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Most of today’s software users interact with the software through a graphical user

interface (GUI), which constitutes as much as 45-60% of the total code. The correct-

ness of the GUI is necessary to ensure the correctness of the overall software. Although

GUIs have become ubiquitous, testing GUIs for functional correctness has remained a ne-

glected research area. Existing GUI testing techniques are extremely resource intensive

primarily because GUIs have very large input spaces and evolve frequently. This dis-

sertation overcomes the limitations of existing techniques by developing a process with

supporting models, techniques, and tools for continuous integration testing of evolving

GUI-based applications. The key idea of this process is to create three concentric testing

loops, each with specific GUI testing goals, resource usage, and targeted feedback. The

innermost fully automatic loop called crash testing operates on each code change of the

GUI software. The second semi-automated loop called smoke testing operates on each

day’s GUI build. The outermost loop called comprehensive GUI testing is executed after

a major version of the GUI is available. The primary enablers of this process, also devel-



oped in this dissertation, include an abstract model of the GUI and a set of model-based

techniques for test-case generation, test oracle creation, and continuous GUI testing. The

model and techniques were obtained by studying GUI faults, interactions between GUI

events, and why certain event interactions lead to faults. The continuous testing process

and associated techniques are shown to be useful, via several large experiments involving

millions of test cases, on both in-house and open-source GUI applications.
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Chapter 1

Introduction

Testing is widely recognized as a key quality assurance (QA) activity in the software

development process. Although research in testing has received considerable attention in

the last two decades [22], testing of graphical user interfaces (GUIs), which constitute as

much as 45-60% of the total software code [45], has remained until recently, a neglected

research area [32]. Because GUI software has become nearly ubiquitous, neglecting the

quality of GUI software has the potential to have a negative impact on all of today’s

software.

A software with a GUI front-end consists of two parts : (1) the underlying code that

implements the “business logic” and (2) the GUI front-end that facilitates user interaction

with the underlying code. A software user interacts with the GUI by performing events,

such as button clicks, menu selections, and text inputs. The GUI uses the input events

to interact with the underlying code via messages and method invocations. During GUI

testing, test cases, modeled as sequences of events are executed on the GUI and its output

is compared to an “expected output.” The goal of GUI testing is to reveal GUI faults

(defined as one that manifests itself on the visible GUI at some point of time during the

software’s execution).

Several researchers have exploited the event-driven nature of GUIs to develop auto-

mated model-based GUI testing techniques (e.g., AI planning [38], event-flow graph [32],
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complete interaction sequences [62]). However, these techniques have not been adopted

by GUI testers because of several problems: (1) the models are expensive to obtain (ex-

cept for event-flow graphs); they are typically created manually, (2) the number of per-

mutations of all possible GUI interactions (event sequences) with the user is enormous;

these techniques test the GUI for a small sub-space of user interactions; it remains unclear

whether testing this sub-space reveals any GUI faults, and (3) GUIs are typically devel-

oped using agile processes, which are known for their simple planning, short iterations,

and are driven by frequent customer feedback. It becomes expensive to update the models

and test artifacts (e.g., test cases, test oracles) during frequent software/GUI updates.

Moreover, because modern software is typically developed by multiple program-

mers, another GUI testing challenge largely ignored by existing techniques is that the

programmers are likely to “break” the GUI software during their local code updates.

Programmers are generally unwilling and, due to limited resources, unable to setup an

expensive GUI testing process for each update. If left undetected, the cascading effect

of these updates may lead to integration faults that cause substantial delays during GUI

integration testing.

The research presented in this dissertation overcomes the limitations of existing

techniques. Specifically, the contributions of this research include:


 the development of new cost-effective, automated GUI testing techniques that are

applicable to rapidly evolving GUI software,


 development of new GUI models that are inexpensive to obtain and maintain,


 demonstration of the fault detection effectiveness of the new techniques, and
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 development of a continuous GUI testing process that targets feedback to specific

developers.

The remainder of the chapter outlines the steps necessary for GUI testing and the

challenges that GUI testers face for each step, followed by a discussion of existing GUI

testing techniques and their limitations, and a high-level overview of the research pre-

sented in this dissertation.

1.1 What is a GUI?

Most of today’s software users interact with the software through a GUI. The user

typically uses a mouse and a keyboard to interact with GUI widgets. Widgets of a GUI

include elements such as windows, pull-down menus, buttons, scroll bars, text boxes, and

icons. The software user performs events on these widgets, such as clicking a button,

selecting a menu item, and typing in a text box. These events cause deterministic changes

to the state of the software that may be reflected by a change in the appearance of one or

more GUI widgets.

The important characteristics of GUIs include their graphical orientation, event-

driven input, the widgets they contain, and the properties (attributes) of those widgets.

Since GUIs may be used as front-ends to many different types of software applications,

the space of all possible GUIs is enormous. It would be extremely difficult to create one

model for all possible types of GUIs. Hence, to provide focus, this research models a sub-

class of GUIs. Specifically, the GUIs in this sub-class react to events performed only by

a single user; the events are deterministic, i.e., their outcomes are completely predictable.
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Testing GUIs that react to temporal and non-deterministic events and those generated by

other applications is beyond the scope of this research.

1.2 GUI Testing Process

To better understand the complexity associated with GUI testing, this section gives

an overview of its steps. Typically, GUI testing involves the following tasks.

1. Test case generation: A GUI test case is a sequence of events, e.g., button clicks,

menu selections, and text inputs. A tester generates test cases by enumerating se-

quences of GUI events either manually [57] or by using a model of the GUI [38].

General “common sense” guidelines (e.g., “each GUI function (print, file-open,

file-save) is tested at least once”) may be used to guide test case generation.

2. Expected output generation: The expected output is used to check the correctness of

the GUI during test-case execution. The tester specifies the expected output for each

GUI event either manually (e.g., via assertions) or by using formal specifications

[50]. The expected output may be in the form of screen snapshots, and window

positions, titles and contents.

3. Test case execution and output verification: Execution of the GUI’s test case is

done by performing all the input events specified in the test case and comparing

the actual GUI’s output to the expected output. An assertion violation and/or a

mismatch between the expected and actual output is reported as an error.

4



4. Coverage analysis: Once all the test cases have been executed on the GUI, cov-

erage criteria (e.g., “all program statements covered at least once,” “all branches

covered at least once”) are used to evaluate the coverage of the test cases. Testing

is considered complete once the coverage criteria have been satisfied.

Because GUIs are typically designed using agile processes and rapid prototyping

[46], the above steps may be executed multiple times during the GUI development process

to re-test it. Re-testing involves analyzing the changes to the layout of GUI objects,

maintaining the test artifacts, and rerunning the test cases. Test artifact maintenance may

involve selecting test cases that should be rerun, generating new test cases with their

associated test oracles, and deleting obsolete test cases (i.e., those that cannot be rerun on

the modified GUI).

The above process, as described, is “ideal.” However, as is the case with all testing

techniques, in practice the above steps present problems, which are described next.

1.3 Challenges of GUI Testing

First, it is difficult to generate test cases because the number of permutations of

interactions with a GUI is enormous in that each sequence of GUI events can result in a

different state, and a GUI event may, in principle, need to be tested in all of these states.

Consequently, the number of test cases required to test the GUI is very large.

Second, it is difficult to specify the expected output for a GUI test case. As is

typically the case with reactive software, an event in the test case may lead to an incorrect

state in which subsequent events cannot be executed. Execution of the test case must
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be terminated as soon as an error is detected. To reveal such problems, GUI test case

execution requires that verification and test case execution be interleaved. Hence the

expected output needs to be specified for each event in the test case. This is, of course,

a resource intensive task. Moreover, it is expensive to check the correctness of the GUI

after each event during test case execution.

Third, it is difficult to evaluate the adequacy of GUI test cases. Traditional adequacy

criteria are based on code. However satisfying these criteria does not necessarily imply

that problematic interactions between GUI events have been tested. New, specialized

criteria are needed for GUIs that evaluate the adequacy of tested GUI interactions.

Fourth, it is difficult to perform regression testing of GUIs. Because GUIs are

developed using agile processes, they are modified on a continuous basis thereby needing

frequent re-testing. Consequently, the previously generated test cases or test oracles may

become obsolete when testing the new version of the GUI. Regenerating new test cases

and test oracles is either done manually or with model updates (if using model-based

techniques); both are resource-intensive activities.

Finally, an orthogonal challenge is that, because modern software development typ-

ically involves multiple (geographically distributed) developers working on different parts

of the software, there is little direct inter-developer communication [54]. Almost all com-

munication is done via web-based tools such as CVS commit log messages, bug reports,

change-requests, and comments [11, 51]. Sub-groups within developer communities of-

ten work on loosely coupled parts of the application code [54]. Each developer (sub-

group) typically modifies a local “copy” of the code and frequently checks-in changes

(and checks-out other developers’ changes). Consequently, after making a change, a de-
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veloper may not immediately realize that the local change has inadvertently broken other

parts of the overall software code [30]. In such situations, the developer needs quick feed-

back of newly introduced faults, enabling quick fixes. If left undetected, the cascading

effect of these faults may lead to wasted debugging cycles during development and ex-

pensive quality assurance later. Moreover, intermediate fielded releases of the GUI have

questionable quality.

Several researchers have proposed new techniques to address some of the above

challenges, specifically for test case generation. A summary of the techniques and their

limitations is presented next.

1.4 Existing Approaches and their Limitations

The most popular GUI testing approach is to use semi-automated tools to do limited

testing [19, 63]. Examples of some tools include extensions of JUnit such as JFCUnit,

Abbot, Pounder, and Jemmy Module [2] to create unit tests for GUIs. Other tools include

capture/replay tools that “capture” a user session as a test case that can be later “replayed”

automatically during regression testing [25]. These tools facilitate only the execution of

test cases; creating and maintaining test cases is very resource-intensive.

Several researchers have developed techniques to automate some aspects of GUI

testing. In the work by Memon et al. [32,38], an automated GUI testing framework called

PATHS has been developed. PATHS uses a description of the GUI to automatically gener-

ate test cases and test oracles from pairs of initial and goal states by using an AI planner.

Although this approach is successful in automating test case generation, the output (i.e.,
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test cases) largely depends on the choice of tasks given to the planner, which may yield

an inadequate test suite. This approach is also resource-intensive because testers have to

manually create and maintain an “operators” file for the planner. Moreover, there is no

evidence showing that the test cases generated by PATHS are effective at detecting faults.

The other significant work on GUI testing is by White et al. [62, 64] who model

a GUI in terms of “responsibilities” (user tasks) and their corresponding “complete in-

teraction sequences” (CIS). A CIS is a sequence of GUI objects and selections that may

be used to complete a responsibility. Each CIS contains a reduced finite-state machine

(FSM) model, which is “traversed” to generate test cases [62]. This technique is very

resource-intensive because the test designer has to manually identify the responsibilities

and the associated CISs each time the GUI is modified. Moreover, there are no studies

demonstrating the fault detection effectiveness of the generated test cases.

Other researchers have developed techniques to address isolated problems of GUI

testing. For example, a variable finite state machine based approach to generate test cases

has been proposed by Shehady et al. [55]. Details of these techniques are presented in

Chapter 2. In summary, all of these techniques suffer from relatively similar problems.

They are all resource intensive, they address only one specific aspect of GUI testing,

the fault detection effectiveness of the test cases generated by these techniques has not

been demonstrated, and they handle the same (or in some cases weaker) class of GUIs

defined in Section 1.1. Moreover, whenever the GUI is modified, new test cases and

associated test oracles have to be recreated/regenerated to substitute the existing obsolete

ones. The agile nature of GUI development requires the development of new GUI testing

techniques that are themselves agile in that they quickly test each increment of the GUI

8



during development.

1.5 A New Continuous GUI Testing Process

The primary research contribution of this dissertation is a process with supporting

models, techniques and tools for continuous integration testing of GUI-based applica-

tions. The key idea of this process is to partition the GUI testing problem via concentric

testing loops, each with specific test criteria, GUI testing goals, resource usage, and tar-

geted feedback. This dissertation presents three loops. The innermost loop is executed

very frequently and hence is designed to be fully automatic. The goal is to perform a

quick-and-dirty, fully automatic integration test of the GUI software with a fixed time

interval and give immediate feedback to the developers. The second loop is executed

nightly/daily and hence is designed to complete within 8-10 hours; it allows some man-

ual intervention. The third, and outermost loop conducts comprehensive GUI integration

testing, may require significant manual effort, and hence is the most expensive. The con-

tinuous testing process takes the agile nature of GUI development into consideration. It

overcomes the limitations of other model-based techniques that require frequent manual

model updates.

An overview of one instance of this process is shown in Figure 1.1. In this partic-

ular instance of the concentric-loop-based process, the innermost loop executes a fully

automatic process called crash testing on each code check-in (e.g., using CVS) of the

GUI software [66]. The duration for crash testing is defined by the developer. Soft-

ware crashes (abnormal terminations) are reported back to the developer who initiated the
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check-in. Crash test criteria include covering the entire functionality of the GUI (via a

graph model of the GUI called the event-interaction graph described in Chapter 4) and de-

tecting crashes. The second loop executes a semi-automated process called smoke testing

operates on each day’s GUI build [30, 34, 41, 43]. It performs functional “reference test-

ing” (discussed in Chapter 2) of the newly integrated version of the GUI. As is typically

the case with reference testing, differences between the outputs of the previous (yester-

day’s) build and the new build are reported to the developers who contributed to the latest

build. Smoke test criteria also involve covering the entire functionality of the GUI; in

addition, it requires the detection of differences between two consecutive versions of the

software. Finally, the outermost loop executes a process (which may be manual with

supporting tools) called comprehensive GUI testing after a major version of the GUI is

available. Comprehensive GUI test criteria are specific to the goals of the organization

in which testing is being performed. In Figure 1.1, the small octagons represent frequent

CVS code check-ins. The encompassing rectangles with rounded corners represent daily

increments of the GUI. The large rectangle represents the major GUI version. The three

loops discussed earlier are shown operating on these software artifacts. In this disserta-

tion, the terms crash testing, smoke testing, and comprehensive GUI testing will be used

for the inner, intermediate, and outermost loops, respectively. Even though the work in

this dissertation has been shown for three loops, it may be extended to other loops.

Several techniques were developed as part of this research to enable the above pro-

cess. Each technique is a new research contribution of this dissertation and has been pre-

sented in the research literature [30,41–43,65–70]. First, a new GUI model that represents

potentially problematic event interactions is developed. This model is obtained by using
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Figure 1.1: Different Loops of Continuous GUI Testing

automated techniques that employ reverse engineering to eliminate manual work [35].

The model is then used to generate test cases, create descriptions of expected execution

behavior, and evaluate the adequacy of the generated test cases. Automated test executors

“play” these test cases on the GUI and report errors. Second, new test case generation

techniques quickly generate “crash” and “smoke” tests that execute very quickly. Third,

during smoke testing, which executes a form of reference testing, efficient test oracles

enable the process to complete in 8-10 hours. Fourth, new techniques assist develop-

ers/testers to make tradeoff decisions during comprehensive testing. Finally, the fault de-

tection effectiveness of all the techniques is empirically evaluated on several open-source

GUI subjects developed in-house and downloaded from SourceForge.

Another (implicit) contribution of this dissertation that has an encompassing effect

on all aspects of this research is the development of an infrastructure for experimentation

in GUI testing. This infrastructure was implemented as an extension of an existing tool
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called the GUI Testing frAmewoRk (GUITAR) and GUI subject applications for exper-

imentation. The GUITAR extension allowed the automatic generation and execution of

millions of test cases. Several subject applications were seeded with hundreds of artificial

faults and used for all the experiments discussed in this dissertation. They have also been

shared with other researchers who have used them for their experiments [44].

1.6 Structure of the Dissertation

The next chapter introduces relevant literature and related work. Chapter 3 provides

an overview of the continuous GUI testing process. Chapter 4 through Chapter 6 present

each GUI testing loop respectively, namely, crash testing, smoke testing, and compre-

hensive testing, and the techniques developed to support these loops. Finally, Chapter 7

concludes with a discussion of the merits of this research and possible future directions.
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Chapter 2

Background and Related Work

The goal of testing is to detect the presence of errors in programs by executing

the programs on well-chosen input data. An error is said to be present when either (1)

the program’s output is not consistent with the specifications, or (2) the test designer

determines that the specifications are incorrect. Detection of errors may lead to changes

in the software or its specifications. These changes then create the need for re-testing.

Testing requires that test cases be executed on the software under test and the soft-

ware’s output be compared with the expected output by using a test oracle. The input and

the expected output are a part of the test suite. The test suite is composed of tests each

of which is a triple �
���������������������������! "�#�%$� &�'�& &�)( , where ������������������� identifies the test,

���*�& &� is the input for that execution of the program, and $+ &�'�& &� is the expected output for

this input. The entire testing process for software systems is done using test suites.

Information about the software is needed to generate the test suite. This informa-

tion may be available in the form of formal specifications or derived from the software’s

structure leading to the following classification of testing.

Black-box testing (also called functional testing [7] or testing to specifications) is a tech-

nique that does not consider the actual software code when generating test cases.

The software is treated as a black-box. It is subjected to inputs and the output is

verified for conformance to specified behavior. Test generators that support black-
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box testing require that the software specifications be given as rules and procedures.

Examples of black-box test techniques are equivalence class partitioning, boundary

value analysis, and cause-effect graphing.

White-box testing (also called glass-box testing [7] or testing to code), as the name sug-

gests, is a technique that considers the actual implementation code for test case

generation. For example, a path oriented test case generator selects a program’s

execution path and generates input data for executing the program along that path.

Other popular techniques make use of the program’s branch structure, program

statements, code slices, and control flow graphs (CFG).

No single technique is sufficient for complete testing of a software system. Any

practical testing solution must use a combination of techniques to check different aspects

of the program.

Zhu et al. [71] provide a comprehensive survey of existing testing techniques. One

classification of techniques presented therein is based on the source of information used

to specify the testing criteria. This classification defines testing as either specification

based, program based, or interface based. Of interest to this research is the interface

based testing that specifies testing criteria in terms of the type and range of software

input without reference to any internal features of the program code or the specifications.

Interface based testing remains an open area for research.

Automated software testing research has received significant attention in the last

three decades. There are several books that describe the wide spectrum of techniques

available for automated testing [8, 15, 18, 20, 24, 49, 56]; it is impossible to summarize all
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the material here. The research presented in this dissertation develops new cost-effective,

model-based GUI testing techniques to realize the continuous GUI testing process shown

in Figure 1.1. The research spans the areas of GUI representation, test case generation,

test oracle creation, test coverage, regression testing, rapid feedback-based QA mecha-

nisms, and fault seeding. This chapter introduces relevant terms and existing approaches

used in these areas and provides pointers to additional sources of detailed information. It

should be noted that all existing GUI testing techniques, including ones developed in this

dissertation, handle the same (or sometimes weaker) class of GUIs defined in Section 1.1.

2.1 GUI Representation

Several researchers have developed different types of GUI representations for spe-

cific testing tasks. The GUI representation that is used as a starting point for this research

has been developed by Memon et al. [32]. Hence, it will be discussed in this section sepa-

rately; other representations will be discussed coupled with their specific techniques. The

representation consists of two parts: (1) the GUI’s state in terms of GUI widgets, their

properties, values, and the events that can be performed on the GUI and (2) the space of

all possible interactions with GUI. The remainder of this section presents an overview of

this representation.

2.1.1 GUI’s State

A GUI is modeled as a set of widgets , (e.g., label, form, button, text),

a set of properties - of those widgets (e.g., background-color, font, caption),
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State = {Align(Label1, alNone), Caption(Label1, “Files of type:”),
Color(Label1, clBtnFace), Font(Label1, (tfont)), WState(Form1, wsNormal),
Width(Form1, 1088), Scroll(Form1, TRUE), Caption(Button1, Cancel),
Enabled(Button1, TRUE), Visible(Button1, TRUE), Height(Button1, 65), …}

(a)

(b)

Figure 2.1: (a) Open GUI, (b) its Partial State

and a set of values . (e.g., red, 12pt, "GUI") associated with the properties. Each

GUI will use certain types of widgets with associated properties. At any point during

its execution, the GUI can be described in terms of the specific widgets that it currently

contains and the values of their properties.

For example, consider the Open GUI shown in Figure 2.1(a). This GUI contains

several widgets, two of which are explicitly labeled, namely Button1 and Label1; for

each, a small subset of properties is shown. Note that all widget types have a designated

set of properties and all properties can take values from a designated set.

The set of widgets and their properties is used to create a model of the state of the

GUI. The state of a GUI at a particular time � is the set / of triples 0�13254����76+��8:9�;#< , where

2=4?>@, , ��6A>B- , and 8:9C>@. . The state of the GUI of Figure 2.1 (a) is shown in

Figure 2.1 (b).

With each GUI is associated a distinguished set of states called its valid initial state
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set. A set of states /ED is called the valid initial state set for a particular GUI iff the GUI

may be in any state /F4G>H/FD when it is first invoked. The state of a GUI is not static;

events 0��JI , ��K , . . . , ���*< performed on the GUI are used to change its state. Events may

be stringed together into sequences. Note that not all combinations of events need to be

tested; only those that are allowed by the structure of the GUI are tested.

2.1.2 Event-flow Graphs

Memon et al. [38] model the space of all possible valid user interactions with the

GUI as an event-flow graph (EFG). More formally, an EFG for a GUI L is a 4-tuple � V,

E, B, I ( where:

1. V is a set of vertices representing all the events in L . Each 8M> V represents an

event in L .

2. E N V O V is a set of directed edges between vertices. Event �P6 follows �Q4 (or

equivalently �#6SR follows( �Q4 )) iff �T6 may be performed immediately after �U4 . An

edge 138+V7�%8+W�;X> E iff the event represented by 8:W follows the event represented

by 8�V .
3. B N V is a set of vertices representing those events of L that are available to the

user when the GUI is first invoked.

4. I N V is the set of events that invoke other windows.

Note that an event-flow graph is not a state machine. The nodes represent events in

the GUI (not states) and the edges represent the follows relationships (not state transi-

tions). An example of an EFG for the Main and Replace windows of the MS NotePad
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Figure 2.2: Example of an Event-Flow Graph

software is shown in Figure 2.2. Events (corresponding to each widget) are shown as

labeled boxes. The labels show a meaningful unique identifier for each event. Directed

edges show the follows relationship between events. For increased readability, only

some of the edges are shown. Sets of events are defined and listed in a Legend. For exam-

ple TopLevel is a set containing the events File, Edit, Format, View, and Help.

Similarly 11 is a set containing all the events in TopLevel and ReplaceSet. Note

that Editbox 0 and Editbox 1 in ReplaceSet represent the two events used to

edit the text boxes in the Replace window. An edge from Copy to 11 represents a number

of edges, from Copy to each event in 11 . According to this EFG, the event Cancel can

be executed immediately after the event Find Next; event Match case can be exe-

cuted after itself; however, event Replace cannot be executed immediately after event
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Cancel.

The concepts of events, widgets, properties, and values are used to formally define

a GUI test case. A GUI test case Y is a pair �Z/\[ , �:I ; ��K ; ]Q]�] ; �Q�^( , consisting of a state

/F[?>_/FD , called the initial state for T, and an event sequence �7Ia`T��K�`�]Q]�]Q`T�Q� such that �Q4
follows ��4cb&I , d^eM�feM� .

2.2 Test Case Generation

This section presents GUI test case creation/generation techniques partitioned into

two categories: (1) manual approaches and (2) model-based approaches; for each ap-

proach, the advantages and limitations are presented.

2.2.1 Manual Approaches

As mentioned Briefly in Chapter 1, there are several GUI testing tools used for

limited testing [19, 63]. Examples of tools include extensions of JUnit such as JFCUnit,

Abbot, Pounder, and Jemmy Module [2] that help testers to manually create unit tests for

GUIs, and capture/replay (record/playback) tools [25] that “capture” a user session that

can be “replayed” automatically during regression testing. These tools provide very little

automation [33], especially for creating test cases, as demonstrated next.

In order to test the GUI with unit testing tools, testers have to write JFCUnit test

cases to simulate various types of event activities. Figure 2.3 shows (a) a simple login

screen example that needs to be tested, and (b) part of a JFCUnit test case for this screen.

The test case consists of five parts: (1) specifying and writing the input to the text fields,
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(a)

(b)

public void testLoginScreen() {
...

// (1) type in "qing" into the login name textbox, and "whatever" to the password textbox
getHelper().sendString( new StringEventData( this, userNameField, "qing" ) );
getHelper().sendString( new StringEventData( this, passwordField, "whatever" ) );

// (2) click on "Enter" button
getHelper().enterCickAndLeave( new MouseEventData( this, enterButton ) );

// (3) waiting for response
DialogFinder dFinder = new DialogFinder(null);
dFinder.setWait(0);

// (4) login screen window is disposed 
showingDialogs = dFinder.findAll( loginScreen );
assertEquals( "Number of dialogs showing is wrong", 0, showingDialogs.size( ) );
assertTrue( "Login screen is showing still", !loginScreen.isShowing( ) );

// (5) main GUI window shows up
FrameFinder fFinder = new FrameFinder(null);
showingWindows = fFinder.findAll();
assertEquals( "Number of windows showing is wrong", 1, showingWindows.size( ) );
…

}

Figure 2.3: (a) A Simple GUI and (b) Example of a JFCUnit Test Case
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(2) hitting the Enter button, (3) waiting for a response from the GUI, (4) checking if the

login window is disposed, and (5) checking for the next expected window. This test case

is extremely simplified for illustration. As can be imagined, coding a more realistic test

case is extremely labor-intensive; the tester must predict several possible outcomes and

event permutations.

Some of the manual effort required to develop test cases may be reduced by us-

ing Capture/replay tools. These tools (also called record/playback tools) operate in two

modes: Record and Playback. In the Record mode, tools such as CAPBAK and Test-

Works [57] record mouse coordinates of the user actions as test cases (test scripts). In

the Playback mode, the recorded test cases are replayed automatically. The problem with

such tools is that because they store mouse coordinates, test cases break even with the

slightest changes to the GUI layout. Tools such as Winrunner [4], Abbot [3], and Rational

Robot [5] avoid this problem by capturing GUI widgets rather than mouse coordinates.

Although playback is automated, significant effort is involved in creating the test scripts,

detecting failures, and editing the tests to make them work on the modified version of

the software. Experience with GUI testing shows that a tester cannot use these tools to

develop a test suite that covers a significant portion of the GUI (an extremely resource-

intensive task) for continuous testing [32]. Test cases obtained from capture/replay tools

are very fragile and most of them become unusable after a few GUI modifications [32].

Test cases become unusable for the modified GUI either because the input event sequence

can no longer execute on the GUI or because the expected output stored with the test case

becomes obsolete.
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2.2.2 Model-based Approaches

Several model-based approaches have been used for GUI test case generation in-

cluding state-machines, AI planning, event-flow graphs, and genetic algorithms. They all

address the GUI testing problem for the same subclass of GUIs defined earlier in Sec-

tion 1.1. Each of these approaches is presented next.

State-machine based approaches: It is relatively easy to model a GUI with a

finite-state machine (FSM): each user action leads to a new state and each transition mod-

els an event. A path in the FSM represents a test case and the FSM’s states are used to

verify the software’s state during test case execution. Several FSM based models have

been used to generate test cases [9, 12, 17]. However, a major limitation of this approach,

which is especially important for GUI testing, is that FSM models have scaling prob-

lems when applied to GUI test case generation [53]. Slight variations such as variable

finite state machine (VFSM) models have been proposed by Shehady et al. [55]. These

variations help scalability but verification checks need to be inserted manually at points

determined by the test designer.

White et al. [62] model a GUI in terms of “responsibilities” (user tasks) and their

corresponding “complete interaction sequences” (CIS). A CIS is a sequence of GUI ob-

jects and selections that may be used to complete a responsibility. For each CIS, a reduced

FSM model is constructed. This FSM may be “traversed” to generate test cases. This

technique helps to address the scalability challenge of using FSM models to generate test

cases because the number of CIS sequences increases linearly with the size of the GUI.

However, the technique requires a substantial amount of manual work on the part of the
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test designer, who has to manually identify and maintain the responsibilities and associ-

ated CISs. Moreover, there are no studies demonstrating the fault detection effectiveness

of the test cases.

AI planning based approaches: Memon et al. [32, 38] have developed an auto-

mated GUI testing framework called PATHS that uses AI planning to generate test cases.

PATHS uses a description of the GUI to automatically generate test cases from tasks (pairs

of initial and goal states) by iteratively invoking the planner. First, a test designer defines

planning operators in terms of preconditions and effects. The test designer then describes

tasks by identifying a set of initial and goal states. Finally, PATHS generates a test suite

to achieve the goals.

While this approach is successful at automating test case generation, it has several

limitations: (1) there is no evidence showing that PATHS generates test cases that are

effective at detecting faults; (2) the test case generator is largely driven by the choice of

tasks given to the planner; a poorly chosen set of tasks will yield an inadequate test suite;

(3) the test oracle compares the expected and actual output once after each event, mak-

ing test execution very slow; (4) the planner uses an “operators” file, which is resource

intensive to create and maintain; (5) the coverage criteria used by PATHS require a pro-

hibitively large test suite; and (6) regression testing is performed by repairing test cases

that have become unusable for the modified GUI [39]; the fault detection effectiveness of

the repaired test cases has not been demonstrated. The associated test oracles need to be

re-created in some cases.

Event-flow graph based approaches: An EFG (described in Section 2.1.2) may

be used to generate GUI test cases. A straightforward way to generate test cases is to start
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from a known initial state of the GUI (e.g., the state in which the software starts) and

use a graph traversal algorithm to enumerate the nodes during the traversal of the EFG.

If the event requires text input, e.g., for a text-box, then its value is read from a database,

initialized by the software tester. A sequence of events �7I#`T��KU`�]Q]�]P`%�Q� is generated as

output that serves as a GUI test case. This straightforward approach works well in certain

situations. However, the number of event sequences grows very rapidly with length. It

becomes infeasible to generate and execute all possible event sequences beyond gh����i��kj
(i.e., number of events) (ld .

Genetic algorithm based approaches: Test cases have been generated to mimic

novice users [27]. The approach uses an expert to generate the initial path manually and

then uses genetic algorithm techniques to generate longer paths. The assumption is that

experts take a more direct path when solving a problem using GUIs whereas novice users

often take longer paths. Although useful for generating multiple test cases, the technique

relies on an expert to generate the initial test case. The final test suite depends largely on

the paths taken by the expert user.

2.3 Test Oracles

Once test cases have been generated, they are executed. A test oracle is a mech-

anism for determining whether or not the output from the GUI is equivalent to the ex-

pected output derived from the software’s specifications. Several researchers have dis-

cussed the difficulty of creating test oracles for programs that have a large volume of

output [14,16,60]; this is the case with GUI software, where each GUI screen is a part of
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the program’s output. A popular mechanism used as a GUI test oracle is based on refer-

ence testing [58, 59]. Actual outputs are recorded when the GUI software is executed for

the first time. The recorded outputs are later used as expected output for regression test-

ing. This is a popular technique used for regression testing of GUI-based software [61].

For example, testers may use capture/replay tools (discussed earlier) to assert specific

widgets and some values of their properties for reference testing.

The only work on automated GUI test oracles has been done by Memon et al.

[36, 39]. Figure 2.4 shows their design of the automated GUI test oracle. The oracle in-

formation generator automatically derives the oracle information (expected state) using

either a formal specification of the GUI or by using another version of the GUI software,

e.g., for reference testing. Likewise, the actual state (also described by a set of wid-

gets, properties, and values triples) is obtained from an execution monitor, which uses

techniques such as screen scraping [37] and/or querying to obtain the actual state of the

executing GUI. An oracle procedure then automatically compares the two states and de-

termines if the GUI is executing as expected. A mismatch between the actual and expected

states is called a GUI error.

Memon et al. have shown that the test oracle contributes significantly to test ef-

fectiveness and cost [36]. They create different types of oracles by varying the oracle

information and procedure. Four types of oracle information in terms of widget, active

window, visible windows, and all windows are created to represent the expected state of

the widget on which the current event is being executed, all widgets that are part of the

current active window, all currently visible windows, and all windows respectively. The

oracle procedure may be invoked as frequently as once after each event of the test case
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or after the last event. The limitation of their work is that the correlation between test

effectiveness and cost has not been studied.

2.4 Test Coverage Criteria

Test coverage criteria provide measurements of test quality. Testing is considered

complete once the coverage criteria have been satisfied.

The only coverage criteria for GUI testing have been presented by Memon et al.

[40]. These criteria are based on the EFG. Intra-component criteria are used to evaluate

the adequacy of tests on all the events in one window. Inter-component coverage criteria

are used to evaluate the adequacy of test sequences that go across different windows.

Intra-component criteria include event coverage, event-interaction coverage and

length- � event-sequence coverage. Event coverage requires each event in one window

(each node in the EFG) to be executed at least once. Event-interaction coverage requires

the interactions among all possible pairs of events in the window (each edge in the EFG)

to be executed at least once. Length-n event-sequence coverage captures the contextual
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impact on events; it requires all event-sequences of length equal to � (for values of �
from m to a predetermined number � ) be executed at least once. Event coverage and event-

interaction coverage are two special cases of length- � event-sequence coverage, where �
is m and d respectively.

Inter-component criteria consist of invocation coverage, invocation-termination cov-

erage, and inter-component length- � event-sequence coverage. Invocation coverage re-

quires that each GUI window be opened at least once. Invocation-termination cover-

age requires that each window be opened and immediately closed at least once. The

inter-component length- � event-sequence coverage requires testing all length � event-

sequences that start with an event in one window and end in another window. These test

coverage criteria are successful in guiding GUI test case generation/selection; the limi-

tation is that a test suite that satisfies these criteria for �n(po for a non-trivial GUI is

prohibitively large.

2.5 Regression testing

Regression testing is performed whenever modifications are made to either the soft-

ware implementation or specifications. Regression testing is done to provide confidence

that modifications have not adversely impacted the software’s quality. However, it is not

practical to test the modified software by rerunning all the test cases. Regression testing

involves reusing some of the results from prior test runs. The main decisions involved

are (1) which test cases to rerun, and (2) what new test cases to generate based on the

changes made to the software. Regression testing for GUIs is extremely difficult because
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the layout of GUI objects changes constantly, resulting in a large number of obsolete test

cases.

White [61] developed a Latin square method to reduce the size of the regression

test suite. The underlying assumption is that it is sufficient to check pairwise interactions

between menu items of the GUI; each menu item needs to appear in at least one test case.

This strategy seems promising since it too deals with GUI events. However, the technique

needs to be extended to GUI items other than menus.

White et al. [64] also extended their CIS (described in Section 2.2) to develop a

selective regression approach based on identifying the changed and affected objects and

CISs. Besides the significant amount of manual effort needed to identify responsibilities

and CISs for the GUI, this technique also requires the use of complex memory diagnostic

tools, such as Memory Doctor and WinGauge to assist in fault detection.

Memon et al. [39] have presented a new regression testing technique for GUIs,

which repairs test cases that have become unusable for the modified GUI. The first step is

to determine the usable and unusable test cases from a test suite after a GUI modification,

followed by identifying the unusable test cases that can be repaired so they can execute

on the modified GUI. The last step is to repair the test cases. The idea is to maintain test

cases rather than generate new ones since test cases generation is very time consuming

and tedious. However, the fault detection effectiveness of the repaired test cases has not

been evaluated.
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2.6 Rapid Feedback-based QA mechanisms

There are several rapid feedback-based mechanisms to help manage the quality of

evolving software developed by multiple developers. These mechanisms improve the

quality of software via continuous, rapid quality assurance during evolution. They differ

in the level of detail of feedback that they provide to targeted developers, their thorough-

ness, their frequency of execution, and their speed of execution.

Immediate-Feedback: For example, some mechanisms (e.g., integrated with CVS) pro-

vide immediate feedback at change-commit time by running select test cases, which form

the commit validation suite. Developers can immediately see the consequences of their

changes. For example, developers of NetBeans perform several quick validation steps

when checking into the NetBeans CVS repository.1 In fact, some web-based systems such

as Aegis [1] will not allow a developer to commit changes unless all commit-validation

tests have passed. This mechanism ensures that changes will not stop the software from

“working” when they are integrated into the software baseline.

Smoke Testing: Other, slower mechanisms include “daily building and smoke testing”

that execute more thorough test cases on a regular (e.g., nightly) basis at central server

sites. Daily builds (also called nightly builds) and smoke tests [26, 29, 48] have become

widespread [21, 52]. They have been used for a number of large-scale commercial and

open-source projects. For example, Microsoft used daily builds extensively for the de-

velopment of its Windows NT operating system [29]. The GNU project continues to

use daily builds for most of its projects. For example, during the development of the

1http://www.netbeans.org/community/guidelines/commit.html
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Ghostscript software, daily builds were used widely. During daily builds, a development

version of the software is checked out from the source code repository tree, compiled,

linked and “smoke tested” (“smoke tests” are also called “sniff tests” or “build verifi-

cation suites” [28]). Typically unit tests [52] and sometimes acceptance tests [13] are

executed during smoke testing. Such tests are run to (re)validate the basic functionality of

the system [28]. Smoke tests exercise the entire system; they don’t have to be an exhaus-

tive test suite but they should be capable of raising a “something is wrong here” alarm.

A build that passes the smoke test is considered to be “a good build.” As is the case with

all testing techniques, it is quite possible that problems are found in a good build during

more comprehensive testing later or after the software has been fielded. In smoke testing,

developers do not get instant feedback; rather they may be e-mailed the results of the

daily builds and smoke tests.

Continuous Testing: Another, still higher level of continuous QA support is provided

by mechanisms such as Skoll [31] that continuously run test cases, for days and even

weeks on several builds (stable and beta) of the evolving software using user-contributed

resources over the Internet. For example, the ACE+TAO is tested continuously by Skoll;

results are summarized in a web-based virtual scoreboard.2 All these mechanisms are

useful, in that they leverage multiple resources to detect defects early during software

evolution. Moreover, since feedback is directed towards specific developers (e.g., those

who made the latest modifications), QA is implicitly and efficiently distributed. However,

none of these mechanisms has been used for GUI testing.

2http://www.dre.vanderbilt.edu/scoreboard/

30



2.7 Fault Seeding

Fault seeding is a well-known technique used to introduce known faults into pro-

grams [23, 47]. During fault seeding, classes of known faults are identified, and several

instances of each fault class are artificially introduced into the subject program code at

relevant points to create fault-seeded versions. Test cases are then generated and exe-

cuted simultaneously on the fault-seeded versions and the original subject application. A

test case fails if there is a mismatch between the original software’s GUI state and the

fault-seeded version’s GUI state.

Note that using fault seeding is a popular way to simulate the process of fault de-

tection by a test case. In a real testing scenario, a tester creates a test case together with a

description of an “expected outcome” for the software. A software that does not execute

as expected fails on the test case; otherwise it passes. By using a “golden version” of the

software and fault-seeded versions, the creation of descriptions of “expected outcomes”

is side-stepped for each test case. A fault-seeded version that behaves exactly like the

golden version on an input is observationally equivalent to the original software; hence

the input (i.e., the test case) has been unable to “reveal the fault” that was seeded in the

code to create the fault-seeded version. The advantages and disadvantages of using fault

-seeding for this type of study are well-known [23,47]. Note that researchers have shown

that artificial faults are good representatives of actual software faults [6].
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2.8 Summary

This chapter presented an overview of existing techniques, some of which serve

as the foundation for the concepts developed in this dissertation. In particular, the EFG

concept is extended to construct event-interaction graphs (EIG), which serve as the basis

for “crash” and “smoke” test cases. The definition of GUI’s state in terms of widgets,

properties, and values, and the idea of reference testing are adapted to create efficient test

oracles for the smoke testing process. Ideas from rapid feedback-based QA mechanisms

are used throughout the continuous GUI testing process.
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Chapter 3

A Continuous GUI Testing Process

Figure 1.1 presented a high-level overview of the continuous GUI testing process

developed in this dissertation. This chapter provides additional details, presents criteria

for each loop, and describes the steps/activities developed to realize each testing loop.

3.1 Innermost Loop

The innermost loop is the most frequently executing process shown in Figure 1.1.

The goal of this loop is to create test cases that can quickly test major parts of the GUI

automatically without any human intervention within a predetermined time interval. More

specifically, the loop should use techniques to generate and execute test cases and oracles

that satisfy the following criteria.


 The test cases should be generated quickly on-the-fly and executed. The test cases

are not saved as a suite; rather, a throwaway set of test cases that require no main-

tenance is obtained.


 The test cases should broadly cover the GUI’s entire functionality.


 It is expected that new changes should be made to the GUI before the testing process

is complete. Hence, the process should be terminated and restarted each time a new

change is made. The test cases should detect major problems in the fixed time
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interval.


 As the GUI code may be changed by another developer before all the tests have

been executed, the process should ensure that all tests that cover the entire GUI are

executed over a series of code changes.


 The test oracle should be automated.

3.2 Intermediate Loop

The intermediate loop (shown in Figure 1.1) that executes on a daily basis is more

complex than the innermost loop and requires additional effort on the part of the test

designer. It also executes for a longer period of time. Moreover, the goal of this loop is to

determine whether the software “broke” during its latest modifications. More specifically,

the techniques used in this loop should satisfy the following criteria.


 The test cases should be generated and executed quickly, i.e., in one night.


 The test cases should provide adequate coverage of the GUI’s functionality. The

goal is to raise a “something is wrong here” alarm by checking that GUI events and

event-interactions execute correctly.


 As the GUI is modified, many of the test cases should remain usable. Earlier work

showed that GUI test cases are very sensitive to GUI changes [32]. The goal here

is to design test cases that are robust, in that a majority of them remain unaffected

by changes to the GUI.
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 The test suite should be divisible into parts that can be run (in parallel) on different

machines.


 The test oracle should be automated.

3.3 Outermost Loop

The outermost loop is the most expensive, and hence the least frequently executed

testing loop during GUI evolution. This loop largely depends on the resources that the

software companies/organizations are willing to spend, and the expertise of the develop-

ers/testers. Moreover, different companies/organizations may face different requirements

and budget spending plans. Recognizing these constraints for this loop, instead of devel-

oping new testing techniques, this dissertation will provide a set of guidelines that may

be used with all existing techniques to assist during the execution of this loop.

Because GUI development is iterative, valuable resources may be conserved by

employing a model-based approach for this loop.

3.4 Instantiating the Loops

Due to some of the criteria of the innermost loop (full automation), this dissertation

develops a new testing technique called crash testing that can be executed by the loop.

Crash testing is essentially a two-stage code commit with an automated GUI testing inter-

vention step. A developer who has made a change to a part of the GUI code “checks-in”

the changes. An instance of the crash testing process is automatically launched at the

server that hosts the code repository (in general, this could be a dedicated computer that
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is linked to the repository server). A reverse engineering technique [35] is used to au-

tomatically obtain a model of the GUI. This model is used to generate crash test cases,

which are then automatically executed on the newly modified GUI. “Software crashes”

are reported back to the specific developer who checked-in the changes along with the test

cases that caused the crash. The developer debugs the GUI and resubmits the changes.

Only the previously failed test cases are re-executed; if they pass, the code changes are

made permanent in the repository. If they fail, new crash information is reported to the

developer and the previous steps are repeated. Note that this process does not require any

manual intervention; it is fast and gives a very specific type of feedback to the developer

involved, i.e., whether the software crashed or not.

Crash test criteria include full coverage of an abstract model of the GUI called the

event-interaction graph; the test oracle detects only crashes. Details of the crash testing

process are presented in Chapter 4. An empirical study presented therein shows that the

crash testing process is efficient in that it can be performed automatically, and useful, in

that it helps to detect crashes. The feedback from crash testing is quickly provided to the

specific developer who checked in the latest GUI changes. The developer can debug the

code and resubmit the changes before the problems effect other developers’ productivity.

Similarly, due to some of the criteria of the intermediate loop, a form of reference

testing, called smoke testing is executed every night. Smoke testing is launched to ensure

that changes made to the GUI during a 24 hour period (this interval length is tunable) are

integrated properly. The smoke testing process is launched automatically; it employs a

reverse engineering technique (similar to the one used for crash testing) to obtain a GUI

model, which is used for test case generation. The previous version is used as a test oracle
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(a mechanism that determines whether a software being tested is executing correctly). As

test cases are executed automatically on the latest GUI version, its state after each event

is compared to the baseline and mismatches are reported. Although the process described

thus far is fully automatic, the mismatches (that are reported to all developers involved

in the latest changes) need to be examined manually to weed out false positives. False

positives are expected to exist because the software has been modified, leading to expected

changes between the new and baseline version.

Smoke test criteria also include full coverage of the event-interaction graph model;

in addition, it requires that differences between the latest and previous GUIs be reported.

Experiments involving smoke testing are provided in Chapter 5. Results of these exper-

iments show that smoke testing is effective at detecting a large number of GUI faults.

Testers have to examine the test results and manually eliminate false positives, which

may arise due to changes made to the GUI. The combination of smoke and crash testing

ensures that “crash bugs” will not be transmitted to the smoke testing loop. If not weeded

out earlier, such bugs lead to a large number of failed and unexecuted test cases, causing

substantial delays.

The outermost loop uses a collection techniques that are referred to as comprehen-

sive GUI testing. In general, the goal of comprehensive GUI testing is to develop and

execute a “thorough” test suite that looks for errors beyond crashes and differences be-

tween the latest and previous versions. In Chapter 6, tradeoffs between test case length,

test suite size and event composition are studied with the goal of designing a “good” com-

prehensive test suite. The event-driven nature of GUI software is exploited to determine

positions in test cases where test developers can insert assertions (for the test oracle) and
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Figure 3.1: Activities to Support Continuous GUI Testing

get maximum fault-detection effectiveness.

The activities described above to realize each testing loop are summarized in Fig-

ure 3.1. The dashed ovals are the activities that are performed by the developer, and are

hence resource intensive. Other activities are performed by automated tools developed in

this dissertation.
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3.5 Summary

This chapter described details of the criteria and processes needed to support the

continuous GUI testing process. The process consists of three concentric loops. Tech-

niques specific to each loop, crash testing, smoke testing, and comprehensive testing

were described. Crash testing operates fully automatically to detect crashes in the newly

checked-in updates; smoke testing tests the current GUI version against its previous ver-

sion on a daily basis; comprehensive testing executes a “thorough” test suite to look for

errors beyond crashes and differences between latest and previous versions. Details of

each process are presented in subsequent chapters.
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Chapter 4

Crash Testing

Crash testing is the most frequently executed process during continuous GUI test-

ing. The GUI is tested automatically every time a code change is made, The goal is not to

exhaustively test the GUI; rather, it is to quickly test the software for crashes by checking

that each GUI event and interactions between them work correctly. As the code may be

changed by another developer before all the crash tests have been executed, hence requir-

ing restarting of the process, a simple rotation-based scheme (described in Section 4.6) is

used to ensure that the entire GUI is tested over a series of code changes.

The criteria for crash testing (discussed in Chapter 3) present a number of chal-

lenges. One significant challenge is to find a small number of test cases (event interac-

tions) that cover the entire GUI, can be executed very quickly, yet are effective at detecting

faults in the software. Another challenge is to develop an automatic test oracle that detects

crashes without human intervention. The first challenge was handled by developing a new

model of the GUI called an event-interaction graph (EIG). This model was obtained by

empirically studying GUI faults and interactions between GUI events that lead to faults;

EIGs were then used for automated test case generation. The second challenge was han-

dled by developing a mechanism to determine whether the GUI software crashed during

the execution of a test case.

The remainder of this chapter presents a new concept called the minimized effective
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event context, details of a pilot study used for the development of the EIG model, and

application of the model to crash testing and evaluation on eight GUI-based applications.

4.1 Minimized Effective Event Context

The overall goal of developing the EIG model is to use it to generate potentially

problematic event sequences, i.e., test cases that reveal faults. This section takes the

first step to obtaining such a model by introducing a new concept called the minimized

effective event context (MEEC) of an event q . Intuitively, the MEEC of q is the shortest

(in terms of number of events) event sequence that needs to be executed before q detects

a GUI fault in a failed test case. Subsequent sections will empirically study the structure

of the MEEC and use it to create the new model called an EIG.

Given a test case �r/F[ , �JI ; ��K ; ]�]Q] ; �Q�s( (defined in Section 2.1.2) that has failed

at event ��4 , i.e., the expected and actual states mismatched immediately after ��4 was exe-

cuted, not all of ��4 ’s preceding events �JI#`�]�]�]P`T�Q4tb&I in the test case would contribute to the

failure, suggesting that some of these events may be removed. Because a failure would

lead to the debugging process that would ultimately cause the fault (F), i.e., the reason for

the failure, to be fixed, a failed test case will be referred to as having “detected the fault”.

In general, not all events may be removed since they are necessary to establish the context

in which ��4 detected the fault. Hence a subsequence �a6�`�]Q]�]Q`T��9 (for m^eZuvew13�yxlm+; and

1cu{z|m+;=e|}ve~13�vxMm+; ) of �JIa`Q]�]�]a`T�Q� ) is sufficient for ��4 to detect the fault. The resulting

test case would be ��/E[U�T�T6U`�]�]Q]Q`T��9:`T�Q4�( . Care must be taken that event �a6 can be exe-

cuted in the test case’s starting state /E[ , and �Q4 can be executed in the state /\9 resulting

41



from the execution of �+9 . The effective event context (EEC) of an event in terms of a test

case and a fault � detected by event �U4 is formally defined as:


 Definition: Given a test case � /E[U�T�:IT`T��K�`�]�]Q]Q`T�Q��( , the EEC of event ��4�>
0��:I#`%��KU`�]�]�]a`T�Q�*< that has detected a fault � is the pair 1�/\[Q�T�T6�`Q]�]�]a`T��9U; , for m�eZu�e
1h��xCmU; and 1cu�zZm+;Se�}?eH13�?x�m+; of �:I#`�]�]Q]Q`T�Q� such that �T6 can be executed in /E[
and ��4 can be executed in /E9 . �

Note that an event may have multiple EECs. The MEEC is defined as the shortest

EEC needed to detect the fault.


 Definition: Given a test case �Z/\[U�%�:I#`T��KU`�]�]Q]P`T�Q��( and a fault � that was detected

by an event ��4�>�0��:I#`%��KU`�]�]�]a`T�Q�*< , the MEEC of ��4 is the shortest EEC to detect the

fault � . �

It is difficult to guess the structure and length of MEECs for typical GUI test cases

and faults. In this chapter, a bottom-up approach is used to understand MEECs. In partic-

ular, a pilot study of real failed GUI test cases is conducted on several GUI applications,

the MEEC for each test case is extracted, and the characteristics of MEECs are used to

create EIGs. The study is described next.

4.2 Pilot Study - Understanding the MEEC

In this study, the following questions need to be answered:

1. How many event sequences is a user allowed to execute in a typical GUI-based

software application?
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2. Do GUI events interact? Is it sufficient to test each event once?

3. When a GUI test case (i.e., consisting of a sequence of events ��I#�T��KU`%����`�]�]�]P`T�Q� )
reveals a fault at event ��4 ,1 what is the role of the context established by preceding

events �:Ia`T��K�`%���U`�]�]�]P`T�Q4tb&I ? Which of the preceding events are actually needed for

fault detection?

4. What is the structure of the MEEC?

4.2.1 Study Procedure

The above questions are answered using the following process.

Step 1: Take different GUI-based software subjects.

Step 2: Artificially seed faults in them.

Step 3: Generate test cases; each test case is of the form �M/�[��T�:I#`%��KU`�]�]�]a`T�Q��( , where /F[
is the initial state of the GUI in which the event sequence �7Ia`T��K�`�]�]Q]Q`T�Q� is executed.

Step 4: Execute each test case on each fault-seeded version. A test case fails if there is a

mismatch between the fault-seeded version’s GUI state and the original software’s

GUI state. Record the event at which the mismatch was observed.

Step 5: For each test case ��/E[��T�:Ia`%��K�`�]�]�]P`T�Q�r( that failed at event ��4 , mMe���e�� ,

compute the shortest subsequence �+�3`Q]�]�]Q`%��9 , for }y�Z� , such that ��4 still fails on the

same fault-seeded version.
1Recall that the GUI test case is executed one event at a time; a fault may be detected during the

execution of one of the events.
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4.2.2 Step 1: Study Subjects

Several requirements had to be satisfied when selecting the subject applications.

First, access to the source code, CVS development history, and bug reports (for ora-

cle creation, described later) was needed. Second, the applications needed to be “GUI-

intensive,” i.e., ones without complex back-end code. The GUIs of such applications are

typically static, i.e., not generated dynamically from back-end data. Finally, the applica-

tions needed to be non-trivial, consisting of several windows and widgets.

The study subjects are part of an open-source office suite developed at the De-

partment of Computer Science of the University of Maryland by undergraduate students

of the senior Software Engineering course. It is called TerpOffice2 and includes Terp-

Word (a word-processor with drawing capability), TerpCalc (a scientific calculator with

graphing capability), TerpPaint (an imaging tool), TerpPresent (a presentation tool), and

TerpSpreadSheet (a compact spreadsheet program). They have been implemented using

Java. Table 4.1 summarizes the characteristics of these applications. Note that these ap-

plications are fairly large with complex GUIs. With the exception of TerpCalc, all the

applications are roughly the size of MS WordPad. The number of widgets listed in the

table are the ones on which user input events can be executed (i.e., text-labels are not

included). The LOC are the number of statements in the programs. The Help menu is

also not included since the help application is launched in a separate web browser. Most

of the code written for the implementation of each application is for the GUI. None of

the applications have complex underlying “business logic”. This property of the subject

2http://www.cs.umd.edu/users/atif/TerpOffice
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Subject Application Windows Widgets LOC Classes Methods Branches
TerpWord 11 126 4893 104 236 452

TerpSpreadSheet 9 159 12791 125 579 1521
TerpPaint 10 215 18376 219 644 1277
TerpCalc 1 85 9916 141 446 1306

TerpPresent 12 328 44591 230 1644 3099
TOTAL 43 913 90567 819 3549 7655

Table 4.1: TerpOffice Applications

applications is especially important for seeding GUI faults (discussed later) since almost

the entire code is for the GUI; there is no need to distinguish between GUI-code and

business-logic-code during fault seeding.

4.2.3 Step 2: Fault Seeding

Several issues need to be addressed when creating the fault-seeded versions. First,

care is taken so that the artificially seeded faults are similar to faults that occur in programs

due to mistakes made by developers. As defined earlier, a GUI fault is defined as one that

manifests itself on the visible GUI at some point of time during the software’s execution.

A history-based approach was adopted to seed GUI faults, i.e., “real” GUI faults were

observed and used from real applications. During the development of TerpOffice, a bug

tracking tool called Bugzilla3 was used by the developers to report and track faults in

TerpOffice version 1.0 while they were working to extend its functionality and developing

version 2.0. The reported faults are an excellent representative of faults that are introduced

by developers during implementation. The classes of faults are summarized next in one

short statement; the example of each class is provided in Table 4.2. Note that the row

3http://bugs.cs.umd.edu
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number in the table corresponds to the numbering below.

1. Modify relational operator ( ( , � , ( =, � =, ==, !=);

2. Invert the condition statement;

3. Modify arithmetic operator (+, -, *, /, =, ++, –, +=, -=, *=, /=);

4. Modify logical operator (&&, �t� );
5. Set/return different boolean value (true, false);

6. Invoke different (syntactically similar) method;

7. Set/return different attributes;

8. Modify bit operator (&, � , � , &=, !=, � =);

9. Set/return different variable name;

10. Set/return different integer value;

11. Exchange two parameters in a method;

12. Set/return different string value.

Fault
Type

Original Code Mutated Code

1 if (this.row > y.row) if (this.row < y.row)
2 if (newValue) if (!newValue)
3 prev = index+1; prev = index-1;
4 if (done || border == null || if (done && border == null ||
5 if(contentArea.closeDocument(true)) if(contentArea.closeDocument(false))
6 int rowLimit = model.getRowCount() - 1; int rowLimit = model.getColumnCount() - 1;
7 int style = Font.ITALIC; int style = Font.BOLD;
8 style |= Font.BOLD; style &= Font.BOLD;
9 buttonPanel.add(okButton); buttonPanel.add(cancelButton);
10 int size = 12; int size = 15;
11 tmp = data.substring(0, i2); tmp = data.substring(i2,0);
12 if(findString.equals("")) { return; } if(findString.equals(" ")) { return; }

Table 4.2: Classes of Seeded Faults

Second is to determine where the faults will be seeded in the code. The code of the

applications was partitioned by functionality into functional units. The functional units
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for each subject application are shown in Column 1 of Table 4.3. The names indicate the

roles of the functional units. The total number ( ��4t� 6 ) of opportunities for seeding each

type of fault (u ) in each functional unit ( � ) was then counted. The number of faults seeded

in each functional unit was proportional to the opportunities. The faults were seeded at

equal distances across the functional units, i.e., if the number of opportunities was � and

the number of seeded faults was � , then the faults were seeded approximately at every

( ���Q� ) opportunity. Table 4.3 shows the number of seeded faults per functional unit.

TerpPaint TerpWord TerpCalc TerpSpreadSheet Total
File Operation 32 35 2 14 83

Business Logic 36 52 61 85 234
Search/Find Function 0 22 0 4 26
Clipboard Operation 1 7 9 29 46
Preference Setting 131 83 128 65 407
OK/Cancel Dialogs 0 1 0 3 4

TOTAL 200 200 200 200 800

Number of Faults Seeded
Fun. Units

Table 4.3: Seeded Faults Classified by Functionality

Finally one common issue with GUI fault-seeding is that some faults will never be

manifested as failures on the GUI. Hence, a large enough number of faults is seeded so

that useful results are obtained even if some of them are not manifested. A total of 200

faults were seeded in each application. Only one fault was introduced in each version.

This model is useful to avoid fault-interaction. Four graduate students seeded the faults

independently. These students had taken a graduate course in software testing and were

familiar with popular testing techniques.
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4.2.4 Step 3: Test-Case Generation

To address Question 1, this step computes the total number (by length) of event

sequences that may be executed on the subject applications. The results are summarized

in Figure 4.1. The x-axis shows the length of the event sequence; the y-axis (logarithmic

scale) shows the number of sequences. This result shows that, for the subject applications,

the number of event sequences grow exponentially with length. It would be extremely

expensive to generate and execute all event sequences beyond gh����i��kj�(Zo .
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Figure 4.1: Total Number of Event Sequences

As the total number of potential event sequences (and hence the number of test

cases) is enormous, in this study, a reasonable subset was generated. Any process that

is used to select the subset may have an impact on the results of the study. Hence, to

minimize threats to external validity, a process that GUI testers commonly use in practice,

i.e., to generate test cases that cover each event at least once, was chosen.

An existing EFG-based approach was used to generate test cases for all applications.

In summary, for each subject program, the EFG is traversed from one event that can be
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executed in an initial GUI state /\[ ; a list of events that may be executed in /\[ are created,

and one event is chosen. The event sequence becomes iteratively longer by selecting

another event using the follows relationship encoded in the EFG’s edges. Whenever

possible, events that had not already been used were selected.

The above algorithm is able to generate a large number of long test cases that con-

tain all the events in the software. All these test cases were executed on the fault-seeded

versions, storing only those that failed, and discarding the rest. As expected, not all these

test cases failed. In all, 1119 test cases failed. The longest of these test case had 50 events

and the shortest one had 1 event.

Figure 4.2 shows the event distribution of all the test cases. The figure shows four

column graphs; the x-axis shows all the events in each application; the y-axis shows the

number of times a particular event was executed by a test case. It is found that the test

cases had good event coverage.

Step 4: Test Execution

A test executor was designed to executed the entire test suite automatically on the

subject applications and all the fault-seeded versions. It performed all the events in each

test case and compared the fault-seeded version’s GUI state with the original software’s

GUI state. Events were triggered on the GUI using the native OS API. The test cases

executed on four machines (Pentium 4, 2.2GHz, each with 256MB RAM) simultaneously

for more than a week. Although much of the execution was automated, some machines

(and test scripts) had to be restarted because of problems with the Java virtual machine
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Figure 4.2: Event Distribution

(JVM).

It was observed that there were many complex interactions between events in the

subject applications. If a test case failed at event �U� for fault-seeded version ��� , �Q�
did not cause a failure for the same fault-seeded version ��� in many other test cases.

Moreover, if ��� occurred in test case ��  multiple number of times, it caused test case

failure for ��� at only one point. This observation showed that the context of an event

seriously affected its ability to reveal a fault. This data is summarized into 4 plots shown

in Figure 4.3. The x-axis in these plots represents individual events in the GUI. The dotted

line shows the number of times a particular event existed in some failed test case. The

solid line shows the number of times the event caused the failure. While many events

caused the failure for one or more fault-seeded versions, the same event failed to cause

the failure in many instances. For example, event #120 in TerpWord caused 300 test
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cases to fail; however, the same event, although it existed in 600 other test cases, did not

cause a failure. Also, note that results of failed test cases for at least one fault-seeded

version were presented; there were many test cases that did not cause test case failure for

even a single fault-seeded version but comprised of events that were otherwise successful

in other contexts at causing failures. Although the above discussion reinforces popular

belief that the software state plays an important role during testing, it also shows that it is

important to consider state when generating test cases.

4.2.5 Step 5: Studying Predecessor Events

For a failed test case ��/E[��%�:Ia`T��K�`�]�]Q]Q`T�Q�s( , in which the event �UV (for m�e|¡�e_� )

caused the failure for fault-seeded version ¢ , all possible subsequences of �*IT`�]�]�]P`T�QV�b&I
were created keeping only those in which the first event can be executed in /£[ and �QV
followed the last event. Test cases were then obtained by appending ��V to the chosen

subsequences. Starting from the shortest of these test cases, they were executed on the

same fault-seeded version on which the original test case failed, stopping when one failed.

The predecessor events in this (shortest) test case form the MEEC.

Each test case is shown as a horizontal line with 2 levels of shading. The dark band

shows the MEEC.

Event that 
detected the fault

Minimized effective
event context

Event context

Rest of the test case

The above shaded-horizontal-line visualization is stacked for all test cases per ap-
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plication to summarize the results. Figure 4.4 shows the results for TerpCalc. The x-axis

shows the event number in the test case. The y-axis represents failed test cases. If a test

case failed for two fault-seeded versions, then it is counted twice, since it may result in

a different MEEC. The result for TerpCalc shows that the average length of the MEEC

for TerpCalc was 2.21 events. Even though the entire test case was long (50 events in

many cases), large parts of the test case were in fact useless for fault detection. If all

the events were ignored except those in the MEEC, all the faults are still able to be de-

tected. Figures 4.5, 4.6, and 4.7 show the same results for TerpPaint, TerpSpreadSheet,

and TerpWord respectively. The average length of the MEEC was 3.57, 4.62, and 3.86

respectively.
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Figure 4.4: MEEC for TerpCalc

4.3 Dissecting the MEEC

To further understand the structure of MEECs, a classification of GUI events is

created:
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Figure 4.5: MEEC for TerpPaint

0 10 20 30 40 50
1

101

201

301

401

Te
st

 C
as

e 
N

um
be

r,
 M

ut
an

t

Event Number

MEEC
Average Length = 4.62

Figure 4.6: MEEC for TerpSpreadSheet


 reachability events (denoted by a symbol R) that are used to open windows, and

open/close menus. One subset of R of interest is W, the set of events that open

windows.


 other events that are used to manipulate the structure of the GUI include termination

events (T) that close windows.


 events that do not manipulate the structure of the GUI are called system-interaction

events (denoted by symbol S).
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Figure 4.7: MEEC for TerpWord

The above event classes were then used to create an abstraction of the MEECs –

each event was replaced by one of the symbols S, T, or R, depending on its function in the

GUI. The resulting strings were then compactly represented using regular expressions.

The result of this compaction process yielded four regular expressions R*, R*S, R*SR+,

and R*SR*(SR*)+, each of which was assigned a “pattern ID” 1, 2, 3, and 4 respectively.

The failed test cases were then partitioned by pattern ID. Note that the MEECs did not

contain any event of class T.

The result of this overall process is shown in Table 4.4. Column MEEC Structure

of this table shows the regular expression. Column �+V shows the type of event that caused

the failure. Column # Failures show the number of failed test cases. Note that a

failure is not a crash; it is a mismatch between the actual and expected state of the GUI.

Each failed execution was “debugged” to determine the seeded fault that caused the fail-

ure. The number of faults is shown in Column # Faults. The numbers in # Faults

are somewhat misleading because a single fault may be manifested as multiple failures.

Consequently, multiple test cases may detect the same fault, causing each pattern to be
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Pattern
ID

MEEC
Structure e x # Failures # Faults Unique

Faults
% Unique

Faults

96
1275

S 676 37 37 38.5%
W 6 1 1 1.0%
S 431 54 40 41.7%
W 1 1 0 0.0%

3 R*SR+ S 19 10 3 3.1%
4 R*SR*(SR*)+ S 142 42 15 15.6%

23
115

S 78 14 14 60.9%
W 31 6 6 26.1%
S 2 1 1 4.3%
T 4 2 2 8.7%

11
318

S 259 4 4 36.4%
T 5 1 1 9.1%
W 20 3 3 27.3%

2 R*S S 17 3 3 27.3%
3 R*SR+ S 17 2 0 0.0%

33
544

S 152 9 9 27.3%
T 61 4 4 12.1%
W 296 15 15 45.5%

2 R*S T 22 3 2 6.1%
S 2 1 1 3.0%
T 4 1 1 3.0%

4 R*SR*(SR*)+ S 7 2 1 3.0%

TerpCalc

TerpPaint

TerpSpreadSheet

TerpWord

1

2

1

R*

R*S

Total Faults Detected
Total Test Case Failures

1

2

Total Faults Detected
Total Test Case Failures

R*

R*S

R*

R*SR+

1

3

Total Test Case Failures

R*

Total Faults Detected
Total Test Case Failures

Total Faults Detected

Table 4.4: Regular Expression Table

counted several times; which is why the sum of all faults does not add to the Total

Faults Detected value.

An alternative measure, shown in the column Unique Faults, shows the num-

ber of faults that were detected by test cases with Pattern � but not with Pattern �fx¤m .
This measure will be useful when developing new test case generation techniques based

on these results. The main idea of defining this measure is that it is less expensive to

generate event sequences using Pattern �¥xCm than with Pattern � .
Table 4.4 illustrates several important points. First many faults (38.5%) in TerpCalc

were detected by test cases with Pattern 1, i.e., zero or more events from R were followed

56



by an event in S; only one fault was detected when using an event of type W after zero or

more R events. Pattern 1 was also effective in TerpPaint (87%), TerpSpreadSheet (72.7%),

and TerpWord (84.8%); event types W and T for �+V played more significant roles in these

applications. Second, Pattern 2 was very effective for TerpCalc (41.7%) when ��V was an

S type of event; the same pattern was less effective for other applications. Third, Patterns

3 and 4 were not very effective in any application, except TerpCalc.

This analysis showed that parts, with well-defined structures, of test cases are in

fact sufficient for fault detection in GUIs. The results of this analysis also gives insights

into how to generate test cases for GUIs. For the classes of faults used in this study, the

set of subject applications, and the test cases that were generated:


 a large number of faults are detected with test cases that execute a number of struc-

tural events (i.e., R*), followed by either a window opening event (W) or a system-

interaction event (S); the structural events are needed to simply “reach” the event

that caused the failure. According to Pattern 1, it is important to test all S, W and

T events at least once. In terms of EFGs, this essentially means that each node of

type S, T, and W is covered by the test suite.


 for Pattern 2, it is important to test interactions between event pairs (S, S), (S, T),

and (S, W). In terms of EFGs, this means that the test suite should cover such edges.


 for Pattern 3, it is important to test specific types of paths between two S events,

and S and T events. These paths should only contain R types of events.


 for Pattern 4, it is important to test paths between multiple S events, where each

path contains only R type of events.
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Because Patterns 3 and 4 require the computation of paths between pairs of events,

which can be computationally expensive, a new structure (EIG) that models these paths is

developed. The next section formally describes an EIG and outlines a method to transform

an EFG to EIG.

4.4 Threats to Validity

The results of the previous study, should be interpreted keeping in mind the follow-

ing threats to validity.

Threats to external validity are conditions that limit the ability to generalize the

results of studies to industrial practice. Several such threats are identified in this study.

First, four GUI-based Java applications have been used as subject programs. Although

they have different types of GUIs, this does not reflect a wide spectrum of possible GUIs

that are available today. Moreover, the applications are extremely GUI-intensive, i.e.,

most of the code is written for the GUI. The results will be different for applications that

have complex underlying business logic and a fairly simple GUI. Second, all the subject

programs were developed in Java by students, which might be more bug-prone than soft-

ware implemented by professionals. Finally, although the abstraction of the GUI main-

tains uniformity between Java and Win32 applications, the results may vary for Win32

applications.

Threats to internal validity are conditions that can affect the dependent variables

of the study without the researcher’s knowledge. Every effort was made to seed faults

that were as close as possible to naturally occurring faults. A history-based approach was
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used for seeding faults in the GUI applications. This may have affected the detection of

faults by the test cases. Faults that are not manifested on the GUI will go undetected.

Threats to construct validity arise when measurement instruments do not adequately

capture the concepts they are supposed to measure. For example, in this study one of the

measures of cost is time. Since GUI programs interact with the windowing system’s

manager, the execution time of an event varies from one run to another. One way to

minimize the effect of such variations is to run the studies multiple number of times and

report average time. Since each event is executed several times (at least 80 times in

different test cases), this threat has been adequately handled.

4.5 Event-Interaction Graph

Several terms are first defined to develop event-interaction graphs (EIG) for a GUI.

An event-flow path represents a sequence of events that can be executed on the GUI.

Formally, an event-flow-path is defined as follows:


 Definition: There is an event-flow-path from node �EV to node �FW iff there exists a

(possibly empty) sequence of nodes �&6+`��!6�¦�IT`%�!6k¦!K�`�]�]�]a`%�§6�¦!9 all in the event-flow

graph ¨ such that 0�13�FV©�%�!6a;a�U13�!6k¦!9:����WQ;#<�N~�U�©i��+ª�1	¨�; and 0�1h�!6�¦§4	�%�§6�¦§4«¦�Ik;k�F$+�)¬�e
�­eH1�}^xMm+;T<�Nl�U�©i��+ª�1	¨�; . �

The function �U�©i��+ª takes an EFG as an input and returns a set of ordered-pairs,

each representing an edge in the EFG. The notation �®��Ia`��FK�`�]Q]�]Q`%��9�( is used for an

event-flow path. Several examples of event-flow paths from the EFG of Figure 2.2 are: �
�¯��gh�©`T¨��7�3�#`P°±�E��$^( , �M�¯��gh�©`#�_²©�´³Pj"µX²*ªU�©`TµG²7�F³P�Ug¶( , �M�_²©�´³Pj&µG²*ªU�©`T¨��7�3�´·a$U¡ mJ`T¸)���"gh²�³P�X( ,
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and �n�_²©�´³Qj&µX²�ªU�©`T�¯���F�����Q¡&�#`T¸)���"gh²�³a�¹( . Only those event-flow-paths that start and

end with system-interaction and termination events, without any intermediate system-

interaction and termination events are studied.


 Definition: An event-flow-path �_�£Ia`��FK�`�]Q]�]Q`%��9�( is interaction-free iff none of

��KU��]�]�]a�%�F9ab&I represent system-interaction or termination events. �

Of the examples of event-flow paths presented above, �º�¯��gh�©`T¨G���3�#`P°±�E��$M( is

interaction-free (since ¨��7�	� is neither a system-interaction event nor a termination event)

whereas �B�_²©�´³Pj"µX²*ªU�©`T¨��7�	�´·#$U¡ m©`%¸)���"gh²*³a�¹( is not (since ¨��7�3�´·a$U¡ m , an event used

to edit one of the text boxes in the Replace window, is a system-interaction event).

The interacts-with relationship between system-interaction events is that, two system-

interaction events may interact if a GUI user may execute them in an event sequence with-

out executing any other intermediate system-interaction event. The same holds true for

termination events.


 Definition: A system-interaction (or termination) event �UV interacts-with system-

interaction (or termination) event ��W iff there is at least one interaction-free event-

flow-path from the node �FV (that represents �QV ) to the node ��W (that represents ��W ).
�

For the EFG of Figure 2.2, the above relation holds for the following pairs of events:

0 ( ����2 , »�²7�´�+�+Y±�	¼y� ), ( �X�	�E�����Q¡&� m , ,
$��:�*,r�J²�� ),

( ¨G�7�	�´·#$+¡ ¬ , ¨��7�3�´·a$U¡ m ), and ( »?�Ugh�Q�´� , µX²��F³P�Ug ) < . The interaction-free event-flow-paths

for these pairs are �Z����2G`T¨��7�3�#`T»?²©�´�+��Y���¼y��( , �C�X�	�E�����Q¡&� m©`T�X$���¼y²©�#`#,
$��:�*,r�J²��v( ,

��¨��7�3�´·a$U¡ ¬§`T¨��7�3�´·a$U¡ m�( , and ��»?�Ugh�Q�´�©`TµX²7�E³a�UgX( respectively. Note that an event
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may interact-with itself. For example, the event MatchCase interacts with itself. Also

note that “ �QV interacts-with ��W ” does not necessarily imply that “ �UW interacts-with �QV .” For

example, in the EFG, even though ¸)���"gh²*³a� interacts-with µG²7�F³P�Ug , the event µX²7�E³a�Ug does

not interact-with ¸)���"gh²*³a� .
The interacts-with relationship is used to create the event-interaction graph. This

graph contains nodes, one for each system-interaction and termination event in the GUI.

An edge from node �FV (that represents ��V ) to node ��W (that represents ��W ) means that �QV
interacts-with �QW . The event-interaction graph (EIG) for the EFG of Figure 2.2 is shown

in Figure 4.8. All the events that are not part of the EIG have been crossed out. Note that

the space of event-sequences has reduced considerably since only the system-interaction

and termination event interactions are marked in this graph.

The algorithm to convert an EFG to an event-interaction graph is shown in Fig-

ure 4.9. The procedure GenerateEIG takes as input an EFG, represented as a set of

nodes N and a set of edges E. It removes all non-system-interaction event nodes and their

associated edges from the given EFG. At the termination of the procedure, the event-

interaction graph is obtained, represented as a set of nodes ½ and a set of edges ¾ . ½
and ¾ are initialized to N and E (lines 2-3). When traversing all edges of the EFG, a list

of nodes start(n) on the edges that start from the node n (except itself) is obtained for all

nodes. Similarly, a list of nodes end(n) that end with the node n (except itself) for all

nodes (lines 4-6) is computed. For each node n of the EFG (line 7), all new edges ( ��V , ��W )
are added to ¾ if there is an interaction-free path �r�EV7`%�£`%��W�( in the EFG (lines 8-11);

start( ��V ) and end( �FW ) are updated to add �FW and ��V in the lists respectively if �FV and ��W
are not the same node (lines 12-14). Accordingly, n is removed from the start and end
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Figure 4.8: EIG for the EFG of Figure 2.2

lists (lines 15-18). Finally, n is removed from ½ (line 19); all edges associated with n are

removed from ¾ (lines 20-21).

The event-interaction graph may be traversed in a number of ways to generate se-

quences of events. For example, all length 1 event sequences may be generated by simply

enumerating all the nodes in the graph. For the event-interaction graph of Figure 4.8, the

set of length 1 sequences 0�����2 , /¶²78�� , °±�E��$ , µX &� , µG$T�&¿ , -X²�ªQ�´� , »?�Ugh�Q�´� , �¯���E�����Q¡&� ¬ ,
/¶�Ugh�U³#��À{g3g , Y±�	¼y�+�J»?²©�´� , ,
$+�J�*,r�J²�� , /Á�´²©�� �ªUÂ^²7� , �_²©�´³Qj&µX²�ªU� , ¨G�7�	�´·#$+¡ ¬ , ¨��7�	�´·#$U¡ m ,
�¯���E�����Q¡&� m , ¸)���"gh²�³P� , ¸)���&g3²�³a��À�ghg , µX²��F³P�Ug�< is obtained. All length 2 event sequences

may be generated by enumerating each node with its adjacent node, i.e., each edge in the

EIG. For the event-interaction graph of Figure 4.8, sequences such as �
����2�`P°±�F�*$?( ,
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Figure 4.9: Generate Event-Inteaction Graph from Event-Flow Graph
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�M�¯���F�*���Q¡&� mJ`T¸)���"gh²�³P�X( , and �M¸)���&g3²�³a��À�ghg�`T¨X¡"�3�5( are obtained.

The remaining question is how to execute the generated event sequences. At execu-

tion time, other events needed to “reach” the events are automatically generated, yielding

an executable test case. For example, the sequence �H����2G`P°±�E��$�( will expand to the

test case �C�X��gh�©`T����2G`T¨��7�	�#`a°{�F��$^( during execution.

4.6 Crash Test Cases

The test cases obtained using EIG are complete, in that they can be generated and

executed automatically on the GUI. Crashes found during test execution may be used to

identify problems in the software. In this research, a “crash” is defined as an abnormal

termination of the software; this can be detected by the script used to execute the test

cases. These test cases and “test oracle” form the crash test cases.

Once the event-interaction graph for a GUI is obtained, it can be annotated in several

ways. For crash testing, a boolean flag is associated with each edge in the graph. During

crash testing, once a test case that “covers” an edge is generated, the associated boolean

flag is set. This prevents the same test case from being generated again, until all the edges

have been covered. If the crash testing process is interrupted, e.g., when a new version

of the software has been checked-in, or the time interval specified for the innermost loop

has been completed, the flags for each edge are retained across event-interaction graph

versions.

The next section evaluates crash test cases for several programs.
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4.7 Feasibility Studies - Evaluating Crash Test Cases

Two studies were conducted on the TerpOffice applications and four popular GUI-

based Open Source Software (OSS) to evaluate the crash testing process. The first study

demonstrates the effectiveness of the crash test cases and the usefulness of the overall

process on four of the TerpOffice applications. The second study applies crash testing

to several versions of four open-source applications with the goal of demonstrating that

crash tests may be used to reveal problems in fielded GUI-based software; some of these

problems persist across different versions of the software.

4.7.1 Feasibility Study - Crash Testing on TerpOffice Applications

This study was conducted to demonstrate the usefulness of the crash tests. More

specifically, the following questions needed to be answered:

1. How long does it take to run the crash test cases?

2. How many times does a GUI software crash on the test cases?

3. How many crash-causing bugs are there in a GUI software?

4. How many more crashes do the test cases reveal that are generated using EIG than

that using EFG?

5. Since the crash testing process is expected to be terminated as soon as the GUI is

modified again or the time interval has been completed, which could give a very

small window of time to run the test cases, how many test cases must be run to

completion for effective testing?

6. When rotating test cases during frequent GUI modifications, how effective is the
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annotated event-interaction graph approach?

Study Procedure

The following process was used for this study:

1. Choose software subjects with GUI front-ends.

2. Generate event-interaction graphs.

3. Generate crash test cases on-the-fly, executing each automatically on the subject

applications.

The time taken to execute the test cases and the number of software crashes were

reported.

Step 1: Software Subjects: The subjects are part of TerpOffice described in Section 4.2.

Step 2: Generate Event-Interaction Graphs: For each application, an EIG is generated.

The sizes of the event-interaction graphs are shown in Table 4.5. As noted earlier, the

crash tests will cover all nodes and all edges in the EIG. Test cases were generated by

picking the two events on each edge and using a shortest-path algorithm to “reach” these

events from the application’s main window. In this study, more than 39K crash tests were

generated and executed.

Step 3: Test-Case Generation and Execution: All the crash test cases were generated and

replayed on the subject applications one-by-one. The execution consisted of perform-

ing each event, such as a clicking-on-buttons, opening-menus, selecting-items, checking-

boxes, etc. If a text-box needed input, then the values were read from a database. The

database was initialized with several types of inputs: negative and positive integers, text
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Subject Application Nodes Edges
TerpWord 112 1253

TerpSpreadSheet 145 3246
TerpPaint 200 8699
TerpCalc 82 6561

TerpPresent 294 19918
TOTAL 833 39677

Table 4.5: Sizes of Event-Interactions Graph

strings, special characters, very long strings, and floating-point numbers. No customiza-

tion was done for any particular text-field.

The time needed to run all the test cases is shown in Figure 4.10. It took approx-

imately 3-6 hours to execute all the crash test cases for TerpCalc, TerpSpreadSheet and

TerpPaint, and 12 hours for TerpPresent. No manual work was required. This result

answers Question 1.
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Figure 4.10: Total Execution Time

Results: Crashes Reported: Figure 4.11 shows the total number of test cases that led to

a software crash. The large number of crashes reported was very encouraging, especially

since this version of TerpOffice was considered to be stable, and had been tested and
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debugged using a test suite of 5000+ GUI test cases; in addition, it also has at least one

JUnit test case per Java method. This result answers Question 2.
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Figure 4.11: Number of Software Crashes

All the system exception messages were manually examined and the number of

bugs (the term “bug” will be used to mean a “fault in the code”) in the code that had led to

the crashes was computed. Figure 4.12 summarizes the results. Although TerpCalc had

crashed on a large number (140+) of test cases, the crashes were due to only 3 bugs in

the code. Also, TerpPaint had crashed on only 23 test cases but the number of underlying

bugs was 13, a surprisingly large ratio. The ratios between crashes and bugs are in fact

due to the location of the bugs; if frequently executed code contains the crash-causing

bug, then a large number of test cases will result in a crash. This result answers Question

3.

To address Question 4, the EFGs of each software were used to generate new test

cases; nodes and edges of the EFG were covered. Test cases were generated by picking

the two events on each edge and using a shortest-path algorithm to “reach” these events

from the application’s main window. The test oracle remained unchanged. The results
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of the execution of these EFG-based test cases are shown in Figure 4.11 and Figure 4.12.

The results clearly show that although EFGs are able to reveal bugs, the EIG was able to

reveal additional bugs. This result answers Question 4.
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Figure 4.12: Number of Crash-Causing Bugs

Figure 4.10 showed that running all crash tests can take up to 12 hours. Since it

may not be realistic to have such a long time between GUI code changes, and the time

interval specified by the developer may be short, the impact of number of test cases on the

number of crash-causing bugs detected was studied. Because all the test cases had already

been run, it was not necessary to regenerate and re-execute new test cases; the effect of

different number of test cases was simulated by treating the existing crash test suite as a

test pool and selecting different number of test cases from them. More specifically, for

each subject application, the test pool was used to create 1200 test suites: 200 of each

size 100, 500, 1000, 2000, 3000, and 4000. Each suite was obtained independently using

random selection without replacement.

As there are 200 test suites of each size, the results are shown in the form of box-

plots. The box-plots provide a concise display of each distribution. The black square
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inside each box marks the median value. The edges of the box mark the first and third

quartiles. The whiskers extend from the quartiles and cover the entire distribution. The

median in the box-plots of Figure 4.13 shows that the number of bugs revealed increases

with test suite size; however, as the overlaps between box-plots show, the number of

bugs does not grow significantly with test suite size. Hence, even a small number (a

few hundreds) of crash tests are sufficient to find software problems. This result answers

Question 5.

To address Question 6, each software’s EIG was transformed into an annotated EIG.

Recall that the annotated EIG algorithm ensures that all crash tests are executed across

multiple code changes. The following steps were performed:

1. Start with the original (faulty) subject applications. The number of crash-causing

bugs in each application is already known.

2. Set a time interval ½ between software changes.

3. Use two techniques to generate and execute as many crash test cases as possible in

this interval. For the first technique (called Random), a crash test case is randomly

selected (without replacement), making sure that each test case was selected only

once in one interval. For the second annotated-EIG approach (called Memory),

boolean flags are updated on the event-interaction graph edges.

4. Examine the crashes reported and eliminate the revealed bugs.

5. Repeat Steps 3 and 4 until there are no more bugs.

Four values of ½ were used, i.e., 15, 30, 60, and 90 minutes. The above steps were

repeated 200 times; the results are the medians of 200 values.
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The results are summarized in Figure 4.14 through Figures 4.16 . Each graph has

two lines,4 one for the control “Random” and the other for “Memory.” The x-axis shows

the intervals between code changes, the first one being the start interval 0. The y-axis

shows the number of bugs remaining in the subject applications. Note that the result for

TerpSpreadSheet is not shown since it has only one bug, making its results uninteresting.

As the graphs show, the memory-based rotation technique does better than the ran-

dom technique, i.e., all bugs are removed much sooner. In the case of TerpPaint, the

random technique does not even eliminate all bugs. This result answers Question 6.
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Figure 4.14: Effectiveness of the Rotating Algorithm for TerpCalc

4If only one line is visible, they are overlapping
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Figure 4.15: Effectiveness of the Rotating Algorithm for TerpPaint

73



0

1

2

3

4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Number of Code Commits

N
um

be
r 

of
 R

em
ai

ni
ng

 B
ug

s

Random Memory

0

1

2

3

4

0 1 2 3 4 5 6 7 8 9 10 11

Number of Code Commits
N

um
be

r 
of

 R
em

ai
ni

ng
 B

ug
s

Random Memory

15 Minutes 30 Minutes

0

1

2

3

4

0 1 2 3 4 5 6

Number of Code Commits

N
um

be
r 

of
 R

em
ai

ni
ng

 B
ug

s

Random Memory

0

1

2

3

4

0 1 2 3 4

Number of Code Commits

N
um

be
r 

of
 R

em
ai

ni
ng

 B
ug

s

Random Memory

60 Minutes 90 Minutes

Figure 4.16: Effectiveness of the Rotating Algorithm for TerpPresent
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The questions posed in this study were answered using only four subject applica-

tions. These results may not hold for other GUI applications. Hence, at best, the answers

to the six questions may be used to formulate hypotheses that need additional empirical

evidence.

4.7.2 Feasibility Study - Crash Testing for Open-Source Applications

The goal of the second study is to determine whether fielded GUI-based open-

source software (OSS), developed by a community of developers, have faults that may

be detected using this approach. More specifically, the following questions need to be

answered:

1. Do popular web-based community-driven GUI-based OSS have problems that can

be detected by crash testing?

2. What is the nature of the crashes?

3. Do these problems persist across multiple versions of the OSS?

4. What are the common cases of crashes that can be detected by crash testing?

To answer these questions and to minimize threats to external validity, this study

was conducted using several fielded GUI-based OSS downloaded from SourceForge.net.

The fully-automatic crash testing process was executed on them and problems were re-

ported. Previous versions of these applications were also downloaded to see how long

these problems have been in the code. Note that only the versions that the developer com-

munity chose to make available online were tested. These applications are expected to
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have undergone some QA before release.

Subject Applications: The following four applications with GUIs developed using Java

Swing were chosen:

1. FreeMind5, which is a premier free mind-mapping6 software written in Java. It

has an all time activity of 99.72%. Versions 0.0.2, 0.1.0, 0.4, 0.7.1, 0.8.0RC5 and 0.8.0

were tested.

2. GanttProject7, which is a project scheduling application written in Java and

featuring Gantt chart, resource management, calendaring, import/export (MS Project,

HTML, PDF, spreadsheets). It has an all time activity of 98.12%. Versions 1.6, 1.9.11,

1.10.3, 1.11, 1.11.1, and 2.pre1 were tested.

3. JMSN8, which is a pure Java Microsoft MSN Messenger clone, including Instant

messaging, File Send/Receive, msnlib (for developers), and additional chat log, etc. It has

an all time activity of 98.93%. Versions 0.9a, 0.9.2, 0.9.5, 0.9.7, 0.9.8b7, and 0.9.9b1 were

tested.

4. CrosswordSage9, which is a tool for creating (and solving) professional looking

crosswords with powerful word suggestion capabilities. When tested, it had an activity

percentile (last week) of 98.21%. Versions 0.1, 0.2, 0.3.0, 0.3.1, 0.3.2, and 0.3.5 were

tested.

The first three of the above applications were chosen due to their popularity, active

community of developers, and high all-time activity. Crossword Sage was chosen since

5http://sourceforge.net/projects/freemind
6http://en.wikipedia.org/wiki/Mind map
7http://sourceforge.net/projects/ganttproject
8http://sourceforge.net/projects/jmsn
9http://sourceforge.net/projects/crosswordsage
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Subjects
0.0.2 0.1.0 0.4 0.7.1 0.8.0RC5 0.8.0 Total
1550 1964 4118 13658 50872 52216 124378
1.6 1.9.11 1.10.3 1.11 1.11.1 2.0.pre1 Total

1240 3705 3878 4015 4015 4414 21267
0.9a 0.9.2 0.9.5 0.9.7 0.9.8b7 0.9.9b2 Total
1015 1107 1156 1218 1591 1777 7864
0.1 0.2 0.3.0 0.3.1 0.3.2 0.3.5 Total
101 134 818 818 876 1524 4271

Total 157780
CrosswordSage

Versions

FreeMind

GanttProject

JMSN

Table 4.6: Number of Test Cases Generated for Each Version of Each Application

Subjects
0.0.2 0.1.0 0.4 0.7.1 0.8.0RC5 0.8.0 Total

2 5 4 4 5 4 10
1.6 1.9.11 1.10.3 1.11 1.11.1 2.0.pre1 Total
3 4 3 3 3 3 8

0.9a 0.9.2 0.9.5 0.9.7 0.9.8b7 0.9.9b2 Total
2 2 1 2 3 3 4

0.1 0.2 0.3.0 0.3.1 0.3.2 0.3.5 Total
0 0 3 3 2 5 6

Total 28
CrosswordSage

Versions

FreeMind

GanttProject

JMSN

Table 4.7: Number of Crashes Detected for Each Version of Each Application

it is fairly new (it was registered in mid-Sep. 2005) with several versions. All the above

applications were tested on the Windows 2000 Professional platform.

The overall process executed on each version without any human intervention in

5-8 hours; one machine per application. The reverse engineering, model creation, test

case generation steps took 2-3 minutes per application. The test cases execution took the

remaining time.

To answer Question 1, a total of 157780 test cases (Table 4.6) were generated for

FreeMind, GanttProject, JMSN, and CrosswordSage; these test cases revealed total 28

bugs (Table 4.7). Note that the the individual version bugs do not sum to the number in

the Total column because a bug was counted several times if it was detected in different

versions.
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To address Question 2, all the crash logs were manually examined and the bugs in

the code that caused the crash were identified. The analysis of the results is summarized

next. Note that version numbers are shown in parenthesis. Each listed bug will be referred

by its bug number in later discussions.

FreeMind: 1. NullPointerException when trying to open a non-existent file (0.0.2, 0.1.0);

2. FileNotFoundException when trying to save a file with a very long file name

(0.0.2, 0.1.0, 0.4);

3. NullPointerException when clicking on some buttons on the main toolbar when

no file is open (0.1.0);

4. NullPointerException when clicking on some menu items if no file is open (0.1.0,

0.4, 0.7.1, 0.8.0RC5);

5. NullPointerException when trying to save a “blank” file (0.1.0);

6. NullPointerException when adding a new node after toggling folded node (0.4);

7. FileNotFoundException when trying to import a non-existent file (0.4, 0.7.1,

0.8.0RC5, 0.8.0);

8. FileNotFoundException when trying to export a file with a very long file name

(0.7.1, 0.8.0RC5, 0.8.0);

9. NullPointerException when trying to split a node in “Edit a long node” window

(0.7.1, 0.8.0RC5, 0.8.0);

10. NumberFormatException when setting non-numeric input while expecting a

number in “preferences setting” window (0.8.0RC5, 0.8.0);

Gantt Project: 1. NumberFormatException when setting non-numeric inputs while ex-

pecting a number in “New task” window (1.6);
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2. FileNotFoundException when trying to open a non-existent file (1.6);

3. FileNotFoundException when trying to save a file with a very long file name

(1.6, 1.9.11, 1.10.3, 1.11, 1.11.1, 2.pre1);

4. NullPointerException after confirming any preferences setting (1.9.11);

5. NullPointerException when trying to save the content to a server (1.9.11);

6. NullPointerException when trying to import a non-existent file (1.9.11, 1.10.3,

1.11, 1.11.1, 2.pre1);

7. InterruptedException when trying to open a new window (1.10.3);

8. Runtime error when trying to send e-mail (1.11, 1.11.1, 2.pre1);

JMSN: 1. InvocationTargetException when trying to refresh the buddy list (0.9a, 0.9.2);

2. FileNotFoundException when trying to submit a bug/request report because the

submission page doesn’t exist (0.9a, 0.9.2, 0.9.5, 0.9.7, 0.9.8b7, 0.9.9b2);

3. NullPointerException when trying to check the validity of the login data (0.9.7,

0.9.8b7, 0.9.9b2);

4. SocketException and NullPointerException when stopping a socket that has been

started (0.9.8b7, 0.9.9b2);

Crossword Sage: 1. NullPointerException in Crossword Builder when trying to delete a

word (0.3.0, 0.3.1);

2. NullPointerException in Crossword Builder when trying to suggest a new word

(0.3.0, 0.3.1, 0.3.2, 0.3.5);

3. NullPointerException in Crossword Builder when trying to write a clue for a

word (0.3.0, 0.3.1, 0.3.2, 0.3.5);

4. NullPointerException when loading a new crossword file (0.3.5);
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5. NullPointerException when splitting a word (0.3.5);

6. NullPointerException when publishing the crossword (0.3.5);

The above list of severe problems show that fielded GUI-based OSS developed by a

community of developers have problems that are quickly uncovered using the crash test-

ing process. Since the overall process is completely automatic, crash testing, integrated

with CVS, can discover these problems before they are found by users.

To answer Question 3, the history of each bug was studied. Figure 4.17 gives an

overview of bug history across versions of each application. The x-axis represents the

versions; the y-axis uses the bug numbers assigned earlier. Each bug that led to one crash

is represented by a small filled circle; bugs that led to multiple crashes are represented by

an asterisk. If the same bug persisted across multiple versions, the circles (or asterisks)

are connected by a horizontal line. For example, many crashes are caused by Bug#3 in

FreeMind (several toolbar buttons should be disabled if there is no file opened).

Figure 4.17 shows that many bugs are persistent across versions. For example,

Bug#4, #7, #8, #9 and #10 in FreeMind persisted across several versions before they

were discovered and fixed. The same observation holds for the other applications. In

fact, Bug#3 in GanttProject appeared in the first version tested ( version 1.6 was chosen

because it is the first version with default language English); it exists in all versions,

including the latest version. This result answers Question 3.

To answer Question 4, the reasons for the crashes were studied. Four reasons were

identified for these crashes: (1) Invalid text input. Many crashes were detected because

the software does not check the validity and size of text input. For example, some text

boxes in GanttProject and FreeMind expect an integer input; providing a string resulted in
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Figure 4.17: Bug History Over Versions

a crash. In some instances, a “very long” text input also resulted in a crash, such as pro-

viding a “very long” text input as the file name while saving such a file sometimes leads to

FileNotFoundException. (2) Widget enabled when it should be disabled. One challenge

in GUI design is to identify allowable sequences of interactions with widgets and to dis-

allow certain sequences. Designers often disable certain widgets in certain contexts. In

these open-source applications, it is found that several instances of widgets were enabled

when they should really have been disabled. When the crash tests executed the incorrectly

enabled widget in an event sequence, the software crashed. (3) Object declared but not

initialized. Some of the crashes were Java NullPointerExceptions. It turned out that as
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the software was evolving, one developer, not seeing the use of an object, commented

out a part of the code, which was responsible for object initialization. Another developer

continued to use the object in another part of the code. The software crashed when the

uninitialized object was accessed. (4) Obsolete external resources. Some of the crashes

in JMSN were caused by test cases that were trying to retrieve information from a web

page that is no longer available. This result answers Question 4.

As mentioned earlier, the questions posed in this study were also answered using

only four OSS applications. Consequently, these results may not hold for other GUI

applications.

The crash test cases exhibited the following properties that satisfy the criteria for

the innermost loop (presented in Chapter 3).

1. The test cases can be generated automatically and executed very quickly.

2. All system-interaction and termination events are executed; most of the GUI’s func-

tionality is covered.

3. The rotation-based scheme ensures that the entire GUI is tested over a series of

code changes.

4. The abnormal termination of the program (serves as the “test oracle”) can be deter-

mined fully automatically.
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Additional Lessons Learned

Since SourceForge has a bug reporting/tracking tool for each project, some bugs

were reported. For example, Bug#4 in FreeMind for version 0.8.0RC5 was reported (bug

#1245216 in SourceForge10). In response to the report, the developers fixed this bug in

release 0.8.0. This showed that the bugs found by the crash testing were relevant. All other

bugs will be reported, especially the ones in the latest versions of all the applications.

Figure 4.17 leads to another observation. There are fewer bugs in the first version

than in later versions. For example, there are two crash-causing bugs in Version 0.0.2 of

FreeMind. Typically, the first version of an OSS is relatively simple and is developed by

a small group of core developers. This version typically undergoes QA before its first

release; hence it is reasonably stable. Versions 0.1.0 and 0.2.0 of CrosswordSage have

no bugs because they are very simple. The only change that was made from Version

0.1.0 to Version 0.2.0 was a new help document. As the developer community grows, the

application becomes more complex and prone to bugs. For example, Bug#10 in FreeMind

was first introduced when a new “preference setting” functionality was added. Similarly,

there was a new feature added to Version 0.3.0 of Crossword Sage; this new feature

introduced some bugs that were detected. There were more features added in Version

0.3.5; bugs were detected in the added part of code.

By default, all the applications were tested in one machine configuration on Win-

dows 2000 Professional. It is observed that altering this “default” configuration helps to

uncover more bugs. In a preliminary study, GanttProject was tested in a new configura-

10http://sourceforge.net/tracker/index.php?func=detail &aid=1245216&group id=7118&atid=107118
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tion with a much lower memory setting than the default configuration. Bug#4 and Bug#7

surface only in this low memory configuration. In case of Bug#4, the application tries to

repaint all the GUI windows/widgets after the preferences setting have changed; in low

memory, this causes a substantial delay for the user. Any event performed during the

slow repainting process causes an uncaught NullPointerException exception. In case of

Bug#7, the application requires additional time to open new windows; if a user performs

a new event during this time, the result is an uncaught InterruptedException exception.

A surprising result is that some bugs existed across applications. This was due to

shared open-source GUI components. For example, Bug#2 in FreeMind and Bug#3 in

GanttProject are identical since both these applications share a FileSave component. This

component throws a FileNotFoundException when given a very long file name, which

cannot be handled by the Windows operating system. This particular bug does not show

up after Version 0.4 of FreeMind; however, the same bug still shows up when the user

tries to export a file with a very long file name. This observation shows that OSS that use

shared components must “sanitize” inputs before passing them to the shared components.

4.8 Conclusions

This chapter presented the innermost loop called crash testing for continuous in-

tegration testing of GUI-based software. It operates on each code check-in of the GUI

software and performs a quick-and-dirty, fully automatic integration test of the GUI soft-

ware; feedback is directed to the developer who initiated the check-in. This chapter eval-

uated the crash testing process in two studies involving four TerpOffice applications and
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four popular OSS. The studies showed that (1) the crash testing approach helps to find

integration problems in GUI-based software quickly, (2) test cases generated using EIG

reveals more crashes than those that are generated using EFG, (3) several problems persist

across multiple versions of OSS, (4) errors surface in different OSS that share problematic

open-source GUI components, and (5) the first version (likely created by a core group of

developers) of most OSS is relatively stable; problems surface as additional developers

add functionality. Post-study analysis revealed that most of these problems are caused by

incorrect integration of different parts of the OSS.
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Chapter 5

Smoke Testing

This chapter describes the second loop (smoke testing) of the continuous GUI test-

ing process. Smoke testing is more complex than crash testing in that (1) it operates on

each day’s GUI build, testing a set of changes, (2) its goal is to do functional “reference

testing” of the newly integrated version of the GUI, not just detecting crashes, (3) it re-

quires additional effort on the part of the test designer who has to identify false positives,

and (4) it requires additional information to be specified in the feedback, i.e., the exact

mismatches that led to test case failures.

Smoke testing shares several criteria with crash testing, i.e., the test cases should

be generated and executed quickly and they should cover the GUI’s entire functionality.

The differences are that smoke testing should maintain a test suite that is largely reusable

across GUI versions and is divisible, and because it is a form of reference testing, it

requires a test oracle to compare the current version’s output with that of the previous

version.

Due to the similarity of some crash and smoke testing criteria, the event-interaction

graph (EIG) model is reused to generate the event sequence part of the smoke test cases.

An advantage of reusing the EIG model is that each test case consists of only system-

interaction events and termination events; changes to the GUI layout, such as moving

events from one window to another and changing the menu structure, leave most of the
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test cases unaffected. Other events are generated on-the-fly during test execution. Hence,

the first four criteria for smoke testing (Section 3.2) are already satisfied.

The last criterion is related to the test oracle. Smoke testing requires a test oracle

that can be used to compare the two GUI versions. The most straightforward approach is

to compare the entire GUI’s state after each event of the smoke test case. An experiment

in Section 5.2 will show that this test oracle is useful but expensive.

To reduce cost and retain fault detection effectiveness, the remainder of this chap-

ter develops different types of test oracles and studies the amount of oracle information

that should be specified in the expected output and the frequency at which it should be

compared for effective testing.

5.1 Designing Different Test Oracles

As mentioned in Section 2.3, a GUI test oracle consists of oracle information and

oracle procedure. Different types of GUI test oracles may be created by varying the

oracle information and oracle procedure.

5.1.1 Oracle Information

The oracle information is a description of the GUI’s expected state for a test case.

Recall from Section 2.1.1 that the GUI’s state is a set of triples of the form 132�4����76��%8�9Q; ,
where 2=4 is a widget, ��6 is a property of 2 4 , and 8:9 is a value for ��6 . Hence the oracle

information for a test case is a sequence of these sets. Note that oracle information has

been deliberately defined in very general terms, thus allowing the creation of different
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instances of oracles. The least descriptive oracle information set may contain a single

triple, describing one value of a property of a single widget. The most descriptive ora-

cle information would contain values of all properties of all the widgets, i.e., the GUI’s

complete expected state. In fact, all the non-null subsets of the complete state may be

viewed as a spectrum of all possible oracle information types, with the single triple set

being the smallest and the complete state being the largest. The following three types of

oracle information will be considered in this research:

1. widget (LOI1): the set of all triples for the single widget 2 associated with the

event �Q4 being executed. The constraint is written as ( `?m?R¯R�2 ), where `?m rep-

resents the first element of the triple. If applied to a triple with “ 2 ” as its first

element, the constraint would evaluate to TRUE; in all other cases, it would eval-

uate to FALSE. Figure 5.1 shows an example of the oracle information. The test

case contains the Cancel event in the Findwindow. The complete expected state

/�4 of the GUI after Cancel has been executed is also shown. For the widget level

test oracle information, only the (boxed) triples relevant to Cancel are stored.

2. active window (LOI2): the set of all triples for all widgets that are a part of the

currently active window , . The constraint is written as ( �	�\,r���F�*$+2�1�`?m©�#,¤; ),
where ���\,r�	�E��$�2^1	²&�T·a; is a predicate that is TRUE if widget ² is a part of window

· .

3. all windows (LOI3): the set of all triples for all widgets of all windows. Note that

the constraint for this set is simply TRUE since it is the complete state of the GUI.
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Figure 5.1: Oracle Information for the Cancel Event

For brevity, the terms LOI1 to LOI3 will be used for the above three levels of oracle

information. Note that although only three instances of test oracle information have been

specified, the specification mechanism is general and may be used to specify many other

instances.

5.1.2 Oracle Procedure

The oracle procedure is the process used to compare the oracle information with

the executing GUI’s actual state. It returns TRUE if the actual and expected states match,

FALSE otherwise. Formally, a test oracle procedure is a function a (OI, AS, C b&D , C c
d ,e
) x5f 0 TRUE, FALSE < , where OI is the oracle information, AS is the actual state of

the executing GUI, C b"D is a boolean constraint on OI, C c
d is a boolean constraint on AS,

and
e

is a comparison operator. a returns TRUE if OI and AS “match” as defined by
e

;

FALSE otherwise.

The oracle procedure may be invoked as frequently as once after every event of
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ALGORITHM :: OP(

AS 4 : Actual state; /* for event ��4 */ 1

OI 4 : Oracle information; /* for event ��4 */ 2

C c[d : Boolean Constraint; /* on actual state */ 3

OPF Nr0�m©�#d*�To§��]�]Q]P�%�¥< /* oracle procedure freq. */ 4

� : event number; /* current event index m¯e|�¶el� */ ) 0 5

IF ( �­> OPF) THEN /* compare? */ 6

RETURN(FILTER(OI 4 , C c
d ) == AS 4 ) 7

ELSE RETURN(TRUE) < 8

Figure 5.2: Oracle Procedure Algorithm
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the test case or less frequently, e.g., after the last event. The algorithm for the oracle

procedure is shown in Figure 5.2. Note that this specific implementation OP of a takes

extra parameters � and OPF that account for this frequency; � is the event number in the

test case and OPF is a set of numbers that specify when the comparison is done. Also

note that
e

is hard-coded to “set equality”, hence omitted from OP’s parameters (Line 7 of

Figure 5.2). C b&D is also omitted since OI has already been filtered before OP is invoked.

OP takes five parameters described earlier. The comparison process is straightforward – if

the GUI needs to be checked at the current index � of the test case (LINE 6), then the oracle

information is filtered1 using the constraint C c[d to allow for set equality comparison. The

constraint C c
d (not C b&D ) ensures that the result of the filtering is compatible with AS 4 .
The oracle procedure returns TRUE if the actual state and oracle information sets are

equal.

Note that it is important to provide the constraint C c
d and the set OPF to com-

pletely specify the oracle procedure. The definition of OP is now used to specify six

different instances of test oracles.


 L1: After each event of the test case, compare the set of all triples for the single

widget 2 associated with that event. The constraint C c
d is written as ( `?mGRXR¤2 )

and OPF = 0�m©�Td��To§��]Q]�]#�%�£< . Note that C c[d is first used to select relevant triples

for the actual state and then later to filter the oracle information. L1 is shown in

Figure 5.3; it compares the state triples relevant to the widget W g .

1Note that this filtering is unnecessary if OP is invoked by the test case executor, since it already filters

the oracle information. The filtering step is included here for completeness.
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Figure 5.3: L1 Compares Widget-Relevant Triples after Each Event in the Test Case


 L2: After each event of the test case, compare the set of all triples for all widgets

that are a part of the currently active window , . The constraint C c
d is written as

( ���\,r�	�E��$�2^1%`?m©�#,¤; ) and OPF = 0�m©�#d*�To§��]�]Q]a���£< .


 L3: After each event of the test case, compare the set of all triples for all widgets of

all windows. The constraint C c
d is written as TRUE and OPF = 0�mJ�#d��To§�Q]�]�]#�%�£< .


 L4, L5, L6: After the last event of the test case, compare the set associated with

the current widget, active window, and all windows, respectively. OPF = 0+�£< for

all these oracles.

Even though only six instances of oracles have been developed, the definition of OP

is very general and may be used to develop a variety of test oracles.
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5.2 Evaluating the GUI Test Oracles

Having presented the design of GUI test oracles and ability to specify multiple

oracles, different oracles are now compared via an experiment.

5.2.1 Research Questions

Two notations are introduced: µs1hY5�]hf; – the cost of executing a test case Y with

oracle h ; ��1'Y5�]hf; – the number of faults that test case Y detects when using test oracle h .

The way that the test oracles L1 to L6 are defined leads to some immediate ob-

servations. First, it is noted that L1 to L3 have been defined with increasing complexity

(as have L4 to L6), which will have a direct impact on their relative cost (i.e., time to

generate/execute); L3 will be most expensive and L1 the least expensive (hence, for all

test cases Y , µ�1'Y5�]h­o7;ji@µs1hY5�]hfd©;ki µs1hY5��h5mU; ). Similarly, µ�1'Y5�]hml7;ni@µs1hY5�]hUo©;ni
µs1hY5�]h&p�; . Also, it is obvious that µs1hY5�]h&p�;ve µs1hY5�]h m+; , µ�1'Y5�]hUo©;�epµ�1'Y5�]hfd©; , and

µs1hY5�]hml7;Ce µs1hY5��hfo©; . Second, Y with oracle L3 is expected to reveal more faults

than Y with oracle L1 or L2, simply because L3 “looks at” a larger set of GUI wid-

gets during Y ’s execution (i.e., ��1'Y5�]h­o7;qiB��1'Y5�]hfd©;riB��1'Y5�]h m+; ); it can certainly do

no worse. Similarly, Y with L6 is expected to reveal more faults than with either L4 or

L5 (i.e., ��1'Y5�]hml7;si¤�s1hY5�]hUo©;si¤�s1hY5�]h&p�; ). It is, however, not clear how L1 compares

to L4 in terms of Y ’s fault-detection effectiveness, i.e., is ��1'Y5�]h&p�;�� �s1hY5��h5mU; or is

�s1hY5�]h&p�;�R �s1hY5�]h m+; ? (similar questions can be asked about the pairs (L2, L5) and

(L3, L6)). Also, even though the above relationships have been presented as “obvious,”

the magnitude of these relationships needs further study to determine practical signifi-
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cance. For example, even though, in theory, the relationship µ�1'Y5�]hUo©;=elµ�1'Y5�]hfd©; holds,

how much more does L2 cost? Is the additional cost worth the extra faults that may be

found (if any) when using L2? Answers to these questions will demonstrate the practical

significance of using different test oracles.

In particular, the following questions need to be answered to show the relative

strengths of the test oracles and to explore the cost of using different types of oracles.


 Q1: What effect does the oracle information have on the fault-detection effective-

ness of a test case? Is the additional effectiveness worth the cost?


 Q2: What effect does the invocation frequency of a test oracle have on the fault-

detection effectiveness of a test case? Is the additional effectiveness worth the cost?


 Q3: What combination of oracle information and procedure provide the best cost-

benefit ratio?

While answering the above questions, the situations in which generating/using a

complex (more expensive) oracle are justified will also be informally studied. For exam-

ple, if a tester has only short test cases (and/or a small number of test cases), will the test

results improve if complex oracles are used? This question will be referred to as Q4.

5.2.2 Modeling Cost and Fault Detection Effectiveness

One factor of cost is the time needed to execute a test case with a given oracle; this

time is directly proportional to the number of comparisons of 1h2{���©i��Q�#���&�:$T�"������¿��%8*²�g' ��+;
triples during test case execution. Hence, the number of widget comparisons done (during

execution of test case Y ) by test oracle h is used as a measure of cost. The notation
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t 1'Y5�]hf; is used for this measure. For example,
t 1hY5�]h&p�;�R m for all test cases, since L4

involves comparing the triples for a single widget.

Because the impact of using different test oracles is studied on each test case, the

fault-detection effectiveness is modeled on a per test case basis. �¹1hY5�]hf; of a test case Y
is defined as the number of faults it detects with test oracle h . Obviously, a higher value

of � is desirable but at a reasonable cost. A more appropriate measure called the “number

of faults detected per comparison” ( � ) is computed as:

�&1hY5�T��;�R

uvvvw vvvx
y?zB{ � |�}~ z�{ � |"} if

t 1hY5�]hf;=(M¬ ,
 ��F���+�����F�U� if

t 1hY5�]hf;­R_¬ .
The second case of the definition is included only for completeness; as long as Y is

a non-empty sequence,
t 1hY5��h ; will be positive. The � value gives a good measure of the

relative cost and benefit of test oracles. A test oracle that performs very few comparisons

yet reveals a large number of faults will have a high � value, which is desirable due to the

larger number of faults that it detects. However, � has several weaknesses. First, a test

oracle that performs very few (say ¡ ) (e.g., ¡�R¤m for L4) comparisons and reveals too few

faults (say ¿ ) will have a higher � value than one that performs more comparisons (e.g.,

mU¬:¡ ) but detects more faults (e.g., o:¿ ). However, the latter oracle may be more desirable.

In practice, the cost of missing a fault may be extremely high. Indeed, in particular

domains, a tester may be willing to spend considerable resources to detect even a single

fault. In such domains a test oracle with a high average � value is clearly desirable.

Second, all faults are given equal weight in this model. The � formula can be easily

modified if the “severity” of faults is to be considered; in this experiment all faults are
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considered to be of equal severity. Although � suffers from some of these problems, it

provides an adequate starting point for oracle comparison. Recognizing the weaknesses

of the cost/benefit model, details of the actual number of faults detected are presented;

readers can interpret the results for their particular domains/situations.

To answer Q1, � and � values for oracles L1–L3 and L4–L6 will be compared. To

answer Q2, the � and � values for the oracle pairs (L1,L4), (L2,L5), and (L3,L6) will be

compared. For Q3, the average � values of all oracles will be compared. Finally, for Q4,

the impact of test case length and their number on the � values for each oracle will be

studied.

5.2.3 Experimentation Procedure

Four TerpOffice applications (TerpPaint, TerpPresent, TerpWord, TerpSpreadSheet)

were selected, and, for each application, the following steps were performed:

Step 1: generate test cases,

Step 2: generate different levels of oracle information,

Step 3: execute the test cases on the application using different oracle procedures. Mea-

sure the following variables:

Number of Faults Detected: A “fault is detected” if the expected and actual states

mismatch.

Number of Comparisons: This is the number of widget comparisons between the

expected and actual states for each oracle.

Step 4: from the execution results, eliminate test runs that were affected by factors be-
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yond control, e.g., those that crash the subject application irrespective of the test

oracle used.

Details of these steps are discussed in subsequent sections.

Step 1: Generate Test Cases

600 test cases were generated for each application. The number 600 was chosen

because the test cases could be executed in a reasonable amount of time; 100 fault-seeded

versions of each application were selected from the original pool of fault seeded versions

(Section 4.2.3); with 600 test cases, 100 versions, and 4 applications, there are total 240K

test runs; since an average test run takes 30 seconds, the experiment would run for months.

The number 600 allowed the experiment to be kept within the realm of practicality.

Each GUI’s EFGs were used to generate test cases. Since one of the question is

to study the role of test case length in GUI testing (Q4), an algorithm was used that al-

lowed the control of the length of the test case by specifying a limit on the graph traversal.

Hence, a set of buckets of test cases by length were created. One of the problems with au-

tomated GUI testing is the creation and execution of long test cases. Experience with GUI

testing tools has shown that test cases longer than 20 events typically run into problems

during execution, mostly due to timing issues with windows rendering. As events in a

test case are executed, the test case replayer keeps track of GUI state information for each

event. For long sequences, the overhead of keeping track of this information significantly

affects the performance of the JVM, which is also responsible for executing the subject

application. After 20 events, window rendering becomes so slow that events are executed
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even before the corresponding widget is available, resulting in uncaught exceptions. Be-

cause of this limitation of this tool, the GUI length was capped at 20, i.e., there are 20

buckets, one for each length. Since no bucket should be favored, an equal number of test

cases, i.e., 30, was generated per bucket. In all there were 600 test cases per application.

Step 2: Generate Oracle Information

The next step was to obtain the oracle information for each test case. The oracle

information was obtained from the “correct” version of the subject application and used

to test the other versions of the application. An automated tool was implemented to create

this oracle information. This tool automatically executes a given test case on a software

system and captures its state (widgets, properties, and values) by using the Java Swing

API. Due to the limitations of this API, only 12 properties can be extracted for each

widget. The oracle information was obtained by running this tool on the four subject

applications for all 600 test cases. Note that the tool extracted all three levels of oracle

information.

Step 3: Oracle Procedure and Test Executor

All 600 test cases were executed on all 100 versions of each subject application

(hence there were 60,000 runs per application). When each application was being exe-

cuted, its run-time state based on the six oracles were extracted and compared with the

stored oracle information and reported mismatches. The attribute “set equality” was used

to compare the actual state with the oracle information. Note that widget positions were
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ignored during this process since the windowing system launches the software at a differ-

ent screen location each time it is invoked.

Each test case required between 5 and 60 seconds to execute. The time varied by

application and the number of GUI events in the test case. The total execution time was

slightly less than one month for each application.

The resulting data can be viewed as a (hypothetical) table (hereafter referred to

as the “data table”) for each application. Each row of this table represents the result of

executing each test case on each fault-seeded version. Hence the table has l©¬©¬sOAmU¬©¬sR
l©¬§�%¬©¬©¬ rows. It has 6 columns, one for each test oracle. Each entry of the table is a

boolean value (Match/Mismatch) indicating whether at least one mismatch occurred

(the fault was detected) during test case execution when using the corresponding oracle.

Step 4: Cleaning up the Data Table

During test execution, two factors that were independent of test oracle caused fil-

tering out some of the rows in the data table. These factors include the impact of seeded

faults on software execution and interactions between test cases and faults. The former

is due to the way a fault is manifested during execution. The latter is due to test-case

design, whether the test case caused the execution of the program statement in which the

fault was seeded, and whether the seeded fault was manifested on the GUI. Each of these

issues are listed and discussed next:

1. Effect of fault on software execution: several test cases (during execution) crashed

specific fault-seeded versions, irrespective of the test oracle. These test cases ex-
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ecuted properly on other versions. Such crashes were eliminated from the data.

There were 954, 1595, 2302, and 4829 crashes for TerpPresent, TerpWord, Terp-

Paint, and TerpSpreadSheet respectively. Each of these (test case, fault-seeded ver-

sion) pairs caused the filtering of one row in the table.

2. Fault design: several faults were never detected by even a single test case. These

faults are “unobserved.” There were 58, 5, 43, and 1 unobserved faults for Terp-

Present, TerpWord, TerpPaint, and TerpSpreadSheet respectively. These faults are

discarded from the data. For each such fault, a maximum of 600 table rows were

filtered out, one for each test case.

3. Test case design: one test case in TerpPaint did not detect even a single fault for

any oracle. This test case was eliminated, causing the filtering of 57 rows, one for

each of the remaining fault-seeded versions of TerpPaint.

4. Finally, a large number of test cases did not detect certain faults for any test oracle.

These rows were eliminated from the table.

#
Rows

Filtered #
Rows

Filtered #
Rows

Filtered #
Rows

Filtered
1 Crashes 954 1595 2302 4829
2 Unobserved faults 58 34800 5 3000 43 25800 1 600
3 Test cases not detecting any faults 0 0 0 0 1 57 0 0
4 Test cases not detecting specific faults 20566 54013 31779 52323

TerpPresent TerpPaint TerpSpreadSheet
60000 60000

TerpWord
60000 60000

3680 1392 62 2248

Total Rows

Filtering Steps

Remaining Rows

Subject Applications

Table 5.1: The Data Table Cleanup Steps

These “filtering steps” are also shown in Table 5.1. Note that they were executed in

the order presented. Also note that after the last filtering step, some fault-seeded versions
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may have been filtered out entirely, since test cases either crashed them or did not detect

the faults.

The remaining data, which is used for the analysis, are the rows of the data table

that contain at least one Mismatch entry. These rows represent test runs that yielded

a successful fault detected for at least one test oracle. That is, the test case successfully

executed the program statement in which the fault was seeded and the fault manifested

as a GUI error. This data is relevant to the results since it helps to compare test oracles.

Note that other entries may be useful for other analyses, e.g., to study characteristics of

test cases, which are beyond the scope of this work.

The number of test cases that appeared in at least one row of the resulting data

table were 600 for TerpPresent, 424 for TerpWord, 18 for TerpPaint, and 358 for Terp-

SpreadSheet. Similarly, the number of faults that appeared in at least one row in the table

were 25 for TerpPresent, 82 for TerpWord, 18 for TerpPaint, and 83 for TerpSpreadSheet.

These numbers will be used in the analyses presented. It should be noted that the threats

to validity stated in Section 4.4 also hold for this experiment.

5.2.4 Results

Fault-Detection Effectiveness

Recall that �¹1hY5��h ; was defined as the number of faults detected by test case

Y when using oracle h . This value is computed from the data table as �¹1hY5�]hf;�R��.��� »sY�1hY5�#�"�]hf; , where the function »sY returns m if the the entry for column h in the

row corresponding to test Y and fault � is Mismatch; ¬ otherwise. � is the set of all
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faults in the data table.
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Figure 5.4: Distribution of � Values by Test Oracle

The � values for each test case are summarized as box-plots in Figure 5.4. There are

four box-plots in Figure 5.4, one for each subject application. For example, Figure 5.4(a)

shows the results for TerpPresent. This plot contains six boxes, corresponding to the six

test oracles. The x-axis lists the oracles and the y-axis shows the � values. From visual

examination of the graph, it is noted that L2 (mean � value = 5) does better than L1

(mean � = 1). However, L3 (mean � = 6) is very close to L2. Comparing L4, L5, and
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L6, note that the difference between L4 and L5 is not as stark as the difference between

L1 and L2; moreover, L6 does better than L5 (which was not the case for L2 vs. L3).

Comparison of L1 to L4 (mean � = 0.5) shows that L1 does better than L4. Similarly L2

does better than L5 (mean � = 3.5). However, L3 and L6 are very close. The results for

the other applications are more or less similar; the only visual difference is that L3 does

better than L6 for these applications.

In summary, visual examination of the box-plots suggest that the “effectiveness

order” of test oracles (as measured by their mean � values) is 0 L3, L6, L2, L5, L1, L4 < ,
i.e., L3 is the best and L4 is the worst. This result suggests that the oracle information and

execution frequency does have an impact on fault-detection effectiveness. Checking the

entire state as opposed to only the active window is effective if the oracle is invoked after

the last event in the test case. If, on the other hand, the oracle is invoked after each event,

then checking only the active window does well. With the exception of TerpPresent,

checking the current widget seems ineffective.

As demonstrated above, box-plots are useful to get an overview of data distribu-

tions. However, valuable information is lost in creating the abstraction. For example, it

is not clear how many test cases detected specific numbers of faults. This is important to

partially address Q4. Even though L3 and L6 more or less showed similar results in the

box-plots, do more test cases detect more faults with L3 than L6? If this is the case, a

tester who has a small number of test cases may get better results with L3 and L6.

The number of test cases that detected specific numbers of faults for different test

oracles is shown in Figure 5.5. It shows six histograms for TerpPresent, one for each test

oracle. The x-axis represents the � values; the y-axis shows the number of test cases
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that had the particular � values. There are several important points to note about these

plots. First, they have an �BR|¬ column (the first dark column; in some cases this column

is very tall; in these cases, it has been chopped – the number adjacent to the top of the

column represents its height); this column is important since it accounts for test cases that

detected faults with at least one test oracle but not with the current oracle. Second, the

sum of all the columns is equal to the number of test cases in the “filtered” data table.

To allow easy visual comparison, the same x-axis and y-axis scales are used for all

six plots. For TerpPresent, there is a larger number of test cases have a larger � value

for L3 and L6. In fact, the zero column for L3 and L6 contains no test cases, i.e., all test

cases detected at least one fault when using L3 and L6. The zero column is tallest for

L4, followed by L1. Hence a large number of test cases did not detect even a single fault

when using L1 and L4. In case of TerpWord (Figure 5.6), approximately 60 test cases did

not detect even a single fault for L6. Moreover, the column corresponding to �pR m for

oracle L3 is shorter than that of L2; however, a larger number of test cases have higher

� values. For TerpPaint (Figure 5.7), the oracle L4 detected no faults, represented by a

single zero column of height 18. For TerpSpreadSheet (Figure 5.8), L3 did significantly

better than L2, indicated by a taller �BR~m column; L2 has a very tall �BR�¬ column.

The probability that a test case will detect a larger number of faults with L3 is high.

It was also noted that oracle L6 does reasonably well. Oracle L4 has the largest number

of test cases with zero faults detected. In summary, a tester with a small number of test

cases can improve overall fault detection effectiveness by using oracle L3. This result

partly answers Q4.
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Figure 5.5: Histogram for TerpPresent
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Figure 5.6: Histogram for TerpWord
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Figure 5.7: Histogram for TerpPaint
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Figure 5.8: Histogram for TerpSpreadSheet
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Statistical Analysis

The results discussed thus far have been based on visual examination of the data.

While visual examination provides an intuitive overview of the data, valuable informa-

tion is lost. For example, each test case has six data-points (the six � values) that are

correlated. This correlation is difficult to show and compare visually, especially for large

data-sets.

Whether the differences in � values observed for each test case per test oracle are

statistically significant has to be determined. In particular, the differences between the

oracles within the sets 0 L1, L2, L3 < , 0 L4, L5, L6 < , 0 L1, L4 < , 0 L2, L5 < , and 0 L3, L6 <
need to be studied. Several statistical tests may be used for this study. Choosing the right

test is based on the number and the nature of the dependent (in this case the � values)

and the independent variables (i.e., the test oracle). For this experiment, the distribution

of the data (Normal vs. non-Normal), the number of groups (2 or 3), size of groups, and

whether the groups are matched or not will be considered.

Since the sample sizes are small (e.g., 18 for TerpPaint), normality of the data has

to be determined before the statistical tests are chosen. For illustration, the solid line

superimposed on the histograms (Figures 5.5 through 5.8) shows the normal distribution

approximation; this illustration suggests that the data is not normal. Finally, the data

is matched, i.e., each data point (e.g., � value for oracle L1 with test case Y ) in one

distribution (for oracle L1) has a corresponding matched point in all other distributions

(the matched points are the � values for oracles L2–L6 with test case Y ). Considering

all these factors, the Friedman test was chosen for the three matched groups statistical
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comparison ( 0 L1, L2, L3 < , 0 L4, L5, L6 < ) and Wilcoxon signed ranks test for two matched

groups comparison ( 0 L1, L4 < , 0 L2, L5 < , 0 L3, L6 < ). There is no test to compare 0 L1,

L4 < for TerpPaint.

Sample Size Friedman Test Statistic Value P-Value
L1/L2/L3 1095.2514 <.0001
L4/L5/L6 1174.8991 <.0001
L1/L2/L3 710.9736 <.0001
L4/L5/L6 577.6345 <.0001
L1/L2/L3 31.0000 <.0001
L4/L5/L6 18.0000 0.0001
L1/L2/L3 542.5014 <.0001
L4/L5/L6 598.8733 <.0001

TerpSpreadSheet

1272

54

1074

TerpPresent 1800

TerpWord

TerpPaint

Table 5.2: Friedman Test Results

Friedman Test: This test compares the mean � values for the test oracle sets 0 L1, L2,

L3 < , and 0 L4, L5, L6 < based on their rank scores. The null hypothesis here is that the

mean values do not differ. Table 5.2 summarizes the results of this test. The statistic

value shown here is the standard Cochran-Mantel-Haenszel (CMH) statistic used by most

popular statistical software packages. The p-values are obtained by a table lookup using

the sample size and CMH value. As the result shows, all p-values are less than 0.05.

Hence, the null hypothesis is rejected. The alternative hypothesis, i.e., the mean � values

do differ in a statistically significant way, is accepted. An additional Wilcoxon matched

pairs test on the oracle pairs 0 L1, L2 < , 0 L2, L3 < , 0 L1, L3 < , 0 L4, L5 < , 0 L5, L6 < , and

0 L4, L6 < showed that the differences between these oracle pairs are also statistically

significant.

Wilcoxon Signed Ranks Test: The null hypothesis here is that there is no statistically

significant difference between the means among the oracles in the sets 0 L1, L4 < , 0 L2,
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Sample Size Wilcoxon Test Statistic Value P-Value
L1/L4 20808 <.0001
L2/L5 33764 <.0001
L3/L6 115.5 <.0001
L1/L4 1785 <.0001
L2/L5 17490 <.0001
L3/L6 6440 <.0001
L1/L4 * *
L2/L5 27.5 0.0020
L3/L6 14 0.0156
L1/L4 1387.5 <.0001
L2/L5 10764 <.0001
L3/L6 1870.5 <.0001

TerpSpreadSheet

TerpPresent

TerpWord

TerpPaint

600

424

18

358

Table 5.3: Wilcoxon Test Results

L5 < , and 0 L3, L6 < . The results of the tests are summarized in Table 5.3. All p-values

are less than 0.05, resulting in the rejection of the null hypothesis and acceptance of the

alternative hypothesis.

The above two analyses helped to answer the first parts of Q1 and Q2. Based on

the results of the Friedman test, and the earlier visual comparison, it is concluded that the

oracle information has a significant impact on fault detection effectiveness of a test case;

checking more widgets is beneficial. Based on the results of the Wilcoxon signed ranks

test, and the earlier visual observations, it is concluded that the frequency of invoking the

test oracle does have a significant impact on the fault detection effectiveness of a test case;

invoking the test oracle frequently is beneficial.

Faults Detected Per Comparison

To study the cost of the oracles, first, the number of comparisons that each oracle

performs per test case should be computed. The average number of comparisons per

test case for oracle h is represented as ��1�hf; , and is shown in Table 5.4. As expected,
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L1 L2 L3 L4 L5 L6
TerpPresent 11.5 567.69 947.6 1 48.51 82.56
TerpWord 12.93 404.79 671.56 1 30.29 59.56
TerpPaint 14.17 1106.56 1667.17 1 63.33 125.83

TerpSpreadSheet 13.61 600.29 1268.06 1 43.24 104.7

Table 5.4: Average Number of Widget Comparisons Per Test Case

��1�h&p�;±R m . The value of ��1Fh m+; is larger than ��1Fhmp7; due to one comparison per event

in the test case. The values of ��1Fh dJ; and ��1�h­o7; depend on the number of widgets in the

active window and in all the open windows respectively. Similarly, ��1FhUo©; and ��1FhUl©;
depend on the number of widgets in the active window and in all the open windows when

the test case ends, respectively.

Recall that � has been defined as the faults-detected-per-comparison for each test

case. Higher values of � are considered better. � is computed and the results are presented

as box-plots. The results for TerpPresent are summarized in Figure 5.9(a). Since L3

requires the maximum number of comparisons (the entire state of the GUI after each

event in the test case), it is penalized the most by the � measure; L2 is close behind. Since

the number of comparisons is smaller for L5 and L6, their � values are better. In the case

of TerpPresent, checking the widget alone helped to detect a non-trivial number of faults;

combined with a very small number of comparisons required, the � value of L4 was better

than all other oracles, followed by L1.

The results for TerpWord (Figure 5.9(b)) are different primarily because L1 and L4

did not detect many faults; simply checking the widget was inadequate. L2 and L3 again

suffered due to the large number of comparisons they require. L5 did much better due

to its reduced frequency of comparison. Although L6 compares the entire state whereas

110



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

L1 L2 L3 L4 L5 L6

Test Oracles

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

L1 L2 L3 L4 L5 L6

Test Oracles

(a) TerpPresent (b) TerpWord

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

L1 L2 L3 L4 L5 L6

Test Oracles

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

L1 L2 L3 L4 L5 L6

Test Oracles

(c) TerpPaint (d) TerpSpreadSheet

� V
al

ue � V
al

ue

� V
al

ue � V
al

ue

Figure 5.9: � Values for All Test Cases

L5 compares only the active window, L6 did much better due to its larger � value. This

difference did not help L6 for TerpPaint (Figure 5.9(c)) since the entire state is much

larger for this application. Since L5 did not detect many faults for TerpSpreadSheet, its �
value is very low (Figure 5.9(d)).

Answers to Q1, Q2, and Q3 are now ready. In case of Q1, it was noted that the

oracle information does have an impact on the fault-detection effectiveness of a test case.

In case of Q2, the invocation frequency of a test oracle has a very significant impact on
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the fault-detection effectiveness of a test case. Considering the � measure, the additional

effectiveness is not worth the cost for L2 and L3 due to the extremely large number of

comparisons required for L2 and L3; using L5 and L6 is more practical. However, for L1

vs. L4, the additional cost is very low and helps fault detection.

In case of Q3, the combination of oracle information and procedure that provides

the best cost-benefit ratio depends largely on the GUI.

Relationship Between Test Oracles and Fault-Detection Position

It was observed that whenever the test oracles L3, L2, and L1 detected a fault at

event position ² , · , and ³ respectively, then in many cases (e.g., 33% for TerpWord, 62%

for TerpPresent) one of the relationships ²��Z· or ·{�Z³ held ( ²�R|· R_³ was expected). In

other words, when oracles contained more information, they tended to detect faults earlier

in the event sequence.

���� f ���� f ]�]Q]�f �]�����.���|J� f ]Q]�]�f �]�����.���|JK f ]�]�]�f �]�����.���|�I f ]�]�]�f ����
This was an interesting result since it provided a link between test oracles and the

length of a test case. Longer test cases are more expensive to generate and execute. Hence,

if a test designer has a suite containing short test cases, oracle L3 has better chances of

detecting more faults. The box-plots shown in Figure 5.10 illustrate the results. No results

are shown for TerpPaint since only two test cases detected a fault using L1. The box-plots

show that the position at which the fault is detected using L1 is later than that using L2

or L3. However, for TerpWord and TerpSpreadSheet, the position at which the fault is

detected using L2 is almost the same as that using L3.
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Figure 5.10: Position Where the Fault is Detected vs. Oracle for (a) TerpPresent, (b)

TerpWord, and (c) TerpSpreadSheet

Hence generating/using a complex (more expensive) oracle is justified if a tester

has short test cases. This result partly answers Q4.

5.3 Conclusions

This chapter presented a new GUI testing process called smoke testing, which tests a

set of changes that have been made by developers. A more thorough feedback is provided

to them. This chapter shows the smoke test cases are effective at detecting a large number

of GUI faults. Because smoke testing is a form of reference testing, which tests the

current version against its previous version, the challenge of performing smoke testing

lies in creating test oracles.

Two important parts of a test oracle were defined: oracle information that represents

expected output and an oracle procedure that compares the oracle information with the

actual output. A technique to specify different types of test oracles was developed by

varying the level of detail of oracle information and changing the oracle procedure; this
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technique was used to create six instances of test oracles for an experiment. The results of

the experiment showed that test oracles do affect the fault-detection ability of test cases in

different and interesting ways: (1) test cases significantly lose their fault-detection ability

when using “weak” test oracles, (2) in many cases, invoking a “thorough” oracle at the

end of test case execution yields the best cost-benefit ratio, (3) certain test cases detect

faults only if the oracle is invoked during a small “window of opportunity” during test

execution, and (4) using thorough and frequently-executing test oracles can make up for

not having long test cases.

The smoke test cases exhibited the following properties that satisfy the criteria for

the intermediate loop (presented in Chapter 3).

1. The test cases can be generated automatically and executed in one night.

2. All system-interaction and termination events are executed; most of the GUI’s func-

tionality is covered.

3. As the GUI is modified, many of the smoke test cases remain usable because they

do not contain structural events.

4. Test oracle based on reference testing is fully automatic.

Note that in smoke testing, false positive issues may arise, because some of the

changes are intentionally made. The testers have to identify those false positives manu-

ally.
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Chapter 6

Comprehensive GUI Testing

Although smoke and crash testing are useful in that they help to detect major prob-

lems in the GUI software, comprehensive GUI testing goes beyond looking for software

crashes and reference testing; it should be performed before the software is released to

its end-users. As discussed in Chapter 2, several researchers have developed limited and

expensive techniques to automate this type of testing; however, in practice, in most or-

ganizations, GUI testing continues to be performed manually with limited tool support

(JUnit, Capture/Replay). This is due to a number of reasons including testers’ expertise

and established practices within the organization. Recognizing that these factors are diffi-

cult to change, the goal of this chapter is not to develop new techniques for comprehensive

GUI testing; rather it is to provide a set of guidelines supported by results of experiments

that a test designer may use to improve techniques that are already in use.

In particular, two sets of guidelines are presented. The first set is based on an experi-

ment that studies tradeoffs between test case length, test suite size, and event composition.

The second set is based on another experiment that helps to determine strategic points in

the test case where a tester may insert an assertion (for the test oracle) to maximize fault-

detection effectiveness and reduce cost.
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6.1 Experiment - Studying the Characteristics of a “Good” Comprehen-

sive Test Suite

In this experiment, several key characteristics of GUI test suites of interest to testers

are varied: size of the suite, event composition, and the length of each test case. For each

combination of these characteristics, the impact on fault detection effectiveness and cost

is reported. The goal is to compile a set of “lessons learned” that can be used by testers

to create effective GUI test cases for comprehensive testing.

6.1.1 Experimentation Procedure

This experiment has been designed to examine two hypotheses: ( ��I ) large test

suites are more effective at detecting faults compared to smaller test suites, ( ��K ) test

suites that contain long GUI test cases are more effective at detecting faults compared to

test suites that contain only short GUI test cases. The experiment will prove or disprove,

via hypothesis testing, the set ( � [ ) of null hypotheses: 0 ( ��[�I ) increasing the size of a

test suite does not correspondingly increase the fault-detection effectiveness and gener-

ation/execution cost of the suite, ( � [�K ) increasing the length of a test suite’s constituent

test cases does not correspondingly increase the fault detection effectiveness and gener-

ation/execution cost of the suite < . The alternative hypothesis will be the negation of the

corresponding null hypothesis.

Four of the TerpOffice applications and their fault-seeded versions (TerpWord, Terp-

SpreadSheet, TerpPaint, and TerpCalc) are selected. A large number of test suites with

various, carefully controlled characteristics are created and executed on these applica-
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tions. Keeping in mind the above hypotheses, the primary measured variable is the fault-

detection effectiveness of a test suite; the secondary measured variable is the cost of

generating and executing the test suite.

6.1.2 Test Pool

This experiment requires the development and execution of a large number of test

cases. For example, Part 1 of the experiment requires the execution of 9000 test suites,

each with an average size of 2780 test cases for one subject application. GUI test cases

are expensive to execute – each test case can take 5-60 seconds to execute. Hence, for

the results to be statistically significant, the experiment must generate and execute a pro-

hibitively large number of test suites. Other researchers, who have also encountered simi-

lar issues of practicality, have circumvented this problem by creating a test pool consisting

of a large number of test cases that can be executed in a reasonable amount of time [10].

Each test case in the pool is executed only once and it’s execution attributes e.g., time

to execute and faults detected are recorded. Multiple test suites are created by carefully

selecting test cases from this pool. Their execution is “simulated” by combining the at-

tributes of constituent test cases using appropriate functions (e.g., summation for cost of

execution). This research will also employ the test pool approach to create a large number

of test suites.

Due to its central role in this experiment, it is important to create the test pool

carefully. The test pool should allow the creation of test suites with three controllable

attributes, namely size, length of the constituent test cases, and the event composition of
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the suite. For example, for Part 2 of the experiment, the test pool should allow the creation

of test suites containing test cases that vary in length; at the same time, the size and event

composition of the suites should remain constant. Hence, the test cases used in earlier

experiments cannot be used here. However, it should be noted that the threats to validity

stated in Section 4.4 also hold for this experiment.

The following process was employed to create the test pool:

1. Create twenty empty buckets; each ·T �³Q}��Q�k4 can hold test cases of length � , for m�e
�­e|dJ¬ .

2. Add all GUI events into ·T �³Q}§�Q�TI . Each event forms a length 1 test case.

3. For each event ¡ in ·# �³P}§�Q�TI , create five1 copies of ¡ and append each copy to a ran-

domly chosen (without replacement) element from follows(x). The “without

replacement” choice ensures that the test cases are unique. For all events, except for

the Exit event, � �
�������$�N�§1F��;:�"(�o ; the Exit event is ignored in this experiment.

The result is a set of unique length 2 test cases, which forms ·# �³P}§�Q��K .
4. To fill ·T �³Q}§�Q��4 ( oZe �veºd:¬ ): for each event ¡ in ·T �³Q}§�Q�TI , create 5 copies of ¡

and concatenate each copy with a randomly chosen (without replacement) element

from follows(x). Increase the length of this test case to � by repeating the

concatenation process, selecting a random event each time.

5. The test pool is the Union of ·T �³Q}��Q�kK through ·# �³P}§�Q�´K�[ . Note that bucket I is ignored

due to its smaller (one-fifth) size.
1The choice of five copies is not arbitrary. This experiment was conducted with 2, 3 and 4 copies. There

was no significant difference in results between 4 and 5 copies. Hence for these applications, the results of

experiments that used 5 copies were reported.
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All the buckets are of equal size; they have o O^� test cases, where � is the number

of events (minus 1 for Exit) in the GUI. The test pool for each application contained

11875, 15010, 18240, and 7980 test cases for TerpWord, TerpSpreadSheet, TerpPaint,

and TerpCalc respectively. Each bucket is guaranteed to contain at least 5 instances of

each GUI event (as the first event in the test case). Each test case will be executed in the

same initial state of the GUI. Hence, these 5 events will behave identically. As expected,

the exact number of times each event was executed was much larger than 5. The event

frequency distribution is shown in Figure 6.1 in the form of box-plots. Note that some

events, those that open pull-down menus, are executed much more frequently (e.g., as

much as 3500 times in TerpSpreadSheet) than others.
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Figure 6.1: Event Distribution for Each Application

Two variables were measured in these experiments for each test suite, i.e., cost

in terms of execution time and fault-detection effectiveness. Execution time of the test

suite was simply the cost of executing each test case in the suite. The fault-detection

effectiveness was measured as the number of unique faults detected by the test cases in

119



the suite.

6.1.3 Part 1: Effect of Test Suite Size

Since several factors (test suite size, event composition, test-case length) may have

an impact on the fault-detection effectiveness of a test suite, one factor will be varied in

each part of the experiment, keeping other factors constant. In this part of the experiment,

the event composition and length of test cases will be kept constant; only the test suite

size will be varied.

To find the minimum test suite size that may be used for this experiment, the fol-

lowing process is executed:

1. For each application, randomly generate 100 test suites. Each test suite should

cover all GUI events (i.e., randomly select test cases without replacement from the

test pool until all the GUI events have been covered). Measure the size of each

suite; add these 100 values (sizes) to an initial observation set ��/¥[ .
2. Randomly generate 100 more test suites. Add them to the most recent observation

set ��/�4 . Determine if ��/F4 is equivalent to the old observation set ��/E4tb&I ; if so,

then skip to the next step; else repeat this step. Equivalence is determined by the

formula: ( �_�U�7��²���1	��/F43; R¯R~�_�U�7��²7�¶13�^/�4tb&I�;�� �¢¡^IQ1	��/�4';5R¯R£¡^IP13�^/�4tb&Ik;�� �
¡¯��1	��/�4'; R¯R£¡¯��1	��/�4tb&Ik; ), where �_�U�7��²7� , ¡�I , and ¡X� are the median, first quar-

tile, and third quartile of a data set respectively. This step terminates only if the

formula returns TRUE.

3. The above step executed 11, 14, 11, and 11 times respectively for TerpCalc, Terp-
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Paint, TerpSpreadSheet, and TerpWord before terminating.

The median of the last observation set is the smallest test suite size ( � ) that is con-

sidered in this experiment. The median for TerpCalc, TerpSpreadsheet, TerpPaint and

TerpWord is 220, and 377, 556, and 170 respectively. The test suite size will be varied

from � to mU¬�O�� test cases, in increments of � .

Since the test suites for this experiment need to have the same event composition

and lengths of test cases, the following process is used to create them:

1. Create a test suite of size � by randomly choosing (without replacement) � elements

from the test pool. If all the events in the GUI are not covered by this test suite,

then discard the suite and re-execute this step. Create 19 partitions of this suite

by test-case length. If for any length � , �&²��+���	����$��F4�( 13·T �³P}§�Q��43�*mU¬7; , then discard

the suite (since it cannot be used to create the size- m�¬J� suite in Step 3 below) and

re-execute this step.

2. For each test case � in the size- � suite do: let the length of � be ¡ ; randomly select

from the test pool, without replacement, 2 test cases of length ¡ . Insert them into

the size d�OA� suite. Random choice without replacement throughout this step’s

execution ensures that there are no duplicate test cases in the suite. If all the events

in the GUI are not covered by the dvOA� test suite, then discard the suite and re-

execute this step.

3. Repeat the above step for size ovO � through size m�¬vO�� , choosing 3 through 10

test cases respectively from the test pool for each element of the size- � test suite.

The event composition of all the suites is exactly the same. Also, they all have
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similar-length test cases. This process of test suite creation is repeated in increments

of 100 test suites per unit of size until the data converges, i.e., additional runs do not

yield useful information. If the data has not converged yet, the latest 100 data points

are added to the observation set; hence the observation set grows in increments of 100.

Convergence is determined using the three-value (median, first quartile, third quartile)

comparison process described earlier. The only difference is that all 10 same-sized sets

are compared to each other.

The number of increments for TerpWord, TerpSpreadSheet, TerpCalc, and Terp-

Paint was 10, 8, 7, and 9 respectively, representing 1000, 800, 700, and 900 test suites

in the final observation set. Figure 6.2 through Figure 6.5 summarizes the results for

TerpCalc, TerpWord, TerpSpreadSheet, and TerpPaint. These figures show a trend that

the number of faults detected grows as test suite size grows, i.e., larger suites are more

effective at detecting faults. The convergence towards a plateau above a size roughly cor-

responding to 1000 is an artifact of the number of faults seeded and/or the size of the

GUI.

The analysis of variance test (ANOVA) with ¤ R ¬§]Ò¬�o was performed to show

that the differences of fault-detection for test suite size are statistically significant. The

“factor” in the ANOVA was the test suite size and the “response” was the fault-detection

effectiveness. The ANOVA test would indicate, with a certain degree of confidence, that

the observed differences were statistically significant. The observed � -value was o�] o�O
mU¬ b&IF¥/¦ , much less than 0.05, leading to the conclusion that the suite size has a statistically

significant impact on the fault-detection effectiveness. Hence the null hypothesis �?[�I is

rejected.
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Figure 6.2: Fault Detection Effectiveness vs. Test Suite Size for TerpCalc

This result shows that the size of a test suite improves its fault-detection ability

even though the lengths of its constituent test cases and event composition do not change.

The only difference in larger test suites is that events are executed multiple number of

times in combination with different preceding events (different GUI states), i.e., increased

diversity of GUI states. A larger test suite, however, requires more time to generate as

well as execute; the time is proportional to the size of the suite.

6.1.4 Part 2: Effect of Test Case Length

This part of the experiment will study the effect of test case length on fault-detection

effectiveness of a test suite, keeping event composition and size constant. The following

process was used to obtain the test suites.

1. To create a test suite containing test cases of length � : randomly choose (without

replacement) test cases from bucket 4 until all events have been covered. Execute
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Figure 6.3: Fault Detection Effectiveness vs. Test Suite Size for TerpWord

this step for d�eM�­e|dJ¬ .
2. Let � be the size of the largest of the 19 test suites. Add test cases into the re-

maining test suites from their corresponding buckets until they have � test cases.

Ensure that no test cases are repeated.

Evaluate the fault-detection effectiveness of the 19 test suites. Repeat the above

process using the three-value comparison technique outlined in Part 1 of this experiment.

The data distributions converged after 10, 11, 12, and 12 iterations for TerpWord, Terp-

SpreadSheet, TerpCalc, and TerpPaint respectively, representing 1000, 1100, 1200, and

1200 data points in the final observation set.

The results are summarized in Figure 6.6 through Figure 6.9. The x-axis shows the

test case length (2-20) and the y-axis shows the fault-detection effectiveness. The results

show that the fault-detection effectiveness does not increase with test-case length. There

is not the slightest evidence against the null hypothesis �s[�K ; hence it cannot be rejected.
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Figure 6.4: Fault Detection Effectiveness vs. Test Suite Size for TerpSpreadsheet

Although the results show that the length of test cases has no significant impact on

the number of faults detected, additional analysis showed that there were certain faults

that could only be detected by long test cases; short test cases did not detect these faults.

The analysis results for TerpCalc are summarized in Figure 6.10. The figure shows a

column graph; the x-axis shows the test case length; for each column � , the height of the

column shows the size of the set µG$+¼^�"gh��¼y�����P13�G²7 �g �kª*1h��;#�P°±�F��$+� 4tb&I6�§�I �G²7 �g �kª�1cu*;�; , where

�X²� �g �kª�1h¡�; is the set of faults detected by all length- ¡ test cases in the test pool, °±�F��$+� and

µX$�¼^�"gh��¼y����� are set operators. For example, the graph shows that length 10 test cases

detected 12 �E��2 faults that could not be detected by any of length 1 through length 9 test

cases. The number of new faults decreases for very long test cases. For example, length

16, 17, and 18 test cases did not detect any faults that had not been detected by shorter ( �
m'l ) test cases. Length 19 and 20 test cases detected only 3 and 2 new faults respectively.

The converse of this result was not true, i.e., µX$+¼^�"gh��¼y�����P1	�X²7 �g'�kª�1h��;a�a°{����$+�"6�¨�43�X²� �g �kª�1cu*;�;
was almost always the empty set.
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Figure 6.5: Fault Detection Effectiveness vs. Test Suite Size for TerpPaint

This experiment showed that when test suite size is kept constant, the length of the

test cases has an impact on the type (not number) of faults detected. This result reinforces

the earlier observation that an event, when executed in multiple contexts, detects different

faults. A tester has two ways of improving diversity in the way an event is executed:

(1) by creating longer test cases and (2) generating more test cases as observed from

Section 6.1.3.

6.1.5 Part 3: Effect of Event Composition

In the first two parts of this experiment, the event composition of the test suites was

kept constant, i.e., all the events were used. This part of the experiment keeps the test

suite size and test-case length constant and varies the event composition. The following

process was used to create the test suites.

1. Randomly generate a test suite � that covers all events.
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Figure 6.6: Fault Detection Effectiveness vs. Test Case Length for TerpCalc
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Figure 6.7: Fault Detection Effectiveness vs. Test Case Length for TerpWord
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Figure 6.8: Fault Detection Effectiveness vs. Test Case Length for TerpSpreadsheet
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Figure 6.9: Fault Detection Effectiveness vs. Test Case Length for TerpPaint
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Figure 6.10: New Faults Detected with Length Increase

2. For each event ¡ in the GUI, obtain a test suite called non- ¡ , which is identical to �
in that it has test cases of similar lengths and is of the same size. However, non- ¡
does not contain any test case that uses event ¡ . The following process is used to

obtain non- ¡ : copy those test cases from � to non- ¡ that do not contain ¡ . For each

of the remaining test cases, choose from the test pool a test case of the same length

but one that does not contain ¡ and that maximizes the chances of covering other

events that are not in non- ¡ . If all same-length test cases are exhausted, then discard

� and repeat Step 1. Also, if the final test suite does not cover all events (except ¡ )

then discard � and repeat Step 1.

3. Determine the fault-detection effectiveness of the generated test suites. Repeat the

above process using the three-value comparison technique outlined in Part 1.

Some events (ones that open pull-down menus, e.g., File) are used very frequently

(as much as 3500 times) in the test pool. Removing such events caused problems with the

129



above steps; for example, when File was removed, it was impossible to create a suite

that covered all other events in the GUI. Fortunately, none of these pull-down menu open-

ing events contributed to the fault-detection of the test cases; it was hence not necessary

to remove them.

There was a strong correlation between faults detected by some of the of test suites

and the functional unit in which faults were seeded. A classification of events done using

the same functional units as the ones used for code, revealed that in all cases, non- � test

suites (for � > � functional unit class), the suite did not detect any faults seeded in

functional unit � . Hence, the absence of an event (that interacted with a functional unit

� ) in a test suite directly effects the detection of a fault that was seeded in � ’s code.

This experiment showed that a test suite that uses a wide diversity of states in which

an event executes has good fault-detection effectiveness. There are two ways to improve

state diversity – increasing test case length and creating larger test suite size. A tester

should allocate maximum resources to finding the majority of bugs that can be detected

by generating a large number of short test cases in multiple combination of events. Ad-

ditional resources may be used to find the relatively fewer bugs that can be detected by

generating long test cases.

6.2 Experiment - Developing Test Oracles for Comprehensive Testing

Chapter 5 discussed six types of test oracles and showed that they have a significant

impact on fault detection effectiveness and cost. Two types of invocation frequency of

oracle procedure were defined: (1) “after each event” for oracles L1, L2, and L3, and
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Figure 6.11: Number of Failures

(2) “after the last event” for L4, L5, and L6. Because comprehensive testing may use

several manual techniques (e.g., Capture/Replay tools), it is too expensive to specify and

check the GUI state information “after each event” in the test case. On the other hand,

specifying and checking state information “after the last event” in the test case is rela-

tively cheaper, but as Section 5.2 showed, it may miss faults. The experiment presented

here helps to identify strategic points in the test case at which assertions may be inserted

and comparisons may be done to maximize fault detection effectiveness and minimize

cost. It should be noted that the threats to validity stated in Section 4.4 also hold for this

experiment.

In this experiment, the oracle information will be the “entire GUI state”; the oracle

procedures will be (1) “check for equality of the oracle information and actual output

after each event” and (2) “check for equality of oracle information and actual output

after the last event” of the test case. Note that this corresponds to oracles L3 and L6. Test

cases already available for the experiment of Section 6.1 were rerun with these two types
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of oracles. The number of failed test cases is shown in Figure 6.11. This graph shows

that certain types of GUI errors were missed when using L6. These errors will be called

transient errors because they “disappear” before the oracle L6 is invoked.


 Definition: A transient GUI error occurs during execution of a test case, if À¯4ª©R
/�4 , for an event �Q4 in the test case, where /F4 is the oracle information and À{4 is the

actual state and À=6 R¯Rr/!6 , for some �­�Au e|� . �

On the other hand, many mismatches persist until the last event in the test case.

More formally, persistent errors are defined as:


 Definition: A persistent GUI error occurs during execution of a test case, if À)4«©R
/�4 , for all events ��4 in a test case of length � (u�eM�­el� for some u ). �

The parts of test cases that caused the expected and actual states to mismatch are

shown in Figure 6.12 through Figure 6.13. Figure 6.12 shows the results for TerpPaint.

The x-axis shows the event number (i.e., its position in the sequence) in the test case.

The y-axis represents failed test cases. For each test case, there is a line, with 2 levels

of shading. The dark band shows the events after which the actual and expected states

mismatched. The light band shows the event number after which the actual and expected

states matched:

Mismatch MatchMatch

If a test case failed on more than one fault-seeded version, it is counted more than

once. The test cases were sorted carefully to show the dark/light bands clearly. Note that
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Figure 6.12: Errors for TerpPaint
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Figure 6.13: Errors for TerpSpreadSheet

many test cases have small areas of mismatch. In all cases where the test case ends in a

light band (i.e., a match) , the test oracle L6 would have failed to report an error. Similar

results are seen for TerpSpreadSheet and TerpWord in Figures 6.13 and 6.14 respectively.

Having observed that long test cases, during execution, can transit frequently be-

tween matching and mismatching, the results were manually examined to identify classes

of events that caused the transitions. Some of these classes were defined in Section 4.3; a

new class used in this analysis called menu-open events is used to open/close pull-down

menus. The execution data was mined to find events that led from a match to a mismatch
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Figure 6.14: Errors for TerpWord

and vise versa. The results are summarized in Figure 6.15. The figure shows a column

graph with event types on the x-axis. The y-axis shows the number of times an event

type led to a transition. As seen in the graph, termination, window-open, and system-

interaction events cause the maximum number of transitions. A test oracle that compares

the expected and actual states of the GUI at these events is most likely to report transient

errors.

Manual examination of the test case showed that object creation and destruction

play an important role in transient errors. Examples of such objects for GUIs include

windows, menus, widgets, etc. A window-open event that opens a erroneous window will

cause an error to be detected by the test oracle. On the other hand, a termination event

that destroys a window will close the erroneous window, resulting in a match between

expected and actual states.

The analysis was used to create a new test oracle called �¯�Q�	� by modifying L6.

Oracle information was generated for termination and window-open events. The oracle

procedure was modified to compare the expected and actual states at these points. System-
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Figure 6.15: Event Classes and Error Types

interaction events were not chosen because the test cases contain a large number of these

events, i.e., had the oracle for system-interaction events been compared, �X���	� would have

degraded to L3 in terms of cost because it would have required frequent comparisons.

Figure 6.16 shows three columns for �)�Q�	� , L3, and L6 respectively for each appli-

cation. The y-axis shows the number of errors reported. As seen from the graph, �G���3� is

able to report almost as many errors as L3. L6 performed worst because it missed all the

transient errors.
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Figure 6.16: Error detection of �����	�

The time to execute the oracles also varied significantly. Figure 6.17 shows three
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columns for �����3� , L3, and L6 respectively for each application. The y-axis shows the

time required in seconds for all the test cases. As seen from the graph, �X�Q�	� requires

significantly less time than L3 and more time than L6.
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Figure 6.17: Time Required for �����	�

The results of this study showed that �)�Q�	� was almost as effective as L3 in terms

of error detection. However, it was much cheaper to execute.

6.3 Conclusions

This chapter presented two experiments. The first experiment studied the effect of

test case length, test suite size and event composition on fault detection and cost. The

goal of this experiment was to develop an initial set of lessons learned that GUI testers

may use to develop better test cases.

The second experiment led to the observation that GUI errors “appear” and later

“disappear” at several points (e.g., after an event is executed) during test case execution.
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Two types of GUI errors were defined – transient, those that disappear and persistent,

those that don’t disappear. The experiment showed that in practice, a large number of er-

rors in GUIs are transient and that there are specific classes of events that lead to transient

errors. Testers need to compare the expected and actual output at these strategic points

during test case execution.
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Chapter 7

Summary and Future Work

This dissertation developed a continuous GUI testing process that is applicable to

today’s evolving GUIs. The research contributions of this dissertation that helped to real-

ize the process include an abstract model of the GUI and a set of model-based techniques

for test-case generation, test oracle creation, and continuous GUI testing. The models and

techniques were obtained by studying GUI faults, interactions between GUI events, and

why certain event interactions lead to faults.

7.1 Summary of Contributions

The continuous process consists of three concentric testing loops, each with spe-

cific GUI testing goals, resource usage, and targeted feedback. The innermost loop, called

crash testing, is executed very frequently and is very inexpensive. Software crashes are

reported back to the developer who initiated the check-in. The second loop, called smoke

testing, is executed nightly/daily and completes within 8-10 hours. The third, and out-

ermost loop, called comprehensive GUI testing, is executed after a major version of the

GUI is available.

Several techniques were developed as part of this research to enable the above pro-

cess. Each technique is a new research contribution of this dissertation. A new GUI model

that represents potentially problematic event interactions was developed. The model was
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obtained by using automated techniques that employ reverse engineering, thereby elim-

inating manual work. It was then used to generate test cases, create descriptions of ex-

pected execution behavior, and evaluate the adequacy of the generated test cases. The

fault detection effectiveness of all the techniques was empirically evaluated on several

open-source GUI subjects developed in-house and downloaded from SourceForge.

The experiments and analyses conducted in this dissertation have also contributed

to a better understanding of GUI faults, GUI design, and how GUIs should be tested and

developed. Code coverage analysis showed that each user event executed a specific part

of the GUI code (called the event handler). In most cases, no other event executed this

code. Since the subject applications used in this research were implemented using an

object-oriented programming language (Java), event handlers were usually implemented

as Java methods. Handlers for functionally related events (e.g., file open, file save) share

some methods and are almost always implemented as part of a Java class. Event handlers

typically have one of three structures. First, a few event handlers have no conditional

statements; they contain only one basic block. Faults in this code are likely to be detected

each time the corresponding event is executed, irrespective of the state in which it is

executed. However, these types of incidents are very rare since very few event handlers

have this structure.

The second and most common type of event handlers contains at least one simple

conditional statement, which checks the value of a single variable. This statement is used

to enable/disable the event. The variable is set/reset using other events (e.g., Copy/Cut

enable Paste). Hence, most GUI faults are detected if events are executed in short test

cases with a large number of preceding events. This observation is also supported by the
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results shown in Figure 6.10; length 3 through length 10 test cases detected additional

faults since they executed events in new states. The above two types of structures, i.e.,

(1) no conditional statements and (2) one simple conditional statement lead to “shallow”

faults that can be detected by executing GUI events in different combinations.

The third type of structure of event handlers is the most complex, although rare. It

typically consists of a complex conditional statement or several nested conditional state-

ments. Detecting faults in this type of code requires long sequences of events that can

set/reset variables. Event handlers rarely have this structure; hence GUIs have very few

faults that require long test cases.

The results of the test oracles experiments presented in Chapter 5 and Chapter 6

also help to understand the characteristics of today’s GUIs for “testability.” First, GUIs

contain several types of widgets. Some of these widgets have a state (e.g., check-boxes,

radio-buttons) whereas others are stateless (e.g., buttons, pull-down menus). Events (such

as clicking on a check-box) performed on state-based widgets are used to change (usually

toggle) their state. A test oracle that checks the correctness of the state of the current

widget (i.e., on which an event was just executed) is able to detect specific types of faults

– ones that may adversely affect the current widget’s state only; other faults are missed.

TerpPresent has many such faults. L1 is an example of this type of oracle. Second,

many events affect the state of multiple widgets of the active window, not just the current

widget. L2 is able to detect all faults that are manifested anywhere on the active window.

Finally, several events affect the state of the entire GUI. For example, OK in “preferences

setting” has a global impact on the overall GUI. Oracle L3 is able to detect faults in such

events.

140



The frequency of oracle invocation has a significant impact on fault detection ef-

fectiveness since the constantly changing structure (e.g., currently open windows, active

window) of the executing GUI provides a small “window of opportunity” for fault de-

tection. A test oracle (such as L1 or L4) that examines only the current widget, if not

invoked immediately after a faulty widget state is encountered, will fail to detect the

problem. Hence L4, which waits until the last event, to examine the then-current widget

detects fewer faults than L1. L4 is successful only if the widget associated with the test

case’s last event is problematic, as was the case with TerpPresent. Similarly, L5 detects

fewer faults than L2 because a faulty active window is either closed or is no longer the ac-

tive window by the time the last event in the test case executes; L5 misses these faults. On

the other hand, L2 is able to detect such faults immediately as they are manifested on the

active window. The small difference between L3 and L6 is due to the windows/widgets

that are available at any time for examination. Errors that persist anywhere (i.e., in any

window or widget) across the entire test case execution are easily detected by L6 since it

examines the entire state of the GUI after the last event. L6 misses only those errors that

occurred in windows that were later closed or “disappeared” due to other reasons. The

small number of such disappearing errors in TerpWord, TerpPaint, and TerpSpreadSheet

show the reduced impact of comparing the entire state after each event.

The cost of test oracles is directly related to GUI layout issues that stem from us-

ability concerns. Factors that impact the cost of the test oracles include the number of

windows in the GUI that are open at any time (since L3 and L6 compare a larger number

of widgets) and the number of widgets per window (since L2 and L5 compare all the wid-

gets in the active window). There are several lessons-learned for GUI developers and test
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designers. First, testers who use capture/replay tools typically create assertions for very

few widgets after each event (e.g., the one on which the current event is being executed).

Seeing that L1 and L4 were the least effective at detecting faults, testers need to capture

more information with their test cases, perhaps by using a reverse engineering tool; use

of such automated tools will also reduce the overall effort required to create these oracles.

Second, since it is difficult and expensive to create many long GUI test cases, testers who

conserve their resources and create few short test cases should use test oracles such as

L3 and L6 that check a more complete state of the GUI to improve fault-detection effec-

tiveness. Third, testers should realize that the dynamic nature of GUIs provides a small

window of opportunity to detect faults. They should place their assertions at strategic

places in the test case (e.g., before a window/menu is closed) to maximize fault-detection

effectiveness. Finally, GUI designers must realize that their decisions will not only have

an impact on usability but also on its “testability.”

7.2 Future Work

Several open issues and intriguing research questions were raised while conducting

this research and performing the experiments. These issues and questions point to the

following future research directions.

1. Using other reduced models similar to EIG for GUIs: In this research, model-based

techniques helped to generate test cases and create test oracles automatically and

systematically. There may be many other ways to create new reduced models for

GUIs. Most of today’s GUIs have a central component, and the central component
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interacts with other events. For example, the central component of Microsoft Paint

is the canvas, which interacts with other events in the GUI. It may be possible to

further reduce the EIG model and create a “star” model of the GUI, where the center

of the star is the central component.

2. Applying fault-injection techniques: The experiments conducted in this research re-

vealed that exception handlers are rarely executed by GUI test cases. Fault-injection

techniques are commonly used to test exception handling code in fault-tolerant sys-

tems. New techniques based on fault-injection may be developed to enhance the

EIG model and its associated testing algorithms.

3. Developing techniques to identify false positives: A significant issue observed dur-

ing smoke testing is that testers have to manually identify false positives. New

techniques/models may be developed to identify these false positives automatically.

The experimentation infrastructure developed in this dissertation may be leveraged

to conduct new experiments on multiple versions of software and their fault-seeded

versions to evaluate the impact of false positives.

4. Applying static analysis: The experiments in this research showed that certain types

of events interact with each other. It is important to test such events together. How-

ever, identifying sets of interacting events is a complex problem. Static analysis

techniques may be used to identify sets of event handlers that interact with each

other. New testing techniques may be developed to partition the EIG model into

clusters of related events and test the related events together.
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5. Testing web applications: Web applications are also based on the event-driven

model of GUI applications; users interact with these applications that change their

state and produce outputs, while the application continues waiting for the next user

event. However, a web application may be executed in a large number of differ-

ent client configurations that may change its execution behavior. This additional

demand for portability imposes new requirements on test cases, test oracles, and

coverage criteria for web applications testing. The GUI models and algorithms

developed in this dissertation may be enhanced to handle multiple configurations.

6. Testing object-oriented systems: Modern software development is truly an engi-

neering effort where a software developer composes software by reusing classes,

objects, and components. However, these development paradigms create new chal-

lenges for testing. Source code from certain classes may not be available to the test

designer. In such cases, code-based testing may not be applicable. An interface-

based technique similar to the one used for GUI testing may be beneficial.

7. Testing other event-driven software: GUI testing techniques may be extended to

other event-driven software as well. Common examples include component-based

systems, embedded software, etc. Software components form the building-blocks

of most of today’s large software systems. Messages (events) are sent from one

component to another. Components react by changing their internal state, respond-

ing with messages, and/or waiting for the next message. Similarly, embedded soft-

ware controls modern buildings, cars, elevators, etc. Sensors send signals to the

software, which changes its state, sends output signals to control devices, and con-
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tinues to wait for signals. The test cases for these event-driven software are all

sequences of events. Some of the techniques developed in this dissertation may be

enhanced to test these classes of software.

8. Extending subject application pool: The GUI subject applications used in this dis-

sertation have a fixed number of windows and deterministic behavior. Moreover,

they are all implemented in Java. In the future, characteristics of these applications

may be used to identify other types of applications that are “different” in that they

require the development of new techniques for testing.

9. Extending the fault classes: Twelve types of faults were modeled in this disserta-

tion. It may be possible to study the nature of these faults and their impact on GUI

failures and to use the results of these studies to develop additional classes of faults

that are specific to GUI functions.
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