
describes the accuracy of our knowledge of x(t) at time t = t

0

, and

jv(t

0

)� v

0

j � � v

0

describes the accuracy of our knowledge of v(t) at time t = t

0

. Then the above inequalities become

jv(t

1

)� v

0

j � � v

0

+ jt

1

� t

0

j �A;

and therefore

jx(t

1

)� x

0

j � � x

0

+ jt

1

� t

0

j �� v

0

+

1

2

� jt

1

� t

0

j

2

�A;

so we have to have

� t � j(V �� v

0

)=Aj

to keep the velocity within bounds, and

(� t)

2

+

2 �� v

0

A

� (� t) � j2 � (P �� x

0

)=Aj

to keep the position within bounds.

At this point, we are stuck unless we can say something more helpful about the acceleration. Suppose we know that

the acceleration jumps around, and that it has a distribution of values with mean 0 and variance R. In this case, we

might be able to reduce the estimates for position and velocity and improve the time intervals.

References

[1] P. Henrici, Elements of Numerical Analysis, Wiley (1964)

[2] J. Stoer, R. Bulirsch, Einfu:hrung in die Numerische Mathematik, II Springer (1973)

11



(x; y)(k + 1) = (x; y)(k)

�

cos(dt) sin(dt)

�sin(dt) cos(dt)

�

;

and we have as above

X(0) = (1; 0);

X(k + 1) = X(k)(I � cos(dt) + J � sin(dt));

so

X(k) = (1; 0) (I � cos(dt) + J � sin(dt))

k

;

= (1; 0) (I � cos(k � dt) + J � sin(k � dt));

and

x(k � dt) = cos(k � dt);

y(k � dt) = sin(k � dt);

from which we can hazard a guess as to the correct solution.

5.2 Measurement

Let us take a simple system in which the velocity and position are occasionally known through inexact measurement.

Our state variables are p for the position, v for the velocity, and a for the unknown acceleration.

We assume that the acceleration a is bounded by some constant A, so that for any times t

0

< t

1

jv(t

1

)� v(t

0

)j < jt

1

� t

0

j �A:

We assume that we have characterizers

(a(t); t

i�1

; t

i

)

that describe the acceleration, and model characterizers

(v = p

0

; 0

�

;�);

(a = v

0

; 0

�

;�):

Therefore, we can compute the velocity and position by

v(t) = v(t

0

) +

Z

t

0

<u<t

a(u) du;

p(t) = p(t

0

) +

Z

t

0

<u<t

v(u) du:

The problem is to choose measurement times and variables that maintain a certain accuracy in the estimates of

position.

We assume that we can measure position within a bound

jp

meas

(t) � p(t)j < P;

and that we can measure velocity within a bound

jv

meas

(t)� v(t)j < V;

but that we want to keep our estimate p

est

of position either more accurately than the position measurement error

(this might or might not be possible) or using as few measurements as possible.

We assume �rst that x

0

; v

0

are known, and consider an interval [t

0

; t

1

). We compute

jv(t

1

)� v

0

j < jt

1

� t

0

j �A;

and therefore

jx(t

1

)� x

0

j <

1

2

� jt

1

� t

0

j

2

�A;

so we would have to choose

� t = t

1

� t

0

so that

� t � jV=Aj

to keep the velocity within bounds, and

(� t)

2

� j2 � P=Aj

to keep the position within bounds.

But of course, we don't know x(t) or v(t) after the �rst time interval, so we need to change the previous derivation

a bit.

We assume that we know x

0

and v

0

, and that

jx(t

0

)� x

0

j � � x

0

10



y

0

= x;

x(0) = 1;

y(0) = 0;

as above. Our initial conditions are

(x : 1; 0);

(y : 0; 0);

as before.

The method we use is a simpli�ed second-order Runge-Kutta method [2], [1], which basically amounts to averaging

the usual Euler approximation in an interval with a linear reapproximation at the endpoint of the interval. At a

given time t = t

0

, if we have

x(t

0

) = x

0

;

y(t

0

) = y

0

;

then we have

x(t) = x

0

� y

0

� dt� x

0

� dt

2

=2;

y(t) = y

0

+ x

0

� dt� y

0

� dt

2

=2;

and it is the extra dt

2

terms that make the method second-order.

As above, we assume equal time intervals and get an iteration

x(0) = 1;

y(0) = 0;

x(k + 1) = x(k)� y(k) � dt� x(k) � dt

2

=2;

y(k + 1) = y(k) + x(k) � dt� y(k) � dt

2

=2;

which can be written as a vector equation

(x; y)(0) = (1; 0);

(x; y)(k + 1) = (x; y)(k)

�

1� dt

2

=2 dt

�dt 1� dt

2

=2

�

;

and we have as above

X(0) = (1; 0);

X(k + 1) = X(k)(I � (1� dt

2

=2) + J � dt);

so

X(k) = (1; 0) (I � (1� dt

2

=2) + J � dt)

k

;

which can be computed exactly.

Since the eigenvalues of (I � (1� dt

2

=2) + J � dt) are 1� dt

2

=2� i � dt, which have magnitude 1 + dt

4

=4, this simple

method still does not converge (but much more slowly).

5.1.3 Higher-Order Example

A similar analysis of the usual 4th-order Runge-Kutta method leads to an iteration

x(t) = x

0

� y

0

� dt� x

0

� dt

2

=2 + y

0

� dt

3

=6 + x

0

� dt

4

=24;

y(t) = y

0

+ x

0

� dt� y

0

� dt

2

=2� x

0

� dt

3

=6 + y

0

� dt

4

=24;

with matrix

�

1� dt

2

=2 + dt

4

=24 dt� dt

3

=6

�dt+ dt

3

=6 1� dt

2

=2 + dt

4

=24

�

;

and eigenvalue magnitude of 1 + dt

6

=36 + dt

8

=24

2

, which is still greater than one. In fact, since this equation (in

(x; y) space) represents moving around a circle, any extrapolation method based on tangents at a single point will

fail, since all of the tangent vectors point outward from the circle. We note that the iteration equations do have the

�rst terms of the usual Maclaurin series for sin(dt) and cos(dt), so we try out a di�erent iteration:

x(t) = x

0

� cos(dt)� y

0

� sin(dt);

y(t) = y

0

� cos(dt) + x

0

� sin(dt);

which can be written as a vector equation

(x; y)(0) = (1; 0);

9



for t in some small interval

[t

0

; t

1

= t

0

+ dt):

The characterizers that describe this situation are:

(x : x

0

+ z

0

� (t � t

0

); t

0

; t

0

+ dt);

(y : y

0

+ x

0

� (t � t

0

); t

0

; t

0

+ dt);

which we want to be true for all choices of x

0

; y

0

; t

0

, and dt (which ones we actually use in our system description

depend on how we choose the time intervals in the solution).

The characterizers that describe the initial conditions are di�cult, because they cannot be described with half-open

intervals of the shape we have thus far described:

(x : 1; 0);

(y : 0; 0);

which is always going to be a problem in systems that start at a certain time.

In a more sophisticated system, the choice of next time interval would depend on the computed accuracy of the

current solution.

For this example, we simply make all the time intervals the same, and say that the characterizer pair

(x : x

1

+ z

1

� (t � t

1

); t

1

; t

1

+ dt);

(y : y

1

+ x

1

� (t� t

1

); t

1

; t

1

+ dt)

propagates the pair

(x : x

0

+ z

0

� (t � t

0

); t

0

; t

0

+ dt);

(y : y

0

+ x

0

� (t� t

0

); t

0

; t

0

+ dt)

i�

x

1

= x

0

+ z

0

� dt;

y

1

= y

0

+ x

0

� dt;

t

1

= t

0

+ dt;

which are the conditions for the �rst pair to meet the second (the condition z

1

= �y

1

is part of the de�nition of

these characterizer pairs).

Extending the iteration, we have

x(0) = 1;

y(0) = 0;

x(k + 1) = x(k)� y(k) � dt;

y(k + 1) = y(k) + x(k) � dt;

which can be written as a vector equation (we put the matrix on the right so we can use row vectors)

(x; y)(0) = (1; 0);

(x; y)(k + 1) = (x; y)(k)

�

1 dt

�dt 1

�

;

so if we write I for the identity matrix and J for the matrix

�

0 1

�1 0

�

;

then we have (with X = (x,y))

X(0) = (1; 0);

X(k + 1) = X(k)(I + J � dt);

so

X(k) = (1; 0) (I + J � dt)

k

;

which can be computed exactly.

Since the eigenvalues of (I + J � dt) are 1� i � dt, which have magnitude 1+ dt

2

, the successive powers of the matrix

diverge for any dt > 0, and therefore so does the iteration.

5.1.2 Second-Order Example

In this section, we use the same di�erential equation problem, with a di�erent solver, a second-order one that is

almost able to converge properly. We therefore have

x

0

= �y;

8



4.4.3 Truth Maintenance

Because we do not presume that the characterizers in a system are truths, we need to be much more careful about

when they can be used together, especially in the inference and prediction processes. Since the inference rules

themselves are time dependent, we need to keep track of the dependencies of every characterizer, both how and when

it was derived (how tells us about hypotheses and inference rules; when helps us in checking temporal consistency)

and its interval of activity.

We also need a way to indicate which characterizers we DO want to be true, so that di�erent collections of charac-

terizers can be compared and contrasted within the same context. We might want to consider computing various

maximal consistent sets of irredundant assertions as an aid in this process.

Various rules can be activated that lead to new conclusions in an interval, which can supersede old ones; we also

assume partial deduction, not total. We therefore need to use some kind of non-monotonic logic.

4.5 Analysis

Simulation is a continuing surprise.

We want tools with analytic power to help reduce our reliance on simulation, so we can make reliable predictions

about the system behavior.

All of our computations are performed from the symbols active at a given time. The advantage of dealing explicitly

with time in this formulation is that we can sit outside the usual sequencing of events, taking a kind of \side-long"

look at the entire time line, and piece together parts of the models that we know more about regardless of whether

or not they are the �rst ones in our time interval of interest.

We can also perform the deductions in an order that is di�erent from the order imposed by time, using any of a

number of simple mechanisms, such as rule-based systems or rewrite logics; both are being investigated.

5 Examples

This section contains several examples that illustrate the utility of the notation.

5.1 ODE

A simple example that shows range extension is an ordinary di�erential equation (ODE). For ODEs, the solution

method is part of changing an ODE into a set of characterizers.

So let us consider a simple second-order ODE for the sine function,

y

00

= �y;

y

0

(0) = 1;

y(0) = 0;

and solve it with Euler's method (a particularly bad one for this kind of problem, by the way).

First, we transform the equations into a �rst order system (in the usual way) by taking x = y

0

,

x

0

= �y;

y

0

= x;

x(0) = 1;

y(0) = 0;

and we also de�ne z = x

0

= y

00

.

5.1.1 First-Order

Now the way Euler's method works is by linear extrapolation, so for a given time t = t

0

, if we have

x(t

0

) = x

0

;

y(t

0

) = y

0

;

then we have

z

0

= z(t

0

) = �y

0

;

and we take

x(t) = x

0

+ z

0

� (t � t

0

);

y(t) = y

0

+ x

0

� (t � t

0

);

7



and

(a : w; t

1

; t

2

);

we normally want smoothness, written

d v

d t

�

�

�

�

t=t

�

1

=

d w

d t

�

�

�

�

t=t

+

1

;

and continuity, written

v(t = t

�

1

) = w(t = t

+

1

):

Both of these are point conditions on the attributes and their derivatives, and we can consider only conditions on

attributes by using whatever derivatives are needed in the conditions: instead of

(a : v; t

0

; t

1

);

we use

(a : (v; v

0

); t

0

; t

1

);

and write our smoothness condition as

�

v

v

0

�

t=t

�

0

=

�

w

w

0

�

t=t

+

0

If we also require continuity in each attribute, so that

w(t = t

+

1

) = w(t = t

1

);

then the upper limit in the previous expression can be omitted.

It is therefore clear that we must deal with point events at transitions

[t

0

:::t

1

) [t

1

:::t

2

) ;

but not with point characterizers. If we make the transition continuity a property of the de�nition of continuation,

then we can assert it or not in any given model.

Of course, the expression t = t

�

1

means that the interval [t

1

� �; t

1

) is part of the limit computation for every � small

enough, so we might be able to use these intervals for some small enough � without having to take the limits.

We will deal with these considerations in the simplest way possible. We have a characterizer that asserts continuity of

the relevant attribute across a larger interval, such as [t

0

; t

2

) above. The only place that the continuity characterizer

has new information is at the transition point t

1

, but we simply do not worry about the redundancy.

4.4 Characterizer Semantics and Inference

A characterizer is what we want to assume about what is true over its interval. It need not be consistent with

the other characterizers in a system description; we explicitly allow false assertions here, so we can reason using

counterfactuals.

4.4.1 Inference

We can make inferences within intervals, according to some rules. If, say, there is a rule

s

1

&s

2

=) s

3

;

and two characterizers

(v : s

1

; t

0

; t

1

)

and

(v : s

2

; t

2

; t

3

)

with t

0

< t

2

< t

1

< t

3

, then we can conclude

(v : s

3

; t

2

; t

1

):

4.4.2 Prediction

We can also make inferences that extend intervals in some cases. They take the form: If

(v : s

1

; t

0

; t

1

)

and

(w : s

2

; t

0

; t

1

)

are characterizers with t

0

< t

1

, then there is a characterizer

(x : s

3

; t

2

; t

3

)

for some t

2

; t

3

, with t

0

< t

2

< t

1

< t

3

.

6



Rules can contain variable identi�ers, with implicit universal quanti�cation.

Relationships hold on intervals and the combination may extend the range. We generate new characterizers according

to the relationships, either predictive (range extension) or deductive (knowledge extension).

The language in which the rules are written is important, since it has to accommodate notations from many di�erent

types, many of which will not be known when the language is de�ned. Some basic concepts that will be in any of

these languages are continuity and derivatives.

It is important to remember that the system comes �rst, and that the state variables are our choices for modeling

and understanding the system. This means in particular that the coordinate systems we use are temporary, and that

the constraints among the state variables are expressed explicitly as relationships.

4.2 Normalization and Continuation

Characterizers may have overlapping intervals. Normalization is the process of breaking each characterizer into two

or more others, to �t the time scale. If t is an event time, and

(a : v; s; e)

is a characterizer with s < t � e, then we can replace it with two characterizers

(a : v; s; t) and (a : v; t; e):

If two characterizers use the same attribute,

(a : v; s; e)

and

(a : w; t; u);

then we say that the second one continues the �rst one i� they are adjacent in time, so t = e. Continuity considerations

in the transition from v to w at time t are treated in the next section.

In any system with a �nite density of event times, if we split every characterizer that spans an event time, then we

end up with characterizers that start and stop at consecutive event times (though they may be continued by other

characterizers). This has some computational conveniences.

If we have two characterizers

(a : v; t

1

; t

2

)

and

(a : w; t

2

; t

3

);

so that the second one continues the �rst, then we need some kind of explicit characterizer for the transition, active

in an interval containing the transition time. If there is a description u in an appropriate domain for which

u =

�

v; for t

1

� t < t

2

;

w; for t

2

� t < t

3

;

then we can conclude

(a : u; t

1

; t

3

):

This is the opposite of normalization.

If there is an overlap, that is, if the two characterizers

(a : v; t

1

; t

2

)

and

(a : w; t

3

; t

4

)

have

[t

1

; t

2

) \ [t

3

; t

4

) non-empty;

and

v(t) = w(t) for t 2 [max(t

1

; t

3

);min(t

2

; t

4

));

then we can also conclude

(a : u;min(t

1

; t

2

);max(t

3

; t

4

)):

4.3 Continuation and Continuity

One aspect of continuity is transitions from one symbol to another across interval boundaries. The transition

relations are extra conditions that have to hold at the transition time (usually they are smoothness conditions for

model transitions).

A typical smoothness property is in�nitesimal: for characterizers

(a : v; t

0

; t

1

)

5



An attribute identi�er is a name for a state variable (a state variable is like a probe into some aspect of the system

behavior, and the attribute identi�er is only the label).

3.4 Expression

An expression is a pair

(attribute identi�er: symbol),

which is interpreted to mean the assertion that the state variable can be described by the symbol (when the expression

is active). We will describe the precise semantics of these expressions later on.

These are models of the state variable values.

3.5 Interval

An interval is a pair

[start time, end time),

assumed to describe a half-open interval (to save us from trouble with the topology). The end time may be omitted,

in which case it is interpreted to mean in�nity by default.

3.6 Characterizer

A characterizer is a pair

(expression, interval),

also written

(attribute identi�er: symbol; start time, end time),

interpreted to mean that the expression is active during the speci�ed interval. It becomes active at the start time,

and becomes inactive at the end time. Each characterizer has a range (its interval of activity) and a scope (the set

of attribute identi�ers that occur in its expression).

We may also consider a symbol set that includes arithmetic expressions that contain an explicit time variable t. For

example,

(p : p

0

+ v

0

� t; t

0

; t

1

)

represents a continuous change along the interval.

We will also have occasion to reason about conditions at particular points in time, so the assertion language will also

have characterizers of the form

(expression, point).

3.7 Event

An event is the activation or deactivation of a characterizer. We make no limiting assumptions about simultaneous

events.

4 System Description

A system description is a �nite set of characterizers, so we assume explicitly that a system can be described by a

�nite set of characterizers. We insist that only a �nite set of characterizers be active at any one time. Since each of

those characterizers is active over a positive interval, there is therefore some small interval thereafter during which

all of them are still active.

Everything we know about a system's behavior is described by characterizers and relationships among the charac-

terizers. Domain models and context can be written as characterizers, generally with large intervals.

4.1 Dynamics

Relationships among characterizers are rules that de�ne the dynamics. These rules take the form:

if these characterizers (with a list) are active on these intervals, then this new one is also active on this

other interval (not necessarily contained in the intersection of the original intervals).

4



1 Introduction

Traditionally, systems have been modelled using state variables de�ned in a metric space and the system dynamics

de�ned using di�erential equations. This approach uses continuous descriptions of space and time. When we use

computers for expressing and manipulating such models we have to use symbols to represent it. Symbols are discrete

by their very nature, and require use of mapping from the continuous spaces to discrete spaces. These mappings

cause problems unless carried out rather carefully. Further, when we consider the problems in which some aspects

of the system are genuinely discrete, hybrid models have been used. As di�erent techniques have to be used for

continuous and discrete aspects of the system, signi�cant complexity gets added to such models.

Recognizing that the computer systems only use symbols for any representations, in this paper we present a for-

mulation of system dynamics directly in terms of symbols. In order to handle the synamics, time interval over

which a symbol is considered valid is explicitly attached. The symbols describing di�erent aspects of the system

may be from a set appropriate for that aspect. The dynamics is described in terms of rules connecting the symbolic

representations.

This paper contains the preliminary formulation of system dynamics in the framework of Symbol Dynamics.

2 Descriptions of System Behavior

For the purposes of this paper, behavior includes all the relationships among parts of a system at the same or di�erent

times. In particular, the combined relationships among parts of a system at the same time is usually called structure.

Both of these aspects are subsumed in our use of the term behavior.

We assume that our ability to generate or derive new information about the system behavior changes only at discrete

points in time, since we expect to perform these processes on digital computers. The event times de�ne the time

scale. In this paper, we introduce Symbol Dynamics, a totally symbolic way to represent the important aspects of

dynamical systems and processes, so that we can reason about them using computers.

3 Concepts and Notations

This section contains the basic notions of Symbol Dynamics.

3.1 State Variable

We assume that systems exist and change over time. We are looking for a method of describing those changes so we

can compute how to control them.

The systems we consider can be described with state variables. Each state variable is an observation on the system

or a derivation from other state variables.

We may or may not know a priori which state variables are important, or even which ones are determinable (i.e., the

system comes �rst, and the state variables are chosen to be helpful in describing the behavior). We might call the

state variables attributes of the state.

3.2 Symbol

We want to measure and compute with information about a system, so we need to map the system into formal spaces

we understand better.

A type is a symbol set, both representing a set of values and including some operations on those values; this is the

notion of formal space used here. It includes collections of mutually dependent types and functions between di�erent

types.

A symbol of a given type is an element of the set of values that type. Any notions of credibility, con�dence, or

uncertainty are part of the type system that is used. It is especially important to de�ne the allowable operations on

these kinds of types. For example, for measurements of a system, the symbol would include the measured value and

the associated uncertainty value.

3.3 Attribute Identi�er

We assume that we will want to know di�erent things about the system behavior. We need names to keep track of

the di�erent things we measure or compute.

3



Contents

1 Introduction 3

2 Descriptions of System Behavior 3

3 Concepts and Notations 3

3.1 State Variable : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3

3.2 Symbol : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3

3.3 Attribute Identi�er : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3

3.4 Expression : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4

3.5 Interval : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4

3.6 Characterizer : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4

3.7 Event : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4

4 System Description 4

4.1 Dynamics : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4

4.2 Normalization and Continuation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5

4.3 Continuation and Continuity : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5

4.4 Characterizer Semantics and Inference : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6

4.4.1 Inference : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6

4.4.2 Prediction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6

4.4.3 Truth Maintenance : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 7

4.5 Analysis : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 7

5 Examples 7

5.1 ODE : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 7

5.1.1 First-Order : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 7

5.1.2 Second-Order Example : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 8

5.1.3 Higher-Order Example : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 9

5.2 Measurement : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 10

2



Notes on Symbol Dynamics

�y

Ashok K. Agrawala

Department of Computer Science, University of Maryland

College Park, Maryland 20742

E-mail: agrawala@cs.umd.edu

Christopher Landauer

System Planning and Development Division, The Aerospace Corporation

The Hallmark Building, Suite 187, 13873 Park Center Road, Herndon, Virginia 22071

Phone: (703) 318-1666, FAX: (703) 318-5409

E-mail: cal@aero.org

13 February 1995

Abstract

This paper introduces a new formulation of dynamic systems that subsumes both the classical discrete and di�erential

equation models as well as current trends in hybrid models. The key idea is the express the system dunamics using

symbols to which the notion of time is explicitly attached. The state of the system is described using symbols which

are active for a de�ned period of time. The system dynamics is then represented as relations between the symbolic

representations.

We describe the notation and give several examples of its use.

�

This work is supported in part by ONR and DARPA under contract N00014-91-C-0195 to Honeywell and Computer Science Depart-

ment at the University of Maryland. The views, opinions, and/or �ndings contained in this report are those of the author(s) and should

not be interpreted as representing the o�cial policies, either expressed or implied, of the Defense Advanced Research Projects Agency,

ONR, the U.S. Government or Honeywell.

Computer facilities were provided in part by NSF grant CCR-8811954.

y

This work is supported in part by ARPA and Philips Labs under contract DASG60-92-0055 to Department of Computer Science,

University of Maryland. The views, opinions, and/or �ndings contained in this report are those of the author(s) and should not be

interpreted as representing the o�cial policies, either expressed or implied, of the Advanced Research Projects Agency, PL, or the U.S.

Government.

1


