. Using CMIP5 data also improves projection 

reliability because four climate scenarios are created to account for climate 

uncertainties in the future. Second, the future trends and levels of the UHI effect and 

heat waves characterized in this study reveals the rising impacts of global climate 

change on local communities and indicates the increased vulnerability of cities in the 

future. As for Washington D.C., the growing UHI intensity and heat wave 

characteristics in the future call for climate-change mitigation and adaptation efforts 

from both local governments and global collaborations. 

 

Future work can use projection results of this study to assess the potential risks of 

urban systems exposed to extreme heat in a changing climate. All these works would 

help plan and initiate appropriate climate adaptations for cities. 
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Chapter 3: Projecting Heat Waves Temporally and Spatially 

for Local Adaptations in a Changing Climate: Washington 

D.C. as a Case Study 

3.1. Introduction 

Heat waves have become more frequent in the United States since the mid-1960s 

(USGCRP 2017). From the year 1999 to 2017, heat waves caused more than 7,500 

deaths, greater than death tolls resulted from any other natural hazards in the United 

States (CDC 2018). Intensified heat waves lead to escalating electricity demand for 

space cooling, increased water consumption and water quality problems, and rising 

risks of asphalt melting, concrete hogging, and railway distortion, which threatens 

energy, water, and transportation systems (Zuo et al. 2015).  

 

The increase of heat waves in metropolitan regions is attributable to both global 

climate change and local urban heat island (UHI) effect (Kalnay and Cai 2003; Tan et 

al. 2010; Basara et al. 2010; Li and Bou-Zeid 2013; Habeeb et al. 2015; Ortiz et al. 

2018). Global climate change refers to the change induced by rising greenhouse gas 

concentration. Heat waves typically occur in summer when high-pressure weather 

conditions prevail, which can be measured by the height anomaly at 500 hPa. Meehl 

and Tebaldi (2004) indicated that the increase of greenhouse gases can lead to 

increased 500-hPa height anomaly over the contiguous United States. In addition, the 

UHI effect can prolong the duration of heat waves (Tan et al. 2010) and hinder 

cooling processes at night, causing excessive mortality during heat waves (Laaidi et 
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al. 2012; Heaviside et al. 2016). Heat waves in turn enhance evaporative cooling in 

rural areas, increase heat emission from air conditioners, and inhibit air advection, 

exacerbating the UHI effect (Li and Bou-Zeid 2013; Zhao et al. 2018; Ortiz et al. 

2018). Zhao et al. (2018) indicated that cities in temperate regions suffer greater from 

the synergistic interaction between UHI and heat waves compared to dry regions.  

 

Washington D.C. experienced increased heat waves in past decades (Lombardo and 

Ayyub 2015; Zhang and Ayyub 2018), and its UHI effect is ranked the sixth among 

U.S. cities (Kenward et al. 2014). The local government has started to evaluate and 

address climate impacts on its community. The Sustainable DC Plan published in 

2013 set a goal to reduce 50% and 80% of greenhouse gas emissions in the city by 

2032 and 2050 respectively, relative to the emission level of 2006 (DOEE 2013). To 

achieve this goal, the government proposed to install more green roofs in addition to 

other measures. The adaptation plan Climate Ready DC released in 2016 highlighted 

the need to improve the resilience of infrastructure systems by utilizing cool roofs, 

green roofs, reflective pavements, and other technologies (DOEE 2016). Washington 

D.C. now installs the largest amount of green roofs in the nation (GRHC 2018). 

Therefore, investigating climate adaptation for Washington D.C. would potentially 

assist the sustainability practice of the city and provide guidance for other 

metropolises. 

 

The goal of this study is to identify and reduce the vulnerability of cities, particularly 

Washington D.C., to increased heat waves. The first objective is to characterize the 
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temporal and spatial variation of heat waves in the Washington DC metro area. The 

communities that have experienced heat waves may suffer from greater frequencies 

and intensities in the future (Meehl and Tebaldi 2004; Kunkel et al. 2010; Russo et al. 

2014). With urban sprawling, the influence of heat waves may expand to new regions. 

The communities newly exposed to extreme heat can be vulnerable due to lack of 

experience and preparedness. Projecting heat waves would be important for 

identifying those susceptible regions and implementing appropriate adaptations for 

them.  

 

The second objective is to quantify and predict the influences of UHIs and global 

climate change on heat wave growth. Comparing to accommodating cities to more 

extreme hot weather, mitigation has the advantages in addressing such a challenge 

from its root cause and enabling long-term risk reduction. Measuring the impacts of 

UHIs and climate change would help explore the mitigation potentials of heat waves 

from moderating the UHI effect and reducing greenhouse gas emissions, respectively.  

 

The last objective is to evaluate heat wave mitigation strategies based on cool roof, 

green roof, and reflective pavement technologies. The three technologies have been 

extensively studied and tested in the current climate for UHI mitigation. Li et al. 

(2014) found that surface and near-surface UHI effect decreases almost linearly as 

cool and green roof fraction increase in the Baltimore, MD-Washington, DC 

metropolitan area. Santamouris (2014) indicated that a 0.1 increase in the albedo of 

cool roofs can lead to 0.1–0.33°C decrease of urban temperature, and applying green 
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roofs on a city scale can reduce the overall temperature by 0.3–3°C. Santamouris et 

al. (2012) reported that using cool paving materials in a park (4500 m2) of the greater 

Athens area can reduce summer peak temperature by 1.9°C and lessen pavement 

surface temperature by 12°C. However, the efficacy of these technologies may 

change when applied to a different environmental setting, especially under intensified 

future conditions. Increased hot temperature can elevate the evapotranspiration rate of 

green roofs and enhance their cooling efficiency. Increased precipitation may provide 

sufficient water to urban impervious surfaces and enhance evaporation there (Zhao et 

al. 2018). The enhanced evaporation can increase humidity, decrease vapor pressure 

deficit, and weaken the cooling capacity of green roofs. The performances of cool 

roofs and reflective pavements may decrease, as enhanced evaporation can increase 

cloudy days during heat waves. This study is distinguished from others by 

considering potential future circumstances, which would improve the understanding 

of these technologies employed in a dynamic environment. 

 

The chapter is organized as follows. The next section describes the metrics of heat 

waves, model configuration, and experiments conducted in this study. The following 

two sections present projection results of heat wave characteristics and evaluation 

results of five mitigation strategies under assumed future climate conditions, 

respectively. The last section concludes the study and discusses uncertainties and the 

implications of the findings. 
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3.2. Model and methodology 

3.2.1. Metrics of heat waves 

Air temperature at two meters above the Earth’s surface (2-m air temperature) can 

directly affect human thermal comfort (Anderson and Bell 2011) and building energy 

consumption (Akbari and Konopacki 2005). In addition, the Earth’s surface 

temperature, also called surface skin temperature, is an important parameter for 

quantifying energy and water vapor exchanges between land/ocean and atmosphere. 

The 2-m air temperature and surface temperature are used in this study for heat wave 

analysis. The two temperatures are closely correlated but differ in magnitude, diurnal 

phase, and response to atmospheric conditions. Their difference is dependent on land 

cover (e.g., vegetation, asphalt, concrete) and sky conditions (e.g., clear or cloudy) 

(Jin and Dickinson 2010).  

 

Heat waves are prolonged periods of excessive heat (Robinson 2001). This study 

defines a heat wave in Washington D.C. as at least six consecutive days in which 

daily maximum temperatures (2-m air temperature) exceeding the local 90th 

percentile (31.7 °C) of the control period from 1961 to 1990. This definition was 

employed by Fischer and Schar (2010) and recommended by the fifth report of the 

International Panel of Climate Change (IPCC 2013). To ensure the consistency of the 

analysis, this definition is applied to the nearby suburban and rural areas as well.  

 

Heat waves are typically characterized by amplitude, frequency, and duration. 

Amplitude denotes the hottest temperature of a heat wave. Frequency measures the 
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number of heat waves per year. Duration describes the length of a heat wave in days. 

In addition, warm spell duration (WSDI) counts the total number of heat wave days 

within a year, which is adopted by the fifth assessment report of the IPCC to evaluate 

and project the evolution of extreme heat events (Sillmann et al. 2013).  

 

3.2.2. Model configuration 

The Weather Research and Forecasting (WRF) model version 3.8 (Skamarock and 

Klemp 2008; NCAR 2017) is employed in this study to downscale Community Earth 

System Model version 1.0 (CESM1) data (Monaghan et al. 2014) for the Washington 

DC metro area. The variables in the CESM1 were bias-corrected by the National 

Center for Atmospheric Research (NCAR) using the European Centre for Medium-

Range Weather Forecasts Interim Reanalysis (ERA-Interim) datasets. The ERA-

Interim combines observations and numerical models to provide an estimate of the 

most likely current climate state (Dee et al. 2014). Komurcu et al. (2018) found that 

the CESM1 downscaled by the WRF model can provide a better match with observed 

mean and extreme temperatures compared to ERA-Interim. Krayenhoff et al. (2018) 

indicated that the CESM1 approximates the Fifth Coupled Model Intercomparison 

Project (CMIP5) mean in terms of summer temperatures. In this study, the bias-

corrected CESM1 data are preprocessed using the WRF preprocessing system (WPS) 

and then input to the WRF model. The projections are forced by the Representative 

Concentration Pathway (RCP) 8.5, which is the ‘business as usual’ climate scenario 

and represents the highest concentration trajectory of greenhouse gases (IPCC 2013).  
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The WRF model utilizes a nesting technique to improve the resolution of climate 

simulation. The two-way nesting strategy is employed in this study to downscale 

solutions of the parent domain to the nested domain, and then to update the solutions 

of parent domains based on the results of the nested domain. This strategy can keep 

parent and nested domains consistent and minimize boundary reflections (Harris and 

Durran 2010). Four nested domains are created at a nest ratio of three (Figure 3.1), 

where Domain 3 covers the Washington DC metro area with a grid resolution of 4×4 

km, and the Domain 4 includes Washington D.C. with a grid resolution of 1.3×1.3 

km. The vertical dimension of the WRF model comprises 35 sigma vertical levels 

from the Earth’s surface to the 50 hPa pressure level. See the Appendix B for the 

vertical layers.  

 

Table 3.1 lists the physical schemes employed in this study. Coupling the urban 

canopy model (UCM) with the Noah land surface model (LSM) in WRF can improve 

the accuracy of urban environment simulation (Chen et al. 2011). The single-layer 

UCM is adopted in this study to simplify urban spaces to 2-dimensional, infinitely-

long, symmetric street canyons (Kusaka et al. 2001; Tewari et al. 2007), which is 

more suitable for weather forecasting compared to multilayer UCM, as fewer 

computing resources are required (Martilli et al. 2009). The land cover information is 

obtained from the National land cover database (NLCD) 2011 (Homer et al. 2015), 

where urban lands are categorized to high-density, medium-density, low-density, and 

open-space types (Figure 3.1). The low-density and open-space urban types of NLCD 

are merged into the low-density residential category of UCM. The high-density and 
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medium-density urban types of NLCD are simulated as high-density residential and 

commercial categories in the UCM, respectively.  

 

Table 3.1 Weather Research and Forecast (WRF) model setup and parameterization. 

Model version Advanced Research WRF (ARW) version 3.8 

Duration 153 days from May 1 to September 30 for each year;  

1-hour output frequency. 

Grid spacing 36 km, 12 km, 4 km, and 1.33 km from the outermost 

domain to the innermost domain.  

Physics  Single-moment six-class microphysics scheme 

(WSM6); 

 Noah land surface model (LSM); 

 Single-layer urban canopy model (UCM); 

 Mellor-Yamada-Janjic (MYJ) planetary boundary 

layer (PBL) scheme; 

 Eta similarity surface layer scheme; 

 Rapid radiative transfer model (RRTM) for longwave 

radiation physics;  

 Dudiha scheme for shortwave radiation scheme; 

 Kain-Fritsch cumulus parametrization scheme. 

Initial and boundary 

conditions 

CESM1.0 Global Bias-Corrected CMIP5 datasets, 6-hour 

output frequency, grid cell resolution of 0.9×1.25 degree. 
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Figure 3.1 Four nest domains of the Weather Research and Forecast (WRF) model and National land cover database (NLCD) 2011 

land use categories of Domain 3 (D3) and 4 (D4). Urban area refers to those where land use is high-density, medium-density, low-

density, or open-space urban. The dashed line AB is the transect for studying the impacts of mitigation strategies.
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The UCM parameters archived in the URBPARM.TBL file are revised for the 

Washington D.C. case, as shown in Table 3.2. The urban fraction and building height are 

determined based on the DC Zoning Regulations of 2016 Development Standards 

(DCOZ 2016) as follows: 

• The zone districts of low-density residential land use category are occupied by 

single-family detached and semi-detached housing units that are no more than 

three stories. The height of three-story buildings is about 12.2 m, and a value of 9 

m is used in the model, which is close to the height of a two-story building. The 

green area ratio should be at least 0.5.  

• In the zone districts of high-density residential land use category, high-rise 

apartment buildings are in predominant use. High-rise apartments typically have 

eight stories or more, and the height of eight-story buildings is about 27.4 m. A 

value of 20 m is used in the model, considering there are some low buildings 

distributed in this zone. The green area ratio is required to be between 0.2 to 0.3. 

• In high-density commercial areas, office and mixed office/retail buildings greater 

than eight stories are in predominant use. Building height of 25 m is used in the 

model to account for some low buildings, especially for some old buildings there. 

The green area ratio shall not be less than 0.2.  
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Table 3.2 Major parameters used in the single-layer urban canopy model (UCM). 

Parameter Unit Commercial High-

density 

residential 

Low-

density 

residential 

Urban fraction (impervious fraction) % 80          70 50 

Average building height m 25 20 9 

Building width m 10 9.4 8.3 

Road width m 10 9.4 8.3 

Surface albedo of roof  0.3 0.3 0.3 

Surface albedo of wall  0.3 0.3 0.3 

Surface albedo of pavement  0.15 0.15 0.15 

 

 

The road width and building width employ the default values of UCM, which were used 

by Li and Bou-Zeid (2013) and Li et al. (2014) to simulate the UHI effect of Baltimore- 

Washington metropolitan area. In the UCM, both roofs and roads take up 45%, 35%, and 

25% of commercial, high-density residential, and low-residential types of urban grid 

cells, respectively. The physical mechanisms for simulating 2-m air temperature are 

explained in the Appendix B. 
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3.2.3 Time slice experiment 

This study projects heat waves in three time periods, 2036–2040, 2066–2070, and 2096–

2100, to help foresee potential risks in the next twenty, fifty, and eighty years. The 

baseline period is 2011–2015. The WRF model is run at five-day intervals from May 1 to 

September 30 for each year, and the first day of each interval is reserved as a spin-up 

period to allow the initial conditions of the model to be thermodynamically balanced so 

as to generate stable and trusted results. The amplitude of heat waves is calculated as an 

average of the maximum amplitude in each year. Using maximum amplitudes instead of 

averages can avoid an overestimation of rural areas that have fewer heat waves. The 

duration of heat waves is averaged each year and then over five years. The frequency and 

warm spell duration are counted each year and averaged over five years. The 

characteristics of heat waves in Washington D.C. are measured on urban grid cells of 

Domain 4. Urban grid cells are those categorized by the NLCD as high-density, medium-

density, low-density, or open-space types (Figure 3.1). The heat waves in rural areas are 

calculated on nonurban grid cells of Domain 3 excluding Domain 4. Water bodies (e.g., 

lake, river) are not considered in the analysis. 

 

3.2.4 Mitigation technology experiment 

Albedo is an indicator of surface reflectivity and its value ranges between 0 and 1. A high 

albedo means that a large amount of solar radiation is reflected, and a small amount is 

absorbed by the surface. Cool roofs, also called reflective roofs, are generally white-

colored and of high albedo up to 0.9 for new roofs and 0.55–0.65 for aged roofs, while 

the albedo of conventional roofs is about 0.05–0.36 (Testa and Krarti 2017). Reflective 
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pavements are either made of materials or covered in paint with high solar reflectivity or 

high infrared emittance (Santamouris et al. 2011). The albedo of reflective pavements 

varies between 0.20 and 0.80, dependent on material types and aging levels (Qin 2015). 

Green roofs, also termed living roofs, are partially or completed covered with vegetation 

and a growing medium over a waterproofing membrane, which can provide shading and 

evaporative cooling for buildings and the ambient environment (Santamouris 2014). The 

albedo of green roofs is close to the dry soil about 0.08–0.2 (Schwarz 2015). Five 

strategies based on above technologies are evaluated in this study as follows: 

Strategy 1. Elevate roof surface albedo by 100%, denoted by AR100; 

Strategy 2. Raise pavement surface albedo by 100%, denoted by AP100; 

Strategy 3. Raise pavement surface albedo by 200%, denoted by AP200; 

Strategy 4. Replace 50% conventional roofs with green roofs, denoted by GR50; 

Strategy 5. Replace 100% conventional roofs with green roofs, denoted by GR100. 

 

The values of UCM parameters are modified per strategy as demonstrated in Table 3.3. 

Green roofs are assumed to be irrigated every day to retain abundant moisture in the soil. 

The effectiveness of the five strategies in reducing heat wave amplitude and warm spell 

duration is assessed in three time periods, 2036–2040, 2066–2070, and 2096–2100, for 

Washington D.C. The simulation is run on a five-day period for the heat wave with the 

maximum amplitude in the five-year period (identified in the time slice experiment), 

called the hottest heat wave, using the WRF model with an output frequency of one hour. 
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This five-day period must include the peak day of the heat wave in order to measure the 

maximum amplitude after mitigation actions. Warm spell duration is computed on 

adjusted daily maximum temperatures. The adjustment subtracts the decline in the 

maximum amplitude of heat wave, contributed by each mitigation strategy, from daily 

maximum temperatures. 

 

Table 3.3 Design of five UHI mitigation strategies. 

Strategy Parameters 

Albedo of 

roof 

Albedo of 

pavement 

Green 

roof ratio 

Reference 0.3 0.15 0 

#1. Elevate roof surface albedo by 100% 0.6 0.15 0 

#2. Raise pavement surface albedo by 100% 0.3 0.3 0 

#3. Raise pavement surface albedo by 200% 0.3 0.45 0 

#4. Replace 50% conventional roofs with green 

roofs 

0.25 0.15 0.5 

#5. Replace 100% conventional roofs with 

green roofs 

0.2 0.15 1 

 

 



 

 

94 

 

3.2.5 Mitigation sensitivity experiment 

This study further examines the performance of cool roofs and reflective pavements at 

different albedo levels, and the performance of green roofs with different replacement 

ratios. For cool roofs, the albedo levels of 0.3, 0.45, 0.6, 0.75, and 0.9 are analyzed. For 

reflective pavements, the albedo levels of 0.15, 0.3, 0.45, 0.6, 0.75, and 0.9 are assessed. 

For green roofs, the replacement ratio of 0, 0.25, 0.5, 0.75, and 1 are evaluated. The 

simulation is conducted on the hottest heat wave in the five-year period, which is the 

same as the mitigation technology experiment.  

 

Moreover, this study examines the five strategies on less hot heat wave days to help 

understand the variability of mitigation effects. Three such days are selected from each 

year of 2096–2100 and compared to the peak day of the hottest heat wave. It should be 

noted that this experiment cannot reveal a mathematical relationship between mitigation 

effects and background temperatures, as many other natural factors (e.g., wind speed, 

humidity, solar radiation) that can affect mitigation effects are not identical in the 

samples. 

 

3.3. Projection of heat waves 

3.3.1. Model validation 

The WRF model of the same physical schemes has been validated by several studies 

(e.g., Gao et al. 2012; Li and Bou-Zeid 2013; Li and Bou-Zeid 2014). This study further 

assesses the performance of the WRF model in reproducing heat waves by comparing 



 

 

95 

 

simulation results against observations of 33 weather stations in the Washington 

metropolitan region for the period of 2011–2015 (Figure 3.2). Considering four climate 

scenarios resulting in similar pathways of temperature growth in the early 21st century, 

the simulation here based on the scenario RCP8.5 can represent the overall scheme of 

temperature change. Time series of observed temperatures are derived from NOAA daily 

summary database (NOAA 2017). The simulation errors for the average amplitude, 

average duration, and average warm spell duration of heat waves in the five-year period 

are presented in Figure 3.3. These average values are first computed each year and then 

averaged over five years. Table 3.4 provides more details for the comparison. 

 

 

 

Figure 3.2 Spatial distribution of weather stations in nested Domain 3 (D3) and Domain 4 

(D4). Red points denote stations. The orange areas are urbanized. 
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Figure 3.3 Simulation errors of (a) average heat wave amplitudes, (b) duration, and (c) 

warm spell duration. A positive value implies overestimation, and a negative value 

indicates underestimation.
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Table 3.4 Observed and Weather Research and Forecast (WRF) model simulated heat waves in the Washington metropolitan region 

for the period 2011–2015. 

Station 

ID 

Observation WRF model simulation 

Average 

amplitude 

(°C) 

Average 

duration 

(days/event) 

Average warm 

spell duration 

(day) 

Average 

amplitude 

(°C) 

Error 

(°C) 

Average 

duration 

(days/event) 

Error 

(days/ 

event) 

Average warm 

spell duration 

(day) 

Error 

(day) 

1 36.4 10.7 9.6 35.4 -1.0 7.5 -3.2 7.2 -2.4 

2 36.1 10.8 11.0 35.5 -0.6 8.0 -2.8 8.0 -3.0 

3 36.3 11.3 8.0 35.6 -0.6 8.4 -2.9 9.4 1.4 

4 37.0 12.0 9.6 36.0 -1.0 8.7 -3.3 12.2 2.6 

5 36.9 11.0 6.6 35.3 -1.5 7.5 -3.5 7.2 0.6 

6 36.7 8.5 6.6 35.6 -1.1 8.8 0.3 8.2 1.6 

7 36.7 11.0 11.8 36.0 -0.6 8.9 -2.1 12.6 0.8 

8 36.4 6.5 5.4 36.1 -0.3 7.0 0.5 4.2 -1.2 

9 37.3 9.0 7.2 36.0 -1.3 8.5 -0.5 10.2 3.0 

10 38.0 9.2 11.4 35.8 -2.2 8.2 -1.0 10.2 -1.2 

11 37.6 12.0 7.2 35.9 -1.7 8.4 -3.6 7.6 0.4 

12 38.0 11.3 5.6 34.6 -3.4 8.0 -3.3 1.6 -4.0 

Note: Positive errors indicate overestimation, and negative errors imply underestimation. 
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Table 3.4 Observed and Weather Research and Forecast (WRF) model simulated heat waves in the Washington metropolitan region 

for the period 2011-2015 (Continued). 

Station 

ID 

Observation WRF model simulation 

Average 

amplitude 

(°C) 

Average 

duration 

(days/event) 

Average warm 

spell duration 

(day) 

Average 

amplitude 

(°C) 

Error 

(°C) 

Average 

duration 

(days/event) 

Error 

(days/ 

event) 

Average warm 

spell duration 

(day) 

Error 

(day) 

13 37.3 9.5 13.8 36.5 -0.8 10.4 0.9 13.6 -0.2 

14 37.1 11.3 8.0 35.9 -1.2 7.7 -3.7 5.6 -2.4 

15 36.2 7.3 7.0 35.8 -0.4 7.7 0.3 5.6 -1.4 

16 36.6 8.2 5.2 34.3 -2.3 7.0 -1.2 2.8 -2.4 

17 36.6 8.6 13.6 36.4 -0.2 8.4 -0.2 11.2 -2.4 

18 38.3 10.7 8.0 35.9 -2.4 7.6 -3.1 7.2 -0.8 

19 38.3 11.3 6.8 36.1 -2.2 9.0 -2.3 8.2 1.4 

20 36.7 6.8 5.6 34.4 -2.3 7.5 0.7 3.0 -2.6 

21 37.3 11.5 8.8 36.3 -1.1 9.1 -2.4 11.4 2.6 

22 37.1 8.5 6.6 35.9 -1.2 7.6 -0.9 7.2 0.6 

23 36.7 9.0 4.8 35.6 -1.1 7.6 -1.4 7.2 2.4 

24 35.9 6.3 5.2 35.1 -0.8 7.5 1.2 3.0 -2.2 

Note: Positive errors indicate overestimation, and negative errors imply underestimation. 
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Table 3.4 Observed and Weather Research and Forecast (WRF) model simulated heat waves in the Washington metropolitan region 

for the period 2011-2015 (Continued). 

Station 

ID 

Observation WRF model simulation 

Average 

amplitude 

(°C) 

Average 

duration 

(days/event) 

Average warm 

spell duration 

(day) 

Average 

amplitude 

(°C) 

Error 

(°C) 

Average 

duration 

(days/event) 

Error 

(days/ 

event) 

Average warm 

spell duration 

(day) 

Error 

(day) 

25 39.1 12.0 7.2 35.9 -3.2 7.7 -4.3 6.0 -1.2 

26 36.1 6.3 3.8 34.7 -1.4 6.8 0.5 4.2 0.4 

27 37.1 11.0 15.6 36.9 -0.2 9.2 -1.8 7.0 -8.6 

28 36.9 8.2 6.4 35.2 -1.8 7.7 -0.5 6.8 0.4 

29 38.0 10.7 5.2 35.3 -2.6 7.3 -3.3 4.4 -0.8 

30 37.7 8.7 6.8 35.4 -2.3 6.5 -2.2 5.0 -1.8 

31 37.4 10.0 4.8 35.9 -1.5 8.0 -2.0 4.6 -0.2 

32 36.7 6.5 2.6 34.7 -2.0 6.0 -0.5 2.4 -0.2 

33 38.1 8.0 3.2 35.1 -3.0 6.5 -1.5 2.6 -0.6 

Note: Positive errors indicate overestimation, and negative errors imply underestimation. 
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Observing Figure 3.3, heat wave amplitudes are underestimated by the WRF model 

by 0.2–3.4°C. This indicates that the WRF model may not perfectly capture extreme 

hot temperatures, which is a common issue of climate models. The error in simulating 

heat wave duration ranges between -4.3 and 1.2 days/event, and there is no clear rule 

for overestimation or underestimation. The error in simulating warm spell duration 

varies between -3.0 and 3.0 days. The greatest error appears in Station 27 (-8.6 days), 

which is largely attributable to two reasons. First, the UCM is developed based on the 

zone regulation of Washington D.C., which may not precisely describe other urban 

areas. Station 27 is in Baltimore, MD, where buildings are denser and taller, and 

human activities are greater compared to Washington D.C. Second, the grid cell 

where Station 27 is located contains river, and the temperature of the river is 

significantly lower than that of the land, which reduces the average temperature 

simulated in the grid cell. Overall, the accuracy of the WRF model is sufficient for 

this study. 

 

3.3.2. Projection results and discussion 

Figure 3.4 presents projected heat wave amplitude and warm spell duration in three 

future periods for the Washington metro area. Higher intensity and longer duration of 

heat waves are expected in the rest of the century, and urban areas tend to experience 

hotter and longer heat waves compared to rural areas. Table 3.5 summarizes the mean 

and maximum values of heat wave characteristics in Washington D.C., which reflects 

the joint effect of climate change and UHI on heat wave evolution. The mean 

amplitude of heat waves may increase by 0.3–0.4°C per five years and can be 5.7 °C 
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higher relative to the baseline (2011–2015) level by the end of the century. The warm 

spell duration may rise by 2.3–3.3 days per five years and can be nearly two-month-

long by 2100, implying that the annual number of days with maximum temperatures 

above 31.7°C can be greater than two months by 2100. Although the mean frequency 

of heat waves may decrease in the second half of the century because of the increased 

mean duration, heat waves are expected to occur three times more often in 2096–

2100. Mean duration of heat waves can be three times as much by 2100. The same 

pattern is shown in the maximum values of heat wave characteristics, implying that 

urban and rural areas may suffer from a similar increase of intensities and 

frequencies.  

 

Projection results are compared between Washington D.C. and rural areas to assess 

the impact of UHI on heat wave growth. Figure 3.5 compares the probability 

distributions of heat wave amplitudes between the city and its surroundings. Although 

a small portion of two distributions is overlapped, the difference between the two is 

substantial. Table 3.6 summarizes the increase in heat wave characteristics 

contributed by the UHI effect. The influence of UHI is more striking on heat wave 

duration and warm spell duration compared to heat wave amplitude and frequency. 

Comparing Table 3.6 to Table 3.5, one can find that climate change dominates the 

growth of heat waves in Washington D.C. while UHI further intensifies the shift. The 

UHI may contribute to four-fifth, half, and one-fifth of the increment in warm spell 

duration in the next twenty, fifty, and eight years, respectively. Climate change would 

lead to the rest portion of the increment. 



 

 

103 

 

 

Figure 3.4 Variation of heat waves in Washington metropolitan region during the reference period, 2011–2005, and three future periods, 

2036–2040, 2066–2070, and 2096–2100, plotted at 4-km grid intervals. (a)-(d) Heat wave amplitude; (e)-(h) Warm spell duration. The 

black lines are county boundaries, and the white area is waters.
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Table 3.5 Heat wave characteristics in Washington D.C. 

Characteristics 

Period 

2011–2015 2036–2040 2066–2070 2096–2100 

Mean (Standard deviation)  

Amplitude (℃) 35.2 (0.3) 37.1 (0.3) 39.0 (0.3) 40.9 (0.4) 

Frequency (events/year) 0.9 (0.3) 2.0 (0.3) 4.2 (0.3) 3.1 (0.2) 

Duration (days/event) 8.0 (0.7) 9.1 (0.6) 10.0 (1.6) 25.5 (1.2) 

Warm spell duration (days) 7.0 (2.3) 18.3 (3.0) 41.3 (5.2) 56.2 (2.7) 

Maximum 

Amplitude (℃) 35.9 37.8 39.9 41.8 

Frequency (events/year) 1.6 2.8 5.2 3.6 

Duration (days/event) 10.8 11.5 14.7 27.5 

Warm spell duration (days) 14.2 26.8 51.6 64.2 

Note: The ‘mean’ implies the mean value over thousands of urban grid cells in 

Domain 4. The ‘maximum’ denotes the maximum value of urban grid cells in 

Domain 4. 
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Figure 3.5 Histograms of heat wave amplitudes in Washington D.C. and its 

surroundings during the reference period 2011–2015, and three future periods 2036–

2040, 2066–2070, and 2096–2100.  
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Table 3.6 The mean difference of heat wave characteristics between Washington D.C. 

and its surroundings. 

Characteristics 

Period 

2011–2015 2036–2040 2066–2070 2096–2100 

Amplitude (℃) 1.69 2.19 1.65 2.11 

Frequency (events/year) 0.32 0.70 1.15 -0.11 

Duration (days/event) 1.32 0.32 0.66 10.60 

Warm spell duration (days) 2.32 9.04 18.42 12.08 

Note: The ‘mean difference’ refers to the difference of mean values in the 

distributions of Washington D.C and its surroundings. 

 

3.4. Evaluation of mitigation strategies 

3.4.1. Evaluation results and discussion 

Figure 3.6 shows the impacts of five mitigation strategies on heat wave amplitude and 

warm spell duration at Washington D.C. Cool roof (AR100) and green roof (GR50 

and GR100) strategies may be slightly less effective in reducing heat wave amplitude 

in the future (Figure 3.6a). while the opposite trend is true for reflective pavement 

strategies (AP100 and AP200). This is attributable to increased Earth’s net radiation 

as a result of future increased greenhouse gases, which amplifies sensible heat 

transmitting to the air. Increased sensible heat warms the near-surface atmosphere and 

elevates evapotranspiration rate of green roofs. However, increased radiative heating 

is greater than enhanced evaporative cooling, the temperature reduced by green roofs 
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may decrease. Cool roofs and reflective pavements reflect sunlight and lessen heat 

absorption of urban surfaces. In this simulation, solar radiation increases over the 

three analysis periods, as the hottest heat wave tends to occur earlier in summer 

(closer to summer solstice). This can lead to increased cooling effects of cool roofs 

and reflective pavements. However, cool roofs and reflective pavements can weaken 

evaporative cooling over urban surfaces, and increased temperature can intensify such 

impact. When reduced radiative heating overpasses decreased evaporative cooling, 

temperature reduction increases, which applies to reflective pavements. Cool roofs 

are the opposite case.  

 

Although there is no evaporation on cool roofs and reflective pavements, they can 

affect the evaporation of vegetation fraction in cities. The reduced solar radiation 

leads to decreased sensible heat in the low-level atmosphere, which cools low-level 

atmosphere, increases atmospheric stability, and results in less growth of the 

boundary layer. Since advective winds from moist rural regions are closer to the 

surface, they can interact more directly with the surface, increase humidity in the 

urban atmosphere, and ultimately reduce vapor pressure deficit and evaporative 

capacity over urban areas. Figure 3.7 shows the vertical profile of temperature and 

humidity when cool roof strategy (AR100) is taken on the peak day of the hottest heat 

wave in 2096–2100. Urban areas are in the middle of each plot, where low-level 

atmosphere temperature is lower and high-level atmosphere temperature is higher 

than that of the reference case (Figure 3.7a). This indicates the less growth of the 

boundary layer due to mitigation actions. Humidity is greater at low-level atmosphere 
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compared to the reference case (Figure 3.7b), which explains the reason for reduced 

evaporation. Li et al. (2014) and Sharma et al. (2016) have found similar results when 

investigating cool roofs and green roofs as UHI mitigation strategies. 

 

Figure 3.6a illustrates that elevating albedo of urban roofs by 100% can lead to 0.6–

0.8°C decline in heat wave amplitude, while raising urban pavement albedo by 100% 

or 200% has a negligible effect. Green roofs show a better performance in heat wave 

mitigation compared to cool roofs and reflective pavements. Replacing conventional 

roofs with 50% and 100% green roofs can reduce heat wave amplitude by 0.5–0.7°C 

and 0.9–1.3°C, respectively. Figure 3.6b shows that the greatest decrease in annual 

warm spell duration is in 2066–2070 among the three periods. This is because annual 

warm spell duration in 2036–2040 is one half of that in 2066–2070, which limits the 

reduction potential. In addition, the amplitudes of heat waves in 2096–2100 are 

greater than those of 2066–2070 while amplitude decline is similar (Figure 3.6a). 

Elevating albedo of urban roofs by 100% can reduce warm spell duration by 6–9 

days, while raising urban pavement albedo by 100% or 200% can result in less than 3 

days of decline (Figure 3.6b). Increasing green roof fractions by 50% and 100% can 

lessen warm spell duration by 5–8 and 9–13 days, respectively (Figure 3.6b). The 

impacts of five mitigation strategies on surface temperatures are similar and depicted 

in Appendix B.  



 

 

109 

 

 

Figure 3.6 Impact of five mitigation strategies on heat waves in Washington D.C. for 

three time periods, 2036–2040, 2066–2070, and 2096–2100. (a) Reduced amplitude 

of the hottest heat wave; (b) Reduced warm spell duration. All results are averaged 

over urban grid cells in Domain 4. The top and bottom of each box are the 25th and 

75th percentiles. Whisker corresponds to approximately +/–2.7σ and 99.3 percent 

coverage. Values beyond the whisker length are marked as outliers. 
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Figure 3.7 Impacts of cool roof strategy (AR100) on the vertical profile of 

temperature and humidity (Transect AB in Figure 3.1) on the peak day of the hottest 

heat wave in 2096–2100. (a) temperature difference between AR100 and the 

reference; (b) Humidity difference between AR100 and the reference. Positive means 

a higher temperature or humidity after mitigation actions, and negative implies a 

lower temperature or humidity after mitigation actions. 
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The above results indicate that elevating pavement albedo may not be as effective as 

other strategies in moderating heat waves for Washington D.C. This is because cool 

roofs reflect more solar radiation than reflective pavements do because of a higher 

albedo of cool roofs (Figure 3.8a), and green roofs enhance evaporative cooling while 

reflective pavements hinder it (Figure 3.8b). Moreover, Qin (2015) indicated that 

reflective pavements may not help reduce ambient temperature if the ratio of building 

height to road width, termed aspect ratio, is greater than 1.0. The reason is that 

reflective pavements can reflect sunlight to buildings, and tall buildings can cause 

multiple reflections, which results in most solar radiation absorbed by road and 

building surfaces. The multiple reflections cannot be simulated in the WRF model, 

implying that the performance of reflective pavements can be lower than the one 

predicted in this study. However, increasing pavement albedo has many benefits that 

should be considered when planning climate adaptation, such as protecting pavement 

surface from overheating and reducing the risk of pavement melting or breaking 

during extremely hot weather.  
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Figure 3.8 Impacts of five adaptation strategies on the surface energy balance at the 

peak day of the hottest heat wave in Washington D.C. for the period 2036–2040. (a) 

Sensible heat flux; (b) Latent heat flux; (c) Ground storage heat flux; (d) Net 

radiation. All results are averaged over urban grid cells in Domain 4. Error bars 

denote standard deviation over those grid cells. AP100 and AP200 are almost 

overlapped. 
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3.4.2. Sensitivity analysis 

This study further investigates mitigation performance at different surface albedos 

and green roof fractions. As shown in Figure 3.9, heat wave amplitudes and warm 

spell duration decrease almost linearly as roof and pavement albedo and green roof 

increase. Li et al. (2014) have a similar finding that UHI intensity declines in a linear 

manner with green roofs increasing in a city. Heat waves amplitude and warm spell 

duration may decrease by 0.40–0.43°C and 2.8–5.2 days per 0.15 rise of roof albedo 

starting from 0.3, decline by 0.22–0.28°C and 2.3–2.9 days per 25% addition of green 

roof fraction starting from 0, and reduce by 0.07–0.11°C and 0.7–1.4 days per 0.15 

increment of pavement albedo in the city range (Figure 3.9).  

 

Figure 3.10 shows the mitigation effects of five strategies on fourteen less hot heat 

wave days in 2096–2100. The amplitude reductions of the hottest heat wave are used 

as references. The cool roof strategy AR100 and green roof strategy GR100 exhibit 

greater variabilities in temperature reduction compared to others, but their variations 

are less than 0.4°C as background temperature varies between 33–42°C (Figure 3.10). 

The average reductions over the fourteen days are overall comparable to the 

amplitude reductions of the hottest heat wave. Therefore, using adjusted daily 

maximum temperatures, which subtracts the decline in the maximum amplitude of 

heat wave from daily maximum temperatures, can generate reliable estimations of 

warm spell duration. 

 

 



 

 

114 

 

 

Figure 3.9 Amplitude of the hottest heat wave and warm spell duration in Washington 

D.C. for three time periods, 2036–2040, 2066–2070 and 2096–2100. (a)-(c) 

Amplitude changes as a function of roof albedo, pavement albedo, and green roof 

fraction. (d)-(f) Warm spell duration changes as a function of roof albedo, pavement 
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albedo, and green roof fraction. All results are averaged over urban grid cells in 

Domain 4. Error bars represent one standard deviation above and below the mean. 

 

 

Figure 3.10 Impacts of mitigation strategies on daily maximum temperatures during 

heat waves in 2096–2100. The triangle makers are references. The cross “x” denotes 

mean; the top, middle, and bottom lines of the box represent 25th, 50th, and 75th 

quantiles, respectively; the top and bottom of whisker imply the minimum and 

maximum values, respectively; and outside dots are outliers. 

 

There are many other factors that can affect mitigation effects. First, elevating surface 

albedos or increasing green roofs is more effective in reducing hot temperatures 

during the day compared to this night, because at night the cooling function is 
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dominated by the reduced heat storage in the urban canopy during the day (Figure 

3.8). Second, the cooling effect of green roofs can be affected by rooftop soil 

moisture. Li et al. (2014) indicated that the cooling effect of green roofs is eliminated 

when the soil moisture is less than 0.15 m3/m3. Third, the albedo of cool roofs and 

reflective pavements may decline due to material aging and dirt accumulation, which 

may degrade their performances. Fourth, when utilizing these technologies together, 

the benefits can be less than the sum of their parts, such as raising urban albedo and 

increasing green areas simultaneously (Zhou 2010; Jacobs et al. 2018).  

 

3.4.3. Cost-effectiveness analysis 

Kats and Glassbrook (2016) reported that in Washington D.C., cool roofs with an 

albedo of 0.65–0.75 may cost $2,573/m2 (2015 dollars) in a 40-year period. The cost 

of reflective pavements with an albedo of 0.3–0.45 is comparable to that of cool roofs 

around $2,301/m2. Cool roofs and reflective pavements require coating replacement 

after 20 years of use, which is counted in the above costs. Installing and maintaining 

green roofs are relatively expensive. Green roofs, with a growing media depth of 0.1 

m and a leaf area index of 2, cost about $112,633/m2 in 40 years. Comparing the costs 

to the mitigation effects of the five strategies (Table 6), one can find that cool roof 

strategy (AR100) reduces heat wave amplitude and duration two or three times 

greater than reflective pavement strategies (AP100 and AP200) do for the same price. 

In addition, green roof strategies (GR50 and GR100) costs ten times more compared 

to reflective pavements in reducing the same amount of heat wave amplitude and 

duration. 
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Then a comprehensive assessment is conducted to quantify the cost-effectiveness of 

the five mitigation strategies. The benefits include energy conservation, stormwater 

reduction, human health improvement, climate change mitigation, and job creation. 

Energy conservation involves decreasing the cooling and heating energy consumption 

of buildings. The benefits on human health include reducing heat-related mortality 

risks and lessening ozone and fine particle (PM2.5) contents. Climate change 

mitigation involves reducing greenhouse gas emissions through energy savings and 

reducing solar radiation via albedo modification. To enable a comparison between 

those strategies, the benefit and cost values are normalized to unit prices ($/m2), as 

shown in Table 3.7. The detailed calculation is presented in the Appendix D.  

 

Table 3.7 indicates that green roof strategies (GR50 and GR100) can generate greater 

net benefits compared to cool roof (AR100) and reflective pavement strategies 

(AP100 and AP200). The advantage of reducing stormwater makes green roofs to be 

a superior choice for temperate regions. Green roofs also exhibit better performance 

in saving energy and improving human health. However, high installation and 

maintenance cost makes green roofs less cost-effective compared to cool roofs. Cool 

roof strategy produces the highest benefit-cost ratio among the five options because 

of low costs and considerable benefits. The reflective pavement strategy AP200 

generates two times greater net benefits than the strategy AP100 does, implying 

raising the albedo of pavements can increase cost-effectiveness. This applies to cool 
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roofs, as increased costs due to albedo improvement are much lower than consequent 

benefits generated. 

 

Table 3.7 Cost-benefit analysis on five mitigation strategies in a 40-year period 

(2017–2056), 2015 dollars, 3% annual discount rate. 

Items 

Strategies ($/m2) 

AR100 AP100 AP200 GR50 GR100 

Total costs 2.6 2.3 2.3 112.6 112.6 

Total benefits 16.6 4.7 9.4 215.5 222.5 

    Energy savings 1.6 0.03 0.1 8.2 8.5 

    Stormwater reduction 0 0 0 190.6 190.6 

    Health benefits 9.5 0.7 1.3 10.0 16.6 

    Climate change mitigation 5.4 2.5 4.9 1.7 1.8 

    Job creation 0 0 0 5.0 5.0 

Net benefits 14.0 0.8 4.0 102.8 109.8 

Benefit-cost ratio 6.4 1.4 2.7 1.9 2.0 

 

 

3.5. Conclusions 

Adapting cities to increased heat waves is important and urgent. This study projects 

the variation of heat waves in the Washington DC metro area under the high 

concentration scenario RCP 8.5, representing the most severe emission and warming 



 

 

119 

 

trajectory. The high-resolution projections can help governments and stakeholders 

foresee potential heat-related risks and plan appropriate adaptations for local 

communities. The UHI effect plays an important role in heat wave growth even 

though global climate change dominates the change. Implementing cool roofs and 

green roofs in the city range can effectively moderate heat waves, whereas reflective 

pavements have little impact. However, the high installation and maintenance cost 

may make green roofs less cost-efficient compared to reflective pavements. Cool 

roofs and green roofs may be slightly less effective in reducing heat wave amplitude 

in the future while the opposite trend is true for reflective pavements. In addition, the 

mitigation effect increases almost linearly as the albedo of roofs and pavements rises 

and as green roof fraction increases. Overall, the mitigation assessment based on 

Washington D.C. improves the understanding of utilizing these technologies in a 

dynamic environment and has significant implications for other metropolitan regions.  
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Figure 3.11 Summer (May-September) daily maximum temperature distributions for 

Washington D.C. in 2096–2100. 

 

There are four major uncertainties associated with the projections in this study. First, 

the future emission trajectory is uncertain. This study uses the higher scenario RCP 

8.5, which may lead to an overprediction or underprediction of heat wave growth if 

the increase in greenhouse concentration is lower or greater than the one assumed by 

RCP 8.5. Second, the WRF simulation is forced by one global climate model. Using 

the data of a different global climate model may produce different heat wave 

projections. Figure 3.11 presents the summer (May-September) daily maximum 

temperature distributions projected by global climate models archived in CMIP5 for 

the time period 2096–2100. The data are derived from the Lawrence Livermore 

National Laboratory (2019) at the same grid point that is nearest to Washington D.C. 

with a grid resolution of 1×1°. The figure illustrates that the shift in the mean of these 
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distributions can be up to 7°C. However, using a different climate model may not 

affect mitigation strategy assessment, as mitigation effect is measured as the 

difference between mitigation and reference cases, which cancels the biases of heat 

wave projections. Third, land cover and urban morphology may change in the future. 

Heat waves in rural areas may increase more than this projection as a result of 

urbanization. The zone regulation of Washington D.C. may be adjusted to meet new 

requirements of development, which can affect heat wave projections and mitigation 

strategy assessments. Fourth, anthropogenic heat emission is uncertain, as intensified 

heat waves in the future may increase air conditioning use, but new technologies may 

improve energy efficiency and reduce waste heat. The uncertainties associated with 

heat emissions and new technologies can affect heat wave projections in this study. 
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Chapter 4: Electricity System Assessment and Adaptation to 

Rising Temperatures in a Changing Climate with 

Washington Metro Area as a Case Study 

 

4.1 Introduction 

Annual average temperatures across the contiguous United States have increased by 

1°C since the beginning of the 20th century, and additional increment of 2.8–4.8°C is 

expected by the end of the current century (USGCRP 2018). Rising summer 

temperatures lead to escalated cooling demand and intensified electricity 

consumption (Wang and Chen 2014). Moreover, hot environment reduces the 

efficiency of air conditioners and increases the requirement for larger sizes of air 

conditioner systems, which further intensifies energy use (Santamouris et al. 2001). 

Santamouris et al. (2015) estimated that one degree of temperature rise that starts 

from 18°C can lead to 0.45–4.6% increase of peak electricity load and 0.5–8.5% 

growth of total electricity demand, dependent on the characteristics of building 

stocks, climate zones, urban morphologies, and the type of energy services (e.g., 

cooling, lighting) provided. The electricity demand of the contiguous United States 

was projected to increase by 1% per year for the next 30 years, with a 0.2% deviation 

for lower and higher economic growth scenarios (EIA 2019a).  

 

The increase in temperatures reduces the capacity and efficiency of power generation, 

transmission, and distribution, and increases the risk of power outages. The 
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generation capacity of natural gas-fired power plants can decline by 0.7% per 1°C rise 

of temperature that starts from 15°C (Maulbetsch and DiFilippo 2006; Sathaye et al. 

2013; Sen et al. 2018). The capacity of power lines may drop by 1.5%, and efficiency 

may decrease by 0.5% per 1°C rise of temperature (Burillo et al. 2016).  Li et al. 

(2005) estimated an average loss of 0.7% in transformer capacity as the ambient 

temperature increases by 1°C. Sathaye et al. (2013) projected that rising temperatures 

in California may lead to 2–5% loss of natural gas plant capacity, 2–4% decrease of 

substation capacity, and 7–8% decline of transmission capacity in 2070–2099 relative 

to 1961–1990. Bartos et al. (2016) stated that increased summer temperatures in the 

United States can reduce electric transmission ampacity by 1.9–5.8% in 2040–2060 

relative to 1990–2010. Larsen et al. (2018) projected that annual customer 

(residential, commercial and industrial customers) costs for power interruptions may 

reach $1.5–3.4 trillion by the middle of the 21st century and $1.9–5.6 trillion by the 

end of the century underlying a warming climate. 

 

Grid construction projects require typically many years and millions of dollars to 

complete, and therefore improving the understanding of potential risks in the future is 

important to maintain reliable infrastructure systems and reduce property loss. 

Previous studies have assessed coarsely impacts of rising temperatures on the national 

power grids (e.g., Bartos et al. 2016; DOE 2013), and suggested that climate impact 

varies regionally and depends on technology and socioeconomic conditions. 

However, local impact assessments are limited to the west region, such as California 

(Sathaye et al. 2013), Arizona (Burillo et al. 2016), and fourteen western states 
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(Bartos and Chester 2015), which cannot reflect the situation of other geographic 

regions. Washington metro area is the sixth most populous metropolitan area in the 

United States (Census 2019), and the vulnerability of its electrical grid to increased 

temperatures has not been well studied. This study fills the gap by evaluating the 

operation failure probability of current electrical grid when exposed to intensified hot 

weather in the next twenty, fifty, and eighty years for the Washington metro area. The 

impact of cooling demand growth and temperature rise together on the electrical grid 

is analyzed to provide a comprehensive view of potential susceptibilities. Such 

quantitative and systematical assessment would help local governments and 

stakeholders plan and initiate appropriate adaptations for energy infrastructure.  

 

Rooftop photovoltaics (PV) is gaining increased attention as a clean energy 

technology that converts the sun’s rays into electricity directly for building use. The 

benefits of solar PV have been discussed extensively in the literature, including 

lowering energy costs, reducing greenhouse gas emissions, decreasing harmful air 

pollutants, improving public health, providing work opportunities, and enhancing the 

reliability and security of electric power systems (Tsoutsos et al. 2005; Kats and 

Glassbrook 2016). The government of Washington D.C. has taken action to maximize 

renewable energy generation especially solar energy in order to achieve the goal of 

carbon neutrality by 2050 (DOEE 2018). The launched Smart Roof Program and 

employed solar incentive measures have accelerated rooftop PV installation in the 

district (BLUEFIN 2013; DOEE 2016). To help make the best use of solar energy, 

this study investigates adoption potential of rooftop PV for the Washington metro 
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area, and analyzes the cost-benefit of PV strategies in reducing peak cooling load on 

the electric grid. Such analyses would provide references for policies and actions in 

relation to resilience and sustainability goal. 

 

The Intergovernmental Panel on Climate Change (IPCC) proposed a linear process 

for climate adaptation (Carter et al. 1994), which is considered as the mainstreaming 

of adaptation nowadays. The process starts with scientific analysis of climate change 

including variability, then measures residual or net climate impacts after autonomous 

adaptations, and finally determines adaptation needs. Subsequently introduced 

frameworks for climate adaptation accounted for policy criteria, population growth, 

economic development, and other non-climate factors, generating accessible and 

affordable options (e.g., Fussel 2007; Bollinger et al. 2014; Munaretto et al. 2014). 

This study extends these frameworks to a generalized form by incorporating into the 

probabilistic risk method in order to appropriately model uncertainties and 

sophisticated relations. The underlying probabilistic risk method starts with climate 

scenarios and projections, and inputs them into impact models to generate loss 

estimation (Stewart and Deng 2015; Ayyub et al. 2018). A set of conditional 

probabilities are employed to quantify the likelihood of intensified climate stressors, 

climate impacts, monetized losses, and adaptation potential. The method has the 

following advantages compared to other hazard-based and vulnerability-based 

approaches reviewed by Fussel (2007). Firstly, probabilities can describe the 

uncertainties in outcomes that are propagated from climate projection to impact 

evaluation, failure assessment, and loss estimation. Secondly, multiple climate 
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stressors, various systems and assets, and different failure and damage types can be 

assessed simultaneously through the linkage of conditional probabilities, providing a 

systematic risk profile suitable for risk management. Like the Bayesian decision 

network approach (Catenacci and Giupponi 2013), the probabilistic risk analysis 

allows combining historical data and expert judgment into planning assessment. The 

former focus on eliciting and combining expert opinions, while the latter emphasizes 

scientific analysis based on observation and model simulation.  

 

The objectives of this study are to assess the vulnerability of the electric grid in the 

rest of the current century for the Washington metro area, evaluate the cost-

effectiveness of using rooftop PV to enhance the resilience of the power system, and 

improve adaptation planning and decision making with quantitative probabilistic risk 

analysis. The next section of this chapter introduces the framework of adaptation 

planning incorporating in the probabilistic risk method, and the model for failure 

analysis of the electricity system. The section that follows provides projection results 

of summer temperatures and peak electricity demands. Then future vulnerability of 

the electrical grid in the Washington metro area is quantified using failure 

probabilities as indicators. Three adaptation strategies based on rooftop PV 

technology are evaluated and compared through the life-cycle benefit-cost analysis. 

The last section concludes and discusses the implications of this study.  
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4.2 Methodology 

4.2.1 Probabilistic risk method 

Risks incurred by climate change is defined as a summation of possible losses due to 

different climate scenarios, climate stressors, and system failures (Stewart and Deng 

2015; Ayyub et al. 2018). The following equation calculates the net present value of 

climate risks as a loss (L): 

 

 

𝐿 = ∑[∑ ∑ ∑ ∑ 𝑃(𝐶𝐶)𝑃(𝐶𝑆|𝐶𝐶)𝑃(𝐹|𝐶𝑆)𝑃(𝐿|𝐹)𝐿](1

𝐿𝐹𝐶𝑆𝐶𝐶

𝑛

𝑡=𝑡0

+ 𝑟)−(𝑡−𝑡0) 

(4.1) 

 

where 𝑃(𝐶𝐶) is the probability that a climate-change scenario occurs. 𝑃(𝐶𝑆|𝐶𝐶) is the 

probability that a stressor intensifies when climate changes. 𝑃(𝐹|𝐶𝑆) is the 

probability of system failure when the stressor intensifies. 𝑃(𝐿|𝐹) is the probability 

of a loss when the system fails. 𝑟 is the annual discount rate. 𝑡 is the time in years 

starting from the year 𝑡0. 𝑛 is the number of years accounted for risk estimation. 

 

If only one climate scenario and climate stressor are considered, and one type of 

failure and loss is analyzed, Equation 4.1 can be rewritten as follows.  

 

 
𝐿 = 𝑃(𝐶𝑆|𝐶𝐶) ∑[𝑃(𝐹|𝐶𝑆)𝑃(𝐿|𝐹)𝐿]

𝑛

𝑡=𝑡0

(1 + 𝑟)−(𝑡−𝑡0) (4.2) 
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After taking adaption actions, the risk is reduced as follows.  

 

 
𝐿𝑎𝑑𝑎𝑝𝑡 = 𝑃(𝐶𝑆|𝐶𝐶) ∑[(1 − ∆𝑅)𝑃(𝐹|𝐶𝑆)𝑃(𝐿|𝐹)𝐿

𝑛

𝑡=𝑡0

](1 + 𝑟)−(𝑡−𝑡0) (4.3) 

 

where ∆𝑅 is the coefficient of risk reduction due to climate adaptation, ranging 

between 0 and 1.  

4.2.2 Framework for adaptation planning 

Figure 4.1 shows the four steps of adaptation planning that define the framework that 

incorporates the probabilistic risk method. The first step selects climate stressors and 

projects future exposures. A climate stressor can be a temperature shift, precipitation 

change, or sea level rise, etc. The probability that the stressor intensifies, 𝑃(𝐶𝑆|𝐶𝐶), 

can be estimated based on projection results of climate models supplemented with 

professional judgment in some cases. The second step identifies vulnerable systems 

and assets and measures the sensitivity of each system to the stressor. This is the most 

important part of planning, which determines the targets and goals of adaptation 

activities. The failure probability of a system when exposed to the climate stressor, 

𝑃(𝐹|𝐶𝑆), can be estimated using historical data, model simulation results, or expert 

opinion elicitation (Ayyub 2001). The third step selects adaptation schemes and 

assesses risk reductions associated with the respective implementation of the 

schemes. Adaptation options may include new techniques and equipment, new 

regulations on some industry sectors, and incentive programs for some practices.  
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Figure 4.1 The framework for climate adaptation planning incorporated in the 

probabilistic risk method. 

 

The adaptation capacity, ∆𝑃(𝐹|𝐶𝑆), is measured as the reduction in failure probability 

of a system when adaptation actions are taken. The capacity may vary with different 

geographic regions and system characteristics. The last step conducts a life-cycle 

benefit-cost analysis to compare and optimize adaptation schemes. Benefit-cost 

analysis is widely used in the engineering decision-making process (Ayyub 2014). 

The benefit (B) means potential reductions in climate event losses, and cost (C) 

implies investments for mitigating climate events, improving system resilience, or 

both. Comparisons aim to find the option that reduces the risk in cost-effective terms 

within any budgetary or regulatory constraints. Optimization intends to seek the 
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appropriate timing for the adaptation to enable the investment to be most cost-

effective.  

 

4.2.3 Failure model for electricity systems 

Natural gas is the largest source for electricity generation in the mid-Atlantic region 

and contributed to 39% of generation in 2018, while coal, nuclear, petroleum and 

renewable energy sources produced 31%, 18%, 7% and 5% electricity, respectively 

(NERC 2018). Natural gas-fired power plants suffer greatly from temperature rise, 

because power produced by turbines is dependent on air mass flow rate, and air mass 

flow that enters the gas turbine compressor decreases as ambient temperature 

increases (Kehlhofer et al. 2009; González-Díaz 2017). The decreased air mass flow 

rate also reduces turbine pressure ratio, and thereby lowers temperature difference 

between inlet and outlet airflow, resulting in an efficiency loss of gas turbines 

(Kehlhofer et al. 2009; González-Díaz 2017). Coal-fired and nuclear power plants are 

affected by temperature rise, as the hot environment reduces the cooling efficiency of 

air-cooled condensers and water-cooling towers by elevating air and water 

temperatures (González-Díaz 2017).   

 

The increase of temperature lowers performance of power grids, because the capacity 

of transmission lines is restricted by the operating temperature that is typically 100°C, 

and hot environment hinders the natural cooling process of electrical lines (Sathaye et 

al. 2013). Similarly, the capacity of substations is constrained by the operating 

temperature of transformers. The loss of substation capacity occurs when the ambient 
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temperature exceeds 30 °C, approximately to a 120°C hot spot temperature for a 

typical transformer (Li et al. 2005). The hot spot temperature measures the 

temperature of the hottest section of a transformer.  

 

Service interruption occurs when the total power generation cannot meet the total 

demand, or when the capacity of the pathway (transmission lines and substations) is 

insufficient to deliver the power to the load (Burillo et al. 2016). Figure 4.2 presents 

the fault tree analysis of service interruption in the power system. Three major 

components in the system are generation, transmission, and substation that delivers 

electricity to customers. Figure 4.3 illustrates the procedure in analyzing the failure 

probability of the power system as temperature changes. Literature indicated that the 

generation capacity (𝛽𝐺𝐶) of power plants, the transmission capacity  (𝛽𝑇𝐶) and 

efficiency (𝛽𝑇𝐷𝐸) of power lines, and the capacity (𝛽𝑆𝐶) of substation decline by 

0.7%, 1.5% and 0.5%, and 0.7% respectively per 1°C temperature rise (Li et al. 2005; 

Maulbetsch and DiFilippo 2006; Sathaye et al. 2013; Burillo et al. 2016; Sen et al. 

2018). The peak load (𝛽𝑃𝐾𝑙𝑜𝑎𝑑) increases by 7.5% per 1°C temperature increase, with 

details provided in a later section. The increase in peak load is treated as capacity loss 

in generation, transmission, and substation sectors in order to simplify the calculation. 

Therefore, the equivalent generation capacity (𝛽𝐺), transmission capacity (𝛽𝑇) and 

substation capacity (𝛽𝑆), which add up capacity loss, effeciciy decline, and peak load 

shift, drop by 8.7%, 9%, and 8.2% respectively per 1°C temperature increase (Figure 

4.3).  
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Figure 4.2 Fault tree analysis for service failures in the electricity system.  
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Figure 4.3 Failure analysis procedure for the electricity system. Failure probability is 

calculated in summers (June–August). Initial value refers to the one in the baseline 

period, 2011–2015.  
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The change ratio of failure probability for each component in the power system, 

∆𝑝(𝐹), is calculated as the difference between failure probability in the future 𝑃(𝐹𝑓
 ), 

and in the baseline period 𝑃(𝐹𝑖
 ), divided by the failure probability in the baseline 

period as follows: 

 

∆𝑝(𝐹𝑎
 ) =

𝑃(𝐹𝑎𝑓
 ) − 𝑃(𝐹𝑎𝑖

 )

𝑃(𝐹𝑎𝑖
 )

 (4.4) 

 

where the subscript a is generation (G), transmission (T), or substation (S). The f 

denotes the future, and i means the baseline or initial period.  

 

A cascading failure is a process in a system of interconnected parts in which the 

failure of one or few parts can trigger the failure of other parts and so on. In electrical 

grids, one or several elements disrupted by a shock will shift their loads to nearby 

elements, and nearby elements that fail to bear the superimposed load will shift the 

load to others. The N-1 criterion, typically used to design high-voltage transmission 

systems, requires that the failure of any single component (e.g., generator, 

transmission line branch, substation) at any time cannot disturb the service. In other 

words, more than one major component fails at the same time may cause service 

interruption. Therefore, the probability of cascading failure, 𝑃(𝐹𝐶), is calculated as 

one minus the probability that no element failure, minus the probability that one 

element failure as follows: 
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𝑃(𝐹𝐶) = 1 − ∏(1 − 𝑃(𝐹𝑎))

𝑚 

𝑎

− ∑[𝑃(𝐹𝑎)

 𝑚

𝑎

∙ ∏ (1 − 𝑃(𝐹𝑎))

 𝑚−1

𝑎

] (4.5) 

 

where a values are for the products and summation cover all the generators (G’s), 

transmission lines (T’s), and substations (S’s) in the electric network; and m is a sum 

of the number of generators, transmission lines, and substations in the electrical grid. 

 

The probability of power outage, 𝑃(𝐹𝑂), is calculated as the probability of cascading 

failure times a cascade trigger coefficient (𝛼) as follows:  

 

𝑃(𝐹𝑂) = 𝑃(𝐹𝑂|𝐹𝐶) ∙ 𝑃(𝐹𝐶) = 𝛼 ∙ 𝑃(𝐹𝐶) (4.6) 

 

The cascade trigger coefficient quantifies the probability of power outage when the 

system is exposed to a shock. The coefficient is measured as the percent of node 

failures in a system and determined in a later section. In most cases, a shock affects 

only part of the electrical network because of system redundancy. Literature indicated 

that cascading process is dependent on the initially damaged lines and the scale or 

topology of the system (Song et al. 2016; Schafer et al. 2018).  
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4.3 Vulnerability assessment 

4.3.1 Temperature projection 

Temperature projection is the first step of failure analysis. The layout of the electrical 

grid in the Washington metro area is shown in Figure 4.4a (EIA 2019b), and the 

network model with 109 nodes and 131 branches is displayed in Figure 4.4b. Summer 

(June–August) daily maximum temperatures are projected using the Weather 

Research and Forecasting (WRF) model (Skamarock et al. 2008) that downscales 

Community Earth System Model (CESM) version 1.0 data (Monaghan et al. 2014). 

Projections are forced by the highest Representative Concentration Pathway (RCP) 

8.5 (IPCC 2013), which is recognized as the business-as-usual scenario. Four time 

periods 2011–2015, 2036–2040, 2066–2070 and 2096–2100 are analyzed, 

representing the present and the next twenty, fifty and eighty years, respectively.  
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Figure 4.4 Spatial distribution of electric transmission lines and power plants in the 

Washington metro area. (a) The map for the electric network (EIA 2019b); (b) 

Electric network model with 109 nodes and 131 branches. 

 

Projection results for summer daily maximum temperatures are presented in Figure 

4.5 and Figure 4.6. Figure 4.5 shows a growing trend of temperature in the 

Washington metro area, indicating the increased vulnerability of electrical grids in the 

future. Figure 4.6 illustrates a shift of temperature distribution towards a warmer 

climate at Washington D.C. The localized temperature of Washington D.C. is used in 

the failure analysis because the urban temperature is typically warmer than that of 

rural areas and can lead to a higher susceptibility.  
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Figure 4.5 Averaged summer (June–August) daily maximum temperatures of 

Washington metro area in three future periods, 2036–2040, 2066–2070 and 2096–

2100, and the baseline period 2011–2015, with a grid resolution of 4×4 km. The 

white areas are waters. 
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Figure 4.6 Summer (June–August) daily maximum temperature distributions for 

Washington D.C. in three future periods, 2036–2040, 2066–2070 and 2096–2100, and 

the baseline period 2011–2015. 

 

4.3.2 Electricity demand projection 

This study conducts a range of statistical tests to determine which mathematical 

function (linear, polynomial and exponential) best describe the relationships between 

the peak electricity demand and temperature (daily maximum, mean and minimum 
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temperatures). The results suggest that peak electricity demand is most correlated to 

daily maximum temperatures, and second-order polynomial function can characterize 

the relationship well, as shown in Figure 4.7a. The daily mean temperature of 18°C is 

regarded as the threshold for building cooling needs (NOAA 2019). Considering that 

summer daily temperatures vary around 10°C, the daily maximum temperature of 

23°C is used as the threshold for cooling energy needs. Since peak load at 23°C is 92 

GW for the mid-Atlantic region in recent years (Figure 4.7a), peak load above 92 GW 

is attributable to building cooling. Figure 4.7b shows the change of peak cooling load 

as temperature increases starting from 23°C. Average summer daily maximum 

temperature is projected to grow from 34–38°C in the baseline period to 40–46°C by 

the end of the century. In the temperature range of 35–45°C, peak cooling demand 

shows a growing trend of 7.5% per 1°C temperature rise on average, and therefore 

7.5% is used in this analysis as the coefficient of peak generation capacity (𝛽𝑃𝐾). By 

the end of the century, the average peak cooling load may rise by 40% relative to the 

baseline (Figure 4.7b), and equal to peak load excluding cooling portion.  
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Figure 4.7 Peak load in mid-Atlantic region as a function of temperature at 

Washington D.C. (a) The second-order polynomial relationship between peak load 

and temperature based on records from May–September 2015–2018; (b) Percent 

increment in peak cooling load in the baseline period 2011–2015, and three future 

periods 2036–2040, 2066–2070 and 2096–2100. 
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4.3.3 Failure probability of major elements 

Planning reserve margin deficiency 

The planning reserve margin is the amount of generation capacity available to meet 

expected demand, and is measured as the difference in prospective resources and 

internal demands divided by internal demands. System operators typically issue alerts 

when the reserve margin falls below 5%. The 5% is therefore used as the critical 

value (𝑃𝑅𝑀𝑐𝑟𝑖𝑡) in this dissertation to indicate the failure of power plants in meeting 

electricity demands. The planning reserve margin of the 2018/2019 delivery year is 

16.1% (𝑃𝑅𝑀𝑖) in the mid-Atlantic region (PJM 2017). The 95th percentile of daily 

maximum temperature distribution is 35°C (𝑇𝑃𝑅𝑀) in 2018 summer, based on the 

observed data at Ronald Reagan Washington National Airport (NOAA 2019). The 

temperature when planning reserve margin (𝑇𝑃𝑅𝑀𝑐𝑟𝑖𝑡) reaches 5% is estimated using 

the following equation (Burillo et al. 2016).  

 

𝑇𝑃𝑅𝑀𝑐𝑟𝑖𝑡 = 𝑇𝑃𝑅𝑀 +
𝑃𝑅𝑀𝑖 − 𝑃𝑅𝑀𝑐𝑟𝑖𝑡

𝛽𝐺
 (4.7) 

 

where 𝛽𝐺 is the coefficient of peak generation capacity, as described in Figure 4.3. 

The failure probability due to insufficient planning reserve margin, 𝑃(𝐹𝐺
 ), is 

estimated as the area under the temperature distribution and above 𝑇𝑃𝑅𝑀𝑐𝑟𝑖𝑡.  
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Line overcurrent 

Overcurrent is the state that power flow exceeds the rated ampacity of transmission 

lines. Excess load in summer due to the use of air conditioners can cause line 

overcurrent and serious equipment damage. If protection devices function correctly, 

overcurrent lines will trip and shift their loads to nearby lines. Service interruption 

may occur if the capacity of parallel branches is insufficient to carry power to the 

load, causing cascading line tripping. This study assumes that the mean summer 

current corresponds to mean summer daily maximum temperature and equals to 60% 

of line conductors’ ampacity. This assumption is also used by Burillo et al. (2016) to 

investigate line tripping likelihood. The failure probability of transmission lines due 

to overcurrent is estimated as the area under the summer daily maximum temperature 

distribution and above the temperature that causes the conductor to exceed its rated 

ampacity by 30%. Overload protection devices cut the power based on the percent 

exceedance of ampacity, and the higher the current exceeding conductor’s ampacity, 

the shorter the tripping time. The breaking time for 30% of ampacity exceedance is 

pretty short, which is suitable for cascading simulation in this study. The daily 

maximum temperature that causes conductor failure, 𝑇𝑇, is therefore estimated as 

follows: 

 

𝑇𝑇 = 𝑇𝑚𝑒𝑎𝑛 +
130% − 60%

𝛽𝑇
 (4.8) 

 

where 𝑇𝑚𝑒𝑎𝑛 is the average summer daily maximum temperature.  
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Transformer overcurrent 

Similarly, overcurrent is the state that power flow exceeds the safe operating capacity 

of transformers, which leads to the tripping of transformers, and perhaps cascading 

tripping and service interruption. The mean current flow is assumed to correspond to 

the mean of summer daily maximum temperature, and to be 60% of the transformer 

ampacity. The failure probability of transformers due to overcurrent, 𝑃(𝐹𝑆
 ), is 

estimated as the area under the temperature distribution and above the temperature 

that causes the transformer to exceed its rated ampacity by 30%. The daily maximum 

temperature that causes transformer failure, 𝑇𝑆, is therefore estimated as follows: 

 

𝑇𝑆 = 𝑇𝑚𝑒𝑎𝑛 +
130% − 60%

𝛽𝑆
 (4.9) 

 

4.3.4 Failure probability of the electricity system 

Swing equations 

To determine the cascade trigger coefficient (𝛼), dynamic swing equations (Schafer et 

al. 2018) are employed to simulate the cascading process of the electric power system 

after disruption in the Washington metro area. The swing equations are given as 

follows: 

 

𝑑

𝑑𝑡
𝜃𝑖 = 𝜔𝑖 (4.10) 
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𝑑

𝑑𝑡
𝜔𝑖 = 𝑃𝑖 − 𝛾𝜔𝑖 + ∑ 𝐾𝑖𝑗sin (𝜃𝑗

 (𝑡) − 𝜃𝑖
 (𝑡))

𝑁

𝑗=1

 (4.11) 

 

where 𝜔𝑖
  is the angular velocity at node i. 𝜃𝑖

  and  𝜃𝑗
  are voltage phase angles at nodes 

i and j. 𝑃𝑖 is the power generated or consumed at the node i. 𝑃𝑖 is positive when the 

node feeds power into the network and negative when the node absorbs power. 𝜌 is a 

damping constant and assumed to be 0 for all nodes in this study. 𝐾𝑖𝑗 is the coupling 

strength of two connected nodes i and j.  

 

To solve Equations 4.9 and 4.10, stable-state operation requirements are used as 

initial conditions. At the stable state, the voltage phase angles of all nodes are 

synchronous, and the differences between phase angles do not change over time. In 

other words, 𝜔𝑖
 , 𝜃𝑖

  and  𝜃𝑗
  do not change over time and are termed fixed-point 

angular velocity (𝜔𝑖
∗) and fixed-point angles (𝜃𝑖

∗ and  𝜃𝑗
∗). The initial conditions are 

given as follows: 

 

𝜔𝑖
∗ = 0 (4.12) 

𝑃𝑖 + ∑ 𝐾𝑖𝑗sin (𝜃𝑗
∗ − 𝜃𝑖

∗)

𝑁

𝑗=1

= 0 (4.13) 

 

A line is overloaded when the power flow (𝐹𝑖𝑗
 (𝑡)) exceeds its capacity. The capacity 

of a line, 𝐶𝑖𝑗, is defined as 𝐾𝑖𝑗 multiplying a tolerance parameter, 𝛽. The 𝐾𝑖𝑗 and 𝛽 

are constants and predefined. The capacity of lines is therefore constant and 
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dependent on the physical properties instead of the initial state of a system. The 

overloaded line i-j can be expressed as follows: 

 

𝐹𝑖𝑗
 (𝑡) = 𝐾𝑖𝑗sin (𝜃𝑗

 (𝑡) − 𝜃𝑖
 (𝑡)) (4.14) 

𝐹𝑖𝑗
∗ = 𝐾𝑖𝑗𝑠𝑖𝑛 (𝜃𝑗

∗ − 𝜃𝑖
∗) (4.15) 

|𝐹𝑖𝑗
 | > 𝐶𝑖𝑗 = 𝛽 ∙ 𝐾𝑖𝑗, 𝛽 ∈ [0, 1]  (4.16) 

 

Equation 4.13 calculates dynamic power flow, while Equation 4.14 computes power 

flow at the stable state.  

 

It worths noting that branch failure may not cause a power outage, but node failure 

can lead to blackout in the served area. A node is failed when the angular velocity at 

the end of the simulation (𝑡𝑚𝑎𝑥) surpasses the stable operation boundary as follows 

(Schafer et al. 2018): 

 

|𝜔𝑖(𝑡𝑚𝑎𝑥)| > 2𝜋 ∙ ∆𝑓 (4.17) 

 

where ∆𝑓 is the frequency deviation, and 20 mHz is used in this study to ensure that 

the system can operate at a stable state. The duration of the simulation 𝑡𝑚𝑎𝑥 is 50 s to 

ensure that the failure process is completed by the end of the simulation.  
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Failure model 

As shown in Figure 4.4a, eighteen power plants are located in the Washington metro 

area, including fourteen natural gas plants, two coal plants, and two nuclear plants. 

The three plant types are characterized by a positive power P+ of 4.75/s2, 4.25/s2 and 

8/s2 respectively, based on their average generation capacities (EIA 2019b). Ninety-

one consumers are characterized by a negative power P- of −1/s2. The power values 

used above are per-unit quantities in order to simplify power system calculation. The 

electric network is assumed to be isolated, and therefore no external power feeds in or 

internal power flows out of the system (Figure 4.4b). The total positive power equals 

to the total negative power. 

 

The capacity of each line is supposed to be proportional to the power flow at the 

stable state, in order to maximize the efficiency of line elements and minimize the 

cost of grid construction projects (Schafer et al. 2018). Specifically, the maximum 

capacity of transmission lines is designed to be twice of carried power flow at the 

stable state; that is, 𝐹𝑖𝑗
 ≈ 0.5𝐾𝑖𝑗

  and 𝛽 ≈ 0.5. In the real world, the dimension of 

transmission lines is fixed, and designers choose the appropriate one from the manual 

to meat capacity requirement. This study initiates 𝐾𝑖𝑗 with 5/s2, and updates 𝐾𝑖𝑗 

iteratively using the equation below. The old values of 𝐾𝑖𝑗
𝑜𝑙𝑑 and 𝐹𝑖𝑗

𝑜𝑙𝑑 are calculated 

using Equations 4.13 and 4.15. 

 

𝐾𝑖𝑗
𝑛𝑒𝑤 = 0.99𝐾𝑖𝑗

𝑜𝑙𝑑 + 0.01 × (2𝐹𝑖𝑗
𝑜𝑙𝑑) (4.18) 
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Iterating 150 times produces the most robust network in this analysis, whereas raising 

or reducing loop numbers causes increased line failures for a given tolerance. To 

ensure that the network meets the N-1 criterion, the 𝐾𝑖𝑗
  values are elevated for several 

vulnerable branches so that any branch failed cannot trigger other failures. The results 

of 𝐾𝑖𝑗
  are presented in Table C1. When the tolerance (𝛽) is set to 1, the 131 different 

N-1 grids and 8,515 different N-2 grids pass the failure tests at the stable state using 

Equation 4.16. This means that the system can reach a new steady state after 

randomly removing one or two branches.  

 

Then dynamic testing is conducted to capture transient voltage violation, which has a 

very small chance in causing cascading failure unless the numbers are big enough. 

The results of the static test above are used as initial conditions. The dynamic testing 

based on Equations 4.10, 4.11 and 4.17 shows that 8,515 different N-2 grids generate 

an average failure of about 56 nodes. Therefore, the cascade trigger coefficient (𝛼) is 

determined to be 0.514 (56/109). Using the value of 0.514 may underestimate failure 

probability of the network, because N-3 grids, N-4 grids, and so on can generate a 

greater number of node failures, and the whole system may fail when the initial 

failure number is large enough. However, the small probability that many 

components fail simultaneously at the beginning offsets the high probability of 

secondary (cascading) failure. Moreover, the electricity system simulated in this study 

is a small portion of the national electrical network, making it more sensitive to a 

shock compared to the regional or national one because of less system redundancy. 

This can lead to somewhat overestimation of the cascade trigger coefficient. 
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The probability of power outage is calculated using Equation 4.7. The results are 

presented in Figure 4.8 and more detailly in Tables C2–C5. Four scenarios are 

considered, where the business-as-usual scenario assumes that summer peak cooling 

load will increase by 7.5% per 1oC rise of temperature in the future. Another three 

scenarios describe the situation that peak load will rise by 5.625%, 3.75%, and 

1.875% per 1oC temperature rise because new technologies are deployed to reduce 

loads on power grids. The assumed increase rates are three quarters, a half, and one 

quarter of the business-as-usual scenario.  

 

Figure 4.8 illustrates that failure probability may grow expeditiously in the rest of the 

century because of a warming climate. The cascading failure probability reaches one 

in summers of 2066–2070 and 2096–2100 under the 7.5% scenario, and in summers 

of 2096–2100 under the 5.625% scenario, and hence the power outage probability of 

the three cases equal to the maximum likelihood of 0.514 (Figure 4.8d). Reducing the 

peak electricity load on power grids can significantly lower the failure probability of 

each component and the entire system (Figure 4.8). This is because the system 

encompasses a large number of elements, a small increment or reduction in the failure 

probability of elements can greatly elevate or decrease the chance of service 

interruption. Transmission lines and transformers are more sensitive to the peak load 

compared to power generation sectors (Figures 4.8a-c), because the failure of power 

plants is dominant by the loss of generation capacity and efficiency. Therefore, 

additional adaptation actions are necessary for generation sectors, such as increasing 

power plant capacities and deploying advanced cooling technologies. 



 

 

150 

 

 

Figure 4.8 Failure probabilities of the electricity system during summer in three 

future periods, 2036–2040, 2066–2070, 2096–2100, and the baseline period 2011–

2015: (a) Generation failure; (b) Transmission failure; (c) Substation failure; (d) 

Power outage. The upper limit indicates a cascading failure probability of one. Four 

scenarios assume that peak load (𝛽𝑃𝐾𝑙𝑜𝑎𝑑) increases by 7.5%, 5.625%, 3.75% and 

1.875% respectively per 1°C temperature rise. 

 

 

Figure 4.9 presents the change ratio of power outage probability (see Equation 4.4 for 

calculation) in three future periods relative to the baseline case. Without any 
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adaptations, the likelihood of service interruption may increase more than seventyfold 

by the end of the century, meaning the event of two or more simultaneous element 

failures in the power grids is 70 times more likely to cause power outage in the 

Washington metro area during summers. Surprisingly, the 1.875% scenario results in 

lower service interruption chance in the summers of 2036–2040 and 2066–2070 

compared to the baseline period 2011–2015, because the reduced failure probability 

of each element exceeds the increment caused by temperature rise.  

 

 

 

Figure 4.9 Change ratios for the probability of power outage in three future periods, 

2036–2040, 2066–2070, 2096–2100, relative to the baseline period 2011–2015. Four 

scenarios assume that peak load (𝛽𝑃𝐾𝑙𝑜𝑎𝑑) increases by 7.5%, 5.625%, 3.75% and 

1.875% respectively per 1°C temperature rise. 
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4.4 Adaptation assessment 

4.4.1 Rooftop photovoltaics 

Solar photovoltaic (PV) panels installed on roofs can provide on-site electricity 

generation. The performance of PV panels is affected by sun intensity, cloud cover, 

relative humidity, and ambient temperature. Sun intensity dominants the power 

production of PV panels. Electricity production grows as solar radiation increases. 

Clouds can reduce sun intensity and adversely affect the productivity of PV panels. 

Humidity can penetrate solar panel frames, lower power generation efficiency, and 

deteriorate PV modules. Hot temperatures increase the conductivity of 

semiconductor, lower the magnitude of the electrical field, and thereby reduce power 

generation of PV panels.  

 

4.4.2 Potential for adaptation 

Roofs facing southwest to southeast with tilt value less than 60 degrees and projected 

horizontal footprint greater than 10 m2 are suitable for PV panels (Gagnon et al. 

2016). The suitable roof areas estimated by Phillips and Melius (2016) using lidar 

technology and model simulation are employed in this study. Data at the state level 

are adjusted to the county level based on population weight in 2010 (Census 2010). 

This adjustment may lead to underestimated roof areas if buildings in the area are 

above-average building counts per capita, and overestimation if buildings in the area 

are below-average building counts per capita. The following assumptions made by 

Gagnon et al. (2016) regarding the productivity of PV modules are employed in this 
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study: (1) The power density value of PV systems is 160 w/m2, corresponding to a 

module efficiency of 16%;  (2) Energy loss due to the system itself is 14.08%, and the 

efficiency in inverting direct current to alternating current is 96%; (3) Every 1.2 kW 

direct current can be converted to 1 kW alternating current. The mean power 

generation capacity of rooftop PV in the Washington metropolitan is calculated to be 

8.44 GW, 1.61 GW and 2.97 GW for small, medium and large buildings, 

respectively. The mean total generation capacity is 13.02 GW. The detailed 

calculation is presented in Table 4.1.  

 

4.4.3 Cost-benefit analysis 

The peak electricity load of the mid-Atlantic region is 152.89 GW during May–

September 2015–2018 (EIA 2019c), and hence the peak load of Washington metro 

area is estimated to be 14.42 GW based on population weight in 2016. Considering 

that the total generation capacity of rooftop PVs is about 13.02 GW, three strategies 

are devised to reduce 25%, 50% and 75% of peak load on the electrical grid by 

applying PV panels to 28%, 55%, and 83% roof areas, respectively. The three 

strategies are denoted by ‘PV25’, ‘PV50’ and ‘PV75’, and evaluated using the life-

cycle benefit-cost analysis.  
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Table 4.1 Rooftop photovoltaics potential for the Washington metropolitan region. 

 

  

Building 

class 

Building 

footprint 

(m2) 

Statistics Suitable roof 

areas (km2) 

Power generation 

capacity (GW) 

Small 
1,000 – 

5,000 

Mean 81.07 8.44 

 

95th confidence 

interval of mean 

62.39 – 220.64 6.52 – 22.48 

Medium 
5,000 – 

10,000 

Mean 18.22 1.61 

 

95th confidence 

interval of mean 

13.97 – 58.00 1.24 – 5.09 

Large > 10,000 

Mean 37.16 2.97 

 

95th confidence 

interval of mean 

22.73 – 118.10 1.81 – 9.47 

Total  

Mean 136.45 13.02 

 

95th confidence 

interval of mean 

99.09 – 396.74 9.57 – 37.04 
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The installation and annual maintenance costs of rooftop PV are $2.6/W and $0.19/W 

respectively for commercial buildings, and $3.2/W and $0.21/kW respectively for 

residential buildings at Washington D.C. in 2015 (Kats and Glassbrook 2016). These 

unit prices are employed in the following analysis. The lifespan of solar panels ranges 

between 20–30 years, and hence 30 years is used as the analyzed period. The discount 

rate is 3%, and the residual value of PV panels at the end of life is 0. Energy is 

required for material production, module manufacture, and transportation. Bhandari et 

al. (2015) harmonized the results of 34 studies that evaluate life-cycle (30 years) 

energy consumption of solar PV. On average, mono- and poly-crystalline silicon PV 

consume the energy of 6225 and 3914 MJ/m2, respectively. Cadmium telluride 

(CdTe), copper indium gallium diselenide (CIGS), and amorphous silicon (a-Si) PV 

require less energy of 1575, 2276, and 1708 MJ/m2, respectively. The energy cost of 

solar PV is calculated as electricity expenditure at the beginning of the life cycle. The 

electricity price of Washington D.C. in 2018 summer ranged between $0.125–

0.132/kWh (BLS 2019), and these values are used in the calculation. 

 

About 60–70% of greenhouse gas emission from solar PV is involved with material 

extraction and production, module and system component manufacture, and 

installation process (NREL 2012). The rest of greenhouse gas emission is associated 

with power generation, system operation and maintenance, and system 

decommissioning and disposal (NREL 2012). Hsu et al. (2012) harmonized the 

results of 13 studies that contain 42 estimates of greenhouse gas emission in the life 

cycle (30 years) of solar PV. The median emission of crystalline silicon PV (mono- 
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and poly-crystalline) is about 45 g of equivalent CO2 per kWh electricity generation 

(Hsu et al. 2012), which is similar to thin-film PV (CdTe, CIGS, and a-Si) based on 

the harmonized estimates of five studies (NREL 2012). The unit price recommended 

by the U.S. Environmental Protection Agency (EPA 2019) is employed to calculate 

incurred social cost for carbon. The life-cycle cost of solar PV including installation 

and maintenance, energy consumption, and carbon footprint is summarized in Table 

4.2. 

 

 

Table 4.2 Life-cycle benefits and costs of rooftop photovoltaics (PV) in the 

Washington metro area, 𝑡0 = 2015, 𝑛 = 30 years, 𝑟 = 3%. 

Strategy Cost 

(2015 million 

dollars) 

Direct benefit  

(2015 million 

dollars) 

Direct and indirect 

benefit  

(2015 million dollars) 

PV25 11,735 – 20,559  10,142 – 12,795 30,501 – 35,330 

PV50 23,397 – 40,806 19,997 – 24,410 60,715 – 69,480 

PV75 35,132 – 61,365 29,820 – 35,892 90,896 – 103,498 

Note: 𝑡0 is the time that the strategy is implemented; 𝑛 is the number of years; 𝑟 is the 

discount ratio. See Equations 4.1–4.3 for details. 

 

 

The direct benefits from rooftop PV are producing electricity and reducing power 

outage risks. The annual electricity generation of PV panels in the metro area is about 
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127.6–141.2 kWh/m2 (the U.S. average is 216 kWh/m2), dependent on the tilt degree 

of roofs (Gagnon et al. 2016). Solar panels degrade at a median rate of 0.5% per year 

(Jordan and Kurtz 2013), and hence the produced electricity is assumed to decrease 

by 0.5% per year. Bartos and Chester (2015) predicted that utility-scale PV in the 

western U.S. may suffer from 0.7–1.7% of capacity reduction in the next forty years 

due to the rise of summer temperatures. However, the prediction is associated with 

many uncertainties such as the variation of solar radiation (Bartos and Chester 2015). 

Therefore, the impacts of temperature rise on PV performance is not considered 

herein. The calculated annual value of electricity generated by PV panels is $447–611 

million for strategy ‘PV25’, $894–1222 million for strategy ‘PV50’, and $134–1833 

million for strategy ‘PV75’. 

 

Momentary disruption (less than 30 minutes) of electricity service can cause a loss of 

$16,172 per medium and large commercial and industrial customer (over 50,000 

annual kWh), $372 per small commercial and industrial customer (under 50,000 

annual kWh), and $5.6 per residential customer in 2013 dollars (Sullivan et al. 2015). 

Long-duration power outages (greater than 30 minutes) are not considered in this 

study because they are typically caused by catastrophic events such as hurricanes, 

wind storms, earthquakes. There are about 6,131,977 residents, 209,996 small 

commercial and industrial customers (employees less than 500), and 3,883 medium 

and large commercial and industrial customers (employees greater than 500) in the 

Washington metro area by 2016 (Census 2018), calculated based on population 

weight in 2016. A power outage has the largest effects on commercial and industrial 
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customers in the morning and afternoon and the greatest impacts on residential 

customers in the morning and night. Therefore, per disruption of electricity service 

can cause an economic loss of $34,339,071–140,914,388, dependent on the disruption 

time (e.g., morning, afternoon, night).  

 

 

 

Figure 4.10 Change in power outage probability when peak load factor is reduced. (a) 

Power outage probability; (b) Reduction in outage probability. 

 

 

Figure 4.10 shows the change in power outage probability when peak load factor 

(𝛽𝑃𝐾𝑙𝑜𝑎𝑑) is reduced from 7.5% (reference) to 5.625%, 3.75%, 1.875%, and 0. The 
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change in years out of the periods analyzed is linearly interpolated. The effectiveness 

of adaptations peaks around the middle of the century, because adaptations lower the 

growth rate of power outage probability and enlarge outcome difference between 

adaptation and reference cases. In the second half of the century, the outage 

probability of the reference case approaches the upper limit (0.514) and grows at an 

extremely low rate until reaching it, whereas the outage probability of adaptation 

scenarios rises at a relatively high rate. By the end of the century, peak load may 

increase by 7.2 GW. Strategies ‘PV25’, ‘PV50’, and ‘PV75’ can add a generation 

capacity of 3.6, 7.2, and 10.8 GW respectively, which can offset the impact of 

increased peak load on the grid by 50%, 100%, and 100% respectively. The benefits 

of the three strategies in mitigating power outage risk is calculated using Equation 4.3 

and summarized in Table D3. 

 

The indirect benefits (co-benefits) of rooftop PV analyzed in this study include 

reducing fine particles PM2.5 concentration and decreasing greenhouse gases 

emission. Machol and Rizk (2013) indicated that PM2.5 discharged by coal, natural 

gas and oil power plants can lead to public health loss of $0.19/ kWh, $0.01/kWh and 

$0.08/kWh, respectively. In 2018, the natural gas, coal, and petroleum contributed to 

39%, 31%, and 7% of total electricity generation respectively in the mid-Atlantic 

region (NERC 2018), meaning per unit (kWh) electricity production in the 

Washington metro area can result in $0.0684 equivalent loss of public health. 

Greenhouse gas emitted from power plants contains Carbon Dioxide (CO2), Methane 

(CH4) and Nitrous Oxide (N2O). The U.S. Environmental Protection Agency (EPA) 
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published greenhouse gas inventories per unit electricity production (EPA 2018), and 

the projected social cost per unit emission of CO2, CH4, and N2O for the years 2015–

2050 (EPA 2019). The social costs later than 2050 are calculated by linear 

extrapolation in this study. The social cost for greenhouse gases and extrapolation 

results are presented in Table D4 and Table D5, respectively. Three discount rates 

(5%, 3%, and 2.5%) are adopted by EPA to account for uncertainties associated with 

socioeconomic conditions. The 3% discount rate is employed in this study to keep 

consistent with the above analysis. The life-cycle benefit of PV including direct and 

indirect benefits are summarized in Table 4.2. 

 

This study assumes that the benefit and cost are normally distributed, the mean for the 

two distributions are the averages of upper and lower boundaries, and the standard 

deviation for the two distributions are one-sixth of the differences between upper and 

lower boundaries. The mean and standard deviation of the cost distribution 

𝐶~𝑁(𝜇𝐶 , 𝜎𝐶
2) and benefit distribution 𝐵~𝑁(𝜇𝐵, 𝜎𝐵

2) is delineated in Table D6.  

 

Table 4.3 compares the three strategies based on four decision metrics. The mean net 

present value (NPV) measures the present value of mean net benefits, and results 

indicate that using more rooftop PV tends to produce more benefits. The probability 

that direct benefit is greater than the cost, 𝑃(𝐵𝑑𝑖𝑟𝑒𝑐𝑡 > 𝐶), decreases as the use of PV 

panels increases, because the direct benefit increases slightly but the cost rises greatly 

for per unit increment of PV panels. The benefit-cost ratio (𝛾) of the three strategies is 

around 2.0, and the ratio drops slightly as the use of PV panels increases due to the 
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same reason. The total benefit is certain to be greater than the cost of the three 

strategies.  

 

 

Table 4.3 Benefit-cost analysis for rooftop photovoltaics (PV) in the Washington 

metro area, 𝑡0 = 2015, 𝑛 = 30 years, 𝑟 = 3%, 2015 dollars. 

Strategy Decision metrics 

Mean net present value  

(𝑁𝑃𝑉 = 𝜇𝐵 − 𝜇𝐶)  

Benefit-cost ratio  

(𝛾 = 𝜇𝐵/𝜇𝐶) 

𝑃(𝐵 > 𝐶) 𝑃(𝐵𝑑𝑖𝑟𝑒𝑐𝑡 > 𝐶) 

PV25 $16,769 million 2.0385 1 0.0012 

PV50 $32,996 million 2.0279 1 0.0005 

PV75 $48,249 million 2.0145 1 0.0003 

Note: 𝑡0 is the time that the strategy is implemented; 𝑛 is the number of years; 𝑟 is the 

discount ratio. See Equations 4.1–4.3 for details. 

 

4.4.4 Timing of adaptation 

Strategy optimization seeks appropriate timing for the adaptation to enable the 

investment to be most cost-effective. This study compares the cost and benefit of 

installing PV panels in later years 2040 and 2070 to the baseline year 2015. The 

summer peak electricity load of Washington metropolitan area is assumed to be 

constant, and thereby the strategies ‘PV25’, ‘PV50’ and ‘PV75’ imply the same 

amount of roof areas as the baseline case. This assumption enables that adaptation 
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timing is the only variable in the analysis. Moreover, the installation price for PV 

panels drops by 1% each year, considering that decreased materials prices, 

government funds and supports, and improved technology and productivity have 

caused a significant decline of PV installation cost (Kavlak et al. 2018). 

  

Table 4.4 and Table 4.5 present the benefit-cost results for the three strategies 

implemented in 2040 and 2070, respectively. Comparing Table 4.3–Table 4.5, the 

mean net present value and the benefit-cost ratio are greater for rooftop PVs installed 

in later years because of the decreased costs of PV panels and increased potential 

benefits over time. The direct benefits decrease due to declined risk reduction on 

power outages in the second half of the century, and the 3% discount rate that reduces 

the present value. Elevating discount rate can lower decision metric values while 

reducing the discount rate can increase decision metric values. Increases in decision 

metric values imply increases in the cost-effectiveness of investments. Although 

direct benefits are unlikely to surpass the costs of rooftop PVs (𝑃(𝐵𝑑𝑖𝑟𝑒𝑐𝑡 > 𝐶) = 0) 

installed in 2040 and 2070, the total benefits that account for environmental impacts 

are certain to be greater than the costs (𝑃(𝐵 > 𝐶) = 1).  
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Table 4.4 Benefit-cost analysis for rooftop photovoltaics (PV) in the Washington 

metro area, 𝑡0 = 2040, 𝑛 = 30 years, 𝑟 = 3%, 2015 dollars. 

Strategy Decision metrics 

Mean net present value  

(𝑁𝑃𝑉 = 𝜇𝐵 − 𝜇𝐶)  

Benefit-cost ratio  

(𝛾 = 𝜇𝐵/𝜇𝐶) 

𝑃(𝐵 > 𝐶) 𝑃(𝐵𝑑𝑖𝑟𝑒𝑐𝑡 > 𝐶) 

PV25 $20,534 million 2.9002 1 0 

PV50 $40,807 million 2.8963 1 0 

PV75 $60,947 million 2.8854 1 0 

Note: 𝑡0 is the time that the strategy is implemented; 𝑛 is the number of years; 𝑟 is the 

discount ratio. See Equations 4.1–4.3 for details. 

 

Table 4.5 Benefit-cost analysis for rooftop photovoltaics (PV) in the Washington 

metro area, 𝑡0 = 2070, 𝑛 = 30 years, 𝑟 = 3%, 2015 dollars. 

Strategy Decision metrics 

Mean net present value  

(𝑁𝑃𝑉 = 𝜇𝐵 − 𝜇𝐶)  

Benefit-cost ratio  

(𝛾 = 𝜇𝐵/𝜇𝐶) 

𝑃(𝐵 > 𝐶) 𝑃(𝐵𝑑𝑖𝑟𝑒𝑐𝑡 > 𝐶) 

PV25 $22,976 million 4.7136 1 0 

PV50 $45,952 million 4.7252 1 0 

PV75 $68,820 million 4.7155 1 0 

Note: 𝑡0 is the time that the strategy is implemented; 𝑛 is the analyzed period; 𝑟 is the 

discount ratio. See Equations 1–3 for details. 
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4.5 Conclusions 

Adapting electricity systems to rising temperatures is important to the nation’s energy 

security. This study systematically and quantitatively evaluates the vulnerability of 

the electricity system in the rest of the 21st century for the Washington metro area, 

comprehensively assesses the cost-effectiveness of implementing rooftop 

photovoltaics (PV) in the area, and creatively employs probabilistic risk analysis to 

enhance climate adaptation planning. Based on the RCP 8.5 scenario, the failure 

probability of the electrical grid is projected to grow continuously and at a greater rate 

in the second half the century. By 2100s, the probability of power outage in this area 

may increase seventyfold if no adaptation action is taken.  

 

The roof area suitable for solar PV is about 136.45 km2 in the Washington metro area, 

which can add an average generation capacity of 13.02 GW to the existing power 

system. The capacity can vary with weather conditions and decrease over time due to 

module degradation. In addition, there is no electricity generation from PV panels at 

night, and battery storage technology can be employed to fill the gap. Deploying 

rooftop PV helps lower summer cooling loads on power grids and reduce the risk of 

power outages. The life-cycle benefit-cost analysis suggests that increasing the usage 

of PV panels can improve cost effectiveness, and implementing PV strategies at an 

earlier time can elevate cumulative benefits in the long run. The net benefits of PVs 

may be more pronounced in the future because of declined material and installation 

prices and increased social cost for carbon emission.   
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Overall, the findings of this study would help local governments and stakeholders 

foresee potential risks and plan and initiate appropriate adaptations for the electric 

power system. The assessment on rooftop PV strategies would help improve regional 

energy system resilience and sustainability. The methods presented in this study are 

transferrable to the analysis of other places.  
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Chapter 5: Conclusions and Implications 

5.1 Major findings  

This dissertation projected future trends and levels of the UHI effect and heat waves 

in Washington D.C. and its surrounding areas. The projection was made by using the 

ARRM to downscale CMIP5 data into the location of observing stations. The 

ARRMs developed in this research shows satisfactory performance in reproducing 

observed temperatures and temperature distributions, although the errors of projection 

caused by the shift of the observation-simulation relationship are not treatable by 

statistical means. Projections of the higher scenario RCP 8.5 suggested that the UHI 

effect would be stronger in summer, especially at nighttime, and weaker in winter. 

The daytime and nighttime UHI intensity may increase to about 2.7°C and 6.5°C on 

an extremely hot summer day (the 99th percentile of temperature distribution) by 

2100, respectively. The maximum amplitude of heat waves may increase continually 

to around 52.4°C by 2100. Annual duration counts the number of heat wave days in a 

year, and can increase to three months by 2100. In addition, warm days and nights 

may triple by the end of the century. Projections of the lower scenario RCP 2.6 

indicated that the UHI effect of Washington D.C. would be similar to the current 

condition. The nighttime intensity may increase slightly in summer and decrease 

slightly in winter. The maximum amplitude and annual duration of heat waves may 

decline after a half-century of growth. Warm days and nights may share the same 

pattern of change.  

 



 

 

167 

 

This dissertation further investigated the temporal and spatial variation of heat waves 

in the Washington metro area. The WRF model was used to downscale CESM1 data 

into fine-grid results, and this method shows remarkable performance in reproducing 

heat wave characteristics. Projections forced by the higher scenario RCP 8.5 indicated 

that the amplitude of heat waves may grow by 5.7°C, and frequency and duration 

may triple in Washington D.C. by the end of the century. Urban areas tend to suffer 

from higher amplitude and longer duration compared to other places. Rural areas may 

experience at least one heat wave every five years by the mid of the century. Warm 

spell duration counts the number of heat wave days in a year, and can increase to two 

months in urban areas and more than one month in rural areas by the end of the 

century. Moreover, UHIs play an important role in heat wave growth even though 

global climate change may dominate the evolution.  

 

Five mitigation strategies for heat waves were evaluated in three future periods using 

the WRF model. Results indicated that elevating albedo of roofs from 0.3 

(conventional roofs) to 0.6 (cool roofs) can lead to 0.6–0.8°C drop in heat wave 

amplitude and 6–9 days decline in warm spell duration at Washington D.C. Raising 

urban pavement albedo from 0.15 (asphalt pavements) to 0.3 or 0.45 (reflective 

pavements) has a negligible effect on heat wave amplitude but can reduce warm spell 

duration by about 2 days. Green roofs show a better performance in heat wave 

mitigation compared to cool roofs and reflective pavements. Replacing conventional 

roofs with 50% and 100% green roofs can reduce heat wave amplitude by 0.5–0.7°C 

and 0.9–1.3°C and lessen warm spell duration by 5–8 and 9–13 days, respectively. In 
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addition to moderating urban temperatures, the five strategies weaken the wind 

flowing from rural to urban areas and increase humidity in the metropolitan region 

during the day. Heat wave amplitudes and warm spell duration decrease almost 

linearly as roof and pavement albedo and green roof fraction increase. Elevating 

surface albedos or increasing green roofs is more effective in reducing hot 

temperatures during the day compared to the night.  

 

Evaluation results indicated that reflective pavements may not be as effective as green 

roofs and cool roofs in moderating heat waves for Washington D.C. This is because 

cool roofs are typical of a higher albedo and reflect more solar radiation than 

reflective pavements do, and green roofs enhance evaporative cooling while reflective 

pavements hinder it (see Chapter 3). In addition, tall buildings surrounding reflective 

pavements can cause multiple reflections, resulting in most solar radiation absorbed 

by road and building surfaces (Qin 2015). The multiple reflections were not simulated 

in the WRF model, meaning the performance of reflective pavements can be lower 

than our simulation. However, the low cost in installation and maintenance may make 

reflective pavements to be a cost-effective strategy and even more cost-efficient than 

green roofs (see Appendix E).  

 

This dissertation also projected the vulnerability of the electricity system to 

temperature rise in the Washington metro area. Results indicated that by the end of 

the century, the probability of power outage may increase seventyfold if no 

adaptation action is taken. If the peak load on the electrical grid is cut by three 
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quarters, the outage probability may rise twentyfold instead. This reduction is 

achievable by installing solar panels on building roofs. The suitable roof area for solar 

PV in the metro area is about 136.45 m2, which can add a generation capacity of 

13.02 GW to the existing power system.  

 

A comprehensive cost-benefit assessment on rooftop PV strategies suggested that the 

benefits of using rooftop PV to reduce peak load on power grids by 25%, 50%, and 

75% are significantly greater than the costs when environmental impacts are 

considered. In addition, increasing the usage of PV panels can enhance cost 

effectiveness, and implementing PV strategies at an earlier time can increase 

cumulative benefits in the long run. The net benefits of PVs may be more pronounced 

in the future because of declined material and installation prices and increased social 

cost for carbon emission.   

 

5.2 Major contributions 

The first major contribution of this dissertation is providing accurate and reliable 

future projections on the UHI effect and heat waves for the Washington metro area. 

Previous projections either covered a broad region that cannot properly represent 

local conditions, or downscaled the old version of global climate models that cannot 

reflect the latest worldwide experiments on climate modeling. This dissertation 

overcame those limitations and produced station-based projections in Table 2.2 and 

Table 2.3, and fine-grid projections in Figure 3.4, which can be used by climate 
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researchers, stakeholders, policymakers, and engineering participators for impact 

assessment, adaptation planning, and policy analysis.  

 

Secondly, the trend and level of the UHI effect and heat waves characterized in this 

research would help cities, particularly Washington D.C., foresee potential risks in 

the future. The potential risks may include heat-related illness and deaths, power 

outage, road damage, and air and water quality deterioration. The fine-grid projection 

of heat waves in this research would help locate vulnerable populations and assets in 

the Washington metro area and assist local climate preparation.  

 

Thirdly, this dissertation improved the understanding of heat wave mitigation 

techniques for cities. Compared to accommodating cities to increased extreme heat, 

mitigation has the advantages in addressing such a challenge from its root cause and 

enabling long-term risk reduction. The effectiveness of cool roofs, green roofs, and 

reflective pavements was assessed under intensified future climate conditions. The 

uncertainties associated with the efficacy of mitigation strategies were analyzed to 

assist decision making.   

 

Fourthly, this dissertation provided new insights into the vulnerability assessment of 

electricity systems. In this assessment, high-resolution temperature projections, 

summer cooling load predictions, electrical network model, and system failure model 

were incorporated to quantitively and systematically evaluate the change of grid 

vulnerability in the future. In addition, this research revealed that cooling load growth 
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may dominate the increase of grid vulnerability during summer, and reducing peak 

load on power grids can reduce the susceptibility level considerably during hot days. 

These findings, among others, may help governments and stakeholders take 

appropriate actions to improve the resilience of electricity systems.  

 

Lastly, this dissertation proposed a new framework to support adaptation planning 

and decision making. This framework incorporating probabilistic risk approach to 

improve uncertainty and sophisticated relations modeling. This framework was 

utilized to assess and optimize rooftop PV strategies for the Washington metro area, 

which would assist in adaptation and resilience planning for the electric sector.  

 

Overall, this research is especially timely in the aftermath of the Paris Agreement 

taking effect in 2016, which calls on climate-change mitigation and adaptation efforts 

in global and local communities. The findings of this dissertation would assist in 

ongoing climate and energy planning of Washington D.C. and provide guidance for 

other cities. The methods proposed and employed in this dissertation can be modified 

to study other regions. 

 

5.3 Implications for future research 

The limitations of this dissertation are addressed as implicit recommendations for 

future research. First and foremost, this dissertation defined a heat wave as at least six 

consecutive days in which maximum temperatures exceed the local 90th percentile of 

the control period from 1961 to 1990. This definition has been employed by a number 
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of studies. However, human’s bearing capacity to extreme heat may change over time 

because of acclimatization. Using the definition designed for the period of 1961–1990 

may be unsuitable for future time periods. For example, the annual duration of heat 

waves projected in this dissertation is surprisingly long (2–3 months) by the end of 

the 21st century. This limitation can be solved by setting the control period closer to 

the projected period.  

 

Secondly, the statistical downscaling method is built on the assumption that the 

relationship between model simulation and observation is time invariant. In this 

research, observational analysis indicates that the temperature difference between the 

city and suburbs was decreasing because of the rapid development of suburbs. 

However, the future projection shows a growing trend of the temperature difference, 

because the urbanization process of suburbs is not simulated in the model. To account 

for urban growth, the statistical relationship between model simulation and 

observation should be updated periodically based on assumed socioeconomic 

development scenarios. Furthermore, the quantile relationship between observation 

and simulation is developed based on historical datasets, and data points exceeding 

historical range are hard to predict. This research used linear extrapolation to treat 

those data points but resulted in an overestimation of extreme hot temperatures. 

Therefore, this statistical method is suitable for projecting relatively stable climate 

variables or short-term change of climate conditions. 
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Thirdly, urban climate modeling can greatly affect dynamical downscaling results. 

This research incorporated the single-layer urban canopy model into the WRF model 

in order to improve urban climate simulation. Choosing a more sophisticated model 

(e.g., multiple-layer urban canopy model, Princeton urban canopy model) can help 

improve projection accuracy although this typically requires more computation 

resource. In addition, using appropriate values for urban parameters is important to 

climate modeling. This research determined those values based on district regulations, 

which may not match real-world conditions. The most effective way is to use local 

data for building height and width, road width, anthropogenic heat, and other 

variables. Moreover, this research used land information collected in 2011 to project 

future temperatures, which may weaken the accuracy of projection results, because 

land use is very likely to change in the future, and the change in land cover can 

greatly affect local climate. Unfortunately, reliable projections for land cover were 

unavailable at the time of this research. Future research may use projected land 

information in the WRF model to avoid accuracy loss.   

 

Lastly, the failure probability measured in this dissertation is an indicator of grid 

vulnerability to temperature rise, rather than the likelihood of service interruption in 

the real world, because service failure can also be triggered by equipment aging, 

extreme weather (e.g., hurricane, windstorm), wildlife, and other factors. Future 

research can expand the probabilistic risk model (adding up conditional probabilities 

of other events) to account for the impacts of multiple factors on electricity system 

failure. Moreover, the electrical power grid assessed in this research for the 
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Washington metro area is affected by the national grid. The national grid may feed 

additional power into the system or consume power generated by the system, which is 

not considered. Future research can use historical operation data to update the 

network model. In addition, this research assumed identical electricity demand in 

each supply node, but real-world energy demands can be spatially uneven. Future 

research may use high-resolution population data or other available data to determine 

the spatial distribution of electricity demands and update the network model.   
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Appendix A: Comparisons of statistical and dynamical downscaling 

results 

This dissertation utilized two methods to project the urban heat island (UHI) effect 

and heat waves for Washington D.C. The first method uses the Asynchronies 

Regional Regression Model (ARRM) that statistically downscales the Coupled Model 

Intercomparison Project Phase Five (CMIP5) data to the location of station-based 

observation. The second method employs Weather Research and Forecasting (WRM) 

model that dynamically downscales the Community Earth System Model version one 

(CESM1) data to finer grid results. The following section compares the results 

generated by the two methods.  

 

Table A1. A comparison of statistical and dynamical downscaling methods. 

Model ARRM WRF model 

Purpose Statistical downscaling Dynamical downscaling 

Input GCM data 10 GCMs of CMIP5 Bias corrected CESM1 

Climate scenario RCP 2.6, RCP 8.5 RCP 8.5 

Training period 1965–2000  N/A 

Validation period 1965–2000 

2001–2005 

2011–2015  

Projected periods 2016–2035 

2046–2065 

2086–2099 

2036–2040 

2066–2070 

2096–2100 
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Projected items Daily maximum and 

minimum temperatures at 

the locations of four 

observing stations 

3-hourly temperature, 

humidity, and wind speed 

at a grid resolution of 4×4 

km for Domain 3 and 

1.3×1.3 km for Domain 4 

Projection of UHI 

intensity 

Temperature difference 

between the average of 

two stations at the city 

and the average of two 

stations at suburbs 

Temperature difference 

between Domain 4 

(excluding nonurban 

areas) and Domain 3 

(excluding urban areas) 

Projection of heat waves* Maximum amplitude, 

annual duration 

Mean and maximum 

amplitude, frequency, 

duration, 

warm spell duration 

Projection of warm days 

and nights 

TX90p, TN90p N/A 

Projection of heat wave 

mitigation outcomes 

N/A Reduction of heat wave 

amplitude, reduction of 

warm spell duration 

Note: *Only the year with at least a heat wave is considered in the statistical 

downscaling results, while all years in the analyzed period are counted in the 

dynamical downscaling results. 
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Table A2. Station comparisons between statistical and dynamical downscaling 

methods. 

Location ARRM WRF 

38.91°N, -76.97°W Station 1 Station 17 

38.94°N, -77.11°W Station 2 Station 19 

38.94°N, -77.46°W Station 3 Station 18 

38.87°N, -76.78°W Station 4 Station 14 

 

 

Figures A1-A4 present simulated and observed daily maximum temperature 

distributions (May–September) at the locations of four weather stations. The ARRM 

shows satisfactory performance in simulating the mean and right tail of historical 

temperature distribution but fails to capture the left tail (Figures A1a, A2a, A3a, and 

A4a). However, in chapter 2, ARRM perfectly captures observation distributions 

during 1965–2000 (Figure 2.5). This is because the ARRM is developed based on 

datasets of 1965–2000, but the statistical relationship between the observation and 

simulation changes over time (Figure 2.9). The WRF model shows remarkable 

performance in reproducing temperature distributions at the four stations (Figures 

A1b, A2b, A3b, and A4b). However, the mean of the temperature distribution at 

Station 1 is slightly underestimated (Figure A1b).  

 

The projection results of ARRM and WRF model are compared in three time periods. 

The scenario RCP 8.5 is adopted in the projection. The ARRM projects a significant 

shift in the distribution towards high temperatures. The number of days with high 
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temperatures may increase considerably, while the number of days with medium and 

low temperatures may decrease substantially. The projection of the WRF model is 

more conservative compared to the ARRM. The WRF model projects a relatively 

small shift of the distribution towards high temperatures, and the shape of the 

distribution hardly changes over time. The low, medium, and high temperatures may 

increase at the same rate.  

 

A recent report from Vox Media in collaboration with NASA’s Jet Propulsion 

Laboratory and the Scripps Institution of Oceanography (Irfan et al. 2019) suggested 

that summer high temperature of Washington D.C. may increase by 2.3–2.7°C (4.1–

4.8°F) in 2036–2065. This prediction is close to WRF’s projection of 2.9°C in 2066–

2070 and is lower than ARRM’s projection of 5.3°C in 2046–2065. The ARRM may 

overpredict extreme hot temperatures, and the degree of overestimation may increase 

when the predicted period is far away from the baseline period. The overprediction is 

attributable to the linear extrapolation method used in this research to project data 

points out of the historical range. 
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Figure A1. Daily maximum temperature distribution at Station 1. (a) ARRM 

simulation compared to observation during 2001–2005; (b) WRF simulation 

compared to observation during 2011–2015; (c) ARRM projection for 2016–2035 

compared to WRF projection for 2036–2040 under RCP 8.5; (d) ARRM projection 

for 2046–2065 compared to WRF projection for 2066–2070 under RCP 8.5; (e) 

ARRM projection for 2086–2099 compared to WRF projection for 2096–2100 under 

RCP 8.5. 
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Figure A2. Daily maximum temperature distribution at Station 2. (a) ARRM 

simulation compared to observation during 2001–2005; (b) WRF simulation 

compared to observation during 2011–2015; (c) ARRM projection for 2016–2035 

compared to WRF projection for 2036–2040 under RCP 8.5; (d) ARRM projection 

for 2046–2065 compared to WRF projection for 2066–2070 under RCP 8.5; (e) 

ARRM projection for 2086–2099 compared to WRF projection for 2096–2100 under 

RCP 8.5. 
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Figure A3. Daily maximum temperature distribution at Station 3. (a) ARRM 

simulation compared to observation during 2001–2005; (b) WRF simulation 

compared to observation during 2011–2015; (c) ARRM projection for 2016–2035 

compared to WRF projection for 2036–2040 under RCP 8.5; (d) ARRM projection 

for 2046–2065 compared to WRF projection for 2066–2070 under RCP 8.5; (e) 

ARRM projection for 2086–2099 compared to WRF projection for 2096–2100 under 

RCP 8.5. 
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Figure A4. Daily maximum temperature distribution at Station 4. (a) ARRM 

simulation compared to observation during 2001–2005; (b) WRF simulation 

compared to observation during 2011–2015; (c) ARRM projection for 2016–2035 

compared to WRF projection for 2036–2040 under RCP 8.5; (d) ARRM projection 

for 2046–2065 compared to WRF projection for 2066–2070 under RCP 8.5; (e) 

ARRM projection for 2086–2099 compared to WRF projection for 2096–2100 under 

RCP 8.5. 
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Appendix B: Mechanisms of dynamical downscaling  

The Weather Research and Forecasting (WRF) model has been developed to a 

software program for convenient use and easy access. The software provides a set of 

services before, during and after running WRF simulation, including data 

preprocessing, data assimilation, dynamics solvers, and post-processing. The 

Advanced Research WRF (ARW) is one of the dynamics solvers that deal with model 

initialization and simulation under predetermined physical schemes and 

numerics/dynamics options. Detailed information on the software and the ARW 

solver are documented in the NCAR technical note (NCAR 2017a). The WRF model 

requires 3-dimensional inputs of temperature, wind speed, geopotential height, and 

relative or specific humidity, and 2-dimensional inputs of surface pressure, mean sea 

level pressure, skin temperature, 2-meter temperature, 2-meter relative or specific 

humidity and 10-meter wind speed. Optional inputs include soil temperature, soil 

moisture and so on, depending on research needs. For the downscaling purpose, 

inputs are obtained from global climate models. 

 

Table 3.1 lists the physical schemes employed in this study. The single-moment 6-

class (WSM6) microphysics scheme is used to simulate the microphysics of water 

vapor, cloud, and precipitation processes (Hong and Lim 2006). The Noah land 

surface model is a four-layer soil temperature and moisture model that calculates 

sensible and latent heat fluxes for the boundary layer scheme (Chen and Dudhia 

2001). Urban canopy model estimates the surface temperature and heat fluxes from 

the roof, wall and road surfaces, and computes the momentum exchange between 
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urban surface and atmosphere. Urban canopy model (UCM) and Noah land surface 

model (LSM) together can categorize urban land uses to three types: low-density 

residential, high-density residential, and commercial/high-intensity industrial lands. 

Mellor-Yamada-Janjic (MYJ) planetary boundary layer scheme solves vertical fluxes 

(Janjic, 1996, 2002). The Eta surface layer scheme (Janjic 1996, Janjic 2002) deals 

with friction velocities and exchange coefficients for the land surface model and 

planetary boundary layer scheme. The rapid radiative transfer model (RRTM) 

(Mlawer et al. 1997) is responsible for the radiative flux divergence and surface 

downward longwave. Dudiha scheme (Stephens 1978) is accountable for shortwave 

radiation for the ground heat budget.  

  

The following section gives a brief introduction to the physical mechanisms of the 

(WRF) model in simulating 2-m air temperatures. More detailed information is 

provided by Skamarock et al. (2008) and Li et al. (2014). In the Earth’s surface 

energy balance, the net radiation/ radiative flux (𝑅𝑛) is a sum of three kinds of 

energy: the heat energy transferring from Earth’s surface to atmosphere by 

conduction and convection, termed sensible heat flux (𝐻𝑆); the heat energy 

transferred through water evaporation or condensation (e.g., soil evaporation, plant 

evapotranspiration), called latent heat flux (𝐻𝐿); and the heat energy transferring from 

Earth’s surface to its subsurface via conduction (e.g., buildings, grounds), named 

ground/ storage heat flux (𝐻𝐺). The subsurface absorbs solar radiation during the day 

and emits heat energy at night. The equation of the energy balance can be expressed 

as follows: 
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 𝑅𝑛 = 𝐻𝑆 + 𝐻𝐿 + 𝐻𝐺 (B1) 

 

2-m air temperature (𝑇2) refers to the air temperature at two meters above the surface. 

𝑇2 is directly associated with skin surface temperature (𝑇𝑠), and is calculated as 

follows:  

 

 
𝑇2 = 𝑇𝑠 −

𝐻𝑆

𝜌𝑎𝐶ℎ2𝑈2
 (B2) 

 

where 𝜌𝑎 is the air density. 𝑈2 is the wind speed at 2 m above the surface. 𝐶ℎ2 is the 

heat transfer coefficient at 2 m above the surface. 

 

For urban grid cells, urban canopy model calculates heat flux of impervious surfaces 

like buildings, roads, while the Noah land surface model computes heat flux of 

vegetated areas such as parks, grasslands, trees. Urban percentage (𝑓𝑖𝑚𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠), also 

called urban fraction, is the ratio of impervious area to an urban grid-cell area (Chen 

et al. 2011). The sensible heat flux of an urban grid can be expressed as follows: 

 

 𝐻𝑠 = 𝑓𝑖𝑚𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 × 𝐻𝑠,𝑖𝑚𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 + (1 − 𝑓𝑖𝑚𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠) × 𝐻𝑠,𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑒𝑑 (B3) 
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where 𝐻𝑠,𝑖𝑚𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 and 𝐻𝑠,𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑒𝑑 are sensible heat flux on the impervious part and 

vegetated part, respectively. Inserting Equation B3 to Equation B2 yields the 

expression of 2-m air temperature as follows: 

 

 
𝑇2 = 𝑇𝑠 −

𝑓𝑖𝑚𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 × 𝐻𝑠,𝑖𝑚𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 + (1 − 𝑓𝑖𝑚𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠) × 𝐻𝑠,𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑒𝑑

𝜌𝐶ℎ2𝑈2
 (B4) 

 

For nonurban grid cells, Noah LSM generates all the heat flux results for the 

boundary layer scheme.  

 

In this study, the vertical dimension of the WRF model comprises 35 sigma vertical 

levels from the Earth’s surface to the 50-hPa pressure level. The height and thickness 

of the vertical levels are as follows: 

 

Level =    1     Height =     0.0 m (surface) 

Level =    2     Height =    56.6 m      Thickness =   56.6 m 

Level =    3     Height =   137.9 m      Thickness =   81.4 m 

Level =    4     Height =   244.7 m      Thickness =  106.8 m 

Level =    5     Height =   377.6 m      Thickness =  132.9 m 

Level =    6     Height =   546.3 m      Thickness =  168.7 m 

Level =    7     Height =   761.1 m      Thickness =  214.8 m 

Level =    8     Height =  1016.2 m      Thickness =  255.0 m 

Level =    9     Height =  1372.7 m      Thickness =  356.6 m 

Level =   10     Height =  1742.4 m      Thickness =  369.7 m 



 

 

187 

 

Level =   11     Height =  2126.4 m      Thickness =  384.0 m 

Level =   12     Height =  2525.9 m      Thickness =  399.5 m 

Level =   13     Height =  3280.4 m      Thickness =  754.6 m 

Level =   14     Height =  4035.0 m      Thickness =  754.6 m 

Level =   15     Height =  4789.5 m      Thickness =  754.6 m 

Level =   16     Height =  5544.1 m      Thickness =  754.6 m 

Level =   17     Height =  6298.6 m      Thickness =  754.6 m 

Level =   18     Height =  7053.2 m      Thickness =  754.6 m 

Level =   19     Height =  7807.7 m      Thickness =  754.6 m 

Level =   20     Height =  8562.3 m      Thickness =  754.6 m 

Level =   21     Height =  9316.9 m      Thickness =  754.6 m 

Level =   22     Height = 10071.4 m      Thickness =  754.6 m 

Level =   23     Height = 10826.0 m      Thickness =  754.6 m 

Level =   24     Height = 11580.5 m      Thickness =  754.6 m 

Level =   25     Height = 12335.1 m      Thickness =  754.6 m 

Level =   26     Height = 13089.6 m      Thickness =  754.6 m 

Level =   27     Height = 13844.2 m      Thickness =  754.6 m 

Level =   28     Height = 14598.7 m      Thickness =  754.6 m 

Level =   29     Height = 15353.3 m      Thickness =  754.6 m 

Level =   30     Height = 16107.9 m      Thickness =  754.6 m 

Level =   31     Height = 16862.4 m      Thickness =  754.6 m 

Level =   32     Height = 17617.0 m      Thickness =  754.6 m 

Level =   33     Height = 18371.5 m      Thickness =  754.6 m 
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Level =   34     Height = 19126.1 m      Thickness =  754.6 m 

Level =   35     Height = 19880.6 m      Thickness =  754.6 m 

 

 

The impacts of five adaptation strategies on surface temperature are illustrated in 

Figure B1. Figure B2 shows surface temperature shift as the albedo of roofs and 

pavements rises and as the fraction of green roofs increases. 

 

 

Figure B1. Impacts of five adaptation strategies on the peak surface temperature of 

the hottest heat wave in the periods of 2036–2040, 2066–2070, and 2096–2100 at 

Washington D.C. All results are averaged over urban grid cells in Domain 4. Error 

bars denote standard deviation over those grid cells. 
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Figure B2. Peak surface temperature of the hottest heat wave as a function of roof and 

wall albedo, pavement albedo, and green roof fraction in Washington D.C. for the 

period 2036–2040, 2066–2070, and 2096–2100. All results are averaged over urban 

grid cells in Domain 4. Error bars denote standard deviation over those grid cells. 
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Figure B3. Impacts of five adaptation strategies on the surface energy balance at the 

peak day of the hottest heat wave in Washington D.C. for the period 2066–2070. (a) 

Sensible heat flux; (b) Latent heat flux; (c) Ground storage heat flux; (d) Net 

radiation. All results are averaged over urban grid cells in Domain 4. Error bars 

denote standard deviation over those grid cells. AP100 and AP200 are almost 

overlapped. 
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Figure B4. Impacts of five adaptation strategies on the surface energy balance at the 

peak day of the hottest heat wave in Washington D.C. for the period 2096–2100. (a) 

Sensible heat flux; (b) Latent heat flux; (c) Ground storage heat flux; (d) Net 

radiation. All results are averaged over urban grid cells in Domain 4. Error bars 

denote standard deviation over those grid cells. AP100 and AP200 are almost 

overlapped. 
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Useful links 

To compile and run WRF under Linux: 

http://www2.mmm.ucar.edu/wrf/OnLineTutorial/compilation_tutorial.php  

To use UMD High Performance Computing (HPC): 

http://www.glue.umd.edu/hpcc/ 

To upload or download files from HPC: 

https://umd.service-now.com/itsupport/?id=kb_article&article=KB0010646 

  

http://www2.mmm.ucar.edu/wrf/OnLineTutorial/compilation_tutorial.php
http://www.glue.umd.edu/hpcc/
https://umd.service-now.com/itsupport/?id=kb_article&article=KB0010646
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Appendix C: Electrical network analysis using swing equations 

The electrical network of the Washington metro area is presented in Figure C1, with 

18 supply nodes, 91 distribution nodes, and 131 branches. The branch and node data 

are presented in Table C1. The K values are updated for 150 times to generate the 

most robust grid. The K values of the branches connecting generators are greater than 

the others, because generators feed a large amount of power into the system. Tables 

C2-C5 summarize the change of failure probabilities in three future periods if the 

peak load increases by 7.5%, 5.625%, 3.75% or 2.5% per 1°C temperature rise. 

 

 

 

Figure C1. The electrical grid model for the Washington metro area.  
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Table C1. Brach and node data for the electrical model. 

Branch Data Node data 

Branch # From bus i To bus j 𝐾𝑖𝑗 (Iteration =150, 

𝛽=1) 

Node # Pi (s/2) 

1 1 2 1.251161457 1 -1 

2 1 3 1.920215664 2 -1 

3 1 4 1.335750794 3 -1 

4 1 7 2.479361991 4 -1 

5 2 9 2.043778742 5 -1 

6 4 5 2.378360154 6 -1 

7 5 6 1.741753757 7 -1 

8 5 7 1.279459345 8 -1 

9 6 12 2.448229629 9 -1 

10 7 10 1.302507304 10 -1 

11 8 10 1.552319852 11 -1 

12 9 11 3.193567894 12 -1 

13 10 11 2.557265531 13 -1 

14 11 12 1.648156333 14 -1 

15 11 13 7.299859353 15 -1 

16 12 13 5.326427341 16 -1 

17 13 14 3.570722908 17 -1 

18 13 19 17.1225779 18 4.75 

19 14 15 3.814380593 19 4.25 

20 14 17 5.035873396 20 -1 

21 15 16 3.73700364 21 -1 

22 16 17 2.961821997 22 -1 

23 17 18 21.15434975 23 -1 

24 18 43 1.6643502 24 -1 

25 19 21 4.689206184 25 -1 
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26 19 38 4.095405134 26 -1 

27 20 38 1.823825887 27 4.75 

28 21 22 2.621377107 28 4.75 

29 21 29 19.11593686 29 4.75 

30 22 23 1.797765584 30 -1 

31 22 25 2.10412974 31 -1 

32 23 24 3.285174993 32 -1 

33 24 26 6.61068404 33 -1 

34 26 27 16.51953836 34 -1 

35 26 28 16.51952391 35 -1 

36 26 30 20.02873412 36 -1 

37 30 31 2.282156184 37 -1 

38 30 32 2.282156011 38 4.75 

39 30 33 2.588046594 39 -1 

40 30 85 2.431081502 40 -1 

41 33 83 1.530747041 41 -1 

42 34 35 1.282141019 42 -1 

43 34 50 3.619133451 43 4.75 

44 34 67 6.625482696 44 -1 

45 34 68 2.386876067 45 -1 

46 35 36 2.141577174 46 -1 

47 36 37 3.5789979 47 -1 

48 37 38 6.870673694 48 -1 

49 37 39 1.304815613 49 -1 

50 38 39 7.785480582 50 -1 

51 39 44 5.740883416 51 -1 

52 40 41 1.654918508 52 -1 

53 41 42 1.654918927 53 -1 

54 41 44 3.701611576 54 -1 

55 43 62 9.863572604 55 -1 
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56 43 64 2.862250783 56 -1 

57 43 66 2.778937259 57 -1 

58 44 45 2.548701131 58 -1 

59 44 60 2.51933249 59 -1 

60 45 46 1.631558358 60 -1 

61 46 48 2.542698108 61 -1 

62 46 52 1.193424528 62 -1 

63 46 59 2.971840499 63 -1 

64 47 48 2.016100805 64 4.75 

65 48 49 1.658653898 65 -1 

66 50 51 1.999556459 66 -1 

67 52 53 1.136688623 67 4.75 

68 52 58 1.576229937 68 -1 

69 53 54 1.8060747 69 -1 

70 54 55 3.913005828 70 -1 

71 54 70 2.698260824 71 -1 

72 54 97 1.801833621 72 -1 

73 55 56 6.580859193 73 -1 

74 56 57 1.963396993 74 -1 

75 56 62 20.39804003 75 -1 

76 58 59 2.280835912 76 -1 

77 59 60 3.097894052 77 -1 

78 60 61 1.59112584 78 -1 

79 60 104 14.20035599 79 4.75 

80 62 63 5.730184514 80 -1 

81 63 64 5.43550507 81 4.75 

82 63 105 2.987423205 82 4.75 

83 65 69 3.636807597 83 -1 

84 65 72 3.504595002 84 -1 

85 65 80 6.563564287 85 -1 
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86 67 68 3.378416415 86 4.75 

87 68 69 4.862146658 87 -1 

88 68 70 3.915023234 88 -1 

89 69 82 8.790923249 89 -1 

90 70 71 1.885478157 90 -1 

91 72 73 2.016863315 91 -1 

92 72 74 2.484387807 92 8 

93 74 75 2.588198226 93 4.75 

94 74 81 17.07718254 94 4.25 

95 74 97 8.930329445 95 -1 

96 75 76 3.615287583 96 -1 

97 75 78 2.025844964 97 -1 

98 76 77 6.753487756 98 -1 

99 77 79 4.349263069 99 -1 

100 77 94 3.321842363 100 -1 

101 79 80 4.701164457 101 -1 

102 80 82 1.630483263 102 -1 

103 80 87 4.236243008 103 -1 

104 81 82 1.29869036 104 -1 

105 82 83 1.882349897 105 -1 

106 82 84 1.313405873 106 -1 

107 84 94 2.328928574 107 8 

108 85 86 2.929115395 108 -1 

109 85 89 1.300034086 109 4.75 

110 86 87 3.980022642 Total 0 

111 86 88 3.17667571   

112 86 94 2.334489153   

113 88 89 4.079838135   

114 88 91 10.27872541   

115 89 90 2.308897273   
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116 91 92 22.10397291   

117 92 93 3.724208174   

118 94 95 2.188871935   

119 94 96 2.188871207   

120 97 98 8.300965004   

121 98 99 5.323635817   

122 99 100 2.372887858   

123 99 102 1.676956385   

124 100 101 1.615527782   

125 103 104 2.028294922   

126 104 106 20.05427524   

127 105 106 3.033358959   

128 105 107 21.17065141   

129 106 108 19.59080559   

130 107 108 4.737339573   

131 108 109 12.64186227   

 

 

 

Table C2. The failure probability of the electricity system (𝛽𝑃𝐾𝑙𝑜𝑎𝑑 = 7.5%). 

Analyzed 

period 

Failure probability Change ratio of failure probability  

𝑃(𝐹𝐺) 𝑃(𝐹𝑇) 𝑃(𝐹𝑆) 𝑃(𝐹𝑂) ∆𝑝(𝐹𝐺) ∆𝑝(𝐹𝑇) ∆𝑝(𝐹𝑆) ∆𝑝(𝐹𝑂) 

2011–2015 0.0130 0 0 0.0071 / / / / 

2036–2040 0.0370 0.0152 0.0065 0.4660 1.846 / / 64.394 

2066–2070 0.1109 0.0370 0.0196 0.5135 7.531 / / 71.062 

2096–2100 0.2761 0.1848 0.1326 0.5140 20.238 / / 71.137 
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Table C3. The failure probability of the electricity system (𝛽𝑃𝐾𝑙𝑜𝑎𝑑 = 5.625%). 

Analyzed 

period 

Failure probability Change ratio of failure probability 

𝑃(𝐹𝐺) 𝑃(𝐹𝑇) 𝑃(𝐹𝑆) 𝑃(𝐹𝑂) ∆𝑝(𝐹𝐺) ∆𝑝(𝐹𝑇) ∆𝑝(𝐹𝑆) ∆𝑝(𝐹𝑂) 

2011–2015 0.0130 0 0 0.0071 / / / / 

2036–2040 0.0282 0 0 0.0297 0.838 / / 3.170 

2066–2070 0.0652 0.0043 0 0.2892 4.015 / / 39.591 

2096–2100 0.2326 0.0848 0.0587 0.5140 16.892 / / 71.137 

  

 

Table C4. The failure probability of the electricity system (𝛽𝑃𝐾𝑙𝑜𝑎𝑑 = 3.75%). 

Analyzed 

period 

Failure probability Change ratio of failure probability 

𝑃(𝐹𝐺) 𝑃(𝐹𝑇) 𝑃(𝐹𝑆) 𝑃(𝐹𝑂) ∆𝑝(𝐹𝐺) ∆𝑝(𝐹𝑇) ∆𝑝(𝐹𝑆) ∆𝑝(𝐹𝑂) 

2011–2015 0.0130 0 0 0.0071 / / / / 

2036–2040 0.0239 0 0 0.0221 1.169 / / 2.099 

2066–2070 0.0434 0 0 0.0624 2.338 / / 7.758 

2096–2100 0.1891 0.0087 0 0.4769 13.546 / / 65.932 
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Table C5. The failure probability of the electricity system (𝛽𝑃𝐾𝑙𝑜𝑎𝑑 = 1.875%). 

Analyzed 

period 

Failure probability Change ratio of failure probability 

𝑃(𝐹𝐺) 𝑃(𝐹𝑇) 𝑃(𝐹𝑆) 𝑃(𝐹𝑂) ∆𝑝(𝐹𝐺) ∆𝑝(𝐹𝑇) ∆𝑝(𝐹𝑆) ∆𝑝(𝐹𝑂) 

2011–2015 0.0130 0 0 0.0071 / / / / 

2036–2040 0.0022 0 0 0.0002 -4.909 / / -0.969 

2066–2070 0.0043 0 0 0.0008 -2.023 / / -0.883 

2096–2100 0.0804 0 0 0.1604 5.185 / / 21.514 

 

 

Table C6. The failure probability of the electricity system (𝛽𝑃𝐾𝑙𝑜𝑎𝑑 = 0) 

Analyzed 

period 

Failure probability Change ratio of failure probability 

𝑃(𝐹𝐺) 𝑃(𝐹𝑇) 𝑃(𝐹𝑆) 𝑃(𝐹𝑂) ∆𝑝(𝐹𝐺) ∆𝑝(𝐹𝑇) ∆𝑝(𝐹𝑆) ∆𝑝(𝐹𝑂) 

2011–2015 0.0130 0 0 0.0071 / / / / 

2036–2040 0 0 0 0 -1 / / -1 

2066–2070 0 0 0 0 -1 / / -1 

2096–2100 0 0 0 0 -1 / / -1 
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Appendix D: Cost-benefit analysis for rooftop photovoltaics 

Table D1 shows the calculation process for upper and lower boundaries of annual 

electricity production value by photovoltaic (PV) panels. Table D2 presents the 

declined values of cascading failure probability (∆𝑃𝑐) when adaptation strategies are 

employed. Table D3 calculates the monetized benefits in preventing the disruption of 

electricity service due to adaptations. Table D4 summarizes greenhouse gases’ 

emission factors per MWh electricity production. The data are obtained from EPA 

(2018). Table D5 lists social cost per metric ton of CO2, CH4, and N2O with an annual 

discount rate of 5%, 3% and 2.5% from 2015 to 2050 suggested by EPA (2019). The 

social cost later than 2050 is computed by extrapolation. Table D6 lists mean (𝜇) and 

standard deviation (𝜎) of cost and benefit distributions for inthe stallation year 2015. 

Table D7 and Table D8 present life-cycle benefit and cost results of installing rooftop 

PV in 2040 and 2070 respectively at the Washington metro area. 
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Table D1. Values of annual electricity production by photovoltaic (PV) panels (2015 

dollars). 

Unit price 

($/kWh) 

Strategy Annual 

productivity (kW) 

Lower cost 

boundary 

Upper cost 

boundary 

0.125 PV25 3605000 $522,725,000 
 

PV50 7210000 $1,045,450,000 
 

PV75 10815000 $1,568,175,000 
 

PV25 3605000 
  

PV50 7210000 
  

PV75 10815000 
  

0.132 PV25 3605000 
  

PV50 7210000 
  

PV75 10815000 
  

PV25 3605000 
 

$611,004,240 

PV50 7210000 
 

$1,222,008,48

0 

PV75 10815000 
 

$1,833,012,72

0 
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Table D2. Reduction in power outage probability (∆𝑃𝑂) when adaptation strategies 

are employed. 

Period Strategy 

PV25 PV50 PV75 

2036–2040 0.0106 0.0123 0.0124 

2066–2070 0.0430 0.0549 0.0553 

2096–2100 0.1061 0.1814 0.2040 

 

 

Table D3. Benefits in preventing the disruption of electricity service in 2015 dollars. 

Disruption cost (𝐶𝑑) Period PV25 PV50/PV75 

∆𝑃𝑂 ∆𝑃𝑂 ∙ 𝐶𝑑 ∆𝑃𝑂 ∆𝑃𝑂 ∙ 𝐶𝑑 

$34,339,071 

(lower boundary) 

2036–2040 0.4660 16,002,007 0.4660 16,002,007 

2066–2070 0.5127 17,605,642 0.5135 17,633,113 

2096–2100 0.0371 1,273,980 0.5140 17,650,282 

$140,914,388 

(higher boundary) 

2036–2040 0.4660 65,666,105 0.4660 65,666,105 

2066–2070 0.5127 72,246,807 0.5135 72,359,538 

2096–2100 0.0371 5,227,924 0.5140 72,429,995 

Note: ∆𝑃𝑂 is the reduction of power outage probability. 𝐶𝑑 is the cost of power supply 

disruption. 
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Table D4. Greenhouse gases’ emission factors per MWh electricity production (EPA 

2018). 

eGRID subregion CO2 factor CH4 factor N2O factor 

lb/MWh kg/MWh lb/MWh g/MWh lb/MWh g/MWh 

RFCE (RFC East) 758.2 343.9134544 0.05 22.6796 0.009 4.082328 
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Table D5. Social cost per metric ton of CO2, CH4, and N2O with an annual discount 

rate of 5%, 3% and 2.5% in 2017 dollars (EPA 2019). 

Year CO2 ($/ton) CH4 ($/ton) N2O ($/ton) 

5%  3% 2.5% 5%  3%  2.5% 5% 3% 2.5% 

2015 11  36  56  450  1,000  1,400  4,000  13,000  20,000  

2020 12  42  62  540  1,200  1,600  4,700  15,000  22,000  

2025 14  46  68  650  1,400  1,800  5,500  17,000  24,000  

2030 16  50  73  760  1,600  2,000  6,300  19,000  27,000  

2035 18  55  78  900  1,800  2,300  7,400  21,000  29,000  

2040 21  60  84  1,000  2,000  2,600  8,400  23,000  32,000  

2045 23  64  89  1,200  2,300  2,800  9,500  25,000  34,000  

2050 26  69  95  1,300  2,500  3,100  11,000  27,000  37,000  

2055 28  74  101  1,421  2,714  3,343  12,000  29,000  39,429  

2060 30  78  106  1,543  2,929  3,586  13,000  31,000  41,857  

2065 32  83  112  1,664  3,143  3,829  14,000  33,000  44,286  

2070 35  88  117  1,786  3,357  4,071  15,000  35,000  46,714  

2075 37  93  123  1,907  3,571  4,314  16,000  37,000  49,143  

2080 39  97  128  2,029  3,786  4,557  17,000  39,000  51,571  

2085 41  102  134  2,150  4,000  4,800  18,000  41,000  54,000  

2090 43  107  140  2,271  4,214  5,043  19,000  43,000  56,429  

2095 45  111  145  2,393  4,429  5,286  20,000  45,000  58,857  

2100 47  116  151  2,514  4,643  5,529  21,000  47,000  61,286  

Note: The values in blue are calculated by linear extrapolation. The costs for years 

between are interpolated from two nearby time points. 
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Table D6. Mean (𝜇) and standard deviation (𝜎) of cost and benefit distributions. 

Strategy Cost 

(2015 million 

dollars) 

Direct benefit 

(2015 million dollars) 

Direct and indirect 

benefit (2015 million 

dollars) 

𝜇𝐶 𝜎𝐶  𝜇𝐵,𝑑𝑖𝑟𝑒𝑐𝑡 𝜎𝐵,𝑑𝑖𝑟𝑒𝑐𝑡 𝜇𝐵 𝜎𝐵 

PV25 16,147  1,471 11,074 362 32,521  725 

PV50 32,102  2,902 21,747  643 64,641 1,368 

PV75 48,249 4,372 32,419 924 96,760 2,012 

 

 

Table D7. Life-cycle benefits and costs of rooftop photovoltaics (PV) in the 

Washington metro area, 𝑡0 = 2040, 𝑛 = 30 years, 𝑟 = 3%. 

Strategy Cost 

(2015 million 

dollars) 

Direct benefit  

(2015 million 

dollars) 

Direct and indirect 

benefit  

(2015 million dollars) 

PV25 8,392 – 13,220 4,841 – 5,984 29,348 – 33,110 

PV50 16,747 – 26,291 9,608– 11,665 58,621– 65,918 

PV75 25,139 – 39,511 14,351 – 17,249 87,871– 98,628 
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Table D8. Life-cycle benefits and costs of rooftop photovoltaics (PV) in the 

Washington metro area, 𝑡0 = 2070, 𝑛 = 30 years, 𝑟 = 3%. 

Strategy Cost 

(2015 million 

dollars) 

Direct benefit  

(2015 million 

dollars) 

Direct and indirect 

benefit  

(2015 million dollars) 

PV25 5,027 – 7,347 1,991 – 2,452 27,566 – 30,760 

PV50 10,038 – 14,633 3,967 – 4,843 55,116 – 61,460 

PV75 15,065 – 21,980 5,916 – 7,121 82,640 – 92,046 

 

 

Due to temperature change, the three PV strategies may not cause peak electricity 

load on the power grid to decrease by 25%, 50%, and 75%. Table D10 shows the 

variation of reduction in analyzed periods. 
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Table D9. Percent reduction of peak electricity load on the power grid contributed by 

three PV strategies. 

Period Mean 

temperature 

(°C) 

Peak 

electricity 

load (GW) 

Strategy 

PV25 PV50 PV75 

2011–2015 36.59252 13.75928 -26.20% -52.40% -78.60% 

2036–2040 39.29375 15.23105 -23.67% -47.34% -71.01% 

2066–2070 40.86149 16.15549 -22.31% -44.63% -66.94% 

2096–2100 43.24278 17.65836 -20.42% -40.83% -61.25% 

 

 

Table D10. The growth of peak electricity loads relative to 2011–2015 and increased 

generation capacity contributed by three PV strategies. 

Period Peak electricity 

load growth 

(GW) 

Strategy 

PV25 (GW) PV50 (GW) PV75 (GW) 

2036–2040 1.4718 3.605 7.21 10.815 

2066–2070 2.3962 3.605 7.21 10.815 

2096–2100 3.8991 3.605 7.21 10.815 
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Appendix E: Cost-benefit analysis for green roofs, cool roofs, and 

reflective pavements 

The costs and benefits of green roofs, cool roofs, and reflective pavements have been 

estimated by a number of studies for different building types, geographical regions, 

and climate conditions, as shown in Tables E1-E6. Table E1 lists the benefit-to-cost 

ratios of cool roofs, green roofs, and reflective pavements estimated by Kats and 

Grassbrook (2016) for Washington D.C. The benefits they considered include energy 

savings, improved air quality, and public health, reduced stormwater runoff, climate 

change mitigation, and increased resilience and employment. Their estimated benefit-

cost ratios are 7.3, 2.0 and 2.6 for cool roofs with an albedo of 0.65–0.75, green roofs 

with a growing media depth of 0.1 m and a leaf area index of 2, and reflective 

pavements with an albedo of 0.3–0.45 respectively.  

 

Table E1. Cost effectiveness of cool roof, green roof, and reflective pavement 

strategies in Washington D.C. from 2017–2056 (Kats and Grassbrook 2016). 

Technology Benefit-to-cost ratio Total cost Total benefit 

Cool roofs 7.3 $32,318,000 $236,960,000 

Green roofs 2.0 $282,957,000 $563,636,000 

Reflective pavements 2.6 $43,802,000 $112,377,000 
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Washington DC’s 61 square miles (158 km2) of surface is comprised of 15.9% roofs 

and 24.1% paved area. The data of Kats and Glassbrook (2016) are used in this 

research to assess five mitigation strategies for Washington D.C. The analysis period 

is 40 years from 2017–2056, where the paintings/coatings of cool roofs and reflective 

pavements are replaced after 20 years of use. The cost data derived from Kats and 

Glassbrook (2016) are converted to unit cost of each strategy ($/m2), as shown in 

Table E2. 

 

Direct energy savings refer to decreased energy consumptions in buildings due to the 

installation of cool roofs and green roofs. Cool roofs reflect sunlight and reduce heat 

uptake of roof surface, which can decrease cooling energy demands in summer but 

increase heating energy needs in winter. Green roofs help to save energy in summer 

and winter, as the growing media and vegetation can absorb and store a large amount 

of heat. This can decrease temperature fluctuation in buildings and reduce the effect 

of extreme outdoor temperatures. For green roofs, the data obtained from Kats and 

Glassbrook (2016) are used directly. For cool roofs, the data are scaled based on the 

ratio of increased albedo relative to conventional ones. In the study of Kats and 

Glassbrook (2016), the albedo of cool roofs is 0.45 greater than that of conventional 

ones. Therefore, the result of Kats and Glassbrook (2016) times 0.3/0.45 yield the 

direct energy savings of the cool roof strategy (AR100). 

 

Indirect energy savings are created by UHI mitigation, as weakening the UHI effect 

can reduce summer energy consumption; however, this can lead to increased winter 
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energy usage. For cool roof strategy (AR100), the data of Kats and Glassbrook (2016) 

are scaled by the ratio of increased albedo (0.3/0.45). For reflective pavements and 

green roofs, the result of AR100 is rescaled by the ratio of temperature reductions to 

yield indirect energy savings of the four strategies. The ratios of AP100, AP200, 

GR50, and GR100 are 0.05/0.7, 0.1/0.7, 0.6/0.7, and 1.1/0.7, respectively. 

 

The increase in temperature can raise ground-level ozone contents, which can impair 

human health. The health impact of ozone estimated by Kats and Glassbrook (2016) 

is scaled by the ratio of temperature reductions to yield the benefits of the five 

strategies on health. In addition, increased electricity production during hot days 

discharges a greater amount of PM2.5 into the atmosphere, which further exacerbates 

health problems. The health impact of PM2.5 estimated by Kats and Glassbrook 

(2016) is scaled by the ratio of direct and indirect energy savings to yield the benefits 

of the five strategies on health.  

 

Heat-related mortality can be affected by the magnitude of temperature and humidity, 

the duration of high temperatures, and the time of the season (Kalkstein et al. 2013). 

For cool roof strategy (AR100), the data of Kats and Glassbrook (2016) are scaled by 

the ratio of increased albedo (0.3/0.45). For reflective pavements and green roofs, the 

result of AR100 is rescaled by the ratio of temperature reductions to yield the benefits 

of the four strategies in reducing mortality risk. 
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Climate change mitigation involves reducing greenhouse gas emissions and reducing 

solar radiation. The GHG emissions (i.e., CO2, CH4, N2O) are related to electricity 

production and natural gas combustion for building cooling and heating purposes. 

The impacts of GHG emissions on the economy is typically measured by the social 

cost of carbon. The social cost of carbon estimated by Kats and Glassbrook (2016) is 

scaled by the ratio of direct and indirect energy savings to yield the benefits of the 

five strategies in reducing GHG emissions.  

 

Elevating albedo can reduce solar radiation. Akbari et al. (2009) indicated that 

elevating roof albedo by 0.25 is equivalent to reducing CO2 by 64 kg/m2, and 

elevating pavement albedo by 0.15 is equivalent to reducing CO2 by 38 kg/m2.  

Menon et al. (2010) estimated a greater annual CO2 reduction of 82 kg/m2 and 49 

kg/m2 as roof and pavement albedos increase 0.25 and 0.15, respectively. The results 

of the two studies are averaged and used in this study, which yields 73kg/m2 of CO2 

reduction per 0.25 increase in roof albedo, and 43.5 kg/m2 of CO2 reduction per 0.15 

increase in pavement albedo. Annual CO2 sequestration of extensive green roofs is 

about 2.5 kg per m2 of roof (Kuronuma et al. 2018), which is very small and can be 

neglected. The social cost of carbon estimated by Kats and Glassbrook (2016) is 

scaled by the ratio of increased albedos to yield the benefits of the five strategies in 

reducing solar radiation.  
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The data for stormwater reduction and job creation obtained from Kats and 

Glassbrook (2016) are used directly. All benefit values computed above are converted 

to unit benefit ($/m2) for a comparison. 
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Table E2. Annual costs and benefits of five mitigation strategies (m2) in Washington DC, 2015 dollars. 

Items 
Strategies 

AR100 AP100 AP200 GR50 GR100 

Analysis period 2017 – 2056 2017 – 2056 2017 – 2056 2017 – 2056 2017 – 2056 

Lifespan 20 years 20 years 20 years 40 years 40 years 

Annual discount rate 3% 3% 3% 3% 3% 

Total costs $2.6 $2.3 $2.3 $112.6 $112.6 

   First cost $1.9 $1.2 $1.2 $77.5 $77.5 

   Operation and maintenance 0 0 0 $35.1 $35.1 

   Additional replacement $0.7 $3.1 $6.3 0 0 

   Employment rating 0 0 0 $0.1 $0.1 

Total benefits $16.6 $4.7 $9.4 $215.5 $222.5 

   Energy $1.6 $0.03 $0.1 $8.2 $8.5 

      Direct energy savings $1.2 0 0 $7.8 $7.8 

      Indirect energy savings  

      (Urban Heat Island mitigation) 
$0.4 $0.03 $0.1 $0.4 $0.7 
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Table E2. Annual costs and benefits of five mitigation strategies (m2) in Washington DC, 2015 dollars (Continued). 

Items 
Strategies 

AR100 AP100 AP200 GR50 GR100 

   Stormwater 0 0 0 $190.6 $190.6 

      Fee discounts 0 0 0 $2.1 $2.1 

      Stormwater retention credits 0 0 0 $188.5 $188.5 

   Health $9.5 $0.7 $1.3 $10.0 $16.6 

      Ozone $7.5 $0.5 $1.1 $6.5 $11.9 

      PM2.5 $0.5 $0.02 $0.03 $2.3 $2.5 

          PM2.5 (direct energy saving) $0.3 0 0 $2.1 $2.1 

          PM2.5 (indirect energy saving) $0.2 $0.02 $0.03 $0.2 $0.4 

      Heat-related mortality $1.5 $0.1 $0.2 $1.2 $2.3 

   Climate change $5.4 $4.0 $8.0 $1.7 $1.8 

      Greenhouse gas (GHG) 

      emissions 
$0.5 $0.009 $0.02 $2.5 $2.6 
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Table E2. Annual costs and benefits of five mitigation strategies (m2) in Washington DC, 2015 dollars (Continued). 

Items 
Strategies 

AR100 AP100 AP200 GR50 GR100 

          GHG emissions  

          (direct energy saving) 
$0.4 0 0 $2.4 $2.4 

          GHG emissions  

          (indirect energy saving) 
$0.1 $0.009 $0.02 $0.1 $0.2 

      Global cooling $4.9 $2.4 $4.9 -$0.8 -$0.8 

   Employment 0 0 0 $5.0 $5.0 

      Employee pay 0 0 0 $4.0 $4.0 

      Welfare payments   0 0 0 0 0 

      Tax revenue 0 0 0 $1.0 $1.0 

          Federal taxes 0 0 0 $0.9 $0.9 

          State/City taxes 0 0 0 $0.1 $0.1 

Net benefit  $14.0 $0.8 $4.0 $102.8 $109.8 

Benefit-cost-ratio 6.4 1.4 2.7 1.9 2.0 
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Table E3. Costs and benefits of extensive green roofs. 

Study Place Building type Lifespan 

(year) 

Cost  Benefit 

Incremental 

initial cost 

($/m2) 

Incremental 

energy 

consumption 

(kWh/m2) 

Incremental 

carbon 

emission 

($/m2) 

Annual 

energy 

savinga 

(kWh/m2) 

Annual 

stormwater 

runoff 

reduction 

($/m2) 

Annual 

carbon 

reductionb 

($/m2) 

Blackhurst 

et al. (2010) 

Typical cities, 

USA 

Single-family  

residential 
30  87.5 0.40 3.17 1.05 (C) 50% 0.14 (D, I) 

Multi- 

family 

residential 

30 150.7 0.64 4.78 2.83 (C) 50% 0.47 (D, I) 

Commercial 30 193.7 0.81 6.28 6.28 (C) 50% 0.61 (D, I) 

Niu et al. 

(2010) 

Washington, 

DC, USA 

Commercial, 

1795 m2 roof 

areas 

40 

306±44.56 N/A N/A 

2.6 (C) 

0.9 (H) 

35% or 

50%  

0.049 (I) 

Including 

CO2, and NOx 

Residential, 55 

m2 roof areas 
40 

3.6 (C) 

5.5 (H) 

Residential, 125 

m2 roof areas 
40 

3.2 (C) 

4.8 (H) 

Residential, 270 

m2 roof areas 
40 

2.6 (C) 

4.4 (H) 

 

Note: aThe ‘C’ indicates cooling energy that is provided by electricity, and ‘H’ means heating energy that is relied on natural gas. 
bThe ‘D’ indicates direct carbon reduction caused by vegetation’s absorption, and ‘I’ means indirect carbon reduction due to energy saving and 

urban heat island mitigation.  

N/A=Not available. 
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Table E4. Costs and benefits of extensive green roofs (continued). 

Study Place Building type Lifespan 

(year) 

Cost  Benefit 

Incremental 

initial cost 

($/m2) 

Incremental 

energy 

consumption 

(kWh/m2) 

Incremental 

carbon 

emission 

($/m2) 

Annual 

energy 

savinga 

(kWh/m2) 

Annual 

stormwater 

runoff 

reduction($/m2) 

Annual 

carbon 

reductionb 

($/m2) 

Carter and 

Keeler 

(2008) 

Athens, GA, 

USA 

One-story, 

929 m2 roof 

areas 

40 71.63 N/A N/A $0.37/m2 0.04 0.11 (D) 

Kats and 

Grassbrook 

(2016) 

Washington, 

DC, USA 
Any 40 

100–150 

plus 

3.1–4.6 

Annual 

maintenance 

N/A N/A 
$0.171–

0.198/m2 
0.041 

0.051–

0.067 

Berardi 

(2016) 

Toronto, 

Canada 
School N/A 105–120 N/A N/A 

5.8–9.6  

(C, H) 
N/A N/A 

Bianchini 

and 

Hewage 

(2012) 

Any cities Any 40 

130–165  

plus 

0.7–13.5 

Annual 

maintenance 

N/A 

14.06–22.20  

Including CO2 

and NOx 

$0.18–

0.68/m2 (C) 

$0.22/m2 (H) 

 

0–0.38 

0.025–0.03 

(D) 

Including 

CO2 and NOx  

 

Note: aThe ‘C’ indicates cooling energy that is provided by electricity, and ‘H’ means heating energy that is relied on natural gas. 
bThe ‘D’ indicates direct carbon reduction caused by vegetation’s absorption, and ‘I’ means indirect carbon reduction due to energy saving and 

urban heat island mitigation.  

N/A=Not available.  
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Table E5. Costs and benefits of cool roofs. 

Study Place Building type Lifespan 

(year) 

Solar 

reflectance/ 

Albedo 

Cost Benefit 

Incremental 

initial cost 

($/m2) 

Annual energy savinga  

(kWh/m2) 

Annual GHG 

emission 

reduction (kg/m2) 

Akbari et al. 

(2005) 

California, 

USA 

Retail store N/A 0.80 N/A 0.6–16.4 (C) N/A 

School N/A 0.65–0.79 N/A 1.1–6.5 (C, H) N/A 

Cold storage facility N/A 0.63–0.70 N/A 4.5–7.4 (C) N/A 

Akbari 

(2003) 

Nevada, 

USA 

Regeneration 

building 

(communication), 

14.9 m2 roof areas 

N/A 0.72–0.80 0 6.7–8.4 (C) N/A 

Kats and 

Grassbrook 

(2016) 

Washington, 

DC, USA 
Any 40 

0.25–0.65 

Steep–low slope 

1.5–5.5 

Steep–low slope 

plus 0 

Annual 

maintenance 

$0.009–0.163/m2 

Steep–low slope 

$0.017–0.084/m2 

Steep–low slope 

Xu et al. 

(2012) 

Hyderabad, 

India 

Commercial,  

700 m2 roof areas 
N/A 0.7 N/A 

20–22 (C), black roof  

13–14 (C), concrete roof  

11–12, concrete 

roof 

Romeo and 

Zinzi (2013) 
Sicily, Italy 

School,  

700 m2 roof areas 
N/A 0.82 N/A 

4.6% (C, H), actual building  

2.2% (C, H), insulated roof  

13.0% (C, H), insulated 

building  

N/A 

 

Note: aThe ‘C’ indicates cooling energy that is provided by electricity, and ‘H’ means heating energy that is relied on natural gas. 

          N/A=Not available. 
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Table E6. Costs and benefits of reflective pavement. 

Study Place Type Lifespan 

(year) 

Cost Benefit 

Initial cost 

($/m2) 

Replacement 

cost ($/m2) 

Annual energy saving 

(kWh/m2) 

Annual GHG emission 

reduction (kg/m2) 

Kats and 

Grassbrook 

(2016) 

Washington, 

DC, USA 

Road 40 0.02 0.33–0.38 0.06 0.19 

Parking lot 40 0.46 0.50 0.06 0.19 

Concrete sidewalk 40 0.24 0 0.03 0.09 

Brick sidewalk 40 0.52 0 0.03 0.10 
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Notations 

B $ Benefit of a strategy 

𝐵𝑑𝑖𝑟𝑒𝑐𝑡 $ Direct benefit of a strategy 

C $ Cost of a strategy 

𝐶𝐶 NA Climate change scenario 

𝐶𝑆 NA Climate stressor 

𝐶ℎ2 W/(m2K) Heat transfer coefficient at 2 meters above the 

surface 

𝐶𝑖𝑗 NA Capacity of the line i-j 

F NA System failure 

𝐹𝑖𝑗
  s-2 Power flow along the line i-j 

G NA Generation units 

𝐻𝐺  W/m2 Ground/ storage heat flux 

𝐻𝐿 W/m2 Latent heat flux 

𝐻𝑆 W/m2 Sensible heat flux  

𝐾𝑖𝑗 s-2 Coupling strength of two connected nodes i and j 

L $ Net present value of loss caused by climate change 

N NA Number of branches in an electrical network 

NPV $ Mean net present value 

O NA Power outage 

𝑃𝑖 s-2 Unit quantity of power generated or consumed at 

the node i 
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𝑃(𝐶) NA Probability that a climate-change scenario occurs 

𝑃(𝐹𝑎
 ) NA Failure probability in each component of the 

power system, where 𝑎 = 𝐺, 𝑇 𝑜𝑟 𝑆 

𝑃(𝐹𝐶
 ) NA Cascading failure probability 

𝑃(𝐹𝑂
 ) NA Power outage probability 

𝑃(𝐹|𝑆) NA Probability of system failure when the stressor 

intensifies 

𝑃(𝐿|𝐹) NA Probability of a loss when the system fails 

𝑃(𝑆|𝐶) NA Probability that a stressor intensifies when climate 

changes 

𝑃(𝐵 > 𝐶) NA Probability that benefits surpass costs 

𝑃(𝐵𝑑𝑖𝑟𝑒𝑐𝑡 > 𝐶) NA Probability that direct benefits surpass costs 

𝑃𝑅𝑀𝑖 % Initial planning reserve margin 

𝑃𝑅𝑀𝑐𝑟𝑖𝑡 % PRM critical value for potential service 

interruption 

𝑅𝑛 W/m2 Net radiation/ radiative flux 

S NA Substation transformers 

T NA Transmission lines 

𝑇2 K Air temperature at 2 meters above the surface 

𝑇𝑚𝑒𝑎𝑛 °C Mean summer daily maximum temperature 

𝑇𝑇 °C Summer daily maximum temperature that causes 

conductor failure 
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𝑇𝑆 °C Summer daily maximum temperature that causes 

transformer failure 

𝑇𝑠 K Skin surface temperature 

𝑇𝑃𝑅𝑀 °C Summer daily maximum temperature at which the 

PRM is involved in a day 

𝑇𝑃𝑅𝑀𝑐𝑟𝑖𝑡 °C Summer daily maximum temperature at which the 

PRM reaches its critical value on a day 

𝑈2 m/s Wind speed at 2 meters above the surface 

m NA Sum of the number of generators, transmission 

lines, and substations in the electrical grid 

n year Number of years that is accounted for risk 

estimation 

𝑟 % Annual discount rate 

𝑡0 NA Starting time point for risk estimation 

𝑡𝑚𝑎𝑥 s Duration of cascading simulation for an electrical 

network 

∆𝑝(𝐹𝑎) NA Change ratio of the failure probability in each 

component of the power system, where 𝑎 =

𝐺, 𝑇𝑜𝑟 𝑆 

∆𝑅 % Coefficient of risk reduction due to climate 

adaptation 

∆𝑓 Hz Range of frequency deviation that ensures stable 

operation of a system 
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𝛼 NA Probability that two or more simultaneous 

component outages lead to power outages 

𝛽 NA Tolerance parameter for detecting overcurrent 

lines 

𝛽𝐺𝐶 NA Loss of generation capacity of power plants per 

1°C temperature increase  

𝛽𝑇𝐶 NA Loss of transmission capacity of power lines per 

1°C temperature increase 

𝛽𝑇𝐷𝐸 NA Loss of transmission efficiency of power lines per 

1°C temperature increase 

𝛽𝑆𝐶 NA Loss of substation capacity per 1°C temperature 

increase 

𝛽𝐺 NA Loss of peak generation capacity per 1°C 

temperature increase 

𝛽𝑇 NA Loss of peak transmission capacity per 1°C 

temperature increase 

𝛽𝑆 NA Loss of peak substation capacity per 1°C 

temperature increase 

𝛽𝑃𝐾 NA Increase of peak cooling load per 1°C temperature 

increase 

𝜃  rad Voltage phase angle 

𝜃 
∗
 rad Fixed voltage phase angle at the stable state 

𝜔 
  rad/s Angular velocity 
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𝜔 
 ∗ rad/s Fixed angular velocity at the stable state 

𝜌 rad-1s-1 Damping constant 

𝜌𝑎 kg/m3 Air density 

𝛾 NA Benefit-cost ratio 

𝜇  NA Mean value 

𝜎 NA Standard deviation 
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