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Social network data consist of entities and the relation of information between
pairs of entities. Observations in a social network are dyadic and interdependent.
Therefore, making appropriate statistical inferences from a network requires speci-
fications of dependencies in a model. Previous studies suggested that latent factor
models (LFMs) for social network data can account for stochastic equivalence and
transitivity simultaneously, which are the two primary dependency patterns that are
observed social network data in real-world social networks. One particular LEM, the
additive and multiplicative effects network model (AME) accounts for the hetero-
geneity of second-order dependencies at the actor level. However, all current latent
variable models have not considered the heterogeneity of third-order dependencies,
actor-level transitivity for example. Failure to model third-order dependency hetero-
geneity may result in worse fits to local network structures, which in turn may result
in biased parameter inferences and may negatively influence the goodness-of-fit and

prediction performance of a model.



Motivated by such a gap in the literature, this dissertation proposes to incor-
porate a correlation structure between the sender and receiver latent factors in the
AME to account for the distribution of actor-level transitivity. The proposed model
is compared with the existing AME in both simulation studies real-world data. Mod-
els are evaluated via multiple goodness-of-fit techniques, including mean squared er-
ror, parameter coverage rate, information criteria, receiver-operation curve (ROC)
based on K-fold cross-validation or full data, and posterior predictive checking. This
work may also contribute to the literature of goodness-of-fit methods to network
models, which is an area that has not been unified.

Both the simulation studies and real-world data analyses showed that adding
the correlation structure provides a better fit as well as higher prediction accuracy
to network data. The proposed method has equal or similar performance to the
AME when the underlying correlation is zero, with regard to mean-squared error of
probability of ties and widely applicable information criteria. The present study did
not find any significant impact of the correlation term on the node-level covariate’s
coefficient estimation. Future studies include investigating more types of covariates,

subgroup related covariate effects is an example.
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Chapter 1: Introduction

1.1 Statement of the Problem

Network data consist of actors and the ties that represent relations among
actors. Statistical network models are used to investigate how network ties form
among actors in a network. The probability of a tie is a function of predictors that
explains the tie formation process. Network ties are dependent in nature such that
the probability of a tie between actor A and actor B may depend on the probability
of a tie between actor A and actor C. Therefore, it is necessary to include predictors
that can account for, and model, such dependencies in statistical network models.

Dependencies among network ties are associated with various types of network
structures. Subgroups and transitive triads are the two primary structures that are
often observed in real-world networks (Hoff, 2008; Wasserman & Faust, 1994). For
networks with a subgroup structure, actors in the same subgroup usually have similar
social roles or have similar tie patterns to other actors in a different subgroup. A
transitive triad in a network refers to a closed path among three actors. Take a
friendship network as an example, a transitive triad describes the phenomenon that
a friend’s friend is also a friend of mine.

Statistical network models account for dependencies in network data by spec-



ifying independent variables that represent network structures. However, in the
current literature, network models account for transitive triads aggregately or in-
directly. For example, an Exponential Random Graph Model (ERGM; Holland &
Leinhardt, 1981) uses the total number of transitive ties as a predictor of network
ties and a latent space model (Hoff, Raftery, & Handcock, 2002) relates the proba-
bility of ties with the distances of actors’ latent positions in a latent space. These
approaches are only able to capture network-level transitivity, i.e., the average num-
ber of transitive triads in a network, but the heterogeneity of transitivity at the
actor-level is ignored. Actor-level transitivity measures the degree of transitivity
for each actor in the network. Its value varies from one actor to another actor
and more variation in actor-level transitivity is observed in directed networks than
those in undirected networks. For actor j, its transitivity is equal to the ratio of
the number of transitive triads passing through j (i.e., number of triad patterns
i — j,j — k,i — k) and the number of two-path triads passing through j (i.e.,
number of triad patterns i — j,j — k). Figure 1.1 shows the visualization of three
directed social networks (first row) and the distribution of actor-level transitivity in
each network (second row). The Sampson’s positive-relation network (left panel) and
the researcher friendship network (middle panel) have similar averaged actor-level
transitivities, but the variance of the actor-level transitivity in the second network
is about 75% higher than that in the first network. The spend-time network (right
panel) has a lower average actor-level transitivity, as well as the lowest variance
in actor-level transitivity among the three networks. Successfully addressing such

heterogeneity in actor-level transitivity may improve model-data fit or prediction



ability for directed networks with large variation in actor-level transitivity. There-

fore, it is worth developing new models or modifying existing network models to

account for such a structure.

Sampson's Positive-relation Network
density= 0.288

mean_actor_trans= 0.44
var_actor_trans= 0.047

<« 4 -

A Researcher Friendship Network
density= 0.142

mean_actor_trans= 0.409
var_actor_trans= 0.082

5 20 25 30

10

5

A Spend-time Network
density= 0.065

mean_actor_trans= 0.336
var_actor_trans= 0.038

Actor-level Transitivity

r
0.0

T T T T 1
02 0.4 06 0.8 1.0

Actor-level Transitivity

Actor-level Transitivity

Figure 1.1: This figure shows three real-world networks that have different levels
of heterogeneity in actor-level transitivity. The upper row shows the
network graphs of these three networks and the lower row shows the
distributions of actor-level transitivity for these three networks in forms

of histograms.

Generally, there are two ways to specify independent variables that represent

a dependency structure in network models. One way is to use summary statistics of

local network structures as predictors. Models adopting such type of predictors are

ERGMs (Frank & Strauss, 1986; Holland & Leinhardt, 1981; Wasserman & Pattison,

1996). Another approach is based on latent variable modeling (LVM; Airodi, Blei,

Fienberg, & Xing, 2008; Hoff et al., 2002; Holland, Laskey, & Leinhardt, 1983),

in which latent variables are assumed to capture specific structures in a network.

ERGMs that use network summary statistics to represent network structure are



intuitive and easy to interpret, but deciding which statistics best represent the
observed network can be challenging and these models tend to generate networks
that are rarely observed. This limitation is referred to as the degeneracy issue in
model estimation (Handcock, Robins, Snijders, Moody, & Besag, 2003; Pattison
& Robins, 2002; Snijders, Pattison, Robins, & Handcock, 2006). Although LVMs
do not have such degeneracy problems, the interpretation of parameters in these
models is sometimes less straightforward. Also, latent variable models are flexible
in specifying multiple types of network structures by combining multiple latent
variables additively in the model. Thus, the present study would like to account
for the heterogeneity of actor-level transitivity under a latent variable modeling
framework.

There are three lines in the development of latent variable models for network
data. Stochastic blockmodels (SBM; Nowicki & Snijders, 2001) focus on subgroup
detection by estimating a categorical latent variable that represents actors’ unob-
served group memberships. Latent space models (LSM; Hoff et al., 2002) associate
the probability of a tie between any two actors with a similarity measure between
these two actors and transitive triad patterns are captured under this type of model.
Each actor has a continuous latent variable that stands for its latent position in a
latent space and the distance between latent positions of any two actors is negatively
related to the probability of a tie between these two actors. Latent factor models
(LFM; Hoff, 2005) share similar model assumptions with latent space models, except
that the similarity measure in latent factor models is an inner product of two actors’
latent factors, unlike the distance measure used in latent space models. The latent
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factor represents the latent attribute of each actor in a latent space, and the more
similar two actors’ latent attributes are, the higher the probability of a tie between
these two actors.

In order to address the heterogeneity of actor-level transitivity under the latent
variable modeling framework, a variable that represents actor-level transitivity needs
to be specified in the model and the location of such variable in the model needs
to be decided on. The present study finds the LFM for directed networks (Fosdick
& Hoff, 2015; Hoff, 2018) provide a natural basis to add a variable that stands for
actor-level transitivity. Specifically, the inner product term in an LFM is the inner
product between the sender-specific latent factor (denoted as U) of the actor that
initiates the tie and the receiver-specific latent factor (denoted as V') of the other
actor that receives the tie. The probability of a tie from actor ¢ to actor j is a
function of the inner product term U/V;. The higher the inner product value is, the
higher the probability of a tie is. Consider a triad with actors ¢, j and k and j is the
actor that connects actors ¢ and k, i.e., actor ¢ has a tie to actor j and actor j has a
tie to actor k. This triad is transitive if a tie from actor ¢ to actor k is also observed.
Figure 1.2 shows that the inner product UV} has a higher value when U; and V;
are closer, given the same inner product values in U;V; and U;Vj. This indicates
that when the sender-specific factor and receiver specific factor of an actor (e.g. U;
and V;) are close in the latent space, the transitivity of this actor is high because
the other two actors (e.g. actors ¢ and k) that connect through this actor have high
probability to have a tie. Therefore, a correlation term that is positively related to

actor-level transitivity can be added between the sender-specific and receiver-specific



factors of each actor in order to model the heterogeneity of actor-level transitivity.
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Figure 1.2: Two plots explaining the functionality of the correlation between U; and
Vj in the 2-dimensional latent space. Given the same relative positions
between U; and Vj, U; and Vj, higher correlation between U; and Vj
indicates higher inner product value (i.e., higher similarity) of U; and
V;, which in turn indicates higher inner product value (i.e., higher sim-
ilarity) of U; and V). This result in higher probability of a tie between

7 and k.

Besides its ability to incorporate a correlation parameter that accounts for

actor-level transitivity, the inner product specification in an LFM has several other

advantages over latent class models and latent space models. First, an LFM can

model a network with directed ties by specifying the sender-specific latent attribute

variable and the receiver-specific latent attribute variable for each actor. Second,

latent variables are actually random effects or error terms under the generalized

linear modeling framework and only the inner product term in latent factor models

has a zero mean, which is a desirable property for an error term. Latent variables in

the other two categories of models do not have such nice property. Third, the litera-



ture (Hoff, 2008) showed via real-world data analysis that latent factor models may
be better at capturing transitive triads than stochastic blockmodels and it is also
better at detecting subgroups than latent space models. Although the third point
is not the focus of the present study, it would be interesting to further investigate

this argument under more scenarios and simulation studies.

1.2 The Purpose of the Study

The main purpose of this work is to investigate the performance of latent
factor models under different specifications of latent variables. In existing latent
factor models, the sender and receiver specific latent factors of the same actor (U;
and V;) are assumed to be independent. The current study proposes to add a
correlation parameter p,, between U; and V; to account for heterogeneity of actor-
level transitivity. Details on the rationale to include such within-actor correlation
are provided in section 3.1.1. For network data with directed ties and high variation
in actor-level transitivity, the present study investigates whether better data-model
fit will be obtained by including such correlation.

The second goal is to evaluate possible advantages of the proposed model over
existing latent factor model for network data with both attribute information and
heterogeneous actor-level transitivity. In cases in which the attributes of actors
in a network are available, researchers are often interested in making inference on
the covariate effect and predicting for missing data if possible (Fosdick & Hoff,

2015; Hoff, 2009). It is interesting to know how the inferences on covariate effects



differ between the existing model without the correlation structure and the proposed
model with a correlation sturcutre.

As part of the study, parameter recovery and goodness-of-fit of the model
with a correlation term between sender-specific and receiver-specific latent factors
will be examined under different simulation conditions, including network size, net-
work density and correlation value. Also, the robustness of model estimation for
the latent factor model with correlation is evaluated by imposing different priors on
model parameters across simulation studies. In addition, the model with a corre-
lation term is compared to the original latent factor model without the correlation
term under varying simulation conditions. In the context of educational research,
the inference of the covariate effect is of more interest than the prediction of missing
ties (Liben-Nowell & Kleinberg, 2007; Lii & Zhou, 2011). Therefore, the present
study also compares the estimated covariate effects between the proposed model
and the existing model via a simulation study. Due to the extremely high computa-
tional cost of the cross-validation method under Bayesian estimation, the prediction
performance of different models will only be compared in real-world network data
analyses.

As was suggested by the literature (Hoff, 2005; Hunter, Goodreau, & Hand-
cock, 2008; Raftery, Niu, Hoff, & Yeung, 2012), the current study will use multiple
techniques such as information criteria, receiver-operation curve (ROC) and poste-
rior predictive checking to evaluate the goodness-of-fit. Comparisons among differ-
ent models with regard to goodness-of-fit will be conducted under both real-world

and simulated data with various network structure patterns and different network



sizes.

1.3 The Significance of the Study

The present study contributes to the field of social network modeling in the
following ways. First, the current study will investigate the advantages and limita-
tions of modeling the within-actor correlation between sender and receiver specific
latent factors, which will be the first attempt to model heterogeneity of actor-level
transitivity in the literature, as well as the first attempt to use a parameter to ex-
plicitly account for the overall transitivity in a network. This idea is motivated
by the high variation of actor-level transitivity that is observed in many real-world
networks with directed ties, especially in sparse networks with low network density.
It is preferred that a network model could capture as many network structures as
possible. Successfully modeling a network structure that has not been accounted for
may improve accuracy of statistical inference on covariates effects or the prediction
of network ties. Second, latent factor models are still in an emerging stage and are
not as widely studied as latent space models. Investigation of different specifica-
tions of latent factors in LFMs will provide researchers a deeper understanding of
the operating characteristics of LFMs. Lastly, the current literature lacks a stan-
dard method to evaluate goodness-of-fit for social network models. The present
study will use multiple evaluation methods summarized from the literature to as-
sess model performance and compare the performance of different models. In this

process, the consistency of different evaluation methods will be discussed, and the



results may provide some reference to future studies.

1.4  An Overview of the Chapters

The rest of this dissertation proposal is organized in the following manner.
Chapter 2 is comprised of a review of the relevant literature including basic con-
cepts and three popular types of latent variable models for network data; stochastic
blockmodels, latent space models, and latent factor models. The purpose of this
chapter is to explain why the present study addresses the heterogeneity of actor-level
transitivity via latent factor models. Also, this chapter discusses various model es-
timation and goodness-of-fit methods in the literature and explains why the present
study uses Bayesian method for model estimation, as well as why it uses informa-
tion criteria, cross-validation method together with posterior predictive checking to
evaluate the goodness-of-fit of network models under study.

Chapter 3 introduces methodologies used in the present study. First, techni-
cal details of the correlation term between sender and receiver-specific factors in a
latent factor model are explained, followed by the description of model estimation,
evaluation and comparison methods adopted in the current study. Also, technical
aspects involving model estimation such as non-identifiability of model parameters
is discussed. This chapter also includes simulation studies with the purpose to eval-
uate the performance of the proposed model under different parameter settings and
different prior distributions, as well as the empirical power of the proposed model

with a covariate. In addition, the differences in the inferences of the covariate effects

10



between the proposed model and the existing model are compared. Then real-world
network data are analyzed with both the proposed model and existing models to
demonstrate the impact of adding a correlation term in the latent factor model to
the goodness-of-fit, as well as the change in the accuracy of predicting missing ties.

Chapter 4 presents the results from simulation studies and real-world data
analysis. Chapter 5 provides a summary of findings, applications, limitations and

future directions.
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Chapter 2: Literature Review

The goal of the present study is to explore and understand possible ways
to model network structures under the latent variable modeling framework. In
particular, the feasibility of modeling heterogeneity of actor-level transitivity and
the performance of the proposed model comparing to existing latent variable models
for network data will be investigated. This chapter focuses on a literature review
on existing statistical network models that use latent variables to model network
structure.

This chapter starts with an introduction to well-established concepts and de-
scriptive network statistics. These concepts and network statistics are closely related
to statistical network modeling and model evaluation methods in the current study.
The second part of the chapter introduces theoretical properties and extensions of
several widely used latent variable models for network data, as well as discussion
of the benefits, limitations, and interrelation among these models. Model estima-
tion, parameter identification and goodness of fit methods used in network analysis
literature will then be discussed, with the purpose to justify the model comparison
and evaluation methods used in the present study. The chapter concludes with a

summary and stating of the research questions that will guide the methodological
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investigation.

2.1 Introduction to Social Network Data

2.1.1 Basic concepts

A social network includes a set of entities (people or institutions) that are
connected by some kind of relationship. In social network analysis, researchers
name entities as actors and the relationships between any two actors are ties. The
values of the ties can be binary, ordered polytomous or continuous, depending on
how the relationship was measured. The most common type of value is binary, where
1 indicates there is a tie between two actors and 0 means the relationship is absent
between two actors. Networks with binary-valued ties are called binary networks
and networks with ordered polytomous or continuous-valued ties that indicates the
strength of the relationship are referred to as weighted networks. Also, a tie can be
directed or undirected, depending on how the relationship is defined. For example,
in a binary friendship network, actor 1 and actor 2 are friends, then the ties from
actor 1 to actor 2 and from actor 2 to actor 1 are both of value 1 because friendship
defined here is a mutual relationship without direction. For a relationship with
direction, such as actor 1 likes actor 2, but actor 2 does not like actor 1, then a tie
from actor 1 to actor 2 is of value 1 while a tie from actor 2 to actor 1 is of value 0.

A convenient way to present network data for subsequent analyses such as
computing descriptive network statistics and statistical modeling, is through so-

ciomatrix. A sociomatrix is an n by n adjacency matrix, in which each element in
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the matrix represents the tie value of a pair of actors whose labels correspond to the
row and column labels of the matrix. As a toy example, Figure 2.1 shows a binary
directed network with five actors labeled from 1 to 5. The table in the left panel
of the figure is the adjacency matrix of the network. Note that the matrix is asym-
metric as a result of directed ties. Row labels correspond to labels of the five actors
as senders and column labels correspond to the same five actors as receivers. The
main diagonal of the sociomatrix is not defined and NAs or zeros are usually put in.
The values of off-diagonal elements represent the tie values between pairs of actors.
Another essential tool in social network analysis is visualization and the graphical
representation of social network data. This is typically accomplished through what
is known as a sociogram. A sociogram is composed of nodes and edges. Nodes repre-
sent actors in a network and edges with arrows represent the existence and direction
of ties. The right panel in Figure 2.1 is an example of a sociogram corresponding to
the adjacency matrix on the left. Usually, the first step to analyzing network data

is to examine its sociogram to obtain a general picture of the network structure.
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(a) Sociomatrix (b) Sociogram

Figure 2.1: A binary directed network consisting of five actors. Panel (a) displays
the network data in forms of sociomatrix and panel (b) visualizes the
network data via sociogram.
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Descriptive network statistics summarize different types of network structures
and are useful tools to help researchers understand different aspects of a network.
As statistical network models develop, descriptive network statistics begin to serve
as predictors of the probability of ties (Holland & Leinhardt, 1981; Wasserman &
Pattison, 1996), or as summary statistics in evaluation of goodness-of-fit (Hunter et
al., 2008). The most frequently discussed descriptive statistics are density, in-degree,
out-degree, reciprocity and transitivity. Let Y denotes the sociomatrix of a binary

directed network of size n such that Y;; stands for the tie value from actor ¢ to actor

Density measures the degree of interaction among actors in a network and is

defined as the number of existing ties divided by the total number of possible ties:

Z?:l Z?:l Yij

nk(n—1)

In-degree measures the degree of popularity of an actor and is defined as
the number of ties an actor receives. In math form, the in-degree for actor j is:
Yy, = > ", Y. Similarly, the out-degree is the number of ties an actor sends
out and measures the degree of sociability of that actor. Actor i’s out-degree is
Yir = Z?Zl Yz’j-

Reciprocal ties exist if the tie in a pair of actors is in both directions in a
directed network. In the toy example in Figure 2.1, the ties between actors 1 and
2, as well as the ties between 3 and 5 are reciprocal ties. The degree of reciprocity
is indexed by the ratio of the number of reciprocal ties to the total number of ties
in a network. Some social networks can exhibit high reciprocity since many types
of social interaction is two-way in nature.
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Transitivity is another important and commonly used descriptive statistics
in social network analyses. Transitivity occurs in a subgraph called a triad, which
consists of three actors and the ties among them. For example, consider three actors
labeled as 7,j and k in a directed network. Triad {i,j,k} is transitive if ties ¢ — j,
j — k and i — k are observed at the same time. The triad in Plot (a) in Figure
2.2 shows the direction of ties in a transitive triad while plots (b) and (c) show two
types of triads that are not transitive. At the network level, transitivity is measured
as the number of transitive triads divided by the number of two-path triads, i.e., ¢
to 7 and j to k. The transitivity of an actor j for instance, is defined as the ratio
of the number of transitive triads in which j is the middle actor that connects the

other two actors to the total number of pairs of actors that are connected via j.

/N /N /N

(a) (b) ()

Figure 2.2: The sociogram of a transitive triad (plot (a)) and two types of non-
transitive triads (plots (b) and (c))

Statistical network models apply in a wide range of topics. Based on fre-
quently appeared sections in the annual international conference Advances in Social
Networks Analysis and Mining (ASONAM), the present study summarizes these
topics as follow: community detection and analysis, behavior analysis, graph mod-
eling and analysis, anomalous behavior prediction, network diffusion, social media

analysis, event and pattern detection, network selection etc. The contexts of studies
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are also plentiful: political and policy networks; social movements; criminality and
terrorism; academic citation networks; school networks; economic networks; geog-
raphy networks; genetic networks etc. As a primary part of the statistical network
models, latent variable models have applications in all the topics mentioned above.

There are generally three categories of research questions that statistical net-
work models address. One category is about the learning structure of the network
data itself. For example, which actors in a network belong to the same subgroup?
What is the probability of two actors in a network connecting to each other? The
second category is about investigating attributes information (actor-level or network-
level attributes) that influence the network tie formation. For example, does teach-
ers’ classroom management skills affect the degree of integration among subgroups
in classroom friendship networks? Are students with the same gender more likely
to be friends, controlling for other attributes and dependency structures? The third
category is about using network data to inform other outcome measures. For in-
stance, given the subgroup memberships in an ensemble of classroom friendship
networks in a school, are students’ opinions towards school’s management more
similar within subgroups than between subgroups? How does social interactions
in networks explain the causal relationship between an outcome of actors and the

treatment?
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2.1.2 Network structures

A network has many types of structures and the concurrence of multiple net-
work structures adds complexity in modeling network data. Among all network
structures, transitive triads and subgroups are widely explored in the development
of latent variable models for network data. One of the reasons is that transitive
triads and subgroups are commonly observed network structures in social network
data (Dekker, Krackhardt, & Snijders, 2017; Karlberg, 1997). Transitivity intro-
duced previously can be modeled by defining a similarity measure for each actor’s
latent variable, which usually represents an actor’s latent trait. Actors that are
more similar in their latent variables have a higher chance to have ties than actors
that are less similar in their latent variables. Subgroup structure refers to the phe-
nomenon that actors in a network form smaller groups based on their social roles
or degree of connection. Latent variable models account for subgroup structure by
assuming actors in the same subgroup are stochastically equivalent (Holland et al.,
1983; Lorrain & White, 1971). This means that exchanging the social position of
any two actors in the same group will not change the probability of observing a
network like the one under study.

Figure 2.3 shows three exemplary networks with different network structures.
The network displayed in plot (a) has a high proportion of transitive triads. The
network in plot (b) has a high proportion of stochastically equivalent actors. Actors
in the same subgroup have no ties with each other but they connect with actors

in the other two groups in a similar way. The network in plot (c¢) shows a more
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complex subgroup structure, in which there are relatively more within-groups ties
than between-group ties. Such a subgroup structure contains both transitive triads
within the same group and stochastically equivalent actors. Real-world networks

often possess complex structures as that shown in plot (c).

(a) transitivity (b) stochastic equivalence (c) both

Figure 2.3: Three examples of network with high transitivity (panel (a)), stochastic
equivalence (panel (b)) and both types of structures (panel (c)).

2.2  Introduction to Latent Variable Models for Network Data

The present study explores a latent factor approach to account for network
structures, actor-level transitivity in particular. This section reviews existing latent
variable models for network data and discusses the advantages and limitations of

existing works and motivates the new approach proposed by the current study.

2.2.1 Dependence assumptions

A pair of actors, namely the dyad, is the unit of observation in network data.
Dependency among dyads could occur because two actors in a dyad come from
the same population. Explicitly, the probability of a tie in a dyad may depend
on the probability of a tie in another dyad, especially when an actor is in both
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dyads. Dependency among dyads leads to a variety of network structures and we
have introduced in detail for two typical structures in section 2.1.2. Generally, a
network structure involving two actors is a second-order dependence structure and a
network structure contains three actors is a third-order dependence structure (Hoff,
2005, 2018; Paul & O’Malley, 2013). For example, reciprocity is a second-order
(involves two actors) dependence structure. In a network with high reciprocity, it is
more likely to observe a tie from actor j to ¢ given that we observe a tie from actor
1 to actor j, compared to the case in which no tie exists from actor ¢ to actor j.
As another example, transitivity is a third-order (involves three actors) dependence
structure for which ties in pairs {i,j} and {j, k} is a strong indication of a possible
tie between actor ¢ and actor k, as the third pair {i, k} shares common actors with
the first two pairs. The last example is the subgroup structure. Actors in the
same subgroup often have similar social roles or similar social behaviors. It is more
frequently observed that two actors from the same subgroup connecting to the same
actors in other groups than two actors from different subgroups connecting to the
same actors in other groups.

Latent variable models for network data assume that dyads are independent
conditional on any latent variables that represent network structures. Because these
latent variable models share this same conditionally independent assumption, they

are also called Conditional Independence Dyadic models (CID models; Shalizi, 2016).
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2.2.2 Latent variable models for network data

Latent variable models for network data, or CID models, can be situate in
the generalized linear modeling framework (McCullagh & Nelder, 1989; McCulloch
& Searle, 2004; Nelder & Wedderburn, 1972). Let a square matrix Y denote the
adjacency matrix of a network. Y;; stands for the observed tie value between actors
1 and j if the network is undirected. If the relationship in the network has direction,
then Y;; stands for the observed tie value from actor ¢ to actor j. For a binary
network, Y;; takes a value of either 0 or 1 depending on whether a tie in dyad
{i,j} is absent or not. Suppose there are n actors in the network. The expectation
of observing a tie in a pair of actors can be expressed as a function of observed

covariates (X), coefficients (/) and latent variables (L):

E(Yy; = yi;| X5, Lij, B) = g (8’ Xij + Lij)

i#4,4,5€1,2,3,...,n

where X;; contains vectors of observed characteristics at the actor level or at the
dyad level. An actor-level covariate for example, can be the exam score of each
actor or the smoking behavior of each actor. A dyad-level covariate can be a binary
indicator of whether two actors are the same gender or the same age. The latent
variables L represent model assumptions about the network dependency structure
that are not explained by observed covariates. The link function ¢() is an identity

function if Yj; is continuous; a logit or probit link function if Yj; is binary and
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cumulative link function if Y;; is ordinal categorical valued.

Based on different model assumptions about the latent variables, latent vari-
able models are generally classified into the following three categories: sender-
receiver models, stochastic blockmodels, and latent space models. The basic models
in each category account for different aspects of network structures. Sender-receiver
models assume heterogeneity of actors’ in-degree and out-degree and capture indi-
vidual differences in sociality (the tendency of reaching out to others) and popularity
(the tendency of being reached out by others), as well as a correlation of sociality and
popularity within the individual. This is accomplished by specifying two random
effect variables and corresponding covariance structure for each actor. The stochas-
tic blockmodels assume actors can be grouped into unobserved ”blocks” in which
subgroups are identified based on stochastic equivalence (Holland et al., 1983), an
assumption in which actors in the same subgroup have the same distribution of ties
to others in the network. Latent space models assume each actor has a position in a
d-dimension latent social space which accounts for transitivity and reciprocity with
a similarity measure between the latent positions of pairs of actors. Moreover, some
extensions of these basic models can capture multiple types of network structures
at the same time, either by combining models from different categories or adding
new specifications to an existing modeling framework. A diagram of major latent
variable models for network data is presented in Figure 2.4. More details will be

discussed as various LVMs in each category are introduced.
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Latent Variable Models for Network Data

‘ Sender-Receiver Models

v

‘ Social Relation Model (Warner et al., 1979)

‘ Stochastic Blockmodels (Holland et al., 1983; Wasserman and Anderson, 1987)

v v

I
v

v

Mixed Memberhsip Generalized a posterior Stochastic
Stochastic Blockmodel (Airodi et Blockmodel (Sniders and Nowicki,
al., 2008) 1997)

Degree-corrected Stochastic
Blockmodel (Karrer and Newman,
2011)

Overlapping

Stochastic Blockmodel (Latouche,

2011)

Dynamic Stochastic Blockmodel
(Xu and Hero I11, 2013; Yang et al
2011; Matias and Miele, 2017)

Dynamic Mixed Memberhsip
Stochastic Blockmodel (Xing et al., 2010)

Hierarchical Mixed Memberhsip
Stochastic Blockmodel (Sweet et al., 2014)

‘ Latent Space Models

]

| | !

Latent Distance Model Latent Projection Model Latent Factor Model
(Hoff et al., 2002) (Hoff et al., 2002)

Latent Eu,en Model
(Hoff, 2008)

Bilinear Mixed Effects Model
(Hoff, 2005)

Multiplicative Latent Factor Model
(Hoff, 2009)

Latent Position Cluster Model
(Hancock et al., 2007)

Random effects latent distance model
(Hoff, 2003; Krivitsky et al., 2009)
>

Dynamic Latent Space Model
(Sarkar and Moore, 2006; Sewell and Chen,
2015; Durante et al., 2016)

Hierarchical Latent Space Model
(Sweet etal., 2013)

Additive and Multiplicative Latent Factor Model (Hoff,
2015,2018)

Figure 2.4: A diagram summarizing all network models mentioned in Section 2.2.2.
There are three categories of LVMs, Sender-Receiver models (SRMs),
Stoachastic Blockmodels (SBMs) and Latent Space models (LSMs). The
branches in LSMs are Latent Distance models (LDMs), Latent Projec-
tion Model and Latent Factor Models (LFMs). The present study is
based on the modeling framework for LFMs.

Suppose Y is a directed network with n actors, and Y;; represents the social
behavior of actor ¢ towards actor j. A sender-receiver model (SRM; Warner, Kenny,

& Stoto, 1979) for network Y is

:B/Xij—FCLi—i‘bj—FEij; Z#],’L,j €1,2,3,...,n (221)

(ai, bi) ~ N2[07 Zab]
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(€3 €5i) ~ Na[0, 0” p1€ he ]

where latent variable a; is a sender random effect that denotes each actor’s sociality
and b; is a receiver random effect that denotes each actor’s popularity. A covariance
matrix between a; and b; (X,) is often estimated due to the fact that a; and b;
come from the same actor. Also, a correlation between ¢,;; and €;; is specified to
account for reciprocal network ties. Covariates can be augmented in the model
in Equation 2.2.1 in an additive manner. Sender-receiver models have relatively
simple model expression and intuitive covariance structures, but it lacks the ability
to account for higher-order dependency such as transitivity. Therefore, this class of
models is often combined together with models in other categories to account for
more complex network structures (Hoff, 2005).

Stochastic blockmodels (SBM; Holland et al., 1983; Wasserman & Anderson,
1987) provide a model-based method to identify subgroups for network data. Actors
in the same group all have the same probability of having a tie to any actors in
another group. Also, actors within the same group all have the same probability
to be connected. Let C; be a binary-valued latent vector of length K (number of
subgroups) indicating group membership of actor ¢ and let B be a K by K group-to-
group probability matrix. An element in matrix B at row [ and column m represents

the probability of ties from group [ to group m. Thus, the tie probability between
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i and j is uniquely determined by C;BC}, as is presented in Equation 2.2.2:

Pr(Y; =1)=CI'BC;, i #j,i,j€1,...,n (2.2.2)
C; ~ Multinomial(1,6;)

By, ~ Beta(p,q), Lmel,... K,

where the group membership vector C; follows a multinomial distribution with pa-
rameter 6;, which is a vector of length K and the element values in this vector
sum up to 1. Elements in the group-to-group probability matrix B follows a beta
distribution with parameter p and gq.

The development of stochastic blockmodels takes several directions. The first
line of development is based on the mixture modeling framework, which generalized
stochastic a posterior blockmodels from a simple random graph model (Snijders &
Nowicki, 1997). Then, Snijder and his colleagues extended their work to directed
networks and valued network data (Nowicki & Snijders, 2001). The second exten-
sion is the mixed membership approach (Airodi et al., 2008), which allows actors
to belong to multiple groups with different probabilities that sum up to 1. This
approach was developed in the discipline of machine learning and has been ap-
plied to many other fields such as economics and biometrics. Allowing actors to
have mixed memberships better reflects the structure of some real-life networks as
actors may have different social roles when they interact with different actors. Simi-
larly, Latouche, Birmelé, Ambroise, et al. (2011) proposed an overlapping stochastic

blockmodel (OSBM) in which each actor can belong to multiple subgroups. The
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OSBM differentiates itself from MMSBM in the latent vectors that represent actors’
memberships. In an MMSBM, although actors can belong to multiple groups with
different probabilities, at each estimation step each actor is assigned to a single
group. While in an OSBM, an actor is assigned to more than one groups. The third
extension addressed the heterogeneity of actor’s in-degree and out-degree (Karrer
& Newman, 2011). The motivation of this extension is that different actors could
differ by a significant amount on the number of ties they send or receive. Karrer
and Newman (2011) showed with both real data and simulated networks that their
approach outperformed models without degree correction.

Also, dynamic or hierarchical network models based on SBMs are explored
by many researchers. Dynamic stochastic blockmodels (Matias & Miele, 2017; Xu
& Hero, 2013; Yang, Chi, Zhu, Gong, & Jin, 2011), as well as dynamic versions of
MMSBM (Xing, Fu, & Song, 2010), were proposed to identify clustering pattern for
network that changes over time; Hierarchical MMSBM (Sweet, Thomas, & Junker,
2014) was developed to model an ensemble of independent networks of the same
type. The hierarchical network modeling framework makes the incorporation of
network-level covariates possible.

Latent space models (LSM) assume each actor ¢ has a position variable P; in
a low dimensional latent space, and the probability of observing a tie between two
actors (7, j) is associated with the similarity of latent positions of these two actors,
as well as some observed nodal-level attributes if applicable. The very first LSM in
the area of social network analysis is the latent distance model (Hoff et al., 2002,

LDM) for a binary undirected network. This model used a logit link function and
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has the following representation:

i#4ij€l,..n,

P~ N<O’U]23)’

where latent position vector P; is of length d in a d-dimensional latent space (d <<
n). P; follows a multivariate normal distribution with zero mean and pre-defined
variance or unknown variance to be estimated. The term d(P;, P;) is a distance
measure to quantify the similarity between the latent positions of two actors 7 and j.
The distance measure can be any distance measure satisfying the triangle inequality,
|P,— Pj| < |P,— P;|+|P;,— P;| (Hoff et al., 2002). Euclidean distance is an example.
The latent distance model assumes undirected network ties becuase the distance
measure is symmetric in nature. Thus to account for differentiation of sender’s

sociality or receiver’s popularity in a directed network, a projection method that

projects sender ¢’s latent position vector on receiver j’s latent position vector was

proposed in Hoff et al. (2002) as well. In a latent projection model, the term —I—ijf
J

replaces the distance term -d(P;, P;). In the same way as in the sender-receiver
model, covariates enter the model additively.

Figure 2.5 shows latent positions of five nodes in a 2-dimensional latent space
and (left panel) the corresponding sociogram (right panel) of the network generated
from a latent distance model with Euclidean distance. The latent position of actor

4 is far away from the other four actors, which results in a higher possibility of the
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absence of a tie from actor 4 to other actors. Whereas actors 1, 2, 3 and 5 are closer
to each other in distance and it is more likely to observe ties among them, as is

shown in the sociogram in the right panel of Figure 2.5.
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Figure 2.5: An example of latent positions of five actors (left) and the corresponding
network generated from a latent distance model with Euclidean distance.

Extensions of the original LSMs (Hoff et al., 2002) are mainly focused on

the following three directions. First, a finite mixture version of the latent distance
model (latent position cluster model; LPCM; Handcock, Raftery, & Tantrum, 2007)
was developed to identify cohesive subgroups such that actors in the same group
have more ties than actors in different groups. Secondly, models that add sender
and receiver random effects to the latent distance model (Hoff, 2003) or latent
position cluster model (Krivitsky, Handcock, Raftery, & Hoff, 2009) were developed
to account for heterogeneity of actors’ sociality and popularity levels. The random
effects in these models are similar to those in a sender-receiver model, except that
each of the sender and receiver random effects are independently distributed without
a covariance between the two random effects. Following the notation in Hoff (2003)
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for a binary directed network, a latent distance model with sender and receiver

random effects and also models reciprocity is:

logit[Pr(Y;; = 1)] = 'X;j + a; + b; — d(P; — P;) (2.2.4)
i#5.0,7€1,2,3,...n
a; ~ N(0,0’g),bi ~ N(0,0’g)

P~ N(Ova??)a

where a; and b; are sender- and receiver- random effects respectively, and the fact
that d(P, — P;) = d(P; — P,) introduces reciprocity in the model. Lastly, a new
similarity measure was proposed and developed along the years from 2003 to 2018
by Dr. Hoff to simultaneously represent transitivity, cohesive subgroups as well as
stochastically equivalent actors in networks. This new similarity measure is the
inner product of the latent positions of a pair of actors. For a binary undirected

network the model (Hoff, 2003, 2008) is :

logit[Pr(Yi; = 1)] = B'X,; + F'Fy; (2.2.5)
i#5,4,5€1,...,n

F; ~ N(0,0%),

and for a binary directed network the model (Hoff, 2009) is:

logit|Pr(Yi; = 1)] = B'Xy; + UI AV + €5 (2.2.6)
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itjijel,....n
U, NN(O,O'?]);‘/Z' NN(O,O'%/)

€5 ~ N(O, 1)

Reciprocity is modeled by adding the term ¢;; and allowing correlation between
€;; and €j; in Equation 2.2.6 (It is normal to see an error term specified under a probit
link function, however Hoff (2009) used a logit link function instead). The sender-
and receiver specific latent factor are U; and Vj respectively. These latent factors also
follow a zero mean centered multivariate normal distribution of dimension d with
the stipulation that the columns of U and V are orthogonal. The inner product
term U]'V; is called the bilinear effect (Hoff, 2005) or multiplicative latent factor
(Hoff, 2018; Minhas, Hoff, & Ward, 2016). Latent variable models with an inner
product term shown in Equation 2.2.5 or Equation 2.2.6 are named as latent factor
models (LFMs; B. Kim, Lee, Xue, Niu, et al., 2018). Motivated by the singular
value decomposition method that using a lower-rank matrix to represent a matrix
data, an alternative multiplicative term F/AF; / U/AV; was used instead of the
inner product in some representations of latent factor models (Hoff, 2008, 2009).
However, this alternative multiplicative form is a special case of the inner product
representation. Let U; = VAU; and V; = VAV, , then UAV; = U;\/K/\/KVJ which
is equivalent to U ;‘N/j Therefore, the present study always uses the inner product
of two latent factors when referring to the bilinear effect in latent factor models.

The incorporation of an inner product of two subjects’ latent factors to ap-
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proximate a matrix-type data is not new in statistical models (Gabriel, 1978; Oman,
1991). In addition, the inner product term is actually in line with the matrix factor-
ization method that has been widely used for dyadic data prediction in the machine
learning literature (Menon & Elkan, 2011). In social network data analysis, Hoff et
al. (2002) first adopted an inner product term to build a latent projection model
by dividing the inner product F}F; by |F}| to model heterogeneity in sending ties.
Later the inner product term alone was proposed as an alternative to the distance
measure in the latent distance model to describe the similarity of pairs of actors
(Hoff, 2003), which starts the development of latent factor models. In a series of
methodological studies (Fosdick & Hoff, 2015; Hoff, 2005, 2015, 2018; Minhas et al.,
2016), Hoff and his collaborators included the sender- and receiver- effects additively
in latent factor models to account for actor in-degree and out-degree heterogeneity.
Models with both additive effects (sender and receiver random effects) and multi-
plicative latent factors (the inner product) are named additive and multiplicative
effects network models (AMEs; Fosdick & Hoff, 2015; Hoff, 2018). This model has

the following representation:

O (Pr(Y; =1)) = 8'X;; + a; + b, + UTV; + e;; (2.2.7)

i%jainje]-a--'ana

where ®() is a probit link function, a; and b; are sender and receiver random effects

respectively. Dependency structure are captured by specifying covariance structure
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fOr (a’i7 bi? Ui? ‘/l)

(aiJ bi; Ui; ‘/7,> ~ N2+2d<07 Eabuv)

EOLb Z]OLb,uv
Zabuv =
Eab,uv Zab

For example, to account for second-order dependencies, vector (a;,b;) follows a

multivariate normal distribution with a zero mean vector and covariance matrix

2

o 0,0 . e .
a PabTa0b | Njoctor (e;:.€:) follows a multivariate normal distribution with
9 ijy Cj1
Pab0a0b gy
. . p 0'2 .
zero mean vector and covariance matrix ) 52 The correlation between
PO o

a; and b; (psp) estimates the degree of dependence between sending and receiving
ties. The correlation (p.) between €;; and €;; measures the reciprocity of network
ties. Fosdick and Hoff (2015) suggested that by restricting ¥, ,, = 0 the model can
capture a third-order dependence structure in triads with ”closed relation” such as
{Yi, Yie, Yii} or {Yi;, Y, Yir }, but not {Y;;, Y}, Yi; } which does not close the triad.

There are some advantages of latent factor model over stochastic blockmodels
and latent distance models. The model in Equation 2.2.5 provided equally good
prediction of ties as the stochastic blockmodel (Equation 2.2.2), and it also provided
better prediction of ties than the latent space model (Equation 2.2.3) when fitting
three sets of real-world network data (friendship network, text network and protein
network respectively) to each of the three models (Hoff, 2008). Hoff (2008) also

showed that the latent factor model could generalize the stochastic blockmodel and
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weakly generalize the latent distance model, which means that the set of networks
generated from a SBM is a subset of networks generated from a LFM at all times
and the set of networks generated from a LDM is a subset of networks generated
from a LFM under certain conditions. A more recent study (Minhas et al., 2016)
compared the AME (Equation 2.2.7) with both a LDM (Equation 2.2.3) and a LDM
with sender- and receiver-random effects (Equation 2.2.4). The AME yielded better
tie prediction than both LDM and LDM with random effects for a world trade
network data, as well as better goodness-of-fit in capturing important local network
structures.

Similar to the SBM, there also exist extensions for longitudinal networks and
multiple independent networks based on latent space models. Exemplars include
the dynamic latent space models (Durante, Dunson, et al., 2016; Sarkar & Moore,
2006; Sewell & Chen, 2015) and hierarchical latent space models (Sweet, Thomas,
& Junker, 2013). So far all the longitudinal extensions of the latent space model are

based on latent distance models in particular.

2.3 Model Estimation and Evaluation

2.3.1 Estimation methods

In statistics, models are estimated via either frequentist approaches or Bayesian
approaches. There are numerous algorithms under each approach. For models with
latent variables or missing data, both the Expectation-Maximization (EM; Demp-

ster, Laird, & Rubin, 1977) algorithms under the frequentist approach and Markov
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chain Monte Carlo (MCMC; S. Brooks, Gelman, Jones, & Meng, 2011) algorithms
under the Bayesian approach are suitable. Another type of algorithm, the Varia-
tional Bayes Inference (VBI; Fox & Roberts, 2012) method is similar to the EM
method except that VBI provides estimates of the distributions of parameters in-
stead of point estimates. MCMC algorithms attempt to approximate the exact
posterior distribution of parameters while the EM and VBI algorithms provide an
approximation of the parameter and the posterior of the parameter, respectively.
In many applications, the EM and VBI algorithms converge faster than MCMC
methods with little reduction in estimation accuracy. However, MCMC methods
may be preferred if the data size is not large and parameter estimation accuracy is
important to a study.

Most latent variable models for network data in the literature are estimated
through MCMC algorithms in a Bayesian framework, although variational Bayes
inference has been developed for some stochastic blockmodels (Airodi et al., 2008)
and latent space models (Salter-Townshend & Murphy, 2013). There are many R
packages of MCMC algorithms for models discussed in this chapter (Adhikari et al.,
2015; Handcock, Hunter, Butts, Goodreau, & Morris, 2008; Hoff, 2015; Krivitsky &

Handcock, 2008).

2.3.2 Parameter identifiability issue

In the estimation of models with latent variables, there may exist multiple

sets of parameter values that yield the same value in the likelihood function. The
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non-identification of a unique set of model parameters causes problems to statisti-
cal inferences that relate to these parameters. Take the sender-receiver model in
Equation 2.2.1 as an example, the sender- and receiver-random effects a; and b; are
unidentifiable because there exist infinite sets of two numbers that add up to the
same value. If no constraints are applied to these two random effects, the model
parameters may encounter difficulty in converging to the stationary distribution.
Besides the non-identification between two additive latent variables, the estimation
of coefficients may be problematic when covariates are added to the model. Similar
identification issues appear in the estimation of latent space models as well. For a
latent distance model shown in Equation 2.2.3, the latent positions (P; and P;) of
any pair of actors can take either very small or very large values, as long as the
relative distance between P; and P; remains the same. Also, an identification is-
sue exists between the intercept 5 and the latent distance d(FP;, P;) because these
two unknown terms are included in the model additively. One common solution
for non-identification in latent variables is to constrain the variances of the latent
variables to be reasonably small (Handcock et al., 2007; Hoff, 2018). To alleviate the
non-identification between sender and receiver latent factors (U; and V;), Fosdick
and Hoff (2015) constrained the variances of U and V' to be decreasing across di-
mensions. To improve the identification between coefficients of observed covariates
and latent variables, Hoff (2005) suggested a different parameterization of the model
by treating sender-specific covariates and the sender random effect as second-level
terms as in the multilevel linear regression. The same applies to receiver-specific

covariates and receiver-random effect.
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An identification issue that is particular to models that estimate subgroup
membership is label switching. Stochastic block models and latent position cluster
model are examples. In the iterating steps of a model’s estimation process, actors’
membership labels are explored and there may exist multiple solutions of actors’
group membership. Under Bayesian estimation, post-processing the parameter es-
timate is usually used to decide actors’ group labels. This is accomplished either
via relabeling algorithm (Celeux, Hurn, & Robert, 2000; Handcock et al., 2007) or
by choosing group labels of the highest proportion in posterior draws (Sweet, 2015).
For extensions of the SBM such as the MMSBM where hyper-parameters are im-
posed as prior parameters for the latent variables, these hyper-parameters are also
not identified. Applying strong priors on latent variables or fixing one of the latent

variables to a constant may help to alleviate this problem (Sweet & Zheng, 2017).

2.3.3 Goodness-of-fit methods

Evaluation of goodness-of-fit for network models is challenging because net-
work data lack large sample asymptotic properties such as data following a known
distribution as sample size goes to infinity. For analyses of empirical data, ex-
ploration of goodness-of-fit criteria for statistical network models in the current
literature generally fall into the following four categories. The Receiver Operating
Characteristic (ROC) curve have been applied to evaluate model fit of binary net-
work data. After one obtains the estimated tie probabilities, the true positive rate

is plotted against the false positive rate to generate a ROC curve and the area under
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the ROC (AUROC) is reported as a measure of the data-model fit. However, the
procedure to obtain estimated tie probabilities has two divisions in the literature.
One division uses the estimated tie probabilities from the full data (Gollini & Mur-
phy, 2016; Raftery et al., 2012; Sarkar & Moore, 2006) with the focus to evaluate
model-data fit, and the other division advocates using K-fold cross-validation to
obtain estimated tie probabilities from multiple folds (Hoff, 2008), with the pur-
pose to evaluate a model’s predictive performance. Cross-validation is an intuitive
approach to evaluate statistical models, but the procedure may be expensive com-
putationally, especially for complex network models studied in the present thesis
project. Also, the cross-validation method may provide a biased result for sparse
data and many empirical binary networks are of great sparsity. Recent studies that
used the cross-validation method in evaluation of social network models are Dabbs
(2016); J. H. Kim, Kwon, Sha, Junker, and Sweet (2018); Minhas et al. (2016).
The second category directly adopts information criteria such as Akaike Infor-
mation Criterion (AIC; Akaike, 1974, 1998) , Bayesian Information Criterion (BIC;
Schwarz et al., 1978) and Deviance Information Criterion (DIC; Spiegelhalter, Best,
Carlin, & Van Der Linde, 2002) in model selection (Handcock et al., 2007; Hoff,
2005). Very few recently published papers used these traditional information cri-
teria for model selection. The primary reason is that the asymptotic properties
of these information criteria are unknown for singular statistic models that most
network models belong to. Also, it is difficult to decide the effective number of
parameters and effective sample size for many network models. Moreover, due to

the inherent dependency in network data, some network models do not meet the
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independence assumptions of these traditional information criteria (Hunter et al.,
2008). Watanabe (2010, 2013) proposed generalizations of AIC and BIC for statistic
singular models (WAIC and WBIC) and proved asymptotic properties of these two
new information criteria. These two information criteria seem promising for statis-
tical network models, although the performance of WAIC and WBIC has not been
explored in the current social network analysis literature. In addition, Gelman et
al. (2013) advocates cross-validation method for model comparison, and WAIC is a
fast approximation to leave-one-out cross-validation.

The third category focuses on the assessment of model-data fit with regard
to the local data structure of interest. Hunter et al. (2008) demonstrated how to
examine model-data fit with regard to different network dependency structures. The
distributions of the descriptive network statistics such as in-degree, out-degree, and
minimum geodesic distance are obtained from synthetic network data generated by
the estimated model with hundreds of replications. Then such distributions are
compared with the network statistics calculated from the observed network. This
approach is similar to posterior predictive checking that is used to evaluate model fit
in a Bayesian modeling framework (Gelman et al., 2013). Such an approach provides
a graphical assessment of model fit that can intuitively display which aspects of the
data structure that a model fails or succeeds to capture.

The last category relates to the development of test statistics for network mod-
els. For example, several test statistics have been proposed for stochastic blockmod-
els for undirected network data (Bickel & Sarkar, 2016; Lei et al., 2016) with the
focus to test the dimension of latent variables, or equivalently, the number of groups
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in a network. The asymptotic distribution of these test statistics have been pro-
posed and proved. Fosdick and Hoff (2015) provide a method to test the dependency
between latent variables and observed covariates under an AME model. However,
there is not a general test technique that applies to a wide range of network models,

unlike the likelihood-ratio test for many classic statistical models.

2.4 Discussion and Research Questions

There are various latent variable models for network data and they account
for different network structures in a variety of ways. A recent trend is that latent
variables in multiple models are combined in one model to account for more complex
network structures that are often observed in real-world data. Also, manipulation
of the covariance structure of latent variables has the potential to describe local
network patterns that have not been addressed before.

The sender-receiver model accounts for heterogeneity of sociality and popular-
ity across actors, which result in better model-data fit for networks with considerable
variation in in-degree and out-degree across actors. Stochastic blockmodels are suit-
able for networks with a block structure in which the degree of interaction within the
same block differs from the degree of interaction between different blocks. However,
such a model does not account for transitivity. Latent distance models or latent
projection models better apply to networks that display a high degree of transitiv-
ity (e.g., friendship network, citation network) and can capture grouping patterns

for cohesive subgroups in which more ties exist within the same group than between
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different groups. However, these original latent space models cannot entirely replace
the function of stochastic blockmodels to identify subgroups as they can not account
for grouping based on stochastic equivalence (Hoff, 2008). In real-world networks,
the co-occurrence of cohesive subgroups and stochastically equivalent actors is not
uncommon and failure to account for both types of grouping patterns may result
in inaccurate estimation of actors’ group membership. The current literature has
shown that latent factor models are capable of capturing more complex network
dependency structures, especially when both stochastic equivalence and high tran-
sitivity are present in the network. Also, the covariance structure among latent vari-
ables in latent factor models can account for different second-order (e.g. reciprocity)
and third-order dependencies (e.g. transitivity) explicitly with the correlation pa-
rameters, unlike the latent distance model that can only account for reciprocity and
transitivity implicitly via a distance measure between latent variables.

Existing latent factor models only account for the covariance structure be-
tween sender- and receiver-random effects, not between sender-specific and receiver-
specific latent factors. The present study plans to investigate the covariance struc-
ture between sender-specific and receiver-specific latent factors, with the purpose of
addressing the heterogeneity of actor-level transitivity that is often observed in real-
world networks. Therefore, the inclusion of a correlation between sender-specific
and receiver-specific latent factors is a potential unique contribution to the network
modeling literature.

Arguments above motivate the following research questions:

1: Is it feasible to add a correlation between sender-specific latent factor and
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receiver-specific latent factor in an AME model? Specifically,
1) How does the proposed model perform under different levels of network size, net-
work density and different levels of correlation between sender-specific latent factor
and receiver-specific latent factor in terms of the mean squared error of the proba-
bility of ties and the parameter coverage rate of all model parameters?
2) In model estimation, is the new model sensitive to priors of variances on latent
variables? Specifically, is the mean squared error of the probability of ties and the
parameter coverage rate change significantly when different prior distributions are
used?
3) What is the empirical power of the proposed model with covariates under differ-
ent network sizes, network densities and different correlations?
2: What is the impact of adding the correlation structure? Specifically,
4) For networks with attribute information, how does the inference of the covariate
effect under the proposed AME with correlation differ from an AME without cor-
relation in terms of coverage rate?
5) Does the inclusion of the correlation improve the overall goodness-of-fit in terms
of AUROC, WAIC and PPC? Does the proposed model better capture actor-level
transitivity level than the original AME model? How about the prediction per-
formance of the proposed model comparing to the existing model with regard to
AUROC?

The next chapter will illustrate the motivation of adding a correlation between
sender-specific and receiver-specific latent factors in an AME model, describe the

new model as well as its estimation details, followed by descriptions of simulation
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study designs and three sets of empirical data that intend to address the research

questions specified above.
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Chapter 3: Methodology

This chapter describes methods the present study uses to address the research
questions listed at the end of Chapter 2. First, the motivation of adding a corre-
lation between latent factors in a latent factor model is explained, along with the
description of the proposed new model. Then details of model estimation, param-
eter identification and model evaluation are elaborated. The following parts will
present simulation study designs that correspond to the research questions. At last,
an introduction to real-world data for empirical model evaluation is provided as an

example to demonstrate the functionality of the proposed model.

3.1 Model Equations, Estimation and Evaluation

3.1.1 Additive and multiplicative effects model with correlation

The present study proposes to add a correlation between sender- and receiver-
specific latent factors U and V in a latent factor model. This correlation serves as
a restriction of the relative positions of these two latent factors on a d-dimensional

latent space. In the rest of this manuscript, AME model with correlation (CAME)
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is used to refer to the proposed model and it has the following formula:

ni;=B8'Xij+ai+b; +U'Vi+ey; i #4,i,5€1,...,n (3.1.1)

Y;; ~ Bernoulli(®(n;;))

p~ N(0, ag)
2
(aia bz) ~ NQ(O, Eab); Yab = T4 PabTa0b
PabTa0b 05
2
(Uid’ V;d) ~ NQ(Oa Euv)v Euv = Oud PuvOudOuvd ,d e 17 o D
PuvOudOvd Ugd

027 UZ?: Uid> U?}d ~ half - t(47 Oa 1)
Paby Puv ™~ LKJ(l)

€ij ™~ N[Oa 1]

where the elements in the observed binary adjacency matrix Y;; follow Bernoulli
distributions with probabilities equal to ®(n;;). ®() is the density function of the
standard normal distribution and it is also known as the Probit link function. Xj;
contains observed actor characteristics. The sender random effect a;, and receiver
random effect b;, account for actor heterogeneity in second-order dependency struc-
ture, out-degree and in-degree respectively. The covariance structure for (a;, b;)
accounts for the association between sending out ties and receiving ties. A positive
correlation p,, between a and b indicates that in general, an actor that sends out
more ties also receives more ties, and vice versa. U; is a vector of length D that

represents sender-specific latent factor, or "unobserved attributes the sender looks
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for”. Vj is also a length-D vector and it represents receiver-specific latent factor,
or "unobserved attributes the receiver possesses”. Both U and V are lower-rank
matrices with dimension n by D. The same as any latent factor models for network
data, the columns in U are orthogonal and the columns in V' are also orthogonal,
i.e, there is no dependence across dimensions. The correlation p,, constrains the

similarity of factors U; and V; in the latent space. Take D = 2 as an example, the

covariance matrix for (U;, V;) is:

031 0 PuvOu10v1 0
2
(Us, Vi) = (Ui1, Uiz, Vir, Via) ~ N4(O, 0 Tu2 ¥ PuvGu2duz |y
PuvOu10v1 0 0-12;1 O
0 PuvOu2042 0 0-32

or equivalently,

0, Ou10w1
(Ui, Vir) ~ N(0, ul P 5 )
PuvOulOp1 le

2

g, 042042
(Uiz, Viz) ~ N»(0, u2 Puv g v21)
PuvOu2042 O',U2

A higher value of p,, indicates that the latent positions of U; and V; are more similar,
which results in a model that implies networks with a higher degree of actor-level
transitivity. The present study only specifies a correlation between U4 and Vg4, not
between Uy and V4, ¢ # j because adding a non-zero correlation between U;y and

Vja will make the network structure less traceable and such a correlation parameter
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is hard to interpret in a social network context. Also, unlike the additive and mul-
tiplicative effects network model (AME; Fosdick & Hoff, 2015; Hoff, 2018) in which
a correlation (p.) between ¢;; and €;; is specified to account for reciprocal network
ties, the present study decides to remove this correlation term. First, p. is always
underestimated both in theocratic derivation and empirical model fitting, regardless
of whether p,, is estimated in the model or not. The reason of such underestimation
is that the model is estimating the correlation between {;;,7;;} in Equation 3.1.1.
However, because the mean vector of {n;;,7;;} is different for each pair of {7, j}, the
correlation between {7;;,7;;} is no longer equal to the correlation between {¢;;, €;;}.
Second, the purpose of adding p. in Hoff (2018) is to model one of the network
structure, reciprocity. But via simulations of networks from the AMEs, the present
study found that both py, and p,,, have larger impact on network reciprocity than p,
(see Figure 3.8). Lastly, in peer-reviewed papers that proposed latent factor models
for binary network data, some models include a correlation in (e;;,€;;) (Fosdick &
Hoff, 2015; Hoff, 2005). However, none of them mentioned whether they had tested
the parameter recovery of this correlation term. There also exist models that as-
sume the residual term €;; to be independent and identically distributed (iid) and
follows a standard normal distribution (Hoff, 2009). Based on the three arguments
above, the present study decides to remove p, from the proposed model (CAME).
As a result, the CAME will not be compared with the original AME in which p, is

specified. Instead, we will compare the CAME to an AME with p. = 0. Further

2
a

2 2 2
y 04 Oudr Opdr @S

discussion on the priors of the variances of the latent variables, o
well as the priors of the correlation parameters pup, puy are provided in the model
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estimation section, Section 3.1.4.

3.1.2 Interpretation of U; and V; in CAME

Usually, U;’s and V;’s are interpreted as the unobserved characteristic of an
actor as a sender and the unobserved characteristic of an actor as a receiver respec-
tively (Hoff, 2009, 2018). In plain words, U; represents ”what actor i seeks when it
reaches out to others” and V; represents "what actor ¢ possesses when others reach
out to it”. If what actor ¢ seeks highly matches with what actor j possesses, there
is a very high chance that actor ¢ will send out a tie to actor 7. The inner product
U/V; measures the similarity between actor i’s sender-specific latent factor U; and
actor j’s receiver-specific latent factor V;. The higher the inner product value, the
more similar U; and V; and the higher the probability of a tie from ¢ to j given that
all other parameters in the model are fixed. In a 2-dimensional Euclidean space,

U; = ¢(Ui1, Uiz) and V; = ¢(Viy, Vi2). The inner product term can be calculated as

UZ/V] = UnVji + UiV

or treating U; and V; as vectors starting from the origin of a 2-dimension coordinate,

U;V; = ||Uil[[[Vj]|cos(0)

where 6 is the angle between vectors U; and V; and ||.|| is the norm of a vector.
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U;’s or V;’s can also be used to represent network structures and relative po-

sitions of actors in a low-dimension latent space. Figure 3.1 gives an example from

Sampson's Network Sampson's Network Sampson's Network

Groups of Novices Classified by Sampson Observed ties sent out by actor 1 Observed ties received by actor 1

@@

colored based on the groups classified by Sampson; the second row shows
the estimated U;’s and V;’s in a 2-dimensional latent space. The second
column highlights actors that receive ties from actor 1 and the third
column highlights actors that send out ties to actor 1.

a real-world network, the Sampson’s network (Sampson, 1969) that describes the

positive relationship among 18 monks. The first row provides the network graph

of Sampson’s network with monks colored based on the grouping by Sampson; the

second row includes plots of estimated U;’s (red numbers) and V;’s (blue numbers)

based on their posterior mean from a CAME in a 2-dimension space. From the first

column, we can see that the grouping structure shown by either U;’s or V;’s highly
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Figure 3.1: The first row shows network graph of the Sampson’s network with actors



matches the groups classified by Sampson. The second column enlarges actors that
receive ties from actor 1. As is shown in row 2, column 2, by plotting all actors’
receiver-specific latent factors (V;,5 € {1,...,18},5 # ¢) in the network and only
plotting actor 1’s sender-specific latent factor (Uy), it is clear to see the similarity
between U; and V;’s. Similarly, the third column enlarges actors that send out ties

to actor 1.

3.1.3 Rationale of adding p,,

As was explained in 1.1, the present study would like to add a parameter to
account for actor-level transitivity under the latent factor modeling framework. The
present study found out that the correlation between U; and V}, i.e., py, is positively
related to actor j's transitivity via its manipulation of the ”closeness”, or the inner
product of U; and Vj. The following three paragraphs will explain the relationships
between p,,,, inner product of U; and Vj, and actor j’s transitivity.

The correlation p,, is positively related to the similarity of an actor’s sender-
specific latent factor (e.g. U;) and receiver-specific latent factor (e.g. V;), which is
defined as the inner product of these two latent factors, UiV = U Vj1 + UpVia.
Figure 3.2 displays ten pairs of U; and V; in a 2-dimensional latent space under each
of the three different degrees of correlation, p,, = —0.99,0,0.99 respectively. A
gray dashed line linking a U; and a Vj indicates that this pair of sender-specific and
receiver-specific latent factors belong to the same actor. When p,,, = —0.99, U; and

Vj, 3 = 1,...10 are less similar to each other than the case when p,, = 0.99. When
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there is no correlation between U; and Vj, like the case shown in the middle panel
of Figure 3.2, the degree of similarity between U; and V; varies at random. Figure
3.3 provides further evidence that p,, is negatively related to the inner product
of an actor’s sender-specific latent factor and receiver-specific latent factor with
a simulation of 500 pairs of U; and V; and plotting the distribution of the inner

product of U; and V; across five different levels of py,.

puy=-0.99 pu =0 Puy=0.99
\
o~ o
vy -4
y
°
v \ ul w
N v N
s 5 Y, vu
v u -
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\ y
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v il
v
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d1 d1 d1

Figure 3.2: The positions of pairs of U; and V; under three different correlations,
-0.99, 0 and 0.99. A line connecting a pair of U; and V; indicates that
these two latent factors belong to the same actor. The higher the cor-
relation between U; and Vj, the smaller the latent distance between U;
and Vj are in the latent space.

An actor j’s transitivity is positively associated with the similarity of U; and

Vj, i.e., the inner product of U; and V. As was defined in section 2.1.1, the tran-

sitivity of actor j is the ratio of the number of transitive triads in which actor j

is the connecting node (i — j,j — k,i — k) and the number of pairs of actors

connecting through j (i — j,7 — k). Figure 3.4 gives a simple demonstration on

the positive relation between actor-level transitivity, j for instance, and the inner

product (similarity) of its sender-specific and receiver-specific latent factors (U; and
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Figure 3.3: The distribution of the inner product of pairs of U; and V; under five
different correlations, -0.99, -0.5,0,0.5 and 0.99. U and V are 100 by 2
matrices. This figure indicates that p,, is positively related to the inner
product of pairs of U; and V.

V; respectively). Suppose the sender- and receiver-specific latent factors of these
three actors (U;,U;, Uy, Vi, V;, V) are in a 2-dimensional latent space. Because all
the latent factors are zero centered, they can also be represented by vectors from the
origin to the position of each latent factor. Also, we assume that all the vectors have
the same length, as shown in Figure 3.4. If we increase the angle between U; and
V; (i-e., decrease the value of the inner product between U; and V; because cos(6)
is a decrementing function of #) while keeping the angle between U; and Vj, U; and
Vi unchanged, we will see an increase in the angle between U; and V. Such change
is visualized in Figure 3.4, from 6; in the first row to #5 in the second row. Based
on the property of the inner product, an increase in the angle between two vectors
result in a decrease in the value of their inner product, given that the norm of two
vectors remains unchanged. In a latent factor model, it further indicates a decrease

in the probability of observing a tie from ¢ to & and we are less likely to observe

o1



a transitive triad passing through actor j, which implies a lower level of actor j’s
transitivity. Therefore, the inner product of U; and Vj is positively related to actor

7’s transitivity.

V, (0.6,0.8)

U (0.8,06)
v, (09,0197

U’ivj=0.191/2
U’jVk=0.96
e\ U;(0,2) U’iVk=0.8
0
Uj (-0.6,0.8)
Vi
(-0.8,0.6) V; (0.9,0.19'?)
U’ivj=0.191/2
@ U’jVk=0.96
Ui(0,2) U’iVk=0.6
0

Figure 3.4: Two plots explaining the functionality of the correlation between U; and
V; in the 2-dimensional latent space. Given the same relative positions
between U; and Vj, U; and Vj, higher correlation between U; and Vj
indicates higher inner product value (i.e., higher similarity) of U; and
V;, which in turn indicates higher inner product value (i.e., higher sim-
ilarity) of U; and V). This result in higher probability of a tie between
v and k.

As a result, the correlation term p,, is positively related to actor-level transi-
tivity because imposing a positive correlation between U; and Vj results in higher
inner product value of U; and V; than the case when there is no correlation between
U; and V. Figure 3.5 shows the distributions of actor-level transitivity in a bi-
nary directed network simulated from P(Y;;) = ®(5o + U;V;) (®() is the cumulative
density function of a standard normal distribution) under each of the following five

degrees of correlation, p,,=-0.99, -0.5, 0, 0.5 and 0.99 respectively. Note that the
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average actor-level transitivity increases as p,, increases, although the variance of
actor-level transitivity has a different changing pattern as p,, changes for networks
with different levels of densities. The flow diagram in Figure 3.6 summarizes the
rationales in the past three paragraphs, with each line representing the relationship

between the two items that are connected by this line.

rhouv=-0.99 rhouv=-0.5 rhouv=0 rhouv=0.5 rhouv=0.99
density=0.109 density= 0.092 density= 0.095 density=0.1 density=0.093
mean_actor_trans= 0.003 mean_actor_trans= 0.129 mean_actor_trans= 0.259 mean_actor_trans= 0.424 mean_actor_trans= 0.631
var_actor_trans=0 var_actor_trans= 0.061 var_actor_trans= 0.104 var_actor_trans=0.118 var_actor_trans=0.129
8 8 8 8 8
& & & & &
3 3 3 3 3
& & & & &
3 3 3 3 3
8 8 8 8 8
3 3 3 3 3 | |

0
0
0
0
0

r T T T T 1 r T T T T 1 r T T T T 1 r T T T T 1 | I N R R B
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Actor-level transitivity Actor-level transitivity Actor-level transitivity Actor-level transitivity Actor-level transitivity
rhouv=-0.99 rhouv=-0.5 rhouv=0 rhouv=0.5 rhouv=0.99
density= 0.336 density= 0.335 density= 0.338 density= 0.334 density= 0.331
mean_actor_trans= 0.081 mean_actor_trans= 0.277 mean_actor_trans= 0.403 mean_actor_trans= 0.51 mean_actor_trans= 0.726
var_actor_trans= 0.001 var_actor_trans= 0.053 var_actor_trans= 0.061 var_actor_trans= 0.056 var_actor_trans=0.018
8 8 8 8 8
< < < < <

00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 1.0

Actor-level transitivity Actor-level transitivity Actor-level transitivity Actor-level transitivity Actor-level transitivity

Figure 3.5: Fach row shows the distributions of actor-level transitivity of five binary
networks simulated from P(Yij) = ®(f, + U/V;) with varying levels of
correlation between U;’s and V}’s. ®() is the cumulative density function
of a standard normal distribution. The variances of U and V are both
25. There are 500 actors in each network. Network densities in upper
row are around 0.1 by setting 5y = —40 and network densities in lower
row are around 0.33 by setting Sy = —10.

Meanwhile, Fosdick and Hoff (2015) discussed possibilities to specify various
covariance structure among (a;, b;, U;, V;) to account for more complex dependence
structures. The current study may help to enrich such discussion by investigating
the impact of allowing U; and V; to covary.

The distributions of actor-level transitivity in many real-world social networks

have similar shapes with the ones with non-zero correlations in Figure 3.5. Figure
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Figure 3.6: A flow chart illustrating the associations among the correlation py,,
inner product (i.e. similarity measure) of U; and V; and actor j’s tran-
sitivity.

3.7 shows the sociogram of three real-world network data, a small-size network (left;

Sampson, 1969), a middle-size network (middle; Freeman & Freeman, 1979) and a

large-size network (right; Paluck, Shepherd, & Aronow, 2016) and the corresponding

histograms of their actor-level transitivities. A significant amount of variation in
actor-level transitivity are observed in all three networks. For a dense network as
shown in Figure 3.7 (left), smaller variation in actor-level transitivity is observed.

For a less dense network (3.7, middle), more variation in actor-level transitivity

is observed. In a sparse network like the third network shown in Figure 3.7, the

actor-level transitivity are generally lower and has less variation.

Previous network models either focus on the modeling of the network-level
transitivity or on the modeling of transitivity implicitly. Thus, the correlation term
in the proposed model is the first time that the actor-level transitivity is modeled

explicitly with an unknown parameter. From Figure 3.5, the proposed model may be

suitable for a variety of networks. When network densities are around 0.1 (upper row
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Figure 3.7: Three real-world network data graphs and corresponding distributions
of actor-level transitivity.

in Figure 3.5), the variance of actor-level transitivity increases as p,,, increases; when
network densities are around 0.33 (lower row in Figure 3.5), the variation in actor-
level transitivity drops as the absolute value of p,, increases. Therefore, in addition
to the pattern that average actor-level transitivity increases as p,, increases, CAME
generates networks with more variation in actor-level transitivity for sparse networks
as Py increase and less variation in actor-level transitivity in dense networks as the

absolute value of p,, increases.

3.1.4 Model estimation

Algorithms to estimate statistical network models has been reviewed in Chap-

ter 2, Section 2.3.1. The present study uses an Markov Chain Monte Carlo (MCMC;
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S. Brooks et al., 2011) algorithm to estimate the proposed model instead of other
algorithms because MCMC is very flexible in implementation and the other models
under comparison also adopted MCMC in their estimation. For a fair comparison,
the proposed model applies the same estimation method. A CAME has the following

joint likelihood function:

n

P<Y|6,X,CL, b7 U7 V? E)P(B)P(CL, b)P<U7 V)P(E) - H P(K]|B7Xz]7ambj’UZ)V}JEZ]) P(B)

i,5,(§7#1)

X HP(ai7bi’aczwUl??pab)P(ag)P(o-g)P(pab)

n D D D
< L1 P Vilozg o2 ) 1] Plo2a) 11 P(o2a) Ploun)
i d d d

X H P(ei]0®)P(0?)

1,5,(j#1)
Model parameters are estimated by No-U-Turn sampler (Betancourt, 2017; Hoffman
& Gelman, 2014) in Rstan (Stan Development Team, 2018a). As shown in Equation
3.1.1, the present study estimates variance and correlation matrix separately instead
of imposing the inverse-Wishart prior on the covariance matrix. The reason is that
inverse-Wishart prior may cause sampling problems and may require much longer
estimation time (Alvarez, Niemi, & Simpson, 2014; Barnard, McCulloch, & Meng,
2000; Comments on why to use LKJ prior instead of inverse Wishart prior, n.d.).
Specifically, the present study imposes an half-t distribution on the variances and an
LKJ distribution on the correlations. The correlation parameters p,;, and p,, follow
an LKJ distribution with shape parameter equals to 1. An LKJ prior is named

for Lewandowski, Kurowicka, and Joe (Lewandowski, Kurowicka, & Joe, 2009) with
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shape parameter h. For h = 1, LK J(h) is a uniform distribution between -1 and
1; for h > 1, LK J(h) favors less correlation and for h < 1, LK J(h) favors more
correlation. The Stan User’s Guide recommends a LKJ prior with A~ > 1 (Stan
Development Team, 2018b). Therefore, the present study applied a non-informative
LEkJ(1) prior on the correlations.

The weakly informative prior half — t(4,0,1) for the standard deviations of
latent variables is used instead of the widely used inverse-gamma distribution. Half-
t distribution includes the absolute values of the Student’s-t distribution. Studies
(Alvarez et al., 2014; Gelman et al., 2006) have shown that when using as a non-
informative/weakly-informative prior, inverse-gamma distribution tends to domi-
nate the posterior distribution of the variances when the true variances values are
close to zero, which often leads to biased estimation of the variances in the model.
Gelman et al. (2006) recommended the half-t distribution as the prior of the vari-
ances, which provides better estimation of the variance parameter when the true
variance is small. However, there is no rule of thumb with regards to what is a small
variance and the value of a small variance is usually model dependent. Therefore,
the present study use half-t distribution when weakly-informative prior is specified
in model fitting to prevent the possible estimation bias of the variance parameter in
the model. The Stan User’s Guide (Stan Development Team, 2018b) recommends
half — t(4,0,1) as a weakly informative prior and the present study follows this
recommendation.

The reasons that the present study uses half-t(4,0,1) instead of other half-t

distributions with larger variances as the default prior are as follows. First, the
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true values of o,,0p,0, and o, are 1s, thus very large values are not expected.
The estimation of latent variables will be very difficult when a vague prior is used.
Second, Gelman (n.d.) defined the levels of priors for parameters on unit scale. N(0,
1le6) is a super-vague but proper prior, N(0,10) is a very weakly informative prior,
N(0,1) is a generic weakly informative prior, and N(I,m) (I # 0, m < 1) are specific
informative priors. The wideness of the range of values from half-t(4,0,1) is between
N(0,1) and N(0,10), therefore, it is appropriate to call it a weakly informative prior.

Also, because latent variables are unscaled, there are basically not true values
of their standard deviations. Thus a reasonable restriction on the scale of latent
variables is necessary. Imposing a prior that restricts the maximum values of the
standard deviations of these latent variables is one approach. To demonstrate this
argument, the current study simulate 5 networks with standard deviations of value
1 for o,,04,0, and o, and fit a CAME with the Uniform (0,50) as the priors of
these four parameters. Comparing to half-t(4,0,1), the number of iterations re-
quired to reach convergence under Uniform (0,50) tripled. Although the coverage
rates are all above 80 percent, the posterior mean of these standard deviations un-
der Uniform (0,50) ranges from 0.8 to 10, while the same range is between 0.7 and
1.4 under half-t(4,0,1). The present study also fit a CAME to three real-world
networks visualized in Figure 3.7 and examined the ranges of the posterior distri-
bution of o, 0,0, and o, under priors Inverse-Gamma(10,11), Half-t(4,0,1) and
Uniform(0, 50) respectively. These three networks are representative because they
are either different in size or density, or the variance of actor-level transitivity. For

the Sampson’s network, the posterior means of the standard deviations o, and o,
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under Half-t(4,0,1) and Uniform(0, 50) are similar (o, gap=0.2,05 gap=0.9), but the
same estimated quantities under Inverse-Gamma(1,1) are both around 1s, which in-
dicates Inverse-Gamma(1,1) dominated the posterior distributions. For the other
two networks with either high density or large number of actors, models under the
non-informative prior Uniform(0, 50) experience difficulty in converging, even after
80000 iterations and increasing the adaptive delta to 0.9, as well as the maximum
treedepth to 12 in rstan. Therefore, the values drawn from half-t(4,0,1) are rea-
sonable values that both restrain the proposed standard deviations from being too

large and provide wide ranges of possible values.

3.1.4.1 The identification problem

LVMs have identification issues because latent variables are unscaled. The
CAME also has the same problem. There exists multiple sets of values for a; and b;
that sum to the same value, a; = 1,b; = 4 or a; = 4,b; = 1 for instance. One part
of the CAME has similar parameterization as the two-way ANOVA, except that a;
in the two-way ANOVA represents the ith level of factor a and b; represent the jth
level of factor b. The parameter identification issue in two-way ANOVA is addressed
by a higher-order constraint in which the summation of a;’s and the summation of
b;’s are both zeros. Such higher-order constrain may also be feasible here because
the covariance structure between a; and b; is unchanged after a; and b; are centered.
Also, there are infinite number of vectors, U; and V; for example, with inner product

c. Generally, there exists translation identifiability in a; + b; and the inner product
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U;V; will remain the same under rotation and reflection.

Meanwhile, the three parts of latent variables, intercept 5y, random effects a;,
b; and U;V; may not be identifiable as well. Denoting C' = §y, D = a; + b;, and
E = U]V}, there are more than one set of {C,D,E} such that the summations of the
three parts have the same value. Moreover, adding a non-zero correlation between
U; and Vj affects reciprocity, which makes the estimation of p. problematic because
pe is intended to influence reciprocity as well. In addition, another correlation term
pay is affecting reciprocity (Figure 3.8).

A necessary condition for identification of latent variables is to assign a scale
to each of them and a mean and a restriction on the variances of the latent variables
needs to be imposed in order to resolve the identification issue (Bollen, 2002). In
order to reduce the influence of identifiability issue in model estimation, the present
study imposes three constraints and one post-processing procedure. The first con-
strain is setting the means of a, b, U and V to be zero via a prior distribution
Normal (0, 0%). The second constraint is restricting the standard deviations of a, b,
U and V to be smaller than a certain value by imposing a weakly informative prior
half —t(4,0,1) to 04, 0p, 0uqg and g,q. The third constraint is setting the variance
of € to 1 according to Hoff (2018).

These three constrains generally removes the identification issue between C,
D and E, but they do not completely eliminate all identifiability issues in the model
because latent factors U and V may still be non-identifiable in some scenarios such
as when the network is large in size. To solve the identifiability issue in U and V, the

present study uses a similar procedure as in Fosdick and Hoff (2015) to post-process
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Figure 3.8: Each column shows three network descriptive statistics (density,
netowrk-level transitivity and reciprocity) under varying values of p,
while fixing the other two correlation values to zeros, where x = ab, uv
or e.

estimated U and Vs to ensure multiple MCMC chains for U and V can mix well,
while keeping the inner product of U; and V; unchanged. The steps to post-process
the posterior draws of U and V is:

1) For posterior draws of U and V at each iteration, noted as Ujsep, Viter, We obtain
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an n by n matrix from the inner product Uy, V., ;

2) Conduct singular value decomposition to the matrix obtained in step 1) to obtain

noted as Ujge, V.,

a unique solution to the matrix Uy, V; er = ADB’, where both

iter?
A and B are n by n matrices and D is an n by n diagonal matrix;
new 1/2 new 1/2 3
3) Let Ujte) = Arma2Dils 1.0, Vit = Bima:2Dils 1.9 be the processed posterior draws
of U and V.
The benefit of post-processing U and V in the above way instead of doing
translation, reflection, rotation to U and V is that the inner product of U and V

will not be changed. Therefore, this post-processing does not change the inference

on other model parameters, except for py,.
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3.1.5 Model performance measures

Section 2.3.3 in Chapter 2 has reviewed goodness-of-fit measures of latent
variable models for network data in the current literature. The present study uses
different methods to evaluate model performance, depending on whether the model
is evaluated in a simulation study or a real-world data analysis. In simulation
studies, the present study primarily uses Mean Squared Error (MSE) to evaluate
the divergence between generated probabilities of ties and estimated probabilities of

ties. The MSE of the tie probabilities (M SEp) is calculated as below:

n n

1
MSEp(paen,PEaP) = m Z Z(pGEN — pEAP)2 (3.1.2)
i=1 ji

where pgey is the generated tie probabilities and pgap is the Expected a Posterior
(EAP) of the posterior distribution of tie probabilities. The Maximum a Posterior
(MAP) is not used to avoid unrepresentative point estimate of the sample resulting
from multi-modal posterior distributions. Also, EAP is an estimator that is opti-
mal under the squared error loss function, which is a typical loss function used in
parameter estimation. The smaller the MSFEp, the better the model fits the data.
The reporting measure is the average of M SFEp over simulation replications. Also,
the average of the area under Receiver Operating Characteristic Curve (AUROC)
based on full data and the average of WAIC across replications are reported. The
consistency of M SEp, AUROC and WAIC are examined by comparing whether the

changing pattern of these three measures are the same across simulation settings,
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and whether the same better model was chosen based on each of the three measures
in model comparison. The present study does not report AUROC based on cross-
validation method for simulation studies because the accumulated computation time
of cross-validation method is very high for simulation study with 100 replications
and the study of cross-validation method for GOF is not the focus of the present
study. In addition, coverage rate of each model parameter will be reported. The
coverage rate is defined as the percentage of converged replications in which the 95%
highest posterior density interval (HPD; Hyndman, 1996) of a parameter’s posterior
distribution covers the true parameter value.

In real-world data analysis, since the probabilities of ties are unobserved and
the value of network ties are binary in the current study, it is inappropriate to
compute MSEp by simply substituting pg., with observed network tie matrix Y.
As was discussed in section 2.3.3, there is no standard method to evaluate the
goodness-of-fit for statistical network models. Therefore, the current study will
provide goodness-of-fit results based on three criteria that are widely discussed in
the literature (see details in section 2.3.3). As a byproduct, the current study will
examine whether these three criteria will chose the same better model.

The first assessment method, which is often used in statistical network mod-
eling literature (Gollini & Murphy, 2016; Hoff, 2008; Raftery et al., 2012; Sarkar
& Moore, 2006) is Receiver Operation Characteristic (ROC) Curve that plots the
false positive rate against true positive rate at different threshold values for the es-
timated tie probabilities Pr(Y;; = 1). The estimated tie probability for each pair
of actors (e.g. i and j) is the Maximum a Posterior (MAP) of the posterior distri-
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bution of Pr(Y;; = 1). The Area Under Receiver Operating Characteristic curve
(AUROQC) is calculated to quantify the goodness-of-fit. Estimated tie probabilities
are obtained by fitting a model to the data. In addition, K-fold out-of-sample cross-
validation is conducted to find the predicted tie probabilities for real-world data
analysis and AUROC statistic based on predicted tie probabilities are reported as
an evaluation of the model’s predictive performance. Several recent studies advocate
to use cross-validation method to evaluate goodness-of-fit (Dabbs, 2016; J. H. Kim
et al., 2018; Minhas et al., 2016). Therefore, the present study calculates AUROC
with estimated probabilities of ties obtained from both full data and cross-validation
method and name these two quantities as AUROCE,; and AUROCp,..4 respectively.
An AUROC value closer to 1 indicates a model with a better fit to data or higher
predictive accuracy, depending on full data or cross-validation is used to obtain tie
probabilities. AUROC based on full data can be easily calculated (see steps 4-5) and
below lists complete steps to obtain an AUROC statistic based on cross-validation
method:

Step 1: Randomly divide n(n — 1) edges in a binary, directed network into K
subsets;

Step 2: For each subset k£ € 1,..., K, set all edges in this subset to NA
(missing value) and fit a model to the rest of the edges and obtain estimates of the
probability of ties in subset k;

Step 3: Repeat step 3 for K subsets to obtain an estimated probability matrix
P that corresponds to the observed adjacency matrix;

Step 4: Plot the Receiver Operating Curve (ROC) in which the false positive
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rate and the true positive rate are on the x-axis and y-axis respectively. Each point
on ROC corresponds to a pair of rates at a certain threshold value T'. The estimated
adjacency matrix f/ij =1it Pj; > T and Yij =0it P <T.

Step 5: Compute the area under ROC to obtain the AUROC statistic.

The second is an information criterion, WAIC (Watanabe, 2010) that approxi-
mates cross-validation method with much less cost in computation time. For models
in the current study that are estimated via Bayesian method, WAIC is more ap-
propriate than other information criteria such as AIC, BIC and DIC. One reason
is that WAIC depends on the average of the log-likelihoods across posterior draws
instead of a point estimate. Also, other information criteria are designed only for
regular models for which true parameter set converges to a single point, whereas
WAIC accounts for singular models for which the number of parameters increases
as sample size increases. Latent variable models for network data fall within the
singular model category. Let © denote the parameter set of a network model and s

denotes the sth posterior draw, WAIC have the following formulas:

WAICLQ =—2x (lppd - p1,2>7

lppd = i log(—= ZP i1©%)),

1,5,i#]
pl=2x ) (log(5 > P(Yyl") - Zlog Y;10%))
ivjiitd s=1
p2= Y Var(log(P(Y;]0©)))
1,5,i#]

where Ippd refers to log point-wise predictive probability that is a summation of
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the log of the averaged likelihood over S posterior draws across all samples 7,7 €
1,...n. There are two ways to compute the effective number of parameters p.. One
calculates a difference and is labeled as W AICY, another calculates a variance and
the corresponding WAIC is labeled as W AIC5. The present study uses both W AICY
and W AIC, to evaluate model-data fit, as was did in Gelman, Hwang, and Vehtari
(2014).

The last criterion is the posterior predictive checking (PPC). The current study
will use three network-level descriptive measures, density, reciprocity and transitiv-
ity, and three actor-level descriptive measures, in-degree, out-degree and actor-level
transitivity as testing statistics because PPC diagnoses whether the model captures
certain aspects of the data structure and the six statistics we choose are the net-
work statistics most affected by the CAME. For a binary, directed network with
adjacency matrix Y and size n, Table 3.1 below lists the formulas to calculate these
six statistics. The PPC method is not unlike Hunter et al. (2008) who assessed
goodness-of-fit via evaluating the distributions of network structures implied by the
model. A difference between PPC and Hunter’s work is that the distributions of
network structures are generated based on point estimates obtained from maximum
likelihood estimation in his work, while models in the present study are estimated
with MCMC method and the distributions of network structures are generated based
on the posterior distributions of model parameters. The first step to conduct PPC is
to simulate S sets of data based on the posterior draws of model parameters and S
equals the number of posterior draws. Then network statistics of S sets of data are

computed to obtain a distribution of each of these statistics. Lastly, the distribu-
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Table 3.1. List of equations to calculate network summary statistics. The first three
are network level statistics and the next three are actor-level statistics.
The last two are summary statistics of actor-level transitivity.

Statistic Equation
Density %
Reciprocity %
Transitivity W
In-degree YVii=310, Y
Out-degree Yip = Z;;l Yi;

Actor Transitivity
Mean of Tj

Variance of T}

Dtk Yii YinYik

T, =

J ik igk Yii ik

n

— v

R j=1"J
T; ===

Z?:l(Tj_T])

var(Ty) = |

tion of a statistic is compared to the same statistic calculated based on the observed

network. A model captures the structures that are represented by these network

statistics should have distributions in which the statistic from observed network falls

within the mass of the distribution.
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3.2 Simulation Studies

3.2.1 Simulation I: Parameter recovery of CAME

One important aspect of model evaluation is to examine whether model pa-
rameters can be recovered. AME with correlation specified in Equation 3.2.1 is used

to generate network data.

mj=PBo+ai+bj+UlVi+ei#4ij€l . ..,n (3:2.1)
Y;; ~ Bernoulli(®(n;;))

1 0.2
02 1

(a;,b;) ~ N2 (0,4p); Xap =

(Ujas Via) ~ Na(0,500); S = | ”71“’ del,2
puv

€ij ™~ N[O, 1]

Below lists the steps to generate network data from a CAME. R Code will be

included in an Appendix.

Step 1) Simulate (a;, b;), (Uj1, Vi), (Uja, Vj2) and €;; with the distributions specified
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in Equation 3.2.1,

1 0.2

(a;,b;) ~ N2(0,24); Xap =
0.2 1

(U, Via) ~ Na(0,200); S = | 1 ”;’" del,2
pu’u

€5 ™~ N[Oa 1]

Step 2) Simulate binary outcome Y;; from a Bernoulli distribution with probability
P,;j = ®(n;;), where n;; is a latent continuous variable defined in row 1, Equation
3.2.1,

N =PBo+ai+b+Ul'V,+eji#ji,j€l,....,n

There are three manipulating factors: correlation between pairs of U; and V;
(puv), network size n and density. The correlation parameter p,, varies at five levels,
-0.8,-0.4, 0, 0.4, and 0.8 in order to generate network data in which the actor-level
transitivities center at different levels. The network size varies at three levels, 20,
50 and 100. Many networks in social science are of small to medium sizes. Faust
(2006) summarized the descriptive statistics of 51 networks with different kinds
of relationships (friendship, fights, advice seeking, etc.) across different species
(human, monkey, deer, etc.). The sizes of these networks ranges from 4 to 73
with a mean at 21, and the densities ranges from 0.02 to 0.86 with a mean at

0.37. There are also many networks with large sizes that are over 1000. Because
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the MCMC estimation method used in the present study is not scalable to large
networks, only small to medium-sized networks will be simulated. The intercept Sy
varies at three levels to ensure that the model-implied networks have three levels
of density. The specific values in three levels of density vary for different network
sizes n. In real-world network data, small-sized networks are often more dense than
large-sized networks and large-sized networks tend to be very sparse. Therefore, for
n=20, density varies at 0.1, 0.2, 0.3; for n=>50, density varies at 0.05, 0.1, 0.2 and
for n=100, density varies at 0.01, 0.03, 0.05. There are in total 45 (5x3x3) types of
simulated data. Table 1 summarizes nine types of simulated data when p,, = 0.8.
The rest of the 36 types of simulated data are simulated by changing the value of
Puv-

Figure 3.9 shows the distributions of several descriptive statistics across 100
replications under n=>50, across three levels of density and 9 levels of p,,. The
descriptive statistics are the sample mean of actor-level transitivity, the sample
variance of actor-level transitivity, nework density and reciprocity . From Figure
3.9 we can see that network density does not vary much across different levels of
puw- The average actor-level transitivity increases as p,, increases and the variance
of the actor-level transitivity increases as py, increases, especially when network
density is small (density at 0.05). The reciprocity also increases as the absolute
value of p,, increases. However, the changes in these network statistics is not very
large when p,, is increased by 0.2. This is also the reason that only five levels of

Pup are manipulated with an increment of 0.4.
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Figure 3.9: The distributions of four network descriptive statistics based on 100

data sets generated from model in Equation 3.2.1 with nine levels of p,,

and three different network density levels, 0.05,0.1 and 0.2 with n=>50.

See Appendix for more figures for n

20 and n=100.
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Table 3.2. Generate network data from an AME with correlation (3.2.1). Manipu-
lating variables to generate data are the correlation parameter p,,, net-
work size n, and intercept [y to reflect varying levels of network density.
There are five levels of puy, three levels of n, three levels of density and
The total number of simulation conditions is 45. This table only shows
nine settings when p,, = 0.8 as an example. For each simulation condi-
tion, 100 data sets are generated.

Puv T approx. density [y

0.8 20 0.1 -3
0.8 20 0.2 -2
08 20 0.3 -1.2
0.8 50 0.05 -4
0.8 50 0.1 -3
0.8 50 0.2 -2
0.8 100 0.01 -0.8
0.8 100 0.03 -4.6
0.8 100 0.05 -4
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The simulated networks are fit with an AME with correlation specified in

Equation 3.2.2, where D=2.

N =Po+ai+bj+Ul'V;+eyi#54,j€1,...,n (3.2.2)

Yi; ~ Bernoulli(®(n;;))

Bo ~ N(0,10)
2
(ai’ bz) ~ N2(07 Eab); Eab — Ta PabTa0b
Lab0a0b Ug
2
(Ujda ‘/;d) ~ NQ(O, Euv)7 Euv — Jud PuvOudOvd 7d c 17 o ’D
PuvOudOuvd 012;d

02 0-137 0-12Ld7 O-gd ~ hCLlf - t(47 07 ]-)

a’

Pabs Puv ™ LKJ(l)

€5 ™~ N[(), 1]

We are most interested in the recovering of the following estimated quantities:
probability of a tie P;; = ®(n;;), correlation between sender- and receiver-random
effects of the same actor p,;, correlation between sender-specific and receiver-specific
latent factors of the same actor p,,, as well as the correlation between the residual
term of a dyad p.. The coverage rate (see definition in Section 3.1.5) of each of the
three correlation parameters just mentioned will be examined. In addition, the four
goodness-of-fit statistics listed in Table 3.3 (M SEp, AUROCgy, WAIC,, WAIC,
and Coverage Rate) will be reported to explore the range of these GOF statistics

given the sample size. Also, the present study will report parameter recovery of
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latent variables after post-processing of posterior draws to identify U and V. But
due to a large number of latent variables, some of the results will be included in the
Appendix. The convergence of all parameters will be examined via potential scale
reduction factor (Rhat; S. P. Brooks & Gelman, 1998) and will also be reported in

the Appendix.

Table 3.3. Model performance measures in simulation studies and in real-world data
analysis. AUROCEg represents the AUROC computed from full data and
AUROCPp,eq is the AUROC computed from cross-validation method, as
described in Section 3.1.5.

Simulation Study Real-world Data Analysis
MSEp AUROC pyeq

AUROC g AUROC g

WAIC,, WAIC, WAIC,, WAIC,
Coverage Rate PPC
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3.2.2 Simulation II: Sensitivity analysis of priors

True values of the standard deviations of latent variables are undefined in
real-world data analysis because latent variables are not scaled. Model estimation
could be sensitive to different priors of the standard deviations of latent variables.
There are two sets of latent variables in the proposed model (Equation 3.1.1), (ai, bi)
and (U;,V;). This simulation study plans to investigate the stability of parameter
estimation in terms of the parameter recovery of these latent variables under different
types of priors. Because the true value of latent variables’ variances are all set to
1 (Equation 3.2.1), we fit part of the simulated data (see Table 3.5) described in
Simulation I with three different priors on o,, 0y, 0, and o, and these three priors are
half —t(4,0,1), T71(10,9) and I'"1(10,45). As explained in the second paragraph
of model estimation section 3.1.4, half —t(4,0, 1) is a weakly informative prior that
is used throughout the simulation studies in the present study. I'"'(10,9) is an
informative prior centering at the true variance value 1 and T'"!(10,45) is another
informative prior centering at 5.

The distribution of these three priors are visualized in Figure 3.10. These
three priors represent different beliefs to the possible values of the variances of the
latent variables in the model. Values in half —t(4,0,1) can be as small as 0.000025
and as large as 50, which indicates there is little prior information on the scale of a
parameter; values in I'"1(10, 9) centers at 1 with very small variation, which indicates
one may have prior knowledge that the parameter value is around 1; although values

in T71(10, 45) have larger variation (a variance of 3.125), the minimum value of this
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distribution is above 1, which indicates one may have little knowledge about the

possible value of the parameter, but one has strong belief that the parameter value

is above 1.
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Figure 3.10: The histograms (first row) and boxplots (second row) of three priors
used in simulation study II. Half — t(4,0,1) (left) is a weakly infor-
mative prior with the mean at 1 and variance of 1. This distribution
ranges from close-to-zero values to values over 20; I'='(10,9) (middle)
is an informative prior centering at the true variance value 1 with a
variance of 0.125 and I'71(10,45) (right) is an other incorrectly spec-
ified informative prior centering at 5 with a variance of 3.125. The
minimum value of I'"(10, 45) is often larger than 1.

Models in this simulation study have the same expression as Model 1 (see

Equation 3.2.2) except the prior distribution for variances. Specifically, for each

type of simulated data, three priors stated in previous paragraph are imposed to the

variances of one of the two sets of latent variables (ai, bi) and (U;, V;) while keeping

that of the other set at the correctly centered informative prior I'"1(10,11). Table

7



3.4 lists the six settings of priors and labels of models.

Table 3.4. Models for Simulation II: sensitivity analysis of prior distribution. Vary-
ing priors of the standard deviations of latent variables are used to fit
data generated under varying values of pu, (Table 8.5). half —t(4,0,1) is
a weakly-informative prior, Inv — I'(10,9) is an informative prior peaks
at 1, i.e., the data generating variance values for latent variables, and
['71(10,45) is an informative prior peaks at 5.

Models 02,08 ~ 02,02 ~

Model 1 half —t(4,0,1) half —t(4,0,1)
Model 2 half — t(4,0,1) T—(10,9)
Model 3 half — t(4,0,1) T71(10,45)
Model 4 T-1(10,9) half — (4,0,1)
Model 5 T~1(10,45) half — t(4,0,1)

(
(

The simulated network data used in this simulation study is part of those in
Simulation I, in which network size n=20, 50, an approximate density at 0.2 and
Puv Tanges from -0.8 to 0.8 with 0.4 increments (see Table 3.5). There are in total
50 (5x2 types of data x5 models) settings. Outcome measures are the same as those

used in Simulation 1.

3.2.3 Simulation III: Empirical power of the CAME with covariates

The purpose of this simulation study is to investigate the empirical power of
a CAME with covariate under two levels of network size (20 and 50), two levels
of puy (-0.8 and 0.8), three levels of covariate effects (0.3, 0.9 and 1.6), as well as
two levels of network densities. The outcome measure is the empirical power for
B1 under CAME, which is calculated as the proportion of converged replications in

which the 95% highest posterior density intervals (HPD; Hyndman, 1996) exclude
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Table 3.5. Ten types of network data generated for Simulation 1. These ten settings
are part of the 45 settings in Simulation 1.

Puww N approx. density [y

-0.8 20 0.2 -2
-04 20 0.2 -2
0 20 0.2 -2
04 20 0.2 -2
0.8 20 0.2 -2
-0.8 50 0.2 -2
-04 50 0.2 -2
0 50 0.2 -2
0.4 50 0.2 -2
0.8 50 0.2 -2

Zero.
To conduct the empirical power analysis, the current study simulates networks

from the following CAME with a node-level covariate:

N = Bo+ PiXi+ai+b; +U'Vi+ey; i#5,4,€1,....n (3.2.3)

Y;; ~ Bernoulli(®(n;;))

(@i, b;) ~ No(0,%4); Xap = 102
02 1

(Uig, Vi) ~ No(0,500); 8w = | + P»|idel,...,D
Puw 1

Eij ~ N[O, 1],
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where the values of [y are chosen to simulate networks densities around 0.1 and
0.3 respectively for n=20, 0.05 and 0.2 respectively for n=50. These density values
corresponds to sparse and dense networks under each network size. A small covariate
effect (51 = 0.3), a medium covariate effect (5; = 0.9) and a large covariate effect
(61 = 1.6) are manipulated to evaluate the empirical power under these three levels
of covariate effect. Cohen (2013) defined the value of a small, medium and large
effect size with regard to Cohen’s f? and the corresponding values of a small, medium
and large covariate effect are derived from Cohen’s f2. For the model described in
Equation 3.2.3, the effect size of the covariate X, R% is defined as the proportion

of variance X explained in 7:

var(fy * X)

Ry =——"—~— 3.2.4
X var(n) ( )
2, 2
= Pixox (3.2.5)
var (B * X) + var(a) + var(b) + var(U'V) 4+ var(e)
_ B x ox
Bk 0% + 02+ 0+ 0F k0% + Ok * OBy + 02
_ A
BE+1+1+1x1+1x1+1
i
= 3.2.6
EEE (3:26)

Let R% equals to a small effect size 0.02, a medium effect size 0.15 and a
large effect size 0.35 respectively, we can obtain the corresponding positive values
for £; (0.3, 0.9 and 1.6 respectively, rounded to the first decimal). The same as in
previous simulation studies, the standard deviations of latent variables a,b, U and

V are at unit value 1, and py is set to 0.2. This simulation study includes one
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node-level covariate X; that represents actor ¢’s attribute information such as score,
age, years of working, etc. In this simulation study, X; is assumed to be drawn from
a standard normal distribution for simplicity. It is often possible to standardize a
continuous variable such that the scaled variable approximates the standard normal
distribution. The simulation settings are summarized in Table 3.6. There are 24
settings in total and 100 networks are generated under each setting. The simulated

networks are fit with a CAME in Equation 3.2.7.

Table 3.6. Simulation I, settings to generate networks for empirical power analysis
of the covariate effect By from a CAME in FEquation 3.2.3.

N py  approx. density (Bo) [
20 -0.8 0.1 (By=-3) 0.3
20 -0.8 0.1 (By=-3) 0.9
20 -0.8 0.1 (5y=-3) 1.6
20 -0.8 0.3 (By=-1.2) 0.3
20 -0.8 0.3 (Bp=-1.2) 0.9
20 -0.8 0.3 (Bo=-1.2) 1.6
20 0.8 0.1 (By=-3) 0.3
20 0.8 0.1 (By=-3) 0.9
20 0.8 0.1 (By=-3) 1.6
20 0.8 0.3 (By=-1.2) 0.3
20 0.8 0.3 (By=-1.2) 0.9
20 0.8 0.3 (Bo=-1.2) 1.6
50 -0.8 0.05 (By=-4) 0.3
50 -0.8 0.05 (By=-4) 0.9
50 -0.8 0.05 (By=-4) 1.6
50 -0.8 0.2 (Bp=-2) 0.3
50 -0.8 0.2 (Bo=-2) 0.9
50 -0.8 0.2 (By=-2) 1.6
50 0.8 0.05 (By=-4) 0.3
50 0.8 0.05 (Bp=-4) 0.9
50 0.8 0.05 (By=-4) 1.6
50 0.8 0.2 (Bo=- 0.3
50 0.8 0.2 (By=-2) 0.9
50 0.8 0.2 (Bo=-2) 1.6
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N =Bo+ PiXit+ai+b;+Ul'Vi+ey i#5,4,5€1,...,n  (32.7)
Y;; ~ Bernoulli(®(n;;))

Bo, Br~ N(0,10)

2

(aia bz) ~ NQ(O, Eab); Yab = T4 PabTa0b
Pab0a0b ag
O-’l%d puvo-udafud
(Uid"/;d) NNQ(O’EUU);EM) = ;de 17...,D
PuvOudOuvd 012;d

02 0-57 Uzzuh Ugd ~ half - t(47 O, 1)

a’

Paby Puv ™~ LKJ(]-)

€ij ™ N[07 1]

In addition, the present study also shows the Type-I error rate of the CAME
for data generated from Equation 3.2.3 with 5, = 0 and the same levels of py,,
density and network size as in the empirical power analysis. The Type-I error rate
is computed as the percentage of replications in which the 95% HPD of 3; does not
include zero. Power to detect a non-zero effect should only be assessed if the Type
I error rate is controlled (i.e., held at the nominal 0.05 level). In the situation that

Type I error is inflated, the level of power is confounded with Type I error inflation.
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3.2.4 Simulation IV: Comparisons between CAME and AME

This simulation study compares a CAME with a node-level covariate (Model
6, Equation 3.2.7) with an AME model with a node-level covariate (named as Model
7, Equation 3.2.8) under various simulation settings (Table 3.7) generated from a
CAME specified in Simulation III (Equation 3.2.3).The present study evaluates the
differences of inference and goodness-of-fit from both models under varying levels
of puw, network density and network size. The inference is evaluated by coverage
rates of model parameters, especially the covariate coefficient; the goodness-of-fit is
evaluated by M SEp, AUROCE, as well as the WAICs.

The types of network generated from Model 6 are manipulated at five levels
of puy (-0.8,-0.4, 0, 0.4, 0.8) and two levels of network size (20, 50), as well as two
levels of network density that corresponds to a low density and a high density under
a certain network size (0.1 and 0.3 for n=20; 0.05 and 0.2 for n=50). There are
in total 20 settings and each setting is replicated 100 times for both models. Thus
in total there are 20*2*100=4000 model fits. Figure 3.11 displays the boxplots of
the variance of the actor-level transitivities for n=20 at densities 0.1, 0.2 and 0.3
across nine levels of p,, (first row) and that for n=50 at densities 0.05, 0.1 and 0.2
across nine levels of p,, (second row). The variance of the actor-level transitivity
is generally increasing as p,, increases when a network is sparse (the first column
in Figure 3.11), although the trend is less obvious when the network size is smaller.
A difference in model estimation between an AME and a CAME is expected under

extreme p,,, values because the variance of the actor-level transitivities under either
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Table 3.7. Twenty types of networks generated for Simulation IV.

N pu  approx. density () 6

20 -0.8 0.1 (By=-3) 0.9
20 -0.8 0.3 (By=-1.2) 0.9
20 -0.4 0.1 (By=-3) 0.9
20 -0.4 0.3 (By=-1.2) 0.9
20 0 0.1 (By=-3) 0.9
20 0 0.3 (B=-12) 0.9
20 04 0.1 (By=-3) 0.9
20 04 0.3 (B=-1.2) 0.9
20 0.8 0.1 (B=-3) 0.9
20 0.8 0.3 (By=-1.2) 0.9
50 -0.8 0.05 (Bp=-4) 0.9
50 -0.8 0.2 (By=-2) 0.9
50 -0.4 0.05 (By=-4) 0.9
50 -0.4 0.2 (B=-2) 0.9
50 0 0.05 (By=-4) 0.9
50 0 0.2 (8=-2) 0.9
50 0.4 0.05 (Bp=-4) 0.9
50 0.4 0.2 (8=-2) 0.9
50 0.8 0.05 (Bo=-4) 0.9
50 0.8 0.2 (Bo=-2) 0.9

Puv=-0.8 or p,,=0.8 is generally different from that under p,,=0.

Also, the differences in the variance of the actor-level transitivities become
smaller as the network density increases (last two columns in Figure 3.11). How-
ever, it is also interesting to evaluate the difference between an AME and a CAME

for dense networks because although the variances of the actor-level transitivity are
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Figure 3.11: Each panel shows the boxplots of the variances
sitivies in 100 networks across nine levels of p,,.
in the first row include networks with size n=20 and densities at 0.1
(Bo = —3),0.2 (Bp = —2) and 0.3 (8y = —1.2) respectively; the second
row includes networks with size n=50 and densities at 0.05 (5, = —4),

0.1 (Bp = —3) and 0.2 (B = —2) respectively.
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The three panels

similar under different values of p,,, the mean of the actor-level transitivity in a

network is increasing as p,, increases. Therefore, this simulation study also manip-

ulates network density at two levels that correspond to a sparse and a dense network

respectively under a certain network size.

The simulated networks are fit with a CAME in Equation 3.2.7 and an AME in
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Equation 3.2.8 respectively. The prior information and the number of dimensions are
the same in both models. We are interested in knowing how big the difference will
be and where these differences locate. The same outcome measures as in Simulation
I and IT will be reported and discussed. In addition, the present study compares the

absolute bias of 8 between two models.

N =Po+ br1Xi+ai+b+UlVi+ey i#jijel,....n (3.2.8)
Y;; ~ Bernoulli(®(n;;))

507 51 ~ N(Ov 10)

2

(aia bz) ~ NQ(O, Eab); Yab = T4 PabTa0b
Pab0a0b O'g
oag 0
(U’Ld, ‘/;d) NNZ(O’EU/U);EU/U = ;de 17-.-7D
0 o2

o2 02,02, 0% ~ half —t(4,0,1)

pay ~ LK J(1)

€ij ™~ N[O, 1]

Note that the author of the AME model developed an R package ame, but
users cannot define priors by themselves. In addition, the AME model specified in
Model 7 does not include the correlation between €;; and €;;, unlike the AME coded

in the ame package. Therefore, to ensure a fair comparison between models, the
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present study uses a self-coded R code via the rstan package to estimate the Model
7.

Throughout the simulation studies and the real-world data analysis, two MCMC
chains will be fit to the data with burn-in 2000, with a total of 12000 iterations in
each MCMC chain. Thus, the number of posterior draws is 20,000. Thinning for
the MCMC chains is 1 because the NUT sampler used in Rstan proposes parame-
ter values that are similar to independent samples (Hoffman & Gelman, 2014). By
checking the autocorrelation plots of the posterior draws of model parameters, the
autocorrelation is not significantly different from zero for all parameters. Figure
3.12 contains the autocorrelation plots from 5 randomly selected replications for
parameters 5o, Pab, Puvs Ta, Tp, 0y and o, estimated by a CAME for networks with
size 20, py, at 0.8 and density 0.1. Appendix A provides more autocorrelation plots
as supports.

The number of iterations in an MCMC chain is determined based on a pilot
simulation study that used part of the simulation conditions described in Simulation
I (Section 3.2.1). In the pilot simulation study, a CAME (Equation 3.2.2) was fit
to networks generated from a CAME (Equation 3.2.1) with network sizes (n) at
20 and 50, densities at 0.1 for n=20, 0.05 for n=>50, as well as five levels of py,
(-0.8, -0.4, 0, 0.4, 0.8). There are in total 10 (2*5) simulation conditions and each
condition was replicated 100 times. For each fit, there were two MCMC chains and
different combinations of the number of burn-in and the number of posterior draws
were ran to evaluate the convergence of MCMC chains with regard to the potential

scale reduction factor (Rhat; S. P. Brooks & Gelman, 1998; Gelman, Rubin, et al.,
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Figure 3.12: Autocorrelation plots of seven model parameters, 5y, pabs Puvs Tas b,
o, and o, from five networks of size 20 at density 0.1 and p,, 0.8.

1992). MCMC chains with an Rhat below 1.1 or 1.2 are converged. Note that Rstan
reports split Rhat, which is computed based on MCMC chains that were half-splits
from the original MCMC chains. The pilot study found that as the size of the
network increases, more iterations are required to ensure that the o,, o,, U; and V;
are mixed well in the two MCMC chains. There were no noticeable differences in
the mixing of MCMC chains as the number of posterior draws increases from 2000
to 10,000 for all other model parameters By, pab, Puv, Ta, Tp, a; and b;.

Figures 3.13 and 3.14 show the boxplots of Rhat values for parameters S5y, pasp,
Puvs Tay O, 0, and o, based on 100 replications across the ten simulation conditions
in the pilot simulation study. In most simulation settings, MCMC chains converged

after 10,000 iterations. There were few conditions with 2 percent of the replications
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not converging. Also, when the network size increases, there tend to be a few more
number of non-converging replications. Because the maximum percentage of non-
converged replications is 3, the present study use 10,000 iterations to save the cost
of computation time given that the simulation designs that will be described in the

next few sections involve a large number of settings.
n =20y =-3 density =0.1

rhouvlevel

-8
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8

beta0 rhoab rhouv sigr'naa sigr'nab sigﬁqau sigr'nav

Figure 3.13: Convergence evaluation based on Rhat values for 100 networks of size
20 at density 0.1 and five p,, levels (five colors) for seven model param-
eters, Bo, Pabs Puvs Oa, Ob, 0y and o,. Each boxplot shows the distribu-
tion of Rhat values for a certain parameter at a certain p,, level. The
number at the bottom of each boxplot is the percentage of replications
in which the Rhat value exceeds 1.1, out of 100 replications.

n =50 By =-4 density=0.05
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Figure 3.1/: Convergence evaluation based on Rhat values for 100 networks of size
50 at density 0.05 and five p,, levels (five colors) for seven model
parameters, 5o, Pab, Puvs Tas Ob, 0y and o,. Each boxplot shows the
distribution of Rhat values for a certain parameter at a certain p,,
level. The number at the bottom of each boxplot is the percentage of
replications in which the Rhat value exceeds 1.1, out of 100 replications.
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Also, the number of replications for each simulation conditions in the simu-
lation studies is set to 100. Based on the same pilot simulation study, the moving
averages of the standard error of model parameters, the moving averages of the mean
squared error of the probability of ties (M SEp defined in Section 3.1.5), as well as
the cumulative coverage rates of model parameters by the number of replications
were examined to decide the number of replications needed in the simulation studies.
Figures 3.15, 3.17, 3.19 showed these three quantities for networks of size 20 across
five levels of p,, at density 0.1. Figures 3.16, 3.18, 3.20 showed these three quantities
for networks of size 50 across five levels of p,, at density 0.05. In most simulation
settings, the moving averages became stable around 60 and the cumulative cover-
age rates became stable around 80. The same plots for other model parameters
(a,b,U, V) across different simulations settings are provided in Appendix A. There-
fore, 100 replications are sufficient to provide reliable results. The number 100 is
also used for as the number of replications in simulations for another complexed
latent variable model for networks, the Mixed Membership Stochastic Blockmodel

(Sweet & Zheng, 2017, 2018).
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3.3 Real-world Data Analysis

The present study uses three real-world network data as examples to show the
functionality of the proposed model and to check the consistency of findings from
simulation studies. Network data in the real world has complex structures and no
statistical network models can capture all of the structures. Therefore, comparing
models based on empirical data provides insights into the practical use of models.
All three model evaluation methods introduced in section 3.1.5 are applied in model
comparison, as summarized in Table 3.3. Below is an introduction to these real-
world data. Two models are fit to each of the three real-world networks, a CAME
(Model 1) as described in Simulation I and an AME model as described in Simulation
IV (Model 6) excluding the covariate effect.

Sampson Monastery dataset contains social relations among 18 monks
(Sampson, 1969). These 18 monks were interviewed at three different time points
and they were asked to whom they had positive relations. To build a social network
from the raw dataset, the present study records to whom each monk had positive
relations with at all time points. A tie from monk A to monk B means A had
positive relations to B at all three time points. The first sociogram in Figure 3.7
shows the sociogram of the social relation network of 18 monks. Each monk is
represented by a node in the sociogram, and the ties between any two actors are
represented by edges connecting any two nodes. This network has a density of 0.288,
network-transitivity of 0.407 and reciprocity of 0.636. The mean and variance of the

actor-level transitivity is 0.440 and 0.047 respectively.
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Researcher Friendship networks are formulated based on Freeman’s EIES
networks (Freeman & Freeman, 1979) containing 48 researchers who conduct social
network studies and were observed at two time points. Each of the 48 researchers
was asked about his/her relationship to others at 5-likert scale: 0 means he/she did
not know the person; 1 means he/she has heard of the person; 2 means he/she has
met the person; 3 means he/she thinks the person is a friend; 4 means he/she thinks
the person is the best friend. The relationship information was collected at the
beginning and the end of the study. To construct binary adjacency matrices for the
researcher friendship networks, the present study codes the relationship as 1 if the
raw relationship label is 3 or 4 and let the relationship to be 0 if the raw relationship
label is below 3. Also, 14 isolated researchers with the raw relationship label 0’s at
both time points were removed. Thus the researcher friendship adjacency matrix at
each time point is 34 by 34. At time point 1, the network has a density of 0.142,
network-transitivity of 0.403 and reciprocity of 0.566. The mean and variance of the
actor-level transitivity is 0.409 and 0.082 respectively; at time point 2, the network
has a density of 0.196, network-transitivity of 0.427 and reciprocity of 0.591. The
mean and variance of the actor-level transitivity is 0.574 and 0.039 respectively.

Spend-time network comes from a social network experiment in schools to
study the influence of an anti-conflict intervention on students’ conflict (Paluck et
al., 2016). The spend-time network analyzing in the present study is constructed
based on a survey to students in a school. The survey asked each student across
two grades to nominate 3 students he/she decides to spend time with in the last few

weeks. A 115 by 115 binary adjacency matrix is constructed based on the survey.
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Value 1 in the matrix indicates a student decides to spend time with another student.
This network has a density of 0.065, network-transitivity of 0.367 and reciprocity
of 0.568. The mean and variance of the actor-level transitivity is 0.336 and 0.038

respectively.
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Chapter 4: Results

The main purpose of this study is to investigate the feasibility and functionality
of modeling the actor-level transitivity via a correlation parameter specified between
the sender-specific latent factor and the receiver-specific latent factor in the Additive
and Multiplicative Effects model (AME). The secondary goal of this study is to
compare the differences in model performance between the proposed model, AME
with correlation (CAME) and the existing AME, both in simulated data and in
real-world data. For a better presentation of the results, Table 4.1 and Table 4.2
list the description of labels and abbreviations respectively.

The main objective is evaluated in Simulations I, II, III and the secondary ob-
jective is evaluated in Simulation IV, as well as in the real-world data analysis. Sim-
ulation I evaluates the model estimates and goodness-of-fit for CAME under three
manipulated factors, network density, network size, as well as the correlation py,;
Simulation IT evaluates the sensitivity of CAME model estimates and goodness-of-fit
to different priors of the standard deviations of the latent variables. The manipu-
lated factors are prior settings, network size and the correlation p,,; Simulation I1I
evaluates the empirical power of a CAME with a node-level covariate, under varying

covariate effects, network density, network size and the correlation p,,. In simulation
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Table 4.1. Abbreviations of model names

Abbreviations

Description

CAME

AME
Model 1

Model 2

Model 3

Model 4

Model 5

Model 6
Model 7

Additive and multiplicative effects model with correlation between
U; and V;, the proposed model

Additive and multiplicative effects model proposed by (Hoff, 2018)

A CAME described in Equation 3.2.2 with priors o,, 0, ~ half —
t(4,0,1); oy, 0, ~ half —t(4,0,1)

A CAME described in Equation 3.2.2 with priors o4, 0, ~ half —
t(4,0,1); oy, 0, ~ half —t(4,10,9)

A CAME described in Equation 3.2.2 with priors o,, 0, ~ half —
t(4,0,1); oy, 0, ~ half — (4,10, 45)

A CAME described in Equation 3.2.2 with priors o4, 0, ~ half —
t(4,10,9); 04,0, ~ half — t(4,0,1)

A CAME described in Equation 3.2.2 with priors o,, 0, ~ half —
t(4,10,45); oy, 0, ~ half —t(4,0,1)

A CAME with a node-level covariate as described in Equation 3.2.7

An AME with a node-level covariate as described in Equation 3.2.8

IV, a CAME with a node-level covariate is compared with an AME with a node-level

covariate. Both models are fit to networks simulated from both a CAME with a

node-level covariate (p,, # 0) and an AME with a node-level covariate (p,, = 0).

Network density, network size and the correlation p,, are manipulated factors. The

real-world data are a positive-relation network with 18 actors, a researcher friend-

ship network with 34 actors observed at two time points, and a spend-time network

with 115 actors.

Before the examination of outcome measures, convergence diagnosis was con-

ducted and an R smaller than 1.1 is used as the criterion to determine the conver-

gence of MCMC chains (S. P. Brooks & Gelman, 1998; Gelman et al., 1992). In
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Table 4.2. Abbreviations of outcome measures

Abbreviations

Description

N

R

CR

MSEp

AUROCE

AUROCpreq

WAIC /s

PPC

The potential scale reduction factor to diagnose the convergence of
MCMC chains. A value less than 1.1 is considered as converged.

The coverage rate of model parameters, i.e., the percentage of the
converged replications in which a parameter’s 95% highest posterior
density interval includes the true value

The mean squared error of the probability of ties as defined in
Equation 3.1.2

The area under the receiver operating characteristic curve com-
puted from the tie probabilities that are estimated from the full ob-
served network. Is used as a quantity to evaluate the goodness-of-fit

The AUROC computed from the combined tie probabilities that are
estimated from the K-fold cross-validation method. Is used as a
quantity to evaluate the prediction accuracy

The widely applicable information criteria introduced in Equation
3.1.3 and are used to evaluate the goodness-of-fit.

Posterior predictive checking based on statistics defined in Table
3.1

all the simulation studies except for Simulation III which involves power analysis,

the outcome measures are CR for the evaluation of parameter recovery, MSEp,

AUROCEg and WAIC, and W AIC, for the evaluation of goodness-of-fit. In Sim-

ulation IV, the absolute bias of the posterior mean of the covariate coefficient is also

used for further comparison of the estimated covariate effects between a CAME and

an AME.

In the comparison of goodness-of-fit measures between CAMEs and AMEs in

simulated scenarios, paired t-test is used to test the mean differences of these mea-

sures from two models based on 100 replications. The significance level is adjusted

via dividing 0.05 by the number of tests. In addition, the number of replications in
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which a certain goodness-of-fit measure is in favor of CAME is reported.
In real-world data analysis, the outcome measures are AUROC gy, AUROCpyeq,

WAIC,, WAIC5 and PPC based on six network statistics listed in Table 3.1.

4.1 Results of Simulation Studies

The results of each simulation study (except for Simulation III, the power
analysis) are summarized in three parts, the convergence diagnosis, the parameter

recovery and the goodness-of-fit.

4.1.1 Results of Simulation I: Parameter recovery of CAME

Convergence diagnosis. Figure 4.1 shows averaged Rs across 100 replications
for parameters By, pab, Puvs Tas b, 0y and o, (by columns) across five levels of p,,
(x-axis) and three levels of network density (by colors) under network size n=20, 50
and 100 respectively (by rows). The convergence plots for a;’s, b;’s, U;’s and V;’s
are provided in Appendix A. Each point represents the averaged value of Rs of a
certain parameter in 100 replications.

In general, under n=20 and 50 and across all other manipulated factors, all the
parameters reached convergence in at least 94 percent of the replications. However,
when n=100, the percentage of converged replications varies a lot across different
density levels and for different model parameters. As the network density decreases
from 0.05 to 0.01, the percentages of nonconverged replications increase for all model

parameters. The increments in the percentage of nonconverged replications are
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larger for By, o4, oy, 0, and o, comparing to those of p,, and p,,, especially when
density decreases from 0.03 to 0.01. The numbers of burn-in and posterior draws are
the same across all simulation conditions. Therefore, more iterations are required
to obtain a higher percentage of converged replications for networks with larger size
and lower density.

Despite that many replications with network size 100 and density 0.01 did not
converge, the present study did not run longer chains for this particular setting. The
first reason is that the same amount of burn-in and iterations are needed for fair
comparisons of results with other settings, unless all settings can achieve similar R
values that are close to 1. Apparently, Figure 4.1 indicates there are still differences
among the R values under different settings, although most of the values are under
1.1. The comparison of results (e.g., parameter coverage rate and goodness-of-fit
statistics) across manipulated factors may be confounded by different levels of Rs
in different settings. The second reason is the high computation cost. In the ideal
situation, the number of iterations in each simulated setting and each replication
should be adjusted such that the R values are close or under 1. However, there are in
total 5*3*3*100=4500 model fits in this simulation study. The time to complete one
replication is about 40 minutes, 2 hours and 6 hours for n=20, 50 and 100 respec-
tively. As network size increases from 50 to 100, the number of model parameters
increases by 6%(100-50)=300. Therefore, it is not feasible to either adjust num-
ber of iterations or run as more iterations as possible for all settings. The current
study present the results as is under burn-in of 2000, posterior draws of 10000 and

two chains across all simulated conditions, and advocate other estimation methods
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instead of the Bayesian method for large-sized networks.
For the following results (parameter recovery and goodness-of-fit) in this sim-
ulation study, the results under n=100 are removed because there are too many

replications in which the two MCMC chains do not mix well.
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Oa, Op, 0, and o,. Parameters are easier to converge under higher density level and smaller network size, given the

same number of iterations.



Parameter recovery. The coverage rate (CR) for each model parameter is calcu-
lated as the percentage of converged replications in which a parameter’s 95% highest
posterior density interval (HPD; Hyndman, 1996) includes the true value. Figure
4.2 shows CRs of parameters o, pab, Puv, Ta, Ob, 0u and o, (by columns) across five
levels of p,, (x-axis) and three levels of network density (by colors) under network
size n=20 and 50 respectively (by rows). In most cases, the CRs are above 0.9.
Given the same other manipulated factors, no consistent changing pattern of CRs
is observed across five levels of p,,; the CRs are similar across different network
densities; and an increase of CR is observed as network size increases.

The coverage rate of 0, and o, are always 1s across all simulation conditions.
Taking a closer look, the 95% HPD of these two parameters are generally wider than
those of o, and o,. This may indicate that although all parameters are converged,
the parameter identification problem between U and V occurs more frequently than

that between a and b among iterations.
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Figure 4.2: Simulation I, coverage rates for parameters By, pup; Puvs Tas O, 0u and o, for networks simulated from CAMEs with
n=20, 50 (by rows), p.,=-0.8,-0.4, 0, 0.4, 0.8 (x-axis) and three levels of network densities (by colors). Parameters
generally have higher coverage rate under higher density level, but this pattern is less obvious under smaller network
size.



Goodness-of-fit. Four goodness-of-fit (GOF) statistics (M SEp, AUROCEs and
WAIC, and W AIC,) are calculated and the averaged value of each GOF statistic
based on 100 replications at varying simulation conditions are plotted in Figure 4.3
for n=20 and 50 (by rows). Each column of the figure shows the averaged value of
each corresponding GOF statistics at five levels of p,, (x-axis) and at three levels of
density (by colors). In model selection, smaller M SEp, WAIC, or WAIC, indicate
a better goodness-of-fit while larger AU ROCE; indicates a better goodness-of-fit.
In this simulation study, the purpose to examine these GOF statistics is not model
selection. Instead, we hope to know the possible ranges of these statistics under
various settings when the correct CAME model is fit to data.

Based on these three figures, it is often observed that the average M SFEp can
be as large as 0.045 and as small as 0.0025 across simulation conditions. Given all
other manipulated factors to be the same, M .S Ep decreases as network size increases,
or as network density decreases, or as the absolute value of p,, increases. The same
pattern applies to AUROCE;, of which the averaged values range between 0.9975
to 0.995. The AUROCEg, may not be a very good indicator of the goodness-of-
fit because of its narrow range across different scenarios. For WAICs, a range of
possible values can not be summarized. The scale of WAIC is positively related to
network size, as well as network density because the likelihood is included in the
calculation, unlike the other two GOF statistics. Under a fixed network density
and a network size of 20, WAICs decrease as the absolute value of p,, increases.

However, such changing pattern is not observed when network size is 50.
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Figure 4.3: Simulation I, goodness-of-fit statistics of CAME model fits to networks

simulated from CAMEs with n=20,50 (by rows) p,,=-0.8, -0.4, 0, 0.4,

0.8 (x-axis) and three density levels (by colors). MSE_P and WAICs de-
creases as network density increases, and AUROC_Est increases as net-

work density increases. In addition, MSE_P and AUROC_Est decrease
as network size increases. WAICs increase as network size increases.
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4.1.2 Results of Simulation II: Sensitivity analysis of priors

Convergence diagnosis. The default prior distribution for o,, o3, o, and o, is
half-t(4,0,1) and is labeled as Model 1. The second and third sets of priors keep
the priors of o, and o, to be the same as in Model 1 while change the priors of o,
and o, to I'"1(10,9) and T'"1(10, 45) respectively (labeled as Model 2 and Model 3
respectively). The last two sets of priors change the priors of o, and o, to ' 71(10,9)
and I'71(10,45) respectively (Model 4 and Model 5) while keep the priors of o, and
o, to be the same as in Model 1.

Figure 4.4 shows the averaged Rs of parameters (by columns) based on 100
replications under five prior settins (by colors) across five levels of p,, (x-axis) at
network density 0.2 under network sizes n=20 and n=>50 respectively (by rows). The
percentage of non-converged replications are very low under both size 20 and 50.
Across different model parameters and all manipulated factors, at least 96 percent of
the replications converged. Although the Rs for o, and o, under n=50 are slightly
higher in Model 1, Model 4 and Model 5 than those in Model 2 and Model 3. One
reason could be that networks with larger size need longer MCMC chains to reach
complete convergence. Another reason is that in Model 1, 4 and 5, the priors of
o, and o, is the default weakly-informative prior, while the priors of ¢, and o, in
Model 2 and 3 are more informative, with ~1(10,9) centering at true value 1 and

['~1(10,45) centering at 5.
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much smaller R values than under a weakly informative prior.



Parameter recovery. Figure 4.5 displays the coverage rates of parameters [y,
Paby Puvs Tay Op, 0y and o, (by columns) under five levels of p,, (x-axis) and five
settings of prior distributions (by colors) for n=20 and n=50 respectively (by rows).
The coverage rates of different model parameters change differently as the prior
distributions of o,, o4, 0, and o, change, given the same levels of p,,, network
density and network size. Generally, parameters 5y, pu and p,, are less sensitive
to priors than o,, 0y, 0, and o,. The CRs of £y, puw, 0., and o, are lower under
incorrectly specified informative prior of o, and o, (Model 3,green lines) than under
the other four priors, while the CRs of pg, 04, 04 are much lower under incorrectly
specified informative prior of o, and o, (Model 5, purple lines). However, not
much difference is observed when compare the CRs of parameters under a weakly-
informative prior (Model 1, pink lines) to those under correctly specified informative
priors (Model 2 and 4, yellow and blue lines respectively). For a better reviewing of

the results, the prior settings are listed in Table 4.3 below.

Table 4.3. Models for Simulation II: sensitivity analysis of prior distribution. Vary-
ing priors of the standard deviations of latent variables are used to fit
data generated under varying values of pu, (Table 8.5). half —t(4,0,1) is
a weakly-informative prior, Inv — I'(10,9) is an informative prior peaks
at 1, i.e., the data generating variance values for latent variables, and
['~1(10,45) is an informative prior peaks at 5.

Models 02, 02 ~ 02,02 ~

Model 1 half —t(4,0,1) half —t(4,0,1)
Model 2 half —#(4,0,1) T%(10,9)
Model 3 half —t(4,0,1) T1(10,45)
Model 4 T'1(10,9) half — t(4,0,1)
Model 5 T'~1(10, 45) half — t(4,0,1)

(
(
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There is no consistent changing patterns of the CRs across different levels of
Puv, While keeping other manipulated factors to be the same. When network size is
50, the CRs of pyy, 0, and o, decrease as the absolute value of p,, increases under
incorrectly specified informative priors for o, and o, (I'"'(10,45), green lines). A
similar but less obvious pattern applies to CRs of py, when the priors for o, and o,
are ['71(10,45) (purple line), but the CRs of o, and o, under this prior are always
Zero.

The CRs of all parameters except for p,;, increase when network size increases
from 20 to 50, while keeping other manipulated factors to be the same. On the
contrary, the CRs of py, generally decrease as the network size increases. Also, the
differences of CRs (of all parameters except for p,,) between different priors are
smaller as network size increases. This indicates that as network size increases, data

instead of prior begins to dominate the posterior distribution of parameters.
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Figure 4.5: Simulation II, coverage rates for parameters By, pup, Puvs Ta, Op, 0w and o, for networks simulated from CAMEs
with n=20, 50 (by rows), pu,=-0.8, -0.4, 0, 0.4, 0.8 (x-axis) and five settings of prior distributions for o, 0, o, and
0. (by colors). Generally, changing the priors of o, and o, from half-t(4,0,1) to IG(10,9) does not change the CRs
of all parameters, but the CRs of parameters Sy, puv, 0u and o, are much lower when the prior for o, and o, is IG
(10,45) than under the other two priors. Similarly, changing the priors of o, and o, from half-t(4,0,1) to 1G(10,9)
does not change the CRs of all parameters, but the CRs of parameters Sy, pup, Puv, 0o and o, are much lower when
the prior for o, and oy, is IG (10,45) than under the other two priors.



Goodness-of-fit. Four goodness-of-fit statistics (M SEp, AUROCEgy and W AIC
and WAIC,) are calculated and the average of each GOF statistic based on 100
replications at varying simulation conditions are plotted in Figure 4.6. When the
priors for o,, 0y, 0, and o, are either at the default weakly informative prior (Model
1) or at a correctly specified informative prior (Model 2 or Model 4), the GOF
statistics are similar. Except for MSEp, all the GOF statistics in Model 3 or
Model 5 are smaller than those in Model 1, Model 2 or Model 4. In other words,
when the priors for o, and oy, or o, and o, are incorrectly specified informative
priors that center at values far from the true value and do not contain the true
value, WAIC, and WAIC, indicate that the model-to-data fits are even better
than a weakly informative prior or an informative prior centers at true value. On
the contrary, M ES, and AUROCg, indicate that the model-to-data fits under an
incorrectly specified prior (Model 3 and Model 5) are worse than those under an
correctly specified informative prior (Model 2 and Model 4) or a weakly informative
prior (Model 1). However, there is no obvious difference in these four goodness-of-fit
measures between a weakly informative prior and a correctly specified informative
prior.

The reason that WAICs favor prior I'"1(10, 45) may be that the log pointwise
predictive density (Ippd in Equation 3.1.3) is higher and the effective number of
parameters (pwasc) is smaller under I'"1(10,45) than under the other two priors.
WAIC is calculated as -2*(Ippd-pwarc), thus WAIC under I'"1(10,45) is smaller
than that under the other two priors. Gelman et al. (2013) showed that under
normal data in which Y; ~ N(0,1);i € 1,...,n and 6 follows a prior N(u,c?), a
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completely informative prior distribution (i.e., 02 = o) result in pya;c=0 and a

prior distribution equally informative as the data (i.e., 0% = n) yields pyarc ~

2 = 0), pwarc = 1 — &. In addition, the

— o(n). Under a flat prior (i.e., o o

1
present study compared values of lppd’s under these three priors for the example
given in Gelman et al. (2013). The conclusion is that the lppd under either flat
prior or prior that equally informative as data is much smaller than the Ippd under
a completely informative prior, while the Ippd of flat prior can be larger than, equal
to, or smaller than that of equal-to-data informative prior. Therefore, the WAICs
under flat or equal-to-data informative prior are always larger than the WAIC under
a completely informative prior. In the case in the present study, I'"*(10,45) is an
informative prior that is closer to a completely informative prior, in which the values
are always much larger than what the data implies. T7'(10,9) can be seen as an
informative prior that equals to the data.

The differences in MSEp,or WAIC, or WAICy among five sets of priors
decrease as the network size increases. Under network size 50, the M SEp’s among

five models are even overlapped. Therefore, different priors do not have big impact

on model-data fit under larger network size.
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Figure 4.6: Simulation II, goodness-of-fit statistics for networks simulated from a
CAME with n=20, 50 (by rows) p.,=-0.8, -0.4, 0, 0.4, 0.8 (x-axis) and
density=0.2 and are fitted under five settings of prior distributions for
Oa, Op, 0y and o, (by colors). Both MSE_P and WAICs tend to choose
models with more informative priors when network size is as small as
20; AUROC_Est tends to choose models with more informative priors
when network size is as large as 50. There are no differences in GOF
statsitics across other simulation settings.
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4.1.3 Results of Simulation III: Empirical power of the CAME with
covariates

Table 4.4 lists the empirical power of a CAME with node-level covariate for
networks simulated from a CAME with covariates at network size n=20 and under
three levels of covariate effect (0.3, 0.9, 1.6), two levels of p,, (-0.8, 0.8) and two
levels of density (0.1, 0.3). Table 4.5 lists similar content at network size n=50 and
under the same levels of the covariate effect and p,,,, but with two levels of density
at 0.05 and 0.2. It can be seen that as the covariate effect increases, the power to
detect a significant covariate effect increases. When the covariate effect is over 0.9,
the powers under varying levels of p,, and density are around 0.8 for network of size
20. When the covariate effect is 0.3, a network of size 50 is still not large enough to
obtain a power above 0.8. It is also observed that the power is related to the values
of network density. Networks with higher density have higher power than networks

with lower density.

Table 4.4. Empirical power of the CAME with a node-level covariate X; under vary-
ing levels of pu,, network density and covariate effects. Simulated net-
works are of size 20.

Puv = —-8  puy = —0.8 Puv = 0.8 Puv = 0.8
B density=0.1 density=0.3 density=0.1 density=0.3

0.3 0.13 0.22 0.13 0.20
0.9 0.77 0.86 0.76 0.87
1.6 0.97 1.00 0.97 1.00

To ensure the empirical power is not inflated, the Type-I error rate of the

CAME is examined. The Type-I error rates under n=20 (see Table 4.6) ranges from
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Table 4.5.

Empirical power of the CAME with a node-level covariate X; under vary-
ing levels of pyn, network density and covariate effects. Simulated net-
works are of size 50.

Puv = —-8  puy = —0.8 Puv = 0.8 Puv = 0.8
f£1 density=0.05 density=0.2 density=0.05 density=0.2

0.3 0.41 0.54 0.39 0.49
0.9 0.99 1.00 0.99 1.00
1.6 1.00 1.00 1.00 1.00

0.03 to 0.06. Those under n=50 (see Table 4.7) are higher, ranging from 0.04 to

0.12. The liberal criteria for a nominal Type-I error rate of 0.05 is between 0.025

and 0.075

(Bradley, 1978). Therefore, except for the condition when p,, = 0.8 and

density=0.3, the Type-I error rates are controlled.

Table 4.6.

Type I error rate of the CAME with a node-level covariate X; under vary-
ing levels of py,, network density and network size at 20. The coefficient
b1 equals to zero.

Puv = —-8  puy = —0.8 Puv = 0.8 Puv = 0.8
n density=0.05 density=0.2 density=0.05 density=0.2

20 0.03 0.05 0.06 0.03

Table 4.7.

Type I error rate of the CAME with a node-level covariate X; under vary-
ing levels of py,, network density and network size at 50. The coefficient
b1 equals to zero.

Puv = —-8  puy = —0.8 Puv = 0.8 Puv = 0.8
n density=0.1 density=0.3 density=0.1 density=0.3
50 0.04 0.08 0.07 0.12

However, the present study still suggest readers to use this simulation results

with caution. Due to high computation cost, the present study report these values

based on 100 replications. The moving averages of model parameters’ coverage rate

based on 100 replications are close to but have not reached completely stable status

(see Figures 3.19 and 3.20), therefore both the Type-I error rate and the empirical
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power may be biased. A larger number of replications such as 1000 could be more

informative.

4.1.4 Results of Simulation IV: Comparisons between CAME and

AME

Convergence diagnosis. The averaged Rs of eight parameters, By, 51, Pab, Puvs
04, 0y, 0y and o, (by columns) based on 100 replications from a CAME with a
node-level covariate (Model 6) and an AME with a node-level covariate (Model 7)
at two levels of network size and two levels of network density (by rows) are plotted
in Figure 4.7. The convergence of model parameters are good across all simulation

settings.
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Parameter recovery. Figure 4.8 displays the coverage rates of model parameters
Bo, B1, Pabs Puvs Tas Ob, 0y and o, (by columns) from CAME fits and AME fits
(Models 6 & 7, by colors) for networks simulated from a CAME with n=20 and
n=>50 at two levels of density (by rows), as well as varying levels of p,, (x-axis). It
can be seen that in most simulation settings, the CRs of most model parameters
estimated from the CAME are similar to those from the AME. The CRs from the
CAME are not consistently higher than the CRs from the AME when the true py,
is not zero. Also, when the true p,, equals zero, the CRs from the CAME are
not consistently lower than those from the AME. Therefore, either ignoring the
correlation structure when the underlying correlation is non-zero, or estimating the
correlation paramter when the underlying correlation is zero does not have much
influence on parameter coverage rates.

As a further investigation, the present study computes the averaged absolute
bias of 31 based on 100 replications. The absolute bias of 3; equals to the absolute
difference between posterior mean of 3; and the true value. Figure 4.9 shows the
averaged absolute bias of #; under CAME and AME (by colors) across different
network size, network density, as well as different levels of p,,. The average absolute
bias between CAME and AME are similar at different simulation settings. This
again demonstrate that adding the correlation structure does not improve the point
estimate of the node-level covariate coefficient when the underlying correlation is
non-zero; while estimating p,, does not influence the point estimate of the node-

level covariate coefficient when the true correlation between U and V is zero.
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Figure 4.8: Simulation IV, coverage rates for parameters 5y, 51, pab, Ta, b, 0y and o, (by columns) for networks simulated from
CAMEs with n=20, 50 (by rows), p.,=-0.8, -0.4, 0, 0.4, 0.8 (x-axis) and are fitted with a CAME (Model 6) and an
AME (Model 7) respectively (by colors). Generally, the CRs of o,, 0, 0, and o, between two models are similar,
while the CRs of 3y and py, under Model 6 is higher than those under Model 7, but the differences are smaller as
network size or network density increases.
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Figure 4.9: Simulation IV, averaged absolute bias of parameter 5; based on 100
replications of networks simulated from CAMEs with n=20, 50 (by
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Goodness-of-fit. Four goodness-of-fit statistics (M SEp, AUROCgg, WAIC,, W AICs)
from CAME fits and AME fits are compared under five levels of p,,, two levels of
network size and two levels of network density.

Figures 4.10, 4.11, 4.12, 4.13 provide the difference of four GOF statistics
(A, by rows) between CAME and AME by replication, for networks of size 20 and
density 0.1; size 20 and density 0.3, size 50 and density 0.05, size 50 and density
0.2 respectively. For simplicity, AUROCE; is abbreviated as AUC' in titles of the
plots in second rows. The differences are ordered increasingly. Black dots represent
replications in which a certain GOF statistic prefers CAME and red dots represent
replications in which AME is preferred.

Across all four figures, there are some consistent changing patterns in the
differences as the levels of manipulated factors changes. First, as the absolute value
of pu, increases, there are more replications in which the MSEp, WAIC, and
W AIC, tavor CAME, as well as more replications with larger difference between
the GOF statistics of CAME and AME. The AAUROCEg,; delivers the opposite
information, which means that it favors AME in a majority of replications, no
matter what the true p,, is. When p,,, is zero, M SEp favors CAME in about half
of the replications, expect when network size is 20 and density is 0.1; WAIC, and
W AIC5 favors AME in the majority of replications.

Second, as the network density increases, AMSFEp decreases and there are
more number of replications with black dots, especially when p,,=-0.8 or 0.8. This
indicates that more evidence of M SFEp favoring CAME is obtained as network

density increases. Similar patterns apply to AW AIC; and AW AICy when network
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size is 20. AAUROCE also decreases as network density increases, but it again
delivers the opposite information, AAU ROCg,; favors AME instead of CAME.

In conclusion, MSEp seems to be a robust measure of model-data fit, or
within-sample prediction accuracy because it can select CAME as the correct model
in most replications when p,, # 0 while select CAME in half of the replications
when p,, = 0. WAICs are also reliable goodness-of-fit measures because it select
CAME as the correct model in the majority of replications when p,, # 0 while
select AME as the correct model in the majority of the replications when p,, = 0.
AU ROCE4 is not a good measure for the purpose of evaluating goodness-of-fit and

model selection.
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Figure 4.10: Simulation IV, the difference of GOF statistics between CAME fits and AME by replication for network size 20
and density 0.1. The difference in each replication is in ascending order. Black dots represent replications in which
the GOF statistics favor CAME and red dots indicate the GOF statistics favor AME.
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Figure 4.11: Simulation IV, the difference of GOF statistics between CAME fits and AME by replication for network size 20
and density 0.3. The difference in each replication is in ascending order. Black dots represent replications in which
the GOF statistics favor CAME and red dots indicate the GOF statistics favor AME.
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Figure 4.12: Simulation IV, the difference of GOF statistics between CAME fits and AME by replication for network size 50
and density 0.05. The difference in each replication is in ascending order. Black dots represent replications in
which the GOF statistics favor CAME and red dots indicate the GOF statistics favor AME.
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Figure 4.13: Simulation IV, the difference of GOF statistics between CAME fits and AME by replication for network size 50
and density 0.2. The difference in each replication is in ascending order. Black dots represent replications in which
the GOF statistics favor CAME and red dots indicate the GOF statistics favor AME.



For a better comparison across different manipulated factors, Figure 4.14 sum-
marizes the goodnees-of-fit results of all simulation settings in one panel. It shows
the mean difference of each GOF statistic between two model fits based on 100 repli-
cations, across p,,=-0.8,-0.4, 0, 0.4, 0.8 at n=20 (row 1 and row 2) and n=>50 (row 3
and row 4). For example, the mean difference of M SEp, denoted as AMSEp, is cal-

100
culated as —-

106 2oret (MSEp.cany — MSEp. 4 )- The red point indicates that this

mean difference is significantly different from zero based on a paired sample t-test

with significant level o = 0.000625. The significance level is adjusted based on the

total number of tests (0.05/(5*2*2*4)). Negative values of AMSEp, AW AIC, and
AW AIC, indicate that on average, these GOF statistics are in favor of the CAME:;
positive values of AAUROC g, indicate that on average, this GOF statistic is in
favor of the CAME.

In general, the absolute value of the mean differences increases as the absolute
value of p,, increases. It can be seen that when the true p,,’s are non-zero, the mean
differences of all the GOF statistics across all simulation conditions are significantly
different from zero, while there is no evidence that these mean differences are signif-
icantly different from zero when the true p,, equals zero. In other words, all GOF
statistics imply that the model-data fits in both models are generally similar when
the true correlation is zero. However, different GOF statistics vary in their ability to
correctly choose the CAME when the true correlation is non-zero. Both MSE_P and
WAICs can distinguish the differences in model fits when p,, is as large as -0.8 or
0.8, but only MSE_P is able to correctly identify the CAME as the preferred model

when p,, is as small as -0.4 or 0.4 across all simulation conditions (first column in
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Figure 4.14). WAICs indicate the model-data fits are in favor of the CAME across
all non-zero p,,’s only when network size is 50 and density is 0.2 (last row, last two
columns in Figure 4.14). AUROCg failed to identify the CAME as the preferred
model across all simulation settings and this statistic may not be a reliable GOF

statistics for model selection.
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Figure 4.1/4: Simulation IV, the mean differences of GOF statistics between CAME fits and AME fits based on 100 replications.
Red dots indicates that this mean difference is significantly different from zero.



4.2 Empirical Examples

1. Sampson’s Network. A CAME specified in Equation 3.2.2 (Model 1)
and an AME specified in Equation 3.2.8 were fitted to Sampson’s network. The
dimensions of latent factors U and V are 18 by 2, and the priors for o,, oy, o,
and o, are half-t(4,0,1). The posterior mean of correlation py, is 0.182 with 95%
credible interval (-0.896,0.965); the posterior mean of correlation p,, is 0.942 with
95% credible interval (0.792,0.997). From the posterior distribution of pg, there is
no strong evidence that the number of ties sends out by an actor is positively related
to the number of ties received by the same actor. A large and significantly positive
value of the estimated p,, indicates that the overall actor-level transitivity is high

in this network.

Sampson's Network
Groups of Novices Classified by Sampson

Figure 4.15: Sociogram of Sampson’s network. Different colors represent different
groups the monks belongs to based on Sampson’s classification.
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Figure 4.16: The posterior means of U’s (first row) and V’s (second row) from
CAME fit (first column) and AME fit (second column) for Sampson’s
network.

Figure 4.15 provides the sociogram of Sampson’s network and different colors
indicate different groups defined by Sampson. Figure 4.16 plots the posterior means
of Ul’s against U2’s and V1’s against V2’s (by rows) from the CAME fit and the
AME fit respectively (by columns). It can be seen that U’s and V’s estimated from

the CAME better represent the subgroup structure than the estimates from the
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AME.

Table 4.8 lists three goodness-of-fit measures (W AIC,, W AICy and AUROCg4)
and a prediction accuracy index (AUROCp,eq, five-fold cross-validation) from the
CAME fit and the AME fit respectively. All the three measures indicate that CAME
fits better than AME for Sampson’s network. The prediction accuracy of CAME is

about 13.4% higher than that of AME.

Table 4.8. Goodness-of-fit measures for the CAME fit and the AME fit for Sampson’s
network.

Model WAIC1 WAIC2 AUROCgg AUROCp,eq

CAME 198.21 232.70 0.9997 0.820
AME 209.42  250.13  0.9998 0.723
MMSBM  265.9 290.9 0.961 0.800
LPCM 284.4 289.5 0.901 0.786

Given that the Sampson’s network also has very clear subgroup structure, the
present study also obtained fits from two other latent variable models, the mixed
membership stochastic blockmodel (MMSBM; Airodi et al., 2008) and the latent
position cluster mdoel (LPCM; Handcock et al., 2007). These two models explicitly
estimate subgroup structure of networks with a group membership parameter. The
goodness-of-fit measures and prediction accuracy index from MMSBM and LPCM
are also listed in Table 4.8. It can be seen that CAME still provides the best fit to
Sampson’s network as well as the highest prediction accuracy.

Figures 4.17 and 4.18 include the posterior predictive checking based on net-
work density, network-level transitivity, reciprocity, in-degree, out-degree and actor-
level transitivity from the CAME fit and the AME fit respectively. The boxplots

represent the distributions of PPC statistics based on networks simulated from pos-
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terior draws of model parameters. The red lines in figures are the observed values
of corresponding PPC statistics from Sampson’s network. A boxplot centers at the
observed value indicates the model well captures the statistic corresponding to that
boxplot, i.e., data implied by model is similar to the observed data. It can be seen
that CAME better captures reciprocity, and the actor-level transitivities with larger
values.

As a further comparison of the distribution of actor-level transitivity between
CAME and AME, Figure 4.19 include the posterior distributions of the mean and
variance of actor-level transitivity from both CAME (first column) and AME (second
column). It can be seen that the mean of the actor-level transitivity implied by
CAME is more similar to the observed quantity (red horizontal line) than that
implied by AME. The variance of the actor-level transitivity implied by CAME is

as equally similar to the observed quantity as that from AME.
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Figure 4.17: Posterior predictive checking based on network statistics density, tran-

sitivity, reciprocity, in-degree, out-degree and actor-level transitivity

for the CAME fit for Sampson’s network.
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Figure 4.18: Posterior predictive checking based on network statistics density, tran-

sitivity, reciprocity, in-degree, out-degree and actor-level transitivity

for the AME fit for Sampson’s network.
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Figure 4.19: Posterior predictive checking based on the mean and variance of actor-
level transitivity from the CAME fit (first column) and the AME fit
(second column) for Sampson’s network.
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2. Researcher Friendship Networks. Figure 4.20 shows the sociogram of
two networks at two time points respectively. For network at time 1 and under the
CAME, the posterior mean of correlation py is 0.275 with 95% credible interval (-
0.269,0.710); the posterior mean of correlation p,, is 0.974 with 95% credible interval
(0.907,0.999). For network at time 2 and under the CAME, the posterior mean
of correlation pgp is 0.505 with 95% credible interval (0.125,0.782); the posterior
mean of correlation p,, is 0.970 with 95% credible interval (0.900,0.997). From the
posterior distribution of pg, there is no strong evidence that the number of ties
sends out by an actor is positively related to the number of ties received by the
same actor. The estimated p,, at time 2 is very similar to that at time 1 with
only 0.004 difference, which didn’t well reflect the difference in the distribution of
actor-level transitivity. At time 1, the network’s actor-level transitivity centers at
0.409 with variance of 0.082; at time 2, the the network’s actor-level transitivity
centers at 0.574 with variance of 0.039.

With regard to the goodness-of-fit and prediction accuracy, CAME has better
performance than AME at both time points. Tables 4.9 and 4.10 show the goodness-
of-fit (WAICs) and the prediction accuracy (AUROCp,eq) from both models for
networks at time 1 and time 2 respectively. It can be seen that WAICs from CAME
is always smaller than those from AME with at least 20 in difference. The prediction
accuracy of CAME is 5.8% higher than that of AME for network at time 1 and 3.1%
higher for network at time 2.

Figures 4.21 and 4.22 provide plots to further compare the goodness-of-fit of

two models for the network observed at time 1 with regards to six network descriptive
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Researcher Friendship Network Researcher Friendship Network
at Time 1 at Time 2

Figure 4.20: Network graph of 34 researchers’ friendship network at two time points.

Table 4.9. Goodness-of-fit measures from the CAME fit and the AME fit for re-
searcher friendship network at time 1.

Model WAIC1 WAIC2 AUROCEs AUROCpeq
CAME 417.11 493.39 0.9984 0.851
AME 43759  523.17  0.9993 0.804

Table 4.10. Goodness-of-fit measures from the CAME fit and the AME fit for re-
searcher friendship network at time 2.

Model WAIC1 WAIC2 AUROCEs AUROCp,eq
CAME 504.37 594.10  0.9983 0.860
AME  529.19 629.08 0.9991 0.834

statistics. It can be seen that CAME better captures network-level transitivity,
reciprocity and actor-level transitivity. Similar conclusions are drawn for network
observed at time 2, as shown in Figures 4.23 and 4.24.

To compare the distribution of actor-level transitivity estimated by CAME and
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that estimated by AME, Figures 4.25 and 4.26 include the posterior distributions
of the mean and variance of actor-level transitivity from both CAME (first column)
and AME (second column) for networks at two time points respectively. It can
be seen that the means of the actor-level transitivity implied by CAME are more
similar to the observed quantity (red horizontal line) than those implied by AME
at both time points. The variances of the actor-level transitivity implied by CAME

are slightly less similar to the observed quantity than those implied by AME.
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Figure 4.21: Posterior predictive checking based on network statistics density, tran-

sitivity, reciprocity, in-degree, out-degree and actor-level transitivity

from the CAME fit for researcher friendship network at time 1.
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Figure 4.22: Posterior predictive checking based on network statistics density, tran-

sitivity, reciprocity, in-degree, out-degree and actor-level transitivity

for the AME fit for researcher friendship network at time 1.
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Figure 4.23: Posterior predictive checking based on network statistics density, tran-

sitivity, reciprocity, in-degree, out-degree and actor-level transitivity

from the CAME fit for researcher friendship network at time 2.
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Figure 4.25: Posterior predictive checking based on the mean and variance of actor-
level transitivity from the CAME fit (first column) and the AME fit
(second column) for Researcher Friendship network at time point 1.
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Figure 4.26: Posterior predictive checking based on the mean and variance of actor-
level transitivity from the CAME fit (first column) and the AME fit
(second column) for Researcher Friendship network at time point 2.
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3. Spend-time Network. Figure 4.27 shows the sociogram of the spend-
time network and the two grades in the network are differentiated by different colors.
Under the CAME, the posterior mean of correlation pg, is 0.918 with 95% credible
interval (0.813,0.981); the posterior mean of correlation p,, is 0.992 with 95% cred-
ible interval (0.980,0.999). High positive value of estimated correlation parameter
pap indicates that the number of tie an actor sends out is highly positively related
to the number of ties this actor receives. A high value of estimated p,, implies that
the overall actor-level transitivity is very high.

Figure 4.28 plots the posterior means of Ul’s against U2’s and V1’s against
V2’s (by rows) from the CAME fit and the AME fit respectively (by columns). It can
be seen that U’s and V’s estimated from the CAME better represent the subgroup
structure than the estimates from the AME.

With regard to the goodness-of-fit and prediction accuracy, CAME again is
better performed than AME. Tables 4.11 shows the goodness-of-fit (WAICs) and the
prediction accuracy (AUROCPp,eq) from both models. It can be seen that WAICs
from CAME is always smaller than those from AME with about 120 in difference.

The prediction accuracy of CAME is 3.3% higher than that of AME.

Table 4.11. Goodness-of-fit measures for the CAME fit and the AME fit.

Model WAIC1 WAIC2 AUROCRy AUROCPp;eq
CAME 3148.62 3632.87 0.9972 0.879
AME  3264.12 3757.19 0.9975 0.851

Figures 4.29 and 4.30 provide plots to further compare the goodness-of-fit of

two models for the network observed at time 1 with regards to six network descriptive
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Spend-time Network

Figure 4.27: Network graph of the spend-time network across two grades (grades
differ by colors).

statistics. Both models failed to compare density and reciprocity, as well as many
actor-level quantities. However, the boxplots of CAME are closer to the observed
values than that of AME. Also, CAME better captures actor-level transitivities with
larger values.

To compare the distribution of actor-level transitivity estimated by CAME
and that estimated by AME, Figures 4.31 include the posterior distributions of the

mean and variance of actor-level transitivity from both CAME (first column) and
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Figure 4.28: The posterior means of U’s (first row) and V’s (second row) from
CAME fit (first column) and AME fit (second column) for the spend-
time network, after post processing U and V.

AME (second column). It can be seen that the mean of the actor-level transitivity
implied by CAME is more similar to the observed quantity (red horizontal line) than
that implied by AME. However, the variances of the actor-level transitivity implied

by CAME are less similar to the observed quantity than those implied by AME.
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Figure 4.29: Posterior predictive checking based on network statistics density, tran-
sitivity, reciprocity, in-degree, out-degree and actor-level transitivity
for the CAME fit.
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Figure 4.30: Posterior predictive checking based on network statistics density, tran-
sitivity, reciprocity, in-degree, out-degree and actor-level transitivity
for the AME fit.
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Figure 4.31: Posterior predictive checking based on the mean and variance of actor-
level transitivity from the CAME fit (first column) and the AME fit
(second column) for the spend-time network.
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Chapter 5: Discussions

Motivated by the gap in social network modeling literature, the present study
proposed a way to account for the heterogeneity of a third-order network dependency
structure, the actor-level transitivity. The present study attempts to achieve this
goal by adding a correlation structure between the sender-specific latent factor and
the receiver-specific latent factor in a latent factor model for social networks. The
main feature of latent factor models for social networks is the adoption of matrix
factorization in the form of a multiplicative term, UV, in which U is the sender-
specific latent factor and V is the receiver-specific latent factor. The proposed
latent factor model is named as the Additive and Multiplicative Effects model with
Correlation (CAME). This name follows the naming in (AME Hoff, 2018) that first
formally introduced UV into social network models.

A CAME with covariates under Bayesian framework has the following form:

mj=BXij+ai+b+UVitey i#jij€L...on  (50.1)
Yi; ~ Bernoulli(®(n;;))

B~ N(0,03)
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2
(ai7 bz) ~ NQ(O, Eab); Zab — Oq LabTa00b
LabTa0b O'I?

(Ui7 ‘/z) ~ Ngd((), Ip UZ Ip puouoy )
ID PuvOuOy ID (73

Oy Ohs Ty Toq ~ half —1(4,0,1)
Paby Puv ™~ LKJ(I)

€ij ~ N[0, 1]

where p,, specifies the correlation structure between U; and V;. The present study
explicitly investigated the influence of different values of p,, on the network struc-
tures of networks simulated from the CAME. Different p,, values influence transi-
tivity and reciprocity of the simulated network but do not impact network density.
As pyy increases from -0.8 to 0.8, the network structures that also increase are the
network-level transitivity and the mean of actor-level transitivity. The variance of
actor-level transitivity tends to increase as p,, increases in sparser networks and
this quantity does not change much across different p,,’s when network density is
high. The reciprocity in a network is higher when the absolute value of p,, is higher.
Also, the present study provides an explanation of the positive relationship between
puw and actor-level transitivity. The multiplicative effect UV} can be viewed as a
similarity measure of actors ¢ and j. The higher the similarity between two actors,
the higher probability of a tie between them. Giving the relative position between
U; and V}, U; and Vj, to be fixed in a latent space, increasing p,, will pull U; and

V; closer, which in turn make the position of U; and Vj, closer, i.e., the similarity

155



between i and k (Ul'V;) increases. Therefore the transitivity of actor j increases.
Ideally, the influence of correlation to actor-level transitivity will be more precise if
each actor j has its own p,,,;. To control model complexity and estimation difficulty,
the same p,, applies to all actors in the network.

The goals of the present study are 1) explored the feasibility and functionality
of the proposed method and 2) investigate what are the potential improvements
when the correlation structure is specified comparing to a latent factor model with-
out the correlation structure. There are three research questions relevant to the first
goal:

1. How does the proposed model perform under different levels of network
size, network density and different levels of p,, in terms of the mean squared error
of the probability of ties (M SEp) and the parameter’s coverage rates?

2. How does different priors (a weakly informative prior, an informative prior
including true value, an informative prior excluding true value) on o, and o, influ-
ence the model performance, with regard to coverage rates and goodness-of-fits?

3. What are the corresponding power of the CAME with covariates under
different network sizes, densities and p,,’s?

The second goal of the study leads to the following two research questions:

4. How do the inferences of the covariate effects from the CAME and the
AME differ in terms of coverage rate and absolute bias, both when the underlying
correlation is non-zero and zero?

5. Does the inclusion of the correlation improve the overall goodness-of-fit in

terms of AUROC, WAIC and PPC? Does the proposed model better capture actor-
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level transitivity level than the original AME model? How about the prediction
performance of the proposed model comparing to the existing model with regard to
AUROC?

The present study addresses the first three research questions with three sim-
ulation studies. These include a study of the parameter recovery (Simulation I), a
study of model sensitivity to the priors of the standard deviations of the latent vari-
ables (Simulation II), a study of the power of a CAME with covariates (Simulation
III). The fourth research questions is addressed in a simulation study that compares
model performance between the CAME with covariates and the AME with covari-
ates with data simulated from both models (Simulation IV), and the last research
question is addressed in both Simulation IV, as well as the analyses of three types
of real-world networks.

Model performance is evaluated via standard model evaluation methods in the
Bayesian methods literature, as well as evaluation methods that have been adopted
in the social network modeling literature. These includes parameter coverage rate
(CR), mean squared error of the probability of ties (M SEp), the area under the
receiver operating characteristic curve (AUROC), the widely applicable information
criteria (WAIC), as well as graphic posterior predictive checking (PPC).

A summary and discussion of the simulation studies are provided in detail in
the first section of this chapter. Then the results from real-world data analyses are
discussed. The applications of the proposed model, as well as limitations and future

directions, will also be discussed in the next two sections that follow.
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5.1 Discussion of the Simulation Results

The present study discusses simulation results in the following three perspec-
tives, the overall model performance of CAME, the influence of adding the correla-

tion structure, and the implications of the four goodness-of-fit measures.

5.1.1 The model performance of CAME

The parameter recovery of CAME with regard to the coverage rate are gen-
erally very good across all simulation conditions except for [y, o, and o, under
network size 100 and density 0.01. One reason could be that although the cov-
erage rates are calculated based on converged replications, but the percentage of
non-converging replications is high under network size 100 and density 0.01. The
coverage rate could be as equally good as in other settings if a higher percentage of
converged replications is obtained. An increase in coverage rate is often observed
when the network size increases. Also, the coverage rates of model parameters based
on a weakly-informative prior (half-t (4, 0, 1)) of the standard deviations of latent
variables are very similar to the coverage rates of parameters based on an informa-
tive prior that centers at the true standard deviations (I'"*(10,9)). Imposing an
informative prior that centers at a value far from the true value (I'"'(10,45)) sig-
nificantly reduces the coverage rates of corresponding model parameters, depending
on which standard deviations are using the incorrectly specified informative prior.
When T'"1(10,45) is specified for o, and o3, the coverage rates of pu, 04, 05, as

well as a;’s and b;’s are lower than under the other two priors; when I'"1(10,45) is
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specified for o, and o,, the coverage rates of p,, 0., 0., as well as U;’s and V;’s are
lower than under the other two priors. In estimation of the CAME with Bayesian
methods, longer MCMC chains are needed to reach convergence for networks with
larger size and lower density.

For a CAME with a node-level covariate, network size of 20 is enough to
obtain a power above 0.8 when the covariate effect is at the medium level 0.9, across
various levels of network density and p,,. The empirical power under network size 50
is around 0.5 and a larger network size is required to achieve higher power when the
covariate effect is as small as 0.3. It is also observed that empirical power changes
in patterns as network density varies. Given the same network size, empirical power
increases as the network density increases. The empirical power could be more
informative if a larger number of replications instead of the current 100 replications
is used.

Throughout simulation conditions except when network size n is 100, all the
model parameters have good convergence and the Rs based on two MCMC chains
are generally below 1.05, which is below the critical value 1.10. This indicates
that when network size is equal to or under 50, parameter identification issue is
hardly noticeable. A stronger evidence may be provided if the same low R can be
obtained when three or more MCMC chains instead of two chains were run for each
simulation conditions. When the posterior draws of model parameters do not mix
well in multiple MCMC chains, the identification issue occurs.

The influence of the identification issue depends on the study of interest. If

the goal is to make prediction of ties or computing goodness-of-fit statistics from
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the likelihoods, parameter identification issue can be ignored. If the purpose is
to interpret model parameters, latent variables in particular, then it is desired to
make sure the unique solution is obtained. Specifically, if U/V;’s are identifiable
with other additive model parameters (8o, 1, a;, b;), and the goal of a study is to
obtain estimate of (3, or to obtain estimated probabilities of network ties that are
used to compute goodness-of-fit statistics, or to examine the coverage rate of these
additive model parameters, then the non-identification between U and V' can be
ignored. But if the goal is to use U or V' to visualize the latent positions of actors
in a network, a post-processing method described in Section 3.1.4.1 to obtain the
unique solution of U and V', when these two parameters are still not identifiable
after the three constrains mentioned in Section 3.1.4.1 were imposed. The present
study didn’t post-processing U and V' in simulation studies because the goal of the
simulation study is not to make inference from U or V and all model parameters
across simulation conditions have R’s smaller than 1.1. Also, the outcome measures
of simulation studies are computed based on the posterior distributions of Pj;’s
(=®n;;), in which the values do not change under post-processing.

The identification between U and V' is not resolved both empirically and the-
oretically in the literature. The three constrains imposed in the present study only
reduce the chance that parameter identification problem could occur by restricting
possible values the parameters could take. Therefore, the interpretation of addi-
tive model parameters should be done with caution. Also, there is no established
method to empirically test whether the identification issue occurs in model estima-

tion. In theory, if the mean of each additive latent components in the model is set
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to zero, these additive latent components are identifiable (Bollen, 2002). But the
present study only imposes a weak restriction of this type to parameters by letting
the mean of the prior distribution of each latent variable to be zero. The application
of a stronger restriction will be investigated in future studies. The present study
uses R’s smaller than 1.1 as a criterion to determine whether post-processing of U
and V is needed, with the purpose to obtain reasonable point estimates of U and V
based on posterior draws from combined multiple MCMC chains. This criterion is

only a necessary condition for identifying parameters, not a sufficient one.

5.1.2 The impact of adding the correlation structure

For simulated networks with underlying non-zero correlation p,,, fitting an
AME and a CAME do not provide statistically significantly different parameter
estimates, regarding to the coverage rate and absolute bias based on the posterior
mean. The same applies to networks simulated from AME, i.e., p,, = 0.

However, there are statistically significant differences in goodness-of-fit as in-
dicated by M SEp, WAIC, and W AICy when the underlying p,, is not zero. A
CAME provides statistically significant better fits than an AME across various levels
of covariate effects i, correlation p,,, network density and network size, while the
differences of the goodness-of-fit statistics between two models are not statistically
significantly different from zero when networks are simulated under p,, = 0. There-

fore, the present study recommends to always include the correlation structure.
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5.1.3 Implications of goodness-of-fit measures

Four goodness-of-fit measures are reported in the present study, MSEp, AUROCE,
WAIC, and WAIC5. Except for AUROCE, a smaller value indicates a better fit.
A larger value in AUROCE, indicates a better fit. These four measures do no al-
ways tell the same story, or change in the same way as other manipulated factors
change. But some consistency can still be found. With regard to model selection,
MSEp, WAIC; and W AIC, can select the correct model across varying manipu-
lated factors, especially when the true p,, is very high. When the true correlation
is zero, M SFEp favors AME half of the time and WAICs favors AME more than
half of the time, although the mean differences of WAICs between two models are
not significantly different from zero. But AU ROCg, always favors the misspecified
model.

Another finding is that the four measures react differently to prior specifica-
tions. All the measures have similar values under a weakly-informative prior and
a correctly specified informative prior. The MSEp and the AUC ROCE,; indicate
poorer goodness-of-fit under incorrectly specified informative prior than under either
a weakly-informative prior or a correctly specified informative prior, while W AICY
and W AICy show the opposite information. This is because WAICs tends to be
smaller under completely informative prior than under a prior as informative as the
data or a flat prior. Therefore, the present study do not recommend the use of
WAICs to select priors.

In conclusion, M S Ep is the most robust goodness-of-fit measure, no matter the
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purpose is for model selection or prior selection. The present study recommend using
MSFEp and WAICs in model selection and do not recommend AUROpg,; for this
purpose. While to decide the proper prior distribution, the current study advocate

MSEp as well as AUROCEg.

5.2 Discussion of the Real-world Data Analysis Results

Throughout these three real-world networks, the CAME always provides better
goodness-of-fit than the AME with regard to WAICs, and better prediction accuracy
with regard to AUROCp,.q based on five-fold cross validation. AUROCE tells
the opposite story, which is the same as were observed in simulation studies. The
estimated p,,’s in all networks have very high posterior means, ranging from 0.918
to 0.974, although the network descriptive statistics of these networks are much
more different. Also, there is no positive correlation between the posterior means
of pu, and the three relevant descriptive statistics, mean of actor-level transitivity,
variance of actor-level transitivity, and reciprocity. The comparison of p,,’s across
networks with different size and density is not feasible because both the network
size and density affects the range of the values of descriptive statistics for networks
generated from CAME.

Moreover, a large p,, actually represent a wide range of values of the network
descriptive statistics, including the mean of actor-level transitivity, the variance of
actor-level transitivity, as well as reciprocity, especially for networks with smaller

size (see Figures A.7,A.8,A.9). Therefore, p,, cannot be used as a summary quantity
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to compare the distribution of actor-level transitivity across different networks. The
high correlation between these two latent factors may also be an indicator that a
single latent factor as in Hoff (2005) is good enough.

Although the interpretability of p,, is not good in real-world data examples,
but adding this correlation structure still brings benefits to model fitting, with
regards to both the goodness-of-fit and tie prediction. The CAME provide better
goodness-of-fit to data mostly via better capturing the network-level transitivity,
reciprocity and mean of actor-level transitivity. Also, the CAME always provides
better tie prediction accuracy than the AME. One caveat is that the CAME does
not capture the variance of actor-level transitivity as equally good as AME because
CAME tends to increase the variance of actor-level transitivity, the same as the case
in simulated networks.

As explained in Section 5.1.1, when U or V is used to visualize a network, post-
processing of these two parameters are needed when the potential scale reduction
factor (}?i) is larger than 1.1. The visualizations of network subgroup structures
are provided for both the Sampson’s positive-relation network and the spend-time
network in the present study. In Sampson’s network, the highest R among all
model parameters is 1.002. Post-processing is not needed because the posterior
distributions of U or V' from multiple MCMC chains converge to a same distribution
either way and the posterior mean based on combined MCMC chains can be used
as a point estimate of U or V. In spend-time network, the Rs of the majority of U;’s
and Vj’s are above 1.1, while the Rs of other model parameters (except for o, and

o, which are related to U;’s and V;’s) are below 1.1. Therefore the post-processing
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on U;’s and V}’s is needed to make sure the posterior means of U and V' summarized
from multiple chains are reasonable. The same as in simulation studies, the post-
processing procedure only impact the visualization of network structure based on U
or V and dose not change other results (other model parameters, GOF statistics and
AUROC) because the posterior draws of the inner product term U/V}’s do not change
under post-processing. In Appendix A, Figure A.14 shows the estimated U and V
before post-processing. Comparing to the U and V after post-processing (Figure
4.28), the boundary of the two subgroups before post-processing is less clear, but
the corresponding U and V before post-processing better represent latent position

of actors in a network.

5.3 Applications of CAME

The proposed model can be applied to a broad types of networks with different
degrees of variation in actor-level transitivities. One feature of social networks is that
larger sized networks are often very sparse, i.e., are of low network density. Along
with the sparsity property, wider ranges of actor-level transitivity in sparse networks
are often observed than in dense networks. The correlation structure between U and
V' in the proposed model accounts for the variation, or heterogeneity, in actor-level
transitivity for sparse networks in the way that as the correlation p,, increases, the
variation in actor-level transitivity increases. For dense networks, the influence of
Pup ON the variance of actor-level transitivity is less obvious, but p,, still positively

influences the average value of actor-level transitivities in a network.
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It is shown in simulation studies that CAME provides significantly better fits
to networks with different levels of variation in actor-level transitivity than an AME
that does not specify the correlation structure between U and V. It is also shown in
the real-world data example that CAME provides better prediction accuracy than
an AME, as well as better model-data fit.

The proposed model also has the potential to capture multiple network de-
pendency structures and provide us equal or better performance when comparing
to existing comparative models that specialize in capturing one of the network de-
pendency structures. As was shown in the real-world data example which has both
high transitivity and subgroup structure, CAME provides the best model-data fit
as well as the best prediction accuracy even though models that specially designed
for networks with subgroup structure are included in comparison.

Furthermore, in addition to the effectiveness in social network analysis, the
proposed method which incorporates the dependency structure between U and V
can be potentially broadly applicable, which is also the motivation for our future re-
search. The reason is that the multiplicative effect U’V as a general matrix factoriza-
tion method potentially has broad applications in many other areas, and especially
in modern big-data-driven areas which arises because of the value of unstructured
data (e.g., text, images, voice, or other multi-media data types). For example, in
recommender systems researchers are interested in the interaction between users
and items; in natural language processing, researchers formulate the relation be-
tween documents and topics; and for anomaly detection, practitioners care about

when and where anomalies would be observed in the recording videos and images
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which are typically stored in matrices. Therefore,

5.4 Limitations and Future Directions

Although the present study conducted simulation studies to evaluate the op-
erating characteristics of the proposed model and compared CAMEs with AMEs
in a variety of conditions, there are several aspects of the study that need further
investigation. The first limitation is that the present study didn’t explore other
types of covariates in the evaluation of the impact of correlation structure on the
covariate effects. The current study found that the node-level covariate effect is not
influenced by different values of p,,, although p,, affects the prediction accuracy
and goodness-of-fit measures. One possible reason could be that the node-level co-
variate does not contribute to the explanation of third-order dependency. In future
studies, covariates that relate to third-order dependency needs to be found and eval-
uated. A possible further investigation could be the inclusion of a covariate with
a random effect in which the covariate effect varies in different groups. It is hoped
that adding the correlation p,,, improves the group classification in a network, which
hence improves the inference on the covariates.

The second limitation is that the present study didn’t evaluate the community
detection performance of the proposed model. The literature suggests that the
latent factor models have equal or better performance in both detecting subgroups
and capturing transitivity than other latent variable models for networks. It is

interesting to evaluate the influence of the correlation p,, on a model’s classification
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accuracy of subgroups in networks in future studies.

The third limitation relates to model identification. Currently, identification
problem between U and V is addressed by post-processing posterior draws of U and
V to find a unique set of U and V. But this approach does not completely solve the
identifiability issue. A potential future direction is to formulate theories to system-
atically address the identifiability issue in U and V', which hinders the interpretation
of the latent factors. A related work under the item response theory framework has
been done by Chen, Li, and Zhang (2019). With a fully organized identifiability
theory, we will be able to not only estimate latent factors for individuals in our
social networks, but also provide confidence intervals and diagnostic principles to
make further statistical inferences regarding individuals’ behaviors. In addition, a
stronger restriction on a; and b; will be used in future studies, via forcing the sample
means of a; and b; to be zero at each iteration to resolve the identification between
a; and b;, as well as to alleviate the identification issue between a; + b; and U/ V.

The fourth limitation is that the present study need more comprehensive ex-
ploration of the prior choices on the standard deviations of the latent variables.
In the currently study, a weakly informative prior, an informative prior centers at
truth and an informative prior that does not include true value were fit to simulation
networks. In future studies, more types of priors will be explored, non-informative
prior or informative prior that does not include true value but centers very close to
the true value for instance.

Lastly, the MCMC algorithm used in the present study is not scalable to large-

scale networks. Other inference method such as EM or VBI will be developed in

168



future studies.

In conclusion, the contributions of this work to the literature are providing an
understanding of the performance of an AME model with a correlation structure,
as well as an exploration of the differences and similarities between an AME and a
CAME under different network size, network density and different correlation values.
Also, the consistency of several goodness-of-fit measures are examined. Based on
the current study, researchers may want to specify the correlation structure in an
AME model in the first place, no matter the purpose is to predict network ties or
to have a better model-data fit. The measure MSFEp is always recommended in
both model selection and prior selection, and WAICs can also be used in model
selection since it factors in the complexity of the model. With regard to model
estimation, researchers should run more than 10,000 iterations in order for networks
with size 100 to converge under a weakly-informative prior; with regard to priors
of the standard deviations of the latent variables, the prior distribution should be
wide enough to cover values close to zero, but also with very low probabilities at
large values for a faster convergence of the MCMC chains; with regard to empirical
power, a minimum network size of 20 is required to achieve a power around 0.8 for
a medium effect size, and more than 50 actors are needed in a network to achieve a

power higher than 0.5 for a small effect size.
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Appendix A: Supportive documents
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A4 Network statistics under CAME: 5y + U/V; + a; + b; + €;;
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Simulate U;; and Vj;

from a multivariate normal distribution with variances equal to 1 and
covariance equal to py,. Do the same for Uy and V3. n=20. The
breaks of each histogram is 50.
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A.5 The use of half-t distribution as priors for standard deviations
Conclusion:

e 1. Stan manual suggested to use t(4,0,1) as a weakly informative prior when

half-t distribution is used for variances.

e 2. Under t(4,0,1), the variances (actually the standard deviation are estimated
in the model) needs longer iteration to mix in 2 chains comparing to IG(10,11).

(3000 iteration vs 12000 iteration in each chain)

e 3. For Sampson’s data, IG(10,11) yields much better group structure (that was
represented by U, V) than t(4,0,1). Also, the parameters (especially variances

and U,V) mixed faster under 1G(10,11) than t(4,0,1).
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A.6 Trials on the identification problem

A6.1 Fix B

Note: Dr. Sweet thinks the traceplots of 5y and (; is not identified: the
posterior means should be right on the true value with little deviation. She suggested
to fix [y to a value of my own choice, and to relax the prior on the variance. I
compared the traceplot of 5; between estimating [, and fixing [y at true value,
while letting the prior of the variances to be t(4,0,1), no difference of the posterior
mean is found. See Figures A.11 and A.12.

Conclusion: Because fixing [, does not improve the estimation of (3, the

current study will continue estimating [.

A.6.2 Constrain columns of V to be unit vectors

e In simulation, with t(4,0,1) as the prior, constrain columns of V to be unit
vectors yields much better mixing of o, and o, than the case without such
constrain. But the estimation of other parameters (8o, 81, Pab,s Puvs Ta, Op) are

equally good (see Figures A.11 and A.13).

e In Sampson’s data, the group structure based on U or V is better under prior

IG(10,11) than under t(4,0,1) or constrain V to be unit vectors.

e In Sampson’s data and friendship data, all parameters including U,V mixed

in two chains regardless of the prior is IG(10,11) or t(4,0,1), or unit vector.
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Figure A.11: Traceplots of parameters when the priors of the SDs (04, 04, 04, 0,) is
t(4,0,1). By is estimated.
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Figure A.12: Traceplots of parameters when the priors of the SDs (0, 04, 04, 0y) 18

t(4,0,1). B is fixed at true value.
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Figure A.14: The posterior means of U’s (first row) and V’s (second row) from
CAME fit (first column) and AME fit (second column) for the spend-
time network, before post processing U and V.
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Appendix B: Codes

A CAME with node-level covariate, data simulation and model fitting:

1 scode="
2 dataf{
3 int<lower=0> N; //network size
4 int<lower=1> D; //latent feature dimension
5 int<lower=0> Y[N,N]:;
6 real X[N]:
7
8 }
9
10 parameters{
11 real betaO;
12 real betal;
13 vector[2] UVd1([N]:
14 vector[2] UVd2([N]:
15 cholesky factor_ corr[2] LcorrUV;
16 vector<lower=0>[2] sigmauv;
17 vector[2] ab[N];
18 cholesky factor_ corr[2] Lcorrab;
19 vector<lower=0>[2] sigmaab;
20 real eta[N,N];
21 }
22
23 transformed parameters{
24 real Eeta[N,N];
25 for(i in 1:N){
26 for(j in 1:N){
27 if(it=3){
28 Eeta[i,j]l=betaO+betal*X[i]+ab[i,1]+ab[j,2]+0Vd1[i,1]*0Vdl[j,2]+0Vd2[i,1]*0Vd2([j,2]:
29 }
30 }
31! }
32 }
33
34 model {
55 //Priors
36 betalO~normal (0,10) ;
37 betal~normal (0,10) ;
8 ab~multi_normal cholesky(rep_vector(0,2),diag pre multiply(sigmaab, Lcorrab)):
39 sigmaab~student_t(4,0,1);
40 UVdl~multi_normal_ cholesky (rep vector(0,2),diag pre_multiply(sigmauv, LcorrUV)):
41 UVd2~multi_normal_ cholesky (rep_vector(0,2),diag pre multiply(sigmauv, LcorrUV)):
42 //0Vdi[,1]~normal (0,sigmauv[1l]) ;
43 //0Vd2[,1]~normal (0,sigmauv([1]) ;
44 //0Vdli[,2]~normal (0,sigmauv([2]) ;
45 //0vVd2[,2]~normal (0,sigmauv[2]) ;
46 sigmauv~student_t(4,0,1);
47 for(i in 1:N){
48 for(j in 1:N){
49 if(i'=j) {eta[i,j]~normal (Eeta[i,j],1):
50 }
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51
52
53
54
55
56
57
58
59
€0
61
62
63
64
€5
€66
67
€8
€9
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

}

}

Lecorrab ~ 1kj_corr_cholesky (1) ;
LecorrUV ~ 1kj_corr_cholesky (1) ;
//Likelihood

for(i in 1:N){

for(j in 1:N){

if(ir=3){

Y[i,j]l~bernoulli (Phi(eta[i,j])):
}

}
}
}

generated guantities{

matrix[2,2] UVcorr;

matrix([2,2] abcorr;

real P[N,N]:;
UVcorr=multiply lower_ tri_self transpose (LcorrUV):;
abcorr=multiply lower_ tri_self transpose(Lcorrab) ;
for(i in 1:N){

for(j in 1:N){

if(ir=3){

P[i,3j]=Phi (eta[i,3])’
}

if(i==j){

P[i,3]=0;

}

}

}

}

library(rstan)

rstan options(auto_write = TRUE)
options (mc.cores = parallel::detectCores())

library (mvtnorm)

genY=function(sigmaa,sigmab,sigmau,sigmav,sigmae, rhoab,rhouv,n,D,beta0,betal) {

templ=rmvnorm(n,rep(0,2), matrix(c(sigmau”*2,sigmau*sigmav*rhouv,sigmau*sigmav*rhouv,sigmav*2),2,2))
temp2=rmvnorm(n,rep(0,2), matrix(c(sigmau”*2,sigmau*sigmav*rhouv,sigmau*sigmav*rhouv,sigmav*2),2,2))

U=matrix(0,n,D)
V=matrix(0,n,D)
U[,1]=templ[,1]:;U[,2]=temp2[,1]
V[,1]=templ[,2]:V[,2]=temp2[,2]

temp3=rmvnorm(n,rep(0,2), matrix(c(sigmaa”2,sigmaa*sigmab*rhoab,sigmaa*sigmab*rhoab,sigmab*2),2,2))

a=temp3[,1] ;b=temp3[,2]
X=rnorm(n,0,1)
Y=matrix(0,n,n)
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101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

P=matrix(0,n,n)
for(i in 1:n){
for( j in c(1:n)[-1]){
p=betalO+betal*X[i]+a[i]+b[j]1+t(U[i,])***V[j,]+rnorm(1,0,sigmae)
P[i,j]l=pnorm(p)
Y[i,j]=rbinom(1,1,P[i,3])
}
}
return(list (Y=Y, P=P,a=a,b=b,U0=U,V=V,betal=betal,betal=betal, X=X,
sigmaa=sigmaa,sigmab=sigmab,sigmau=sigmau,sigmav=sigmav,sigmae=sigmae,
rhoab=rhoab, rhouv=rhouv,n=n,D=D) )
}

rhos=c(-.8,-.6,-.4,-.2,0,.2,.4,.6,.8)
intcpt=c(-3,-2,-1.2) #n=20
betals=c(0.3,0.9,1.6)

n=20

betalno=1

dsno=1

rhono=1

job.id <- as.integer(Sys.getenv("PBS_ARRAYID"))
r=job.id

set.seed(r)

#Generate data
GENY=genY (sigmaa=1,sigmab=1,sigmau=1,sigmav=1,sigmae=1,
rhoab=0.2, rhouv=rhos [rhono] ,n=n,D=2 ,betal0=intcpt[dsno] ,betal=betals[betalno])
Y=GENYS$Y
n=GENYS$n
d=GENY$D
X=GENY$X

data=list (N=n,D=d, Y=Y, X=X)
parameters=c ("betal","betal","ab","UvVdl",h "UvVd2","UOVcorr", "abcorr", "sigmauv", "sigmaab","P")

fit=stan(model code = scode,data=data,pars=parameters,iter=12000,warmup=2000,chains=2,thin=1)

FIT=extract (fit)
Rhat=summary (fit,pars=c("betal0", "betal",6 "ab",6 "UvVdl",b "UOvVd2", "UVcorr", "abcorr", "sigmauv",b "sigmaab") ,
probs=c(0.025,0.975) ) $summary

#MSE
mse_p=c()
for(i in 1:n){
for(j in c(1:n) [-1]1){
mse_p=c (mse_p, (mean(FIT$P[,i,3])-GENY$P[i,j])"2)
}
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151 MSE_P=mean (mse_p)

152

1’53 #AUROC

154 P=FITS$P

=i mean P=apply(P,c(2,3) ,mean)

156 thres=seq(0,1,by=0.05)

157 K=length (thres)

158 TPR=rep (0,K)

159 FPR=rep (0,K)

160 n=dim(Y) [1]

161 for(k in 1:K){

162 FP=0

163 TP=0

164 estY¥Y=apply (mean P,c(1,2),function(x) x>thres[k])
165 for(i in 1:n){

166 for(j in c(1:n)[-1]){

167 if(Y[i,j]==1 & estY[i,j]==TRUE) {TP=TP+1}
168 if(Y[1i,3]==0 & estY[i,j]==TRUE) {FP=FP+1}
169 }

170 }

171 TPR[k]=TP/sum(Y)

172 FPR[k]=FP/ (n* (n-1) -sum(Y))

173 }

174 roc=cbind (FPR, TPR)

175 roc=roc[order (FPR),]

176 roc=roc[order(roc[,2]),]

177 1=1length (TPR)

178 lagx=diff (roc[,1])

179 lagy=diff (roc[,2])

180 AUC=sum (lagx*lagy/2+lagx*roc[-1,2])

181

182 #WAIC

183 P=FITS$P

184 n=dim(Y) [1]

185 ndraw=dim(P) [1]

186 ppd=array (1,dim=c(n,n,ndraw))

187 for(i in 1:n){

188 for(j in c(1:n)[-i]){

189 if(¥Y[i,j]1==1){ppdli,],]=P[,1,31}

190 if(Y[i,3]==0){ppd[i,],]=1-P[,1,3]}

191 }

192 }

193 1lppd <- sum(log(apply(ppd,c(1,2),mean)))

194 PWAIC1 <- 2*sum(log(apply(ppd,c(1,2),mean))-apply(log(ppd),c(1,2) ,mean))
195 PWAIC2 <- sum(apply(log(ppd),c(1,2),var))

196 WAIC1 <- -2%(lppd-pWAIC1)

L=ty WAIC2 <- -2% (lppd-pWAIC2)

198 FITSP=NA

199 save (GENY,FIT,Rhat ,MSE P,AUC,WAIC1,WAIC2,file=paste("Model7_halft401_ rho",rhono,"_ds",dsno,"_cov", betalno,
200 " n",n,"_rep",r,".Rdata",sep=""))
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