
 

 

 

 

 

 

 

ABSTRACT 

 

 

 

 

Title of Dissertation: THERMODYNAMIC AND INFORMATION 

ENTROPY-BASED PREDICTION AND 

DETECTION OF FATIGUE FAILURES IN 

METALLIC AND COMPOSITE MATERIALS 

USING ACOUSTIC EMISSION AND DIGITAL 

IMAGE CORRELATION  

  

 Seyed Fouad Karimian, Doctor of Philosophy, 

2021 

  

Dissertation directed by: Professor Mohammad Modarres, Department of 

Mechanical Engineering 

Professor Hugh A. Bruck, Department of 

Mechanical Engineering 

 

Although assumed to be identical, manufactured components always present some 

variability in their performance while in service. This variability can be seen in their 

degradation path and time to failure as they are tested under identical conditions. In 

engineering structures and some components, fatigue is among the most common 

degradation mechanisms and has been under extensive study over the past century. A 

common characteristic of the fatigue life models is to rely on some observable or 

measurable markers of damage, such as crack length or modulus reduction. However, these 

markers become more pronounced and detectable toward the end of the component or 

structure’s life. Therefore, more advanced techniques would be needed to better account 



 

 

for a structure's fatigue degradation. Several methods based on non-destructive testing 

techniques have developed over the past decades to decrease the uncertainty in fatigue 

degradation assessments. These methods seek to exploit the data collected by sensors 

during the operational life of a structure or component. Hence, the assessment of the health 

state can be constantly updated based on the operational conditions that allow for 

condition-based monitoring and maintenance. However, these methods are mostly context-

dependent and limited to specific experimental conditions. Therefore, a method to 

effectively characterize and measure fatigue damage evolution at multiple length scales 

based on the fundamental concept of entropy is studied in this dissertation. The two 

entropic-based indices used are: Thermodynamic entropy, and, Information entropy. 

The objectives of this dissertation are to develop new methods for fatigue damage detection 

and failure prediction in metallic and FRP laminated composite materials by using AE and 

DIC techniques and converting them to information and thermodynamic entropy gains 

caused by fatigue damage.  

1. Develop and experimentally validate fatigue damage detection, failure prediction, 

and prognosis approaches based on the information entropy of AE signal waveforms 

in both metallic and FRP laminated composite materials. 

2. Develop and experimentally validate fatigue damage detection, failure prediction, 

and prognosis approaches based on thermodynamic entropy using the DIC technique 

in both metallic and FRP laminated composite materials. 

3. Develop a framework for RUL estimation of metallic and FRP laminated composite 

structures based on the two entropic measures. 
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 Introduction 

1.1. Background 

Although assumed to be identical, manufactured components always present some 

variability in their performance while in service. This variability can be seen in their 

degradation path and time to failure as they are tested under identical conditions. In 

engineering structures and some components, fatigue is among the most common 

degradation mechanisms [1]. The fatigue failure mechanism has been under extensive 

study over the past century [2]. Structural elements of engineered systems are prone to 

degradation and catastrophic failures may occur if not properly maintained. Failure due to 

fatigue occurs under fluctuating loading conditions, even for loadings at much lower than 

the nominal yield strength of the material. During the operation of most engineered systems 

and structures, random variable loads result in fatigue-induced changes in component 

materials on scales much smaller than observed with the naked eye. These small changes 

accumulate during the operational life of components and eventually result in visible 

damage and failure. Fatigue is a scale- and load-dependent phenomenon starting from small 

scale (microscale) to macroscale. Depending on the material, 50% to 90% of fatigue life is 

spent before a small (and often challenging to detect) crack initiates [3].  

In metals, accumulated damage usually leads to the formation of macro-cracks that grow 

in size until the final fracture. The fatigue damage modeling and life prediction in metals 

encompass a rich history of research, mainly focused on damage mechanisms and damage 

accumulation models [4]. Fatigue life prediction in metals is usually divided into two main 

regimes: crack initiation and crack propagation. Models that describe crack initiation 
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typically consider the stress and strain applied to materials for crack initiation time 

prediction, such as the widely accepted model developed by Smith, Watson, and Topper 

[5]. On the other hand, fracture mechanics models focus on crack length estimation based 

on the applied stress and other factors such as geometry. One of the most widely accepted 

models in fracture mechanics is the Paris Law [6]. A common characteristic of the fatigue 

life models is to rely on some observable or measurable markers of damage, such as crack 

length or modulus reduction. Unfortunately, these markers become more pronounced and 

detectable toward the end of the component or structure’s life. Therefore, more advanced 

techniques would be needed to better account for a structure's fatigue assessment and 

remaining useful life estimation. 

In composites, two or more components are combined to achieve properties superior to 

each of them individually. These materials offer a wide variety of properties regarding their 

constituent parts and manufacturing processes. Some of their properties and characteristics 

have motivated industries, such as the aerospace industry, to replace structures using 

conventional metallic alloys with composites. Fiber-reinforced polymer (FRP) composites 

have been the most prevalent due to their superior stiffness, strength, corrosion resistance, 

density, and fatigue life. While fatigue damage modeling of metals has a rich history and 

is far more developed than composites, fatigue damage modeling of FRP materials is a 

more complex and less understood problem. Various damage mechanisms such as matrix 

cracking, fiber/matrix debonding, delamination, and fiber breakage are present in FRP 

laminated composites [7]. These damage mechanisms happen in different length scales, 

and the synergy between them ultimately leads to fracture. Therefore, fatigue life analysis 

of FRP materials is a more complicated task and requires complex analysis.  
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Fatigue damage quantification and remaining useful life (RUL) estimation of structures 

and components made from either metallic or FRP laminated composites typically focus 

on techniques developed based on available (usually metal-based) physics-based models. 

The flexibility to adapt to unseen situations and the available historical information on 

physics-based models make them a reliable tool for fatigue life prediction [8]. However, 

they are mostly context-dependent, limited to specific experimental conditions, and 

associated with high uncertainties. Due to the stochastic nature of fatigue and the need to 

decrease the uncertainty in degradation processes’ predictions of sensitive structures, 

several non-destructive evaluation (NDE) methods based on non-destructive testing (NDT) 

techniques have been developed over the past years [9], [10]. These methods seek to exploit 

and interpret high volumes of data collected by sensors during the operational life of a 

structure or component. Hence, the assessment of the health state can be constantly updated 

based on the operational conditions that allow for condition-based monitoring and 

maintenance. For instance, the inspection of airframe structure is an expensive, labor-

intensive, and slow process that requires grounding and downtime that results in a 

considerable increase (by as much as 50%) in the operational cost of airplanes [11]. 

Therefore, the industry is moving toward using structural health monitoring (SHM) 

techniques to detect defects and damages that reduce the need for routine scheduled 

maintenance, minimizes human intervention, and increases the reliability of damage 

detection.   

Among all the available NDT methods, the unique advantages of acoustic emission and 

digital image correlation (DIC) have made them among fatigue damage detection 

techniques. Acoustic emission (AE) is a well-known NDT technique that only requires 
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small sensors that detect activity inside the material with high sensitivity and no need to 

disassemble and clean the sensor. The AE technique can detect all the fatigue damage 

mechanisms in FRP materials [12]. Digital image correlation is a widely accepted and 

commonly used NDT technique to measure full-field displacement and strain map on 

object surfaces in the field of experimental mechanics [13]. Comparing to strain gauges 

and extensometers, DIC provides a full-field measurement and does not suffer surface 

slipping.  

1.2.Motivation 

Although the use of NDT techniques has been employed for fatigue damage assessment in 

the case of both metallic [14], [15] and FRP laminated composite [16], [17] materials, the 

available models usually depend on experimental setup or subjective parameter selection. 

As such, there is a gap in the fundamental fatigue damage modeling to detect and measure 

fatigue damage that is independent of experimental conditions. A method to effectively 

characterize and measure damage evolution at multiple length scales is based on the 

fundamental concept of entropy rather than markers of damage, as noted earlier. Therefore, 

this dissertation focuses on developing fatigue life estimation in metallic and FRP 

laminated composite materials based on entropy measurement when they undergo fatigue 

damage. As a measure of disorder, entropy has shown to be an appropriate fatigue damage 

index [18]. Two entropic-based indices to measure fatigue damage and predict fatigue 

failure is proposed in this dissertation:  

• Thermodynamic entropy, and, 

• Information entropy.  
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In thermodynamics, fatigue damage is seen as an irreversible process that dissipates energy 

and thus generates entropy. Thermodynamic entropy as a measure of irreversibility in 

processes is shown to be a promising damage index of fatigue [19]. On the other hand, 

comparing to the conventional threshold-dependent features of AE signals [20], 

information entropy of AE signal waveforms is a more integral measure of damage that 

removes the dependence on the subjectively selected thresholds by using the entire content 

of an AE waveform distribution and convert it to its equivalent information entropy to 

quantify the damage [21]. Measurement and modeling accumulation of the information 

entropy that measures the information content of the AE signal waveforms, and the 

thermodynamic entropy that measures the strain energies dissipated during the fatigue 

process, constitute the core of the research presented in this dissertation. This fundamental 

entropic-based research further closes the gaps and offers the promise of scale-

independent, early fatigue failure detection, enhanced RUL estimation, and improved 

structural health management and prognostics.  

1.3. Research objectives 

This dissertation aims to develop new methods for fatigue damage detection and failure 

prediction in metallic and FRP laminated composite materials using AE and DIC 

techniques based on entropic measurements. Objectives are summarized as: 

1. Develop and experimentally validate fatigue damage detection, failure prediction, 

and prognosis approaches based on the information entropy of AE signal 

waveforms in both metallic and FRP laminated composite materials. 
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2. Develop and experimentally validate fatigue damage detection, failure prediction, 

and prognosis approaches based on thermodynamic entropy using the DIC 

technique in both metallic and FRP laminated composite materials. 

3. Develop a framework for RUL estimation of metallic and FRP laminated composite 

structures based on the two entropic measures.  

The defined objectives are studied on metallic material first, then on FRP laminated 

composites, and the results are reported in separate chapters in this dissertation. 

1.4. Brief overall literature review 

The use of entropy in fatigue damage analysis has been addressed in the literature. In this 

section, some of the available literature is briefly presented. However, a far more 

comprehensive and detailed literature review on the focused topics covered in this 

dissertation appears at the beginning of each chapter.  

The second law of thermodynamics explains thermodynamic entropy generation, and it is 

proposed as a natural fatigue damage index by Bryant et al. [22]. Naderi et al. [23] studied 

the thermodynamic entropy generation in two metallic alloys under various bending, 

torsional, and tension-compression fatigue testing. Results showed that regardless of the 

geometry, load, and frequency, cumulative thermodynamic entropy in each material at the 

point of fracture converges to a relatively constant level called fatigue fracture entropy, 

FFE (4 MJ m−3 K−1 for Al 6061-T6 and 60 MJ m−3 K−1 for SS 304). However, the study on 

notched aluminum specimens under cyclic loading by Ontiveros et al. [24] shows that 

stress amplitude is inversely related to thermodynamic entropy generation and cumulative 

entropy almost linearly increases with the number of cycles to failure. The discrepancy in 
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the results of the two studies is explained through the experimental setup difference in 

them. Naderi and Khonsari [25] studied glass/epoxy laminated composites under tension-

tension and bending fatigue loading in different directions and amplitudes, and measured 

the thermodynamic entropy generation. It is shown that FFE is independent of frequency, 

load, and fiber orientation. Further, the effect of different terms such as thermal dissipation 

and damage energy in the hysteresis loop and the associated entropy generation is not 

considered. In another study by Naderi and Khonsari [26] on glass/epoxy laminated 

composites under tension-tension fatigue testing, it is concluded that degradation induced 

from internal damage energy generates considerable entropy and should not be neglected. 

Information entropy is a measure of uncertainty or missing information [27] of the 

distribution of a random variable. According to information entropy, distributions with less 

bias toward a specific value are associated with higher uncertainties about the random 

variable. Hence, they have a higher value of entropy. Therefore, uniform distribution for a 

random variable is expected to have the highest information entropy since it is not biased 

toward any value. Kahirdeh and Khonsari [28] studied AE signals emitted from aluminum 

and glass/epoxy laminated composites under bending fatigue. Information entropy is 

calculated using the distribution of AE signal counts (random variable) based on the arrival 

times. It is observed that the final value of accumulated information entropy in the same 

material and under different testing conditions reached the same value and the final value 

of entropies in the two materials was about equal. However, AE count is an AE threshold-

dependent feature that limits the scope of conclusion in the study. The selection of voltage 

values within a signal waveform as the random variable results in the information entropy 

analysis to become independent of the threshold settings. Sauerbrunn et al. [21] measured 
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the information entropy of AE signals under fatigue based on the waveform voltage 

distribution. They concluded that waveform information entropy is a better index of 

damage than count and energy. Chai et al. [29], [30] studied stainless steel under fatigue 

loading and used voltage values of AE waveform signal and the random variable for 

information entropy measurement. It is shown that cumulative energy, counts, and entropy 

evolve similarly with time. 

1.5. Approach 

This dissertation is divided into two parts with regard to the materials used. In the first part, 

the applications of information entropy and thermodynamic entropy on metallic material 

are discussed. The material selected for this part is Aluminum Alloy 7075-T6. The 

application of information entropy to detect crack initiation and measure crack growth is 

discussed in Chapter 2 and Chapter 3. The application of thermodynamic entropy on crack 

initiation detection is discussed in Chapter 4. Chapter 5 discusses a framework to fuse the 

two entropic indices for better RUL estimation using a dynamic Bayesian network.  

The second part of the dissertation is focused on the application of information entropy and 

thermodynamic entropy on the FRP composites. Carbon FRP (CFRP) laminated composite 

is selected for this part. Chapter 6 discusses a new approach for AE signal clustering based 

on waveform characteristics that directly influence information entropy measurement and 

analysis. In Chapter 7, the application of information entropy in fatigue testing on CFRP 

laminated composites is discussed. Chapter 8 studies the thermodynamic entropy 

generation in fatigue testing of CFRP laminated composites. Finally, Chapter 9 

summarizes the findings in the overall conclusions of the dissertation, presents the main 

contributions of this research, and provides recommendations for future work.  
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Chapters 2-8 are reproductions of the same papers that have already been published in 

various archival journals and conferences. Figure 1 shows a flowchart of the subjects 

covered and the relationship between the dissertation chapters to attain the overall 

objectives of the dissertation.  

 

Figure 1-1 - Overview of the dissertation 
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 A new method for detecting fatigue crack initiation in 

aluminum alloy using acoustic emission waveform information 

entropy1 

2.1. Abstract 

Sensitive structures, such as airframes, need careful inspection and maintenance to avoid 

fatigue failures. These activities are expensive, discrete and imperfect, since catastrophic 

failure may occur before cracks can be detected. This paper focuses on using information 

entropy of acoustic emission (AE) signals to identify precursors to fatigue crack initiation 

in AA7075-T6. The information entropy is investigated as a means to identify the 

conditions associated with nucleation and coalescence of microcracks that lead to crack 

initiation. The methodology is demonstrated using data from multiple fatigue tests on 

notched dog-bone specimens, under different loadings. It was determined that the 

information entropy reaches a minimum immediately before a macrocrack is formed, with 

values within an interval of 2.0 to 3.0 [nats], independent of loading condition. Following 

the minimum information entropy, the cumulative information entropy rapidly increased. 

Therefore, combining the minimum information entropy with the rapid increase in 

cumulative information entropy, the new method could be used to detect fatigue crack 

initiation reliably. 

                                                 
1 The full-text of this chapter has been published in the Engineering Fracture Mechanics journal, 

Volume 223, January 2020. https://doi.org/10.1016/j.engfracmech.2019.106771 

https://doi.org/10.1016/j.engfracmech.2019.106771
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2.2. Introduction 

Fatigue is the primary cause of structural failure [1]. Structural components are prone to 

degradation, and catastrophic failures may occur if not properly maintained. Failure due to 

fatigue occurs under fluctuating loading conditions at much lower than the nominal yield 

strength of the material. During operation, random variable loads result in fatigue-induced 

small changes in component materials on scales much smaller than observed with the naked 

eye. These small changes accumulate during the operational life of components, eventually 

resulting in observable damage, and consequently, failure. Fatigue is a scale- and load-

dependent phenomenon starting from a small scale (microscale) to macroscale. Depending 

on the material, 50% to 90% of fatigue life is spent before crack initiation [2]. Specifically, 

for more brittle materials, such as Aluminum Alloy 7075-T6, crack propagation can occur 

rapidly and covers a relatively short period of the fatigue life. Because of this behavior, it 

has been challenging to use existing fatigue analyses to predict the lifetime of critical 

components, particularly aerospace structures, made from these materials when they are 

subjected to different fatigue loading conditions. Therefore, it is important to develop a 

method to detect crack initiation that results in a better estimate of the remaining useful life 

(RUL). 

Acoustic emission (AE) is a well-known non-destructive evaluation technique that has 

been used extensively in the field of fatigue damage of metals [3]–[12] and composites 

[13]–[19]. Structural changes and internal redistribution of stress within the material result 

in energy release. Part of this energy is released in the form of AE signals [20]. These 

signals are recorded by AE sensors. The AE technique requires only small sensors that 

detect activity inside the material, while other non-destructive evaluation (NDE) 
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techniques examine the internal structure of the components [21]. Acoustic emission is 

used for NDE in many industrial applications such as pressure vessels [22], structural 

integrity [23] and chip formation assessment [24]. Studies based on AE usually use a 

combination of signal features such as count, peak levels, rise time, energy, duration and 

amplitude to draw conclusions. However, these features are heavily threshold-dependent 

and are affected by the wave propagation medium and attenuation characteristics. More 

recently, in addition to the features of the signal, waveform analysis of signals has been 

studied. For example, Vanniamparambil et. al. [3] have shown that discrete increases in 

waveform amplitudes associated with AE signals after crack initiation, in addition to 

increasing waveform frequency, can be considered as behaviors related to crack initiation. 

They also report signals with relatively high amplitude and peak frequencies after crack 

initiation, including a jump in the absolute energy of the waveform and an increase in the 

number of counts at crack initiation. Wisner et al. [25] have proposed a framework for AE 

signal processing in aluminum alloys. It is shown that AE signal feature selection and 

unsupervised data clustering methods make it possible to link the AE waveforms to 

potential fracture sources.   

Another AE waveform analysis method recently used in fatigue damage studies is the use 

of AE waveform information (Shannon) entropy [26]–[32]. AE waveform information 

entropy is a more integral measure of damage, removing the dependence on threshold and 

signal features such as energy and count rate by using the signal distribution characteristics 

to quantify the damage. AE waveform information entropy relies on the information 

content of the distribution of emitted AE signals (described by the waveforms). It can 

quantify damage independent of AE characteristics that depend on experimental and 
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loading conditions. This method measures the information entropy of the signal waveform, 

using Shannon information entropy [33]. To calculate the information entropy, Sauerbrunn 

et al. [26] used non-parametric probability distribution based on voltage readings 

representing the AE signals for every 2048 data points. They suggested that waveform 

information entropy would be a better index of damage than count and energy. In a study 

by Chai et al. [27], a fatigue test and a three-point bending test was conducted, and the 

waveform of AE signal analysis showed that in both experiments, cumulative energy, 

counts and information entropy evolve similarly with time. In another study by the same 

group [28], AE information entropy during fatigue was used, where two distinct stages of 

evolution of information entropy were observed. The first stage was related to fatigue crack 

initiation and small crack growth, while the second stage was related to “plastic activities 

in plastic zone at the crack tip, the formation of micro voids and the ligaments shearing 

between these micro voids.” It was shown that normalized cumulative AE information 

entropy and count have similar trends, suggesting cumulative information entropy can be 

regarded as an effective measure for fatigue damage evolution.  

Previous studies on AE waveform information entropy use AE signals recorded by only a 

single sensor. Therefore, they fail to report the spatial dependence of AE features and 

waveform information entropy in addition to verifying the analysis results. Furthermore, 

they fail to offer a practical solution to employ AE waveform information entropy as a 

damage identification parameter under variable loading conditions. In this paper, AE 

signals are recorded by two independent sensors, which are used to verify each other to 

improve data collection and enhance noise reduction. A new method is developed for 

processing the waveform of the AE signal by selecting an optimum bin width after 
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removing the hit lockout time (HLT) and then calculating the waveform information 

entropy. The calculated waveform information entropy values of the AE signals are 

investigated as a means for identifying conditions associated with the nucleation and 

coalescence of microcracks that lead to fatigue crack initiation. Therefore, the method is 

applied to experimental data obtained under variable fatigue loading conditions to correlate 

with the formation of macroscale cracks. This method results in a reliable crack initiation 

detection using the information content of AE signals, which offers the capability of 

reliable real-time structural health monitoring for in-service structures.  

2.3. Experimental setup and procedure 

2.3.1. Procedure 

A large AE signal database consisting of a total of 10 specimens fatigued under different 

loading conditions were generated. Loading conditions were defined as overload spectrum, 

high cyclic fatigue (HCF), programmed loading, and variable amplitude loading spectrum. 

Each test was monitored by 2 AE sensors attached to the specimen at a specific location. 

The overload spectrum was defined by fatigue cycling using stress ratio (R) equal to 0.1 

with a maximum load of 12 [kN] and one cycle with a maximum load of 15.5 [kN] every 

1,500 cycles. The maximum load in HCF loading spectrums was set to 8, 9.25 and 9.5 [kN] 

with R=0.1. Programmed loading was defined as a loading block of 37 cycles, all with a 

maximum load of 12 [kN] and different stress ratios: 20 cycles with R=0.1 followed by 10 

cycles of R=0.25, 5 cycles of R=0.5, and 2 cycles of R=0.67. Variable amplitude loading 

was defined as a block of loading with 1,489 loading points, with a maximum of 15.5 [kN]. 

An 8 [MP] Point Grey Flea3 sensor with a 3.8–13 [mm] Fujinon lens was used to monitor 

the tests. Tests were paused once a crack became visible. Detected crack was then measured 
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and the crack initiation cycle was calculated using crack length at the termination cycle 

and material properties measured in monotonic tests. The definition of crack initiation is 

from the US Navy [34] described as a 0.25 [mm] crack length. Figure 1 shows an example 

of crack length measurement at the test termination cycle.  

 

Figure 2-1 - Crack detection and measurement at the test termination cycle. 

2.3.2. Specimens 

All specimens were cut from the same sheet of AA7075-T6 material in the rolling direction 

and machined to dog-bone shape specimens with a notch at the center, following the ASTM 

E466 standard. A drawing of the specimen and its dimensions (in mm) is shown in Figure 

2. The stress concentration factor around the notch area was calculated as 2.77. The yield 

strength of the material is measured as 506.9 [MPa]. Specimens were speckle patterned 

around the notch for further Digital Image Correlation (DIC) analysis to confirm crack 

initiation and strain map generation. Details of the DIC analysis and loading conditions can 

be found at [35]. 
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Figure 2-2 - Specimen geometry and AE sensor placement 

2.3.3. Acoustic emission signal measurement 

AE signals were recorded using two Physical Acoustics PCI-2 based resonant Micro-30s 

AE sensors (MISTRAS Group, Princeton Junction, NJ) with a frequency range of 150–400 

[kHz] and a resonant frequency of 225 [kHz]. These sensors are proven to provide adequate 

results in our previous studies [26], [36] and cover the frequency range reported for crack 

initiation in other studies [3], [27], [28]. AE sensors were attached to the specimen using 

ultrasonic gel couplant. Sensors were placed symmetrically 23 [mm] away from the notch 

(as shown by Channel 1 and Channel 2 in Figure 2). The parameters used in AE 

recording—pre-trigger length, peak definition time, hit definition time and hit lockout 

time—were set to 256 [µs], 300 [µs], 600 [µs] and 1000 [µs], respectively. For each signal, 

hit length was set to 10960 points and sampling rate to 5 MSPS. Signals were passed 

through a 40 [dB] pre-amplifier before reaching the data acquisition module. The Physical 

Acoustics AEwin software (Physical Acoustic Corporation, Version E5.60, MISTRAS 

Group, Princeton Junction, NJ, 2007) was used to record AE signals. A servo-hydraulic 

material testing system machine retrofitted with an Instron 8800 controller was used to 

perform the fatigue tests.  
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2.3.4. Noise reduction 

The presence of noise in AE acquisition is inevitable. The noise has different amplitude 

levels and sources, such as fretting of micro-crack surfaces, friction between the 

mechanical parts of the loading frame, and vibration of the fluid pump in the loading frame. 

Various signal processing approaches to increase the signal to noise ratio in AE signals 

such as using Discrete Wavelet Transform (DWT) [37] and Hilbert-Huang transform [38] 

are proposed in the literature. However, as demonstrated and explained by [27], no such 

denoising procedure is necessary when utilizing AE waveform information entropy. In this 

study, two approaches were used to reduce and remove noises: a pre-processing technique 

that reduces noise amplitude level and a post-processing method that eliminate noises in 

the AE dataset to be used for signal waveform analysis. 

In the pre-processing technique, mechanical dampers were attached to the specimens to 

reduce noise amplitude levels by reducing the vibrations induced by the loading frame. The 

pre-processing technique enabled us to set a lower amplitude for the threshold. To set the 

threshold, the specimen was placed in the servo-hydraulic materials testing system frame, 

and the grips were closed to hold the specimen. Without applying any load, AE activity 

detected by the sensors was recorded. These AE activities were considered as background 

noises. The amplitude of the recorded signals showed the threshold level sufficient to 

eliminate noise. Figure 3 shows the threshold setting effect on noise reduction. It can be 

seen that after the mechanical dampers decreased the noise amplitudes to less than 52 [dB], 

the threshold eliminated them from being recorded in the AE database. 

A post-processing method was applied to recorded signals. This filtering method had two 

steps and used the signals recorded in both channels to differentiate valid signals (hits 
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emitted from the notch area) and all other signals (either noise or hits emitted from other 

places). The first step was load filtering. Signals received in the upper portions of the tensile 

load were related to fatigue damage [4], [8], [10], [39], [40]. In this study, only signals 

received in the top 20% of the peak load were considered to be related to fatigue damage. 

The load filter was applied to raw AE data to remove the signals recorded below the top 

20% peak load. The second step in the post-processing method was delta T filtering. In all 

tests, before applying any load, the delta T parameter was measured. Delta T was defined 

as the time it took for one AE signal to travel from one sensor to the other. This parameter 

was used to filter signals recorded from other locations rather than notch area. All the 

remaining signals in the AE dataset after post-processing were used for waveform 

information entropy analysis.  

 

Figure 2-3 - Effect of mechanical dampers and threshold setting on noise recording elimination; Channel 1 

is shown at left; Channel 2 is shown at right. The first row shows signals recorded at zero load with no 

threshold and mechanical damper. The second row shows noise amplitude reduction due to mechanical 

dampers. The third row shows the noise recorded after the threshold setting. 



22 

 

2.4. Acoustic emission waveform information entropy method 

The information entropy of the AE signal waveforms emitted from the notch area under 

loading was measured as defined by Shannon [33]. Information entropy is a measure of 

uncertainty or information content from the probabilistic distribution of a random variable, 

such as the voltage in the AE waveform signals. According to the information entropy, 

distributions with less bias toward a specific value carry more information about the 

random variable; hence, they have a higher value of information entropy. Therefore, a 

uniform distribution for a random variable has the highest information entropy, since it is 

not biased toward any value. In other words, it has the highest uncertainty. Information 

entropy is used in this study to measure uncertainty associated with the AE signal 

waveforms emitted during the fatigue tests. The information entropy defined by Shannon 

[33] is expressed as:  

𝐼 =  𝑐 ∑ 𝑃(𝑋𝑖)ln (1/𝑃(𝑋𝑖))𝑛
𝑖=1   (1) 

where 𝑋𝑖 =  {𝑥1, 𝑥2, … , 𝑥𝑛} is a random variable, 𝑃(𝑋𝑖) is the probability distribution of 

the random variable, 𝐼 is the information entropy, and 𝑐 is a constant considered to be unity 

in this study. The unit of AE information entropy used in this study is ‘nats’ since in 

Equation 1 the natural logarithm is used. The waveforms from valid signals remaining in 

the AE dataset after the post-processing method are used to calculate the information 

entropy using Equation 1. In this equation, voltage is the random variable. A histogram of 

the voltage values in each signal forms a nonparametric probability distribution of the 

random variable.  
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The choice of bin width is the most important parameter in developing a histogram, and 

selection of an appropriate bin width size is necessary to reveal the true shape of the 

underlying density of the variable. The ideal bin width should be able to reveal the essential 

structure of the data while avoiding too much detail. Histogram bin width choices are often 

related to the accuracy of the measured data. To study the optimum bin width for a 

histogram, the mean integrated squared error between the histogram and real density of the 

variable is minimized, which results in finding the optimum value for the bin width [41], 

[42]. Scott [41] proposes a simple approach to find an approximate optimum bin width, as 

expressed by Equation 2: 

𝑏𝑛 = 𝑘𝛿𝑛
−1

3⁄                          (2) 

where 𝑘 is a constant, given as 𝑘 = 3.49, 𝛿 is the standard deviation of the data, and 𝑛 is 

the number of data points. However, Equation 2 assumes that the true density function is a 

Gaussian distribution. To correct the bin widths for distributions violating this assumption, 

correction coefficients should be applied to the bin width. These coefficients are given 

based on the difference in skewness, kurtosis and bimodality of the true underlying density 

distribution. While Equation 2 gives an approximate estimate of the optimum bin width, 

Wand [42] proposes a more elaborate approach to find the optimum bin width. Bin widths 

found in the latter approach are computationally more expensive and provide only slightly 

smaller bin widths.  

A bin width analysis was performed to determine the optimum width. Valid waveforms 

from both channels in one test were used. For each waveform, after removing the Hit 

Lockout Time (HLT), which is defined in the following paragraph, the optimum bin width 
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was calculated using Equation 2. These values were then corrected with the appropriate 

correction coefficients. All valid waveforms in Channels 1 and 2 were analyzed, and the 

optimum bin width for each of them was calculated. It is important to note that since HLT 

and amplitude of signals are different, each waveform has a unique 𝛿 and 𝑛 values that 

result in a unique optimum bin width. The average optimum bin widths in Channels 1 and 

2 are 0.0041 and 0.0038, respectively. Therefore, a bin width of 0.001 was selected for the 

AE waveform information entropy analysis that satisfied the bin width analysis and was 

slightly smaller than the suggested values. Figure 4 shows a bin width analysis of a HCF 

test using three different bin widths of 0.01, 0.001 and 0.0001. These bin widths were 

selected to highlight the sensitivity of the AE waveform information entropy to the choice 

of the bin width. As expected, sensitivity analysis shows all bin widths result in similar 

information entropy trends, with the smaller bin width having the higher information 

entropy values. However, selection of the optimum bin width will result in a higher scatter, 

and corresponding range, for the information entropy values of the AE signals. Figure 4 

clearly shows this scatter, where a bin width of 0.001 results in the highest range in 

information entropy values comparing to the other two bin widths. The selection of the 

optimum bin width results in a better differentiation between AE signals that helps in 

relating them to their sources. Choice of other bin width can result in either a very rough 

histogram (in case of a too small bin width), or a very smooth histogram that might 

overlook important changes in the true underlying distribution. Both cases negatively affect 

relating AE signals to their sources. 



25 

 

 

Figure 2-4 - Bin width sensitivity analysis on AE waveform entropies of one of the HCF tests. 

Raw AE signal waveforms include the HLT, which is set in AE acquisition parameters. 

The HLT is defined as the time that should pass before the next signal is detected. During 

HLT, no signal passes the threshold, and voltage readings are zero. Therefore, HLT does 

not carry any information, and should be removed from the signal before calculating its 

information entropy. Failing to remove HLT would strongly affect the information entropy 

calculation results. Valid signals remaining in the AE dataset after filtering steps are 

selected and imported to Matlab, where the HLT is removed and the waveform information 

entropy is calculated for each signal using the bin width of 0.001. Figure 5 shows the effect 

of HLT on waveform information entropy calculation. It can be seen that failing to remove 

HLT causes the histogram to be biased toward zero and, consequently, falsely decreases 

the information entropy.  



26 

 

 

Figure 2-5 - Effect of HLT removal from signal and waveform information entropy calculation. Same signal 

before HLT removal (a) and after HLT removal (c) and its histogram in (b) and (d), respectively. It is seen 

that failing to remove HLT causes the histogram to be biased toward zero, which falsely decreases the 

calculated information entropy from 2.868 [nats] in (d) to 1.692 [nats] in (b) 

2.5. Experimental results and discussion  

An in-situ strain life analysis is performed to detect crack initiation in the AA7075-T6 

specimens using AE signal waveform information entropy. Summing the information 

entropy values from individual waveforms results in the “cumulative information entropy”. 

The cumulative information entropy can be compared to cumulative count and cumulative 

energy, which are commonly used in AE analysis. Results from both channels (sensors) 

are compared to study the spatial dependence of AE features. While the threshold is 

selected to remove features of the signals believed to be unrelated to damage, the 
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cumulative count and cumulative energy of AE signals are heavily threshold-dependent. 

However, waveform information entropy is independent of threshold setting. Figure 6 

shows the cumulative count, cumulative energy, cumulative waveform information 

entropy (6a) and waveform information entropy (6b) of the same signals recorded in each 

channel in one of the overload spectrum tests. Ideally, the features of a specific signal 

(count, energy and waveform information entropy) recorded in both channels should be the 

same, resulting in the same final cumulative values. However, it is observed that while the 

cumulative waveform information entropies measured by the two channels are similar 

throughout the test and yield similar final values, cumulative energy and cumulative count 

show increasing trends but different final values. Each point in information entropy value 

plot (Figure 6b) represents waveform information entropy of a valid signal. As expected, 

toward the end of the test (time of crack initiation), the number of signals increase. This 

results in an increase in the difference between cumulative count and cumulative energy 

recorded in Channel 1 and 2. However, such difference is much less in cumulative 

information entropy. Figure 7 shows the same result for one of the HCF tests. In HCF tests, 

due to considerably lower load amplitude, AE activity is drastically lower comparing to 

other loading spectrums. Therefore, effects of the difference in cumulative AE features is 

more pronounced. In Figure 7, cumulative energy shows higher disparity in each channel 

comparing to cumulative count and cumulative information entropy. The small number of 

signals generated in this test shows that the difference between energy values of each AE 

signal is higher comparing to count and waveform information entropy.  
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Figure 2-6 - Cumulative information entropy, cumulative count and cumulative energy (a) and information 

entropy (b) of valid signals in each channel – Overload spectrum 

Decrease in signal amplitude caused by attenuation results in a signal partially fall below 

the threshold level in one channel while recorded fully in the other channel. Waveform 

information entropy is a measure of the signal waveform shape, and therefore, as long as 

the overall shape of the waveform signal is preserved, waveform information entropy value 

would not be affected heavily by attenuation. This is not seen in the case of count and 

energy. In addition to the attenuation, noise recordings affect the shape of signals, but their 

effects are more pronounced in the cumulative energy and cumulative count compared to 

the cumulative waveform information entropy. This is seen in the final values of 

cumulative energy, cumulative counts and cumulative information entropy in all tests. This 

is because energy is calculated as the rectified area under the waveform; therefore, if one 

signal emits closer to one channel, its waveform will have a higher amplitude for that 

channel. But due to the AE attenuation, the same signal might show a lower amplitude in 



29 

 

the other channel, which results in lower energy. The same phenomenon may apply to the 

counts recorded. That is, AE attenuation might cause a decrease in the amplitudes of the 

signal, resulting in part of the waveform being filtered by the threshold. Therefore, counts 

measured in each channel for the same AE event will be different. Figure 8 show the results 

for one of the tests with programmed loading spectrum. Higher AE activity in this loading 

spectrum better demonstrate the lower difference in cumulative information entropy 

comparing to cumulative count and cumulative energy in each channel, caused by 

attenuation and threshold setting. 

 

Figure 2-7 - Cumulative information entropy, cumulative count and cumulative energy (a) and information 

entropy (b) of valid signals in each channel – HCF spectrum 

AE waveform recorded for a signal includes all the sounds emitted from the specimen at 

the time of recording. These sounds can be attributed to different sources and locations 

within the notch. When the sounds are combined, the waveform generated can result in a 

widely spread shape (resulting in high information entropy), or can be concentrated around 
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a specific value (leading to low information entropy). Immediately prior to the crack 

initiation cycle, most of the sounds are generated by crack nucleation; therefore, the 

waveforms are generated from a single source and consequently lead to a low value of 

information entropy. Figures 6-8 b, show examples of the waveform information entropy 

of valid AE signals up to test termination. It is evident from the waveform information 

entropy results that the minimum value of the information entropy in both channels shortly 

precedes crack initiation. Since the crack initiation (subjectively assumed as a 0.25 mm 

crack length) occurs after the time of the minimum information entropy observance, it can 

be surmised that the concentrated AE waveform generated is due to the initial crack 

generation in the matrix (crack nucleation). Crack generation starts with incubation, in 

which iron-bearing particles within the material crack first; then these microcracks nucleate 

and transfer to the matrix [43]. It is observed that the cumulative AE waveform information 

entropies show a sudden increase around the crack initiation cycle (Figure 6-8 a). This can 

be attributed to the increased number of AE signals emitted when the macroscale crack 

nucleates from the microcracked inclusions. Same trend is seen in all tests, regardless of 

number of cycles to crack initiation or number of AE signals. Figure 9 shows similar results 

for variable amplitude loading spectrum. This loading condition resembles a closer 

spectrum to in-service loading spectrum. Comparing to previous loading spectrums, it is 

more complex and generates considerably higher AE activity.  
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Figure 2-8 - Cumulative information entropy, cumulative count and cumulative energy (a) and information 

entropy (b) of valid signals in each channel – Programmed loading spectrum 

In Figure 9 there is one exception in Channel 2 where the minimum waveform information 

entropy happened at around 75% of the fatigue life, comparatively earlier than other cases. 

The minimum value of waveform information entropy in this case is not associated with 

sudden increases in cumulative information entropy, and thus, not crack nucleation. Closer 

examination of the waveform information entropy value of this case revealed that its 

information entropy value were within 1% of the second minimum waveform information 

entropy value in the channel. In fact, it was the second minimum waveform information 

entropy value of the signals in this case that was associated with a sudden increase in the 

cumulative information entropy and subsequent crack initiation. Given that the waveform 

information entropy values for this case is only 1% less than the second minimum 

waveform information entropy value, it is reasonable to assume that noise recording in the 

waveform of this case resulted in voltages concentrating around specific values, resulting 
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in decreased information entropy. A possible source for the noise in the waveform is the 

vibration of actuators during dynamic loading. The noise that is present has a low 

amplitude, and its effects is mostly seen in low amplitude signals. 

 

Figure 2-9 - Cumulative information entropy, cumulative count and cumulative energy (a) and information 

entropy (b) of valid signals in each channel – variable amplitude spectrum 

The assumption that all signals with minimum waveform information entropy are emitted 

due to the crack nucleation is further studied by observing the range of amplitude (i.e., 

associated voltage) for these signals. It is assumed that all these minimum waveform 

information entropy signals are mainly affected by the same crack nucleation sources; 

therefore, they should result in the same range of amplitudes regardless of loading 

spectrum. To examine this assumption, the amplitudes of signals with minimum 

information entropy in all tests are compared. As an example, Figure 10 shows the 

minimum information entropy signal recorded in one of the programmed loading tests. The 

same range of amplitude is expected for all signals with minimum information entropy 
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values. To demonstrate the differences in amplitudes of minimum information entropy 

signals with other signals, the amplitude range of two other types of signals in each test is 

examined: a signal for which Channel 2 shows higher information entropy, and a signal for 

which the information entropy value of both channels is almost the same. It should be noted 

that waveform information entropies of Channel 2 are mostly lower than the waveform 

information entropies of Channel 1 in each test (as shown in Figure 6-9). In both scenarios, 

the same signal recorded in each channel is depicted, and the amplitude for the signal is 

found. The average and standard deviation of amplitude range for each of the signal types 

is calculated, and the results show that for the signals with minimum information entropy, 

average amplitude is 54 dB with standard deviation of 2 dB, while other signal types have 

an average amplitude of 68 dB with standard deviation of 8 dB and 67 dB with standard 

deviation of 12 dB, respectively. It is seen that the amplitude range in the minimum 

information entropy signals is very small, while the other signals examined are associated 

with big differences in their amplitude ranges. This reinforces the assumption that the 

minimum information entropy signals in all tests come from the same source (i.e., crack 

nucleation). 

It is important to note that in some tests, the minimum value of the information entropy did 

not happen at the same cycle in both channels. However, differences in the cycle numbers 

were in the range of 1% of the fatigue life until crack initiation. The difference is due to 

the noise inherent to the AE signals. As explained previously, the voltage range of these 

signals is very short; therefore, small amounts of noise can make a difference and result in 

a change in the timing of the minimum waveform information entropy. Figures 6-9 b show 

that after crack initiation, more signals are associated with information entropy values of 
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the absolute minimum before crack initiation. This is expected since crack growth can be 

viewed as a series of crack nucleation. The further decrease in information entropy after 

crack initiation compared to the absolute minimum preceding it (in some cases) is very 

small and due to further concentration of emission generation source (i.e., crack 

nucleation). 

 

Figure 2-10 - Minimum information entropy signal, its amplitude, and histogram in Channel 1 (left) and 

Channel 2 (right). Amplitude and information entropy in Channels 1 and 2 are 53 [dB], 2.797 [nats], and 52 

[dB] and 2.474 [nats], respectively.  

The crack nucleation and initiation point cannot be readily distinguished by the other 

features of the AE signal, but due to the inherent properties of the signal, information 

entropy is capable of detecting them. The unique properties of the information entropy can 

reveal details of the crack nucleation and initiation. At crack nucleation, most of the sound 
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emitted from the notch area is due to nucleation, and therefore its waveform has low 

information entropy in both channels. The voltage range of the signal as well as the 

minimum information entropy value will fall within a short interval and is consistent in all 

tests with small changes related to other parameters, such as maximum load. After this 

point, a jump in cumulative information entropy is seen in both channels, indicating crack 

initiation. Figure 11 shows the minimum waveform information entropy value prior to 

crack initiation in both channels and its dependence on maximum load. It is evident from 

the plots in this figure that the linear dependence of minimum waveform information 

entropy value on maximum load in both channels has a mild increasing slope of 0.15 

[nats/kN] of maximum load. Mean, standard deviation and coefficient of variation (CoV) 

for the minimum waveform information entropies of tests in each channel are reported in 

Table 1. It can be observed that the final values of the minimum information entropy in all 

tests fall within an interval of 2.0 to 3.0 [nats], where the mean value for channel 1 was 

2.748 [nats] and the mean value for channel 2 was 2.375 [nats]. 

 

Figure 2-11 – Variation of the minimum waveform information entropy with maximum load for each sensor 

from each of the loading conditions. A linear fit to the data indicates an increase of 0.15 [nats/kN] of 

maximum load with a shift of approximately 0.35 [nats] between sensors. 
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Table 2-1 - Mean, STD and CoV of minimum waveform information entropies 

 Mean SD CoV 

Channel 1 2.748 0.257 9.34% 

Channel 2 2.375 0.232 9.76% 

2.6. Conclusions 

A new method for detecting precursors to fatigue crack initiation using AE signals has been 

presented for in-situ fatigue life analysis in aluminum alloy structures. This method 

consists of taking the AE signal and processing it by removing hit lockout time and using 

an optimal bin width to calculate the waveform information (Shannon) entropy. 

Measurements of the information entropy associated with AE waveform signals were 

obtained from two independent AE sensors to enhance the filtering of the signals and to 

validate the calculated waveform information entropy. Compared to the conventional 

threshold-dependent AE features such as count and energy, waveform information entropy 

provides an earlier, more consistent, more reliable and threshold-independent detection of 

fatigue crack initiation in structural health monitoring.  

The following conclusions were drawn from the AE waveform information entropies: 

• The choice of bin width is an important step in developing histogram for a signal 

and consequently measuring its information entropy. Selection of the optimum bin 

width improves measurement and differentiation in signals information entropy 

values that yields in the detection of crack initiation. 

• Information entropies of the AE waveform signal coming from the notch area 

reached minimum values preceding the formation of a macrocrack. Since most of 

the AEs are generated from nucleation of microcracks, the signals were centered 
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around specific values that were sharp and narrowly dispersed as the microcracks 

coalesce, thereby minimizing the information entropy. This contrasts with the time 

prior to crack nucleation, where AE signals are generated from multiple locations 

and sources at the notch, such as inclusions, leading to waveforms with wider 

spreads corresponding to higher waveform information entropies.  

• Cumulative information entropy exhibits very little dependence on the spatial 

location of the measurement, unlike the cumulative count and cumulative energy, 

both of which showed significant variation. This is consistent with a previous 

observation that the normalized cumulative information entropy is a better 

representative of damage evolution [26]. 

• Cumulative information entropy also exhibited a sudden increase preceding 

propagation of the macrocrack. This property, when combined with the observation 

of minimum AE waveform information entropy values at macrocrack formation, 

provides a very reliable indicator of fatigue crack initiation. 

• Study of the amplitudes of signals associated with minimum information entropy 

values showed they are independent of the loading condition, with all values falling 

within an interval of 2.0 to 3.0 [nats]. However, the minimum information entropy 

values themselves were found to increase slightly with the maximum load at a rate 

of 0.15 [nats/kN] of maximum load. There was also a slight shift of 0.35 [nats] 

between the two sensors. 
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 Fatigue crack measurement based on information 

entropy of acoustic emission signals1 

3.1. Abstract 

Fatigue crack detection and measurement play an essential role in the remaining useful life 

(RUL) estimation of sensitive structures. The current use of non-destructive testing (NDT) 

methods is usually limited to the out-of-service inspections and measurements. The ability 

to detect structural changes resulting from redistribution of the stress within components 

while in-service, makes acoustic emission (AE) a desirable NDT method for structural 

health monitoring (SHM). However, current approaches in AE signal analysis are usually 

based on some threshold-dependent features such as count and energy of the signals, which 

limit their utility. This research examines the potential of using a threshold-independent 

measure of AE signals based on the information content of the signals. The histogram of 

AE signals is studied to measure the Shannon information entropy. Cumulative information 

entropy of signals from two independent sensors placed in close vicinity of a crack is 

compared to two conventional threshold-dependent AE features. It is found that compared 

to cumulative energy and cumulative count, cumulative AE information entropy is less 

spatially dependent. The cumulative information entropy is shown to correlate well with 

crack length. This method provides a novel approach to measure the crack length in 

general, as shown specifically for aluminum alloy 7075-T6 material, using AE as a well-

known NDT technique. 

                                                 
1 The full-text of this chapter has been published in the Proceedings of ASNT Annual Conference, 

November 10-12 2020, Virtual. https://bit.ly/3elm4kH 

https://bit.ly/3elm4kH
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3.2. Introduction 

Machining induced damage in manufacturing processes, as well as imperfections in 

materials (such as voids), can cause fatigue crack growth (FCG) as early as during the first 

few cycles of the service life [1]. This is especially true when the stress level approaches 

the strength limit, typically at “hot spot” locations within airframes. The FGC rate will 

depend on various parameters, such as the specimen geometry and the loading conditions. 

In the case of variable amplitude loading, the FGC rate will be affected by 

phenomenological behaviors, such as crack-closure [2]. Other factors influencing the FCG 

rate, including the crack growth retardation due to crack-closure, and the comparison of 

the behavior in constant and variable amplitude loads are extensively studied by Newmans 

et. al. [3] and Lee et al. [4]. Iyyer et al. [5] demonstrated an example of an aircraft fatigue 

life management using crack initiation and crack growth models for the P-3C aircraft. 

However, despite over 170 years of research in metal fatigue cracking, there are still 

shortcoming in detection and measurement of fatigue cracks that result in unexpected 

development of fatigue cracks and part failure before the expected fatigue life [6]. The 

standard procedure of periodic maintenance of airframe structures is an expensive, labor-

intensive and slow process which requires grounding and downtime for aircraft that results 

in a considerable increase (by as much as 50%) in the operational costs. As a result, the 

aerospace industry is moving toward relying on structural health monitoring (SHM) 

techniques to detect defects and damages in real-time, thereby reducing the need for routine 

maintenance and increases the integrity of the airframes [7].  

Acoustic emission (AE) is one of the most well-known non-destructive testing (NDT) 

techniques used for SHM. This technique requires small AE sensors to be mounted on the 
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surface of components, and infers the material degradation process by passively monitoring 

the acoustic energy released due to the redistribution of stress in a material during FCG. 

Specific features extracted from the AE signals, such as the signal energy, amplitude, 

count, and duration are combined to study the material response behavior. Early studies on 

the FCG were focused on the sources of AE signals [8], while more recent papers focused 

on the relation between the AE signal features’ and FCG rate. Rabiei and Modarres, for 

example, proposed a model to measure damage severity based on the AE count rate and 

estimated the crack size distribution [9]. Furthermore, they proposed a framework to 

recursively update the parameters of their model based on new crack size or crack growth 

rate observations in aluminum alloy 7076-T6 specimens, using a Bayesian framework [10]. 

Keshtgar et. al. [11] showed that the Rabiei-Modarres model holds in case of FCG in 

titanium alloys as well. Although these studies are promising, the use of conventional AE 

features suffers from the subjective selection of a threshold in the measurement of the 

features. Therefore, a new measure of AE signal, (Shannon) information entropy, has 

recently been studied that removes such a dependence. Information entropy is a more 

integral measure of damage, removing the reliance on the threshold and signal features, 

such as energy and count rate, by using the signal distribution characteristics. Sauerbrunn 

et. al. [12] have shown that AE information entropy better correlates with fatigue life in 

comparison to the energy or count. Chai et al. [13] have correlated the cumulative 

information entropy AE signals with fatigue crack length on stainless steel. They showed 

the correlation follows a two-stage behavior. Although many publications are available 

covering various aspects of AE, the number of publications reporting actual applications 

of the AE is limited [14]. In previous work, authors of this paper have shown the AE 
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information entropy can be used to readily detect fatigue crack initiation in aluminum alloy 

specimen regardless of the loading condition [15].  

In this paper, we investigate the calculation of information entropy of AE signals emitted 

during multiple FCG tests on a 7076-T6 aluminum alloy (AA7075-T6). Two independent 

sensors record the signals and we show that the information entropy is less spatially 

dependent in comparison to energy and count. The values of information entropy of the 

AE signals are calculated, and then compared to the values of the AE signals that have been 

correlated with crack initiation, as previously reported in reference [15]. A model 

correlating information entropy to crack length is then developed, and parameters of the 

model are found using a maximum likelihood estimation (MLE) approach. 

3.3. Experimental setup and procedure 

3.3.1. Specimen geometry and setup 

A total number of 9 compact tension (CT) specimens made of AA7075-T6 were used in 

this study. The geometry of specimens, its dimensions, and AE sensor placements are 

shown in Figure 1. Samples were pre-cracked at the V-notch before a loading spectrum 

was applied. The pre-crack was created by applying a relatively higher load compared to 

the test loading spectrum, following the ASTM E647 standard.  



46 

 

 

Figure 3-1 - Specimen geometry and dimension 

A servo-hydraulic material testing system machine retrofitted with an Instron 8800 

controller was used to perform the fatigue tests. Two pin-joint grips were used to hold 

specimens in the loading cell. Figure 2 shows the specimen setup. An 8 [MP] Point Grey 

Flea3 sensor with 3.8–13 [mm] Fujinon lens was used to record images in pre-determined 

intervals for crack length measurements.  

 

Figure 3-2 - Specimen setup. 
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3.3.2. Loading condition 

Two different loading spectrums, constant load (CL) and variable load (VL), were applied 

on specimens, as shown in Figure 3. Three stress ratios of 0.1, 0.3 and 0.5 were used in the 

CL spectrum. In the CL spectrum, maximum load was selected such that the initial stress 

intensity factor yielded to ∆𝐾𝑖𝑛𝑖𝑡 = 7 [𝑀𝑃𝑎. 𝑚
1

2⁄ ] for stress ratio of 𝑅 = 0.1 and 𝑅 = 0.3, 

and ∆𝐾𝑖𝑛𝑖𝑡 = 5 [𝑀𝑃𝑎. 𝑚
1

2⁄ ] for 𝑅 = 0.5. The VL spectrum was defined as a block of 

loading with 5000 cycles, with 1000 cycles of 0.667 [kN] maximum load followed by 1000 

cycles of 1.334 [kN] maximum load, 1000 cycles of 2 [kN] maximum load, 1000 cycles of 

2.668 [kN] maximum load, and 1000 cycles of 3.336 [kN] maximum load. Stress ratio in 

VL spectrum was kept constant as 𝑅 = 0.1. 

 

Figure 3-3 - Loading spectrums; constant load - R=0.1 (left), and variable load (right) 

 3.3.3. Acoustic emission measurement 

Two Physical Acoustics PCI-2 based resonant Micro-30s AE sensors (MISTRAS Group, 

Princeton Junction, NJ) with a frequency range of 150–400 [kHz] and a resonant frequency 

of 225 [kHz] were used to record the AE signals. An ultrasonic gel coupling agent was 
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used to improve sensor attachment and the AE signal recording. Sensors were placed 

symmetrically 20 [mm] away from the specimen edges (as shown by Channel 1 and 

Channel 2 in Fig. 1). The parameters used in the AE recording—pre-trigger length, peak 

definition time, hit definition time and hit lockout time—were set to 256 [μs], 300 [μs], 

600 [μs] and 1000 [μs], respectively. For each signal, hit length was set to 10,960 points 

and sampling rate to 5 mega samples per second (MSPS). Signals were passed through a 

40 [dB] pre-amplifier before reaching the data acquisition module. The Physical Acoustics 

AEwin software (Physical Acoustic Corporation, Version E5.60, MISTRAS Group, 

Princeton Junction, NJ, 2007) was used to record the AE signals. Prior to performing the 

tests, specimens were placed in the testing rig and the AE signals were recorded while no 

loads were applied. This process resulted in the selection of a 40 [dB] threshold to remove 

background noises due to the testing system. Two clamps were used to attach the AE 

sensors to the specimens. As shown in Figure 2, vinyl electric tape was used to fix the 

clamp’s screw handles in place to prevent noise generation.  

3.4. AE signal analysis 

The AE dataset recorded for each test was examined to only keep the signals emitted due 

to FCG. In FCG tests, it is known that the friction of the crack surfaces generates a high 

number of signals. These signals are known to happen in lower portions of the applied load 

[11]. Therefore, to eliminate them, a load filter was applied to the recorded signals that 

only kept the signals recorded within the top 20% of the maximum applied load. The 

second filter used to remove unwanted signals was the Delta-T filter. Delta-T is the time it 

takes for one signal to travel from one sensor to the other. Since the crack growth is not 

directly in the middle of two sensors, a Pythagoras relation was used to calculate a modified 
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Delta-T value. The modified Delta-T value was then used to detect valid signals within the 

collected AE dataset. A Matlab code was developed to apply load and Delta-T filtering 

steps. Only the signals left in the AE dataset after these two filtering actions are used for 

the remainder of the analysis. 

The conventional AE signal analysis uses selective features extracted from signals. Some 

common features of signals used for analysis are amplitude, rise time, duration, count and 

energy. However, all these features depend on the subjective value of the threshold. A 

threshold is set to remove the assumed unrelated portions of the signal. In contrast, 

information entropy analysis of the AE signals does not depend on any threshold setting. 

Figure 4 shows a sample AE signal, the conventional threshold-dependent analysis and the 

threshold-independent analysis of the signal. Figure 4-b shows how the conventional 

analysis depends on the subjective level of threshold. On the contrary, the information 

entropy analysis uses all of the values of the AE signals that are recorded. As seen in Figure 

4-c, in order to measure the information entropy of AE signals, all of the unique voltage 

values recorded first need to be extracted. Then, a histogram with appropriate bin width is 

used to describe the underlying shape of the signal. The histogram describes the probability 

distribution of voltage values in the signal. The choice of bin width to generate the 

histogram depends on the accuracy of the collected data. Following the bin width analysis 

discussed in [15], an optimum bin width of 0.001 was selected for this study. The 

probability of occurrence of each bin in histogram is then used with the Shannon 

information entropy equation [16] (Eq. 1) to measure the information content of the signal:  

𝐼 =  𝑐 ∑ 𝑃(𝑉𝑖)ln (1/𝑃(𝑉𝑖))𝑛
𝑖=1  (1) 
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where, 𝑉𝑖 =  {𝑣1, 𝑣2, … , 𝑣𝑛} is AE signal voltage (considered a random variable), 𝑃(𝑉𝑖) is 

the probability distribution of the voltage values, 𝐼 is the signal’s information entropy, and 

𝑐 is a constant considered to be unity in this study. The unit of AE information entropy 

used in this study is ‘nats’ since in Eq. (1) the natural logarithm is used. The waveforms of 

the signals in the AE dataset are used to calculate the information entropy using Eq. (1). 

The voltage values in the waveforms of each signal, forms the histogram as a 

nonparametric probability distribution. Information entropy is a measure of uncertainty or 

information content from the probabilistic distribution of a random variable. According to 

the information entropy, distributions with less bias toward a specific value carry more 

information about the random variable; hence, they have a higher value of information 

entropy. Information entropy is used in this study to measure uncertainty as expressed by 

the histogram representing the AE signal waveforms emitted during the FCG tests. 

 

Figure 3-4 - Comparison of threshold dependent and threshold independent AE signal analysis 
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3.5. Results and discussions 

The spatial dependence of the conventional AE signal features (i.e., energy and count), are 

compared to the information entropy of the same AE signals. Figure 5 shows the 

cumulative values of information entropy, count and energy of AE signals in one of the 

FCG tests. In this figure, the same signals recorded in both sensors (Channel 1 and Channel 

2) are used to extract the features and measure the information entropy. Ideally, one signal 

should have the same values for all its descriptors in both channels (in our case of closely 

placed sensors). Therefore, it is expected that the cumulative figure of each descriptor 

(energy, count or information entropy) show the same values as a function of cycle (time) 

in both channels. However, as it is shown in Figure 5-b and 5-c, the cumulative count and 

cumulative energy of the same signals recorded in the two channels diverge as a function 

of the cycle number. This behavior is not seen in the case of information entropy values, 

as shown in Figure 5-a. This shows that information entropy is less spatially dependent 

compared to the threshold-dependent features. This behavior is described with regard to 

the information entropy being a more integral measure of the signal characteristics and less 

sensitive to the acoustic attenuations compared to the threshold-dependent descriptors 

[12][15]. 

Figure 6 shows the information entropy values of individual signals recorded in each 

channel during the FCG test shown in Figure 5. There are two important observations in 

this figure: 1- all the signals recorded in both channels approximately have the same values 

of information entropy during the entire test, and 2- except for the very end of the test, all 

of the information entropy values are within a short interval around 2.5 [nats]. This 

behavior is associated with the signals’ emission source. It is expected that all the signals 



52 

 

kept in the AE dataset are emitted due to the FCG. Consequently, since all signals are 

emitted due to the same mechanism, their information entropy values would fall within a 

similar interval. 

 

Figure 3-5 - Descriptors of same signals recorded in two sensors: information entropy (a), count (b) and 

energy (c). 

FCG tests are associated with crack length increase, and, therefore, the constant generation 

of new crack faces. This behavior can also be defined as a repeated crack initiation 

mechanism, which results in the crack growth. Therefore, AE signals are expected to be 

emitted as a result of new crack initiations. A previous study of the crack initiation on the 

same material by the authors [15] has concluded that the minimum value of AE information 

entropy in a fatigue test, regardless of the loading condition, precedes macro-crack 

initiation (i.e., 0.25 [mm] crack) and is correlated with crack nucleation. The mean and 

coefficient of variation for the minimum entropy values are reported as 2.56 [nats] and 

13.5% [15], respectively. Similar values are observed in information entropy values of 

FCG tests, as shown in Figure 6. 

To further study the trends in information entropy values, the moving average of the 

descriptor as a function of cycles and crack length is calculated. Figure 7 shows the results 

for one of the tests. The moving average is calculated by dividing the cumulative 

information entropy to the number of AE signals at each instant. It is seen that the moving 
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average fluctuates in the beginning, but quickly converges to ~2.5 [nats], as the crack 

length reaches ~4 [mm]. A similar trend with similar values of convergence is seen in all 

tests, regardless of the loading condition. The convergence value for information entropy 

of signals in all tests is measured as 2.47 [nats] with 6% coefficient of variation. This value 

is within the interval of the information entropy value observed before crack initiation in 

[15], and further suggests that the information entropy value preceding crack initiation (i.e. 

crack nucleation) in AA7075-T6 falls in the defined interval. 

 

Figure 3-6 - Information entropy of individuals signals in each channel 

 

Figure 3-7 - Moving average of information entropy values as a function of cycle (a) and crack length (b). 

The similarity in properties of individual information entropy values observed in all FCG 

tests, regardless of the loading conditions, suggests a strong relationship between the 
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cumulative values of information entropy and the crack length. However, the relation is 

not expected to be independent of the loading condition, due to the physics of crack growth 

response to overload cycles [17]. The overload cycles in VL loading condition result in a 

residual compressive stress field [18] that will eventually decrease the FCG rate [19]. 

Extensive experimental work on the subject is reported in Newman et al. [3] on the same 

material. Therefore, it is expected to observe a slower FCG rate in VL loading condition 

compared to CL. Figure 8 shows the cumulative information entropy versus crack length 

for the tests in both loading conditions. It can be seen in this figure that a 10 [mm] crack 

length is reached when the cumulative information entropy reaches ~6500 [nats] (Fig. 8–

a) in case of CL spectrum and ~31622 [nats] in case of VL spectrum. The difference is due 

to the lower FCG rate in VL to reach to same crack length and higher AE activity. It should 

also be reminded that in the case of CL spectrum, there are three different stress ratios used. 

Therefore, it is expected to observe higher variability between tests in CL loading 

conditions as compared to the VL spectrum in which the same spectrum is used in all tests.  

 

Figure 3-8 - Cumulative information entropy (log10) versus crack length for CL (a) and VL (b) spectrum. 

The relationship between crack length and an AE signal descriptor, such as count rate [11], 

is usually described in the form of the Paris-Erdogan (power-law) equation. These 
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equations usually determine the FCG rate, given a specific descriptor of AE signals. 

Parameters of the equation are then determined by fitting the equation to experimental data. 

In this study, a power-law relationship is found to best fit the data in Figure 8, and is 

described as: 

𝑎 = 𝑐0(log10 𝐶𝐸)𝑐1  (2) 

in which 𝑎 [𝑚𝑚] is crack length from the beginning of the FCG test, 𝐶𝐸 [nats] is the 

cumulative AE waveform entropy and 𝑐1 and 𝑐0 are the parameters of the equation. This 

equation correlates the crack length from an initial state (pre-crack length) to the calculated 

cumulative entropy. In order to find the parameters of Eq. (2) that best fits the trend, with 

respect to the loading spectrum, the following steps are taken:  

• Parameters of Eq. (2) are first found for each individual test by minimizing the root 

mean square error (RMSE) using Nelder-Mead minimization method. 

• The parameters are used to construct a continues cumulative entropy vs. crack 

length curve for each test. 

• Information entropy value at multiple specific crack lengths are sampled. 

• Using the samples, a maximum likelihood estimation (MLE) approach is used to 

fit a Weibull distribution over cumulative entropy values at specific crack lengths. 

• The Weibull distributions are sampled at 5%, 63% and 95% and fit to Eq. (2) to 

determine the parameter values for each curve.  

The results that were obtained after applying these steps, shown in Figure 9, indicate Eq. 

(2) fits well with the experimental data.  
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Figure 3-9 - Mean and confidence interval fits of Eq. 2 on experimental data with CL (a) and VL (b) spectrum. 

3.6. Conclusions 

This study provides a new method for crack length measurement based on a threshold-

independent AE signal descriptor (i.e., information entropy). A series of FCG tests are 

performed on AA7075-T6 using constant and variable loading spectrum, and AE signals 

are recorded. Two threshold-dependent descriptors of AE signals (count and energy), and 

one threshold-independent descriptor of AE signals (information entropy), were extracted 

and compared. It is shown that information entropy is a better descriptor of the information 

content in the AE signals with less spatial dependence. Information entropy values of the 

generated AE signals in FCG tests are found to be similar to the information entropy values 

of AE signals related to crack initiation, which were previously reported by authors in [15]. 

The observation of the similarity in information entropy values when crack initiation 

occurs suggests this might be a material-dependent property. However, more experiments 

and analyses would be necessary to fully validate this assertion. Crack length as a function 

of cumulative information entropy values is found to follow a power-law equation. 

Parameters of the equation are found using an MLE approach, for cases involving either 

constant or variable loading spectrum.  
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 Thermodynamic entropy to detect fatigue crack initiation 

using digital image correlation, and effect of overload spectrums1 

4.1. Abstract 

Current approaches to fatigue life prediction are mostly based on classical fracture 

mechanics and it is difficult to predict lifetime under different loading conditions, 

particularly under overload spectrums. A thermodynamic entropy-based approach is less 

sensitive to variability in loading conditions and provides a dependable measure of damage. 

Volumetric thermodynamic entropy is utilized in this study to measure damage. Digital 

Image Correlation-DIC is used to measure plastic deformation in close vicinity of the notch 

in AA7075-T6 specimens. The plastic deformations are converted to a corresponding 

thermodynamic entropy, using a modified Clausius-Duhem inequality. A comparison of 

thermodynamic entropy generation using global measurement consisting of load frame 

data and Linear Variable Differential Transformer-LVDT extensometer, and local 

measurement using DIC data is done. The entropic-endurance level for fatigue crack 

initiation regardless of loading spectrums is shown to scatter within a short interval and is 

represented by a Weibull distribution. 

4.2. Introduction 

Fatigue is a major cause of failure in structural components [1]. Fatigue life of metallic 

components, in general, is divided into two phases: crack initiation and crack propagation. 

Depending on the material, nearly 50% to 90% of fatigue life is spent up to the time of 

                                                 
1 The full-text of this chapter has been published in the International Journal of Fatigue, Volume 

129, December 2019. https://doi.org/10.1016/j.ijfatigue.2019.105256 

https://doi.org/10.1016/j.ijfatigue.2019.105256
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crack initiation [2]. The fatigue-induced changes in component materials, generally 

referred to as “damage”, occur at microscale as early as the first fatigue cycle [3] and 

accumulate during operational life of components. A review of microstructural damage 

assessment and modeling in metals in crack initiation is given by Sangid [4]. In 

thermodynamics, fatigue damage is seen as an irreversible process that dissipates energy 

and thus generates entropy. This irreversible process and entropy generation can be 

measured according to the thermal, strain and acoustic energies dissipated, while the 

system undergoes fatigue. In a thermodynamics context, failure occurs when the entropy 

reaches an entropic-endurance level, which is independent of the path to failure [5].  

Thermodynamic entropy, as a measure of irreversibility in processes, is used as a promising 

damage index of fatigue [5]. Manufacturing components from raw materials reduces 

entropy. Entropy generation during fatigue results from the degradation of components 

tending to return to their natural state before they were manufactured [6]. Entropy 

generation in thermodynamics is explained by the second law of thermodynamics through 

the Clausius-Duhem inequality, which states that entropy production within a system must 

be non-negative. Thermodynamic entropy, as a measure for fatigue damage, is formulated 

based on continuum damage mechanics [7]. It is shown that widely used empirical 

equations to assess degradation in metals, such as Coffin-Manson equation, can be 

deducted from the 2nd law of thermodynamics [8]. A review of thermodynamic entropy 

studies of fatigue and wear damage mechanism assessment is given by Amiri and Modarres 

[9]. Dissipated energy from material in course of fatigue loading is expressed by different 

terms such as plastic deformation, thermal dissipation, internal damage energy and acoustic 

dissipation [10]. Thermodynamic entropy generation of each term is then measured 
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regarding energy dissipation of the term. However, the share of each terms is different, 

specifically in case of metallic and composite materials. For instance, while in metals 

entropy generation due to plastic deformation is dominant and entropy generation due to 

internal damage is often negligible [7], in polymer matrix composites, it accounts for 30-

50% of plastic deformation entropy [11]. Degradation processes, in general, include 

different damage mechanisms with multiple rates, types, features and sequences. All of the 

damage mechanisms result in increase in entropy and failure occurs when the entropy 

reaches a critical level. Volumetric entropy generation in aluminum alloy and stainless 

steel subjected to bending, torsional and tension-compression fatigue tests reported in [12] 

show that regardless of geometry, load and frequency, cumulative entropy generation in 

each material converged to specific amount, named fatigue fracture entropy (FFE) with 

values of 4
𝑀𝐽

𝑚3𝐾
 for Al 6061-T6 and 60

𝑀𝐽

𝑚3𝐾
 for SS 304. However, in this study, global 

strain measurements are used to calculated hysteresis energy and consequently 

thermodynamic entropy generation. Full-field deformation measurement techniques, like 

Digital Image Correlation, provide us with the opportunity to directly quantify changes in 

the deformation field related to the irreversible mechanical processes locally, at much 

smaller length scales. 

Digital image correlation (DIC) is a widely accepted and commonly used non-destructive 

technique (NDT) to measure full-field displacement and strain map on object surfaces in 

the field of experimental mechanics [13]. This technique, pioneered by Chu et. al. [14], 

generates displacement and strain maps by following changes of a random pattern applied 

on the surface, known as speckle pattern, before and after applying load. Bruck et. al. [15] 

introduced a faster approach for image correlation that leads to more practical use of DIC. 
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Comparing to interferometric optical techniques, DIC enjoys advantages of simple 

experimental setup and specimen preparation, low requirements in measurement 

environment and wide range of measurement sensitivity and resolution [16]. Furthermore, 

compared to strain gauges and extensometers, DIC provides a full-field measurement and 

does not suffer surface slipping. These advantages have made this technique to be widely 

used on composite and metallic materials [16]–[25]. For Metals, specifically in aluminum 

alloys, analysis of scanning electron microscope (SEM) images taken from aluminum 

7075-T6 subjected to fatigue loading have revealed that constituent hard particles (iron-

bearing phases) fracture relatively soon in the material and short crack growth (propagation 

in matrix away from the particle) follows these fractures after a noticeable delay [21]. 

Similar conclusion is made by Winser and Kontos [25] by analyzing strain maps around 

constituent particles in aluminum 2024-T3 under monotonic loading and reporting strain 

localization around the fractured particles to be nearly 4-5 times higher than within the 

fractured particle. The ability to extract strain maps with various spatial sizes makes DIC 

a desirable technique to evaluate plastic deformation at high stress concentrated areas.  

Entropy generation due to plastic deformation during fatigue is a fundamental irreversible 

thermodynamic process [12]. Previous studies used global strain measurements to quantify 

hysteresis energy and use it as plastic deformation energy to find entropy generation. 

However, not all the hysteresis energy causes damage in materials. Part of it transforms to 

thermal energy resulting in temperature rise and dissipated through heat (convection and 

radiation) to the environment. This part should be neglected when measuring entropy 

generation due to plastic deformation, since it has no influence on the degradation of the 

material [7]. In fact, it is shown by Wong and Kirby [26] that most of the hysteresis energy, 
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specially until crack initiation, is dissipated through heat. Therefore, in this paper, DIC is 

used to solely measure plastic deformation and its corresponding entropy generation on 

aluminum alloy until fatigue crack initiation. A modified version of the Clasius-Duhem 

entropy equation is introduced to convert plastic deformation measurements to 

thermodynamic entropy. This method is applied to AA7075-T6 notched dog-bone 

specimens, fatigued under different loading conditions. Effect of overload is also studied. 

It is expected that an entropic endurance level can be found that results in crack initiation 

in the material, regardless of loading conditions.  

4.3. Methods 

4.3.1. Thermodynamic entropy 

Thermodynamic entropy generation equation in fatigue testing is derived from continuum 

damage mechanics using the first and the second law of thermodynamics. A detailed 

derivation can be found in [7]. The second law of thermodynamics is described by the 

Clausius-Duhem inequality as  

�̇� = 
1

𝑇
(𝜎: 휀�̇� − 𝐴𝑘�̇�𝑘 −

1

𝑇
�̇�  ∙  ∇𝑇) ≥ 0  (1) 

where �̇� is the entropy generation rate, 𝑇 is the absolute temperature, 𝜎 is the stress tensor, 

휀�̇� is the plastic strain tensor, �̇�𝑘 is the change rate of any internal variable, 𝐴𝑘 is the 

thermodynamic forces associated with the internal variable, �̇� is the thermal flux and ∇𝑇 is 

the temperature gradient. Entropy generation defined by Equation 1 consists of three parts: 

entropy generation due to plastic deformation (
𝜎:�̇�𝑝

𝑇
), entropy generation due to evolution 

of internal variables (
𝐴𝑘�̇�𝑘

𝑇
) and entropy generation due to heat conduction (

1

𝑇2 �̇�  ∙  ∇𝑇). In 
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case of metals, entropy generation due to internal variables only accounts for 5-10% of the 

entropy generation due to plastic deformation and is often negligible [7], [12]. Furthermore, 

heat conduction is also assumed to be negligibly small [8]. Therefore, only thermodynamic 

entropy generation due to plastic deformation is measured and used in this study. 

Local plastic strain measurement using DIC enables us to directly measure thermodynamic 

entropy generation due to plastic deformation. The plastic strain energy is estimated by 

using the yield strength of the material multiplied by the plastic strain of the area under 

study. Thus, the thermodynamic entropy generation due to uniaxial loading using DIC 

generated strains can be expressed as: 

S = ∑ 𝜎𝑦 휀𝑖𝐴𝑝𝑖𝑥
𝑑

𝑇

𝑁
𝑖=1    (2) 

where, N is the number of pixels at area of interest (AOI), 𝜎𝑦 is the yield strength of the 

material, 𝐴𝑝𝑖𝑥  is the area corresponding to a single pixel, 휀𝑖 is the plastic strain at the ith 

pixel, 𝑑 is the thickness of the coupon, and 𝑇 is the absolute temperature (in Kelvin). 

Equation 2 can be further simplified to: 

𝑆 = 𝜎𝑦  
𝑑

𝑇
∑ 𝐴𝑖휀𝑖𝑐𝑜𝑛𝑡𝑜𝑢𝑟 = 𝜎𝑦 

𝑑

𝑇
𝐴𝑐𝑜𝑛𝑡𝑜𝑢𝑟휀𝑎𝑣𝑔  (3) 

where, 𝐴𝑐𝑜𝑛𝑡𝑜𝑢𝑟 is the area of the contour and 휀𝑎𝑣𝑔 is the average of the measured strain of 

the contour. AOI is selected to cover all the vicinity of high stress concentrated area. 

Temperature rise showed an increase of 2~3 ℃ in all tests. The change in temperature 

results in a negligibly small difference in absolute temperature and thermodynamic entropy 

generation. Therefore, absolute room temperature at the time of each test is used in 

Equation 3. 
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4.3.2. Digital image correlation  

DIC analysis is performed using VIC-2D software [27]. Parameters of the software that 

strongly affect strain map generation are subset size, step and filter size. Figure 1 shows 

these parameters on a speckle pattern. Subset size affects the ability of DIC to follow the 

speckle pattern and find deformations. Its value is mainly dependent on speckle pattern 

quality and speckle size. Smaller subset results in more detailed displacement maps, but 

less accuracy in matching process with reference image. A subset size study was performed 

on speckle pattern on each specimen using Grey Level Co-occurrence Matrix (GLCM) [28] 

and optimum value for the subset was selected. Step controls the number of data points for 

which displacement values are calculated. Lower values for step results in generation of 

more data in AOI, but too small step size adversely affects displacement map calculation 

by resulting in pseudo displacement generations. Filter size controls strain map calculation 

using displacement maps generated from images. Lower values of filter size result in more 

detailed strain maps, but if the values are too low, it generates noise. A sensitivity study 

was done on all of these parameters and optimum values were selected for each speckle 

pattern. Failure to select the appropriate value for each of the parameters would directly 

influence thermodynamic entropy measurement results. 
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Figure 4-1 - DIC analysis parameters 

4.4. Experimental setup and procedure 

4.4.1. Procedure 

A total of 8 specimens were fatigued under widely different loading conditions. Loading 

conditions were defined as high cyclic fatigue (HCF), overload spectrum, programmed 

loading and variable amplitude loading spectrum. Maximum load in HCF loading spectrum 

was set to 9.25 [kN] with R=0.1. Overload spectrum was defined by fatigue cycling using 

a stress ratio (R) of 0.1 with maximum load of 12 [kN] and one cycle with maximum load 

of 15.5 [kN] every 1,500 cycles. Programmed loading was defined as a loading block of 

37 cycles, all with maximum load of 12 [kN] and different stress ratios: 20 cycles with 

R=0.1 followed by 10 cycles of R=0.25, 5 cycles of R=0.5, and 2 cycles of R=0.67. 

Variable amplitude loading was defined as a block of loading with 1,489 loading points, 

with maximum of 15.5 [kN]. All tests were paused after a crack was detected at the notch. 

Detected crack was then measured and crack initiation cycle was calculated. The definition 

for crack initiation is adopted from the US Navy [29] as a 0.25 mm crack length. A servo-
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hydraulic material testing system machine retrofitted with an Instron 8800 controller was 

used to perform the fatigue tests. Figure 2 shows the loading spectrums and Figure 4 shows 

experiment setup. 

 

 

Figure 4-2 - Loading spectrums: HCF (a), overload (b), programmed loading (c) and variable amplitude 

loading-1 block (d). 

4.4.2. Specimen 

All specimens were cut from the same sheet of AA7075-T6 material in the grain boundary 

direction and machined in dog-bone shapes with a notch at the center, following ASTM 

E466 standard. A drawing of the specimen and its dimensions (in [mm]) is shown in Figure 
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3. Specimens were sanded around the notch area and guidelines for speckle paint were 

drawn. The stress concentration factor around the notch area was calculated as 2.77. Yield 

strength of material is measured as 506.9 [MPa].  

 

Figure 4-3 - Specimen geometry 

 

Figure 4-4 - Experimental setup 
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4.4.3. Digital image correlation 

Specimens were prepared before each test by applying speckle pattern around the notch 

area. Enamel spray paint was used for speckle pattern painting. Speckle pattern quality was 

checked at the time of painting. A desirable speckle pattern was achieved when the 

histogram of the speckles grayscale roughly followed a bell shape [30]. Figure 5 shows an 

example of a desirable speckle pattern used in this study. Images are recorded using an 8 

[MP] Point Grey Flea3 sensor with 3.8-13 [mm] Fujinon lens. For each test, a set of 10 

consecutive image were recorded as “Reference” image before any load was applied. 

During the tests, at fixed intervals, the specimen was unloaded and 10 consecutive images 

were recorded. These consecutive images were then averaged using ImageJ [31] software 

to minimize noises in image recording. Image averaging was done by averaging the 

intensity of pixels. The averaged images were used for DIC analysis. The intervals for 

unloading and image recording was 1,500 cycles for the tests with overload spectrum, 

7,500 cycles for test with HCF spectrum, 40 blocks for programmed loading spectrum and 

5 blocks for variable amplitude loading spectrum.  

 

Figure 4-5 - An example of a desirable speckle pattern. Full image (right), AOI (center) and histogram of 

speckle pattern in contour area (left) 
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4.5. Results and discussion 

Plastic deformation is consisted of plastic strain in axial (parallel to applied load), transvers 

and shear directions. Hence, the evolution of plastic deformation during fatigue tests is a 

combination of evolution of strain in all directions. However, trend of change in each of 

these terms is different during the fatigue life. An effective strain measurement accounting 

for the change in all strain components, defined as Von Mises strain, is used in this study 

to measure the thermodynamic entropy generation. Von Mises strain is calculated as: 

휀𝑣𝑜𝑛 = √휀1
2 + 휀2

2 − 휀1휀2           (4) 

in which 휀𝑣𝑜𝑛 is the Von Mises strain, 휀1 and 휀2 are principal strains calculated from axial, 

transverse and shear strains. Figure 6 shows change in 휀𝑥𝑥 (transverse), 휀𝑦𝑦 (axial) and 휀𝑣𝑜𝑛 

strain maps at four instances before crack initiation in one of the tests with variable 

amplitude loading spectrum. Crack initiation occurred at load block 107, shortly after the 

last images were taken. Axial, transverse and shear strain in the AOI were used to calculate 

principal strains and consequently, Von Mises strains. Figure 6 depicts the trend of changes 

in axial and transverse strain maps. It is seen that in the first three rows, transverse strain 

has higher value on the average comparing to the axial strain. However, as the test evolves 

and gets closer to crack initiation, axial strain increases more and reaches higher values 

comparing to transverse strain. The values and trend of change in axial or transverse strain 

maps individually, does not depict the full effect of plastic deformation at the notch root. 

Meanwhile, Von Mises strain (shown in the third column) can effectively depict the effect 

of both strain maps. The first three Von Mises strain maps are mostly affected by transverse 

strain, but the final Von Mises strain map is mostly affected by axial strain map. Crack 
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initiation follows the highly concentrated strain at the notch, depicted by 휀𝑦𝑦 and 휀𝑣𝑜𝑛 in 

the fourth row. It is only shortly before crack initiation that plastic strain lobes appear in 

휀𝑦𝑦 and consequently in 휀𝑣𝑜𝑛. Changes in the axial strain map is most significant at the 

time of crack initiation. 

 

Figure 4-6 - Change in transverse (first column), axial (second column) and Von Mises (third column) strain 

maps in cycles leading to crack initiation. First row shows results after 40 block, second row after 95 blocks, 

third row after 100 blocks and fourth row shows results after 105 blocks of loading are applied. 

The effect of overload cycle on the plastic deformation and consequently thermodynamic 

entropy is further studied in the tests with overload spectrum. In these tests, in addition to 

images taken every 1,500 cycles at zero load, images were also taken at 10% maximum 
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load before and after applying the overload. Therefore, for this specific loading spectrum, 

in addition to the change of plastic strain determined when no load is applied, change of 

total strain at 10% maximum load before and after application of an overload was also 

studied. Overload cycles are expected to increases the fatigue life of material [2] due to 

residual compressive stress and crack closure effect [32] in micro-cracks. Figure 7 shows 

the results for Von Mises plastic strain and the effect of overload cycle on the Von Mises 

total strain. Dotted lines indicate an overload cycle and the arrow on the dotted line show 

the change in total strain before and after an overload is applied.  

 

Figure 4-7 – Von Mises plastic and change in total strain before and after overload application at the notch 

root in an overload spectrum test 

The overload effect is the subject of many studies in literature, addressing different aspects, 

such as its influence in notched specimen [33] [34], in biaxial fatigue loading [35] and the 

role of each mechanism and their interaction on crack growth retardation [36]. However, 
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these discussions are out of the scope of this study. Here, we are focused on the effect of 

periodic overload on plastic strain measured at the notch and consequently change in 

thermodynamic entropy and thermodynamic entropy generation. Figure 7 shows the 

overall trend of plastic strains is increasing, as expected, but it includes several points 

where it decreases due to the overload cycle. Results suggests that overload cycles affect 

the plastic strain differently at different stages of the fatigue life. In the first stage, after a 

major increase in total strain due to the first overload cycle [37], the total strain mainly 

decreases after the overload is applied, resulting in a decrease in the plastic strain 

accumulation rate. In the second stage, overload cycles are mostly associated with decrease 

in total strain. The decrease in the total strain cause a decrease in the overall value of the 

plastic strain. This is attributed to effect of crack closure that causes perturbation in micro-

crack growth [38] and generation of compressive residual stress [39]. An increase in fatigue 

life is attributed to the decrease in the plastic strain values in this stage. In the third stage, 

there is an inflection point where the overload cycles are associated with detrimental effects 

on fatigue life due to large increases in total strain and an acceleration in the growth rate 

of plastic strain. In this stage, although overload cycles result in arresting the major micro-

crack, they are also associated with nucleation of new deflected micro-cracks [36] that 

accumulate and result in a macro-crack initiation (a 0.25 [mm] crack), following a large 

increase in total strain at cycle 30,000. It is also important to note that the variability in the 

overload effects on the change in total strain is reflective of the stochastic nature of the 

fatigue process. 

Thermodynamic entropy generation in the AOI (control volume), following Equation 2, is 

always a non-negative value. However, the decrease in the plastic strain values and 
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consequently thermodynamic entropy is a result of the entropy passing the control volume 

boundaries. Regarding to the second law of thermodynamic, entropy of a system is 

consisted of the entropy passing its boundaries and entropy generation within the boundary. 

Overload cycle generates residual compressive stresses at the notch. The effect of overload 

is seen as entropy passing the boundaries of control volume and change the entropy value 

of the control volume. Depending on the fatigue life expended, it can be a negative value, 

resulting in negative entropy generation measured (as in stage 2) or a positive value 

increasing the entropy generation and accelerating damage as in final stage of fatigue life 

leading to crack initiation. Therefore, all changes in entropy measurement follow the 

second law of thermodynamics. 

Thermodynamic entropy measurement in most of the available literature is based on 

hysteresis energy calculated from global strain measurements [7], [11], [12], [40]–[44] 

using load frame or extensometer attached to specimen. However, use of global strain 

measurement may lead to large errors [45]. In fatigue loading, crack initiation follows 

plastic strain generation and development in high stress concentration areas (e.g. notches). 

These areas are small relative to the specimen geometry and therefore, local measurements 

would be able to better gauge the irreversible damage in these areas. Figure 8 shows the 

comparison in thermodynamic entropy measurement per unit volume in one test, using 

three different measurements approaches: (1) use of load frame data, (2) a LVDT 

extensometer, and (3) DIC data. Load frame data consists of the actuator position values 

and reflects energy dissipation from the whole volume of specimen except grip area. The 

LVDT extensometer records energy dissipation of a volume with 25 mm X 18 mm area 

and specimen thickness (3.175 [mm]). Entropy generation using global measurements is 
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calculated by measurement of hysteresis energy divided by temperature. Relative to the 

load frame, the extensometer provides more local information about the energy dissipation 

at the notch. However, comparing to the DIC strain measurements, the extensometer 

measurements are global. Hysteresis area measured using the global strain measurements 

are mostly affected by axial strain. Therefore, in order to provide a better comparison 

between global and local strain measurements, the local thermodynamic entropy 

measurement (DIC data) reported in Figure 8 only uses 휀𝑦𝑦 values. 

 

 

Figure 4-8 - Thermodynamic entropy generation measurement comparison using load frame data, 

extensometer and DIC data (a), extensometer and DIC data (b), DIC data (c) and the plastic strain lobes 

around the notch at the time of crack initiation (d). Measurement are carried out until crack initiation. Plastic 

strain values in the selected rectangle (d) are used for DIC measurement. 
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Figure 8 shows that the thermodynamic entropy generation using these different 

measurement approaches could vary by orders of magnitude. However, strain 

measurements using extensometer are shown to yield better plastic strain results comparing 

to use of cross-head positions (load frame) [45]. Thermodynamic entropy at crack initiation 

time measured from extensometer shown to yield similar values as reported in Liakat and 

Khonsari [44]. To accurately measure the entropy generation due to plastic deformation, 

only the amount of hysteresis energy that contribute to plastic deformation should be 

considered. Part of hysteresis energy that dissipated through heat (convention and 

radiation) does not damage material and should be neglected [7]. Wong and Kirby [26] 

reported that in low cycle fatigue tests of aluminum 6061-T6 until crack initiation, 85-95% 

of hysteresis energy absorbed by material is dissipated in form of heat. Also, it is shown 

by Knysh and Korkolis [46] that heat conduction and radiation increase with plastic 

deformation. Therefore, a careful attention to the contribution of different terms of 

hysteresis area is needed when global measurements are used to measure the hysteresis 

energy and subsequently thermodynamic entropy generation. However, DIC directly 

measures the plastic deformation on the material and can be readily used to calculate 

entropy generation due to plastic deformation. 

To measure the thermodynamic entropy independent of the specimen geometry, the value 

calculated from Equation 3 is divided by contour area and specimen thickness. The result 

is thermodynamic entropy per unit volume or volumetric thermodynamic entropy. 

Although it is independent of the specimens’ geometry, it depends on the contour area 

selected for plastic deformation measurements. Plastic deformation around the notch root 

is highly non-linear and concentrated at the center of the notch. Deformation decrease as 
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distance from the notch root increases. Therefore, the measurement of plastic deformation 

in the contour area is directly related to the entropy measurement per unit volume. In order 

to accurately measure thermodynamic entropy due to plastic deformation, contour area 

should cover the plastic deformation at the notch root at the time of crack initiation. 

Selection of a large contour area results in lower values for thermodynamic entropy per 

unit volume while selection of a small contour area might result in failure to capture all 

plastic deformations at crack initiation. Therefore, contour area should be selected to 

adequately cover all plastic deformations at the time of crack initiation in all tests. 

However, cyclic plastic zone size calculation is not a trivial task and depends on the loading 

spectrum [47]. In this work, a study on the plastic deformation at crack initiation showed 

that a square contour with 1.5 mm2 area can adequately capture plastic deformation at 

crack initiation in all tests. Figure 9 shows the contour area on last DIC image available 

before crack initiation in one of the variable amplitude loading tests. It is seen that the 

contour area covers the plastic deformation adequately.  

 

Figure 4-9 - Contour area on Von Mises strain at the notch root  
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Crack initiation follows damage accumulation during fatigue life of materials and happens 

when damage (thermodynamic entropy) reaches a specific level of entropic endurance. 

Figure 10 shows the fatigue damage accumulation rate of four different tests by volumetric 

entropy generation per cycle/block versus normalized fatigue life leading to crack 

initiation. Results show that the volumetric entropy generation rate is dependent on the 

loading spectrum and follows different rates at different points in fatigue life. However, at 

the end of fatigue crack initiation life, the rate increases substantially in all cases. The 

increase in damage rate at the final stages of fatigue crack initiation life is dependent on 

the damage rates preceding it. For instance, in case of HCF spectrum, the rate increase at 

the end of the test is smaller comparing to other spectrums. It suggests that the longer 

fatigue life resulted in damage accumulations with smaller rates to build up enough damage 

that result in crack initiation. Therefore damage rate increases less comparing to other 

loading spectrums. This is in contrast to other loading spectrums. Fluctuating stresses 

defined by other loading spectrums result in residual compressive stress at the notch, and 

therefore decrease in plastic strain. This results in generation of negative values for damage 

rate. However, it is observed that in these cases, the damage rate increases more 

substantially at the end of fatigue life. Therefore, negative values for damage rate should 

not always be inferred as a sign for longer life, but may be viewed as a sign for more severe 

damage generation in cycles leading to crack initiation. 
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Figure 4-10 - Thermodynamic Entropy Generation rate until crack initiation at different loading spectrums. 

Although volumetric entropy generation rate is found to be dependent on the loading 

conditions, it is expected that regardless of the loading spectrum and test duration, crack 

initiation happen at specific entropic endurance level [48]. Figure 11 shows the 

thermodynamic entropy per unit volume measured at the time of fatigue crack initiation. 

These measurements reflect the entropy generation due to plastic deformation measured in 

the last DIC image available. It is important to mention that since the DIC images are taken 

in the intervals explained earlier, the last DIC image available before crack initiation 

happens at different cycles in different tests. This resulted in some variability of volumetric 

thermodynamic entropy measured in different tests. However, the variability in final 

thermodynamic entropy value is small especially with regard to the wide range of time to 

crack initiation and loading spectrum in different tests. 
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Figure 4-11 - Thermodynamic Entropy before crack initiation in different tests as a function of time to crack 

initiation. 

Figure 11 show that regardless of the different damage accumulation rates, the final 

volumetric thermodynamic entropy reaches an entropic endurance level at the time of crack 

initiation. Therefore, it is seen that regardless of the loading conditions, the damage 

accumulation rate, the number of cycles to crack initiation, the frequency of test and room 

temperature, crack initiation happens when the thermodynamic entropy value reaches the 

endurance level. Statistical analysis of the thermodynamic entropy endurance levels shows 

that their variability reasonably follows a Weibull distribution. Figure 12 shows the 

distribution fit to data with 95% confidence level lines.  
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Figure 4-12 - Weibull distribution fit on volumetric entropic endurance level 

The entropic endurance level as described by a Weibull probability distribution rather than 

a deterministic value can better account for the stochastic nature of fatigue life. The shape 

and scale parameters of the distribution are found as 7.1 and 14.64 respectively. This 

distribution describes a median value of 13.9 [kJ/m3K] for the entropy endurance level in 

this material.  

4.6. Conclusions 

The study results presented in this paper examines the ability of DIC to measure the 

thermodynamic entropy generation due to plastic deformation in fatigue crack initiation. 

Eight fatigue experiments on notched dog-bone aluminum alloy specimens using four 

widely different loading spectrum, including overload cycles are performed. DIC is used 

to analyze the evolution of strain at the notch root due to the loading spectrum. For the 

periodic application of overloads, there were three stages observed for the fatigue process: 

(1) a decrease in the growth rate of the plastic strain, (2) an overall decrease in the plastic 



82 

 

strain, and (3) an inflection point where acceleration of the growth of plastic strain leads to 

crack initiation. A modification of Clasius-Duhem inequality was then introduced to 

convert the DIC measurements to thermodynamic entropy values to determine the criteria 

for crack initiation independent of the loading spectrum. Thermodynamic entropy 

generation per unit volume due to plastic deformation is measured near the notch area 

where the crack is formed. The thermodynamic entropy measurement due to plastic 

deformation using DIC is compared to global measurements (extensometer and cross-head 

position values). It is concluded that entropy generation due to plastic deformation accounts 

for a portion of the hysteresis energy. Care must be taken when hysteresis energies are used 

to determine thermodynamic entropy generations. Volumetric entropy generation 

(damage) rate is found to be dependent on the loading spectrum. However, regardless of 

the damage rate, time to crack initiation, loading spectrum, test frequency and temperature, 

crack initiation happened at a specific entropic endurance level. The entropic endurance 

level at the time crack initiation is introduced in form of a Weibull distribution. The scatter 

in the endurance level roots in two reasons: stochastic nature of fatigue life and availability 

of DIC image at the time of crack initiation. This distribution instead of a deterministic 

value can better assess fatigue life of the material before crack initiation and statistically 

estimate the remaining life. Higher frequency of image recording, specifically around the 

time of crack initiation can decrease the uncertainty of the entropic endurance distribution. 

The volumetric entropy endurance level method used in combination with strain-life 

analysis can help to effectively predict crack initiation, especially near the expected fatigue 

life, and support policies to repair, replace or retain components based on their remaining 

useful life estimation.  
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 Fatigue crack initiation prognostics based on 

thermodynamic and information entropy using dynamic Bayesian 

network1  

5.1. Abstract 

Components are designed to endure a specific time or cycles before failure. The initial life 

analysis at the design stage is performed based on available, physics-based models. 

However, when the component is in-service, constant health monitoring and updating the 

estimation of remaining useful life (RUL) becomes a crucial task in component reliability 

assessment. Updating the RUL usually depends on data collected during the operation of 

the component, using one or more non-destructive testing (NDT) techniques that result in 

a large dataset. The correlation of the collected data to infer the damage state plays an 

essential role in RUL estimation. In this study, two NDT techniques, namely acoustic 

emission (AE) and digital image correlation (DIC), are used to collect data during fatigue 

tests on dog-bone aluminum alloy specimens until crack initiation, under multiple loading 

conditions. Information entropy of the AE signals and thermodynamic entropy measured 

using DIC are used to estimate and update the RUL using a Bayesian updating approach. 

The state process model and observation models are developed and implemented in a joint 

particle filter for damage prognostics and RUL estimation. 

                                                 
1 The full-text of this chapter is to appear in the Proceedings of 67th Annual Reliability & 

Maintainability Symposium (RAMS), May 24-27 2021, Orlando, Florida.  
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5.2. Introduction 

Ensuring safe operation and avoiding catastrophic failure is a pillar in all industries. 

Reliability assessment of structures plays a vital role in confidently resuming operation. 

These reliability assessments usually include periodic scheduled inspections that are 

discrete, expensive, labor-intensive, and slow. In case of airframes, these inspections 

require grounding and downtime that results in a considerable increase (by as much as 

50%) in the operational cost [1]. One of the inspection goals is to detect and measure 

fatigue-induced cracks. Fatigue is one of the primary degradation mechanisms in 

structures, and avoiding fatigue failures by estimating remaining useful life (RUL) is a 

must to ensure safety. Recently, the aerospace industry is moving toward using structural 

health monitoring (SHM) techniques to detect defects and damages that reduce the need 

for routine maintenance, minimizes human intervention and increases the reliability in 

damage detection. These techniques seek to exploit the interpretation of high volumes of 

data collected by sensors during the operational life of a component. Hence, the 

periodically scheduled maintenance strategy is aimed to be replaced by condition-based 

monitoring. Health prognostics heavily depend on data acquisition, data interpretation 

methods, and RUL prediction techniques. The data acquisition is usually performed 

through one of the available non-destructive testing (NDT) techniques such as acoustic 

emission (AE) and digital image correlation (DIC). The use of these NDT techniques, 

especially AE, results in large databases that require careful interpretation and analysis. 

Conventional methods to analyze the collected data are usually based on assumptions and 

methods that depend on experimental conditions, resulting in limited applications. 

However, recent research is moving toward developing more general methods for data 
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interpretation based on a fundamental concept, i.e., entropy [2], to expand the application 

of these NDT techniques and improve reliability assessments. Entropy is a measure of 

irreversibility or uncertainty within a quantity and has recently gained much attention in 

the detection and measurement of damage in components under fatigue loading. Entropy, 

as a damage index, has shown promising results [3]. 

Techniques for RUL estimation usually heavily depend on data-driven modeling [4]. 

Purely data-driven modeling that lacks the integration of the underlying degradation 

process typically falls short in reliable estimations. Meanwhile, solely relying on physics-

based modeling fails to incorporate new information that becomes available while 

operating a component. Therefore, a hybrid method that integrates the advantages of both 

modeling approaches is highly plausible. Some examples of such integrations can be seen 

in the literature by using dynamic Bayesian modeling that incorporates new physical 

measurements to update belief regarding the damage state of a component [5]. These 

methods tend to infer the stochastic hidden damage state of a component based upon one 

or more observation measurements. After each update based on new observations, these 

models extrapolate the damage state to a given damage tolerance level and estimate the 

time it takes for the component to reach the level, i.e., RUL. Some examples of successful 

applications of dynamic Bayesian updating in RUL estimations in literature are the 

following: A Bayesian regression analysis to estimate parameters in fatigue crack growth 

tests based on information entropy measurement [6], a Bayesian regression to estimate 

parameter in corrosion-fatigue testing based on thermodynamic entropy [7], particle 

filtering framework to measure the crack length in fatigue testing based on information 
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entropy and other Lamb signal parameters [8], and a joint particle filtering to estimate RUL 

based on Young’s modulus and AE energy measurement [9]. 

Recently, authors have shown the applicability of using DIC in thermodynamic entropy 

measurement and introduced the entropic endurance threshold in aluminum alloy 

specimens until crack initiation and showed its independence on loading condition [10]. 

Furthermore, authors have developed a method to detect crack initiation in the material 

using information entropy of AE signals, independent of loading condition [11]. In this 

paper, a study is done on developing a framework based on Bayesian updating for RUL 

estimation of components based on the two entropic measurements. This study discusses a 

possible state process and observation model and shows their application on data available 

from four fatigue tests. 

5.3. Methods 

Each section here briefly covers the equations used for thermodynamic entropy and 

information entropy and the results acquired. For more information on each of the subjects 

and the loading conditions, readers are referred to the original publication. In the dynamic 

Bayesian updating section, the implemented particle filtering approach is briefly discussed. 

5.3.1. Thermodynamic entropy  

The application of thermodynamic entropy in fatigue damage measurement is initially 

formulated based on continuum damage mechanics, using the first and the second law of 

thermodynamics [12]. The crux of using it as a damage index in fatigue testing stems from 

the fact that fatigue is an irreversible cumulative damage. An alternative formulation (Eq. 
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1) for measurement of the thermodynamic entropy on the specimen surface is proposed by 

authors [10] that utilizes DIC strain measurements on the surface. 

𝑆 =  𝜎𝑦
𝑑

𝑇
𝐴𝑐𝑜𝑛𝑡𝑜𝑢𝑟휀𝑎𝑣𝑔     (1) 

In Equation 1, 𝑆 is thermodynamic entropy, 𝜎𝑦 is yield stress of the material, 𝑑 is specimen 

thickness, 𝑇 is its temperature (in Kelvin), 𝐴𝑐𝑜𝑛𝑡𝑜𝑢𝑟 is the area of interest where DIC 

measurement is performed and 휀𝑎𝑣𝑔 is the average strain in the area of interest. The results 

from applying the equation on tests with different loading conditions revealed that an 

entropic endurance threshold, regardless of loading condition, could be described at which 

crack initiation happens. However, the change in thermodynamic entropy during the 

loading was found to be dependent on the loading condition. Figure 1 shows the trend in 

the thermodynamic entropy generation rate in four different tests with varying conditions 

of loading. Details about the loading conditions can be found in [10]. The rate of 

thermodynamic entropy generation depends on the loading condition. Therefore, the 

entropy generation rate cannot be readily and directly used to estimate RUL in a given test. 

To use the thermodynamic entropy measurements for RUL estimation in predictive 

modeling, an observation model should be defined to relate the entropy measurement to 

damage state of the component. 
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Figure 5-1 - Thermodynamic Entropy Generation rate until crack initiation at different loading spectrums. 

[10]  

5.3.2. Information entropy  

Information entropy is a measure of uncertainty or information content of the probability 

distribution of a random variable. Recently a number of studies have shown the benefits of 

using information entropy of AE signals in comparison to conventional parameters, 

including a study by authors [11]. In the study, Shannon [13] information entropy (Eq. 2) 

is used to measure the information content of AE signal waveforms emitted during the 

fatigue tests.  

𝐼 =  𝑐 ∑ 𝑃(𝑋𝑖)ln (1/𝑃(𝑋𝑖))𝑛
𝑖=1      (2) 

In Equation 2, 𝐼 is information entropy, 𝑐 is a constant considered to be unity, 𝑋𝑖 =

 {𝑥1, 𝑥2, … , 𝑥𝑛} is the random variable (voltage values in waveforms) and 𝑃(𝑋𝑖) is the 

probability distribution of the random variable.  
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Figure 5-2 - Information entropy of valid signals in each channel for Overload spectrum. [11]  

It is found that a threshold in information entropy exists at which crack initiation is 

imminent. The threshold does not depend on loading condition and can be used to detect 

crack initiation. Figure 2 shows information entropy values and marks the minimum value 

(the entropic endurance threshold) in a test with “overload” loading condition. As it is seen 

in the figure, the trend in information entropy values does not follow any specific 

trajectory. This implies that the information entropy trend cannot be readily used in RUL 

estimation and requires an observation model to translate the entropy measurements to 

entropy indexes. 

5.3.3. Dynamic Bayesian updating  

The prognostics and RUL estimation of structures in hybrid frameworks is usually done 

through updating the belief regarding damage state through Bayesian updating techniques. 

There are multiple techniques based on the Bayesian updating that can be used. Particle 

filtering (PF) technique, as a widely accepted Bayesian updating method, is used in this 

study. The PF technique works based on two models, a state processing model which 

governs the degradation process and moves the state in time, and an observation model 
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which translates new measurements to observations that can be used to update the state 

model. 

Consider the state of a component at time 𝑘 is described by 𝑥𝑘. A state function is defined 

as 𝑓, which represents the state evolution in time as in: 

𝑥𝑘 =  𝑓(𝑥𝑘−1, 𝜔𝑘−1)     (3) 

in which, 𝜔𝑘 is the noise, representing the uncertainty around the degradation state. In PF, 

a defined number of particles representing a set of possible states are assumed at each time 

step and assigned a weight. These particles with their associated weights are moved 

through time using the state function. An observation function ℎ is defined that translates 

damage state measurements as they become available to observations 𝑧𝑘: 

𝑧𝑘 = ℎ(𝑥𝑘, 𝜇𝑘)     (4) 

in which 𝜇𝑘 is the uncertainty in measurements. At any instance which observation of the 

damage state becomes available, the weights of particles in a state variable are updated 

using the Bayesian updating in Eq. 5. This Equation updates the probability density 

function (PDF) of the possible states and adjust the particle weights accordingly.  

𝑝(𝑥𝑘|𝑧1:𝑘) =  
𝑝(𝑧𝑘|𝑥𝑘).𝑝(𝑥𝑘|𝑧1:𝑘−1)

𝑝(𝑧𝑘|𝑧1:𝑘−1)
     (5) 

One main drawback of the PF approach is that it does not update the state process model. 

This results in requiring a state model with known parameters which is not usually 

available, specifically in cases such as fatigue processes that have inherent stochastic 

behaviors. To address this issue, more sophisticated dynamic particle filtering techniques 

are proposed in the literature to update the parameters of the state model [14]. One such 
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technique is called the kernel-smoothing based approach [15] and is implemented in this 

study. This approach offers a simultaneous estimation of (degradation) state and the 

unknown parameters in the (degradation) state model. In this approach, in addition to the 

state model, the parameter vector of the state model, 𝜃, is also updated when an observation 

becomes available, using the following equation: 

𝜃𝑘−1 = 𝜃𝑘−1√1 − ℎ2 + 𝜃𝑘−1(1 − √1 − ℎ2)     (6) 

𝜃𝑘 = 𝜃𝑘−1 + 𝑁(0, ℎ2𝑉(𝜃𝑘−1))     (7) 

in which ℎ 𝜖[0,1] is called kernel parameter. The parameter vector updating is a two-step 

process, including shrinkage (Eq. 6) and perturbation (Eq. 7), in which the kernel parameter 

determines the degree of shrinkage. After updating the damage state and the parameters of 

the damage state model, the mean-time-to-failure (MTTF) is estimated by moving the 

system state through state function to a specified damage tolerance threshold using: 

𝑀𝑇𝑇𝐹 =  ∑ 𝑡𝑓
(𝑖)

. 𝑤(𝑖)𝑁
𝑖=1      (8) 

In Eq. 8, 𝑖 represents a particle and 𝑤(𝑖) represents the weight of the particle and 𝑡𝑓
(𝑖)

 

represent the time (or cycle) at which the particle reaches the damage tolerance threshold. 

The RUL is then measured by subtracting elapsed life at the time of measurement from the 

MTTF. 

5.4. State process and observation models 

The dependence of thermodynamic entropy generation rate on the loading condition and 

the sporadic changes in information entropy values during a test makes it very difficult to 

define a RUL estimation technique solely based on their trend. Meanwhile, each of the 
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measures provides invaluable information regarding the crack initiation time, independent 

of the loading condition. Therefore, two models, i.e. the state process model and 

observation model, are defined in this section to move the damage state through time and 

estimate RUL, and translate entropic measurements into entropic indexes that are then used 

to update the state model.  

5.4.1. State process model 

 The state process model (degradation model) in this study is sought to be physically 

measurable damage that can be measured within a fatigue test. Therefore, a widely used 

measure, (Young’s) modulus reduction, is considered in this study as the “true damage”.  

Modulus reduction is measurable in fatigue tests and is expected as the natural response of 

a component during fatigue loading that results in crack initiation. The damage index is 

defined with: 

𝐷(𝑛) =  
𝐸0−𝐸(𝑛)

𝐸0− 𝐸𝑓
     (9) 

in which 𝐸0 is the initial modulus of a healthy component, 𝐸 is the modulus in each cycle 

(𝑛) and 𝐸𝑓 is the modulus at the crack initiation. The damage index starts from 0 and 

reached to 1 at the time of crack initiation. The state process model is defined based on the 

damage index using the mathematical function proposed by Mao and Mahadevan [16]: 

𝐷∗(𝑛) = 𝑞 (
𝑛

𝑁𝑓
)

𝑚1

+ (1 − 𝑞) (
𝑛

𝑁𝑓
)

𝑚2

     (10) 

in which 𝑞, 𝑚1, 𝑚2 are material dependent parameters of the equation, 𝑁𝑓 is the crack 

initiation cycle, and 𝑛 is the cycle at which the damage index is measured. Eq. 10 is 

proposed originally to measure damage based on modulus reduction in composite 
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materials. However, because of the intrinsic flexibility of the function to fit any three-stage 

curve with concave, constant and convex stages (or vice versa), it has been successfully 

used in case of crack initiation in metallic materials as well [9]. Change of the damage 

index and state model in one test is shown in Figure 3.  

 

Figure 5-3 - Modulus reduction, experimental result (Eq. 9) and model based on Eq. 10 

5.4.2. Observation model 

The observation model is defined to translate entropy measurements to entropy indexes 

that can be used to update the damage state. Since the behavior of each entropy 

measurement is different through the fatigue life, each requires a unique observation 

model. The proposed observation models for thermodynamic entropy (𝐷𝑆) and information 

entropy (𝐷𝐼) are: 

𝐷𝑆(n) =  
𝑆(𝑛) − 𝑆𝑚𝑖𝑛

�̂�− 𝑆𝑚𝑖𝑛
     (11) 

𝐷𝐼(n) =
𝐼𝑚𝑎𝑥− 𝐼(𝑛)

𝐼𝑚𝑎𝑥− 𝐼
     (12) 
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The subscript 𝑚𝑖𝑛 and 𝑚𝑎𝑥 refer to the minimum and maximum value in a given test and 

the hat over the parameter refers to its expected value (mean) of the corresponding entropy 

distribution at the time of crack initiation. The entropy distribution is defined on the 

entropic endurance threshold reported in earlier studies [10], [11]. The value of 𝑆𝑚𝑖𝑛 is 

equal to the first measurement of thermodynamic entropy. The value of 𝐼𝑚𝑎𝑥 is found 

during the test. Usually, the 𝐼𝑚𝑎𝑥 happens in the beginning of a fatigue test. Figure 4 shows 

the results of applying the state and observation models. The advantage of using expected 

values of entropic endurance threshold in the observation functions is their independence 

to the loading conditions; hence the observation functions also become independent of 

loading conditions. 

 

Figure 5-4 - State and observation models in a fatigue test 

Both entropy indexes in Eq. 11 and 12 reach a value of ~1 at the time of crack initiation. 

However, 𝐷𝐼 shows a two-stage health state in which the index indicates a potential 

imminent crack initiation only when it passes a specific threshold. A sensitivity analysis 

on the threshold level shows an appropriate threshold level of 𝐷𝐼 = 0.85. Only the values 

over this threshold are shown in Fig. 4. It can be seen that there are some instances which 
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𝐷𝐼 passes the threshold, but the crack initiation is not imminent. This low accuracy in 

detection is reflected in the PF framework by a high uncertainty value (𝜇𝑘 in Eq. 4). On the 

other hand, 𝐷𝑆 is a multi-stage health state and the information provided by it is useful 

during all states of the test. 

Figure 5 shows the overall framework and the relation of parameters2. 

 

Figure 5-5 - Framework 

5.5. Results and discussion 

Thermodynamic and information entropy of 4 tests with three different loading conditions 

are used as case studies. In order to measure damage state of each particle at 𝑘 time step, 

the state process model (Eq. 10) is discretized into small enough ∆𝑛 using [9]: 

𝐷𝑘
∗ =  𝐷𝑘−1

∗ +  
∆𝐷∗

∆𝑛
|

𝑘−1
× ∆𝑛 × 𝑒𝜔𝑘     (13) 

                                                 
2 This figure does not appear in the published paper. 
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in which 𝐷𝑘−1
∗  is the damage state at the previous time step and 

∆𝐷∗

∆𝑛
 is the derivative of the 

damage state with respect to cycle at the last time step, and the stochastic behavior is 

represented by 𝑒𝜔𝑘. Equation 13 can be further written as in: 

𝐷𝑘
∗ =  𝐷𝑘−1

∗ +  [
𝑚1×𝑞

𝑁𝑓
× (

𝑛

𝑁𝑓
)

𝑚1−1

+
𝑚2×(1−𝑞)

𝑁𝑓
× (

𝑛

𝑁𝑓
)

𝑚2−1

]
𝑘−1

× ∆𝑛 × 𝑒𝜔𝑘     (14) 

Equation 14 is used as the state function in the particle filtering framework in this study. 

The parameter vector 𝜃𝑘 =  [𝑚1, 𝑚2, 𝑁𝑓 , 𝑞]
𝑘
 is updated according to the kernel-smoothing 

process explained by Equations 6 and 7 whenever an update is available. The initial values 

for the parameter vector are assigned using a uniform distribution and prior knowledge, as 

reported in Table 1. For each parameter and the damage state, a number of 1000 particles 

is used, resulting in a total of 5000 particles for each test. The noise in the state process 

model and observation models are presented by a normal distribution 𝑁(0, 𝜔𝑘) and 

𝑁(0, 𝜇𝑘) respectively. The variance of the normal distributions is assigned as the mean 

squared error (MSE) of the index (𝐷∗, 𝐷𝑆 or 𝐷𝐼) and the true damage (𝐷). The damage 

tolerance level is set to 0.95 in all tests, indicating that higher values of damage are 

considered a failure. This value specifies the damage level from which the RUL is 

measured. The results of the PF and parameters convergence with their 90% confidence 

intervals (CI) in Test 4 is shown in Figure 5. The 90% CI is shown as a colored area. 
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Figure 5-6 - Particle filter result 

It is seen that in Figure 5, the true damage is within the 90% CI at any given time. The 

observation model noise (𝜇𝑘) for the thermodynamic entropy index has a lower value 

comparing to the information entropy index that results in a heavier impact in particle 

weight updating. The updated trajectory of parameters is depicted in Figure 6.  

 

Figure 5-7 - Parameter vector update trajectory 

 It is seen that in the last update of parameters, confidence bounds merge to the mean, and 

all converge to one value. This is because the thermodynamic index at the time of crack 
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initiation is much higher than previous ones, which results in the resampling step to 

resample very few particles. Therefore, all of the new samples are generated from very 

similar or the same particles. It should be noted that since the true damage increases slowly 

for most of the component life, the particle filter algorithm converges gradually to the true 

values of the parameters. However, as soon as tests approach the end life, several 

information entropy damage indexes become available, and a substantial change in 

thermodynamic entropy damage index is seen; consequently, the PF effectively updates 

particles. Therefore, initial estimations, i.e., prior distributions for parameters, play an 

important role in the overall performance of the particle filtering framework. After each 

update to the parameter vector, the RUL is estimated using Eq. 8. The performance of the 

RUL estimation in the test is shown in Figure 7.  

 

Figure 5-8 - RUL estimation 

The true RUL stays within the 90% CI during the whole test and converges to the true 

value at the end of the life. The crack initiation cycle estimate is also shown in Figure 8. It 

can be seen how the distribution of estimations starts with a wide range and shrinks around 

the true value as more observations become available. The results of applying the 
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framework in different tests, the initial values, the converged values, and the errors are 

reported in Table 1. For each test PF is run multiple times with the same initial values and 

the reported results are the average of runs. 

 

Figure 5-9 - Crack initiation estimation distribution 

It is aimed to choose the same initial distribution for parameters in all tests. As it can be 

seen in Table 1, parameters 𝑞 and 𝑚2 have the same initial values in all tests, and 𝑁𝑓 is the 

same in 3 tests. However, the value for 𝑚2 is initialized in each test differently according 

to its true value. Although the parameters of Eq. 10 are expected to be material-dependent, 

the fitting procedure showed some differences in some of them, specifically, 𝑚1. Perhaps 

due to the intrinsic stochasticity of fatigue problems, there is also stochasticity in the 

parameters. Nevertheless, the initial values for the parameters must be selected carefully. 

Especially in cases with a lower number of observations, an educated guess for the initial 

values is a must to ensure high accuracy in RUL estimations. The “# observation” in the 

Table refers to available entropy indexes in the test and their types. The average error 

shown in the table describes the average error in the estimation of the parameter. A negative 

value in error indicates underestimation. The average error in RUL estimation reports the 
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difference in the estimated crack initiation cycle and the true value once an observation 

becomes available. For instance, Test 1 on average makes a conservative estimation for the 

crack initiation cycle with an error of -846 cycles. Most of the tests resulted in conservative 

estimations for RUL within acceptable ranges.  

Table 5-1 - PF results 

 

The use of entropy indexes as observation in this framework increases its flexibility and 

applications, mainly due to the independence of the entropy from experimental conditions. 

More elaborated observation functions, damage index, and increased number of entropy 

measurements in a test can further improve the accuracy of this framework. A desirable 

improvement in the observation model (Eq. 11 and 12) would use the entropy endurance 

distribution rather that the expectation value of the distribution. 

5.6. Conclusion 

The use of entropy as a damage indicator in degradation processes such as fatigue is very 

promising. In this paper, we have briefly reviewed recent findings regarding the use of 

Test 

#

Loading 

Condition

# Observations 

(S  + I )
Parameter Initial Distribution

Final 

Converged 

Value

True 

Value

Average 

Error

Average Error 

in RUL 

Estimation 

(cycles)

Nf U (25000,32000) 31522 30514 -2.81%

q U (0.4,0.99) 0.75 0.92 -25.69%

m1 U (43,56) 50.06 48.03 3.69%

m2 U (0.05,0.7) 0.22 0.38 -24.67%

Nf U (81000,88000) 87482 86279 -1.35%

q U (0.4,0.99) 0.77 0.75 4.08%

m1 U (49,62) 54.18 56.98 -2.85%

m2 U (0.05,0.7) 0.51 0.24 93.08%

Nf U (25000,32000) 28253 27871 3.97%

q U (0.4,0.99) 0.93 0.93 -1.14%

m1 U (25,38) 31.28 35.23 -9.79%

m2 U (0.05,0.7) 0.37 0.54 -23.06%

Nf U (25000,32000) 29964 29272 -0.38%

q U (0.4,0.99) 0.91 0.91 -2.38%

m1 U (25,38) 33.46 28.2 15.09%

m2 U (0.05,0.7) 0.49 0.14 218.19%

-1567

-864

1134

4 Programmed 19 + 8 -141

2 HCF 11 + 8

1 Overload 20 + 16

3 Programmed 18 + 5
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thermodynamic and information entropy in detecting crack initiation. Although these 

entropic measurements provide invaluable information regarding crack initiation time, they 

cannot be directly used to estimate RUL of a component. This paper introduces an 

observation and state process model to implement the entropy measurements within a 

dynamic Bayesian updating framework. A joint Particle Filter framework is then defined 

based on kernel-smoothing to estimate the RUL and parameter of the state process model. 

The framework is applied to four tests with different loading conditions, and results are 

presented. The results show the ability of the proposed framework to estimate RUL in all 

tests with acceptable error. Possible improvements to the framework are explained and can 

be implemented in the definition of state and observation models. The significant 

advantage of this framework is its independence to loading condition that can provide 

hybrid data-driven and physics-based maintenance decisions, leading to further increase in 

the safety and reliability of components while decreasing the costs associated with 

scheduled periodic maintenance. 

5.7. References 

[1] A. P. Mouritz, Introduction to Aerospace Materials. Reston, VA: Woodhead 

Publishing, 2012. 

[2] A. Imanian and M. Modarres, “Thermodynamics as a fundamental science of 

reliability,” Proceedings of the Institution of Mechanical Engineers, Part O: Journal of 

Risk and Reliability, vol. 230, no. 6, pp. 598–608, Dec. 2016. 

[3] H. Yun and M. Modarres, “Measures of Entropy to Characterize Fatigue Damage in 

Metallic Materials,” Entropy, vol. 21, no. 8, p. 804, Aug. 2019. 

[4] Y. Lei, N. Li, L. Guo, N. Li, T. Yan, and J. Lin, “Machinery health prognostics: A 

systematic review from data acquisition to RUL prediction,” Mechanical Systems and 

Signal Processing, vol. 104, pp. 799–834, May 2018. 



106 

[5] M. Rabiei and M. Modarres, “A recursive Bayesian framework for structural health 

management using online monitoring and periodic inspections,” Reliability Engineering & 

System Safety, vol. 112, pp. 154–164, Apr. 2013. 

[6] M. Chai, Z. Zhang, Q. Duan, and Y. Song, “Assessment of fatigue crack growth in 

316LN stainless steel based on acoustic emission entropy,” International Journal of 

Fatigue, vol. 109, pp. 145–156, Apr. 2018. 

[7] A. Imanian and M. Modarres, “A thermodynamic entropy-based damage assessment 

with applications to prognostics and health management,” Structural Health Monitoring, 

vol. 17, no. 2, pp. 240–254, Mar. 2018. 

[8] S. F. Karimian, R. Moradi, S. Cofre-Martel, K. M. Groth, and M. Modarres, “Neural 

Network and Particle Filtering: A Hybrid Framework for Crack Propagation Prediction,” 

arXiv:2004.13556 [eess, stat], Apr. 2020, Accessed: May 24, 2020. [Online]. 

[9] E. Rabiei, E. L. Droguett, and M. Modarres, “A prognostics approach based on the 

evolution of damage precursors using dynamic Bayesian networks,” Advances in 

Mechanical Engineering, vol. 8, no. 9, p. 168781401666674, Sep. 2016. 

[10] S. F. Karimian, H. A. Bruck, and M. Modarres, “Thermodynamic entropy to detect 

fatigue crack initiation using digital image correlation, and effect of overload spectrums,” 

International Journal of Fatigue, vol. 129, p. 105256, Dec. 2019. 

[11] S. F. Karimian, M. Modarres, and H. A. Bruck, “A new method for detecting fatigue 

crack initiation in aluminum alloy using acoustic emission waveform information 

entropy,” Engineering Fracture Mechanics, vol. 223, p. 106771, Jan. 2020. 

[12] C. Basaran and S. Nie, “An Irreversible Thermodynamics Theory for Damage 

Mechanics of Solids,” International Journal of Damage Mechanics, vol. 13, no. 3, pp. 205–

223, Jul. 2004. 

[13] Shannon, Claude Elwood., “A Mathematical Theory of Communication,” Bell system 

technical journal, vol. 27, no. 3, pp. 379–423, 1948. 

[14] X. Liu, W. Zhang, X. Liu, W. Dai, and G. Fu, “A Novel RLS-KS Method for 

Parameter Estimation in Particle Filtering-Based Fatigue Crack Growth Prognostics,” 

IEEE Access, vol. 7, pp. 156764–156778, 2019. 

[15] Y. Hu, P. Baraldi, F. Di Maio, and E. Zio, “A particle filtering and kernel smoothing-

based approach for new design component prognostics,” Reliability Engineering & System 

Safety, vol. 134, pp. 19–31, Feb. 2015. 

[16] H. Mao and S. Mahadevan, “Fatigue damage modelling of composite materials,” 

Composite Structures, vol. 58, no. 4, pp. 405–410, Dec. 2002.



107 

 

 Acoustic emission signal clustering in CFRP laminates 

using a new feature set based on waveform analysis and information 

entropy analysis1 

6.1. Abstract 

Acoustic Emission (AE) for structural health monitoring of fiber-reinforced polymers 

(FRP) has been under extensive study in past decades. Many of the available methods rely 

on using the conventional features of AE signals for clustering. These clusters are then 

related to a specific failure mechanism based on their behaviors. The conventional AE 

features are derived from a portion of the signal waveform that passes through a pre-

determined threshold and is heavily affected by attenuation. Therefore, recent studies on 

AE are more focused on waveform analysis. A key parameter when analyzing the 

waveform distribution is the selection of appropriate bin width. This study discusses the 

choice of an optimum bin width for waveform analysis. This parameter is then shown to 

be well correlated to the conventional threshold-dependent features of AE signals. The bin 

width is then used as a time-domain representation of the waveform and is used with the 

peak frequency for signal clustering. A series of tensile tests are performed on cross-ply 

and quasi-isotropic carbon FRP (CFRP) specimens. The results show that AE signal 

clustering using these features outperform clustering performance using conventional AE 

features. This approach is shown to divide signals into two clusters; a cluster with matrix 

dominated signals and a cluster with fiber dominated signals. The information entropy of 

                                                 
1 The full-text of this chapter has been published in the journal of Composite Structures, 113987, 

2021. https://doi.org/10.1016/j.compstruct.2021.113987 

https://doi.org/10.1016/j.compstruct.2021.113987
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signals in each cluster is evaluated and compared to the information entropy of noise 

signals. 

6.2. Introduction 

The use of Fiber Reinforced Polymer (FRP) laminates such as Carbon FRP (CFRP) has 

increased widely in different industries over the past decades. These materials offer high 

stiffness, high strength, high corrosion resistance, and long fatigue life at a lower weight 

ratio comparing to metallic counterparts. However, damage and failure mechanisms in FRP 

laminates are a more complex phenomenon. This usually utilizes large safety factors that 

cause overdesigning and stems from our lack of full comprehension of the governing 

damage mechanisms [1]. The damage mechanisms in FRP laminates are matrix cracking, 

fiber/matrix debonding, delamination, fiber breakage, and fiber pull-out. The sequence of 

damage mechanisms, their effect on each other, and the ultimate failure depend on 

parameters such as fiber types [2], matrix type [3], stacking sequence [4], and 

unidirectional or woven laminate [5] among others. It is the synergy between these 

mechanisms that leads to final failure [6]. Several non-destructive testing (NDT) 

techniques are proposed in the literature for structural health monitoring (SHM) and failure 

prevention of these materials [7], [8]. Among the available NDT techniques, the unique 

advantages of acoustic emission (AE) have gained increased attention [9]. The AE is a 

highly sensitive and passive technique that detects activity inside the material. This 

technique only requires small sensors that capture transient elastic waves emitted due to 

damage in the materials under stress. 

The use of AE on composites dates back to the 1970s, focusing on the detection of damage 

onset [10]. Since then, the use of AE has expanded, and the correlation of signal features 
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to different damage mechanisms is discussed in the literature [11]. The relation between 

AE signals and damage mechanisms assumes that each damage mechanism emits a specific 

signal type. Signals are then clustered based on similarity measures to reveal the natural 

structure of the data through unsupervised clustering techniques [12] or supervised learning 

[13]. The clusters are then assigned to a specific damage mechanism based on their 

features. A comparison of three damage classification techniques is reported by McCrory 

et al. [14]. In [14], AE signals recorded in a buckling test on cross-ply CFRP are clustered 

using Artificial Neural Network (ANN), Unsupervised Waveform Clustering (UWC), and 

Measured Amplitude Ratio (MAR). In the ANN technique, five time-domain (rise-time, 

counts, absolute energy, duration, and amplitude) and three frequency-domain (average 

frequency, central frequency, and peak frequency) features of AE signals are used in the 

self-organizing map (SOM) before the 𝑘-mean algorithm clusters them. In UWC, 

waveforms are used as input to a principal component analysis (PCA) and clustered with 

the 𝑘-mean technique. In MAR, the ratio of energy in the flexural wave (A0) and 

extensional wave (S0) is used. The results show the ability of the MAR technique to 

discriminate delamination signals and the advantage of UWC and ANN in detecting more 

clusters.  

Sawan et al. [15] compared four unsupervised techniques of 𝑘-means, hierarchical, fuzzy 

c-mean, and Gaussian mixture distribution (GMD) on an artificial database and showed 

GMD could provide better results. The authors then used the technique to cluster AE 

signals on open-hole CFRP specimens in tensile and four-point bending tests. Six time-

domain (amplitude, rise-time, energy, counts, duration, and the ratio of amplitude to rise-

time) and three frequency-domain (peak frequency, frequency centroid, and average 
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frequency) features of AE signals were selected for clustering. They argue that numerical 

techniques used for finding an optimum number of clusters might not always identify the 

right number of distinct clusters. Sause et al. [16] studied the best selection of AE features 

for clustering and used AE signals emitted from cross-ply CFRP in four-point bending 

tests. A total of 12 frequency-domain features are extracted from AE signals, and an 

exhaustive search is performed combining all possible combinations of 5 to 12 features. 

Results show that a five-feature set including three partial powers, peak frequency, and 

weighted peak frequency outperforms other candidates. Azadi et al. [17] studied the effect 

of loading rate on failure mechanisms of cross-ply open-hole CFRP specimens using AE 

signals. Tensile tests were initially performed on pure resin and fiber, and the frequency 

range was measured. AE signals of tensile tests on specimens were clustered based on 

wavelet packet transform and fuzzy c-mean, using the measured frequency range, four 

time-domain parameters (rise-time, count, energy, and amplitude), and two frequency-

domain parameters (average frequency and peak frequency), respectively. They concluded 

that matrix cracking and debonding are associated with a frequency range of 100 – 420 

[kHz], while fiber breakage is related to frequencies of 420 – 500 [kHz].  

The selection of AE features for clustering purposes is not usually explicitly discussed; 

however, amplitude and peak frequency are the most used in the literature [18]. There is a 

general agreement on these parameters in the literature about their correlation to specific 

damage mechanisms. For instance, Gutkin et al. [19] report AE signal clustering in tensile 

and double cantilever beam (DCB) test on CFRP specimens with different layups. Four 

time-domain features (amplitude, energy, rise time, and duration) and peak frequency are 

used in a SOM with the 𝑘-mean clustering. The result shows that each failure mechanism 
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is associated with a specific peak frequency range; with matrix related mechanisms (matrix 

cracking, delamination, and fiber/matrix debonding) showing a peak frequency ranges of 

less than 300 [kHz] and fiber related mechanisms (fiber failure and fiber pull-out) with 

ranges higher than 400 [kHz] in peak frequency. Liu et al. [20] report the tensile test result 

on CFRP specimens with two layups of cross-ply and quasi-isotropic. The controlling 

damage mechanisms in each layup and the amplitude values related to them are reported. 

The higher amplitude range (above 70 [dB]) is related to fiber-pull out and fiber failure. In 

contrast, the lower range of amplitudes is related to matrix cracking and delamination. 

Although there is a general agreement in the literature on the association of damage 

mechanisms to specific amplitude and peak frequency ranges, some question their accuracy 

[21], [22]. It is also argued that frequency centroid might be a better feature than peak 

frequency to describe the AE source [23].  

Conventional AE features are extracted from portions of the recorded waveform that 

exceeds a pre-determined threshold and is known as a “hit”. The derived time-domain and 

some frequency-domain features (such as average frequency), which are frequently used 

in clustering, are dependent on the threshold setting. Threshold-dependent features tend to 

be more affected by signal attenuation [24] and the signal attenuation in composite 

materials is not always negligible [25]. Hence, the recorded signal features become 

dependent on propagation and sensor acquisition capabilities. Godin et al. [26] study 

focuses on sensor type and effect of propagation on AE features. Although the shape and 

characteristics of AE signals directly depend on the source mechanism, it is shown in the 

paper how the choice of AE sensor, the distance of the sensor to source location, and 

attenuation can affect the AE signatures. Furthermore, it is shown how the selection of 
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irrelevant features can inversely affect the clustering performance. Hence it argues that AE 

features are dependent on the experimental setup, and a comparison of the AE results under 

different conditions should be performed carefully. The selection of conventional AE 

features for signal representation depends mainly on the experience rather than the 

effectiveness of the features themselves and results in an inevitable loss of information 

[27]. However, a feature extraction method based on waveform can mitigate the 

disadvantages associated with conventional threshold-dependent features.  

Recent studies on the use of AE are focused on waveform analysis that mitigates the effect 

of threshold setting. Zhensheng et al. [27] present a new feature representation of AE 

signals based on the similarity of the probability distribution of raw waveforms when AE 

amplitudes are lower than environmental noise. Their paper proposes similarity 

measurements of waveforms based on their probability distribution to detect relevant AE 

signals from noises. The authors show the effectiveness of using the AE waveform in 

contrast to threshold-dependent parameters of the same signals. Xu et al. [28] argue that 

the selection of AE features and extraction of the features from AE signals play a vital role 

in pattern recognition. They state that the relevant features should be informative and non-

redundant, and applicable under various environmental conditions. They perform a 

clustering based on waveform analysis by decomposing signal waveform based on wavelet 

packet decomposition. Another waveform analysis method that has recently gained 

attention is information entropy [29]. Information entropy measures the uncertainty within 

a distribution, and in the case of AE signals, it measures the uncertainty of a distribution 

associated with a signal waveform. Chai et al. [30] used the information entropy of AE 

signals measured in stainless steel specimens and reported similar evaluation of cumulative 
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values for entropy as for energy and count. Sauerbrunn et al. [31] report a better correlation 

of the entropy values to damage in aluminum materials. Burud and Kishen [32] discuss AE 

entropy’s application on concrete and introduce it as an additional dimension to AE 

features. The recent review paper [1] on the characterization of laminated composites using 

acoustic emission suggests more focus on using techniques that directly evaluate signals 

waveforms such as information entropy. 

The effort to select an efficient clustering technique and the use of SOM or PCA to improve 

the performance of clustering, among other efforts, are discussed in the literature. These 

and some of the other common “user’s dilemma” for clustering are discussed by Jain [33]. 

However, the more crucial task in clustering is choosing the right feature extraction 

methods that identify the underlying structure of the data [33]. In this study, we focus on 

the selection of an appropriate bin width when dealing with waveform analysis and 

demonstrate the effectiveness of such a choice in waveform analysis. We also explore the 

correlation of the bin width to conventional AE features. The bin width is then used as a 

time-domain representative feature to cluster AE signals, and the results are compared to 

clustering with conventional AE features. The clustered signals have been explored in 

detail, and their information entropy values are examined. The information entropy of the 

signal waveforms is regarded as a new feature and its behavior in different clusters is 

studied and compared to noise signals. The proposed method is applied on AE signals 

recorded in a series of tensile tests on open-hole CFRP specimens with two different layups 

and three different geometries. 
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6.3. Experiments 

6.3.1. Materials, geometry, and manufacturing  

The material used for this study is CFRP. Two laminated sheets, each following a specific 

layup, are used for this study. The layups are Cross-Ply (CP) with a sequence of [0 90⁄ ]4𝑠 

and Quasi-Isotropic (QI) with a sequence of [45 90⁄ / −45 0⁄ ]2𝑠. Both sheets have 16 

plies, with each ply made up of high-performance unidirectional pre-preg sheets. The CP 

laminate is made with Toray T300 fibers [34] and toughened Toray 2500 epoxy resin with 

a 35% resin volume density. The QI sheet is made with Toray T700G fibers [34] and Toray 

2510 pre-preg system [35] with a 65% fiber volume density. 

 

Figure 6-1 - Specimens geometry 

All the specimens are cut from the same CP and QI laminates. The geometry selected for 

this study is rectangular open-hole with three different dimensions. Figure 1 shows the 

overall geometry. In this Figure, 𝐿 is the overall specimen length, including gripping area, 

𝑙 is the gauge length, ℎ is specimen thickness, 𝑤 is specimen width, 𝐷 is the hole diameter, 

and 𝑤 𝐷⁄  and 𝐷 ℎ⁄  are specific ratios for each specimen type. Specimens are named after 

their layup, with the third geometry called Quasi-Isotropic Scaled (QIS). Table 1 

summarizes dimensions for all the specimen types and compares them to the ASTM D5766 

standard. The CP specimens follow the ASTM standard, while QI and QIS specimens have 

different dimensions. QI specimens were decreased in width to increase the stress 
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concentration around the hole, which better follows the industrial test standards [36]. The 

QIS geometry follows the geometry of the specimen in [37] with the length increased to 

avoid excessive noise recording in AE sensors. Aluminum tabs were used at the grip area 

with the length of the grip area is kept constant at 45 [mm]. All the CP and QIS specimens 

are cut out of the original sheet using a CNC Routing machine, while QI specimens are cut 

out of the sheet using a water-jet cutting. 

Table 6-1 - Specimens dimensions 

 𝐿 [𝒎𝒎] 𝑙 [𝒎𝒎] 𝒉 [𝒎𝒎] 𝑤 [𝒎𝒎] 𝐷 [𝒎𝒎] 𝑤 𝐷⁄  𝐷 ℎ⁄  

ASTM D5766 150 - 300 150 - 300 2 - 4 -- -- 6 1.5 - 3.0 

CP 270 180 3 36 6 6 2 

QI 270 180 2.3 30 6 5 2.6 

QIS 230 140 2.3 18 3.6 5 1.6 

6.3.2. Mechanical responses and failure modes 

All the specimens were tested vertically under tensile loading until the fracture with a 

cross-head displacement rate of 0.5 [𝑚𝑚 𝑚𝑖𝑛⁄ ]. A servo-hydraulic material testing system 

(MTS) machine retrofitted with an Instron 8800 controller was used to perform the tests. 

Tests were monitored around the hole using an 8 [MP] Point Grey Flea3 sensor with a 3.8-

13 [mm] Fujinon lens. Figure 2 shows the typical stress-strain curve for each of the 

specimen geometries. It is seen that the CP specimens have higher tensile strength 

comparing to quasi-isotropic specimens. QI and QIS specimens show a very similar 

response as expected.  
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Figure 6-2 - Typical stress-strain curve for specimens 

Table 2 summarizes the tensile test results of all the specimens and the number of tests for 

each geometry. The average value for tensile strength, modulus, and tensile strain with 

their corresponding coefficient of variation (CV) for each specimen geometry is reported 

in the table.  

Table 6-2 - Summary of tensile test results (and their corresponding CV) 

 𝝈𝒖 [MPa] 𝑬 [GPa] 𝜺𝒖  [%] Number of specimens 

CP 517.30 (2.68%) 46.05 (1.27%) 1.31% (8.54%) 6 

QI 341.22 (7.34%) 37.12 (0.73%) 0.97% (8.06%) 5 

QIS 337.08 (7.57%) 37.27 (1.87%) 0.94% (8.53%) 5 

Figure 3 shows the typical failure mode in each of the geometries. The dominant failure 

mode observed in CP specimens is a brittle failure, while a pull-out is the dominant failure 

mechanism in QI and QIS specimens. The brittle failure is mainly associated with matrix 

cracking around the hole in the width to the free edges, followed by fiber failure. The pull-

out failure is mainly associated with crack generation tangential to the hole in the 45-degree 
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direction and failure in the hole area between the layers that causes fibers in the 0-degree 

ply to fail at various locations close to the hole and layers to pull out. 

 

Figure 6-3 - Failure modes in CP (a), QI (b), and QIS (c) specimens 

6.3.3. AE setup 

Two AE wideband (WD) differential sensors from Physical Acoustics Corporation 

(MISTRAS Group, Princeton Junction, NJ) on a PCI-2 board, with an operating frequency 

range of 125 – 1000 [kHz] and a resonance frequency of 450 [kHz] were used to record 

AE signals in these tests. Ultrasonic gel couplant was used on the AE sensor's surface to 

improve attachment and signal recordings. Sensors were placed approximately 25 [mm] 

away from the hole in all specimens and vinyl tape was used for attachment. Signals were 

passed through a 40 [dB] pre-amplifier before reaching the data acquisition module. The 

Physical Acoustics AEwin software (Physical Acoustic Corporation, Version E5.60, 

MISTRAS Group, Princeton Junction, NJ, 2007) was used to record AE signals. The band-

pass filter was set to 1 [kHz] – 3 [MHz]. The statistics of AE signals recorded for each 

specimen type is shown in Table 3. The effect of specimen geometry on the number of 

emitted signals is evident from the table.  
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Table 6-3 - AE signal statistics in all tests 

Specimen type 
Average number of 

signals in a test 
The standard deviation of 

signals in a test 

CP 4743 1163 

QI 734 378 

QIS 163 92 

6.4. AE signal analysis 

6.4.1. AE signals and waveforms 

In AE testing, a threshold is set to only keep relevant signals and avoid noise signals from 

being recorded. The appropriate threshold in this study using a simple test [24] was found 

to be 50 [dB]. Signals that pass the threshold are damage related and recorded in the dataset. 

Recorded signals are defined by timing parameters peak definition time (PDT), hit 

definition time (HDT), hit lockout time (HLT), and max duration. The PDT defines the 

time window that signal amplitude and rise time are measured. This parameter is set to 

determine the true peak of the AE waveform. HDT is set to determine the end of a signal. 

A signal is considered complete when no voltage value passes the threshold level within 

the HDT time window. The HLT is set to prevent the reflection and late-time arriving parts 

of a signal to be recorded. During HLT, no signals are recorded and the previously recorded 

signal is transferred to memory. Max duration sets the maximum duration of a signal if no 

time window with HDT value can be detected in which no voltage value passes the 

threshold. These parameters are essential in determining a signal and directly influence the 

quality of the AE dataset recorded for a test, and are used in determining conventional AE 

features. The values for the timing parameters in this study are followed by the AEWin 

software manual suggestions, literature [38], and based on pencil lead break (PLB) tests. 

They are selected as 60 [µs], 100 [µs], 300 [µs], and 200 [ms] for PDT, HDT, HLT, and 
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max duration, respectively. To minimize the chance of missing any emitted signal, the HLT 

value is set to its minimum. A sample waveform showing the timing parameters and some 

conventional AE features is shown in Figure 4. In the Figure, HLT appears as a series of 

zero value voltages with a dashed line after the HDT window in the waveform.  

 

Figure 6-4 - AE waveform and timing parameters 

The waveform generation of a signal follows a different set of parameters. Waveforms are 

time-domain depictions of a signal, generated based on the sampling rate, hit length, and 

pre-trigger time. Sample rate describes the number of voltage samples per second from a 

signal. A sampling rate of 2 [MHz] or higher is suggested for waveform analysis of CFRP 

materials [27] and a 5 [MHz] sampling rate is frequently used [2], [39]. A sampling rate of 

5 [MHz] is selected for this study. The hit length determines the data points recorded for a 

waveform and is set to 10,240 (10k) in this study. Pre-trigger determines the time window 

recorded in a waveform before the first threshold passing event occurs. The value for the 

pre-trigger in this study is considered equal to the HDT parameter, 100 [µs]. Since the 
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waveform values in this time window are below the threshold, they have low voltage 

values. If a large time window is dedicated to them, it impacts the distribution of the 

waveform and consequently waveform entropy measurement, and might compromise the 

signal waveform depiction. The value selected for the pre-trigger parameter in this study is 

shorter than the default value suggested by the software (256 [µs]). The combination of 

these three parameters defines a waveform.  

It should be noted that the selection of these parameters should ensure that a signal can be 

fully depicted by its waveform. For instance, the current waveform parameter setting 

results in a 2048 [µs] waveform. Therefore, signals with longer durations cannot be fully 

depicted with their waveform. The selection of these parameters should be made carefully. 

PLB tests were done in this study to confirm the selection of these parameters. In all of the 

tensile test AE dataset, on average, only 0.6% of signals were associated with longer 

durations that could be captured entirely by the waveform settings. However, even in those 

signals, the main event of the signal is recorded in the waveform and mostly, the reflections 

are left out of the waveform. Figure 5 shows a waveform of one of the PLB tests. It can be 

seen that the selected timing parameters fully captured the signal waveform and the PDT 

window correctly detected the highest voltage value.  
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Figure 6-5 - PLB test signal 

AE signals in this study are recorded in two independent sensors. The time it takes for one 

signal to travel from one sensor to other (delta-T) is measured on all specimens before 

applying any load. This value is then used to remove all the signals that arrived from other 

locations rather than the hole area. Only the signals passed the delta-T filtering (valid 

signals) are used for analysis in this study. Valid signals recorded in CP, QI, and QIS 

specimens will be referred to as CP, QI, and QIS datasets.  

6.4.2. Bin width selection 

The waveform information entropy measurement, as will be discussed in the next section, 

depends on defining a proper distribution for the voltage values in the waveform. The 

histogram is a desirable choice. It is a convenient and widely accepted distribution to reveal 

the underlying density of a variable. The assignment of a histogram to a signal waveform 

requires the selection of an appropriate bin width. However, the choice of bin width is 

usually overlooked. Bin width selection is an essential step in generating a histogram, 
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which refines the distribution and affects the entropy measurement. An ideal bin width 

should reveal the essential structure of the data while avoiding too much detail. The 

selection of an appropriate bin width to generate a histogram for a variable is studied in the 

literature by Scott [40] and further expanded by Wand [41]. In the context of waveform 

analysis, the bin width is usually selected as a fixed value based on the resolution of the 

AE data acquisition system [27], [29], [30]. The appropriate bin width for a waveform is 

referred to as the optimum bin width in this study and is calculated based on Equations 1 

and 2. The use of optimum bin width in information entropy measurement is discussed in 

the literature [24]. It is suggested to use an average value of the optimum bin width of all 

signals in Aluminum alloys. This approach was useful in Aluminum alloys since the 

material was homogenous and the source of all AE signals were similar. In CFRP, however, 

the AE source varies depending on the damage mechanism and can be the fiber, matrix, or 

interface. It is widely accepted and assumed that each damage mechanism has a specific 

type of waveform. Therefore, the distribution for each waveform should be generated using 

the optimum bin width of the waveform. The optimum bin width of a waveform is 

calculated using Scott’s [40] equation: 

𝑏𝑛 = 𝑘𝛿𝑛
−1

3⁄                  (1) 

in which 𝑘 is a constant, given as 𝑘 = 3.49, 𝛿 is the standard deviation of the voltage values 

in a waveform, and 𝑛 is the number of data points in the waveform. This equation has the 

inherent assumption that the underlying distribution follows a Gaussian distribution. To 

correct this assumption, two correction coefficients based on the difference in skewness 

and kurtosis are used that are shown in Equation 2: 
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𝑏𝑂𝑝𝑡 =  𝑏𝑛  ×  𝐶𝑠𝑘  ×  𝐶𝑘𝑢𝑟          (2) 

in which 𝐶𝑠𝑘 and 𝐶𝑘𝑢𝑟 are the correction coefficients for skewness and kurtosis difference, 

respectively, given in Scott [40]. The optimum bin width for each waveform is a time-

domain parameter and is independent of the threshold setting. Figure 6 shows the 

correlation coefficient of widely used AE features in time- and frequency-domain to the 

optimum bin width in each dataset. These values are calculated for each test in a dataset 

and the average values in all tests of the datasets are shown in the figure.  

 

Figure 6-6 - Average correlation coefficient of optimum bin width to AE features in CP, QI, and QIS datasets. 

It is seen that while the time-domain features generally show a high correlation coefficient, 

the optimum bin width is almost independent of frequency-domain features. Widely used 

AE features such as count, energy, duration, and amplitude show a very high correlation 

coefficient to the optimum bin width. This suggests that it can be used as a threshold-

independent feature for time-domain representation when clustering. The use of optimum 

bin width in clustering would prevent data-redundancy from incurring by having a strong 
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correlation to various highly used time-domain features and preventing the repetition of 

using linearly related features, such as count and duration.  

6.4.3. Waveform information entropy measurement 

Information entropy is a measure of uncertainty or missing information [42] of the 

distribution of a random variable. The information entropy described by Shannon [43] 

defines a method of measuring the uncertainty of a discrete distribution. The assumption 

is that all values of the random variable are assigned with a probability of less than or equal 

to one and the summation of all the probability values in the random variable equals one. 

The random variable in our case is the voltage values in a waveform. The histogram of the 

random variable satisfies the requirements of Shannon entropy assumptions and it is used 

in this study as the non-parametric distribution of the voltage values. The Shannon entropy 

is defined by Equation 3: 

𝐼 =  −𝑐 ∑ 𝑃(𝑉𝑖) ln(𝑃(𝑉𝑖))

𝑛

𝑖=1

          (3) 

In which 𝑉𝑖 =  {𝑣1, 𝑣2, … , 𝑣𝑛} is the random variable, 𝑃(𝑉𝑖) is the probability distribution 

of the voltage at the ith histogram bin, 𝐼 is the information entropy, and 𝑐 is a constant 

considered to be unity in this study. The unit of AE information entropy used in this study 

is ‘nats’ since in Equation 3 the natural logarithm is used. According to information 

entropy, uniform distributions have the highest information entropy since no value is 

preferred. Meanwhile, biased distributions have lower information entropy (or missing 

information) since some values are associated with higher probabilities. As discussed in 

the previous section, the choice of bin width plays an important role in developing a 

histogram. An ideal bin width would reveal the true shape of the underlying distribution of 
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the random variable, while a larger and a smaller bin width would result in simplification 

or too detailed histograms, respectively. Figure 7 shows the effect of bin width selection 

on the histogram and the information entropy value of a signal.  

 

Figure 6-7 - Effect of bin width selection in probability distribution and entropy measurement. Bin width of 

0.0164 and entropy of 2.4187 [nats] (a), optimum bin width of 0.0314 and entropy of 1.9891 [nats] (b) and 

bin width of 0.06 and entropy 1.608 [nats] (c) 

In Figure 7-a, the average value of the optimum bin width of all signals in the test is used 

to construct the probability distribution and measure the entropy. In contrast, 7-b uses the 

optimum bin width value for the signal to construct the histogram and measure the entropy. 

Figure 7-c shows a subjectively chosen larger bin width value for comparison. The 

difference in probability distribution and entropy measurement can be easily seen. The 

result of bin width selection in entropy measurements of waveforms as a function of signals 

amplitude in a test is shown in Figure 8. 
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Figure 6-8 - Effect of fixed bin width (a) and optimum (variable) bin width (b) on entropy values of valid 

and noise signals. 

In Figure 8-a, the entropy measurement using two fixed bin widths are shown. The smaller 

bin width is equal to the average of the optimum bin width in all signals in the test and 

corresponds to Figure 7-a. The larger bin width corresponds to the subjectively chosen bin 

width and corresponds to Figure 7-c. It is seen that in Figure 8-a, the change of bin width 

value results in a shift in the entropy values of the valid signals while the same trend is 

seen. This is in contrast with Figure 8-b, in which the optimum bin width of each signal 

waveform is used to measure the entropy of the waveform. It is seen that the trend of 

entropy values changes. The entropy values of the noise signals recorded before applying 

any load are also shown in the Figure. In 8-b, noise signals show higher entropy values 

comparing to valid signals, indicating that they are associated with higher uncertainties, 

while valid signals show lower uncertainties, indicating they carry more information. 

The selection of the bin width directly affects the waveform analysis. In CFRP laminates, 

the AE source varies depending on the damage mechanism and originates in different 

materials. Therefore, a fixed value of bin width is not a desirable choice. The bin width for 

a waveform is proposed to be selected based on the waveform itself. This method results 
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in a variable bin width value called optimum bin width. The selection of the optimum bin 

width to measure entropy is compared with entropy measurement using a fixed bin width 

value. The results show that the trend of entropy values changes dramatically when the 

optimum bin width is used, and it better follows the definition of information entropy; noise 

signals show higher entropies, indicating higher uncertainties and valid signals show lower 

entropy values, indicating higher information content and lower missing information. The 

optimum bin width is also shown to be well correlated to conventional time-domain 

features of AE signals. This behavior results in redundancy reduction when clustering and 

makes it a potential candidate to present time-domain properties of AE signals. In the 

following section, signal clustering based on the optimum bin width as the time-domain 

representative of a waveform, and peak frequency, as the frequency domain representative, 

is explored. 

6.5. Pattern recognition 

As stated in the introduction, the pattern recognition in AE signals and correlation to 

different damage mechanisms is discussed in the available literature. The most widely used 

clustering technique in laminated composites is 𝑘-means [1]. Data representation in 

clustering techniques is one of the most important factors that influence performance. AE 

signal representation is usually performed through AE features in time-domain [2], 

frequency domain [16], or a combination [19] of them. The selection of AE features for 

clustering is not regulated and is unclear. Most of the time-domain features used are 

threshold-dependent and are highly affected by sensor/source distance, among others.  

Meanwhile, techniques based on waveform analysis can minimize the effect of the 

threshold [1]. The crucial task in identifying the underlying clusters in a dataset is the right 
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feature extraction method [33]. Therefore, the features selected for clustering in this study 

are based on waveform analysis and are independent of the threshold setting: the optimum 

bin width and peak frequency. Optimum bin width is the signal representation in the time-

domain. It is shown to strongly correlate with conventional AE features used in literature, 

and peak frequency is widely used as a frequency-domain feature in literature. The 𝑘-

means clustering technique is used in this study and the clustering performance of the 

proposed feature set is compared to the proposed features in literature. Silhouette [44] 

values are used for clustering performance measurements, and Davis-Boulding [45] index 

is used to confirm the clustering performance compared to other feature sets. Clusters are 

then analyzed and are related to the underlying damage mechanisms based on their 

sequence and characteristics.   

6.5.1. 𝑘 - means 

In terms of AE signal analysis, the 𝑘-means clustering techniques partitions a set of 𝐴𝐸 =

 {𝐴𝐸𝑖}, 𝑖 =  1,2, … , 𝑛 input signals collected in a test, with d-dimensional features, to 𝑘 

clusters with 𝐶 =  {𝑐1, … , 𝑐𝐾} centroids, by minimizing the input distances to the centroids. 

The algorithm is performed by [46]: 

1- Randomly choosing cluster centroid 𝑐𝑖. 

2- Compute the distance of each input points 𝑥1,…,𝑛 to the cluster centers 𝑐1,…,𝑘 and 

assign them to the nearest cluster. 

3- Recalculate the location of cluster centers to minimize the (Euclidean) distance of 

inputs to the centers using Equation 4: 

𝑑(𝑥, 𝑐) = (𝑥 − 𝑐)(𝑥 − 𝑐)′           (4) 
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4- Compute the average of the observations in each cluster to obtain new cluster 

centroids.  

5- Repeat steps 2 through 4 until the cluster assignment does not change. 

There are two phases in the third step of the algorithm: batch update and online update. In 

the first phase, batch update, each iteration consists of reassigning points to their nearest 

clusters’ centroid, all at once, followed by recalculation of cluster centroids. The second 

phase, online update, consists of reassignment of inputs individually if it reduces the sum 

of distances and recalculation of cluster centroids after each reassignment. The 

performance of this method depends on the initial centroid selection.  

One of the drawbacks of the 𝑘-means clustering algorithm is the requirement of knowing 

the number of clusters. To address it, a set of candidate cluster numbers 𝑘 are usually 

selected and used in the clustering algorithm. For each 𝑘, a predetermined criterion is set 

to find the best candidate. Silhouette value [44] is selected in this study to measure the 

performance of each 𝑘. The Silhouette value for each point measures the similarity of the 

point to the points in its cluster comparing to the points in other clusters using Equation 5 

[46]: 

𝑆𝑖 =  
𝑏𝑖 − 𝑎𝑖

max (𝑎𝑖 , 𝑏𝑖)
             (5) 

in which 𝑎𝑖 is the average distance from the ith point to the other points in the same cluster 

as i, and 𝑏𝑖 is the minimum average distance from the ith point to points in a different 

cluster, minimized over clusters. The Silhouette value ranges from -1 to 1 and a value of 

0.6 or greater indicates a good similarity.  



130 

 

6.5.2. Clustering results 

In this study, for each set of AE features, an exhaustive search is performed to select the 

optimum number of clusters 𝑘. The possible number of clusters examined are 𝑘 ∈ [2,10] 

and the Silhouette value is used to measure the performance of clustering given a 𝑘. The 

following steps are taken to find the optimum 𝑘 given AE features:  

1- AE features are used to cluster AE signals in a test using all possible 𝑘 values and 

the corresponding Silhouette value is recorded. 

2- The previous step is repeated 10 times (to avoid local minima) and the Silhouette 

values are recorded and mean values are measured. 

3- Previous steps repeated for all tests in a dataset. 

4- Results are averaged and the 𝑘 with the highest Silhouette value is selected as the 

optimum number of clusters for the AE feature set and dataset (CP, QI, or QIS). 

These steps are taken for all the tests in a dataset for each AE feature set. Figure 9 shows 

these steps for the feature set peak frequency and optimum bin width in the QI dataset.  

 

Figure 6-9 - Clustering steps 1 and 2 (a) and steps 3 and 4 (b) in QI dataset. 
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Figure 9-a shows steps 1 and 2 in which clustering using all the possible values of 𝑘 is 

repeated 10 times in a specific test and Silhouette values are averaged. Figure 9-b shows 

steps 3 and 4 in which the average values in all tests in a dataset are compared and the 

average is measured to select the optimum number of clusters for the dataset given the 

feature set.  

The performance of the proposed feature set is compared to other feature sets in literature. 

Table 4 shows the feature sets used in this study and their performance results in each 

dataset, and Figure 10 shows the result of clustering performance. Cluster similarity in all 

feature sets is also compared using the Davis-Bouldin (DB) index to verify the Silhouette 

values. The DB index measures the average distance of a point in each cluster to the cluster 

centers. Therefore, a lower value is an indication of better performance.  

 

Figure 6-10 - Clustering performance of feature sets in CP (a), QI (b), and QIS (c) datasets measured by 

Silhouette and DB indexes. 

The result of the proposed feature set in Figure 10 is shown with a solid Dimond. It is seen 

that while all the feature sets show good clustering performances (Silhouette value greater 

than 0.6), both indexes show a higher performance for the proposed feature set. However, 

the results explained in Table 4 show a discrepancy in the number of clusters selected for 

QI and QIS datasets. It is expected that QI and QIS datasets show the same number of 
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clusters since both have the same layup but different geometries. However, QIS is slightly 

preferred to have 3 clusters by Silhouette values. This is further discussed in the next part.  

Table 6-4 - AE feature sets and clustering performance 

Reference AE Features 
Feature 

set # 

Mean Silhouette value Number of clusters 

CP QI QIS CP QI QIS 

Gutkin et al. 

[19] 

Rise time - Energy 

- Duration - 

Amplitude - Peak 

Frequency 

1 0.904 0.672 0.677 2 2 4 

Ameur et al. [2] 

Rise time - 

Duration - 

Amplitude - 

Counts to Peak - 

Absolute Energy 

2 0.714 0.721 0.686 3 2 2 

Haggui et al. [3] 

Rise time - Energy 

- Duration - 

Amplitude - 

Counts to Peak 

3 0.715 0.72 0.704 3 2 2 

Saeedifar et al. 

[18] 

Amplitude - Peak 

Frequency 
4 0.923 0.712 0.747 2 2 3 

Proposed 

Optimum Bin 

Width - Peak 

Frequency 

5 0.983 0.921 0.897 2 2 3 

6.5.3. Delamination related signals 

To further study the difference in the number of clusters in QI and QIS datasets, Test 3 in 

the QIS dataset is examined in more detail. The loading profile of the test is shown in 

Figure 11. As shown by the figure, this test involves a drop in loading profile near the 

failure strength. This drop is characterized by failure of the off-axis plies (45° plies) and 

transferring all the load-bearing to the on-axis plies (0° plies) [47] and causes delamination 

in the specimen. However, before the delamination can grow until it reaches the grips, the 

partial delamination allows some plies to pull-out from between each other at the point of 

fiber failure [37]. This behavior is notably seen in this test, while other QIS tests do not 

clearly show such behavior. Figure 11 shows the entropy values and signal clusters. It is 

notable that, as shown in Figure 11-b, cluster 2 appears immediately after the load drop. 



133 

 

 

Figure 6-11 – Stress-strain curve of Test 3 in QIS dataset, showing entropy values of signals in all clusters 

(a) and cluster 2 (b) 

Signals in cluster 2 are further examined in terms of their peak frequency, bin width 

(optimum bin width will simply be called bin width from here on), and waveform shapes. 

Figure 12 shows the results. The number of signals in this cluster is small in comparison to 

the other clusters. These signals are associated with low peak frequency values, similar to 

cluster 1, while showing large bin width values.  

 

Figure 6-12 - Peak frequency versus bin width of signals in all clusters in Test 3 of QIS dataset and their 

typical waveform shapes (duration of signal waveform shown varies).  



134 

 

A typical waveform of the signals for each cluster is also shown in Figure 12. The 

waveforms in cluster 2 are associated with multiple spikes with high voltage values in a 

short span at the beginning, while waveforms in other clusters are related to single spikes. 

While the amplitude of signals in other clusters has a wide range, signals in cluster 2 are 

associated with high amplitudes. These signals are related to delamination. To study and 

compare signal waveforms of cluster 2, all QIS tests were examined in detail.  

Figure 13 shows the results for Test 2 and Test 4 in QIS dataset. The waveform analysis of 

the signals in cluster 2 shows that in Test 2, only one of the signals can be related to 

delamination. However, none of the signals of cluster 2 in Test 4 show such a waveform 

shape. The similarity of the peak frequencies of cluster 1 and cluster 2, and the higher bin 

width values of delamination signals observed in Test 3, suggests that these two clusters 

can be combined. The delamination signals can be detected as signals in the combined 

clusters with bin width values larger than a threshold. The threshold is found to 

approximately be 0.17. Therefore, signal clustering based on the proposed features (feature 

set 5) can successfully cluster signals into 2 clusters and detect delamination signals within 

cluster 1 with bin width values larger than 0.17. Furthermore, in the QIS dataset, the 

selection of 2 clusters results in an average Silhouette value of 0.86, which is still higher 

than other feature sets in Table 4. This finding is tested on signals in all datasets and results 

for one test in each dataset are shown in Figure 14. 
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Figure 6-13 – Peak frequency versus bin width in QIS Test 2 (top) and Test 4 (bottom) and the waveforms 

of signals in each cluster (duration of signal waveform shown varies). 
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Figure 6-14 - Signal clusters in CP (a), QI (b), and QIS (c) datasets, typical waveforms, and delamination 

waveforms (duration of signal waveform shown varies). 
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The delamination related signals are mostly observed in larger specimens. In the QIS 

dataset, only two tests show this type of signal, while in almost all tests of CP and QI 

specimens, this type of signal is observed. However, the number of these signals is small 

in the QI dataset and negligible in the CP dataset compared to other signals. In QIS 

specimens, the lower cross-section area results in lower stress redistribution chances to 

cause delamination.   

6.5.4. Cluster analysis 

The signal clustering results show that regardless of specimen geometry or layup, the 

clustering based on peak frequency and bin width consistently cluster signals to two 

clusters with similar characteristics. Cluster 1 in all specimens is associated with peak 

frequency below 400 [kHz], and cluster 2 is associated with peak frequencies higher than 

that. Figure 15 shows the distribution of peak frequency in each cluster in one of the tests 

from each dataset. It is seen that cluster 1 is mostly associated with lower peak frequency 

values between 0 [kHz] to 400 [kHz], while cluster 2 is associated with peak frequencies 

of 400 [kHz] to 800 [kHz].  

 

Figure 6-15 - Peak frequency distribution (probability density function – PDF) of the clusters in one of the 

tests in CP (a), QI (b), and QIS (c) datasets. 
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The distribution of clusters concerning the load values is shown in Figure 16. This Figure 

shows that cluster 1 precedes cluster 2 and generally, lower load values are associated with 

cluster 1.  

 

Figure 6-16 - Load distribution (probability density function – PDF) of the clusters in one of the CP (a), QI 

(b), and QIS (c) tests and their appearing sequence.  

Lower peak frequencies are repeatedly related to matrix related damages in literature [1] 

while higher peak frequencies are attributed to fiber-related damages. Therefore, based on 

the peak frequency, and the consistent sequence of their appearance with respect to the load 

values, cluster 1 is attributed to matrix dominated signals and cluster 2 is attributed to fiber 

dominated signals. Matrix dominated refer to signals with matrix cracking, fiber/matrix 

debonding and delamination damage mechanisms, and fiber dominated refer to signals 

with fiber breakage and fiber pull-out damage mechanisms. 

6.6. Waveform entropy 

The waveform information entropy of signals in both clusters is studied in more detail in 

this section. First, entropy values of the valid signals in the two clusters are compared to 

entropy values of noise signals. This comparison describes a range of entropy values in 

noise and valid signals. Next, the trend of entropy changes in tests, the correlation of 

entropy values to signal amplitudes, and the distribution of entropy values in each cluster 

are studied.  
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6.6.1. Noise signals 

Noise signals are the type not generated from the material and are attributed to 

environmental causes. There are three types of noise signals studied here. The first type is 

the noise signals recorded at the beginning of tests with the specimen attached to the load 

cell and no load applied. The threshold is set to a minimum in this case and the purpose of 

recording these signals is to find an appropriate threshold setting to avoid recording noise 

signals in a test. The second type of noise signals is recorded before a test and with a proper 

threshold setting. These signals’ amplitude is at the border of the threshold that might pass 

it. These signals happen sporadically in some tests. The third type of noise signals are 

associated with amplitude close to the threshold and pass it during the test. These signals 

(second and third type) are only recorded in the AE sensor close to the actuator that is more 

susceptible to external noises due to load frame vibrations and hydraulic pressure. Signals 

in the second and third categories are removed from the AE datasets when techniques such 

as delta-T filtering are applied. However, to characterize their waveform and compare them 

to valid signals, their entropy values are studied. Figure 17 shows the typical noise 

waveforms and their entropy values compared to entropy values of valid signals in a test.  
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Figure 6-17 - Comparison of the noise signal waveforms and entropy to valid signals 

In Figure 17, negative time values associated with the first and second types of noise signals 

indicate that they are recorded before the test starts. The waveform of the signals in the 

first type of noise differs significantly from the other two types. The reason is the threshold 

that is set to minimum, causing timing parameters HDT not to affect. These signals show 

the highest entropy values. The entropy values for other noise signals are lower than the 

first type but still are in the higher range of entropy values comparing to the entropy of the 

valid signals. The similar entropy values in noise signals indicate the similarity in the 

probability distribution of the underlying waveform and the waveforms. This is in contrast 

to the entropy values of valid signals and hence their underlying waveform and probability 

distributions. This behavior is expected and also reported in the literature [27].  

6.6.2. Valid signals  

The typical trend for waveform entropy of valid signals for one of the tests in each dataset 

is shown in Figure 18. The loading profile and the signal clusters are also shown in the 
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figure. It is observed that while waveform entropy of signals in cluster 1 is more centered 

around specific values, signals in cluster 2, in general, show a higher range of entropy 

values.  

 

Figure 6-18 - Waveform entropy of valid signals in one test within CP (a), QI (b), and QIS (c) dataset. 

Test data represented in Figure 18 show that near the failure time, several signals with low 

entropy values appear. This behavior is observed in most of the tests in all datasets. These 

signals tend to be associated with cluster 2. This is expected since this cluster is associated 

with fiber dominated failures. The delamination-related signals in cluster 1 were also 

shown to have low entropy values. This suggests that generally, lower entropy values are 

associated with more severe damage events.  

6.6.3. Entropy analysis 

To better characterize the behavior of entropy values and their relation to the failure 

mechanisms, Figure 19 shows the overall behavior of entropy values as a function of 

amplitude for one test of each dataset. Test data shown in Figure 19 are the same data used 

in Figure 18. 
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Figure 6-19 - Waveform entropy values of the tests shown in Figure 16 as a function of amplitude in CP (a). 

QI (b) and QIS (c) dataset. 

Figure 19 shows a decreasing trend for entropy values as a function of amplitude. Higher 

amplitude signals are associated with more severe damages [1]. Therefore, the trend further 

verifies that lower entropy values are associated with more severe damage events. Figure 

20 shows the distribution of entropy values in each cluster. The distribution of entropy 

values shows that cluster 2 is generally associated with lower entropy values. This is 

consistent with the conclusion that cluster 2 is representing fiber dominated signals. Figure 

20 shows the results for the same tests, as shown in Figure 18. 

 

Figure 6-20 - Distribution (probability density function – PDF) of the waveform entropy values in each 

cluster of the tests shown in Figure 16 in CP (a), QI (b), and QIS (c) dataset. 

6.7. Conclusion 

The timing and waveform recording parameters play an essential role in the quality of the 

AE dataset. While some suggestions for timing parameters based on materials are available 

in the literature, the waveform parameters are not discussed as much. The values for 
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sampling rate, hit length, and pre-trigger should be selected carefully. Specifically, the pre-

trigger value plays an important role in waveform analysis. Since the voltage values 

recorded in the period are lower than the threshold value, it directly impacts the bin width 

measurement, waveform distribution, and entropy measurement. Therefore, a pre-trigger 

value equal to the HDT value for CFRP laminate is suggested in this study. 

The selection of bin width to generate a probability distribution for waveforms is usually 

overlooked. The common practice is the subjectively selected fixed bin width for all the 

signals. Due to the nature of AE signal sources in FRP materials, selecting a fixed bin width 

for waveform analysis of all signals does not seem proper. In this study, the bin width for 

each waveform is selected based on the waveform characteristics and the results are 

compared to the fixed bin width selection approach. The bin width value is independent of 

the threshold setting and is measured based on the Scotts equation using all the voltage 

values in a waveform. This feature is strongly correlated with the conventional time-

domain threshold-dependent features of AE signals and used as a time-domain 

representation of the waveform in clustering. The bin width and peak frequency are used 

as a new feature set for AE signal clustering. The results show that the proposed feature set 

can successfully cluster signals into matrix and fiber dominated clusters. Delamination 

related signals are included in the matrix dominated cluster and characterized by larger bin 

widths than a suggested value of 0.17. Possible improvement in clustering might be 

achieved if frequency centroids or partial power frequencies are used instead of peak 

frequency. The entropy shows to be a robust discriminator of noise signals from valid 

signals. Noise signals show the highest entropy values, while the entropy decreases as a 

function of amplitude. This suggests that AE signals due to more severe damages such as 
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fiber breakage and delamination are associated with lower entropy values. Low entropy 

values appeared near the failure point in tests and can be regarded as final failure signatures. 
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 Acoustic emission signal waveform information entropy 

analysis in open-hole CFRP laminates under fatigue loading1 

7.1. Abstract 

Acoustic Emission (AE) is one of the most well-known non-destructive testing (NDT) 

techniques and its use on fiber-reinforced polymers (FRP) has been under extensive study 

in the past decades. Most of the available methods rely on using the conventional features 

of AE signals for analysis. However, conventional AE features are derived from a portion 

of the signal waveform that passes through a pre-determined threshold and is heavily 

affected by attenuation. Therefore, recent studies on AE are more focused on waveform 

analysis. An AE waveform analysis technique that has recently gained attention is 

Shannon’s information entropy. This study discusses the analysis of the information 

entropy of the AE signals emitted during tensile fatigue testing of open-hole carbon FRP 

(CFPR) specimens. A signal clustering based on waveforms’ characteristics is performed. 

Results show that AE waveform entropy is a robust time-domain feature that can 

discriminate signals independent of threshold setting. It is observed that signals with high 

information entropy values are related to fatigue crack surface fretting, while signals with 

low entropy are mostly related to severe fatigue damage cases.  

7.2. Introduction 

The industrial use of composite materials has been increasing steadily over the past three 

decades. In composites, two or more components are combined to achieve properties 

                                                 
1 The full-text of this chapter forms a paper currently (i.e., April 2021) submitted to the Materials 

Evaluation journal.  
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superior to each of them individually. These materials offer a wide variety of properties 

regarding their constituent parts and manufacturing processes. Some of their properties and 

characteristics have motivated industries, such as the aerospace industry, to replace 

conventional metallic alloys with composites. Uses of the fiber-reinforced polymer (FRP) 

laminated composites have been the most pervasive due to their superior stiffness, strength, 

corrosion resistance, density, and fatigue life. The ability to exploit the full potential of 

lightweight FRP laminated composite structures has been hindered by a lack of a 

methodology for non-destructively testing (NDT) and quantifying fatigue damage 

independent of the conditions under which structures are used. Fatigue damage is a 

complex problem in FRP materials. A variety of damage mechanisms such as matrix 

cracking, fiber/matrix debonding, delamination, and fiber breakage are present in FRP 

laminated composites [1]. These damage mechanisms happen in different length scales and 

the synergy between them ultimately leads to fracture. 

The use of various NDT techniques for damage assessment in polymer composites is 

reviewed by Duchene et al. [2]. The application of NDT techniques to characterize damage 

evolution shows that Acoustic Emission (AE) can detect all the failure mechanisms. AE is 

a well-known NDT technique that has been used extensively on composites [3]–[5]. This 

technique only requires small sensors that detect activity inside the material. Structural 

changes and internal redistribution of stress within the material result in energy release. 

Part of this energy is released in the form of AE signals [6]. The use of the AE technique 

on FRP composite materials under fatigue loading has already been addressed, such as in 

references [7]–[11]. The size of the AE signal dataset that generates as a result of a fatigue 

test, specifically in carbon FRP (CFRP) materials, is usually in the order of million signals 
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[12]. This makes uses of the technique challenging [13]. Additionally, the dependence of 

damage progression on laminate layup [14], [15] requires careful selection of layup to draw 

general conclusions.  

Studies based on AE typically use a combination of signal features such as count, rise time, 

energy, duration, peak frequency, and amplitude for analysis [5]. However, some of these 

features are derived from a portion of the signal waveform that passes through a pre-

determined threshold and is adversely affected by the wave propagation medium and 

attenuation characteristics [16]. This is significantly more pronounced in fatigue damage 

assessment as the progression of damage causes wave distortion and increases the signal 

attenuation [17]. Techniques based on AE waveform analysis have the potential to mitigate 

the effect of threshold setting on AE analysis [18]. For instance, Ebrahimkhanlou et al. [19] 

have recently proposed a deep-learning framework that automatically extracts features of 

the AE waveform and performs source localization. The effectiveness of their framework 

is shown on an actual fuselage panel.  

An AE waveform analysis technique that recently has gained attention is Shannon 

information entropy [20], [21]. AE waveform information entropy relies on the information 

content of the distribution of emitted AE signals (described by the waveforms). Comparing 

to the conventional features, AE waveform information entropy is a more integral measure 

of information content in a signal and eliminates the effect of threshold on analysis. It uses 

the signal distribution characteristics to measure the information content of the signal. 

Consequently, it quantifies damage, independent of conventional AE signal features, which 

depend on experimental and loading conditions. Chai et al. [22] used the AE information 

entropy and showed that the cumulative energy, counts, and entropy evolve similarly with 
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time. Sauerbrunn et al. [23] suggested that waveform information entropy would be a better 

index of damage than count and energy. Recently, this paper’s authors [24] have shown 

that AE entropy can be used to detect crack initiation in fatigue loading of aluminum 

specimens.  

In this study, information entropy is used to characterize AE signal waveforms emitted 

from open-hole CFRP specimens under tensile fatigue loading. Fatigue loading follows a 

step-stress method to shorten the fatigue life and consequently reduce the volume of AE 

signals. Several fatigue loadings were employed, and the resulting AE signals were 

clustered based on their waveform characteristics in time- and frequency-domains. Finally, 

AE waveform entropy values were studied and compared to the fatigue damage index. 

7.3. Experimental procedure 

7.3.1. Material, geometry, layup, and failure mode 

Specimens used in this study are cut using a CNC Routing machine from the same sheet 

of CFRP material. The laminated sheet follows a layup sequence of [45 90⁄ / −45 0⁄ ]2𝑠 

with a total of 16 plies. Each ply is made up of high-performance unidirectional pre-preg 

sheets with Toray T700G fibers [25] and Toray 2510 pre-preg system [26] with a 65% fiber 

volume density. Figure 1 shows the geometry of the specimens, their dimensions, and AE 

sensor placement. Compared to the ASTM D5766 standard, specimens were decreased in 

width to increase the stress concentration around the hole, which better follows the 

industrial test standards [27]. The selected geometry follows the geometry of the specimen 

in [28] with the length increased to avoid excessive noise recording in the AE sensors. 

Aluminum tabs with a 45° angle at the tip were used over at the gripping area. Tests were 

monitored around the hole using an 8 [MP] Point Grey Flea3 sensor with a 3.8-13 [mm] 
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Fujinon lens. Figure 2 shows the experimental setup and failure mode in two specimens at 

the time of fracture. The failure mode is a pull-out failure, similar to the tensile failure 

mode, but with more presence of delamination.   

 

Figure 7-1 - Specimen geometry and dimensions 

 

Figure 7-2 - Tests setup (a) and failure modes in tests T06 (b) and T07 (c) 

7.3.2. Loading conditions 

A servo-hydraulic material testing system (MTS) machine retrofitted with an Instron 8800 

controller was used to perform the tests. All the specimens were fatigued with a step-stress 

loading condition. At each loading step, specimens were fatigued for a predetermined 

number of cycles, and then the test was paused, and the specimens were temporarily 

unloaded. Upon reloading, a quasi-static loading rate of 0.2 [kN/s] was applied until the 

mean desired stress of the next step was achieved. All fatigue loadings were performed at 

a stress ratio of 0.1 and a frequency of 10 [Hz]. Figure 3-a shows the loading procedure in 

the tests. Each loading interval consisted of a loading step of 2,500 cycles, and the stress 
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level was increased every two loading intervals. Figure 3-b shows the 𝜎𝑚𝑎𝑥 of the loading 

intervals for the five different loading conditions used in this study. Tests were performed 

and continued until fracture. The tests’ loading profiles, failure cycles and 𝜎𝑚𝑎𝑥 at the 

failure cycle are listed in Table 1. 

7.3.3. AE setup 

Two AE wideband (WD) differential sensors from Physical Acoustics Corporation 

(MISTRAS Group, Princeton Junction, NJ) on a PCI-2 board, with an operating frequency 

range of 125 – 1000 [kHz] and a resonance frequency of 450 [kHz], were used to record 

AE signals. Ultrasonic gel couplant was used on the AE sensors’ surface to improve 

attachment and signal recordings. Sensors were placed approximately 25 [mm] away from 

the hole, and the vinyl tape was used for attachment. Signals were passed through a 40 [dB] 

pre-amplifier before reaching the data acquisition module. The Physical Acoustics AEwin 

software (Physical Acoustic Corporation, Version E5.60, MISTRAS Group, Princeton 

Junction, NJ, 2007) was used to record AE signals. The band-pass filter was set to 1 [kHz]–

3 [MHz]. The time it takes for one signal to travel from one sensor to other (delta-T) was 

measured on all specimens before applying any load. This value was then used to remove 

all the signals that arrived from locations other than the hole area. Only the signals that 

passed the delta-T filtering (i.e., valid signals) are used for analysis in this study. Table 2 

shows the statistics of the total number of signals recorded in both sensors, the number of 

signals recorded in Sensor 2 (Channel 2), and the valid signals that passed the delta-T 

filtering and are used in the analysis. 
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Figure 7-3 - Loading sequence (a) and step stress values (b) 

Table 7-1 - Tests loading condition and failure cycles 

Tests # Loading profile Failure cycle 𝝈𝒎𝒂𝒙 at failure [MPa] 

T01 SS1 99,437 361 

T02 SS2 90,570 371 

T03 SS3 108,556 379 

T04 SS3 72,627 344 

T05 SS4 20,402 303 

T06 SS4 71,277 380 

T07 SS4 65,805 372 

T08 SS5 40,241 354 

T09 SS5 50,621 374 

T10 SS5 71,865 415 

Table 7-2 - Statistics of the AE signals in all tests 

Tests # 
Total # of signals  

in a test 

# of signals  

in Ch2 

# of valid signals  

in Ch2 

T01 3,843,597 1,610,028 347,300 

T02 3,957,967 1,781,724 403,202 

T03 4,092,357 1,905,710 640,202 

T04 3,032,376 1,123,312 286,888 

T05 966,549 352,120 99,278 

T06 4,231,685 1,752,735 451,556 

T07 2,905,889 1,066,363 229,392 

T08 1,667,890 737,857 165,867 

T09 1,679,587 754,616 160,070 

T10 4,326,064 2,043,722 423,202 
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As shown in Table 2, AE signals for each test generated a large dataset to be carefully 

analyzed. Data from both channels are used for delta-T filtering. However, only the signals 

recorded in Channel 2 (Ch2) were used for analysis. This sensor was placed further from 

the actuator and thus was less prone to noises caused by high-pressure hydraulic fluid 

vibrations.  

7.3.4. AE signals and waveforms 

AE signals in this study were measured by applying a threshold of 52 [dB]. This threshold 

value was found by mounting specimens to the load frame and measuring background AE 

signal amplitudes, while no load was applied. Signals are defined by timing parameters 

peak definition time (PDT), hit definition time (HDT), hit lockout time (HLT), and max 

duration. The values for the timing parameters in this study are followed by the AEWin 

software manual suggestions, reference [29], and based on the pencil lead break (PLB) 

tests. They were selected as 60 [µs], 100 [µs], 300 [µs], and 200 [ms] for PDT, HDT, HLT, 

and max duration, respectively. To minimize the chance of missing any emitted signal, the 

HLT value was set to its minimum. A sample waveform showing the timing parameters 

and some conventional AE features is shown in Figure 4. In this figure, the HLT appears 

as a series of zero voltages with a dashed line following the HDT window in the waveform. 



157 

 

 

Figure 7-4 – A sample AE waveform, timing parameters, and some time-domain features 

The waveform of a signal is generated based on the sampling rate, pre-trigger time, and hit 

length. A sampling rate of 2 [MHz] or higher is suggested for waveform analysis of CFRP 

materials [30] and a 5 [MHz] sampling rate is frequently used [17], [31]. A sampling rate 

of 5 [MHz] was selected for this study. The value for the pre-trigger in this study is equal 

to the HDT parameter, 100 [µs]. The hit length determines the data points recorded for a 

waveform. It was initially set to 10,240 (10k) data points that resulted in a waveform with 

a maximum duration of 2048 [µs]. However, after the preliminary analysis of the first two 

tests showed the presence of longer signals, the hit length was increased to the maximum 

allowable value of 15,360 (15k) data points. This change resulted in waveform recording 

of signal with durations up to 3072 [µs]. The initial waveform settings resulted in missing 

to record the full waveforms of an average of 1.45% of valid signals in the first two tests. 

However, the increase in hit length resulted in recording the full waveforms in almost all 

valid signals of the rest of the tests. All the signals with partial waveforms are removed 

from the analysis.  
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7.4. Method 

7.4.1. Fatigue damage index  

The fatigue damage index is measured based on dynamic modulus reduction and modeled 

with the Mao-Mahadevan [32] equation. The modulus is measured during fatigue loading 

using Equation 1: 

𝐸 =  
𝐹𝑚𝑎𝑥 𝐿

𝛿 𝐴
=  

𝐹𝑚𝑎𝑥

휀 𝐴
              (1) 

in which 𝐿 is the gauge length (shown in Figure 1), and 𝐴 is the gross cross-section area, 

neglecting the hole. 𝐹𝑚𝑎𝑥 is the maximum load in the cycle, and 𝛿 is the specimen extension 

as the maximum load. Note that the modulus measurement based on tensile loading at the 

beginning of loading intervals shows lower values. This is due to the material's response 

to the loading rate, in which a higher loading rate results in higher strength with lower 

strain values (higher modulus) and vice versa [33]. This is further discussed in [34] and 

[35]. The fatigue damage index is defined using Equation 2: 

𝐷(𝑛) =  
𝐸0 − 𝐸(𝑛)

𝐸0 − 𝐸𝑓
                       (2) 

in which 𝐸0 is the initial modulus of a healthy component, 𝐸 is the modulus in each cycle 

𝑛 and 𝐸𝑓 is the final modulus measurement before fracture. The damage index is modeled 

using the Mao-Mahadevan [32] shown by Equation 3: 

𝐷∗(𝑛) = 𝑞 (
𝑛

𝑁𝑓
)

𝑚1

+ (1 − 𝑞) (
𝑛

𝑁𝑓
)

𝑚2

                    (3) 
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in which 𝑞, 𝑚1 and 𝑚2 are material dependent parameters, 𝑁𝑓 is the fracture cycle, and 𝑛 

is the cycle at which the damage index is measured. The modeled damage index is used as 

the damage index in this study. The result of applying Eq. 3 on the experimental data 

measured using Eq. 2 is shown in Figure 5. The damage index shows a three-stage fatigue 

life in which the rate of damage index is high in the first and last stage while the damage 

increase is gradual in the second stage. 

 

Figure 7-5 - Experimental and modeled damage index in T08 

7.4.2. AE waveform analysis and information entropy measurement  

The waveform of an AE signal is used to measure the information entropy based on 

Shannon [36] entropy: 

𝐼 =  𝑐 ∑ 𝑃(𝑉𝑖) ln(1/𝑃(𝑉𝑖))

𝑛

𝑖=1

                 (4) 

in which 𝑉𝑖 =  {𝑣1, 𝑣2, … , 𝑣𝑛} is the voltage values of the waveform (random variable), 

𝑃(𝑉𝑖) is the probability distribution of the voltage, 𝐼 is the information entropy, and 𝑐 is a 

constant considered to be unity in this study. The unit of AE information entropy in this 
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study is ‘nats’ since Equation 4 uses the natural logarithm. According to the information 

entropy, uniform distributions have the highest information entropy since no value is 

preferred. Meanwhile, biased distributions have lower information entropy (or missing 

information) since some values are associated with higher probabilities. An inherent 

assumption in Eq. 4 requires that all values of the random variable are assigned with a 

probability of less than or equal to one, and the summation of all the probability values in 

the random variable equals one. Histogram of a random variable satisfies the requirements 

of Shannon entropy assumptions and is used in this study as the non-parametric distribution 

of the voltage values. The selection of an appropriate bin width to generate a histogram for 

a random variable is studied in the literature by Scott [37]: 

𝑏𝑛 = 𝑘𝛿𝑛
−1

3⁄                      (5) 

where 𝑏𝑛 is the appropriate bin width, 𝑘 is a constant, given as 𝑘 = 3.49, 𝛿 is the standard 

deviation of the random variable, and 𝑛 is the number of data points in the random variable. 

This equation has the inherent assumption that the underlying distribution of the random 

variable follows a Gaussian distribution. To correct the assumption, two correction 

coefficients based on the difference in skewness and kurtosis of the actual distribution and 

Gaussian distribution are used: 

𝑏𝑐 =  𝑏𝑛  ×  𝐶𝑠𝑘  ×  𝐶𝑘𝑢𝑟          (6) 

in which 𝐶𝑠𝑘 and 𝐶𝑘𝑢𝑟 are the correction coefficients for skewness and kurtosis difference, 

respectively, given in Scott [37], and 𝑏𝑐 is the corrected bin width. The selection of a bin 

width to generate a histogram based on the signals’ waveform rather than using a fixed bin 

width value for all signals is previously discussed by this paper’s authors in [38]. It is 
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shown that this approach results in bin width to be a time-domain parameter that is 

independent of the threshold setting. The correlation coefficient of bin width to the time- 

and frequency-domain features of signals is shown in Figure 6. 

 

Figure 7-6 - Average correlation coefficient of AE signal features to bin width in all tests 

The correlation coefficient of bin width in all tests is found, and the average values in all 

tests are shown in the figure. Figure 6 shows that while bin width is well correlated to 

frequently used time-domain features such as energy, duration, and amplitude, it is 

independent of frequency-domain features.  

7.4.3. Signal clustering 

AE signal clustering is performed based on 𝑘-means clustering. The 𝑘-means is the most 

widely used clustering technique in the AE analysis of laminated composites [18]. This 

technique partitions input signals with d-dimensional features to 𝑘 clusters with 𝐶 =

 {𝑐1, … , 𝑐𝐾} centroids by minimizing the input distances of signals to these centroids. The 

metric used in this study for clustering is the Euclidean distance. The features used in 

clustering are bin width and peak frequency. As shown in Figure 6 and discussed in detail 
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by this paper’s authors in [38], bin width is strongly correlated to the conventional time-

domain features of AE signals, making it an excellent choice to present time-domain 

properties of AE signals and results in redundancy reduction. Also, peak frequency is a 

broadly accepted and commonly used parameter to represent the frequency-domain of 

signals. Therefore, bin width and peak frequency of signals are used for clustering. The 

possible number of clusters examined are 𝑘 ∈ [2,8] and the Silhouette value [39] is used 

to measure the performance of clustering given a choice of 𝑘. Davis Bouldin (DB) [40] 

values are also used for cluster performance measurement to verify Silhouette values. 

Features are normalized to the range of [0 1] before clustering, and the clustering procedure 

is repeated 10 times to avoid local minima. Figure 7 shows the optimum number of clusters. 

 

Figure 7-7 - Optimum number of clusters based on Silhouette and DB indexes. 

The results shown in Figure 7 are the average of Silhouette and DB values for a cluster 

number in all tests. It is seen that similar to AE signals of the same material in tensile 

testing reported in [38], the optimum number of clusters is found to be 2.  
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7.5. Results and discussion  

The AE signal clustering results from two tests are shown in Figure 8. As it is evident from 

the figure, there are two types of clustering observed in the dataset. A total of 4 tests show 

clusters displayed in Figure 8-a (type-a), in which clusters are distinctly separate 

considering the bin width values. However, 6 tests show clusters shown in Figure 8-b (type-

b), in which clusters are distinctly separate with respect to their peak frequency range. To 

investigate this further, two more clustering feature sets were considered. In one, only peak 

frequency was used for clustering, and in the other, only the bin width values were 

employed. Comparison of the resulting clusters shows that for tests with type-a clustering, 

the bin width was the dominant feature, while in tests with type-b clustering, the dominant 

feature was the peak frequency.  

 

Figure 7-8 - Signal clustering results in T07 (a) and T09 (b) 

The two types of clustering indicate that the time-domain and frequency-domain features 

are competing factors in clustering. Therefore, for the case fatigue test, it is not possible to 

correlate clusters to their underlying failure mechanisms based on the frequency range of 

a cluster [41]. This observation can be correlated to the fact that fatigue loading generates 

multiple stress concentrations and damages within a specimen. These factors can result in 
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failure mechanisms to emit signals with different signatures than the ones usually expected 

[42]. Nevertheless, regardless of the clustering type, the number of signals in Cluster 2, on 

average, is only about 8% of all the signals. Figure 9 shows the share of signals in each 

cluster for all the tests. In the remainder of the study, tests with type-a clustering were 

marked by an asterisk. 

 

Figure 7-9 - Proportion of signals with respect to their cluster label 

Figure 10 shows the trend of entropy values as a function of bin width in two tests and 

displays waveform shapes of some signals. It is seen that, as expected, the entropy values 

decrease as the bin width increases. There are two areas of the figure that were further 

explored. First, it was observed that signals with entropy values of 3 [nats] and higher 

mainly were associated with cluster 1. The typical waveform of some of these signals is 

displayed in Fig. 10. These waveforms show multiple spikes and appear to be related to 

matrix failure and generated due to crack surface fretting in fatigue loading. The peak 

frequency range for these signals is less than 300 [kHz]. Second, the signals with large bin 

width values were analyzed. The typical waveform of these signals is shown in Fig. 10. 
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Signals with similar waveforms and bin width values have previously been found in tensile 

tests and were related to delamination by the authors of this study [38]. These signals are 

associated with low entropy values and can be associated with either of the clusters. This 

association seems to be dependent on the clustering characteristics of the tests performed. 

The peak-frequency range for these signals is mainly within a narrow range of 225 - 275 

[kHz]. 

 

 

Figure 7-10 - Entropy of signals versus bin width values and the typical waveforms of signals in a region in 

T06 (a) and T08 (b) 
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Figure 11 shows the trend of entropy values in four different fatigue tests with the damage 

index shown on the right y-axis, and signals with large bin width are marked. Figure 11 

shows that regardless of the classification type, signals in cluster 2 are associated with 

lower entropy values. The three-stage of fatigue life for the damage rate is marked with 

vertical dashed lines on the figures. It is seen that the large bin width signals are usually 

associated with large increases in the damage, indicating that they are associated with 

severe damage. Also, it is observed that entropy values reach lower values in the first and 

last stage of the fatigue life, where the damage rate (modulus reduction rate) is high. 

Therefore, low entropy values can be attributed to more severe damages to the material.  

 

Figure 7-11 - Trend of entropy values during fatigue test and its relation to damage index in four tests of T02 

(a), T03 (b), T06 (c), and T08 (d) 
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The distribution of entropy values with respect to their clusters is shown in Figure 12. This 

figure further confirms that signals in cluster 2 are associated with lower entropy values. 

Figure 13 shows the trend of entropy values as a function of signal amplitudes. It is 

observed that although signals with all amplitude can be associated with low entropy 

values, a general decreasing trend is seen. Furthermore, signals with amplitudes above 90 

[dB], which are commonly associated with severe damages, are associated with low 

entropy values.  

 

Figure 7-12 - Probability density function (PDF) of entropy values in each cluster in four tests of T01 (a), 

T04 (b), T05 (c), and T07 (d) 
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Figure 7-13 - Trend of entropy as a function of amplitude in tests T08 (a) and T09 (b) 

7.6. Conclusion 

This study shows the AE waveform entropy is a robust time-domain feature that can 

discriminate signals independent of the threshold setting. High entropy signals appear to 

have multiple spikes in their waveforms, typically expected from fatigue crack fretting. 

Conversely, lower entropy value signals, specifically signal with large bin widths, relate to 

more severe damages during the fatigue life. Regardless of the signal clustering, this paper 

shows that signals with large bin width values are associated with low entropy values, 

which appear when the damage index rate is at its peak. Therefore, the emergence of these 

signals can be interpreted as a high damage rate. 

The competing effect of bin width and peak frequency in the resulting signal clusters in 

different tests are found as important characteristics. Accordingly, it was not possible to 

relate a specific cluster to a particular mechanism of damage. However, the number of 

signals in cluster 2 remained low in all tests, and the distribution of entropy values in the 

cluster was shown to cover a lower range of entropy values. Therefore, concerning the 

relation of the low entropy values and severe damages, it can be concluded that signals in 
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cluster 2 were mainly related to the fiber failure or interface failure (delamination) 

mechanisms. This cluster should be carefully observed as it better correlates with the final 

failure and fatigue life. 
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 Structural health monitoring in open-hole CFRP 

laminates under fatigue loading based on thermodynamic entropy 

analysis1 

8.1. Abstract 

Structural health monitoring of composite laminates has been studied in the past decades. 

Many empirical and analytical approaches have been proposed in the literature. Recently, 

thermodynamic entropy-based techniques have gained more attention, because they have 

the potential for removing the dependency of the common approaches on experimental 

conditions in order to provide an independent measure of damage. This study applies the 

thermodynamic entropy concepts, and measures the entropy generation due to damage in 

step-stress tensile fatigue loadings. Several tests are performed on open-hole CFRP 

laminates, and mechanical and temperature responses are recorded. This allows for the 

energy dissipation associated with thermal and mechanical mechanisms that contribute to 

entropy generation to be carefully isolated and measured. Furthermore, the damage 

associated with residual plastic deformation is measured on the surface using the full-field 

deformation technique known as Digital Image Correlation (DIC). Experimental results 

indicate that although the trajectory of plastic deformation, internal damage evolution, and 

heat conduction energy dissipation drastically differ in different tests, the final entropy 

                                                 
1 The full-text of this chapter is currently (i.e., April 2021) prepared to submit to the 13th 

International Workshop on Structural Health Monitoring (IWSHM), December 7-9 2021, Stanford 

University, CA. 
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generation values at the time of fracture converge to a critical value, which is known as the 

“entropy endurance limit” or “fatigue fracture entropy (FFE)”. 

8.2. Introduction 

The use of composites in industry has been increasing steadily over the past decades. Fiber-

reinforced polymer (FRP) composites have been the most pervasive due to their superior 

stiffness, strength, corrosion resistance, fatigue life, and density relative to conventional 

lightweight metals. There are many advantages to using composites, including the ability 

to easily tailor their design through laminate architectures to meet specific performance 

requirements, making them highly desirable as both primary and secondary structures. 

However, structural components are prone to degradation, and catastrophic failures may 

occur if they are not properly maintained. Fatigue is a major cause of failure in structural 

components [1]. Fatigue failure occurs due to fluctuating loads at much lower levels than 

the nominal strength of the components. During operation, the fatigue-induced changes in 

component materials, referred to as “damage”, accumulate and ultimately result in failure. 

Fatigue damage is a complex problem in composite materials. Vassilopoulos [2] provides 

a history of fiber-reinforced polymer composite laminate fatigue. There are various 

potential damage mechanisms, such as matrix cracking, fiber/matrix debonding, 

delamination, and fiber breakage present in FRP laminated composites. The synergy 

between these mechanisms ultimately leads to catastrophic failure. Fatigue life analysis 

and remaining useful life estimations using conventional methods usually require use of 

complex equations that suffer from intrinsic epistemic uncertainties. Furthermore, small 

deviations between specimen properties can result in considerable deviation from the initial 

prediction. Liu and Mahadevan [3] propose a probabilistic fatigue life prediction that aims 
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to reduce some of the uncertainties. Other papers have also proposed different uncertainty 

reduction approaches [4]. However, these approaches are complex and require 

consideration of many contributing factors [5], in addition to the effect of loading 

conditions on fatigue analysis of composite laminates [6]. 

Recently, the development of novel approaches for characterizing composites' fatigue 

behavior based on thermodynamic entropy analysis has emerged [7]. As a state function, 

thermodynamic entropy is inherently independent of the damage accumulation path and 

provides the potential to characterize fatigue damage independent of the loading condition. 

Examples of it are shown in [8], [9], and the entropy use in structural health monitoring 

and remaining useful life estimation is demonstrated in [10]. Fatigue damage is an 

irreversible process that dissipates energy and thus generates entropy. This irreversibility 

and entropy generation can be measured from detected thermal and mechanical energies 

dissipated while the system undergoes fatigue. While the plastic energy dissipation through 

hysteresis loop measurement has been used to predict fatigue damage accumulation [11], 

[12], such predictions and their applications can be further improved in an entropy 

framework. In this case, the contributing mechanisms of the hysteresis loop must be studied 

further, and the variables participating in entropy generation should be isolated. The 

contributing energy dissipation mechanisms in hysteresis loop and their interaction depend 

on the material and loading condition. A previous study by the authors [13] has shown the 

potential of crack initiation detection based on thermodynamic analysis using non-

destructive testing (NDT) techniques that include digital image correlation (DIC) analysis. 

The use of NDT techniques on composite laminates have been extensively shown in the 

literature [14], specifically by relying on temperature analysis [15], [16] and DIC [17]–
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[20]. DIC is a full-field strain measurement technique and is used in this study to estimate 

the plastic deformation energy in fatigue loading.  

The use of thermodynamic entropy as a damage index stems from the fact that fatigue 

damage is irreversible. Thermodynamic entropy has the potential to combine different 

energy dissipations mechanisms and present them under one unique value. This is a 

valuable property that broadens it applications and offers life prediction techniques 

independent of loading condition.  This is because a change in the loading condition would 

change energy dissipations. Energy dissipation property is promising in composite 

laminates due to the complexity of damage progression, the mechanisms for energy 

dissipation, activation of such mechanisms, and the synergy between multiple damage 

mechanisms that accelerate fatigue failure. Therefore, in this study all the participating 

energy dissipation mechanisms in entropy generation are carefully identified and measured 

during step-stress tensile fatigue testing. The loading conditions follow different starting 

points and stress-step sizes. The energy dissipations from different mechanisms are then 

used to quantify the entropy generation and identify a critical value associated with 

catastrophic fatigue failure. 

8.3. Experimental procedure 

In this section, the material, geometry, manufacturing of the specimens, and the dominant 

failure mode are first described. Then, descriptions of the loading conditions, DIC and 

temperature measurements explanations are provided.  
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8.3.1. Materials, geometry, manufacturing, and failure mode 

A laminated sheet made of carbon FRP (CFRP) with the layup sequence of 

[45 90⁄ / −45 0⁄  ]2𝑠 is used for this study. Each ply of the laminate is made with Toray 

T700G fibers [21] and Toray 2510 pre-preg system [22] with a 65% fiber volume density. 

All the specimens are cut from the same sheet using a CNC Routing machine. The 

specimens follow an open-hole rectangular geometry. Figure 1 shows the geometry of 

specimens and the dimensions. Figure 2 shows the experimental setup and failure mode in 

two specimens at fracture. The fatigue fracture failure mode is pull-out failure, similar to 

the tensile failure mode, but with more presence of delamination.  

 

Figure 8-1 - Specimen geometry, sensor placement and control volumes 

 

Figure 8-2 - Experimental setup (a) and pull-out fracture failure mode in two tests (b and c). 
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8.3.2. Loading condition and data acquisition 

A step-stress tensile fatigue loading condition was used in this study. At each loading step, 

specimens were fatigue for a predetermined number of cycles, and then the test was paused. 

At the pause, specimens were unloaded and images for DIC analysis were taken. Upon 

reloading, specimens were loaded quasi-statically with a loading rate of 0.2 [kN/s] until the 

mean stress of the next step. All fatigue loadings were performed at a stress ratio of 0.1 and 

a frequency of 10 [Hz]. Figure 3-a shows the loading procedure in the tests. Each loading 

interval includes a loading step of 2,500 cycles and the stress level was increased every 

two loading intervals. Figure 3-b shows the 𝜎𝑚𝑎𝑥 of the loading intervals for the different 

loading conditions used in this study. Tests were continued until fracture. Test number, 

their loading profile, failure cycle and 𝜎𝑚𝑎𝑥 at the failure cycle is reported in Table 1. 

 

Figure 8-3 - Loading procedure (a) and different stress-steps in loading each condition (b) 

Table 8-1 - Tests summary 

Tests # Loading profile Failure cycle 𝜎𝑚𝑎𝑥 at failure [MPa] 

T1 S1 99,437 361 

T2 S2 71,277 380 

T3 S2 65,805 372 

T4 S3 40,241 354 

T5 S3 50,621 374 

T6 S3 71,865 415 
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A servo-hydraulic material testing system (MTS) machine retrofitted with an Instron 8800 

controller was used to perform the tests and record the mechanical response of the 

specimens. In addition to the servo-hydraulic machine, a linear variable differential 

transformer (LVDT) extensometer is attached to the back surface of the specimens to 

record local response (Figure 1). Specimens were speckle patterned on the front surface. 

Tests were monitored around the hole using an 8 [MP] Point Grey Flea3 sensor with a 3.8-

13 [mm] Fujinon lens. For each test, a set of 5 consecutive images were recorded as the 

“Reference” image before any load was applied. At the unloading intervals, the specimen 

was unloaded and five consecutive images were recorded. These consecutive images were 

then averaged to minimize noises in image recording. Image averaging was done by 

averaging the intensity of pixels. The averaged images were used for DIC analysis. The 

temperature profile of specimens was recorded using four thermocouples attached to the 

back surface, as shown in Figure 1. Temperature data of these sensors are used to determine 

the heat transfer from specimens. Material properties of density, specific heat, heat 

conduction coefficient and heat radiation emissivity are reported in Table 2 [22], [23]. 

Table 8-2 - Material properties 

𝝆 [𝒌𝒈 𝒎𝟑⁄ ] 𝒄 [𝑱 𝒌𝒈𝑲⁄ ] 𝒌 [𝑾 𝒎𝑲⁄ ] 휀 

1517 752 9.6 0.85 

8.4. Thermodynamic entropy analysis 

Thermodynamic entropy generation in fatigue testing is derived based on continuum 

damage mechanics presented in [24]. The entropy generation rate is defined by Equation 

1: 

�̇�  =
1

𝑇
(𝜎: 휀�̇� − 𝐴𝑘�̇�𝑘 −

1

𝑇
�̇�  ∙  ∇𝑇) ≥ 0                (1) 
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in which �̇� is the entropy generation rate, 𝑇 is the absolute temperature, 𝜎 is the stress, 휀�̇� 

is the plastic strain, �̇�𝑘 is the change rate of any internal variable, 𝐴𝑘 is the thermodynamic 

forces associated with the internal variable, �̇� is the thermal flux and ∇𝑇 is the temperature 

gradient. Therefore, entropy generation defined by Eq. (1) consists of contributions from 

three dissipative energies: entropy generation due to plastic deformation 
1

𝑇
(𝜎: 휀�̇�), entropy 

generation due to the evolution of internal variables 
1

𝑇
(𝐴𝑘�̇�𝑘), and entropy generation due 

to heat conduction 
1

𝑇
(

1

𝑇
�̇�  ∙  ∇𝑇). It is important to emphasize that heat conduction is the 

only heat dissipation mechanism that participates in entropy generation. The share of each 

of the three energy dissipation mechanisms contributing part in entropy generation depends 

on the material. For instance, while energy dissipation due to internal damage is negligible 

in metallic materials [24], it can account for as much as 50% of energy dissipation in 

composite laminates [25].  

The contribution of energy dissipation for each mechanism is measured separately in this 

study and the relation between the three terms of Equation 1 is defined based on the 

hysteresis loop measurement. The hysteresis loop energy is explained in Equation 2: 

𝐻 = 𝐸𝑑𝑎𝑚𝑎𝑔𝑒 + 𝐸𝑝𝑙𝑎𝑠𝑡𝑖𝑐 +  𝑄𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛                 (2) 

In this equation 𝐸𝑑𝑎𝑚𝑎𝑔𝑒 describes the internal damage energy consumed by the specimen 

that is used to grow cracks and delamination, 𝐸𝑝𝑙𝑎𝑠𝑡𝑖𝑐 is the energy used for plastic 

deformation and 𝑄𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛 is the heat dissipation due to temperature difference on the 

specimen and surroundings. Heat dissipation can be further described by the summation of 
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heat transfer due to conduction, convection and radiation. Each of which is shown by the 

following Equations: 

𝑄𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛 =  𝑄𝑐𝑜𝑛𝑑 + 𝑄𝑐𝑜𝑛𝑣 + 𝑄𝑟𝑎𝑑                         (3) 

𝑞𝑘 =  [
(𝑘 𝐴𝑐𝑟𝑜𝑠𝑠−𝑠𝑒𝑐𝑡𝑖𝑜𝑛 

𝑇𝑎 − 𝑇𝑏

∆𝑥𝑎 −𝑏
)

𝑉𝐶.𝑉.
] × 1 𝑓𝑡𝑒𝑚𝑝⁄        (4) 

𝑞ℎ = [
(ℎ 𝐴𝑠𝑢𝑟𝑓 (𝑇𝑠 −  𝑇𝑎𝑚𝑏))

𝑉𝐶.𝑉.
] × 1 𝑓𝑡𝑒𝑚𝑝⁄                (5) 

ℎ = 1.42 (
𝑇𝑠 −  𝑇𝑎𝑚𝑏

𝐿
)

0.25

                                           (6) 

𝑞𝑟 = [
𝜖 𝜎𝑆𝐵  𝐴𝑠𝑢𝑟𝑓 (𝑇𝑠

4 − 𝑇𝑎𝑚𝑏
4)

𝑉𝐶.𝑉.
] × 1 𝑓𝑡𝑒𝑚𝑝⁄             (7) 

where 𝑞𝑘 is the conduction heat transfer and 𝑘 is the heat conduction coefficient reported 

in Table 2, 𝑞ℎ is the heat convection, ℎ is the convection coefficient calculated using 

empirical Equation 6, 𝑇𝑠 is surface temperature and 𝑇𝑎𝑚𝑏 is ambient temperature, 𝑞𝑟 is the 

radiation heat transfer, 𝜖 is the emissivity value reported in Table 2, 𝜎𝑆𝐵 is the Stefan-

Boltzmann coefficient. Equations 3-7 are used to measure the heat transfer whenever 

temperature data are available. In order to transfer heat dissipation units from [𝑊] to 

[
𝐽

𝑚3⁄ ], their values are divided by the temperature acquisition rate that is 𝑓𝑡𝑒𝑚𝑝 = 2 [𝐻𝑧] 

and 𝑉𝐶.𝑉., the volume of their control volume (C.V.). A different approach to measure the 

heat dissipation for a loading interval is the use of cooling rate [26]. In this method, fatigue 
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loading is paused suddenly and the cooling rate is measured. This rate is then translated to 

heat dissipation using Equation 8: 

𝜌 .  𝑐 .  
𝜕𝑇𝑠

𝜕𝑡
|

𝑡=𝑡∗+
= − 𝑄 =  −(𝑄𝑐𝑜𝑛𝑑 + 𝑄𝑐𝑜𝑛𝑣 + 𝑄𝑟𝑎𝑑)                     (8) 

where 𝜌 is specimen density (Table 2), 𝑐 is the specimen specific heat (Table 2), 
𝜕𝑇𝑠

𝜕𝑡
|

𝑡=𝑡∗+
 

is the slope of temperature change at the pause, and 𝑄 is the heat dissipation that is the 

summation of heat conduction, convection and radiation. In order to convert the heat 

dissipation energy for the loading step, 𝑄 should be divided by 𝑓𝑡𝑒𝑠𝑡 = 10 [𝐻𝑧] and 

multiplied by the number of cycles in the loading step. Figure 4 shows the temperature 

profile and measurement of the cooling rate for a loading interval in a test. The initial 

decreasing and monotonic increase are due to unloading and quasi-static loading in a 

loading interval.  

 

Figure 8-4 - Cooling rate measurement based on the temperature profile 
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The plastic damage energy is measured using the residual plastic strain values from DIC 

analysis on the surface. For this purpose, strain values generated by DIC analysis are 

measured and averaged around the hole area and used in Equation 9: 

𝐸𝑝𝑙𝑎𝑠𝑡𝑖𝑐 = 𝜎𝑦 휀𝑎𝑣𝑔                          (9) 

in which 𝜎𝑦 is the tensile strength of the material measured as 𝜎𝑦 = 337 [𝑀𝑃𝑎] and 휀𝑎𝑣𝑔 

is the average residual plastic strain on the surface at the time of measurement. The area of 

interest (AOI) for DIC analysis and strain measurements is local to the hole area. In order 

to minimize the effects of crack growth and pseudo-compression values sometimes 

appearing on the surface as a result of large cracks and lack of accurate correlations, a total 

number of 16 virtual extensometer within the AOI are used to measure the strain values in 

loading direction (휀𝑦𝑦). These extensometers are distributed such that 6 cover each side of 

the hole and 4 cover the hole area. The extensometers showing negative values are removed 

from averaging. Figure 5 shows the strain map and virtual extensometer placement in a 

test.  

Looking back at Equation 2, we can see that on the right-hand side, all the variables can be 

measured except the internal damage energy. On the left-hand side, we can measure the 

hysteresis loop using the stress-strain curves during fatigue loading. Therefore, the internal 

damage energy can be found by subtracting the left-hand side of Eq. 2 with the measured 

heat dissipation and plastic deformation energy on the right-hand side. However, it should 

be made sure that the C.V. used for measurements are consistent. There are two C.V.s 

assumed in this study that are shown in Figure 1. The larger C.V. is named Gauge C.V. 

and covers the whole gauge area of the specimen and the smaller C.V. is called Ext. C.V. 
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which covers only covers the more local area around the hole that is covered by the 

extensometer. The interaction between the C.V.s and their effect on the data analysis is 

further discussed in the next section.  

 

Figure 8-5 - Strain map around the hole area and virtual extensometers on surface 

8.5. Experimental results and discussion 

Based on geometric symmetry and the similarity of temperatures recorded in 

thermocouples near the hole (T1 and T2) and temperatures recorded in thermocouples near 

the grips (T3 and T4) shown in Figure 1, these temperatures are averaged and used as 𝑇𝑎 

and 𝑇𝑏 based on the following: 

𝑇𝑎 =  
𝑇1 + 𝑇2

2
                       (10) 

𝑇𝑏 =  
𝑇3 + 𝑇4

2
                        (11) 

The effect of this change in the variable is seen when the heat dissipation of the two C.V.s 

is compared. Figure 6-a shows the result of heat dissipation measurement based on Eq. 8 

of a test for the two selected C.V.s. It is seen that the heat dissipation is higher in the Ext. 
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C.V. This is because the temperature profile is not uniform on specimens and the 

temperature around the hole area is considerably higher. When the Ext. C.V. is studied, its 

temperature is represented by 𝑇𝑎. In this case, the outer temperature for heat conduction 

measurement would be 𝑇𝑏. On the other hand, when Gauge C.V. is selected, the 

representative temperature would be the average of 𝑇𝑎 and 𝑇𝑏 and the grip temperature to 

measure the conduction heat transfer is considered to be equal to 𝑇𝑏. Figure 6-b shows the 

effect of heat dissipation measurement based on Eq. 4-7. This comparison further 

magnifies the effect of C.V. selection when measuring heat dissipation. This becomes 

especially important in the case of entropy measurement. As explained above, conduction 

heat transfer is the only portion of heat dissipation that participated in entropy generation. 

As seen in Figure 6-b, this heat dissipation mechanism is mostly impacted by the C.V. 

selection. The heat convection and heat radiation dissipation values are comparable and 

not heavily affected by the change of C.V., while heat conduction values are drastically 

changed. The Ext. C.V. is the fracture site. Therefore, conduction heat dissipation values 

of the Ext. C.V. should be used in entropy measurements.  

 

Figure 8-6 - Heat dissipation (Eq. 8) for Ext. and Gauge C.V. (a) and heat transfer mechanisms (Eq. 4-7) of 

the two C.V. (b) in T6. 
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The measurement of total energy dissipation based on hysteresis energy (Eq. 2) is also 

affected by the selection of C.V. When the larger C.V. (i.e., the Gauge C.V.) is considered, 

the hysteresis loop measurement uses the stress-strain data collected by the loading frame. 

Meanwhile, the hysteresis loop measurement for the Ext. C.V. is done based on the data 

collected in the extensometer. Figure 7-a shows how these two measurements (per cycle) 

compare in a test. As expected, hysteresis energy in Gauge C.V. is continuously higher 

than the one for Ext. C.V. This is due to the larger volume that it covers and consequently 

the higher energy consumed by the material. Although, when the trend of the two 

measurements is compared, it is seen that the hysteresis measurements by loading frame 

are more affected by the increase in stress in step-stress loading. Figure 7-b and 7-c show 

the trajectory of hysteresis measurements within a loading step. It is seen that while 

hysteresis measurements in Gauge C.V. stay at a constant level within a loading step and 

increase as the stress level of the following loading step increases (Figure 7-b), the 

hysteresis measurements by extensometer show an increase within a loading step, and are 

negligibly affected by stress increase of the following steps (Figure 7-c). The observation 

made in Figure 7 and comparing the hysteresis measurements and heat dissipation 

measurements in the Ext. C.V. suggests that we can assume the hysteresis measurements 

by extensometer is mostly affected by the internal and plastic deformation energies rather 

than heat dissipations. Therefore, Eq. 2 can be re-written as: 

𝐻𝐺𝑎𝑢𝑔𝑒 𝐶.𝑉. = [𝐸𝑑𝑎𝑚𝑎𝑔𝑒 + 𝐸𝑝𝑙𝑎𝑠𝑡𝑖𝑐]
𝐸𝑥𝑡.  𝐶.𝑉.

+ [𝐸𝑑𝑎𝑚𝑎𝑔𝑒 + 𝐸𝑝𝑙𝑎𝑠𝑡𝑖𝑐]
𝑁𝑜𝑛 − 𝐸𝑥𝑡.  𝐶.𝑉.

+  𝑄𝐸𝑥𝑡.  𝐶.𝑉. +  𝑄𝑁𝑜𝑛 − 𝐸𝑥𝑡.  𝐶.𝑉.                                     (12) 

And  
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𝐻𝐸𝑥𝑡.  𝐶.𝑉. =  [𝐸𝑑𝑎𝑚𝑎𝑔𝑒 + 𝐸𝑝𝑙𝑎𝑠𝑡𝑖𝑐]
𝐸𝑥𝑡.  𝐶.𝑉.

                        (13) 

in which 𝐻𝐺𝑎𝑢𝑔𝑒 𝐶.𝑉. is the hysteresis energy measured by loading frame for the Gauge 

C.V., 𝐻𝐸𝑥𝑡.  𝐶.𝑉. is the hysteresis energy measured by extensometer for the Ext. C.V., and 𝑄 

is the heat dissipations. Eq. 12 explains that the energy absorbed in the specimen (Gauge 

C.V.) is equal to the summation of energy dissipations in the Ext. C.V. and the rest of the 

specimen. Figure 8 displays how Eq. 12 is showing in a test. 

 

Figure 8-7 - Comparison of the hysteresis energy per cycle measured in Gauge C.V. vs. Ext. C.V. in T6 

 

Figure 8-8 - Comparison of the hysteresis energy in Gauge C.V. with hysteresis energy and heat dissipation 

energy in Ext. C.V. in T6 (a) and T4 (b) 
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Figure 8 shows that the assumption made for the hysteresis values and the separations of 

the energies are valid. The area under the dashed line in the figure indicates the energies 

spent in the Ext. C.V. by both heat dissipation and hysteresis energy (i.e., plastic 

deformation energy and internal damage energy) and the rest would show the energies 

consumed by the rest of the specimen. It shows that in the beginning, energy consumption 

by the specimen is more uniform and the absorbed energy is distributed more evenly in the 

specimen. However, as we get closer to the fracture failure, a higher share of the energy 

that enters Gauge C.V. is consumed in the Ext. C.V. that leads the final fracture at the hole. 

The figure also shows how the hysteresis energy trend in Ext. C.V. (plastic and internal 

damage energy) is compared to the heat dissipation energy.  

With regard to the fracture location of the specimen that falls in the Ext. C.V., the entropy 

generation in tests can be measured using the following equation: 

𝑆 = ∑
1

𝑇𝑎_𝑎𝑣𝑔
[𝐻 + 𝑄𝑐𝑜𝑛𝑑 ]𝐸𝑥𝑡.  𝐶.𝑉.

𝑙𝑜𝑎𝑑 𝑠𝑡𝑒𝑝𝑠

= ∑
1

𝑇𝑎_𝑎𝑣𝑔
[𝐸𝑑𝑎𝑚𝑎𝑔𝑒 + 𝐸𝑝𝑙𝑎𝑠𝑡𝑖𝑐 + 𝑄𝑐𝑜𝑛𝑑 ]𝐸𝑥𝑡.  𝐶.𝑉.

𝑙𝑜𝑎𝑑 𝑠𝑡𝑒𝑝𝑠

 (14) 

in which 𝑆 is the cumulative entropy generation, 𝑇𝑎_𝑎𝑣𝑔 is the average temperature in a 

loading step, 𝐻 is hysteresis energy of the Ext. C.V. that is the summation of 𝐸𝑑𝑎𝑚𝑎𝑔𝑒 +

𝐸𝑝𝑙𝑎𝑠𝑡𝑖𝑐 in the C.V., 𝑄𝑐𝑜𝑛𝑑 is the conduction heat transfer from the Ext. C.V. and the 

summation is over all loading steps. Figure 9 shows the final entropy generation values 

reached in different tests at the time of fracture. It is seen that entropy converges to a mean 
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value of 1.13 [
𝑀𝐽

𝑚3𝐾
⁄ ]. This value is called “entropy endurance limit” or “fatigue 

fracture entropy (FFE)”, and it is similar to the values previously reported [8], [9]. 

 

Figure 8-9 - Fatigue fracture entropy (FFE) of all tests at their failure cycle, and the mean and 95% confidence 

interval for FFE 

The values reported in the figure are measured using hysteresis energy and heat conduction 

energy of the Ext. C.V. In order to further study the effect of dissipation energies in entropy 

generation, the hysteresis values can be further divided into plastic deformation energy and 

internal damage energy as shown in Eq. 13. The plastic deformation energy can be 

estimated using locally measured strains near the hole using the DIC technique and based 

on Eq. 9. Therefore, the share of internal damage energy can also be estimated. Figure 10 

shows the energy dissipation trend for each component separately and compares them in 

three different tests. The trend for temperature values and entropy generation is also shown 

in the figure. 
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Figure 8-10 – Comparison of energy dissipation mechanisms participating in entropy generation in tests T1 

and T2 (a) and T2 and T3 (c) and comparison of the temperature increase and entropy generation trend in 

tests T1 and T2 (b) and T2 and T3 (d).    

Figure 10-a shows the energy dissipation and 10-b shows the mean temperature change 

and entropy generation trend in two tests of T1 and T2 that are fatigued using loading 

conditions of S1 and S2. It is seen that although the energy dissipations by each mechanism, 

temperature increase and entropy generation trend are different throughout each test, they 

both have reached fracture failure when their final cumulative entropy has reached the FFE 

value. Figure 10-c and 10-d compare the tests of T2 and T3. It is seen that although the 

loading conditions of the tests shown are identical, the mechanism of energy dissipation 

differs substantially. It is also seen that due to the brittle characteristic of CFRP materials, 

as expected, the share of plastic deformation is small in comparison to damage energy. 
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Also, the share of internal damage increases as the tests progress. In the beginning, the 

share of this variable is usually small and heat conduction plays the main role in entropy 

generation. However, its share increases exponentially as the test progress and becomes 

the largest energy dissipation mechanism.  

8.6. Conclusion  

Thermodynamic entropy generation in laminated open-hole CFRP specimens is studied in 

this paper. In particular, the contributions of each energy dissipation mechanism have been 

characterized through careful measurements of each variable. It is shown that when 

measuring entropy, the selection of a control volume should be made very carefully. This 

selection would affect the measurement of heat conduction dissipation that directly 

influences the entropy generation measurement. Energy dissipation due to plastic 

deformation is estimated using the DIC technique and is very sensitive to measurement 

conditions. The amount of energy dissipation due to internal damage is also estimated, so 

the interaction between energy dissipation mechanisms could be explained.  

It is shown that regardless of loading condition and substantial difference in energy 

dissipation trajectories, the final fracture under tensile fatigue loading in specimens occurs 

when the cumulative thermodynamic entropy generation reaches the entropy endurance 

limit or FFE value of 1.13 [
𝑀𝐽

𝑚3𝐾
⁄ ]. This value and the trajectory of the participating 

parameters can be used in structural health monitoring of CFRP composite laminates and 

provide indications of final failure before a catastrophic event occurs.  
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 Conclusions, Contributions and Recommendations  

9.1. Conclusions 

This dissertation developed new methods to detect fatigue damage and assess fatigue life 

in metallic (i.e., aluminum alloy) and FRP laminated composites (i.e., CFRP) using 

measurements from two NDT techniques: AE and DIC. Methodologies were developed to 

convert the NDT measurements into information entropy and thermodynamic entropy 

generated by fatigue damage, and correlate these entropies with the cumulative amount of 

fatigue damage to predict fatigue life. Experimental results supported developing these 

methods and were used to validate the results and the developed models. The research 

results mainly concluded that: 

9.1.1. AE and information entropy-related conclusions  

• Information entropy of AE signal waveforms exhibits little dependence on the 

spatial location of the measurement, unlike threshold-dependent features of AE 

signal such as count and energy. 

• The minimum value of information entropy of AE signal waveforms precedes the 

formation of a fatigue macrocrack in aluminum materials, independent of the 

loading conditions.  

• The critical role of bin width selection is an essential step in generating a histogram 

from an AE signal waveform, and consequently, measuring its information entropy, 

and is usually overlooked. Bin width selection based on the previous work by Scotts 

[1] proved to be useful. 
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• In aluminum materials, the appropriate bin width for the AE waveform histogram 

is found to be a fixed value equal to the average bin width of all valid signals.   

• In FRP materials, due to the nature of AE signal sources, selecting a fixed bin width 

for waveform analysis of all signals does not seem proper. In this case, the 

appropriate bin width for each waveform should be set individually based on the 

waveform characteristics. 

• The bin width value of an AE signal waveform is independent of the threshold 

setting. This feature strongly correlates with the conventional time-domain 

threshold-dependent features of AE signals in CFRP laminated composites. It can 

be used as a time-domain representation of the waveform in clustering. 

• The AE waveform information entropy is a robust time-domain feature that can 

discriminate signals in fatigue loading of FRP materials. High entropy signals are 

related to fatigue crack fretting. Conversely, low entropy value signals with large 

bin widths relate to more severe damages during the fatigue life. 

• Signals with large bin width values are associated with low entropy values and 

appear when the fatigue damage index rate in CFRP laminated composites is at its 

peak. Therefore, the emergence of these signals can be interpreted as existence of 

a high damage rate. 

9.1.2. DIC and thermodynamic entropy-related conclusions  

• In aluminum materials in which plastic deformation accounts for the highest portion 

of the hysteresis energy, the DIC technique can be successfully used to measure 

thermodynamic entropy on the surface. 
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• The thermodynamic entropy generation rate is found to be dependent on the loading 

spectrum. However, regardless of the damage rate, time to crack initiation, loading 

spectrum, test frequency and temperature, crack initiation in aluminum materials 

occurs at a nearly constant entropic endurance level or FFE value 

of 13.9 [
𝑘𝐽

𝑚3𝐾
⁄ ]. 

• Concerning the high non-linearity in thermal and strain maps in fatigue testing on 

materials, the selection of a control volume for thermodynamic entropy 

measurement should be made very carefully. This selection mainly affects the 

measurement of heat conduction dissipation that directly influences the 

thermodynamic entropy measurement and is more pronounced in CFRP laminated 

composites.  

• Regardless of the loading condition and substantial difference in energy dissipation 

trajectories, the final fracture in CFRP laminated composites under tensile fatigue 

loading occurs when the cumulative thermodynamic entropy generation reaches the 

entropic endurance limit or FFE value of 1.13 [
𝑀𝐽

𝑚3𝐾
⁄ ]. 

9.1.3. Fatigue life estimation-related conclusion 

• The use of information entropy and thermodynamic entropy within a dynamic 

Bayesian updating framework results in accurate estimations of RUL independent 

of fatigue loading conditions.  
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9.2. Contributions 

The major contributions are as follows: 

1. Development and validation of a novel approach to use AE waveform information 

entropy for fatigue damage detection and life assessment in both metallic and FRP 

laminated composites.  

2. Development of new techniques for appropriate bin width selection to more 

appropriately measure the information entropy of the detected fatigue-related AE 

signal waveforms. 

3. Development of new approaches to using the DIC technique in thermodynamic 

entropy measurement in both metallic and FRP composite materials. 

4. Assessment of the thermodynamic entropic endurance limits in both metallic and 

FRP composite materials with detail entropy generation trajectories. 

5. Development of a framework for RUL estimation based on the information entropy 

and thermodynamic entropy. 

9.3. Recommendations for future research 

Based on the results of this research the recommendations for future works are summarized 

as: 

• Study the characteristics and the ranges of AE waveform information entropy 

related to different fatigue damage mechanisms in FRP laminated composites and 

the effect of fatigue damage on the information entropy values.  

• Development of AE signal waveform decomposition and noise reduction methods 

based on information entropy in fatigue damage analysis. 
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• Use of maximum entropy principle for representing AE waveform to find 

information entropy values to further decrease the effect of AE signal attenuation. 

• Use of the Kullback–Leibler divergence and maximum relative entropy principles 

for AE waveform distribution analysis and their applications for fatigue failure 

detections.  

• Investigations of the information entropy values associated to the strain map 

measurement using DIC technique. 

•  Study of the relationship between the two entropic indices used in this study and 

explanation of their theoretical relation in the context of fatigue damage 

assessment.  

• Calculation of the thermodynamic entropy using a higher frequency of DIC image 

recordings to decrease the uncertainty of the entropic endurance distribution. 

• Inclusion of uncertainties associated with the distribution of information entropy 

and thermodynamic entropy at the time of failure in RUL estimations.  

• Applications of more sophisticated machine learning techniques such as the 

Convolutional Neural Network for online thermodynamic entropy and information 

entropy measurement, and data fusion, to achieve real-time RUL estimations. 

• Study the detection of failure mechanisms and their progression in unbalanced 

laminated composites, fasteners and joints. 

• Investigate the effects of resin rich areas in laminated composites. 
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