
Task-Driven Video Collection

Ser-Nam Lim* Anurag Mittal^ Larry Davis*

*CS Dept., University of Maryland, College Park ^Siemens Corporate Research, Princeton

Abstract. Vision systems are increasingly being deployed to perform complex
surveillance tasks. While improved algorithms are being developed to perform
these tasks, it is also important that data suitable for these algorithms be acquired
- a non-trivial task in a dynamic and crowded scene viewed by multiple PTZ
cameras. In this paper, we describe a multi-camera system that collects images
and videos of moving objects in such scenes, subject to task constraints. The sys-
tem constructs ”task visibility intervals” that contain information about what can
be sensed in future time intervals. Constructing these intervals requires predic-
tion of future object motion and consideration of several factors such as object
occlusion and camera control parameters. Using a plane-sweep algorithm, these
atomic intervals can be combined to form multi-task intervals, during which a
single camera can collect videos suitable for multiple tasks simultaneously. Al-
though cameras can then be scheduled based on the constructed intervals, finding
an optimal schedule is a typical NP-hard problem. Due to this, and the lack of
exact future information in a dynamic environment, we propose several methods
for fast camera scheduling that yield solutions within a small constant factor of
optimal. Experimental results illustrate system capabilities for both real and more
complicated simulated scenarios.

1 Introduction
We describe a sensor planning system for which we are given a collection of calibrated
surveillance cameras. Each camera has a field of regard, which is the subset of the
surveillance site that it can image by controlling its viewing angles (e.g., pan and tilt
settings for PTZ cameras). A field of view of a camera is the image obtained at a spe-
cific camera setting and is generally much smaller than its field of regard. The cameras
must be controlled, as people and vehicles move into and through the surveillance site,
to acquire videos that satisfy temporal and positional constraints that define generic
surveillance tasks. Examples of typical surveillance tasks are:

– Collectk seconds of unobstructed video from as close to a side angle as possible for
any person who enters the surveillance site. The video must be collected at some
minimal ground resolution. This task might be defined to support gait recognition.

– Collect unobstructed video of any person within a given region. This might be used
to secure a particular sensitive point, such as a switch.

– Observe a particular marked person continuously from at least one view, if possible.
This marking may result, for instance, from an event such as a package drop.

– If two people approach one another, observing both of them simultaneously.

We would like to efficiently schedule as many of these surveillance tasks as possible,
possibly subject to additional constraints on priority of the tasks.

The problem of sensor planning and scheduling has been studied extensively. [1]
presented a survey covering sensing strategies for object feature detection, model-based
object recognition, localization and scene reconstruction. One of the earliest works is
[2] which introduced a locus-based approach to decide on the placement of viewpoints,
subjecting to static resolution, focus, field of view and visibility constraints. They also
described an extension of the sensing strategy to laser-scanner range sensor. [3] intro-
duced the idea of local separating planes which are used to define visibility volumes,
in which occlusion-free viewpoints can be placed. Then, to satisfy the field of view
constraint, they introduced the idea of the field of view cone, which is similar to the
locus-based approach given in [2]. These papers did not consider object motion. [4–6]
discusses a dynamic sensor planning system, called the MVP system. They were con-
cerned with objects moving in the scene, generating a swept volume in temporal space
[4]. Then, using a temporal interval search, they divide temporal intervals into halves
while searching for a viewpoint that is not occluded in time by these sweep volumes.
This is then integrated with other constraints such as focus and field of view in [6]. The
culmination is found in [5], where the algorithms are applied to an active robot work
cell. [7] determines optimal sensor placements offline, by considering online informa-
tion that provides probabilistic priors of object motion - observations made about the
motion of objects in the surveillance site are probabilistically used as inputs to placing
sensors offline. This ensures (probabilistically) that sensors are placed in positions that
will have unobstructed view of moving objects. Finally, studies on sensing strategies
for the purpose of 3D reconstruction can be found in [8–10].

Our scheduling approach is based on the efficient construction of what we call Task
Visibility Intervals (TVIs). A TVI is a 6-tuple:

(c, (T, o), [r, d], V alidψ,φ,f(t)). (1)

Here,c represents a camera,(T, o) is a (task, object) pair -T is the index of a task
to be accomplished ando is the index of the object to which the task is to be applied,
and[r, d] is a time interval within which (some temporal segment of) the task can be
accomplished using camerac. r is the earliest release time of the task whiled is the
deadline by which the task has to be completed. Then, for some time instancet ∈
[r, d], V alidψ,φ,f(t) is the set of different combinations of azimuth angles (ψ), elevation
angles (φ) and focal lengths (f) that camerac can employ to capture objecto at timet.

We focus our attention on tasks that are satisfied by video segments in which an
object is seen unobstructed for some task-specific minimal period of time, and is viewed

at some task-specific minimal resolution during that time period. The tasks themselves
are 3-tuples:

(p, α, β), (2)

wherep is the required duration of the task, including latencies involved in re-positioning
cameras,α is a predicate relating the direction of movement of the object and the opti-
cal axis of the camera used to accomplish the task (for example to specify a view that
satisfies the requirements for a side view or a front view), andβ is the minimal res-
olution, represented with respect to the ground plane, needed to accomplish the task.
Given a (task, object) pair, the trajectory of the object acquired through visual tracking
along with a simple object shape model that combines size and positional uncertainty is
used to compute, for each camera,c, in the camera suite, temporal intervals of visibility
along with the ranges of sensor settings that can be employed to accomplish the task
while keeping the object within the camera’s field of view.

While camera scheduling could be conducted solely on the basis of the atomic TVIs,
we can schedule more (task, object) pairs if we could efficiently identify subsets of such
pairs that can be simultaneously satisfied within the same time interval. We call such
time intervals Multiple Tasks Visibility Intervals (MTVIs), and we will show how a
plane-sweep algorithm can be used to determine these MTVIs. Each camera can then
be scheduled to execute a sequence of (M)TVIs, with the objective of maximizing task
coverage. Due to the intrinsic computational complexity of scheduling, we present sev-
eral approximation algorithms that yield solutions that are within a small factor of op-
timal. Furthermore, due to the uncertainties associated with future object motion, one
would also need some mechanism to verify, a posteriori, that the tasks have been suc-
cessfully completed (i.e., that in fact we have obtained unobstructed video of some
given object) so that it can be determined if the task has to be rescheduled (which, of
course, will not always be possible). The tracking module used for providing real-time
information about the objects in the scene can be used for such verification purposes.

2 Constructing TVIs
2.1 Visibility Intervals

The first step in the construction of atomic TVIs is to determine visibility intervals for
any given (object, camera) pair, which are temporal intervals during which the object
remains unobstructed and within the camera’s field of regard. This involves computing
time intervals during which that object is in the same line of sight as some other object,
but is further from the camera, causing it to be occluded. The complements of these
intervals, which we refer to as occlusion intervals, are the visibility intervals. In addi-
tion to depending on the trajectories of the objects, such occlusion intervals would also
depend on the objects’ physical extents. Thus, to determine these occlusion intervals,
a suitable representation of object shape and size is needed, for which we use an ellip-
soidal representation. The size of the ellipsoid combines our estimate of physical object
size along with the time varying positional uncertainty in the location of the object, as
estimated by the tracker. The computational advantage of the ellipsoidal representation
is the ease with which the contour of the image of the object can be computed using the
polar plane [11]. Given camera centercp, the polar planeπ w.r.t cp is defined by the set
of tangent points corresponding to the cone of rays throughc p that are in contact with
the ellipsoid’s contour. One can see in Fig. 1(a) thatπ intersects the quadricQ repre-
senting the ellipsoid in a conicC. From the equation representingC we can compute
the minimum and maximum azimuth and elevation angles subtended by the conic. The
motion model is then defined as the time-varying function of these vectors of azimuth
and elevation angles, and can be obtained by sampling in time. One can visualize such
a vector as a rectangle at each time step inψ − φ space as shown in Fig. 1(b).

The time-varying angular extents computed from the motion models of different
objects can be intersected to determine occlusion intervals. An example is shown in
Fig. 1(c). To efficiently compute these occlusion intervals, we proceed as follows: First,

Camera centercpConicC

Viewing cone

QuadricQ

(ψ−
C

(t1), φ+
C

(t1))

t

ψ

φ

t4

t3

t2

t1

(ψ−
C

(t1), φ+
C

(t1))

0
10

20
30

40
50

−1.5

−1

−0.5

0

0.5

1

1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time

Target Visibility

Azimuth Angle

E
le

va
tio

n
A

ng
le

(a) (b) (c)

−1.5
−1

−0.5
0

0.5
1

1.5

−1.5

−1

−0.5

0

0.5

1

1.5
0

50

100

150

200

250

300

Tilt

Volumetric Visualization (no FOV): time=0 Object pan=0.000000 Object tilt=0.78539

Pan

Z
oo

m

−2

−1

0

1

2

−1.5−1−0.500.511.5

0

50

100

150

200

250

300

Tilt

Volumetric Visualization (FOV checked): time=0 Object pan=0.000000 Object tilt=0.785398

Pan

Z
oo

m

−1.5
−1

−0.5
0

0.5
1

1.5

0

5

10

15
0

200

400

600

800

1000

1200

Pan

Temporal Behavior

Time

(d) (e) (f)

−1.5

−1

−0.5

0

0.5

1

1.5

051015
Time

Volumetric Visualization

P
an

−1.5
−1

−0.5
0

0.5
1

1.5

0

5

10

15
0

200

400

600

800

1000

1200

Pan

Temporal−Spatial Intersection

Time

Z
oo

m

−1.5

−1

−0.5

0

0.5

1

1.5

051015

Pan

Time

Volumetric Visualization

(g) (h) (i)

Fig. 1. (a) The contour of an object can be determined from the intersection of the polar plane
w.r.t cp with Q. Such an intersection is a conicC. (b) At each time step, the angular extents,
(ψ−

C , ψ
+
C , φ

−
C , φ

+
C), representing the minimum and maximum azimuth and elevation angles of

conicC respectively, can be visualized as a rectangle. The motion modelM can be viewed as
the footprints of these angular extents through time. (c) Tracked points on the contours of two
real objects moving in the scene are used in a particle filter framework to construct their angular
extents in time. These made up two volumes, which clearly can be closely approximated with
an ellipsoidal object representation as shown and where they intersect is an occlusion interval.
(d) Without field of view test. (e) With field of view test. (f) Temporal behavior of the relations
between the object motion and sensor settings. The tilt value is kept at zero in this plot. (g) The
two extremes of plot (f) in theψ-t plane. (h) Two objects shown here can be captured with the
same sensor settings where they intersect. (i) A 2D view of (h). The start and end of the temporal
interval can be obtained as the time instances where they intersect.

for each time,t, we sort the azimuth angles by minimum azimuth angle. A simple
sweeping algorithm can then identify all pairs of azimuth intervals that overlap. We
construct ann × n matrix,Ot, wheren is the number of objects being tracked, and
mark entry(i, j) as -1 if the azimuth interval for objecti overlaps the azimuth interval
for objectj at timet and ifi is closer to the camera at timet thanj. Otherwise, we mark
entry(j, i). We next sort the elevation angles for all objects, again according to minimal
elevation angle, and employ a sweep algorithm to find all overlapping intervals. If the
elevations angle intervals for objectsi andj overlap, we multiply the(i, j) th entry of

Ot by -1 if i is closer thanj, otherwise we multiply the(j, i)th entry by -1; when this is
completed, the(i, j)th entry ofOt is 1 iff objecti occludes objectj at timet. Finally,
we project the matrixOt on thej axis using an OR projection. LetOCt be the result of
this projection operation.OCt(j) = 1 iff object j is occluded by some other object at
time t. This is done for all timest; we then simply stack theOCt vectors one atop the
other, and scan the columns for visibility intervals.

2.2 Sensor Settings

Given these visibility intervals, the atomic TVIs for a given camera can be constructed
by pruning such visibility intervals to satisfy task-specific resolution requirements and
maintain the object within a field of view. Each camera is assumed to (1) rotate about
an axis passing approximately through the corresponding camera center, and (2) be
zoomable so that its focal length can be adjusted. The projection matrixP of a camera
c can then be written as:

P (R) = K[R|T]. (3)

Given thatR is the rotation matrix in the world coordinate system, Eqn. 3 parameterizes
P by R as c re-positions itself by rotating in the midst of executing some viewing
schedule.T is then the translation matrix in the world coordinate system, given by the
fixed-mount position of the camera, andK is the camera intrinsic matrix.

We again consider the ellipsoidal representation of an object, the image of which is
a conic. The dimensions of such a conic can be used to determine whether the resolu-
tion requirement of a task is satisfied. Additionally, we can now employ the following
procedure to determine ranges of feasible camera settings for each camerac and (task,
object) pair(T, o):

1. Iteratet from the start to the end of a visibility interval, and iterate(ψ c, φc) re-
spectively from the minimum to maximum azimuth(ψ−

c , ψ
+
c) and elevation angles

(φ−c , φ
+
c) (the minimum and maximum viewing angles would depend on the field

of regard of the camera).
2. DetermineP (R) [Eqn. 3], whereR is given byψc andφc.
3. Let fc = f−

c , wheref−
c is the focal length that satisfies the minimum resolution

βmin required by the task.f−
c can be determined by adjusting the focal length in

K so that the size of the image conic isβmin.
4. If the image conic lies outside the image boundaries (i.e., outside the field of view),

go to step 6.
5. Incrementfc and repeat step 4.
6. If fc �= f−

c , letf+
c = fc sincefc now gives the maximum possible resolution while

keeping the object in the field of view.
7. Update the TVI(c, (T, o), [r, d], V alidψ,φ,f(t)) [Eqn. 1], using the valid ranges of

sensor settings that have been determined.

A practical consideration when utilizing this procedure is to use reasonably large
discrete steps int,ψc andφc. A regression algorithm can then be used to construct each
pair of lines representing the range of feasible azimuth angles, elevation angles and fo-
cal lengths on the azimuth-time plane, elevation-time plane and focal length-time plane
respectively. These projections serve as a simple representation of an otherwise com-
plex 4D volume in azimuth angle, elevation angle, focal length and time. Illustrations
are shown in Fig. 1(d) and (e), where 3D surfaces inψ c, φc andfc at t = 0 are shown.
Both surfaces forf−

c andf+
c are shown in each plot. (d) is without the field of view

constraint while (e) includes that constraint - plot (d) thus covers wider viewing angles,
which become invalid only when the object is behind the image plane. The peaks in
both plots coincide with the object’s orientation, in which case the image conic is just a
circle and has the lowest resolution.

3 Compositing TVIs Using Plane-Sweep
After constructing the TVIs for a given camera, we identify subsets of these TVIs that
share common regions of camera settings during overlapping time intervals. If the du-
rations of such time intervals are additionally at least as long as the required acquisition
times of the tasks involved, a condition we refer to as the Composition Feasibility (CF)
condition, the corresponding TVIs can be combined, so that multiple tasks can be sat-
isfied simultaneously in a single scheduled capture. The resulting intervals are called
Multiple Tasks Visibility Intervals (MTVIs). The construction of all feasible MTVIs
for a given camera is a computationally expensive operation, because one would then
have to determine all feasible MTVIs that satisfy numbers of tasks ranging from 2 to
the total number of tasks at hand. We introduce an efficient plane-sweep algorithm for
this purpose. We begin by defining the ”slack”δ of a (M)TVI as:

δ = [t−δ , t
+
δ] = [r, d− p], (4)

where againr, d andp are as given in Eqn. 1 and 2. Intuitively, the slack is just a
temporal interval within which a task can be started. We further define the lapse|δ| as
t+δ − t−δ .

We can now construct what we call an Ordered Timeline (OT) along which the
sweeping is performed, using the following procedure: First, compute the setS 2 of
all feasible MTVIs containing two tasks (which can be done simply using anO(n 2)
approach). Ifp1 andp2 are the respective processing times of the two tasks in a MTVI
in S2, indexed byi, then let its slackδi be [t−δi , t

+
δi

] = [r, d − max(p1, p2)], wherer
andd are the earliest release time and deadline of the MTVI. A timeline can now be
constructed as

⋃
i{t−δi , t+δi}, which is then sorted to get the OT. An example is shown in

Fig. 2(a), in which four different pairwise MTVIs are used to construct an OT. Due to
the ”splitting” effect of the procedure, the utilization of slacks, instead of[r, d] in Eqn. 1,
when forming the OT ensures that any resulting MTVI after applying our plane-sweep
algorithm does not have negative lapse in its slack - i.e., there is no valid time to start
tasks in the MTVI. It is also apparent from Fig. 2(a) that the new set of slacks along the
OT is made up of the following types. AnSS interval is formed from the start times of
two consecutive slacks, anSE interval from the start and end times of two consecutive
slacks, anES interval from the end and start times of two consecutive slacks, and finally
anEE interval is formed from the end times of two consecutive slacks.

In addition, at any time step along the OT, it is possible that one or more previously
encountered MTVIs remain ”active”. So, for example in Fig. 2(a), the MTVI with slack
[t−δ1 , t

+
δ1

] remains active until the end of the OT. In the following plane-sweep algorithm,
we will maintain a setSactive of such active MTVIs. For ease of illustration, we will
also refer to the two MTVIs that made up each interval along the OT asm first and
msecond, respectively, in order of their appearance. The plane-sweep algorithm can then
proceed by advancing across the OT in the following manner:

1. If anSS slack is encountered, initialize a new MTVImnew with tasks inmfirst

and slack equals to theSS slack. MTVIs inSactive that satisfy the CF condition
with mnew are combined; otherwise they are added as separate MTVIs, again with
slack equal to theSS slack.

2. If anSE slack is encountered, (1) add tasks from bothm first andmsecond tomnew

and assign to it theSE slack, if they meet the CF condition, or (2) keepm first and
msecond as two MTVIsmnew,1 andmnew,2, but assigning to both theSE slack.
ProcessSactive in the same manner as step 1, but on eithermnew (case 1) or both
mnew,1 andmnew,2 (case 2).

3. If anES slack is encountered, add MTVIs inSactive, assigning to them theES
slack.

4. If anEE slack is encountered, initializemnew with tasks inmsecond and slack
equals to theEE slack. ProcessSactive in the same manner as step 1 onmnew.

After performing the plane-sweep algorithm for a given camera, each interval along the
corresponding OT now consists of a set cover (not necessarily a minimum set cover) of
tasks that could be satisfied in that interval. These set covers (comprised of the resulting
MTVIs from the plane-sweep algorithm) are eventually used in the final scheduling
algorithm, which will be described in the following section.

t
+
δ3

Interval formed by two start times

Interval formed by a start time and an end time

Interval formed by an end time and a start time

Interval formed by two end times

t
−
δ4

t
+
δ4

t
−
δ1

t
+
δ1

t
−
δ2

t
+
δ2

t
−
δ3

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

camera settings

TVI 1
TVI 2

TVI 0

Time

2D projections of camera settings

Range of feasible

(a) (b)

Fig. 2. (a) Forming OT from different pairwise MTVIs. There are four MTVIs given in this
example with slacks:[t−δ1 , t

+
δ1

], [t−δ2 , t
+
δ2

], [t−δ3 , t
+
δ3

] and[t−δ4 , t
+
δ4

]. The resulting OT consists of the
slacks:[t−δ1 , t

−
δ2

], [t−δ2 , t
−
δ3

], [t−δ3 , t
+
δ2

], [t+δ2 , t
−
δ4

], [t−δ4 , t
+
δ3

], [t+δ3 , t
+
δ4

] and [t+δ4 , t
+
δ1

]. (b) The green
region of feasible sensor settings is a valid MTVI with three tasks, iff its slack lies within the
green region, and the CF condition is satisfied. Here, the slack’s start time equals that of the slack
of the pairwise MTVI formed by TVI 0 and 1 and the end time is the minimum among those of
the slacks of the pairwise MTVI formed by TVI 0 and 1, 0 and 2, and 1 and 2.

Finally, we verify the correctness of the plane-sweep algorithm: that the OT suffi-
ciently delineate all feasible MTVIs’ slacks (i.e., that any (M)TVI’s slack is delimited
by a pair of time instances on the OT). This can be easily proved by the following
theorem:

Theorem 1. Let the slacks start and end times of any MTVI bet−δ and t+δ . Thent−δ ,
t+δ ∈ OT.

Proof. Let the number of tasks in the MTVI ben(≥ 2). We can form up to
(
n
2

)
feasible

pairwise MTVIs. The corresponding slacks[t−δi , t
+
δi

] ∈ OT, for i = 1...
(
n
2

)
. Then,

by considering the forms of the common sensor setting volume encountered in this
application, an example of which is shown in Fig. 2(b),t−δ = max(t−δi) and t+δ =
min(t+δi). �

The combination of TVIs into MTVIs is illustrated in Fig. 1(f). The temporal be-
havior of an object for a task is shown by keeping the elevation angle as zero. The cor-
responding 2D view is shown in (g) in the azimuth-time plane. In (h) and (i), the plot
for the same object is intersected with that of another task. The resulting volumetric in-
tersection is delimited by a temporal interval, and a region of common camera settings
that can be used to satisfy both tasks simultaneously. Again, we utilize a simple rep-
resentation of such volumes to find these common camera settings by projecting them
onto the respective 2D planes (i.e., azimuth-time, elevation-time and focal length-time),
where the intersections can be computed efficiently.

4 Sensor Scheduling
Given the set of atomic TVIs and MTVIs that have been constructed for a given camera,
the scheduling problem is then to decide: (1) which (M)TVIs should be executed, and
(2) given the set of (M)TVIs chosen for execution, what the order of execution should
be, so as to maximize the coverage of tasks. In general, scheduling problems such as
this are NP-hard, making the search for an optimal solution computationally infeasible.
In the following sections, we begin by studying the scheduling problem when only a
single camera is used before extending to multiple cameras, using the assumption that
any resulting schedule is non-preemptive.
4.1 Single-camera Scheduling

To find the optimal schedule for a single camera, we introduce the following theorems
that make the single-camera scheduling problem tractable:

Theorem 2. Consider a camera. Letδmax = argmax
δi

(|δi|) andpmin be the smallest

processing time among all (M)TVIs. Then, if|δmax| < pmin, any feasible schedule for
the camera is ordered by the slacks’ start times.

Proof. Consider that the slackδ1 = [t−δ1 , t
+
δ1

] precedesδ2 = [t−δ2 , t
+
δ2

] in a schedule and
t−δ1 > t−δ2 . Let the processing time corresponding toδ1 bep1. Thent−δ1 + p1 > t−δ2 + p1.
We know that ift−δ1 + p1 > t+δ2 , then the schedule is infeasible. This happens ift+δ2 ≤
t−δ2 + p1 - i.e.,t+δ2 − t−δ2 ≤ p1. Given that|δmax| < pmin, t+δ2 − t−δ2 ≤ p1 is true.�

Theorem 2 implies that if|δmax| < pmin we can just look for feasible schedules that
are ordered by the slacks’ start times. In practise, such a condition is hardly restrictive
at all, since it is easy to adjust the processing time of tasks to meet the condition. Based
on this assumption, we can construct a Directed Acyclic Graph (DAG), where each
(M)TVI is a node with an incoming edge from a common source node and outgoing
edge to a common sink node, with the weights of the outgoing edges initialized to zero.
An outgoing edge from one (M)TVI node to another exists iff the slack’s start time
of the first node is earlier than that of the second (Theorem 2), which can however
be removed if it makes the schedule infeasible. Consider the following theorem and
corollary:

Theorem 3. A feasible schedule contains a sequence ofn (M)TVIs each with slack
δi = [t−δi , t

+
δi

], wherei = 1...n represents the order of execution, such thatt+δn − t−δ1 ≥
(
∑

i=1...n−1 pi) − (
∑

i=1...n−1 |δi|), pi being the processing time of theith (M)TVI in
the schedule.

Proof. For the schedule to be feasible the following must be true:t−δ1 + p1 ≤ t+δ2 ,
t−δ2 + p2 ≤ t+δ3 , ... , t−δn−1

+ pn−1 ≤ t+δn . Summing them up givest−δ1 + t−δ2 + ... +
t−δn−1

+
∑

i=1...n−1 pi ≤ t+δ2 +t+δ3 +...+t+δn , which can then be simplified ast+δn−t−δ1 ≥
(
∑

i=1...n−1 pi) − (
∑

i=1...n−1 |δi|). It is also clear that the condition,t−δ1 + p1 ≤ t+δ2 ,
t−δ2 + p2 ≤ t+δ3 , ... , t−δn−1

+ pn−1 ≤ t+δn , is sufficient for checking the feasibility of a
schedule.�
Corollary 1. Define a new operator�, such that ifδ1(= [t−δ1 , t

+
δ1

]) � δ2(= [t−δ2 , t
+
δ2

]),
thent−δ1 + p1 ≤ t+δ2 . Consider a schedule of (M)TVIs with slacksδi...n. The condition:
δ1 � δ2, δ2 � δ3, ..., δn−1 � δn, is necessary for the schedule to be feasible. Con-
versely, if a schedule is feasible, thenδ1 � δ2, δ2 � δ3, ...,δn−1 � δn. Proof is omitted
since it follows easily from Theorem 3.

As a result, due to Corollary 1, an edge between two (M)TVI nodes can then be removed
if they violate the� relationship since they can never be part of a feasible schedule.

Using such a DAG, a Dynamic Programming (DP) algorithm can be used to solve
the single-camera scheduling problem. The algorithm assigns weights to edges between
nodes in the DAG on the fly during a backtracking stage, illustrated by the following
example with the aid of Fig. 3(a) and 4. Consider the following set of (M)TVIs that
have been constructed for a given camera, represented by the tasks (T 1...6) they can
satisfy and sorted in order of their slacks’ start times:{node1 = {T1, T2}, node2 =
{T2, T3}, node3 = {T3, T4}, node4 = {T5, T6}}, where the set of nodes in the DAG
in Fig. 3(a) is given asnodei=1...4. Based on the constructed DAG, we can form a table
for running DP as illustrated in Fig. 4. DP is run by first initializing paths of length
1 starting from each of the (M)TVI nodes to the sink, all with ”merits” 0. At each
subsequent path length, the next nodenodenext chosen for a given nodenodecurr in
the current iteration is:

nodenext = arg max
n∈Scurr2next |Sn

⋃
Tasks(nodecurr)|, (5)

whereScurr2next is the set of nodes that have valid paths starting from them in the
previous iteration and for whichnodecurr has an outgoing edge to.Sn is defined as the
set of tasks covered by the path (in the previous iteration) starting fromn, andTasks()
gives the set of tasks covered by the (M)TVI associated withnodecurr. So, for example,
from node1, paths of length 2 exist by moving on to either one ofnode 2...4, with the
move tonode2, node3 andnode4 covering{T1, T2, T3} (merits=3),{T1, T2, T3, T4}
(merits=4) and{T1, T2, T5, T6} (merits=4) respectively. We choose the path of length
2 fromnode1 to node3. Iterations are terminated when there is only one path left that
starts at the source node or a path starting at the source node covers all the tasks. In our
example, the optimal path becomesnode1 → node3 → node4, terminated at paths of
length 4 from the sink when all the tasks are covered. It can also be observed from the
example, that the layout of the DP table is always ”triangular” due to the assumption in
Theorem 2.

node4

Sink

00

0

0

0

Source

node1

node2

node3 Sink

0

0

Source1

Source2

node2

node1

node3

Sink1

Sink2

(a) (b)

Fig. 3. (a) Single-camera scheduling: DAG formed from the set{node1 = {T1, T2}, node2 =
{T2, T3}, node3 = {T3, T4}, node4 = {T5, T6}}. The weights between (M)TVI nodes are
determined on the fly during DP. Assume that, in this example, the� relationship is satisfied
for the edges between the (M)TVI nodes. (b) Multi-camera scheduling: DAG formed from the
set{node1 = {T1, T2, T3}, node2 = {T3, T4}} for the first camera, and the set{node3 =
{T1, T2, T3}} for the second camera.

Distance Nodes
from sink Source node1 node2 node3 node4

1 X merit=0 merit=0 merit=0 merit=0
2 merit=2 merit=4 merit=4 merit=4 X

→ node1 → node3 → node4 → node4
{T1, T2} {T1, T2, T3, T4} {T2, T3, T5, T6} {T3, T4, T5, T6}

3 merit=4 merit=6 merit=5 X X
→ node1 → node3 → node3

{T1, T2, T3, T4} {T1, T2, T3, T4, T5, T6} {T2, T3, T4, T5, T6}
4 merit=6 merit=6 X X X

→ node1 → node2
{T1, T2, T3, T4, T5, T6} {T1, T2, T3, T4, T5, T6}

Fig. 4. Dynamic programming table for DAG in Fig. 3(a). An ”X” indicates that no path of the
specific length starts at that node.

4.2 Multi-camera Scheduling

While single-camera scheduling using DP is optimal and has polynomial running time,
the multi-camera scheduling problem is unfortunately NP-hard. Consequently, compu-
tationally feasible solutions can only be obtained with approximation algorithms. We
compare a simple greedy algorithm with a branch and bound-like algorithm.
Greedy Algorithm The greedy algorithm iteratively picks the (M)TVI that covers
the maximum number of uncovered tasks, subject to schedule feasibility as given by
Theorem 3. Under such a greedy scheme, the following is true:

Theorem 4. Givenk cameras, the approximation factor for multi-camera scheduling
using the greedy algorithm is2+ kλµ, where the definitions ofλ andµ are given in the
proof.

Proof. Let G =
⋃
i=1...k Gi, whereGi is the set of (M)TVIs scheduled on camera

i by the greedy algorithm, andOPT =
⋃
i=1...kOPTi, whereOPTi is the set of

(M)TVIs assigned to camerai in the optimal schedule. We further define (1)H 1 =⋃
i=1...kH1,i, whereH1,i is the set of (M)TVIs for camerai, that have been chosen by

the optimal schedule but not the greedy algorithm and each of these (M)TVIs contains
tasks that are not covered by the greedy algorithm in any of the cameras, (2)H 2 =⋃
i=1...kH=2,i, whereH2,i is the set of (M)TVIs for camerai, that have been chosen by

the optimal schedule but not the greedy algorithm and each of these (M)TVIs contains
tasks that are also covered by the greedy algorithm, and finally (3)OG = OPT

⋂
G.

Clearly,OPT = H1

⋃
H2

⋃
OG. Then, forhj=1...ni ∈ H1,i whereni is the number

of (M)TVIs in H1,i, ∃gj=1...ni ∈ Gi such thathj andgj cannot be scheduled together
based on the requirement given in Theorem 3, elseh j should have been included by
G. If Tasks(hj)

⋂
Tasks(gj) = ∅, thenhj contains only tasks that are not covered

by G. In this case,|hj | ≤ |gj|, elseG would have chosenhj instead ofgi. Note that
the cardinality is defined as the number of unique tasks covered. In the same manner,
even ifTasks(hj)

⋂
Tasks(gj) �= ∅, hj could have replacedgj unless|hj | ≤ |gj |.

Consequently,|H1,i| = |h1

⋃
h2

⋃
...

⋃
hni | ≤ |h1|+ |h2|+ ...+ |hni | ≤ |g1|+ |g2|+

... + |gni |. Let βj = |gj |
|Gi| andλi = max(βj ∗ ni). This gives|H1,i| ≤ β1|Gi| + ... +

βni |Gi| ≤ λi|Gi|. Similarly, we know|H1| ≤ λ1|G1| + ... + λk|Gk| ≤ λ(|G1| +
... + |Gk|), whereλ = max(λi). Introducing a new term,γi = |Gi|

|G| and lettingµ =
max(γi), we get|H1| ≤ kλµ|G|. Since|H2| ≤ |G| and |OG| ≤ |G|, |OPT | ≤
(2 + kλµ)|G|. �
Branch and Bound Algorithm The branch and bound approach runs DP in a similar
manner as single-camera scheduling but on a DAG that consists of multiple source-sink
pairs (one pair per camera), with the node of one camera’s sink node linked to another

camera’s source node. An example is shown in Fig. 3(b). Then, for a source nodes, we
define its ”upper bounding set”Ss as:

Ss =
⋃

c∈Slink
Sc, (6)

whereSlink is the set of cameras for which paths starting from the corresponding sink
nodes tos exist in the DAG, andSc is the set of all tasks that are covered by some
(M)TVIs belonging to camerac. Intuitively, such an approach aims to overcome the
”shortsightedness” of the greedy algorithm by ”looking forward” in addition to back-
tracking and using the tasks that can be covered by other cameras to influence the
(M)TVI nodes chosen for a particular camera. Admittedly, better performance is pos-
sibly achievable if ”better” upper bounding sets are used, as opposed to blindly using
all the tasks that other cameras can cover without taking scheduling feasibility into
consideration.

The algorithm can be illustrated with the example shown in Fig. 3(b), which shows
two cameras,c1 andc2, and the following sets of (M)TVIs that have been constructed
for them, again ordered by the slacks’ start times and shown here by the tasks (T 1...4)
they can satisfy. Forc1, the set is{node1 = {T1, T2, T3}, node2 = {T3, T4}} and for
c2, {node3 = {T1, T2, T3}}. The DAG that is constructed has two source-sink pairs,
one for each camera -(Source1, Sink1) belongs toc1 and(Source2, Sink2) to c2.
The camera sinks are connected to a final sink node as shown, with the weights of the
edges initialized to zero. Weights between nodes in the constructed DAG are similarly
determined on the fly like in the single-camera scheduling. Directed edges fromSink 2
to Source1 connectsc1 to c2. As illustrated in Fig. 5(a), the DP algorithm is run in
almost the same manner as single-camera scheduling, except that at paths of length 3
from the final sink node, the link fromSource1 to node2, is chosen because the upper
bounding set indicates that choosing the link potentially covers a larger number of tasks
(i.e., the upper bounding set ofSource1, {T1, T2, T3} combines with the tasks covered
by node2 to form{T1, T2, T3, T4}). This turns out to be a better choice as compared to
the results shown in Fig. 5(b), where no such upper bounding set was used.

The branch and bound algorithm can be viewed as applying the single-camera DP
algorithm, camera by camera in the order given in the corresponding DAG, with the
schedule of one camera depending on its upper bounding set. In this sense, we can
derive a potentially better approximation factor than the greedy algorithm as follow:

Theorem 5. For k cameras, the approximation factor of multi-camera scheduling us-

ing the branch and bound algorithm is (1+kµ(1+u))k

(1+kµ(1+u))k−(kµ(1+u))k . µ andu are defined
as follow. LetG∗ =

⋃
i=1...k G

∗
i , whereG∗

i is the set of (M)TVIs assigned to camerai

by the branch and bound algorithm. Then,µ = max(|G∗
i |

|G∗|) andu = max(ui), where
ui is the ratio of the cardinality of the upper bounding set of camerai to |G ∗

i |.
Proof. Let α be the approximation factor of the branch and bound algorithm. Then,
assuming that schedules forG∗

1, ..., G
∗
i−1 have been determined,|G∗

i | ≥ 1
α (|OPT | −∑i−1

j=1 |G∗
j |). Adding

∑i−1
j=1 |G∗

j | to both sides gives:

i∑

j=1

|G∗
j | ≥

OPT

α
+
α− 1
α

i−1∑

j=1

|G∗
j |).

A proof by induction shows, after some manipulation:

αk

αk − (α− 1)k

k∑

j=1

|G∗
j | ≥ |OPT |.

Distance Nodes
from sink Source1 Source2 node1 node2 node3 Sink1 Sink2

1 X X X X X → Sink → Sink

2 X X → Sink1 → Sink1 → Sink2 X X
{T1, T2, T3} {T3, T4} {T1, T2, T3}

3 → node2 → node3 X X X X X
{T3, T4} {T1, T2, T3}

4 X X X X X X → Source1
{T3, T4}

5 X X X X → Sink2 X X
{T1, T2, T3, T4}

6 X → node3 X X X X X
{T1, T2, T3, T4}

(a)
Distance Nodes
from sink Source1 Source2 node1 node2 node3 Sink1 Sink2

1 X X X X X → Sink → Sink

2 X X → Sink1 → Sink1 → Sink2 X X
{T1, T2, T3} {T3, T4} {T1, T2, T3}

3 → node1 → node3 X X X X X
{T1, T2, T3} {T1, T2, T3}

4 X X X X X X → Source1
{T1, T2, T3}

5 X X X X → Sink2 X X
{T1, T2, T3}

6 X → node3 X X X X X
{T1, T2, T3}

(b)

Fig. 5. Dynamic programming table for DAG in Fig. 3(b). Using the upper bounding set yields
a solution that is optimal in (a) as opposed to (b). In (a), at distance of length 3 from the sink, the
link chosen forSource1 is tonode2 instead ofnode1 since the union of the upper bounding set
for Source1 ({T1, T2, T3} as given by Eqn. 6) withnode2 potentially has a larger task coverage.

LetH =
⋃
i=1...kHi, Hi being the set of (M)TVIs chosen by the optimal schedule on

camerai but not the branch and bound algorithm. The condition|H i| ≤ |G∗
i | + ui|G∗

i |
is true; otherwise,Hi would have been added toG∗ instead. Consequently,|H | ≤
(|G∗

1|+ ...+ |G∗
k|) + (u1|G∗

1|+ ...+ uk|G∗
k|) ≤ kµ|G∗|+ kuµ|G∗| ≤ kµ(1 + u)|G∗|.

SinceOPT = OG
⋃
H (Theorem 4), we get|OPT | ≤ 1 + kµ(1 + u)|G∗|. Thus,

α = 1 + kµ(1 + u). �
Both the single-camera and branch and bound multi-camera algorithm have a com-

putational complexity ofO(N 3),N being the average number of (M)TVIs constructed
for a given camera and used in the resulting DAG. The number of iterations (i.e., num-
ber of rows in our DP tables), depends on the number of cameras multiplied byN . This,
together with a asymptotic cost ofO(N 2) checking possible backtracking paths at each
iteration giveO(N 3). Clearly, this means that one advantage of employing the greedy
multi-camera algorithm is its faster computational speed ofO(N 2).

5 Results
In Theorem 4 and 5, we have shown that both the performance of the branch and bound
and greedy algorithm are sensitive to several factors. Empirically, we have conducted
extensive simulations to compare their performance - 600 simulations were conducted
each time based on 5, 10, 15 and 20 objects for 1 (i.e., single-camera DP), 2 and 3
cameras respectively, and the percentage of these simulations whereby the branch and
bound algorithm outperforms the greedy one - i.e., schedules more tasks - (and vice
versa) is recorded. The results are shown in Fig. 6(a), (b) and (c) for 1, 2 and 3 cameras
respectively. While the branch and bound algorithm outperforms the greedy one in these
simulations, the mean number of objects captured by the branch and bound algorithm
is very close to that of the greedy algorithm, as shown in (d).

We have also conducted real-time experiments with a prototype multi-camera sys-
tem, consisting of four PTZ cameras synchronized by a Matrox four-channel card. One
camera is kept static, so that it can be used for background subtraction and tracking.

1 Movable Camera

0

1

2

3

4

5

6

7

5 10 15 20

Total Number of Objects

P
er

fo
rm

an
ce

 (
%

)

Greedy

Branch and Bound

2 Movable Cameras

0

2

4

6

8

10

12

14

5 10 15 20

Total Number of Objects

P
er

fo
rm

an
ce

 (
%

)

Greedy

Branch and Bound

3 Movable Cameras

0

2

4

6

8

10

12

5 10 15 20

Total Number of Objects

P
er

fo
rm

an
ce

 (
%

)

Branch and Bound

Greedy

Mean No. Objects Capture

65

70

75

80

85

90

95

100

5 10 15 20

Total Number of Objects

Pe
rc

en
ta

ge
 M

ea
n

3 Cam Branch & Bound

3 Cam Greedy
2 Cam Branch & Bound

2 Cam Greedy

1 Cam Branch & Bound

1 Cam Greedy

(a) (b) (c) (d)

Fig. 6. (a)-(c) The simulations conducted here do not enforce the condition (|δmax| < pmin) in
Theorem 2. The plots record the percentage of time when the branch and bound algorithm out-
performs the greedy one (labeled as ”Branch and Bound”) and vice versa (labeled as ”Greedy”).
Ties are not shown. While the branch and bound algorithm clearly outperforms the greedy one
in these plots, the mean number of objects, expressed as percentage of the total number of ob-
jects, captured by the branch and bound algorithm is very close to that of the greedy algorithm,
as shown in (d).

The system recovers an approximate 3D size estimate of each detected object from
ground plane and camera calibration, and uses them to construct (M)TVIs, which are
then scheduled for capture. Due to the lack of exact future object location informa-
tion, the system also updates the schedules as new observations are made by combining
the predicted motion trajectories with the measured ones probabilistically. Fig. 7 first
demonstrates the working of the system, from the acquisition of the motion models in
(a) to the final video captures in (b) and (c), where the system’s capabilities in dealing
with occlusions and merging foreground blobs are also demonstrated. In Fig. 8(a) and
(b), the effect of changing resolution requirement on the (M)TVIs constructed, using
four remote-controllable 12x14 inches robots, are shown. As we increase the resolution
requirement, while only two cameras are needed to capture the four robots in (a), three
were needed in (b). The system’s capabilities in scheduling specific tasks are further
shown in (c) and (d), where tasks involving captures of faces and close interactions be-
tween objects are demonstrated. Comprehensive results are provided and explained in
the accompanying videos.

6 Conclusions
We have described a multi-camera system that constructs (M)TVIs, during which tar-
geted objects in acquired videos are unobstructed, in the field of view, and meet task-
specific resolution requirements. Following the construction of these (M)TVIs, a collec-
tion of cameras are to be scheduled for video collection so as to maximize the coverage
of tasks. We have presented several computationally feasible scheduling algorithms,
both for single and multiple cameras. Such a system should be useful in surveillance,
where extensive camera planning and scheduling is necessary.

References
1. K.A. Tarabanis, P.K. Allen, and R.Y. Tsai, “A survey of sensor planning in computer vision,”

IEEE Transactions on Robotics and Automation, vol. 11, no. 1, pp. 86–104, 1995.
2. Cregg K. Cowan and Peter D. Kovesi, “Automatic sensor placement from vision task re-

quirement,”IEEE Transactions on Pattern Analysis and machine intelligence, vol. 10, no. 3,
pp. 407–416, 1988.

3. I. Stamos and P. Allen, “Interactive sensor planning,” inComputer Vision and Pattern
Recognition Conference, Jun 1998, pp. 489–494.

4. Steven Abrams, Peter K. Allen, and Konstantinos A. Tarabanis, “Dynamic sensor planning.,”
in ICRA (2), 1993, pp. 605–610.

5. Steven Abrams, Peter K. Allen, and Konstantinos Tarabanis, “Computing camera viewpoints
in an active robot work cell,”International Journal of Robotics Research, vol. 18, no. 2,
February 1999.

Person 0

Door

Detection camera Camera 2

Person 2

Camera 0

Person 1

(a)

(b)

(c)

Fig. 7. Two movable cameras and one detection camera were used for the experiments in (a)-(c).
(a) Left to right: A plan view of the predicted motion models, and sample frames used for con-
structing the motion model of each object. (b) Person 0 was occluded by the door from camera 0’s
view and by person 2 from camera 2’s view. Thus, only person 1 and 2 were assigned to camera 0
(leftmost image) and 2 (middle image) respectively. The rightmost image is the detection camera.
(c) Person 0 is finally visible and assigned to camera 2 together with person 2. The merging of
foreground blobs was prevented by utilizing the predicted positions of the people. Note that the
camera label in each bounding box indicates the camera that was assigned to capture the person.

6. K.A. Tarabanis, R.Y. Tsai, and P.K. Allen, “The mvp sensor planning system for robotic
vision tasks,” IEEE Transactions on Robotics and Automation, vol. 11, no. 1, pp. 72–85,
February 1995.

7. Anurag Mittal and Larry S. Davis, “Visibility analysis and sensor planning in dynamic
environments,” inEuropean Conference on Computer Vision, May 2004.

8. K.N. Kutulakos and C. R. Dyer, “Global surface reconstruction by purposive control of
observer motion,” inIEEE Conference on Computer Vision and Pattern Recognition, Seattle,
Washington, USA, June 1994.

9. K.N. Kutulakos and C. R. Dyer, “Occluding contour detection using affine invariants and
purposive viewpoint control,” inIEEE Conference on Computer Vision and Pattern Recog-
nition, Seattle, Washington, USA, June 1994.

10. K.N. Kutulakos and C. R. Dyer, “Recovering shape by purposive viewpoint adjustment,”
International Journal of Computer Vision, vol. 12, no. 2, pp. 113–136, 1994.

11. R. I. Hartley and A. Zisserman,Multiple View Geometry in Computer Vision, Cambridge
University Press, ISBN: 0521623049, 2000.

(a)

(b)

(c)

(d)

Fig. 8. (a) Two cameras are needed (one TVI for camera 0 shown in the leftmost image, and
one MTVI with three tasks for camera 1, shown in the second image from the left) to capture
the four robots. The rightmost image is the detection camera. (b) The resolution requirement was
increased, and three cameras are now needed - one TVI for camera 0 and 1 and one MTVI with
two tasks for camera 2, shown sequentially from left to right. In (c), the motion models of two
persons in the scene were used to determine TVIs when they are front-facing to the assigned
camera (two movable cameras are used here), so that their faces are visible in the capture videos.
This is clearly illustrated in the leftmost and middle image, since each person is front-facing to
only one of the movable cameras, which was then assigned to the task accordingly. In (d), one
movable camera was used and two persons are walking in the scene. The leftmost image shows
the camera being assigned to one of the persons in the scene. However, the motion models of the
two persons were used by the system to predict that there is a high likelihood of the two persons
interacting - a task which was scheduled and captured accordingly, shown in the third image from
the left.

