
NEAR-OPTIMAL PARAMETERS FOR TIKHONOV AND OTHERREGULARIZATION METHODS�DIANNE P. O'LEARYyAbstract. Choosing the regularization parameter for an ill-posed problem is an art based ongood heuristics and prior knowledge of the noise in the observations. In this work we propose choosingthe parameter, without a priori information, by approximately minimizing the distance between thetrue solution to the discrete problem and the family of regularized solutions. We demonstrate theusefulness of this approach for Tikhonov regularization and for an alternate family of solutions.Further, we prove convergence of the regularization parameter to zero as the standard deviation ofthe noise goes to zero. We also prove that the alternate family produces solutions closer to the truesolution than the Tikhonov family when the noise is small enough.Key words. ill-posed problems, regularization, TikhonovAMS subject classi�cations. 65R30,65F20Running Title: Near-Optimal Regularization Parameters1. Introduction. Linear, discrete ill-posed problems of the formminx kAx� bk2; or equivalently, A�Ax = A�b(1.1)arise, for example, from the discretization of �rst-kind Fredholm integral equationsand occur in a variety of applications. We shall assume1. The full-rank matrix A is m � n, with m � n.2. A is ill-conditioned with no signi�cant gap in the singular value spectrum. (Agap would make the problem somewhat easier). The problem is normalizedso that the largest singular value is 1.3. The right-hand side b consists of true data plus random noise: b = bt+e wherethe components of e are independent with mean 0 and standard deviation s.4. The discretization error caused by making a �nite dimensional approximationto the continuous operator is much smaller than the noise.5. The system satis�es the discrete Picard condition, which we will de�ne inSection 2 after introducing some notation.The noise in the measurements, in combination with the ill-conditioning of A,means that the exact solution of (1.1) has little relationship to the noise-free solutionand is worthless. Instead, we use a regularization method to determine a solutionthat approximates the noise-free solution. Regularization methods replace the originaloperator by a better-conditioned but related one in order to diminish the e�ects ofnoise in the data and produce a regularized solution to the original problem. In thiswork we �rst consider Tikhonov regularization, in which the problem (1.1) is replacedby minx �kAx� bk22 + �kLxk22� ; or equivalently, (A�A + �L�L)x = A�b(1.2)� This work was completed at the Departement Informatik, ETH Z�urich, Switzerland. This workwas also supported in part by the U.S. National Science Foundation under Grant CCR-97-32022 andby the National Institute of Standards and Technology.yDept. of Computer Science and Institute for Advanced Computer Studies, University of Mary-land, College Park, MD 20742 (oleary@cs.umd.edu).1



where L is a regularization operator chosen to obtain a solution with desirable prop-erties, such as a small norm (L = I) or a small derivative (L a discrete approximationto a derivative operator), and � > 0 is a scalar parameter.The central question in Tikhonov regularization is how to choose the parameter� in order to produce a solution x close to the true noise-free solution xtrue. Hoerland Kennard [11] showed that on average a smaller error is produced using a nonzero�, and numerous heuristics have been proposed for choice of this parameter. Someof these (e.g., the discrepancy principle [13]) assume that the standard deviation ofthe noise is known. Others (e.g., generalized cross-validation [6] and the L-curve [8])work with less knowledge of the noise properties. An interesting recent approach ofRust [16] uses visualization of residual and singular component plots to choose rea-sonable parameters. Pierce and Rust [14] minimize the lengths of con�dence intervalsusing appropriate parameter choices, and Kilmer and O'Leary [12] discuss choice ofparameters when iterative solution methods are used.In this work, we propose another rule for parameter choice. We go back to �rstprinciples: among all solutions in a given family such as Tikhonov, we want thesolution that is minimal distance from the the true solution. Others have determineda Tikhonov parameter by minimizing a bound on this distance; Raus [15], Gfrerer[5], and Engl [3] propose minimizing one such bound, while Hanke and Raus [7]propose an alternative. Rather than minimizing a bound, we compute in Section 2a parameter that approximately minimizes the distance between the true solutionto the discretized problem and accomplishes this goal without a priori knowledge ofthe standard deviation or distribution of the noise in the observations. We discussconvergence of this choice in Section 3. Section 4 contains a similar development foran alternative to Tikhonov regularization. Section 5 discusses some algorithmic issues,and in Section 6 we show the e�ectiveness of these methods on numerical examples.2. Choosing the Tikhonov Regularization Parameter. In order to analysethe problem, we convert to the coordinate system of the singular value decompositionof A. For simplicity of exposition, we assume that the regularization operator L is theidentity matrix. A similar development, using the generalized SVD, could be done forgeneral L (see, for example, [10, Sec. 2.1.2]), but the resulting function is considerablymore complicated to compute and minimize.Suppose A = U�V �, where U and V have orthonormal columns and � is a matrixof zeroes except for diagonal entries �1 � : : : � �n > 0. Exploiting the property thatkUzk = kzk and kV �zk = kzk, the problem (1.2) takes the formminz k�z � �k2 + �kzk2 ;where �i � u�i b and z = V �x. Setting the derivative equal to zero, we �nd that for a�xed value of �, we need to solve the equation(�T� + �I)z = �T�Thus, the Tikhonov solution is xtik = nXi=1 �i�i�2i + �vi(2.1)where vi is the ith column of V . 2



In contrast, the true solution to the discrete (noise-free) problem isxtrue = nXi=1 �i � �i�i viwhere �i � u�i e represents the noise component.The goal in regularization is to produce a solution as close as possible to the truesolution, so let us (rather naively) try to minimize this distance:min� kxtik � xtruek2 � min� f(�) :Using the singular value representation, we see thatf(�) = nXi=1 � �i�i�2i + � � �i � �i�i �2 :Setting the derivative equal to zero yields0 = g(�) � 12 f 0(�) = � nXi=1 � �i�i�2i + � � �i � �i�i � � �i�i(�2i + �)2 �= nXi=1 �2i �(�2i + �)3 � nXi=1 �i�i(�2i + �)2 :Now the �rst summation in this last expression is computable, but the second is notbecause the noise values �i are unknown. But there are two interesting properties ofthe second summation:� First, the terms for i � n tend to be the largest because the denominatorsare the smallest.� Second, the system satis�es the discrete Picard condition, meaning that forlarge enough values of the discretization parameter n, the sequence of truedata values f�i � �ig goes to zero faster than the sequence of singular valuesf�ig. Thus, for terms with i greater than or equal to some parameter k,�i � �i.So, although we cannot compute the function g(�), we can compute an approximationto it: ĝ(�) � nXi=1 �2i �(�2i + �)3 � nXi=k �2i(�2i + �)2 � E  k�1Xi=1 �i�i(�2i + �)2!for a suitable index k, depending on the standard deviation s. Finding the zero of thisfunction yields an approximation to the optimal value of �. The last term denotesthe expected value of the quantity. Under assumption 3 of Section 1, �i is some truevalue plus noise �i, so E(�i�i) = E(�2i ) = s2, andĝ(�) = nXi=1 �2i �(�2i + �)3 � nXi=k �2i(�2i + �)2 � s2 k�1Xi=1 1(�2i + �)2(2.2)We call the zero of this function �hat and the corresponding solution vector xhat.3



3. Convergence for the Tikhonov Parameter Choice. We have the follow-ing bound for the relative distance between the optimal solution and the computedone:Theorem 3.1. Let �opt be the optimal parameter for the Tikhonov family (i.e.,the (generally uncomputable) one that produces the solution closest to xtrue). Thenfor any value of �, kxtik(�opt) � xtik(�)kkxtik(�opt)k � j�opt � �j�2n + � :Proof. The result follows from the computationkxtik(�opt) � xtik(�)k = nXi=1 � �i�i�2i + �opt � �i�i�2i + ��2= nXi=1 �2i �2i � � � �opt(�2i + �opt)(�2i + �)�2� (� � �opt)2(�2n + �)2 nXi=1 � �i�i�2i + �opt�2= (� � �opt)2(�2n + �)2 kxtik(�opt)k2 :Our algorithm for choosing the regularization parameter also behaves well as thesize of the observation noise is decreased:Theorem 3.2. In the limit as the standard deviation s of the noise convergesto zero, the solution xhat produced by our algorithm converges to the correct discretesolution xtrue.Proof. As the standard deviation of the noise goes to zero, the value k increasesto n+ 1, and the solution to ĝ(�) = 0 becomes � = 0, as desired. Thus, as the noisegoes to zero, our solution converges to the noise free solution.4. An Alternate Family of Solutions. We have studied how the regulariza-tion parameter might be chosen for one family of solutions, the Tikhonov solutions,which take the form xtik = nXi=1 �i�i�2i + �vi :A similar algorithm can be found for other solution families, and in this section weconsider the family xalt = nXi=1 �i�i + �vi :This family was proposed by Franklin [4] for Hermitian positive de�nite A and is alsoassociated with Lavrentiev [10, p.107]. Ekstrom and Rhoads [2] discussed the use ofthe algorithm for convolution problems symmetrized by reordering, and this methodwas also considered by Cullum [1]. 4



In his Regularization Tool Package for Matlab [9], Hansen includes a functiondsvd that can be used to apply the method to general problems. In this more gen-eral context, there is more than one interpretation. The solution xalt satis�es theregularized equation (A+ �UV �)x = b :But it may be more intuitive to interpret the family as a set of �lter factors [10,Section 4.2] �i�i + �multiplying the corresponding terms in the least squares solutionnXi=1 �i�i vi :To choose the parameter �, we mimic the procedure in Section 2: we naively tryto minimize the distance between our solution and the true one:min� kxalt � xtruek2 � min� f(�) :Using the singular value representation, we see thatf(�) = nXi=1 � �i�i + � � �i � �i�i �2 :Setting the derivative equal to zero yields0 = g(�) � 12 f 0(�) = � nXi=1 � �i�i + � � �i � �i�i � � �i(�i + �)2 �= nXi=1 �2i ��i(�i + �)3 � nXi=1 �i�i�i(�i + �)2 :Again, the �rst summation in this last expression is computable. The second is not,because the observation noise values �i are unknown, but the terms for i � n dominate,and for these �i � �i, so our approximate function becomesĝ(�) � nXi=1 �2i ��i(�i + �)3 � nXi=k �2i�i(�i + �)2 � E  k�1Xi=1 �i�i�i(�i + �)2!for a suitable index k that depends on the standard deviation of the noise. Findingthe zero of the functionĝ(�) � nXi=1 �2i ��i(�i + �)3 � nXi=k �2i�i(�i + �)2 � s2 k�1Xi=1 1�i(�i + �)2(4.1)yields an approximation to the optimal value of �.5



We have a bound for the relative distance between the optimal solution and thecomputed one similar to the Tikhonov case:Theorem 4.1. Let �alt be the optimal parameter for the alternate family (i.e.,the one that produces the solution closest to xtrue). Then for any value of �,kxalt(�alt) � xalt(�)kkxalt(�alt)k � j�alt � �j�2n + � :Proof. The result follows from a computation similar to that in the proof ofTheorem 3.1.Again, we can show that the solution converges to the true solution as the obser-vation noise goes to zero.Theorem 4.2. In the limit as the standard deviation s of the noise converges tozero, the solution xhat produced by our algorithm converges to xtrue.Proof. As above.Further, we have a comparison result for the two solution families xalt and xtik:Theorem 4.3. For a particular matrix A and vector b, let �alt be the optimalparameter for the solution family of Section 4, and �tik be the optimal parameter forthe Tikhonov family of Section 2. Then when the noise is small enough, the optimalsolution xalt(�alt) is closer to xtrue than xtik(�tik) is.Proof. Choose a �xed value of � for the Tikhonov solution and the alternatesolution, and consider the ith term in the summations in the expressionkxtik(�) � xtruek2 � kxalt(�) � xtruek2 :This term is � �i�i�2i + � � �i � �i�i �2 � � �i�i + � � �i � �i�i �2= (�i � 1)��i(�2i + �)(�i + �) ���2i �(2� + �i + �2i )(�2i + �)(�i + �) + 2�i�i� :The �rst factor is negative for �i < 1, and the second is negative for �i small enough.Thus the product is positive, and the sum of the products is, too, indicating that thealternate solution is closer to the true solution for each �xed value of �. Therefore,kxalt(�alt)� xtruek � kxalt(�tik)� xtruek < kxtik(�tik)� xtruek ;where the �rst inequality follows from the optimality of �alt for its solution family,and the second follows from the derivation above.5. Algorithmic Notes. The standard deviation of the noise is not assumed tobe known so we estimate it using the last max(m � n; 10) components of the right-hand side. The index k can be chosen as the smallest index n�9; n�14; : : : for whicha T-test with 0.05 signi�cance level said that the mean of the sequence �k; : : : ; �nwas zero (but chosen to be n if jbnj > 3:5s). If the mean of the noise-free sequence islikely to be near zero, then this test would not be appropriate, but many alternativesare available. One would be to use the Mann-Whitney Test, a non-parametric test todetermine whether two independent groups of sampled data are taken from the sameunderlying distribution, without making assumptions on the distribution.6



Table 6.1Relative Errors in Experiments on Diagonal Matrix of Size 200standard dev. optimal computed optimal computed GCV Hanke-Rausof noise Tikhonov Tikhonov alternate alternate Tikhonov TikhonovMean1.0e-03 6.26e-01 7.04e-01 6.59e-01 1.11e+00 8.98e-01 8.20e-011.0e-04 4.34e-01 4.70e-01 4.63e-01 5.10e-01 8.34e-01 6.86e-011.0e-05 1.72e-01 2.06e-01 1.76e-01 1.92e-01 7.71e-01 5.04e-011.0e-06 1.23e-02 2.70e-02 1.24e-02 2.10e-02 6.67e-01 4.40e-01Median1.0e-03 6.17e-01 6.43e-01 6.62e-01 6.71e-01 8.99e-01 8.21e-011.0e-04 4.35e-01 4.56e-01 4.64e-01 4.78e-01 8.36e-01 6.90e-011.0e-05 1.71e-01 2.05e-01 1.75e-01 1.92e-01 7.74e-01 5.02e-011.0e-06 2.23e-02 4.50e-02 2.24e-02 3.50e-02 7.28e-01 4.59e-01Maximum1.0e-03 6.46e-01 4.95e+00 6.88e-01 7.34e+00 9.27e-01 8.49e-011.0e-04 4.81e-01 9.16e-01 5.16e-01 9.93e-01 8.60e-01 7.49e-011.0e-05 2.36e-01 2.55e-01 2.40e-01 2.52e-01 8.00e-01 5.99e-011.0e-06 3.28e-02 1.58e-01 3.28e-02 1.39e-01 7.51e-01 4.71e-01A root of either function (2.2) or (4.1) can be found using standard algorithms(e.g., fzero in Matlab). Since ĝ(0) < 0 for both functions, we can �nd a lower boundon the root by searching s; s=10; s=100; : : : for a negative function value. The simplestrategy of searching 100s; 1000s; : : : has proved e�ective in �nding a value for which ĝis positive, thus providing the root �nder with an initial interval containing the root.6. Performance of the Algorithms. The ideas of the previous sections weretested using two sets of test problems. In the �rst, the 200�200 matrix was diagonal,with entries ranging between 1 and 10�5, evenly spaced on a log scale. The truesolution was assumed to be the vector with elements evenly spaced between 1:0 and0:9, and 100 sets of random noise were generated for the right-hand side. We generatedsolutions using the Tikhonov and the alternate method and calculated the distancebetween these computed solutions and the exact noise-free solution, tabulating therelative x-error kx � xtruek=kxtruek. Then we calculated the optimal Tikhonov andalternate solutions, the ones corresponding to the parameter values that minimizethe distance to the noise-free solution. These optimal solutions, of course, cannotbe computed in practical situations since the noise-free solution is unknown, but theresults tell us how far we are from optimal. We also compared our results withtwo other methods. We computed the the Tikhonov parameter by minimizing thegeneralized cross-validation (GCV) function using Matlab's fmin with tolerance 1.0e-07. In some sense this is an unfair comparison, since GCV aims to minimize theresidual norm, not the x-error. We also compare with the results of the Tikhonovalgorithm of Hanke and Raus [7], which chooses the parameter by minimizingf(�) =p1 + 1=�qrT1 (�)r0(�) ;where x0 = (A�A+ �I)�1A�b ;7



Fig. 6.1. The Relative Errors in the Solutions Computed for the Diagonal Matrix Problem withStandard Deviation of the Observation Noise Equal to 1.0e-03.
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r0(�) = b� Ax0 ;x1 = (A�A + �I)�1A�r0 + x0 ;r1(�) = b� Ax1 :The results are summarized in Table 6.1. Several trends are apparent. First,the average relative x-errors in the solutions computed by our algorithm are withina factor of 2 of the average relative x-errors for the optimal parameter values. Sec-ond, for large noise in the observations, the Tikhonov solution is on average closerto the true solution, but for small noise the alternate algorithm does somewhat bet-ter than Tikhonov. Third, the Tikhonov solutions computed by our algorithm areon average better than the generalized cross validation Tikhonov solutions and theHanke-Raus solutions over the full range of noise values, and for small noise, thealternate solutions are better, too.The trends in the medians are similar to those of the averages, but the maximumrelative errors show that only in the small number of cases in which the standarddeviation of the error fails to be computed accurately, are the GCV and Hanke-Raus solutions much better than our solutions.Histograms of the relative errors are presented in Figures 6.1 and 6.2.The second experiment used the inverse helioseismatic data of Per ChristianHansen (helio.mat, taken from the Regularization Tool Package homepage [9]). Theproblem is an integral equation of the �rst kind with matrix modeling internal ro-tation of the sun as a function of radius. The matrix A of size 212 � 100 and thetrue solution x were obtained from there, and random observation noise was addedas before. The right-hand side values had a mean close to zero, so a rather prim-8



Fig. 6.2. The Relative Errors in the Solutions Computed for the Diagonal Matrix Problem withStandard Deviation of the Observation Noise Equal to 1.0e-06.
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itive scheme was used to determine k; it was determined so that the values bj forj > k were not larger than 3:5 times the estimated standard deviation. The results(Table 6.2) show that the median relative x-errors are at most 1:1 times as large asthe optimal and at most 0:8 times the GCV values or the Hanke-Raus values. Thetrends are similar to the diagonal matrix problem: when the value of k is estimatedwell, the new algorithms perform much better than GCV and Hanke-Raus. But sincethe k estimation problem is more di�cult with this right-hand side, the mean andmaximum values of the relative errors are not as well behaved.Still, the histograms of the relative errors presented in Figures 6.3 and 6.4 showthat the new algorithms can be expected to produce much better results than GCVor Hanke-Raus when the errors are small enough that k is easily estimated.7. Conclusions. We have proposed a method for choosing a regularization pa-rameter that approximately minimizes the Euclidean distance between the computedsolution and the noise free solution, and we have demonstrated by numerical experi-ments that it produces solutions quite close to optimal.We have also proven that an alternative family of solutions, studied by Franklinand others, is closer to the true discrete solution than the Tikhonov family when thenoise level is small.We have demonstrated the use of these methods of parameter choice when thesingular value decomposition of the matrix A can be explicitly computed, but themethods could also be used on large problems, in conjunction with iterative methods,in a way analogous to the parameter choice methods in [12].8. Acknowledgements. I am grateful for the hospitality provided by ProfessorWalter Gander and the Departement Informatik, ETH Z�urich, Switzerland, which9



Fig. 6.3. The Relative Errors in the Solutions Computed for the Helioseismatic Matrix Problemwith Standard Deviation of the Observation Noise Equal to 1.0e-04.
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Fig. 6.4. The Relative Errors in the Solutions Computed for the Helioseismatic Matrix Problemwith Standard Deviation of the Observation Noise Equal to 1.0e-06.
0 1 2

0

20

40

60

80

100
GCV

0 1 2
0

20

40

60

80

100
Optimal Tikhonov

0 1 2
0

20

40

60

80

100
Optimal Alternate

0 1 2
0

20

40

60

80

100
Hanke−Raus Method

0 1 2
0

20

40

60

80

100
New Tikhonov

0 1 2
0

20

40

60

80

100
New Alternate

10
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