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Chapter 1: Introduction

In this chapter, we discuss the functionalization of surfaces with polymer/polyelectrolyte

(PE) brushes and its behavior under various surrounding medium. Subsequently, we

review the literature for the liquid transport in such brush functionalized nanochan-

nels. Next, the objective and motivation of this thesis is discussed. Finally, the

outline of the thesis is described.

1.1 Functionalization of surfaces with polymer/polyelectrolyte (PE)

brushes

Modification of surfaces by grafting polymer/polyelectrolyte brushes has emerged

as an extremely promising tool fora plethora of applications. Such functionalization

can be achieved by either grafting the bushes to the solid surface by direct chemical

modification, or by having the polymer chains ”grafted from” via polymerization re-

actions [1,2]. In ”grafting to” technique, functional groups in the polymer molecules

and the modified substrate react to form a polymer chain. In ”grafting from” tech-

nique, polymerization reaction is initiated on the substrate surface with the help of

an initiator [1].

The behavior of polymer chains depends on the conditions of the surrounding



medium such as the solvent quality. For a given polymer, based on the solvent

quality solvents could be classified into good solvent, poor solvent, and theta solvent.

A good solvent favors polymer-solvent interaction and it results in polymer chain

stretching away from the substrate forming a mushroom-like structure. However, in

poor solvent, polymer-solvent interactions are not energetically favorable resulting

in a coil-like structure. The transition between good and poor solvent occurs at a

temperature called theta temperature and the state is called theta state [1, 3].

The polymer chain behavior changes with the change in the grafting density

(number of chains grafted per unit area). With sufficiently higher grafting density,

the excluded volume interactions, and the elastic interactions within each chain

results in the formation of brush-like configuration [4–13]. Polyelectrolyte brushes

are these brushes which are charged [3]. For polyelectrolyte brushes, the electrostatic

energy contributions become important and it contributes to the equilibrium brush

configuration. The charge on the brush in the presence of electrolyte leads to a

formation of electric double layer (EDL). This leads to additional interaction energy

between the PE brush and the induced EDL. This interaction energy depends on the

conditions of the surrounding medium such as the electrolyte concentration, pH of

the medium. Another significant contribution for the energy of PE brush is due to

the ionization of the brush molecules [12,13]. These energy contributions determine

the configuration and the electrostatics of the PE brush.
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1.2 Liquid transport in brush functionalized nanochannels

Liquid transport in nanofluidic system has wide range of applications across

the field of fluid mechanics, chemical separation/mixing, bio-medicine, energy con-

version [14, 15]. Surface modification using brush functionalizaton of nanofluidic

surfaces is an effective tool in many of these applications. Most of the studies on

liquid transport in polymer/PE brush grafted nanofluidic systems utilize the brushes

in order to retard the liquid transport based on the understanding that the presence

of brushes will invariably decreases the flow rate due to the drag force on the fluid

flow imparted by the brushes. For instance, studies [16, 17] have shown a massive

reduction in liquid flow in nanofluidic capillaries due to the drag force imparted by

the grafted polymer. Similarly, the studies [18–20] have shown a large decrease in

flow velocity in nanochannels grafted with polymer brushes. Actually, there are few

studies on liquid transport in PE brush grafted nanochannels which also show a

reduction in the liquid flow rate [21–29]. The framework used in these studies to

model the brushes has one major shortcoming. These studies assume that the brush

configuration: brush height, and monomer distribution remains independent of salt

concentration and pH. However, in recent works [30–32], Das and co-workers over-

come some of this limitation by accounting for the changes in the brush height with

salt concentration and pH of the electrolyte and they studied the liquid transport in

such brush-grafted nanochannels. They found enhancement in the liquid flow rate

for sparsely brush-grafted nanochannels and reduction in the flow rate for densely

grafted nanochannels. However, these studies have a significant limitation as the

3



brushes are modeled using Alexander-de-Gennes model which assumes an uniform

monomer distribution along the brush height. This leads to overestimation of drag

forces resulting in such flow reduction witnessed in densely grafted nanochannels.

1.3 Agenda of the thesis

The main objective of this thesis is to provide a theoretical understanding

of two types of liquid transport, namely electroosmotic (EOS) transport and dif-

fusioosmotic (DOS) transport, in a polyelectrolyte brush functionalized nanofluidic

channels. For that purpose, we first provide a thermodynamically self-consistent

theoretical framework to model the PE brush. Next, we analyze and explain the

underlying physics behind the massive enhancement of these liquid transport in such

PE brush functionalized nanochannels.

1.4 Outline of the thesis

Chapter 2 of this thesis introduces the formulation of augmented Strong Stretch-

ing theory (SST) which include the effects of excluded volume interactions and a

generic mass action law. We provide a detailed procedure for obtaining the brush

configuration and its electrostatics using variational minimization of free energy of

PE brush molecules. Firstly, we study the effect of excluded volume interactions by

varying the excluded volume parameters ν and ω, which represents the ”goodness”

of the solvent. Subsequently, we investigate the effect of polyelectrolyte chargeable

site (PCS) density on the equilibrium PE brush height, monomer distribution along

4



the length of the brush, and EDL electrostatic potential.

Chapter 3 of this thesis deals with the liquid transport induced by the appli-

cation of external axial electric field in a nanochannel grafted with pH-responsive

backbone charged PE brushes. These brushes are modeled using augmented strong

stretching theory (SST) described in the chapter 2. Theoretical basis for such elec-

trokinetic transport, known as electroosmotic transport, and its underlying physics

is described in detail. Next, the equations governing the electroosmotic transport

are described for both brush-grafted nanochannels and brush-free nanochannels.

Following that, we provide a comparison of flow velocity, flux ratio for various brush

grafting densities, and pH and concentration of the electrolyte. Subsequently, we

provide an extensive comparison of flux for various nanofluidic devices of different

size and materials.

Chapter 4 of this thesis deals with the ionic diffusioosmotic transport in-

duced by the application of a salt concentration gradient across the length of the

nanochannel filled with electrolyte and grafted with backbone charged pH-responsive

PE brushes. These brushes are modeled using augmented strong stretching theory

(SST) described in the chapter 2. Theoretical background and the governing equa-

tions for the salt concentration gradient based diffusioosmotic flow are explained in

detail. Following that we provide a detailed comparison of the DOS induced electric

field and its components, ionic and osmotic electric field, for various brush grafting

density, and electrolyte pH and concentration. Subsequently, the DOS velocity for

various brush-grafted cases and its corresponding brushless cases are compared.
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Chapter 2: Revisiting the strong stretching theory for pH-

responsive polyelectrolyte brushes: effects of con-

sideration of excluded volume interactions and

an expanded form of the mass action law

In this chapter1, we develop a theory to account for the effect of the excluded

volume (EV) interactions in the Strong Stretching Theory (SST) based description

of the pH-responsive polyelectrolyte (PE) brushes. The existing studies have con-

sidered the PE brushes to be present in a θ-solvent and hence have neglected the

EV interactions; however, such a consideration cannot describe the situations where

the pH-responsive brushes are in a “good” solvent. Secondly, we consider a more

expanded form of the mass action law, governing the pH-dependent ionization of the

PE molecules, in the SST description of the PE brushes. This expanded form of the

mass action law considers different values of γa3 (γ is the density of the charge-

1 This work was primarily carried out by H. S. Sachar, a Ph.D candidate in the group. Contents

of this chapter have been published as: H. S. Sachar, V. S. Sivasankar, and S. Das,“Revisiting

the strong stretching theory for pH-responsive polyelectrolyte brushes: effects of consideration of

excluded volume interactions and an expanded form of the mass action law”, Soft matter, 15(4),

559-574 (2019).



able sites on the PE molecule and a is the PE Kuhn length) and therefore is an

improvement over the existing SST models of PE brushes as well as other theories

involving pH-responsive PE molecules that always consider γa3 = 1. Our results

demonstrate that the EV effects enhance the brush height by inducing additional

PE inter-segmental repulsion. Similarly, the consideration of the expanded form of

the mass action law would lead to a reduced (enhanced) brush height for γa3 < 1

(γa3 > 1). We also quantify the variables such as the monomer density distribu-

tion, distribution of the ends of the PE brush, and the EDL electrostatic potential

and explain their differences with respect to those obtained with no EV interactions

or γa3 = 1.

2.1 Introduction

Grafting charged, polyelectrolyte (PE) brushes on solid-liquid interfaces have

proven to be an excellent way of functionalizing such interfaces for applications

such as nanofluidic ion and biosensing [33–37], fabrication of nanofluidic diodes

[38,39], current rectifiers [40], and nano-actuators [41], designing surfaces of desired

wettability [42], engineering nanoparticles for targeted drug delivery [43], oil recovery

[44], and many more. The key to several of these applications is the responsiveness

of these brushes to environmental cues (e.g., a change in pH or a change in salt

concentration) – as a response to these cues, the PE brushes undergo a change in

some of its properties (e.g., configuration, height, etc.) thereby enabling most of

these above applications. pH-responsive (or annealed) PE brushes refer to brushes

7



whose ionization and hence the charging depends on the local pH [22,25,45–47]. For

example, poly(meth)acrylic brush is an example of a pH-responsive anionic brush.

On the other hand, there are brushes (also known as quenched brushes) whose

degree of ionization and hence the charging is independent of pH (e.g., partially

sulfonated polystyrene brushes). The purpose of this paper is to provide a detailed

thermodynamic self-consistent theoretical model for quantifying such pH-responsive

PE brushes.

PE brushes have been modelled extensively. For example, there have been

significant efforts aimed at developing scaling laws by balancing the different energies

(elastic, electrostatic, and excluded volume) and yielded the brush height as scaled

functions of variables such as the grafting density and charge density of the brushes,

number of monomers, and the concentration of the added salt [48–55]. Subsequently,

a more involved calculation procedure was also attempted where the electrostatics of

the induced electric double layer (EDL) was described using the Poisson-Boltzmann

(PB) equation [21,30,31,46,47,56–58]. Such studies varied in complexity and rigour

depending on the manner in which the monomer interactions were described – there

have been several approaches ranging from the use of simple Alexander-de-Gennes

model [21,30,31,57] to a more involved parabolic model [56,58] for the brushes. The

most complete analytically tractable approach till date, however, has been proposed

in a series of seminal papers that employed the Strong Stretching Theory (SST) to

describe the PE brushes while the resulting EDL electrostatics was described by the

classical PB equation [45,59–62].

The same self-consistent SST and the PB equation have also been employed
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to study the configuration of the pH-responsive PE brushes [45]. This study is the

state-of-the-art in the SST calculation of the pH-responsive PE brushes. However,

this paper considers the PE brushes to be in a θ-solvent and hence neglects all the

possible excluded volume (EV) interactions. On the other hand, a vast number

of experimental studies involving pH-responsive PE brushes invariably consider the

solvent to be a “good” solvent (i.e., a solvent that makes the considerations of the

EV interactions between the segments of the PE molecule mandatory) with respect

to the PE brush [63–70]. Obviously, for such problems, the theory of Ref. [45] will be

inadequate. In order to fill this void, in this paper, we modify the SST for the pH-

responsive PE brushes by accounting for the EV interactions between the PE brush

segments. Therefore, this study is the first study for the SST of the pH-responsive

PE brushes accounting for the effect of the EV interactions. EV interactions have

been considered for other theoretical calculations of the PE brushes [71–73], but

not in this SST framework used to quantify the behavior of the pH-responsive PE

brushes. As a second improvement to the SST model of the pH-responsive PE

brushes, we consider a more expanded form of the mass action law for the pH-

dependent ionization of the PE molecules valid for all values of γa3 (γ is the density

of the chargeable sites on the PE molecule and a is the PE Kuhn length) and study

the effect of this more expanded form of the mass action law in the SST calculations

of PE brushes. Both Ref. [45] as well as other papers describing the pH-responsive

PE molecules (not necessarily PE “brushes”) [74–78] have considered only a special

form of the mass action law where γa3 = 1. Our calculations, therefore, ensure a

more generic description of the pH-responsive PE brushes within the general ambit
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of the SST model.

Our results demonstrate distinct contributions of the EV interactions and the

expanded form of the mass action law in the SST description of the PE brushes. Con-

sideration of the EV interactions imply consideration of additional inter-segmental

repulsion for a particular PE brush molecule. Accordingly, the EV effect enhances

the brush height. This enhancement is most magnified for large salt concentration

(which leads to an enhanced screening of the PE brush charges) and small pH∞

(i.e., a large bulk H+ ion concentration that weakens the ionization of the brushes).

On the other hand, consideration of the generic mass action law implies that one

witnesses a decrease (increase) of the PE brush height for γa3 < 1 (γa3 > 1) owing

to a reduced (enhanced) charge density of the PE brushes causing a reduced (en-

hanced) counterion-induced brush swelling [79–81]. We complete the description of

the problem by accounting for the effects of the EV interactions and the expanded

form of the mass action law in dictating the monomer density distribution, distribu-

tion of the end location of the PE brushes, and the EDL electrostatics. In summary,

our paper establishes the theory for a much more generic SST-based description of

the pH-responsive PE brushes and the resultant EDL electrostatics.

2.2 Self-Consistent Field Approach

2.2.1 Free Energy Equations

We consider a rigid, impenetrable substrate grafted with pH-responsive, weakly

poly-acidic (anionic) PE brushes immersed in an electrolyte solution (see Fig. 1).
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Fig. 2.1: Schematic showing the pH-responsive PE brush layer.

The separation between adjacent grafted PE molecules ` is assumed to be small

enough such that the system attains a brush like configuration. Here we would

discuss the free energies that dictate the brush equilibrium in a self-consistent field

approach. These equations have already been discussed by several previous pa-

pers [45,59,71]; we repeat them here for the sake of continuity.

The net free energy functional (F ) of a given PE molecule can be expressed as:

F

kBT
=

Fels
kBT

+
FEV
kBT

+
Felec
kBT

+
FEDL
kBT

+
Fion
kBT

, (2.1)

where Fels, FEV , Felec, FEDL and Fion are the elastic (entropic), excluded volume,

electrostatic, electric double layer and ionization contributions to the free energy

(per PE molecule) respectively.

In this model, the equilibrium brush height H (to be determined self-consistently
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later) refers to the maximum distance of the monomers of the PE brush from the

substrate. In order to express the free energy, the system is divided into two regions:

region 1 (0 ≤ x ≤ H) forms the interior of the brush and comprises of all the PE

chains whereas the region 2 (H ≤ x ≤ ∞) lies exterior to the brush. We consider

the case where the electrostatic repulsion between the charged monomers is large

enough to ensure that the brush is in a strongly stretched configuration. Therefore

this free energy description is the same as the Strong Stretching Theory description

of the PE brushes.

Following the notation of Zhulina et al. [71], we write:

Fels
kBT

=
3

2pa2

∫ H

0

g(x′)dx′
∫ x′

0

E(x, x′)dx, (2.2)

FEV
kBT

=
σ

a3

∫ H

0

fconc[φ(x)]dx, (2.3)

where p is the chain rigidity, a is the Kuhn length, and σ ∼ `2 is the grafted area per

chain. Also, E(x, x′) = dx
dn

is the local stretching at a distance x from the surface for

a chain whose end is located at a distance of x′. Furthermore, g(x′) is the normalized

chain end distribution function, such that

∫ H

0

g(x′)dx′ = 1. (2.4)

Finally, φ(x) is the dimensionless monomer distribution profile of a given PE chain

and fconc[φ(x)] is the non-dimensionalized per unit-volume free energy for the ex-

cluded volume interactions.
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Following [47], Felec + FEDL can be expressed as:

Felec
kBT

+
FEDL
kBT

=
σ

kBT

∫ ∞
0

[
− ε0εr

2

∣∣∣∣dψdx
∣∣∣∣2 + eψ(n+ − n− + nH+ − nOH−)

]
dx

− σ

kBT

∫ H

0

[
eψnA−φ

]
dx+

σ

∫ ∞
0

[
n+

(
ln
( n+

n+,∞

)
− 1
)

+ n−

(
ln
( n−
n−,∞

)
− 1
)

+ nH+

(
ln
( nH+

nH+,∞

)
− 1
)

+ nOH−
(
ln
( nOH−

nOH−,∞

)
− 1
)

+ (n+,∞ + n−,∞ + nH+,∞ + nOH−,∞)
]
dx

(2.5)

where ψ is the electrostatic potential, ni is the number density of the ion i [where

i = ±, H+, OH−], ni,∞ is the bulk number density of the ion i, nA− is the local

number density of the A− ion, e is the electronic charge, kBT is the thermal energy,

ε0 is the permittivity of free space, and εr is the relative permittivity of the solution.

The PE brush ionizes via dissociation of an acid HA producing H+ and A− ions.

nA− is a function of the hydrogen ion concentration (nH+) as given by the expanded

form of the mass action law (see the derivation later).

Following [45], Fion can be expressed as:

Fion
kBT

=
σ

a3

∫ H

0

φ

[(
1− nA−

γ

)
ln
(

1− nA−

γ

)
+
nA−

γ
ln
(nA−
γ

)
+
nA−

γ

(µ0
H+ + µ0

A− − µ0
AH

kBT
+ ln(cH+,∞)

)]
dx

=⇒ Fion
kBT

=
σ

a3

∫ H

0

φ

[(
1− nA−

γ

)
ln
(

1− nA−

γ

)
+
nA−

γ
ln
(nA−
γ

)
+
nA−

γ
ln
(nH+,∞

K ′a

)]
dx

(2.6)
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where K ′a = 103NAKa, NA is the Avogadro number and Ka is the ionization con-

stant of the reaction HA→ H+ + A−. Also Ka = exp
(
− µ0

H++µ0
A−
−µ0AH

kBT

)
, where

µ0
i represents the standard chemical potential of species i. nH+,∞ = 103NAcH+,∞

and γ (1/m3) is the maximum density of polyelectrolyte chargeable sites (PCS).

Substituting eqs.(2.2,2.3,2.5,2.6) in eq.(2.1), F can be written as:

F

kBT
=

3

2pa2

∫ H

0

g(x′)dx′
∫ x′

0

E(x, x′)dx+
σ

a3

∫ H

0

fconc[φ(x)]dx+
σ

kBT

∫ ∞
0

[
− ε0εr

2

∣∣∣∣dψdx
∣∣∣∣2

+ eψ(n+ − n− + nH+ − nOH−)
]
dx− σ

kBT

∫ H

0

[
eψnA−φ

]
dx

+ σ

∫ ∞
0

[
n+

(
ln
( n+

n+,∞

)
− 1
)

+ n−

(
ln
( n−
n−,∞

)
− 1
)

+ nH+

(
ln
( nH+

nH+,∞

)
− 1
)

+ nOH−
(
ln
( nOH−

nOH−,∞

)
− 1
)

+ (n+,∞ + n−,∞ + nH+,∞ + nOH−,∞)
]
dx

+
σ

a3

∫ H

0

φ

[(
1− nA−

γ

)
ln
(

1− nA−

γ

)
+
nA−

γ
ln
(nA−
γ

)
+
nA−

γ
ln
(nH+,∞

K ′a

)]
dx

(2.7)

This energy needs to be minimized in presence of the following conditions (con-

straints):

N =

∫ x′

0

dx

E(x, x′)
, (2.8)

N =
σ

a3

∫ H

0

φ(x)dx, (2.9)

where N is the number of monomers per chain.

Also φ(x) is related to the functions g and E as:

φ(x) =
a3

σ

∫ H

x

g(x′)dx′

E(x, x′)
. (2.10)
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Accounting for the constraints, the elastic component of free energy can be expressed

in terms of Lagrange multipliers [λ1 and λ2(x′)] as:

F ′els
kBT

=
3

2pa2

∫ H

0

g(x′)dx′
∫ x′

0

E(x, x′)dx+ λ1

[ σ
a3

∫ H

0

φ(x)dx−N
]

+

∫ H

0

λ2(x′)dx′
[ ∫ x′

0

dx

E(x, x′)
−N

]
.

(2.11)

Therefore, the net free energy (F ′) accounting for all the constraints is:

F ′

kBT
=

F ′els
kBT

+
FEV
kBT

+
Felec
kBT

+
FEDL
kBT

+
Fion
kBT

(2.12)

2.2.2 Variational Formalism

We would like to obtain the governing equations dictating the problem by

carrying a variational minimization of eq.(2.12). Variation of eq.(2.12), i.e.,

δF ′

kBT
=
δF ′els
kBT

+
δFEV
kBT

+
δFelec
kBT

+
δFEDL
kBT

+
δFion
kBT

= 0. (2.13)

The condition δF ′=0 leads to the following equations (see appendix A for the de-

tailed derivation), which stem from the fact that δE(x, x′) 6=0, δg(x′) 6=0, δψ 6=0,

δnA− 6=0, δn± 6=0, δnH+ 6=0, δnOH− 6=0:

3g(x′)

2a2
− λ2(x′)

E2(x, x′)
−

(
δfconc
δφ

+ λ1 −
ea3ψ

kBT
nA− +

(
1− nA−

γ

)
ln
(

1− nA−

γ

)
+
nA−

γ
ln
(nA−
γ

)
+
nA−

γ
ln
(nH+,∞

K ′a

)) g(x′)

E2(x, x′)
= 0,

(2.14)
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∫ x′

0

[
3E(x, x′)

2a2
+

(
δfconc
δφ

+ λ1 −
ea3ψ

kBT
nA− +

(
1− nA−

γ

)
ln
(

1− nA−

γ

)
+
nA−

γ
ln
(nA−
γ

)
+
nA−

γ
ln
(nH+,∞

K ′a

)) 1

E(x, x′)

]
dx = 0,

(2.15)

− γa3 eψ

kBT
− ln

(
1− nA−

γ

)
+ ln

(nA−
γ

)
+ ln

(nH+,∞

K ′a

)
= 0

=⇒ nA− =
K ′aγ

K ′a + nH+,∞ exp
(
− γa3 eψ

kBT

) (2.16)

ε0εr

(d2ψ

dx2

)
+ e
(
n+ − n− + nH+ − nOH− − nA−φ

)
= 0 (0 ≤ x ≤ H)

ε0εr

(d2ψ

dx2

)
+ e(n+ − n− + nH+ − nOH−) = 0 (H ≤ x ≤ ∞),

(2.17)

n± = n±,∞exp
(
∓ eψ

kBT

)
, (2.18)

nH+ = nH+,∞exp
(
− eψ

kBT

)
, (2.19)

nOH− = nOH−,∞exp
( eψ

kBT

)
, (2.20)

Eq. (2.16) is the expanded form of the mass action law that we shall use here. On

the other hand, all the existing studies have invariably considered γ = 1/a3 and

accordingly, have considered a form of the mass action law expressed as [45]:

nA− =
K ′aγ

K ′a + nH+,∞ exp
(
− eψ

kBT

) . (2.21)

This study, therefore, will reveal for the first time the effect of consideration of the

mass action law in dictating the strong stretching behavior of the pH-responsive PE

brushes.

Now, from eq.(2.14), we get:

E(x, x′) =
√
U1(x′)− U2(x), (2.22)
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where

U1(x′) =
2a2

3

λ2(x′)

g(x′)
, (2.23)

U2(x) =
2a2

3

(
− δfconc

δφ
− λ1 +

ea3ψ

kBT
nA− −

(
1− nA−

γ

)
ln
(

1− nA−

γ

)
− nA−

γ
ln
(nA−
γ

)
− nA−

γ
ln
(nH+,∞

K ′a

))
.

(2.24)

Since there is no extension at the brush ends, E(x, x) = 0. Therefore, U1(x) =

U2(x) = U(x). Hence,

E(x, x′) =
√
U(x′)− U(x). (2.25)

The normalization condition of eq.(2.8) serves as an integral equation for U(x′). One

can check that this integral equation is satisfied if:

U(x) =
π2x2

4N2
(2.26)

Consequently,

E(x, x′) =
π

2N

√
x′2 − x2. (2.27)

Now we can re-write eq.(2.15) as:

∫ x′

0

[
E(x, x′)− U(x)

E(x, x′)

]
dx = 0. (2.28)

Eq.(2.28) is equally satisfied with these stated forms of U(x) and E(x, x′). To

obtain φ(x) we can employ eq.(2.24), but prior to that we would need the functional

dependence of f on φ. Considering the virial expansion for the non-dimensionalised

per-unit volume free energy of volume interactions, we can write [71]:

fconc[φ(x)] ≈ νφ2 + ωφ3 + ..., (2.29)
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where ν and ω are the virial coefficients.

Considering the first two terms of the expansion of fconc[φ(x)], we can use eq. (2.24)

to obtain φ(x) in terms of ψ(x) by solving a quadratic equation:

φ(x) =
ν

3ω

[{
1 + κ2

(
λ− x2 + β

K ′aγ

K ′a + nH+,∞ exp
(
− γa3 eψ

kBT

)ψ
−ρ
(

1− K ′a
K ′a + nH+,∞ exp

(
− γa3 eψ

kBT

))ln(1− K ′a
K ′a + nH+,∞ exp

(
− γa3 eψ

kBT

))
−ρ K ′a

K ′a + nH+,∞ exp
(
− γa3 eψ

kBT

) ln( K ′a
K ′a + nH+,∞ exp

(
− γa3 eψ

kBT

))

−ρ K ′a
K ′a + nH+,∞ exp

(
− γa3 eψ

kBT

) ln(nH+,∞

K ′a

))}1/2

− 1

]
,

(2.30)

where,

κ2 =
9π2ω

8N2a2ν2
, (2.31)

ρ =
8a2N2

3π2
, (2.32)

λ = −λ1ρ = −λ1
8a2N2

3π2
, (2.33)

β =
8N2ea5

3π2kBT
. (2.34)

Using eqs. (2.16), (2.18), (2.19), (2.20) and (2.30), we can re-write the equations
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governing ψ as:

ε0εr

(d2ψ

dx2

)
+ e

(
n+,∞ exp

(
− eψ

kBT

)
− n−,∞ exp

( eψ

kBT

)
+ nH+,∞ exp

(
− eψ

kBT

)
− nOH−,∞exp

( eψ

kBT

)
− K ′aγ

K ′a + nH+,∞ exp
(
− γa3 eψ

kBT

)
ν

3ω

[{
1 + κ2

(
λ− x2 + β

K ′aγ

K ′a + nH+,∞ exp
(
− γa3 eψ

kBT

)ψ
−ρ
(

1− K ′a
K ′a + nH+,∞ exp

(
− γa3 eψ

kBT

))ln(1− K ′a
K ′a + nH+,∞ exp

(
− γa3 eψ

kBT

))
−ρ K ′a

K ′a + nH+,∞ exp
(
− γa3 eψ

kBT

) ln( K ′a
K ′a + nH+,∞ exp

(
− γa3 eψ

kBT

))

−ρ K ′a
K ′a + nH+,∞ exp

(
− γa3 eψ

kBT

) ln(nH+,∞

K ′a

))}1/2

− 1

])
= 0 (0 ≤ x ≤ H),

ε0εr

(d2ψ

dx2

)
+ e

(
n+,∞ exp

(
− eψ

kBT

)
− n−,∞ exp

( eψ

kBT

)
+ nH+,∞ exp

(
− eψ

kBT

)
− nOH−,∞ exp

( eψ

kBT

))
= 0 (H ≤ x ≤ ∞).

(2.35)

Eqs.(29,35) establish that the equations governing the monomer distribution and

the EDL electrostatic potential involve the parameters (ν, ω) dictating the excluded

volume interactions enabling for the first time the inclusion of the excluded volume

interactions in the SST description of the pH-responsive PE brushes. As has been

already discussed, the state of the art SST invariably neglect the EV effects, i.e.,

consider the brushes to be always in a θ-solvent, which might be scenario far from

reality.
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The boundary conditions for solving ψ are:

(ψ)x=H− = (ψ)x=H+ ,
(dψ
dx

)
x=H−

=
(dψ
dx

)
x=H+

,
(dψ
dx

)
x=0

= 0, (ψ)x→∞ = 0.

(2.36)

From eq.(2.35) we can solve for ψ for a given H, provided we know λ. λ is obtained

by using the normalization condition provided by eq.(2.9). In other words, we shall

need to solve eqs.(2.35,2.9) simultaneously, as well as employ eq.(2.30) to obtain

φ, ψ and λ. Now that we have φ(x), ψ(x), nA−(ψ), n± = n±(ψ), nH+ = nH+(ψ),

nOH− = nOH−(ψ) we can obtain the net unbalanced charge (qnet) in the system as

a function of H.

qnet = eσ

∫ ∞
0

(n+ − n− + nH+ − nOH− − φnA−)dx (2.37)

In order to obtain the equilibrium brush height H, which is H0, we will obtain the

resulting equation (in terms of H0) by writing:

(
qnet
)
H=H0

= 0 (2.38)

Finally, we can obtain g(x) by inverting the integral equation provided by eq.(2.10)

in presence of eq.(2.27) as:

g(x) =
xσ

Na3

[
φ(H)√
H2 − x2

−
∫ H

x

dφ(x′)

dx′
dx′√
x′2 − x2

]
(2.39)
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2.3 Results

2.3.1 Effects of consideration of excluded volume interactions

The state-of-the-art SST calculations for describing the pH-responsive PE

brushes neglect the EV interactions, i.e., assume that the brushes are in a θ-solvent.

However, a more generic consideration must account for the possibilities that the

brushes might be present in a “good” solvent, so that there is a finite EV interac-

tions between brush segments. In the present case, we account for such a generic

consideration and consider varying extent of the “goodness” of the solvent, quan-

tified by the different values of the parameters ν and ω. For simplicity, we define

a given solvent using different values of ν and a given value of ω. Obviously, the

results corresponding to ν = 0 , ω = 0 represent the case of the θ-solvent [45].

In Fig. 2(a), we elucidate the variation of the brush height as a function of

the extent of the EV interactions (quantified by different values of ν and a given

value of ω). Larger EV interactions, characterized by larger values of ν and ω,

would enforce a larger separation between the segments of the PE brushes, and

accordingly lead to a larger value of the brush height [see Fig. 2(a)]. Of course,

the case of ν = 0, ω = 0 is the case where the EV interactions have been ignored.

We have checked that the results ν = 0, ω = 0 from our calculations is exactly

identical to that obtained by Zhulina and Borisov [45], who consider a θ-solvent (no

EV interactions). An increase in the salt concentration reduces the brush height

for all the values of ν and ω. A larger salt concentration leads to a smaller EDL

21



thickness and hence there is a screening of the electrostatic repulsion over much

shorter distance, eventually reducing the brush height with the salt concentration,

as has been revealed previously [21, 54]. On the other hand, a larger pH∞ or a

smaller value of bulk H+ ion concentration leads to a stronger ionization reaction

(i.e., there is an enhancement of the reaction that produces H+ ions) and hence

a larger charge of the PE brushes ensuring a larger counterion-induced osmotic

swelling [79–81] causing to a larger brush height for all values of ν and ω. The

relative contribution of the EV interactions in altering the brush height (quantified

by the ratio ∆H0/H0) has been probed in Fig. 2(b). We find that the maximum

percentage difference occurs for the case of larger salt concentration and smaller

pH∞. Larger salt concentration (or a smaller EDL thickness) and smaller pH∞ (or

a larger H+ ion concentration leading to a weakened PE ionization) ensure weakened

charging of the PE brushes and hence weakened counterion-induced osmotic swelling

of the brushes. Under such circumstances, therefore, the relative contribution of the

EV-interactions (and the resulting inter segment repulsions) in enhancing the brush

height becomes more important as reflected by the larger values of ∆H0/H0 for

such concentration and pH∞ values. This is the first key finding of the paper:

the EV interactions, neglected in all previous studies of SST for pH-responsive PE

brushes [45], become extremely important in dictating the brush height for large

salt concentration and small pH∞ values.

Fig. 3 provides the variation of the monomer distribution (φ) along the brush

height modelled considering finite EV interactions of varying magnitude (quanti-

fied by different values of ν and a given value of ω) and no EV interactions (i.e.,
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Fig. 2.2: Variation of (a) non-dimensional equilibrium brush height H0/a (a is the PE

Kuhn length) and (b) percentage increase in equilibrium brush height ∆H0/H0

(where ∆H0 = H0−H0,ν=0,ω=0) with the first virial coefficient ν for different pH∞

and c∞ values. The case of Ref. [45] is the one where ν = 0, ω = 0 – we recover

exactly the results of Ref. [45] when ν = 0, ω = 0. Other parameters for this

figure are ω = 0.1, pKa = 3.5, a = 1nm, γ = 1/a3 (1 PCS per kuhn monomer),

N = 662, ` = 40nm, kB = 1.38 × 10−23J/K, T = 298K, e = 1.6 × 10−19C,

ε0 = 8.854×10−12F/m, εr = 79.8, pKw = 14, pOH∞ = pKw−pH∞, c+,∞ = c∞,

cH+,∞ = 10−pH∞ , cOH−,∞ = 10−pOH∞ , c−,∞ = c∞ + cH+,∞ − cOH−,∞.
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ν = ω = 0). This latter case is exactly identical to the predictions by Zhulina

et al. [45]. Smaller H0 for the case where EV effects have been neglected ensure

a denser monomer concentration near to the wall, and accordingly, driven by the

need to ensure a constant N, a smaller monomer concentration away from the wall.

Deviation of the brush height due to the consideration of the EV interactions is

maximum for larger c∞ and smaller pH∞ [see Fig. 2(b)]. Accordingly, for such

c∞− pH∞ combinations, the variation in φ with and without the EV effects is max-

imum. Therefore this variation in φ between the cases of with and without the EV

effects is witnessed to the largest extent in Fig. 3(d) (c∞ = 0.1 M and pH∞ = 3)

and to the least extent in Fig. 3(a) (c∞ = 0.01 M and pH∞ = 4).

Fig. 4 provides the variation of the end distribution g of the PE brushes con-

sidering finite EV interactions of varying magnitude (quantified by different values

of ν and a given value of ω) and no EV interactions (i.e., ν = ω = 0; this case

is that of Ref. [45]). Given that the case without the EV effects lead to a larger

concentration of the monomers at near-wall locations, we witness a larger value of

g at such near wall locations for the case without the EV effects. On the other

hand, an increase in the EV effects, leading to a flatter distribution of φ (see Fig.

3), ensures a larger g value much away from the wall. Very much like Figs. 2 and

3, here too the maximum difference between the cases of with and without the EV

interactions is witnessed for the condition of large c∞ and small pH∞.

Fig. 5 provides the transverse variation of the EDL electrostatic potential

considering both finite EV interactions of varying magnitude between the PE brush

segments (quantified by different values of ν and a given value of ω) as well as
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Fig. 2.3: Comparison of monomer distribution profiles (φ) as a function of the dimension-

less transverse distance along the brush (xb/a, a is the Kuhn length) obtained

for different values of the first virial coefficient ν using our theory and theory

of [45] for different pH∞ and c∞ values. All other parameters are identical to

that used in Fig. 2.2.
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Fig. 2.4: Comparison of non-dimensional chain end distribution profiles (g × a, a is the

Kuhn length) as a function of the dimensionless transverse distance along the

brush (xb/a) obtained for different values of the first virial coefficient ν using our

theory and theory of [45] for different pH∞ and c∞ values. All other parameters

are identical to that used in Fig. 2.2.
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no EV interactions (i.e., ν = ω = 0; this case is that of Ref. [45]). The case of

no EV interactions correspond to a shorter height of the brush implying a larger

per unit volume charge density of the monomers, which in turn would ensure a

larger magnitude of the EDL electrostatic potential at near-wall locations. At the

same time, the presence of the shorter brushes imply that the brushes extend to

smaller distances away from the grafting wall. Accordingly, there is no longer any

charge from the brush at some finite distance away from the wall. These two factors

simultaneously ensure that the electrostatic potential at near-wall locations is much

larger and steeper for the case without the EV effects. The consideration of the

EV effects makes the electrostatic potential much smaller and flatter. Here too this

difference between the cases that consider or neglect the EV interactions is parimaril

manifested for large c∞ and small pH∞.

2.3.2 Effects of consideration of an expanded form of the mass action law

We have discussed previously that eq.(16) represents the expanded form of

the mass action law and not eq.(21), which has been invariably used in most of the

existing studies, but is only a special case of the expanded form of the mass action

law obtain for the specific condition of γ = 1/a3. In this subsection, we provide

results dictating the PE brush configuration and the resultant EDL electrostatics for

different values of γ, i.e., study the effect of the consideration of the expanded form

of the mass action law. Fig. 6 shows the variation of the equilibrium brush height

as a function of γa3. Increase in γ or γa3 implies that the PE molecules has a larger

backbone charge density. As a consequence, a larger number of counterions will get
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Fig. 2.5: Comparison of non-dimensional electrostatic potential profiles (ψ̄ = eψ/(kBT ))

as a function of the dimensionless transverse distance along the nanochannel half

height (x/a) obtained for different values of the first virial coefficient ν using our

theory and theory of [45] for different pH∞ and c∞ values. All other parameters

are identical to that used in Fig. 2.2.
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localized within the brush in order to screen the larger magnitude of the PE charge.

This, in turn, will lead to a larger counterion-induced osmotic swelling of the brushes

(reflecting the tendency of the counterions to maximize their entropy by increasing

the brush volume), eventually leading to a larger brush height [79–81]. Also, here

too, the lowering of the salt concentration (i.e., increasing the EDL thickness, which

in turn would lead to a screening of the PE backbone charge over a larger length)

and an increase in the pH∞ (leading to a larger ionization and hence a greater

charging of the PE molecule inducing a larger counterion-induced osmotic swelling)

will cause an increase of the PE brush height. Here we also account for the EV

interactions quantified by ν = 0.1 and ω = 0.01.

Fig. 7 provides the variation of the monomer density along the brush height

for different values of γ. It was discussed Fig. 3, a shorter brush would imply a

larger (smaller) monomer density close to (away from) the wall in comparison to

the cases with larger brush height. This is also the case here – hence we witness a

larger (smaller) monomer density close to (away from) the wall for smaller γ values

as well as the cases for larger salt concentration and smaller pH∞ values.

Fig. 8 provides the variation of the end distribution g along the brush height

for different values of γ. It was revealed in Fig. 4 that the case of smaller brush

height leads to a larger concentration of the monomers close to the wall and results

in a larger value of g close to the wall and it decays quickly away from the wall. On

the other hand, for the case of larger brush height, g is much smaller at near wall

locations and decays much more slowly away from the wall. This is the case here as

well – hence we witness a larger (at near wall locations) and a steeply decaying g
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Fig. 2.6: Variation of non-dimensional equilibrium brush height H0/a with number of PCS

per kuhn monomer γa3 for different pH∞ and c∞ values. ν = 0.1, ω = 0.01. All

other parameters are identical to that used in Fig. 2.2.
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Fig. 2.7: Comparison of monomer distribution profiles (φ) as a function of the dimension-

less transverse distance along the brush (xb/a, a is the Kuhn length) obtained

for different values of PCS number density γ using our theory and theory of [45]

for different pH∞ and c∞ values. ν = 0.1, ω = 0.01. All other parameters are

identical to that used in Fig. 2.2.
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Fig. 2.8: Comparison of non-dimensional chain end distribution profiles (g × a, a is the

Kuhn length) as a function of the dimensionless transverse distance along the

brush (xb/a) obtained for different values of PCS number density γ using our

theory and theory of [45] for different pH∞ and c∞ values. ν = 0.1, ω = 0.01.

All other parameters are identical to that used in Fig. 2.2.

for the case with small γ (i.e., the case that corresponds to smaller brush height, see

Fig. 5), but a smaller and more weakly decaying g for larger γ (i.e., the condition

that leads to taller brushes).

Finally, Fig. 9 provides the transverse variation of the EDL electrostatic po-

tential for different values of γ. Smaller γ implies both weakened charge density of

the brushes as well as shorter brushes. Accordingly, for smaller γ, the EDL elec-
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Fig. 2.9: Comparison of non-dimensional electrostatic potential profiles (ψ̄ = eψ/(kBT ))

as a function of the dimensionless transverse distance along the nanochannel

half height (x/a) obtained for different values of PCS number density γ using

our theory and theory of [45] for different pH∞ and c∞ values. ν = 0.1, ω = 0.01.

All other parameters are identical to that used in Fig. 2.2.

trostatic potential is also weak and also decays quickly (since the brush height is

small). Of course, for a given γ, a larger EDL electrostatic potential (magnitude)

is invariably witnessed for lower c∞ (weakened screening of the charge of the PE

brushes) and larger pH∞ (more enhanced ionization of the PE brushes).
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2.4 Discussions

2.4.1 Applicability of the Proposed Theory

The proposed theory is directly applicable to all the systems that involve

planar, pH-responsive PE brushes. Such brushes have been extensively employed for

several applications such as nanochannel ion selectivity [27] and ion detection [82],

fabrication of ionic valves [83,84], nanofluidic diodes [85], and surfaces of controllable

wetting properties [86], and many more. The theory provides a new prediction of the

EDL electrostatic potential distribution and consequently a new prediction for the

number density distribution of the electrolyte, hydrogen, and hydroxyl ions for cases

where the EV interactions between the PE segments become important and the PE

brushes are so charged that γa3 6= 1. This would imply that the corresponding

changes in the ionic current or the current-voltage characteristics (in presence of an

applied voltage), which in turn would dictate several of these applications [27,82–85],

would be significantly different as compared to that obtained with the existing theory

[45]. Similarly, the prediction of a new monomer distribution would critically affect

the drag and the resulting fluid flow in brush-grafted nanochannels, which would

impact the problems dictated by such fluid flows in brush-grafted nanochannels

[22,25,87].

The present model, while describes the planar brushes, would also motivate de-

veloping models that account for the appropriate EV interactions and the expanded

form of the mass action law for the pH-responsive spherical [156] or cylindrical PE
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brushes (i.e., PE brushes grafted to spheres and cylinders) that have been employed

in many applications such as the use of nanoparticles grafted with pH-responsive

brushes for targeted drug delivery [89], protein binding [90], synthesis of magnetic

nanoparticles [91], etc. Finally, the use of the generic mass action law would be use-

ful to improve the theoretical predictions of not only the pH-responsive planar and

curved PE brushes, but also all those calculations that involve generic pH-responsive

PE molecules and gels [74–78].

2.4.2 Limitations and Scope of Improvement of the Proposed Theory

In this paper, we employ the strong stretching theory (SST) framework which

assumes the brushes to be in a strongly stretched configuration. Hence we ignore the

effects of lateral variation of monomer distribution profile and bending back of chain

ends. The approximation holds good for systems with high grafting density. For

other systems, an advanced numerical self-consistent field theory (SCFT) model [92]

needs to be implemented.

The second important issue is that we invariably assume that the EDLs are

always thin enough to ensure that `� 2λD (` is the distance between the adjacent

grafted chains and λD is the EDL thickness) and there is no overlap between the

EDLs formed by the adjacent brushes. In case such an approximation does not

hold, one would need to assume a 2D (and not a 1D) model for the brush EDL

electrostatics and alter the SST accordingly [93].

Thirdly, no non-PB component (e.g. finite ion size effect [94, 95], solvent

polarization effect [96], or ion-ion correlation effect [97]) has been considered in the
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description of the EDL. These effects would become important for large ψ and large

salt concentration and would significantly impact the overall self-consistent field

approach.

Fourthly, our theory also does not consider the correlations due to the con-

nectivity of the polymer charges. Such correlations can be specially significant for

pH-responsive systems (like pH-responsive PE brushes). For example, there are

chances that the effective pKa of the polymer chain might get significantly altered

due to the connected charges of the pH-responsive PE chain [98]. Such alteration

of the pKa and its resulting connotations in all the presented results have been

obviously neglected in the present study.

Finally, we shall like to emphasize that given the fact that we have used mean-

field calculations in this paper, the capability of the present model to quantify the

exact influence of the EV effects will be limited. This stems from the fact that

the mean field assumptions extend to the EV effect consideration as well. This

has been described in detail by Alexander-Katz et al. [99]. In this paper [99],

the authors studied confined polymer solutions and used the density profiles to

obtain the effective correlation length ξeff quantifying the non-mean-field polymer

correlations and obtained the results to the mean field theory predictions. While for

small EV parameters, the ξeff was well described by the mean-field theory results,

for larger EV parameters ξeff ∼ C−3/4 (C is the polymer solution concentration), a

result that the mean-field theory could not predict. In essence, therefore, chances

are that the inherently mean-field approach of the our calculations would imply

that some of the predictions of the effect of considering the EV interactions will be
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limited.

2.5 Conclusions

In this paper, we develop a self-consistent field approach (modified SST) to

probe the behavior of the pH-responsive brush system by accounting for (a) the

EV interactions between the PE segments and (b) a more expanded form of the

mass action law valid for γa3 6= 1. Results indicate an enhancement of the brush

height due to the consideration of the EV interaction driven PE inter-segmental

repulsion and an increase (decrease) of the brush height for γa3 > 1 (γa3 < 1) due

to increased (decreased) counterion-induced osmotic swelling of the brushes. We

also establish that these typical height variations get reflected in the corresponding

variations of the monomer density profile, distributions of the PE brush ends, and

the corresponding EDL electrostatic potential distribution. This model, which can

be considered as the most generic SST model for the pH-responsive PE brushes,

will not only be critical for explaining several experiments that invariably consider

the PE brushes to be in a “good” solvent, but will also help to better interpret a

large number of problems that involve pH-responsive PE molecules (not necessarily

in a “brush” configuration) and gels and where a more expanded form of the mass

action law with γa3 6= 1 may be more applicable.

In the end, we shall like to point out that there exist very few experimental studies

that have probed the equilibrium structure and configuration of pH-responsive poly-

electrolyte (PE) brushes [100,101]. Mahalik et al. [63] made the first attempt to com-
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pare experimental results for planar PE brushes with theoretical models such as the

Strong Stretching Theory (SST) [45] and Self- consistent Field Theory (SCFT) [92].

However, they used a multivariate optimization-based approach to fit several pa-

rameters like the degree of polymerization, Kuhn length, bulk salt concentration,

etc. to obtain the best match between the theoretical and experimental monomer

distribution profiles. This approach has several limitations (the best fit parameters

do not necessarily agree with the experimental conditions) and was used since the

existing experimental studies are not able to specify the precise values of several

brush-related parameters. For example, it is very difficult to pinpoint the degree of

polymerization, grafting density and polydispersity index for PE brushes prepared

using SI-ATRP (Surface-initiated atom transfer radical polymerization). Moreover,

it is difficult to quantify the exact value of the excluded volume parameter for exper-

imental studies. All these factors negate the possibility of comparing our analytical

results with the existing experimental studies.

2.6 Appendix

Derivation of eqs.(2.14-2.20)

We employ variational calculus to carry out the minimization of the free en-

ergy functional [eq.(12)]. Assuming that the chain is flexible (p=1) and taking the

variation of each free energy component w.r.t. E(x, x′), g(x′), ψ, nA− , n±, nH+ and
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nOH− , we shall get:

δF ′els
kBT

=
3

2a2

[ ∫ H

0

g(x′)dx′
∫ x′

0

δE(x, x′)dx+

∫ H

0

δg(x′)dx′
∫ x′

0

E(x, x′)dx
]

+ λ1
σ

a3

∫ H

0

δφ(x)dx−
∫ H

0

λ2(x′)dx′
∫ x′

0

δE(x, x′)

E2(x, x′)
dx

(A1)

δFEV
kBT

=
σ

a3

∫ H

0

(δfconc
δφ

)
δφdx (A2)

δFelec
kBT

+
δFEDL
kBT

=
σ

kBT

∫ ∞
0

[
− ε0εr

2
δ

∣∣∣∣dψdx
∣∣∣∣2 + eδψ(n+ − n− + nH+ − nOH−)

+ eψ(δn+ − δn− + δnH+ − δnOH−)
]
dx− σ

kBT

∫ H

0

δ
[
eψnA−(x)φ

]
dx

+ σ

∫ ∞
0

δ
[
n+

(
ln
( n+

n+,∞

)
− 1
)

+ n−

(
ln
( n−
n−,∞

)
− 1
)

+ nH+

(
ln
( nH+

nH+,∞

)
− 1
)

+ nOH−
(
ln
( nOH−

nOH−,∞

)
− 1
)

+ (n+,∞ + n−,∞ + nH+,∞ + nOH−,∞)
]
dx

=
σ

kBT

∫ ∞
0

[
ε0εr

(d2ψ

dx2

)
δψ + eδψ(n+ − n− + nH+ − nOH−)+

eψ(δn+ − δn− + δnH+ − δnOH−)
]
dx− σ

kBT

∫ H

0

[
eφ
( K ′aγ

K ′a + nH+

)
δψ

− eφψ K ′aγ

(K ′a + nH+)2 δnH+ + eψ
( K ′aγ

K ′a + nH+

)
δφ
]
dx

+ σ

∫ ∞
0

[
δn+ln

( n+

n+,∞

)
+ δn−ln

( n−
n−,∞

)
+ δnH+ln

( nH+

nH+,∞

)
+ δnOH−ln

( nOH−

nOH−,∞

)]
dx

(A3)
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δFion
kBT

=
σ

a3

∫ H

0

δφ

[(
1− nA−

γ

)
ln
(

1− nA−

γ

)
+
nA−

γ
ln
(nA−
γ

)
+
nA−

γ
ln
(nH+,∞

K ′a
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+
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0
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γ

)
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(
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γ
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0
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)
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γ
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γ
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γ
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− 1

γ
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γ
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1

γ
ln
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+

1

γ
ln
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K ′a

)]
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(A4)

Substituting eq.(A1), (A2), (A3) and (A4) in (2.13), we get:

δF ′

kBT
=

3

2pa2

[ ∫ H

0

g(x′)dx′
∫ x′

0

δE(x, x′)dx+

∫ H

0

δg(x′)dx′
∫ x′

0

E(x, x′)dx
]

+ λ1
σ
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∫ H

0
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∫ H

0
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0
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σ
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)
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γ
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γ

)
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γ
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1
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1

γ
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Variation of eq.(2.10) gives:

δφ(x) =
a3

σ

∫ H

x

[ δg(x′)

E(x, x′)
− g(x′)δE(x, x′)

E2(x, x′)

]
dx′ (A6)
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Substituting eq.(A6) in (A5) and rearranging gives:

δF ′

kBT
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0

δE(x, x′)

[
3g(x′)

2pa2
− λ2(x′)

E2(x, x′)
−

(
δfconc
δφ

+ λ1 −
ea3ψ

kBT
nA−

+
(

1− nA−

γ

)
ln
(

1− nA−

γ

)
+
nA−

γ
ln
(nA−
γ

)
+
nA−

γ
ln
(nH+,∞

K ′a

)) g(x′)

E2(x, x′)

]
dx

+

∫ H

0

dx′δg(x′)

∫ x′

0

[
3E(x, x′)

2pa2
+

(
δfconc
δφ

+ λ1 −
ea3ψ

kBT
nA− +

(
1− nA−

γ

)
ln
(

1− nA−

γ

)
+
nA−

γ
ln
(nA−
γ

)
+
nA−

γ
ln
(nH+,∞

K ′a

)) 1

E(x, x′)

]
dx

+
σ

γa3

∫ H

0

δnA−φ

[
− γa3 eψ

kBT
− ln

(
1− nA−

γ

)
+ ln

(nA−
γ

)
+ ln

(nH+,∞

K ′a

)]
dx

+
σ

kBT

∫ H

0

δψ
[
ε0εr

(d2ψ

dx2

)
+ e
(
n+ − n− + nH+ − nOH− − nA−φ

)]
dx

+
σ

kBT

∫ ∞
H

δψ
[
ε0εr

(d2ψ

dx2

)
+ e(n+ − n− + nH+ − nOH−)

]
dx

+ σ

∫ ∞
0

δn+

[ eψ
kBT

+ ln
( n+

n+,∞

)]
dx+ σ

∫ ∞
0

δn−

[
− eψ

kBT
+ ln

( n−
n−,∞

)]
dx

+ σ

∫ ∞
0

δnH+

[ eψ
kBT

+ ln
( nH+

nH+,∞

)]
dx+ σ

∫ ∞
0

δnOH−
[
− eψ

kBT
+ ln

( nOH−

nOH−,∞

)]
dx

(A7)

Equating δF ′=0 yields the desired eqs.(2.14-2.20) since δE(x, x′) 6=0, δg(x′) 6=0,

δψ 6=0, δnA− 6=0, δn± 6=0, δnH+ 6=0, δnOH− 6=0.
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Chapter 3: Theoretical study on the massively augmented

electroosmotic water transport in polyelectrolyte

brush functionalized nanoslits

In this chapter1, we demonstrate that functionalizing nanoslits with pH-responsive

polyelectrolyte (PE) brushes can lead to extremely fast electroosmotic (EOS) water

transport, where the maximum centreline velocity and the volume flow rate can be

an order of magnitude larger than these quantities in identically charged brush-free

nanochannels for a wide range of system parameters. Such an enhancement is most

remarkable given that the brushes have been known to retard the transport by im-

parting additional drag on the fluid flow. We argue that this enhancement stems

from the localization of the charge density of the brush-induced electric double layer

(and hence the EOS body force) away from the nanochannel wall (or the location

of the wall-induced drag force). This ensures a much larger impact of the EOS

body force triggering such fast water transport. Finally, the calculated flux values

for the present brush-grafted nanochannels are found to be significantly larger than

1 Contents of this chapter have been published as: V. S. Sivasankar, S. A. Etha, H. S. Sachar,

and S. Das,“Theoretical study on the massively augmented electro-osmotic water transport in poly-

electrolyte brush functionalized nanoslits”, Phys. Rev. E , 102, 013103 (2020).



those for a wide range of nanofluidic membranes and channels, suggesting that the

brush functionalization can be considered as a mechanism for enabling such superfast

nanofluidic transport.

3.1 Introduction

Nanofluidic transport of liquids and ions [102–104] has been critical to a

large number of disciplines ranging from energy generation, conversion, and utiliza-

tion [105,106], sensing and separation [107,108], and gating of ion and liquids [83,109]

to the understanding of the behavior of biological systems for developing biomimetic

and bioinspired applications [110, 111]. Very often, these applications necessitate

modifying the properties and/or working principles of these nanochannels. Grafting

the nanochannels with PE brushes that are sensitive to the environmental stimuli

has served as one of the most popular techniques for modifying the nanochannel

functionality enabling applications like ion and biosensing [112, 113], fabrication of

ionic diodes [39] and current rectifiers [34, 114], etc. Most of these applications of

the PE-brush grafted nanochannels rely on the brush-induced alteration of the ionic

current and is aided by the fact that the corresponding liquid transport is severely

weakened due to the brush-induced additional drag force [22]. Such a reduction

in liquid transport in micro/nanochannels by grafting the channel walls with poly-

mer/PE molecules is a well-documented phenomenon. For example, Bruin et al.

in their experimental study reported a decrease in the electroosmotic (EOS) flow

in fused-silica capillaries with walls grafted with with γ-glycidoxypropyltrimethoxy-
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silane and polyethylene glycol [115]. Fung and Yeung showed that the dynamic

coating of polyethylene oxide (PEO) in bare-silica capillary columns was able to

significantly reduce the EOS flow, which in turn enabled high-speed DNA sequenc-

ing [16]. A thorough study by Monteferrante et al. [17] combined experiments and

theory to clearly establish that liquid flow velocity is significantly reduced in a cap-

illary coated with a copolymer consisting of N,N-dimethylacrylamide (DMA), gly-

cidyl methacrylate (GMA), 3-(trimethoxysilyl) propyl methacrylate (MAPS), and

N,N-dimethyl aminoethyl acrylamide: they associated this velocity reduction to the

large frictional forces imparted by the grafted polymer molecules. In addition to

these experimental studies, there have been a plethora of simulation studies that

employ sophisticated molecular dynamics (MD) simulations and establish such a

significant flow reduction in nanochannels grafted with polymer/PE molecules and

brushes due to the enhanced drag force imparted by these polymer molecules and

brushes on the fluid flow [18–20, 116, 117]. In this paper we describe a complete

paradigm reversal in the context of the liquid transport in the PE brush-grafted

nanochannels. We establish a wide range of parameter space where the grafting

of nanochannels with pH-responsive, backbone-charged PE brushes can ensure an

electroosmotic (EOS) water transport that is much more augmented as compared

to that in equally charged, brush-free nanochannels. Such superfast water transport

manifests as, for some parameter combinations, channel centreline velocities and

volume flow rates in brush-grafted nanochannels that are an order of magnitude

larger than those for the similarly charged brush-free nanochannels. The brushes

ensure that the effective centre of the charge is away from the nanochannel wall,
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which implies that the effective centre of the charge density of the brush-induced

EDL (electric double layer) is also away from the wall. As a consequence, when an

external axial electric field is employed to drive an EOS flow, the EOS body force

(resulting from the interaction of this EDL charge density and the applied electric

field) is localized away from the nanochannel wall (see Fig. 3.1). Therefore, there

is a spatial difference in the location of the EOS body force and the wall induced

drag. Such a difference augments the influence of the EOS body force, which in turn

induces, particularly for conditions that increase the brush height, such an augmen-

tation of the velocity field in comparison to that in the similarly charged brush-free

nanochannels.

In a series of previous studies [30–32, 57], we have established such EDL-

localization-induced enhanced electrokinetic transport in nanochannels grafted with

end-charged PE brushes. However, these studies did not manifest such massive

augmentation in the flow field as they overestimated the drag (particularly for the

tall brushes) from the brushes modelled using the simplistic Alexander-de-Gennes

model [4–6] that assumes a uniform monomer distribution. On the other hand, the

present study considers a much more rigorous augmented Strong Stretching Theory

(SST) description of the PE brushes [118,119], which ensures a much larger monomer

density at near-wall, low-velocity locations [118,119] leading to a smaller overall drag

contribution (the local brush-induced drag force is proportional to thfe local fluid ve-

locity and the drag coefficient is proportional to the square of the monomer density)

from the brushes. Therefore, we can infer that the present study is different from the

study of Chen and Das [30] in two critical aspects. First the present study consid-
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ers a much more realistic system (a fully backbone-charged PE brush as compared

to an end-charged brush) and provides a significantly more rigorous description

(augmented SST model [118, 119] instead of the simplistic Alexander de-Gennes

model [4–6]) of the PE brushes in modelling the EOS transport in brush-grafted

nanochannels. Second, this more rigorous description of the PE brushes ensures

that we do not overestimate the PE-brush-imparted drag force that occurs when

the Alexander de-Gennes model, which considers a uniform monomer distribution,

is employed to describe the PE brushes. Under such circumstances, we establish that

in presence of the experimentally realizable values of the applied axial electric fields

(104−5×104 V.m−1) [120], the EOS water flux values obtained for the present case

of the PE-brush-grafted nanochannels can be significantly larger than the flux val-

ues obtained for nanochannel/nanopassage/nanotube-based membranes [121–132]

and nanofluidic systems [133–135] and less than one order of magnitude smaller

than the tremendously high fluxes observed in graphene nanochannels and carbon

nanotubes [136,137].

3.2 Theory

We consider a nanochannel of height 2h (−h ≤ y ≤ h) grafted with pH-

responsive, backbone-charged PE brushes [see Fig. 3.1(b)]. This section provides

the information to obtain the steady and fully-developed EOS flow field in the PE-

brush-grafted nanochannel.
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Fig. 3.1: Schematic comparing the EOS transport (due to the axial electric field) in (a)

brush-free and (b) brush-grafted nanochannel. The brushes enforce the local-

ization of the EDL charge density away from the wall enforcing the EOS body

force to be localized away from the wall (location of the drag force). Here, λEDL

denotes the EDL thickness.
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3.2.1 Electroosmotic Transport in Brush-Functionalized Nanochannels:

Theoretical Model

Once the equilibrium brush configuration and the brush-induced EDL elec-

trostatics have been obtained, we use this information to obtain the steady and

fully-developed EOS flow field in the PE-brush-grafted nanochannel. The fluid flow

is described by the following equation:

η
d2u

dy2
+ eE (Σinizi)−

η

κd
u = 0 (−h ≤ y ≤ −h+H0),

η
d2u

dy2
+ eE (Σinizi) = 0 (−h+H0 ≤ y ≤ 0), (3.1)

in presence of the boundary conditions expressed as:

(u)y=−h = 0, (u)y=(−h+H0)+ = (u)y=(−h+H0)− ,(
du

dy

)
y=0

= 0,

(
du

dy

)
y=(−h+H0)+

=

(
du

dy

)
y=(−h+H0)−

(3.2)

In the above equations, which consider the flow field only in the bottom half

of the nanochannel (i.e., −h ≤ y ≤ 0), H0 is the equilibrium brush height, η is the

dynamic viscosity of water, E is the applied axial electric field, u is the velocity field,

ni and zi are the number density distribution and valence of ion i (i = ±, H+, OH−;

“+” and “−” denote the cations and anions of the electrolyte), and η/κd represents

the per unit volume drag coefficient. Here, following the analysis of de Gennes [138]

and Freed and Edwards [139], one can express

κd = a2/φ2 = a2
( H0

σa3Nφ̄

)2
(3.3)

and

φ̄ =
φH0

σa3N
. (3.4)
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Fig. 3.2: Transverse variation of the non-dimensional velocity profile ū[ū = u
u0

, where

u0 =
(
kBT
e

)
ε0εrE
η is the velocity scale, kBT is the thermal energy, ε0 is the

permittivity of free space and εr is the relative permittivity of water.] with bulk

salt concentration c∞ for PE brush-grafted nanochannel for (a) pH∞ = 3, ` =

60 nm, (b) pH∞ = 4, ` = 60 nm, and (c) pH∞ = 3, ` = 10 nm. Here we consider

the flow profiles for the equilibrium-brush-EDL configurations (see chapter 2 for

the equations and Refs. [118, 119] for the figures) obtained using N = 400, h

= 100 nm, a = 1 nm (Kuhn length), kB = 1.38 x 10−23 J.K−1, T = 298 K,

e = 1.6×10−19 C (electronic charge), ε0 = 8.8 x 10−12 Fm−1, εr = 79.8, γa3 = 1,

pKa = 3.5, ν = 0.5, ω = 0.1. pKw =14, pOH∞ = pKw - pH∞, c+,∞ = c∞,

cH+,∞ = 10−pH∞ , cOH−,∞ = 10−pOH∞ , and c−,∞ = c∞+ cH+,∞− cOH−,∞. The

definitions of all the terms and parameters are provided in chapter 2.
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In the above equations, a is the PE brush Kuhn length, N is the number of monomers

of a brush molecule, φ is the monomer distribution profile, and σ is the PE brush

grafting density (please see [22,119] for more details). The augmented SST analysis

provides an expression for the equilibrium brush height H0, monomer distribution

φ, brush-end distribution g(y), and also relates ni to the electrostatic potential ψ

through the Boltzmann distribution (please see the previous subsection). These in-

formations close eqs.(3.1,3.2), which when solved yields the velocity distribution for

the EOS transport in nanochannels with uncharged walls but grafted with backbone-

charged, pH-responsive PE brushes. These velocity profiles are compared with those

obtained for charged, brush-free nanochannels. The second equation of eq.(3.1),

valid for −h < y < 0, and the first and third conditions of eq.(3.2) describe the EOS

transport in such brush-free nanochannels having the same equivalent (bare-wall)

surface charge density (σc,eq) as that of the corresponding brush-grafted nanochan-

nels. We can write:

σc,eq = −e
∫ −h+H0

−h
φnA−dy, (3.5)

where nA− is expressed in eq.(2.16).

3.3 Results and Discussions

We consider brush-grafted nanochannels with small (`=60 nm) and large

(`=10 nm) grafting densities. Here ` is the lateral separation between the grafted
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Fig. 3.3: Ratio of the maximum centreline velocities (ur = umax,B/umax,NB) and volume

flow rates (Qr = QB/QNB) (inset) with c∞ for different combinations of `, h and

pH∞. All other parameters are same as those in Fig. 3.2
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brushes with ` = 1/
√
σ. σc,eq of the brush-free nanochannels (defined above) vary

depending on the brush-grafted nanochannels against which their results are com-

pared. Fig. 3.2 compares the velocity profiles for the brush-grafted and the cor-

responding (i.e., with identical charge content) brush-free nanochannels revealing

three key issues. First, the channel centreline maximum velocity for the brush-

grafted nanochannel (umax,B) is always larger than that of the corresponding brush-

free nanochannel (umax,NB). Second, an increase in salt concentration, in general,

increases the ratio ur = umax,B/umax,NB for a given pH∞ and `. These two results

signify the massive velocity enhancement effect of the brushes caused by the local-

ization of the EOS body force away from the location of the wall-imparted drag

force. For the brush-free nanochannels, the EDL and hence the EOS body force is

localized at the same location as the wall-induced drag [see Fig. 3.1(a)] and hence

such augmentation in the velocity field is not possible. For a larger salt concen-

tration, the EDL is thinner. Therefore this effect of the EDL localization becomes

even stronger. For a more diffuse EDL (corresponding to smaller salt concentra-

tion), the EDL will spread out to near-wall locations, nullifying this overall effect

of the EDL localization. As a consequence, ur is larger for a larger salt concen-

tration (also see Fig. 3.3), with the exception of long brushes(`=10 nm) at large

salt concentration(c∞ = 10−2 − 10−1 M) and high pH∞. The third important re-

sult in this context is the significant gradient in the velocity for the brush-grafted

nanochannels for small ` or large pH∞ (i.e., the conditions that cause a larger brush

height, see [118, 119]). The larger brush height imparting a drag over a larger dis-

tance from the wall enforces such a gradient in the originally plug-like EOS flow
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profile (always witnessed for the brush-free nanochannels).

In Fig. 3.3, we compare the ratio ur (defined previously). ur profile confirms an

extraordinary enhancement of the centreline velocities (or equivalently the genera-

tion of ultrafast water transport with ur > 10 for several cases) for the brush-grafted

nanochannels. Finally in the inset of Fig. 3.3, we provide the ratio Qr = QB/QNB

(where QB = w
∫ h
−h uBdy and QNB = w

∫ h
−h uNBdy are the volume flow rates in

brush-grafted and brush-free nanochannels, w is the nanochannel width, and uB

and uNB are the velocity fields in brush-grafted and brush-free nanochannels). Qr

also shows an equally impressive increase and can even become > 10 for certain

parameter choices. For the studied set of parameters, both ur and Qr show the

maximum enhancement for the nanochannel (h = 250 nm) with very tall (corre-

sponding to small ` and large pH∞) PE brushes at intermediate salt concentration

(c∞ = 10−2 M). Of course, for such very tall brushes (corresponding to `=10 nm and

pH∞ = 4) at large salt concentration, the effect of EDL localization is superceded

by the corresponding decrease in the brush height (due to enhanced inter-segmental

screening). As a result, ur and Qr decreases in the range c∞ = 10−2 − 10−1 M. On

the other hand, for other cases of not so tall brushes, ur and Qr increases mono-

tonically with the salt concentration due to the dominating influence of the EDL

localization effect.

In a recent study [30], we found an increase in the EOS velocity for nanochan-

nels grafted with end-charged PE brushes. In Fig. 3.4, we compare Qr and the

flux of the present study with that of the study of Ref. [30]. We clearly find that

the present case shows a larger value of Qr and the flux. The previous study [30]
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Fig. 3.4: Comparison of the ratio Qr and the actual flux value (see the inset) between

the present case (EOS transport in nanochannels grafted with backbone-charged

brushes) and Ref. 18 (EOS transport in nanochannels grafted with end-charged

brushes). We consider three cases in the main figure: Case 1: pH∞ = 3, `=60 nm,

h=100 nm; Case 2: pH∞ = 4, `=60 nm, h=100 nm; Case 3: pH∞ = 4, `=10 nm,

h=250 nm. In the inset we compare the actual flux values for these three cases

for an applied electric field E=500 V.cm−1. In order to ensure that we are

considering the same charge content of the PE brushes as the present case, the

charge density for the end-charged PE brushes is considered to be σc,eq (see the

discussions following eqs. 1 and 2 for the definition of σc,eq). In the legend,

“B.C” and “E.C” denote the cases of EOS transport in nanochannels grafted

with backbone-charged (present case) and the end-charged (Ref. 18) brushes.
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Fig. 3.5: Comparison of flux for various nanofluidic devices. Points 1 to 4 provide the

results for the present case of PE-brush-grafted nanochannel. 1:pH∞ = 3, c∞ =

10−2 M, ` = 10 nm, h = 100 nm, E = 500 V.cm−1; 2:pH∞ = 3, c∞ = 10−3 M,

` = 10 nm, h = 100 nm, E = 100 V.cm−1; 3:pH∞ = 4, c∞ = 10−2 M, ` = 10

nm, h = 250 nm, E = 500 V.cm−1; 4:pH∞ = 4, c∞ = 10−3 M, ` = 10 nm, h =

250 nm, E = 100 V.cm−1. For the current work, η = 8.9 × 10−4 Pa.s, all other

parameters are same as Fig. 3.2. In Table 3.1, we discuss the manner in which

the fluxes are for the different experimental studies (cited here) are calculated.

Here GO - Graphene Oxide, BN - Boron Nitride, CNT - Carbon Nanotube, Si -

Silicon, AAM - Anodized Alumina Membrane, NC - Nanochannel.
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considered a simplistic model of the PE brushes, where the brushes were described

using the Alexander-de-Gennes model making the monomers uniformly distributed

along the length of the brush. On the other hand, for the present case we in-

voke a much more rigorous and realistic model where the brushes are described

using the augmented SST [118]: this leads to a more appropriate distribution of the

monomers where the monomer density is much larger at near-wall locations than

at locations far away from the wall. In both the present and the previous stud-

ies [30], we attribute the increase in fluxes to the localization of the EDL charge

density and the resulting EOS body force away from the wall (which is the location

of the wall-induced drag force). Such localization of the EOS body force away from

the location of wall-induced drag force leads to a much larger effect of the EOS

body force causing such enhancement in the fluxes. In addition to this wall-induced

drag, there is also the drag force resulting from the presence of the brushes them-

selves. The coefficient of the brush-induced drag force varies quadratically with the

monomer distribution (see the discussions following eq. 1). The simplistic model

of our previous paper [30] assumes a uniform monomer distribution; hence it has

the same number of monomers (and hence the same drag coefficient) at near-wall

location as well as the location where the EOS body force is localized. On the other

hand, for the present case, the consideration of a much more rigorous and realistic

monomer distribution implies that the monomer distribution is significantly larger

at near-wall locations and hence significantly weaker at the location where the EOS

body force is localized (i.e., at a location away from the wall). Accordingly, for the

present case, at the locations where the EOS body force is effectively localized, the
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coefficient of the brush-induced drag force is significantly smaller. In other words,

for the present case the EOS body force is localized at a location that is significantly

deviated from the location of both the wall-induced and the brush-induced drag forces,

while for the previous study [30] the EOS body force is localized at a location that

is only deviated from the location of the wall-induced drag force but not from the

location of the brush-induced drag force. This in turn ensures a much larger value

of the flux and Qr for the present case as compared to our previous study [30].

Finally in Fig. 3.5, we seek answer to the following question: How large

is the flux in the brush-grafted nanochannels in the context of the large volume of

studies on nanofluidic transport? For that purpose, we try to compare the fluxes

obtained for the brush-grafted nanochannels against the fluxes obtained in differ-

ent nanochannel-based membranes, nanotubes, and nanofluidic systems (or isolated

nanochannels). Most remarkably, the fluxes for the present case is remarkably high:

we provide the results for different nanochannel height, brush height, and applied

(and experimentally feasible) axial electric field combinations (see Table 1 for all the

relevant details). and find that the fluxes in the PE-brush-grafted nanochannels can

be much larger than that for a wide variety of different nanofluidic or nanochannel-

membrane systems. In fact, the fluxes are so large that they become comparable

(or slightly smaller) than the fluxes obtained in CNTs or nanoporous single-layer

graphene known for extremely large flow velocities.
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3.4 Conclusions

To summarize, we have shown the attainment of the superfast EOS water

transport in nanochannels by grafting nanochannels with pH-responsive, PE brushes.

This enhancement makes the corresponding water flux much larger than the wa-

ter flux obtained with most of the state-of-the-art nanofluidic and nanochannel-

membrane systems. Such a finding establishes that brush functionalization, com-

pletely contrary to the general notion of the universal flow-reducing ability of the

brushes, can serve as a strong promoter of the nanofluidic transport for a wide

range of parameter values. Of course, for other parameter combinations (not stud-

ied here), the brush functionalization might retard the transport. The universal

need to achieve enhanced transport and enhanced separation in nanochannels via

energy efficient means cuts across the disciplines of fluid mechanics, materials sci-

ence, biotechnology, nanotechnology, separation science, etc. We have achieved

precisely that in this study by the facile means of PE brush functionalization.
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3.5 Appendix
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Tab. 3.1: Flux values obtained from experimental studies on liquid transport in different

nanofluidic systems.
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Chapter 4: Ionic diffusioosmotic transport in nanochannels

grafted with pH-responsive polyelectrolyte brushes

modeled using augmented strong stretching the-

ory

In this chapter1, we study the diffusioosmotic (DOS) transport in a nanochan-

nel grafted with pH-responsive polyelectrolyte (PE) brushes and establish brush-

functionalization-driven enhancement in induced nanofluidic electric field and elec-

trokinetic transport. The PE brushes are modelled using our recently developed aug-

mented strong stretching theory (SST). We consider the generation of the DOS

transport due to the imposition of a salt concentration gradient along the length

of the nanochannel. The presence of the salt concentration gradient induces an

electric field that has an osmotic (associated with the flow-driven migration of the

ions in the induced electric double layer) and an ionic (associated with the con-

duction current) component. These two components evolve in a manner such that

the electric field in the brush-grafted nanochannel is larger (smaller) in magnitude

1 Contents of this chapter have been published as: V. S. Sivasankar, S. A. Etha, H. S. Sachar,

and S. Das,“Ionic diffusioosmotic transport in nanochannels grafted with pH-responsive polyelec-

trolyte brushes modeled using augmented strong stretching theory”, Phys. Fluids 32, 042003 (2020).



than that in the brush-less nanochannels for the case where the electric field is pos-

itive (negative). Furthermore, we quantify the DOS flow velocity and establish that

for most of the parameter choices, the DOS velocity, which is a combination of

the induced pressure-gradient-driven chemiosmotic component and the induced elec-

tric field driven electroosmotic transport, is significantly larger for the nanochannels

grafted with backbone-charged PE brushes (i.e., brushes where the charge is dis-

tributed along the entire length of the brushes) as compared to brush-free nanochan-

nels or nanochannels grafted with PE brushes containing charges on their non-grafted

ends.

4.1 Introduction

Liquid and ion transport in nanochannels and nanopores [15,102–104,140,141]

is central to a variety of emerging applications in energy research [105, 106], devel-

opment of ionic sensors, biosensors, and ionic gating [83, 107–109], fabrication of

novel biomedical and drug delivery platforms [142, 143], as well as our endeavor to

better understand a myriad of biological systems for fabricating different biomimetic

systems [110,111]. Several strategies have been devised to enhance the electrohydro-

dynamic fluxes in nanochannels and nanopores. These strategies involve tuning the

external forces (e.g., electric field and magnetic field) driving the transport and/or

functionalizing the walls of these nanochannels/nanopores with entities that inter-

play with the liquid and ions that are being transported. For example, in a recent

work, an enhanced electro-osmotic (EOS) flux was reported in a charged nanochan-
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nel with alternating slipping surface [144]. Other recent related studies report en-

hancement in flow by controlling the zeta potential, wall slip coefficient [145], and

aspect ratio of pH-regulated nanochannel [146]. Functionalizing micro-nanochannels

by grafting their inner walls with environmental-stimuli sensitive polymer and poly-

electrolyte (PE) molecules has emerged as an extremely popular strategy that have

found applications in a large number of disciplines ranging from ion sensing and

biosensing [112, 113] to fabrication of diodes and current rectifiers [34, 39, 114, 147].

For instance, in a recent study, Sadhegi discussed the manipulation of EOS flow

velocity by varying thickness of the Polyelectrolyte layer (PEL) coating in a mi-

crochannel [148]. These polymer and PE molecules are often grafted densely enough

so that they stretch out away from the grafting surface forming “brush”-like config-

urations [3–5,7–9,149,150]. These brushes change their configurations as functions

of the ion concentration and pH of the solution and accordingly enabling the micro-

nanochannels to be employed for such wide variety of applications.

While there has been extensive research on probing the behavior of the PE

brushes and their responses to different factors (e.g., salt concentration, pH, and

solvent quality) [21, 48–50, 52, 52–56, 58–64], significantly less has been done in

probing the electrohydrodynamic (EHD) transport in such PE-brush-functionalized

nanochannels. The initial group of studies effectively considered a decoupled prob-

lem: they probed the EHD transport in such nanochannels assuming a constant

(pH and salt concentration independent) brush height and monomer distribution

[22–26, 28, 87, 151–159]. The brush height and the monomer distribution severely

affect the fluid flow. Disregard of the dependence of these parameters on the salt

65



concentration and pH meant that the appropriate dependence of the fluid flow on

salt concentration and pH also got disregarded. In order to address these lacunae,

Das and co-workers in a series of recent papers [30–32, 57], considered for the first

time a simplistic yet coupled EHD model on PE-brush-grafted nanochannel where

the salt concentration dependence of the brush height was accounted for. The

model was simplistic in the sense that it considered end-charged PE brushes with

the brushes being modelled using the Alexander-de-Gennes model [4, 5] (where one

considers a uniform monomer density along the length of the brush). In a couple of

recent studies, Das and co-workers extended their theory to probe the EHD trans-

port in such PE-brush-grafted nanochannels with the brushes being modelled by the

augmented Strong Stretching Theory (SST) [118, 160]. This augmented SST was

recently developed by Das and co-workers [119] and improved the well-known SST

for the PE brushes [59–62] (used for modelling the thermodynamics, configuration,

and electrostatics of the PE brushes) by accounting for the influence of the excluded

volume interactions and a more complete form of the mass action law. These stud-

ies [118, 160], therefore, represent the most comprehensive theoretical analysis of

the problem of EHD transport in brush-grafted nanochannels till date where the

brushes have been appropriately modelled and an appropriate connection between

the brush configuration and the EHD transport has been considered.

In this paper, we study the diffusioosmotic (DOS) transport in nanochannels

grafted with the pH-responsive PE brushes modelled using our recently developed

augmented SST [118, 119, 160]. The DOS transport, which is a form of induced

electro-soluto-hydrodynamic transport, is triggered here by applying a salt concen-
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tration gradient along the length of the nanochannel. The presence of this gradient

interplays with the charge distribution and the charge imbalance of the electric dou-

ble layer (EDL). As a consequence, there is the generation of an induced electric

field. This electric field interacts with the EDL charge density and induces (and

also gets influenced by) an electroosmotic (EOS) transport. Additionally, the im-

posed salt concentration gradient induces a pressure-gradient and there is a resulting

pressure-driven transport, which is also referred to as a chemiosmotic (COS) trans-

port. Therefore, the DOS effect is a manifestation of three things: generation of

an induced electric field, generation of a pressure gradient, and generation of liquid

transport that is a combination of the EOS and COS transport. There has been

extensive previous studies probing the DOS transport either by the imposition of a

salt concentration gradient [161–172] or an uncharged solute gradient [135,173–179].

In addition to giving rise to the highly intriguing fluid mechanics of induced electro-

soluto-hydrodynamic DOS transport, such DOS transport has been extensively em-

ployed for a large number of applications ranging from triggering microfluidic and

interfacial transport [175, 178] to designing novel strategies for sensing [179], phase

separation [180], and particle manipulation [181]. In a recent study, Hoshyargar et

al. studied the diffusioosmotic flow of an analyte solution in a charged microchan-

nel and discussed its potential application in the separation of analytes [180]. In

fact, in our recent study [31], we probed the DOS transport in nanochannels grafted

with the end-charged PE brushes with the brushes being described by the simplistic

Alexander-de-Gennes model [4, 5]. In the present paper, we consider a much more

realistic system, where the brushes contain charges along their entire backbone and

67



these charges are pH-responsive. More importantly, the brushes are modelled using

the augmented SST. Such a description ensures that we are considering the most

advanced description till date of an induced EHD transport (namely DOS transport)

in a pH-responsive PE-brush-grafted nanochannel.

Our results firstly establish that the presence of the PE brush grafting signifi-

cantly enhances (with respect to the brush-free nanochannels having identical charge

content as the brush-grafted nanochannels) the diffusioosmotically-induced electric

field for all the different choices of the salt concentration, pH, and grafting density

values. This induced electric field is a combination of the osmotic component (elec-

tric field developed due to the downstream migration of the EDL ions in presence

of the background DOS transport) and the ionic component (electric field that is

generated due to the conduction current). We perform detailed analysis to show the

relative variation of these individual components (osmotic and ionic) of the electric

field as functions of the strength of the DOS transport, localization of the EDL

charge density by the brushes away from the nanochannel wall enforcing a larger

magnitude of the background flow to be responsible for the downward osmotic mi-

gration of the ions [118], and the varying diffusivity of the positive and negative ions

(dictating different strengths of the cationic and anionic conduction). These analyses

explain such augmented electric field generation by the brush-grafted nanochannels,

establishing brush-grafting as a novel mechanism for inducing (through the facile

route of applying a salt concentration gradient) energetically favorable scenarios.

The second key finding of this study is the discovery that the DOS water transport

is significantly enhanced in presence of the brush grafting for most of the parameter
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combination. We explain that the DOS transport is a combination of the induced

pressure-driven transport (triggered by the pressure gradient induced by the applied

salt concentration gradient) also known as the chemiosmotic (COS) transport and

the induced electroosmotic (EOS) transport triggered due to the induced electric

field. For the choice of the positive value of the salt concentration gradient, the

induced pressure-gradient is negative triggering a COS liquid transport from right-

to-left in the nanochannel. The EOS transport, therefore, augments (retards) the

COS transport for cases where the induced electric field is negative (positive) trig-

gering an EOS transport from right-to-left (left-to-right) in the nanochannel. Such

an understanding, coupled with the knowledge that the the presence of the brushes

localizes the EOS body force away from the nanochannel wall and ensures a larger

manifestation of the effect of the EOS body force, helps to explain the overall DOS

velocity profiles in brush-grafted and brush-free nanochannels. For this case too, the

brushes emerge as an enabler of a significant increase in the overall DOS nanofluidic

water transport. Finally, we provide a thorough comparison between the present

study and our previous study [31]. Both these studies probe the DOS transport in

brush grafted nanochannel; however, while the present study considers the brushes

to be backbone-charged (i.e., containing charges distributed along their entire back-

bone), our previous study [31] considered brushes that contain charges only at their

non-grafted ends. The comparison reveals that for most of the parameter choices,

the strength of the DOS velocity is significantly larger for the present case: we asso-

ciate such an occurrence to the significantly smaller brush-induced drag force at the

location where the different driving forces (EOS and COS body forces) are localized,
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Fig. 4.1: Schematic representing the salt concentration gradient induced flow in a) Brush

free nanochannel b) Backbone charged PE brush grafted nanochannel. The

schematic shows a typical situation where the COS and the EOS flows oppose

each other for the case where the diffusioosmotically induced electric field is pos-

itive (i.e., from left to right). The other situation, where the COS and the EOS

flows support each other with the diffusioosmotically induced electric field being

negative (i.e., from right to left) is equally possible.

as compared to that of the present study. Therefore, the present study establishes

that functionalizing nanochannels with backbone-charged PE brushes indeed leads

to a significantly enhanced (diffusioosmosis) form of induced electrokinetic nanoflu-

dic transport as compared to either brush-free nanochannels or nanochannels grafted

with end-charged PE brushes.

4.2 Theory

We consider the ionic DOS transport in a nanochannel of half height h and

length L and grafted with backbone-charged, pH-responsive PE brushes [see Fig.
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4.1(b)]. The nanochannel walls do not contain any charge. This implies that σ,

which is the net charge density at the wall is zero; given that σ ∝ dψ/dy (where ψ is

the EDL electrostatic potential), at the nanochannel wall, dψ/dy = 0. On the other

hand, all the charges are present on the brushes. The nanochannel is connected to

microfluidic reservoirs (not shown in the schematic). n∞ and nH+,∞ are the bulk

number densities of the electrolyte salt ions and H+ ions inside these reservoirs. We

model the PE brushes using our recently developed augmented SST [118, 119, 160].

Use of such a model decides the brush height, the monomer distribution along the

length of the brush, and the corresponding EDL electrostatic potential distribu-

tion in a thermodynamically self-consistent fashion. Consequently, the model for

the DOS transport includes these thermodynamically self-consistent description of

the brush height, monomer distribution, and the ion distribution. We consider

that the ionic DOS transport is generated by employing a constant axial concentra-

tion gradient of the salt ions, namely ∇n∞ = dn∞/dx. Here dn∞/dx is so chosen

that Ldn∞
dx
/n∞ � 1. The presence of this dn∞/dx implies that the brush height,

the monomer distribution along the brush height, the corresponding drag coeffi-

cient that depends on the monomer distributions, and the electrostatic potential

and the ion distributions within the brush-induced EDL will all have a weak gra-

dient in the axial direction. The DOS transport is quantified by the corresponding

diffusioosmotically-induced electric field and the DOS velocity field. The DOS veloc-

ity is a combination of the COS flow (generated by the induced pressure-gradient)

and the electroomsotic (flow) (generated by the diffusioosmotically-induced elec-

tric field) [see Fig. 4.1(b)]. In this paper, such diffusioosmotically-induced electric
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field and the DOS velocity field for the brush-grafted nanochannel are compared

with those in brush-free nanochannels having identical surface charge as that of the

brush-grafted nanochannels. In this section, we provide the theory for the DOS

transport in such brush-grafted nanochannels.

4.2.1 DOS transport in brush-grafted nanochannels

The flow in the nanochannel is triggered by applying a salt concentration (or

salt number density) gradient along the length of the channel, as discussed earlier.

The resulting flow is considered to be steady, fully developed, and unidirectional.

The DOS transport of the electrolyte in the nanochannel is governed by the following

Navier Stokes (NS) equations. The pressure field is obtained from the NS equation

in y-direction and by using the Boltzmann distributions [see eqs.(6-8)] for the ion

number densities:

∂p

∂y
+ e(n+ − n− + nH+ − nOH−)

∂ψ

∂y
= 0⇒

∂p = −kBT (n+ − n− + nH+ − nOH−)∂ψ̄ ⇒

p = patm + 2kBT (n∞ + nH+,∞)(cosh(ψ̄)− 1). (4.1)

In the above equation, ψ̄ = eψ/(kBT ). Also, n+,∞ = n∞, n−,∞ = n∞ + nH+,∞ −

nOH−,∞, where n∞ = 103NAc∞, and nH+,∞ = 103−pH∞NA, nOH−,∞ = 103−pOH∞NA

(pOH∞ = 14 − pH∞). This also implies ∇n∞ = dn∞
dx

= dn+,∞
dx

= dn−,∞
dx

. The

starting point of eq.(4.1) comes from the simplification of the y-momentum conser-

vation equation by considering the Space Charge Theory [182–185] (please see the

Appendix for more details). Consequently, in presence of the applied axial gradients
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in electrolyte ion concentrations, we can write:

∂p

∂x
= 2kBT

dn∞
dx

[
cosh (ψ̄)− 1

]
+

2kBT (n∞ + nH+,∞)

[
sinh (ψ̄)

∂ψ̄

∂x

]
. (4.2)

This pressure-gradient, as can be seen, is dictated by the imposed gradient in the

salt concentration.

The x-momentum equation, on the other hand, for the bottom half of the nanochan-

nel can be expressed as (considering a steady and fully-developed flow):

η
∂2u

∂y2
=
∂p

∂x
+

η

κd
u− e(n+ − n− + nH+ − nOH−)(E − ∂ψ

∂x
) (−h ≤ y ≤ −h+H0),

η
∂2u

∂y2
=
∂p

∂x
− e(n+ − n− + nH+ − nOH−)(E − ∂ψ

∂x
) (−h+H0 ≤ y ≤ 0). (4.3)

In eq.(4.3), u is the velocity profile, η is the dynamic viscosity of the electrolyte, E

is the induced electric field, ∂p
∂x

is the pressure gradient induced due to the employed

salt concentration gradient [expressed in eq.(4.2)] and κd = a2/φ(y)2 = a2
(

H0

σa3Nφ̄

)2

.

Here φ̄ = φH0

σa3N
is the normalized profile for the monomer distribution φ [expressed

in eq.(2.30) using the augmented SST calculations]. Eq.(4.3) establishes that there

are two driving forces for the DOS transport: the induced pressure gradient that

drives an induced chemiosmotic transport and the induced electric field that drives

an induced electroosmotic transport. κd, which is inversely related to the drag

coefficient can be obtained from the works of de Gennes [138] and Freed and Edwards

[139]. These works [138, 139] showed that the drag coefficient varies as K2, where

K−1 is the length that screens the flow inside the polymer coil in a semi-dilute

polymer solution. Given that for this problem too the flow inside the brushes is

73



significantly lowered as compared to that outside the brushes, we can use this theory

of de Gennes [138] and Freed and Edwards [139], to express the drag coefficient in

terms of K−1. As κd varies inversely as the drag coefficient, we can write κd ∼ K−2.

Furthermore, K ∼ φ/a. Therefore, κd ∼ a2/φ2.

Using eq.(4.2), we can re-write eq.(4.3) in dimensionless form as:

∂2ū

∂ȳ2
= An̄′1(cosh(ψ̄)− 1) +

h2

κd
ū+ A(1 + n̄H+,∞) sinh (ψ̄)Ē (−1 ≤ ȳ ≤ −1 + H̄0),

∂2ū

∂ȳ2
= An̄′1(cosh(ψ̄)− 1) + A(1 + n̄H+,∞) sinh (ψ̄)Ē (−1 + H̄0 ≤ ȳ ≤ 0). (4.4)

In eq.(4.4), ū = u
U

, A = 2kBTn∞h
2

ηUL
, n̄′1 = Ldn∞

dx
/n∞, U = 2kBTλ

2

η
(dn∞
dx

), ψ̄ = eψ
kBT

,

Ē = E
E0

, where E0 = kBT
eL

is the scale of electric field, n̄i,∞ =
ni,∞
n∞

(i=±, H+, OH−),

ȳ = y
h
, H̄0 = H0

h
, λ̄ = λ

h
, and λ =

√
ε0εrkBT/(2e2(n∞ + nH+,∞)) is the Debye

screening length of the electric double layer (EDL).

In order to solve for ū from eq.(4.4), we need to first obtain the dimensionless electric

field Ē. The electric field E is obtained from the condition:

∫ h

−h
(J+ + JH+ − J− − JOH−) dy = 0, (4.5)

where J+ and J− are the fluxes of the electrolyte cation and anion and JH+ and

JOH− are the ionic fluxes of the H+ and OH− ions. We can express these fluxes as

follow:

J± = −D±
[
∂n±
∂x
± e

kBT
n± (∇ψ − E)

]
+ n±u, (4.6)

JH+ = −DH+

[
∂nH+

∂x
+

e

kBT
nH+

(
∂ψ

∂x
− E

)]
+ nH+u, (4.7)

JOH− = −DOH−

[
∂nOH−

∂x
− e

kBT
nOH−

(
∂ψ

∂x
− E

)]
+ nOH−u.
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In the above equations, Di are the diffusivities of species i (i = ±, H+, OH−).

Using eqs.(4.6,4.7,4.8) as well as eqs.(2.18-2.20) in eq.(4.5), we can eventually obtain

the dimensionless electric field as:

Ē =
Pe
∫ 1

−1
ū
[
− n̄+,∞ exp(−ψ̄) + n̄−,∞ exp(ψ̄)− n̄H+,∞ exp(−ψ̄) + n̄OH−,∞ exp(ψ̄)

]
dȳ∫ 1

−1

[
R+n̄+ +R−n̄− +RH+n̄H+ +ROH−n̄OH−

]
dȳ

+

n̄′1
∫ 1

−1

[
R+ exp(−ψ̄)−R− exp(ψ̄)

]
dȳ∫ 1

−1

[
R+n̄+ +R−n̄− +RH+n̄H+ +ROH−n̄OH−

]
dȳ

= Ēosm + Ēion = Ēosm,+ + Ēosm,− + Ēosm,H+ + Ēosm,OH− + Ēp,ion − Ēm,ion.
(4.8)

where Ēosm = Ēosm,+ + Ēosm,− + Ēosm,H+ + Ēosm,OH− with Ēosm,i being the osmotic

contribution associated with ion i and Ēion = Ēp,ion− Ēm,ion (with Ēp,ion and Ēm,ion

being the ionic components of the electric field associated with the positive and

negative salt ions). Also, we can express this different components as (with zi being

the valence of ion of type i):

Ēosm =
Pe
∫ 1

−1
ū
[
− n̄+,∞ exp(−ψ̄) + n̄−,∞ exp(ψ̄)− n̄H+,∞ exp(−ψ̄) + n̄OH−,∞ exp(ψ̄)

]
dȳ∫ 1

−1

[
R+n̄+ +R−n̄− +RH+n̄H+ +ROH−n̄OH−

]
dȳ

,

(4.9)

Ēosm,i =
Pe
∫ 1

−1
ū
[
− zi
|zi| n̄i,∞ exp(− zi

|zi| ψ̄)
]
dȳ∫ 1

−1

[
R+n̄+ +R−n̄− +RH+n̄H+ +ROH−n̄OH−

]
dȳ
, (4.10)

Ēion =
n̄′1
∫ 1

−1

[
R+ exp(−ψ̄)−R− exp(ψ̄)

]
dȳ∫ 1

−1

[
R+n̄+ +R−n̄− +RH+n̄H+ +ROH−n̄OH−

]
dȳ
, (4.11)

Ēp,ion =
n̄′1
∫ 1

−1

[
R+ exp(−ψ̄)

]
dȳ∫ 1

−1

[
R+n̄+ +R−n̄− +RH+n̄H+ +ROH−n̄OH−

]
dȳ
, (4.12)
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Ēm,ion =
n̄′1
∫ 1

−1

[
R− exp(ψ̄)

]
dȳ∫ 1

−1

[
R+n̄+ +R−n̄− +RH+n̄H+ +ROH−n̄OH−

]
dȳ
. (4.13)

In eq.(4.8), Pe = UL
D++D−+DH++DOH−

, is the Peclet number for the flow, Ri =

Di

D++D−+DH++DOH−
is the dimensionless diffusivities of each species i, where i = ±,

H+, OH−. Eq.(4.8) expresses Ē in terms of ū. Therefore, if we use eq.(4.8) to re-

place Ē in eq.(4.4), we shall eventually get an integro-differential equation in ū. This

resulting equation in ū is solved numerically in presence of the following boundary

conditions to obtain ū.

(ū)ȳ=−1 = 0;
(∂ū
∂ȳ

)
ȳ=0

= 0; (ū)ȳ=(−1+H̄)− = (ū)ȳ=(−1+H̄)+ ;(∂ū
∂ȳ

)
ȳ=(−1+H̄)−

=
(∂ū
∂ȳ

)
ȳ=(−1+H̄)+

.

(4.14)

4.3 Results and Discussions

4.3.1 Variation of the diffusioosmotically-induced electric field

We first study the variation of the diffusioosmotically-induced dimensionless

electric field Ē with salt concentration c∞ in presence of an axially employed salt

number density gradient dn∞/dx (see Fig. 4.2). Results are shown for six different

cases: three different cases of DOS transport in brush grafted nanochannels and

three more cases of the DOS transport in brush-free nanochannel, having the same

surface charge density as a given brush grafted nanochannel. For example, the three

cases of the brush-grafted nanochannels are the following – case 1: pH∞ = 3, ` =

60 nm; case 2: pH∞ = 3, ` = 10 nm; case 3: pH∞ = 4, ` = 60 nm. The three cases

for the brush-free nanochannels will be the cases where the nanochannels have an
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Fig. 4.2: Diffusioosmotically-induced electric field in presence of an applied concentration

gradient of ∇n∞ = dn∞/dx = 104n∞. The obtained electric field is calculated

for the brush configuration using N = 400, h = 100 nm, a = 1 nm (Kuhn length),

kB = 1.38 x 10−23JK−1, T = 298 K, e = 1.6 × 10−19 C (electronic charge), ε0

= 8.8 x 10−12 Fm−1(permittivity of free space), εr = 79.8 (relative permittivity

of water), γa3 = 1, pKa = 3.5, ν = 0.5, ω = 0.1. Other parameters are n̄′1 = 0.1,

D+ = 1.330× 10−9 m2/s, D− = 2.030× 10−9 m2/s, DH+ = 9.310× 10−9 m2/s,

DOH− = 5.270× 10−9 m2/s [186].

77



Fig. 4.3: Variation of the dimensionless osmotic (Ēosm) component of the

diffusioosmotically-induced electric field with c∞ in presence of an applied

salt number density gradient of ∇n∞ = dn∞/dx = 104n∞. for both brush-

grafted and brush-free nanochannels for different combinations of ` and pH∞

values. In the inset, we magnify the results for the case of pH∞ = 3, ` = 60 nm

for both the cases of brush-free and brush-grafted nanochannels. Other

parameters are identical to those used in Fig. 4.2.
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Fig. 4.4: Variation of the different components (Ēosm,i) of Ēosm with c∞ shown for both

brush-free and brush-grafted nanochannels for a) pH∞ = 3, ` = 60 nm, (b)

pH∞ = 3, ` = 10 nm, and (c) pH∞ = 4, ` = 60 nm. Other parameters are

identical to those used in Fig. 4.2. In none of the subfigures, we show the

contribution associated with the osmotic migration of OH− ions as it is very

small.

equivalent surface charge density as that of a given brush-grafted nanochannel case:

for example, “pH∞ = 3, ` = 60 nm (No Brush)” in the legend of Fig. 4.2, as well

as in the legend of the subsequent figures, implies that we are considering the DOS

transport in a brush-free nanochannel having the same surface charge density as the

brush-grafted nanochannel with pH∞ = 3, ` = 60 nm. This equality in the surface

charge densities is ensured by employing the condition σc,eq = −e
∫ −h+H0

−h φnA−dy

(where σc,eq is the equivalent surface charge density of the brush-free nanochannels

and φ and nA− are defined in chapter 2).

The diffusioosmotically-induced electric field is a combination of the osmotic

(Ēosm) and the ionic (Ēion) contributions (i.e., Ē = Ēosm + Ēion, see eqs. 23-28).

The osmotic contribution to the electric field, Ēosm, is due to the downstream mi-
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gration of the mobile ions of the electric double layer (EDL) in the presence of the

diffusioosmotically induced velocity field. We shall later discuss in details the vari-

ation of this DOS velocity field. Fig. 4.3 compares Ēosm− vs− c∞ variation for the

different cases for the brush-free and brush-grafted nanochannels. For the majority

of the c∞ values, Ēosm is larger for the brush-grafted nanochannel. There are two

interrelated factors that ensure such enhanced Ēosm for brush-grafted nanochannels.

Firstly, for brush-grafted nanochannels, the DOS velocity field is significantly en-

hanced, as compared to that in the corresponding brush-free nanochannels across

wide ranges of salt concentration and pH values (see Figs. 4.8-4.11 below). Only

for a very few conditions this might not be true: e.g., for c∞ = 10−3 M for the case

of pH∞ = 4, ` = 60 nm or for c∞ = 10−2 M for the case of pH∞ = 3, ` = 10 nm.

Secondly, the presence of the brushes localizes the net charge of the EDL away from

the wall. The strength of a velocity field is much larger at locations away from the

nanochannel wall. Accordingly, the contribution of the background flow that drives

the EDL charges, thereby leading to the development of Ēosm, gets enhanced. These

two effects interplay to dictate the final value of Ēosm. Accordingly, we mostly find(
Ēosm

)
Brush

>
(
Ēosm

)
No Brush

(see Fig. 4.3). However, this is not true for those

particular cases where (uDOS)Brush < (uDOS)No Brush; this happens, for example, for

c∞ = 10−3 M, pH∞ = 4, ` = 60 nm and c∞ = 10−2 M, pH∞ = 3, ` = 10 nm. The

contribution of the osmotic migration of the different ions (±, H+, OH−) to Ēosm

has been provided in Fig. 4.4 (also see eq. 4.10). The osmotic migration associated

with the H+ ions primarily contribute to Ēosm for small salt concentrations. An

increase in the salt concentration progressively increases the contribution associ-
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ated with the osmotic migration of both salt cation and anion. These contributions

negate each other. Such behaviors are true for both the brush-free and brush-grafted

nanochannels. Under these circumstances, we eventually obtain a Ēosm distribution

that first increases and then decreases with c∞ for both the brush-grafted and brush-

free nanochannels. In Fig. 4.4, we do not show the contribution associated with the

osmotic migration of OH− ions as it is very small.

Here we first try to attempt to understand the significantly non-monotonic

variation of Ēosm,i with c∞. As evident from eq.(4.10), one can express:

Ēosm,i =
Advection− based Electric F ield
Diffusion− based Electric F ield

=
2Ēosm,i,adv
2Ēosm,diff

, (4.15)

where

Ēosm,i,adv = Pe

∫ 0

−1

ū
[
− zi
|zi|

n̄i,∞ exp(− zi
|zi|

ψ̄)
]
dȳ, (4.16)

and

Ēosm,diff =

∫ 0

−1

[
R+n̄+,∞ exp(−ψ̄) +R−n̄−,∞ exp(ψ̄) +RH+n̄H+,∞ exp(−ψ̄)

+ROH−n̄OH−,∞ exp(ψ̄)
]
dȳ.

(4.17)

In Fig. 4.5, we plot the variation of Ēosm,diff and Ēosm,i,adv (for i = ±, H+) with

c∞. Given that Ēosm,i is simply the ratio of Ēosm,i,adv and Ēosm,diff , all we have

to do to shed light on the variation of Ēosm,i with c∞ (see Fig. 4.4) is to better

understand the corresponding variation of Ēosm,i,adv and Ēosm,diff . It can be seen

that Ēosm,diff decreases monotonically with an increase in the salt concentration

[see Fig. 4.5(a)]. In the lower salt concentration regime (c∞ ≤ 10−pH∞), Ēosm,diff

primarily depends on the overall diffusion of the H+ ions (dictated by the product

of the dimensionless number density n̄H+ =
nH+

n∞
and the dimensionless diffusivity
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RH+), given that H+ ions has significantly larger diffusivity among all the ions.

Therefore, as the salt concentration increases, i.e., n∞ increases (in this weak salt

concentration regime), a progressive lowering of the ratio n̄H+ =
nH+

n∞
is encountered

leading to a steep decrease in Ēosm,diff . This decrease is further augmented by

the fact that the EDL potential decreases in magnitude monotonically with an

increase in salt concentration [118] resulting in a smaller value of nH+ . On the other

hand, for much larger values of the salt concentration, i.e., when c∞ > 10−pH∞ and

|ψ̄| � 1 [118], we can simplify Ēosm,diff as (with n̄+,∞ = n∞/n∞ = 1, n̄−,∞ =

(n∞ + nH+,∞)/n∞ = 1 + n̄H+,∞, neglecting n̄OH−,∞, and exp(±ψ̄) ≈ 1± ψ̄ ≈ 1):

Ēosm,diff ≈
∫ 0

−1

[
R+ +R−

(
1 + n̄H+,∞

)
+RH+n̄H+,∞ +ROH−n̄OH−,∞

]
dȳ

=
[
R+ +R−

(
1 + n̄H+,∞

)
+RH+n̄H+,∞ +ROH−n̄OH−,∞

]
≈ (R+ +R−) (4.18)

Therefore, for such larger values of c∞, we observe that Ēosm,diff becomes constant

and does not vary with c∞. On increasing pH∞, when all other parameters are kept

constant, Ēosm,diff decreases owing to the decrease in the bulk hydrogen ion number

density. On the other hand, an increase in the grafting density (decreasing `) leads

to an increased magnitude of the EDL potential due to larger overall charge of the

PE brush. This in turn increases n̄H+ , which has the highest diffusivity among all

the given ions, which enhances the Ēosm,diff .

We next study the variation of the advection-based field Ēosm,+,adv [see Fig.

4.5(b)]. From eq.(4.16), we find that Ēosm,+,adv depends on the Peclet number

(Pe) (or characteristic velocity U), EDL potential, and the fluid velocity (with

n̄+,∞ = n∞/n∞ = 1). Using the definitions of Pe [see below eq.(4.16)] and U
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[see below eq.(4.14)] as well as the condition dn∞/dx = 104n∞, we can express,

Pe ∝ 1
1+n̄H+,∞

. Therefore, for small c∞ (i.e., c∞ � 10−pH∞), Pe ∝ n∞/nH+,∞,

implying that Pe increases linearly with n∞. On the other hand, for much larger c∞

(i.e., c∞ � 10−pH∞), Pe ≈ 104ε0εr(kBT )2L
ηe2(D++D−+DH++DOH− )

, i.e., Pe does not vary with salt

concentration. Accordingly, for smaller salt concentrations, variation of Ēosm,+,adv

with c∞ is mostly dictated by the corresponding variation of Pe (which varies lin-

early with c∞ for such small concentration values, see above), while for larger salt

concentration, where Pe no longer varies with c∞ (see above), variation of Ēosm,+,adv

with c∞ is mostly dictated by the corresponding variation of the dimensionless dif-

fusioosmotic velocity profile ū. Of course, |ψ̄| monotonically decreases with c∞ [118]

and that also contributes to the overall variation of Ēosm,+,adv with c∞. Under such

circumstances, for the case pH∞ = 4 and ` = 60 nm, Ēosm,+,adv increases monon-

tonically with c∞ for smaller c∞ values reflecting the dominant influence of Pe. At

larger concentrations (c∞ > 10−pH∞), i.e., when the effect of ū starts to dominate

the variation of Ēosm,+, adv, we see a very large decrease in velocity [see Fig. 4.8(c)]

as we move from c∞ of 10−4M to 10−3M (for the case of pH∞ = 4 and ` = 60 nm)

which is reflected by a steep decrease in Ēosm,+, adv. As we further move from c∞

of 10−3M to 10−2M , it can be seen that there is an increase in Ēosm,+, adv due to

similar increase in ū. Finally, moving from c∞ of 10−2M to 10−1M the velocity

decreases slightly, which is reflected by a slight decrease in Ēosm,+,adv. On the other

hand, if we consider the case of pH∞ = 3 and ` = 10 nm, we find this monotonic

increase of Ēosm,+,adv with c∞ (due to the corresponding increase of Pe with c∞)

for upto c∞ = 10−3 M ; subsequently, there is a steep decrease in Ēosm,+,adv with
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c∞ as we move from c∞ of 10−3M to 10−2M [due to a significantly smaller ū at

c∞ = 10−2 M , see Fig. 4.8(b)]; Ēosm,+,adv increases with c∞ as we move from c∞ of

10−2M to 10−1M due to the corresponding enhanced value of ū [see Fig. 4.8(b)].

Finally, for the case of pH∞ = 3 and ` = 60 nm, we do find a monotonic increase

in Ēosm,+,adv with c∞ for smaller c∞ values; however, no drastic variation in the

corresponding ū profile (as witnessed for cases of pH∞ = 4 and ` = 60 nm and

pH∞ = 3 and ` = 10 nm) implies that for larger salt concentrations (i.e., where

Pe does not vary with c∞), Ēosm,+,adv does not show significant variation with c∞

except for a slight decrease in the range from c∞ = 10−2 − 10−1 M (due to a no-

ticeable lowering of ū [see Fig. 4.8(a)]). We can use these information on Ēosm,diff

[see Fig. 4.5(a)] and Ēosm,+,adv [see Fig. 4.5(b)] for interpreting the variation of

Ēosm,+ for the three different cases. For example using these variations, we can

straightaway explain the steep increases in Ēosm,+ for majority of salt concentra-

tion and small decrease in the range from c∞ = 10−2 − 10−1 M for the case of

pH∞ = 3 and ` = 60 nm [see Fig. 4.4(a)]. Similarly, for the case of pH∞ = 3 and

` = 10 nm, we can easily justify an increase, then a decrease (in the range from

c∞ = 10−3−10−2 M), and then again an increase (for c∞ ≥ 10−2 M) in Ēosm,+ from

the corresponding variation of Ēosm,+,adv and Ēosm,diff [see Fig. 4.4(b)]. Finally,

for the case of pH∞ = 4 and ` = 60 nm, this studied variation for Ēosm,+,adv and

Ēosm,diff helps to justify Ēosm,+ first increasing, then decreasing (in the range from

c∞ = 10−4 − 10−3 M), again increasing (in the range from c∞ = 10−3 − 10−2 M),

and then finally again decreasing (in the range from c∞ = 10−2 − 10−1 M) with c∞

[see Fig. 4.4(c)]. We next study the variation of Ēosm,−,adv with c∞ [see Fig. 4.5(c)].
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Given the negative valence of the anion, Ēosm,−,adv is primarily negative. For this

case, Pe × n̄−,∞ ∝ n∞
n∞+nH+,∞

× n∞+nH+,∞
n∞

∝ 1 (neglecting nOH−,∞). Therefore, Pe

has no role to play in the variation of Ēosm,−,adv. Accordingly, for smaller c∞ values

Ēosm,−,adv remains constant as c∞ varies. On the other hand, the strong dependence

of Ēosm,−,adv on the velocity profile (ū) starts to get manifested for larger values of

c∞ (since for such c∞ values, there are distinct changes in ū, see Fig. 4.8). For the

case of pH∞ = 4 and ` = 60 nm, ū significantly decreases, increases, and decreases

for the concentration ranges of c∞ = 10−4 − 10−3 M , c∞ = 10−3 − 10−2 M , and

c∞ = 10−2 − 10−1 M [see Fig. 4.8(c)]; accordingly for the exact same respective

concentration ranges, Ēosm,−,adv decreases, increases, and decreases. On the other

hand, for pH∞ = 3 and ` = 10 nm, ū significantly decreases and increases for the

concentration ranges of c∞ = 10−3− 10−2 M and c∞ = 10−2− 10−1 M , respectively

[see Fig. 4.8(b)]; accordingly for the exact same respective concentration ranges,

Ēosm,−,adv decreases and increases. Finally, for the case of pH∞ = 3 and ` = 60 nm,

there is no such distinctly large increase or decrease of ū for any concentration range,

except for a noticeable decrease in ū for c∞ = 0.1 M [see Fig. 4.8(a)]; accordingly,

Ēosm,−,adv remains more or less constant for the entire concentration range, except

for a slight decrease for the concentration range of c∞ = 10−2 − 10−1 M . From this

variation of Ēosm,−,adv and the variation of Ēosm,diff [see Fig. 4.5(a)], we can explain

the corresponding non-monotonic variation of Ēosm,− in Fig. 4.4: for pH∞ = 3 and

` = 60 nm, Ēosm,− monotonically increases with c∞ and only decreases slightly for

concentration range of c∞ = 10−2 − 10−1 M [see Fig. 4.4(a)]; for pH∞ = 3 and

` = 10 nm, Ēosm,− varies monotonically with c∞ upto c∞ = 10−3 M and subse-
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quently decreases and increases for the concentration ranges of c∞ = 10−3−10−2 M

and c∞ = 10−2−10−1 M , respectively [see Fig. 4.4(b)]; for pH∞ = 4 and ` = 60 nm,

Ēosm,− varies monotonically with c∞ upto c∞ = 10−4 M and subsequently decreases,

increases, and decreases for the concentration ranges of c∞ = 10−4 − 10−3 M ,

c∞ = 10−3 − 10−2 M , and c∞ = 10−2 − 10−1 M , respectively [see Fig. 4.4(c)].

We finally study the variation of Ēosm,H+,adv with c∞ [see Fig. 4.5(d)]. For this

case, Pe× n̄H+,∞ ∝ n∞
n∞+nH+,∞

× nH+,∞
n∞

∝ 1
1+ n∞

n
H+,∞

. Therefore, an increase in c∞ (or

n∞) for a given pH∞ (or nH+,∞) will lead to a progressive decrease in Ēosm,H+,adv,

as evident from Fig. 4.5(d). For very small c∞, the ratio n∞
nH+,∞

is relatively small

implying a weak lowering of Ēosm,H+,adv with c∞. However, as c∞ increases this ratio

increases making the reduction of Ēosm,H+,adv more prominent. Of course, for larger

pH∞ (or smaller nH+,∞), the ratio becomes larger for smaller c∞ values leading to

a much steeper lowering of Ēosm,H+,adv starting from a much smaller c∞ value. Of

course, the changes in ū also contribute to this variation, but gets overwhelmed by

the effect of the ratio n∞
nH+,∞

at larger c∞ values. This particular nature of variation

of Ēosm,H+,adv and the corresponding variation of Ēosm,diff [see Fig. 4.5(a)] helps to

explain the corresponding variation of Ēosm,H+ in Fig. 4.4: for all combinations of

pH∞ and ` values, we thus find a monotonic increase of Ēosm,H+ with c∞ for smaller

c∞ values (for such cases the decrease in Ēosm,H+,adv with c∞ is relatively weaker

than the corresponding decrease of Ēosm,diff with c∞) and a monotonic decrease of

Ēosm,H+ with c∞ for larger c∞ values (for such cases of larger concentration values,

the decrease in Ēosm,H+,adv with c∞ governs the variation of Ēosm,H+ since Ēosm,diff

is nearly constant with c∞).
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Ēosm plotted in Fig. 4.3 for the different combinations of pH∞ and ` is simply

the sum of different Ēosm,i. The particular variation of Eosm,i, as described in Fig. 4.4

and explained in great details through Fig. 4.5, leads to this highly non-monotonic

variation of Ēosm with c∞ for the different combinations of pH∞ and `, as depicted

in Fig. 4.3.

In Fig. 4.6, we plot the variation of the Ēion with c∞, representing the dimen-

sionless conduction component of the electric field. This is equivalent to the electric

field that is generated by the conduction of the mobile EDL ions. Therefore, Ēion

depends on the mobility (or the diffusivity) of the ions and the applied ion con-

centration gradient. In other words, this conduction component of the electric field

results from the interplay of this imposed concentration gradient on the EDL counte-

rions and coions that varies both in diffusivity as well as the number density. Given

that the total surface charge density of the brushes is identical to that of the bare

nanochannels, the quantity
∫ h
−h(n+ − n−)dy should be identical for both the brush-

grafted and brush-free nanochannels. However, the ionic diffusivities are different

(i.e., R+ 6= R−). Furthermore, the individual ion number densities for the brush-free

and brush-grafted nanochannels are different, i.e.,
[
n±(y)

]
Brush

6=
[
n±(y)

]
No Brush

since the local EDL electrostatic potentials are different for the brush-free and

brush-grafted systems. Under such conditions, Ēp,ion (i.e., the contribution of the

salt cation on the overall ionic current) and Ēm,ion (i.e., the contribution of the

salt anion on the overall ionic current), with Ēion = Ēp,ion − Ēm,ion (see eqs.

26,27 for the definition of Ēp,ion and Ēm,ion), are different between the brush-

free and brush-grafted nanochannels (see Fig. 4.6). This difference manifests as
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(Ēp,ion)No Brush < (Ēp,ion)Brush and (Ēm,ion)No Brush > (Ēm,ion)Brush for all combi-

nations of grafting density, salt concentrations, and pH. Given that the current due

to the migration of the salt anions decreases the overall ionic current, it eventually

ensures that (Ēion)Brush > (Ēion)No Brush for cases where Eion is positive. Interest-

ingly, unlike Ēosm, which is always positive, given the fact that the velocity field,

which is driving it is mostly negative causing an accumulation of positive counteri-

ons on the left of the nanochannel, Ēion can becomes negative at different c∞ ranges

depending on the grafting density and pH for both brush-grafted and brush-free

nanochannels. Such negative values of Ēion is encountered when Ēm,ion > Ēp,ion –

for such cases, |(Ēion)Brush| < |(Ēion)No Brush|.

In the inset of each of the subfigures of Fig. 4.7, we separately plot the variation

of Ēp,ion,N = n̄′1
∫ 0

−1

[
R+ exp(−ψ̄)

]
dȳ and Ēm,ion,N = n̄′1

∫ 0

−1

[
R− exp(ψ̄)

]
dȳ. For very

weak salt concentration, the EDL thickness is large causing a large EDL overlap.

Accordingly, ψ remains uniform. This is manifested as constant value of Ēm,ion,N

[that varies linearly with exp(ψ)] and Ēp,ion,N [that varies linearly with exp(−ψ)].

However, a progressive increase in the salt concentration significantly reduces the

negative magnitude of ψ, which enhances exp(ψ) and reduces exp(−ψ). Accordingly,

Ēp,ion,N and Ēm,ion,N decreases and increases, respectively.

Such a combination of Ēosm and Ēion eventually dictates the overall diffu-

sioosmotically induced electric field (see Fig. 4.2). It clearly establishes that for

all combinations of c∞, ` (quantifying the grafting density), and pH∞, the elec-

tric field induced inside the brush-grafted nanochannels is larger than that inside

the brush-free nanochannels. Accordingly, for conditions where the electric field is
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positive, ĒBrush > ĒNo Brush and for conditions where the electric field is negative,

|ĒBrush| < |ĒNo Brush|. As has been described above, at different c∞, `, pH∞ values

Ēosm and Ēion contribute differently to ensure this enhancement.

4.3.2 Variation of the diffusioosmotically-induced velocity field

Fig. 4.8 provides the variation of the DOS velocity field in brush-grafted and

brush-free nanochannels. The DOS velocity has two contributions: the chemios-

motic (COS) component that is caused by the induced pressure gradient due to the

applied salt concentration gradient and the electroosmotic (EOS) component that is

triggered by the diffusioosmotically induced electric field. To better understand the

impact of these components (COS and EOS) in governing the overall DOS velocity,

in Figs. 9-11, we compare the variation of the DOS velocity field (denoted as utotal)

and the COS velocity field (denoted as uCOS). uCOS is obtained by switching off

the effect of the induced electric field in the Stokes equation, i.e., by solving the

equation:

∂2ū

∂ȳ2
= An̄′1(cosh(ψ̄)− 1) +

h2

κd
ū (−1 ≤ ȳ ≤ −1 + H̄0),

∂2ū

∂ȳ2
= An̄′1(cosh(ψ̄)− 1) (−1 + H̄0 ≤ ȳ ≤ 0). (4.19)

∂2ū

∂ȳ2
= An̄′1(cosh(ψ̄)− 1) (−1 ≤ ȳ ≤ 0). (4.20)

Eqs.(4.19),(4.20) represent the equations for obtaining the dimensionless COS veloc-

ity fields in brush-grafted and brush-free nanochannels, respectively. Figs. 4.9-4.11

provide the variation of utotal and uCOS for brush-free and brush-grafted nanochan-

nels for different combinations of c∞, `, and pH∞. For a positive value of the salt
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concentration gradient, as is the condition for the present case, the pressure gradient

is positive enforcing a right-to-left pressure-driven or COS flow field. This is true

for both the cases of brush-free and brush-grafted nanochannels for all the different

parameter choices (see Figs. 4.9-4.11). On the other hand, the direction of the

EOS transport, and accordingly whether it aids or reduces the contribution of the

COS transport, is determined by the sign of the induced DOS electric field (see Fig.

4.2). A positive (negative) electric field triggers an EOS component from left-to-

right (right-to-left), thereby opposing (augmenting) the effect of the COS transport.

For both the brush-grafted and brush-free nanochannels, the induced electric field

is negative for c∞ = 0.1 M for pH∞ = 3, ` = 10 nm, for c∞ = 0.01, 0.1 M for

pH∞ = 4, ` = 60 nm, and for all c∞ values for pH∞ = 3, ` = 60 nm (see Fig.

4.2). Therefore, for all these cases, the EOS component aids the COS component

to enhance the overall DOS transport (see Figs. 4.9-4.11). On the other hand, for

other values of c∞, the induced DOS electric field is positive and hence the corre-

sponding EOS component is opposite in direction to the COS component ensuring

a reduction in the DOS transport (see Figs. 4.9-4.11). The most interesting facet is

that despite the fact that the electric field is comparable for the brush-grafted and

brush-free nanochannels, the contribution of the corresponding EOS transport in

either aiding or opposing the COS transport is much larger for the case of the brush

grafted nanochannels. This stems from our previously hypothesized brush-induced

localization of the EDL charge density away from the nanochannel walls enforcing

a much larger impact of the EOS body force of similar strengths [30–32].

The above-described interplay of the effects of different factors eventually dic-
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tates the overall DOS velocity in the brush-free and brush-grafted nanochannels (see

Fig. 4.8): depending on whether the EOS transport augments or opposes the COS

velocity component, the extent of this augmentation/opposition, and the enhanced

effect of the EOS body force due to the localization effect of the brushes, the DOS

flow strength might be enhanced or weakened inside the brush-grafted nanochannels

as compared to the brush-free nanochannels. For the parameter space studied here,

except for a few cases, we find that the DOS flow strength is always larger in the

brush-grafted nanochannels.

4.3.3 Comparsion of the DOS transport in two types of Brush-grafted

Nanochannels: Backbone-charged Brushes (present study) versus

End-Charged Brushes

In a recent study [31], we had probed the DOS transport in nanochannels

grafted with end-charged PE brushes. It is worthwhile to compare the findings of

the present study (DOS transport in nanochannels grafted with backbone-charged

PE brushes) with findings of this previous study. First and foremost it is critical

to point out that in this previous study [31], the brushes were described using

the simplistic Alexander-de-Gennes model that considered a uniform density of the

monomers along the length of the brushes. On the other hand, in the present

study, we apply a much more rigorous augmented SST model, which accounts for

the more appropriate distribution of the monomers (larger concentration at near-

wall locations as compared to that away from the wall) along the length of the PE

brushes.
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In Fig. 4.12, we compare the variation of the diffusioosmotically induced

electric field for these two different cases: nanochannels grafted with end-charged

and backbone charged PE brushes. For ensuring that we are considering identical

charge content of the PE brushes for the two cases, the charge density for the end-

charged PE brushes is considered to be σc,eq (please see section 4.3.1 for the definition

of σc,eq). The comparison reveals that most strikingly, for the present case, the

electric field varies non-monotonically with the salt concentration, while for the case

of nanochannel with end-charged brushes, the electric field decreases monotonically

with the salt concentration. This stems for the non-monotonic variation of the Ēosm

and Ēion for the present case (please see Figs. 4.3 and 4.6). The difference in the

EDL distribution, dictated by the fact that for the previous study [31] the EDL

is localized at the non-grafted brush-tip while for the present case it is distributed

along the brush length (as the charged monomers are distributed along the brush

length) led to a specific variation of Ēp,ion and Ēm,ion that caused this non-monotonic

variation of Ēion with c∞ for the present case (please see Fig. 4.6). Additionally, for

the present case, there is the non-monotonic variation in Ēosm with c∞ (please see

Fig. 4.3), which is large due to the osmotic contribution of the H+ ions (see Fig.

4.4 and the related discussions). On the other hand, our previous study [31] did not

consider the effect of pH (or the migration of H+ ions in dictating the corresponding

osmotic component of the diffusioosmotically electric field).

In Fig. 4.13, we compare the DOS velocity field for these two different cases:

nanochannels grafted with end-charged and backbone charged PE brushes. This

velocity comparison is the key contribution of this subsection, given that we pro-
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pose this new design (backbone-charged PE brush grafted nanochannel) to enhance

the DOS nanofluidic transport. The central idea is as follows. Firstly, for both the

present study and the previous study [31], the body forces (induced EOS body force

resulting from the induced electric field and the induced COS body force resulting

from the induced pressure-gradient) are localized away from the nanochannel wall

(i.e., the location of the maximum wall-induced drag force). This leads to an aug-

mented manifestation of both of these driving forces. Secondly, the previous study

considered a uniform monomer distribution along the length of the brush, while the

present study considers a more realistic monomer distribution where the monomer

concentration is larger concentration at near-wall locations and smaller at locations

away from the wall. Therefore, the monomer concentration is much larger (smaller)

at the location where the different body forces are localized for the previous (present)

study. Given that the drag coefficient varies quadratically with the monomer con-

centration, such a scenario implies that the PE-brush-induced drag force is much

larger (smaller) at the location where the different body forces (COS and EOS) are

localized for the previous (present) study. As a consequence, the impact of both

the COS and EOS body forces in triggering the corresponding COS and EOS flow

components is much smaller (larger) for the previous (present) study. Therefore, for

most of the combinations of c∞ and charge density values, the magnitude of the DOS

velocity for the present case (either from left-to-right or right-to-left, depending on

the relative direction and strength of the EOS transport with respect to the COS

transport) is mostly larger than that for the previous study. This analysis provided

in Fig. 4.13, firmly establishes the novelty of the present study over and above that
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of our previous study [31] in terms of significantly enhancing the DOS transport in

functionalized nanochannels.

4.4 Conclusions

In this paper, we develop a theoretical model to quantify the DOS trans-

port in nanochannels grafted with PE brushes modelled using our recently devel-

oped augmented SST. The diffusioosmotically induced electric field and water flow

characterize this DOS transport, which is generated in the presence of an axially

employed salt concentration gradient. The presence of the brushes leads to an en-

hanced induced electric field for positive values of the electric field. The presence

of the brushes further ensure a larger DOS flow velocity, as compared to the cases

of brush-free nanochannels or nanochannels grafted with end-charged brushes for

a major combination of salt concentration, pH, and grafting density values. With

respect to the brush-free nanochannels, such an enhancement is contributed by the

brush-induced localization of the EDL charge density away from the nanochannel

walls (or wall-induced drag force), which in turn leads a much more enhanced effect

of the induced EOS body force caused by the diffusioosmotically induced electric

field. On the other hand, with respect to the nanochannel grafted with end-charged

brushes, such an enhancement is due to the localization of the brush-induced drag

force away from the location of where the EDL-induced EOS and COS body forces

are localized.
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4.5 Appendix

Simplification of the y-momentum equation to obtain the starting

point of eq.(4.1)

The present study considers a long nanochannel, such that L� h. Under such

conditions, one can apply the Space Charge Theory or SCT (see [183] for details)

for describing the EDL electrostatic potential, ion number densities, the fluxes and

the local flow fields. The critical issue of the SCT is that for this very long and

thin nanochannel, one must have local equilibrium in the transverse direction. The

condition of this local transverse equilibrium leads to v(x, y) = 0, where v is the

transverse velocity field (velocity field in y-direction). We have previously shown

(for the case of diffusioosmotic transport in brush-free nanochannels), that our prob-

lem statement, where we employ a very weak salt concentration gradient along the

length of a nanochannel (where L � h), leads to the case where one can directly

apply the SCT (please see the detailed Supplementary Material of Ref. [187]). The

present problem is the same as that of the previous study, except that we now have

the presence of grafted backbone-charged PE brushes. Therefore, for the present

case too, we can consider the existence of local equilibrium in the transverse direc-

tion, which in turn will lead to v(x, y) = 0.

On the other hand, the Navier Stokes y-momentum equation (in the absence of

the effect of the gravitational body force, since we consider very small mass of liquid
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confined in a nanochannel) can be expressed as:

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
− e (n+ − n− + nH+ − nOH−)

∂ψ

∂y
. (4.21)

In the above equation, the last term on the right hand side represents the body

force in y-direction resulting from the interaction of the net EDL charge density

[e (n+ − n− + nH+ − nOH−)] and the EDL transverse electric field (−∂ψ
∂y

). Using the

condition of v(x, y) = 0 in the above equation leads to:

∂p

∂y
+ e (n+ − n− + nH+ − nOH−)

∂ψ

∂y
= 0, (4.22)

which is the starting point of eq.(4.1)
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Fig. 4.5: Variation of the different components [namely, Ēosm,diff (see (a)) and Ēosm,i,adv

(see (b-d))] that constitute Ēosm,i [see eqs.(30-32)] with c∞. Results are only

shown for the brush-grafted nanochannels for different combinations of pH∞

and `. Other parameters are identical to those used in Fig. 4.2. Here we do not

show Ēosm,OH−,adv (i.e., the contribution associated with the OH− ions) as it is

very small.
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Fig. 4.6: Variation of the dimensionless ionic (Ēion) component of the diffusioosmotically-

induced electric field with c∞ in presence of an applied salt number density

gradient of ∇n∞ = dn∞/dx = 104n∞. for both brush-grafted and brush-free

nanochannels for different combinations of ` and pH∞ values. Other parameters

are identical to those used in Fig. 4.2.
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Fig. 4.7: Variation of Ēp,ion and Ēm,ion (see the text and eqs. 26,27 for their defini-

tions) components of Ēion with c∞ in presence of an applied salt number density

gradient of ∇n∞ = dn∞/dx = 104n∞ for both brush-grafted and brush-free

nanochannels for (a) pH∞ = 3, ` = 60 nm, (b) pH∞ = 3, ` = 10 nm, and (c)

pH∞ = 4, ` = 60 nm. In the insets of each figures, the corresponding variations

of Ēp,ion,N and Ēm,ion,N (see the text for the definition of these quantities) with

c∞ have been shown. Other parameters are identical to those used in Fig. 4.2.

Fig. 4.8: DOS velocity field profiles in presence of an applied salt number density gradient

of ∇n∞ = dn∞/dx = 104n∞. for both brush-grafted (shown by solid lines)

and brush-free (shown by dashed lines) nanochannels for different c∞ for (a)

pH∞ = 3, ` = 60 nm, (b) pH∞ = 3, ` = 10 nm, and (c) pH∞ = 4, ` = 60 nm.

Other parameters are identical to those used in Fig. 4.2.
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Fig. 4.9: DOS velocity field profiles (denoted as utot) and COS velocity profiles [obtained

by solving eqs.(4.19) and (4.20)] in presence of an applied salt number density

gradient of ∇n∞ = dn∞/dx = 104n∞. for both brush-grafted and brush-free

nanochannels for pH∞ = 3, ` = 10 nm for (a) c∞ = 10−1 M , (b) c∞ = 10−2 M ,

(c) c∞ = 10−3 M , (d) c∞ = 10−4 M , and (e) c∞ = 10−5 M . Other parameters

are identical to those used in Fig. 4.2.
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Fig. 4.10: DOS velocity field profiles (denoted as utot) and COS velocity profiles [obtained

by solving eqs.(4.19) and (4.20)] in presence of an applied salt number density

gradient of ∇n∞ = dn∞/dx = 104n∞. for both brush-grafted and brush-free

nanochannels for pH∞ = 3, ` = 60 nm for (a) c∞ = 10−1 M , (b) c∞ = 10−2 M ,

(c) c∞ = 10−3 M , (d) c∞ = 10−4 M , and (e) c∞ = 10−5 M . Other parameters

are identical to those used in Fig. 4.2.
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Fig. 4.11: DOS velocity field profiles (denoted as utot) and COS velocity profiles [obtained

by solving eqs.(4.19) and (4.20)] in presence of an applied salt number density

gradient of ∇n∞ = dn∞/dx = 104n∞. for both brush-grafted and brush-free

nanochannels for pH∞ = 4, ` = 60 nm for (a) c∞ = 10−1 M , (b) c∞ = 10−2 M ,

(c) c∞ = 10−3 M , (d) c∞ = 10−4 M , and (e) c∞ = 10−5 M . Other parameters

are identical to those used in Fig. 2.
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Fig. 4.12: Diffusioosmotically induced electric field for (a) End-charged PE brush and (b)

Backbone charged PE brush. Parameters are identical to those used in Fig. 4.2.

Fig. 4.13: Comparison of velocity field of End-charged and backbone charged PE brushes

for (a) pH∞ = 3, ` = 60 nm, (b) pH∞ = 3, ` =10 nm, and (c) pH∞ = 4, `

= 60 nm. The solid line represents end-charged PE brush and the dashed line

represents the backbone charged PE brush. Other parameters are identical to

those used in Fig. 4.2.
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Chapter 5: Conclusion and Future Scope

5.1 Conclusion

In this thesis, we studied the effect of the PE brush functionalization on the

electroosmotic and diffusioosmotic flow in nanochannel. Firstly, we described the

modeling of the PE brush in a thermodynamically self-consistent fashion to obtain

the equilibrium configuration of the brush. We obtain the brush height, monomer

distribution, charge distribution through EDL potential from this framework. Using

this description of the PE brush configuration and the brush-induced EDL, we

model the electroosmotic transport of the liquid in nanochannels grafted with these

PE brushes in the presence of the external axial electric field. The electric field

induces a flow due to the EOS body force generated by the interaction of this

electric field with the charge imbalance of the brush-induced EDL. We found that

the presence of PE brush leads to enhanced liquid transport due to the localization

of the EDL charge density and hence the localization of the EOS body force away

from the wall where the drag force due to the wall is maximum. Following that we

investigate the ionic diffusioosmotic flow in a PE brush grafted nanochannel. The

difference in diffusivities in the ions combined with the presence of salt concentration

gradient induces an electric field. This electric field results in a electroosmotic flow



and the salt concentration gradient induces a pressure gradient which leads to a

chemiosmotic transport. Similarly, we find that the DOS transport is enhanced

massively in the presence of PE brushes due to the localization of EDL, as explained

above. It is found that both EOS and DOS flow velocity in nanochannel grafted

with backbone charged PE brush modeled using augmented SST is much greater

than that in nanochannel grafted with end-charged brush modeled using Alexander-

de-Gennes model. The EOS body force is localized away from the wall for both the

brush models, however the drag force due to brush is much greater for the Alexander-

de-Gennes model near the location of the EOS body force. This results in much

lesser net force at the location of EOS body force for this model resulting in smaller

flow rate in comparison to augmented SST model.

5.2 Future Scope

The present thesis sheds light on two interesting possibilities of significantly

enhancing the water transport in nanochannels grafted with backbone-charged PE

brushes. Future research endeavors should be directed in two distinct relevant areas.

First, attempts should be made in developing experimental frameworks for study-

ing such augmented nanofluidic transport in brush-grafted nanochannels. Various

examples of charged PE brushes, such as poly(acrylic acid) brushes, poly(styrene

sulfonate) brushes, etc. could be used for functionalizing the nanochannels. Sec-

ond, detailed all-atom molecular dynamics (MD) simulations could be performed

to study the liquid flows in such brush-grafted nanochannels. These simulations
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would enable checking issues such as (a) the effect of possible deformation of the

brushes due to the induced/applied electric fields and the induced flows, (b) the

exact relationships of the grafting density to the brush-induced drag coefficients,

etc. and the knowledge about these quantities would eventually ensure a much

more rigorous continuum treatment of the fluid flows in nanochannels grafted with

backbone-charged PE brushes.
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