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Beta-amyloid precursor protein cleavaging enzyme 1 (BACE1), a major neuronal β-

secretase critical for the formation of β-amyloid (Aβ) peptide, is thought to be one of 

the key therapeutic targets that can prevent the progression of Alzheimer’s disease 

(AD). Although complete ablation of BACE1 gene prevents Aβ formation, I found 

that at the mossy fiber projections in CA3 area of hippocampus, where BACE1 is 

highly expressed in normal brain, BACE1 knockout (KO) mice display reduced 

presynaptic function, as measured by an increase in paired-pulse facilitation ratio, and 

abolished mossy fiber LTP, which is very likely due to presynaptic Ca2+ signaling 

abnormality.  

In order to determine the function of BACE1 in an intact CA3 circuit, whole-cell 

recordings were performed from pyramidal cells and inhibitory interneurons in the 

CA3 area that receive mossy fiber inputs. My analyses revealed a decrease in 

presynaptic release at mossy fiber synapses onto CA3 pyramidal cells of BACE1 KO 



  

mice as determined by a significantly reduction in the frequency of miniature 

excitatory postsynaptic currents (mEPSCs) and enhanced paired-pulse facilitation 

ratio. In contrast, BACE1 KO mice do not exhibit significant dysfunction at mossy 

fiber input on CA3 inhibitory interneurons. However, presynaptic function at 

inhibitory input on CA3 pyramidal neurons is impaired in BACE1 KOs, as seen from 

a reduction in paired-pulse depression of inhibitory postsynaptic responses and a 

significant decrease in the frequency of miniature inhibitory postsynaptic currents 

(mIPSCs). 

Finally, to restore the deficits caused by BACE1 inhibition, I demonstrated that brief 

application of nicotine can improve presynaptic release and recover mossy fiber LTP 

in BACE1 KOs by activating α7-nAChRs, which recruits Ca2+ induced Ca2+ release 

to rescue the abnormal presynaptic Ca2+ signaling. 

 

In summary, my studies suggest that BACE1 may play a critical role in regulating 

presynaptic function, especially activity-dependent strengthening of presynaptic 

release. The presynaptic dysfunction seen in BACE1 KOs is likely specified by the 

postsynaptic target, the CA3 pyramidal neurons, independent of the type of inputs. 

And nicotine or α7-nAChR agonists may be a potential pharmacological means to 

circumvent the synaptic dysfunctions caused by BACE1 inhibition. 
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Chapter 1: Introduction 

 

Section 1 Alzheimer’s disease and synaptic alteration 

Subsection 1 What is Alzheimer’s disease? 

First described by German psychiatrist and neuropathologist Alois Alzheimer 

in 1906, Alzheimer’s disease (AD) has been recognized as one of the most common 

form of senile dementia around the world. AD is clinically characterized by a global 

decline of cognitive function including memory loss (Citron, 2004a). Although it has 

been studied for 100 years, there is still no effective disease-modifying treatment 

currently available for AD. It has been found that extracellular amyloid plaques 

consisting predominantly of amyloid beta 42 (Aβ42), and intraneuronal tangles 

consisting of an aggregated form of the neuronal protein tau, are the two pathological 

hallmarks of AD (Citron, 2004a). Current theories implicate the production of Aβ as a 

key molecular event (Hardy and Selkoe, 2002), that initiates synaptic dysfunction, 

which may be the basis for memory loss in early stages of the disease (Walsh and 

Selkoe, 2004a; Shankar and Walsh, 2009), ultimately, disease progression leads to 

severe neurodegeneration and memory loss. Aβ is produced from sequential 

proteolytic cleavage of amyloid precursor protein (APP) by two endoproteolytic 

enzymes, β- and γ-secretase (Fig. 1.1). Consequently, inhibiting the activity of these 

enzymes has surfaced as one of the major disease-modifying approaches for AD 

(Citron, 2004a). Recently, it has been found that γ-secretase cleaves other important 

substrates necessary for normal cell development and function, such as Notch 
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(Sisodia and St George-Hyslop, 2002; Selkoe and Kopan, 2003). Therefore, inhibiting 

β-secretase is now receiving renewed attention (Vassar, 2002; Citron, 2004a, b). In 

order to develop effective therapeutics, a detailed molecular and cellular 

understanding of the role of β-secretase in synaptic function is necessary. In addition, 

accumulating evidence suggests that the initial pathology of AD is a result of synaptic 

dysfunction (Walsh and Selkoe, 2004b; Shankar and Walsh, 2009). Therefore, in my 

thesis, I focused on the consequences of inhibiting BACE1, identified as the major 

neuronal β-secretase (Hussain et al., 1999; Sinha et al., 1999; Vassar et al., 1999; Yan 

et al., 1999), at synaptic function and plasticity level, I tried to identify the synapses 

affected by losing BACE1 activity and the underlying mechanisms of the deficits in 

CA3 area of hippocampus, where the expression of BACE1 is most prominent in 

normal brain (Laird et al., 2005; Zhao et al., 2007). These findings will aid in the 

development of effective therapeutics that can overcome the negative effects of long-

term BACE1 inhibition needed for AD treatment. First of all, I will briefly introduce 

the topic and current understanding of synaptic plasticity in the following two 

sections, which are relevant for the later discussions. 
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Figure 1.1. A diagram of amyloid precursor protein (APP) processing 
pathways. 
The transmembrane protein APP (membrane indicated in blue) can be cleaved by 
two pathways, the non-amyloidogenic α-secretase pathway and the amyloidogenic 
β-secretase pathway. In the non-amyloidogenic pathway, α-secretase cleaves in the 
middle of the β-amyloid (Aβ) region (black) to release soluble APP-fragment 
sAPP-α. The APP C-terminal fragment 83 (APP-CTF83) is then cleaved by γ-
secretase to release APP intracellular domain (AICD) and P3 fragment. In the 
amyloidogenic pathway, β-secretase cleaves APP and produces soluble fragment 
sAPP-β. The APP-CTF99 is then cleaved by γ-secretase to form Aβ40, Aβ42 and 
AICD. 

 

Subsection 2 Synaptic plasticity and memory formation 

It is widely believed that long-term changes in the strength of synaptic 

transmission underlie the formation of memories. Hebb is often recognized as the first 

person to crystallize this idea by proposing that coincident activity of pre- and 

postsynaptic neurons strengthens synaptic connections (Hebb, 1949). It was 

subsequently recognized that uncorrelated activity between two neurons should 
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decrease the strength of synaptic transmission between them (Stent, 1973). It has been 

demonstrated experimentally that high frequency stimulation, which can lead to 

correlated activity in pre- and postsynaptic cells, can indeed strengthen synapses 

(Bliss and Lomo, 1973). On the other hand, a prolonged low frequency stimulation of 

afferents, which would lead to presynaptic activation in the absence of correlated 

postsynaptic activity, produces a long-term decrease in synaptic transmission (Dudek 

and Bear, 1992; Mulkey and Malenka, 1992). The strengthening of synaptic 

connections is termed long-term potentiation (LTP), while the weakening of synaptic 

transmission is called long-term depression (LTD). Since their initial discovery, both 

LTP and LTD have been found to occur in a diverse set of synapses across many 

different brain areas (reviewed in (Malenka and Bear, 2004)). These long lasting 

forms of synaptic plasticity share similar mechanisms of induction, expression, and 

maintenance with those of long-term consolidation of several forms of memory 

(Lisman, 1989; Bailey et al., 1996; Bear, 1996; Martin et al., 2000; Paulsen and 

Sejnowski, 2000; Bliss et al., 2003; Lynch, 2004; Barco et al., 2006; Morris, 2006). 

Moreover, long-term alterations in synaptic transmission, similar to characteristics of 

LTP and LTD, have been observed in vivo during various learning paradigms (Rioult-

Pedotti et al., 1998; Rodrigues et al., 2004; Schafe et al., 2005; Stefan et al., 2006; 

Whitlock et al., 2006), which further suggests that LTP and LTD may be cellular 

substrates for memory formation. 

While LTP and LTD are effective models for mediating synapse-specific 

changes required for memory formation, theoretical considerations indicate that 

maintaining the stability of the nervous system requires additional homeostatic 
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plasticity mechanisms that operate at a slower time scale (hours to days) (Bienenstock 

et al., 1982; Bear et al., 1987; Abraham and Bear, 1996; Turrigiano et al., 1998; 

Turrigiano and Nelson, 2004). For example, without homeostatic regulation, the 

increase in postsynaptic activity after LTP might result in a vicious cycle of 

potentiation that not only degrades the capacity of neural circuits to store specific 

information, but could also culminate in a run-away excitation of the neural network. 

There are several mechanisms of homeostasis that can stabilize the nervous system: 

adjusting excitatory synaptic transmission postsynaptically (Bienenstock et al., 1982; 

Bear et al., 1987; Turrigiano et al., 1998; Abbott and Nelson, 2000; Turrigiano and 

Nelson, 2004), modulating the excitability of neurons (Desai et al., 1999; Aizenman 

et al., 2003; Maffei et al., 2004), changing inhibitory circuits (Kilman et al., 2002; 

Morales et al., 2002; Maffei et al., 2004; Maffei et al., 2006), and altering presynaptic 

function (Burrone et al., 2002; Thiagarajan et al., 2002; Thiagarajan et al., 2005). 

While most studies of synaptic plasticity related to memory formation focus on LTP 

and LTD, it is prudent to understand that alterations in homeostatic plasticity can also 

affect learning and memory. 

Subsection 3 Molecular mechanisms of synaptic plasticity 

While LTP and LTD have been observed in many different brain areas, the 

majority of knowledge about their molecular mechanisms comes from studies in the 

hippocampus. This is partly because the hippocampus is an area of the brain that is 

critically involved in the formation of long-term memories (reviewed in (Lynch, 

2004)). In addition, the hippocampus is one of the areas highly susceptible to amyloid 
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pathology in most AD brains (reviewed in (Walsh and Selkoe, 2004b)). Therefore, I 

will briefly review the mechanisms of synaptic plasticity in the hippocampus. 

In the hippocampus, two major forms of LTP and LTD are observed: one that 

is dependent on NMDA receptor (NMDAR) activation and another that is 

independent of NMDARs (Nicoll and Malenka, 1995; Lynch, 2004). The most widely 

studied forms of LTP and LTD are those dependent on NMDARs in the CA1 region; 

hence, their mechanisms have been fairly well characterized. NMDARs, due to 

activity-dependent relief of their Mg2+ block (Malenka and Nicoll, 1999), act as 

coincident detectors for pre- and postsynaptic activity. In addition, activation of 

NMDARs allows influx of Ca2+ (Connor et al., 1999; Yuste et al., 1999; Kovalchuk et 

al., 2000), which can act as a second messenger to activate various downstream 

effectors in the postsynaptic neuron. It is thought that both the magnitude and 

temporal pattern of Ca2+ increase determines the expression of either LTP or LTD, by 

differentially regulating the activity of protein kinases and phosphatases (Lisman, 

1989). One of the key downstream events of LTP and LTD is regulation of synaptic 

AMPA receptors (AMPARs) (for review see (Malinow and Malenka, 2002; Lee, 

2006)). AMPARs are the major mediators of fast excitatory synaptic transmission in 

the central nervous system (CNS), therefore their function directly dictates synaptic 

strength. Several studies demonstrated that LTP increases synaptic content of 

AMPARs, predominantly by an activity-dependent insertion of receptors containing 

the GluA1 subunit (GluR1) (Shi et al., 1999; Hayashi et al., 2000; Shi et al., 2001). 

This requires concomitant activation of Ca2+/calmodulin-dependent protein kinase II 

(CaMKII) and phosphorylation of the AMPAR subunit GluA1 at serine 818 (S818) 
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(Boehm et al., 2006) and serine 845 (S845) (Esteban et al., 2003) or serine 831 (S831) 

(Esteban et al., 2003; Lee et al., 2010). GluA1-S818 is a protein kinase C (PKC) 

phosphorylation site (Boehm et al., 2006), while GluA1-S845 is a protein kinase A 

(PKA) phosphorylation site (Roche et al., 1996), and GluA1-S831 can be 

phosphorylated by both PKC (Roche et al., 1996) and CaMKII (Barria et al., 1997; 

Mammen et al., 1997). Many studies confirm that CaMKII, PKC, and PKA are 

involved in NMDAR-dependent LTP (reviewed in (Lee, 2006)). Consistent with a 

dominant role for GluA1 in mediating synaptic potentiation, GluA1 knockout mice 

(Zamanillo et al., 1999), as well as mice lacking specific phosphorylation sites on 

GluA1 (Lee et al., 2003), display LTP deficits. On the other hand, NMDAR-

dependent LTD is associated with an activity-dependent removal of synaptic 

AMPARs (Carroll et al., 2001). This process depends on endocytosis of GluA2-

containing receptors (Luthi et al., 1999; Daw et al., 2000; Lin et al., 2000; Man et al., 

2000; Osten et al., 2000; Kim et al., 2001a; Lee et al., 2004), but also requires 

dephosphorylation at GluA1-S845 (Lee et al., 1998; Lee et al., 2000a; Lee et al., 

2003). 

While regulation of synaptic AMPARs, through synaptic targeting and 

phosphorylation, is involved in the initial expression of LTP and LTD, maintenance 

of these forms of plasticity involve additional mechanisms. Collectively, data from 

many studies report that blocking new protein synthesis inhibits the late phase of 

long-term synaptic plasticity (Krug et al., 1984; Stanton and Sarvey, 1984; Frey et al., 

1988; Huber et al., 2000; Manahan-Vaughan et al., 2000; Kelleher et al., 2004). This 

parallels the requirement for new protein synthesis in the formation of long-term 
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memory in intact animals (Flexner et al., 1963; Davis and Squire, 1984) (see 

review(Sutton and Schuman, 2006)). Transcriptional activation is also necessary for 

the maintenance of some forms of long-term synaptic plasticity (Nguyen et al., 1994). 

So far, it is known that multiple transcription factors are activated immediately after 

induction of LTP. Increased transcription of several immediate early genes (IEG) is 

especially important (Tischmeyer and Grimm, 1999) since they enhance new protein 

synthesis (Lynch, 2004; Barco et al., 2006). Interestingly, some, if not all, of these 

transcriptional regulators are also required for long-term memory formation. 

Disruption of cAMP Response Element-Binding Protein (CREB) levels, a Ca2+-

dependent transcription factor, in either the hippocampus or the amygdala has been 

found to impair specific long-term memory but not initial acquisition or short-term 

memory formation (Guzowski and McGaugh, 1997; Lamprecht et al., 1997; Silva et 

al., 1998). Inhibiting the expression of Arc/Arg 3.1 (activity-regulated cytoskeletal 

protein/activity regulated gene 3.1), one of the immediate early genes (IEGs), in the 

hippocampus also impairs long-term memory consolidation (Guzowski et al., 2000). 

Subsection 4 Exogenous Aβ application alters synaptic function 

Molecular understanding of AD came from studying familial AD (FAD)-

linked mutations which have been found in genes encoding APP and presenilin 1 and 

2 (PS1 and 2) in AD patients. These mutations are linked to elevated Aβ production 

(Scheuner et al., 1996; Lendon et al., 1997). This is because many FAD-linked 

mutations make APP a more favorable substrate for the amyloidogenic cleavage 

pathway leading to increased Aβ production. Since FAD patients often harbor 

multiple mutations, many of the AD mouse models carry several FAD mutations. 
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However, depending on the combination of the mutations and their variants, distinct 

phenotypes are observed across age and brain regions studied (for an extensive recent 

review on electrophysiological studies of various AD transgenic (Tg) mouse models 

see (Marchetti and Marie, 2011)). 

Although different AD mouse models show deficits in synaptic function, it 

cannot be taken for granted that these deficits are caused directly by the enhanced 

production of Aβ peptides (especially the Aβ42, which is the major component of 

extracellular senile plaques). In order to directly test the role of Aβ in altering 

synaptic function, many studies have been done to characterize synaptic properties 

and synaptic plasticity following exogenous application of various Aβ peptides.  

In vitro studies done in either the medial perforant path to dentate granule 

cells or the Schaffer collateral inputs to CA1 neurons, reported that application of 

subneurotoxic concentrations of Aβ peptides (i.e. Aβ42, Aβ40, or Aβ25-35) inhibits LTP 

induction without affecting basal synaptic transmission (Chen et al., 2000; Chen et al., 

2002; Zhao et al., 2004). A similar result was found in an in vivo study, where 

naturally secreted Aβ collected from cells expressing mutated APP (V717F mutation 

in APP751) was injected into the CA1 region of hippocampus which prevented stable 

LTP maintenance (Walsh et al., 2002). This study further showed that soluble Aβ 

oligomers are responsible for blocking LTP, not monomeric Aβ, or Aβ fibrils (Walsh 

et al., 2002). In addition, in vivo injection of Aβ peptides (i.e. Aβ42 or the C-terminal 

of APP containing the Aβ fragment) is reported to facilitate LTD and LTP reversal 

(called depotentiation) in the CA1 region (Kim et al., 2001b). A majority of studies 

suggest that while fibrillar Aβ accumulation is found in senile plaques that are a 
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hallmark of AD, it is the soluble Aβ oligomers that disturb synaptic function and lead 

to neurodegeneration in AD (Walsh et al., 2002; Tanzi, 2005).  

How is Aβ affecting long-term synaptic plasticity? Soluble Aβ oligomers in 

AD brains have been found to bind to neuronal surfaces (Gong et al., 2003), 

specifically to a subset of synapses where they colocalize with a postsynaptic density 

marker PSD95 (Lacor et al., 2004), suggesting that Aβ may regulate postsynaptic 

function directly. One candidate target of Aβ is NMDARs. It was found that synthetic 

Aβ40 peptides can selectively augment NMDAR current, without affecting AMPAR 

current, in the dentate gyrus of acute hippocampal slices (Wu et al., 1995). Consistent 

with this, APPInd (V717F mutation) Tg mice show an enhancement in the ratio of 

NMDAR-to-AMPAR-mediated synaptic transmission in the CA1 region (Hsia et al., 

1999). However, contradictory results are reported from later studies. A recent study 

showed that both application of synthetic Aβ42 peptides and naturally secreted Aβ, 

from APPSwe (K670N/M671L mutation) Tg mice, promote endocytosis of surface 

NMDARs and hence depresses NMDAR current in wildtype cultured cortical neurons 

(Snyder et al., 2005). Moreover, they also found reduced surface expression of 

NMDARs in cultured cortical neurons from APPSwe Tg mice (Snyder et al., 2005). 

Other studies found down-regulation of surface AMPARs in neurons overexpressing 

either wildtype or APPSwe, or when wildtype neurons were treated with exogenous 

Aβ42 peptides (Almeida et al., 2005; Hsieh et al., 2006). The mechanisms involved 

are not only endocytosis of synaptic AMPARs via mechanisms shared by LTD (Hsieh 

et al., 2006), but also a reduction of basal levels of S845 phosphorylation by 

activating the calcium-dependent phosphatase, calcineurin, as well as interrupting 
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extrasynaptic delivery of AMPARs (Minano-Molina et al., 2011). Contradictory 

results on the effects of Aβ on AMPAR and NMDAR regulation may be due to 

several variables. First, there is evidence that Aβ40 and Aβ42 peptides may have 

distinct functions in AD pathology. For example, a majority of FADs caused by PS1 

mutations have reduced Aβ1-40 peptides and therefore an increase in the Aβ42/Aβ40 

ratio (Borchelt et al., 1996; Thinakaran and Sisodia, 2006). Second, there are 

differences in experimental preparations. Both Wu et al. (Wu et al., 1995) and Hsia et 

al. (Hsia et al., 1999) were working with acute adult hippocampal slices, while 

Snyder et al. (Snyder et al., 2005), Almeida et al.(Almeida et al., 2005), Hsieh et 

al.(Hsieh et al., 2006) and Minano-Molina et al. (Minano-Molina et al., 2011) were 

using either cultured neurons from embryonic mice or organotypic hippocampal slice 

cultures prepared from early postnatal mice. Third, the presence or absence of APP 

itself may have also affected the results. Indeed there is evidence that uncleaved full-

length APP may promote synapse formation and enhance excitatory synaptic function 

(see (Hoe et al., 2012)for a recent review). 

In any case, Aβ mediated alterations in NMDAR function suggests that Aβ 

will affect downstream Ca2+-dependent signaling pathways. Calcineurin, a Ca2+-

activated protein phosphatase, may be one of the downstream signaling molecules 

affected by Aβ, since it is required for the inhibition of perforant pathway LTP (Chen 

et al., 2002), endocytosis of surface AMPARs (Hsieh et al., 2006), as well as 

dephosphorylation of GluA1-S845 (Minano-Molina et al., 2011). In addition to 

activating calcineurin, Aβ prevents the activation of CaMKII, a Ca2+-dependent 

protein kinase necessary for LTP, and decreases the synaptic cluster of CaMKII, 



 

 12 
 

which correlates with a reduction in the phosphorylation of GluA1-S831, surface 

expression of GluA1, and AMPAR mediated EPSCs (Zhao et al., 2004; Gu et al., 

2009). Together, these data are consistent with the idea that Aβ oligomers impair LTP 

and facilitate LTD (Lee et al., 2000a; Knobloch et al., 2007; Li et al., 2009). 

Aβ has also been found to modify regulation of gene expression. Aβ peptides 

have been found to alter CREB signaling, which causes synaptic dysfunction and 

memory deficits (reviewed in (Saura and Valero, 2011)).In addition, treating cultured 

hippocampal neurons with soluble Aβ oligomers induces rapid expression of the IEG 

Arc/Arg 3.1 (Lacor et al., 2004), which is implicated in synaptic plasticity (Guzowski 

et al., 2000; Steward and Worley, 2001; Shepherd et al., 2006). Because 

overexpression of Arc/Arg 3.1 causes learning dysfunctions (Guzowski, 2002), 

possibly via reducing surface expression of GluA1-containing AMPARs (Shepherd et 

al., 2006), this would suggest that Aβ oligomer-induced Arc/Arg3.1expression may in 

fact interfere with synaptic plasticity. However, this study is seemingly at odds with 

the results of Echeverria and colleagues, which reported a strong inhibition of BDNF-

induced increase in Arc expression in cultured cortical neurons treated with Aβ 

oligomers (Echeverria et al., 2007). Similarly, there is also a report that synaptic 

plasticity related genes, including Arc/Arg3.1, are reduced in transgenic mice 

expressing FAD-linked mutations in APP and PS1 (Dickey et al., 2003). The apparent 

differences in Arc expression caused by Aβ could be due to different experimental 

systems, or that Aβ may modulate Arc expression via distinct pathways which may 

depend on the effective concentration of Aβ oligomers. 
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Besides influencing postsynaptic function, Aβ is also implicated in 

presynaptic modifications. A recent study reported that 8 nM Aβ42 globulomer (a 

highly stable globular oligomeric Aβ) could directly inhibit presynaptic P/Q type Ca2+ 

channels and decrease vesicle release (Nimmrich et al., 2008). Moreover, application 

of synthetic Aβ to cultured hippocampal neurons causes a down-regulation of 

dynamin, a protein critical for synaptic vesicle endocytosis, and interrupts synaptic 

vesicle recycling (Kelly et al., 2005; Kelly and Ferreira, 2007). This result is 

consistent with the observed reduction in dynamin levels in human AD brains (Yao et 

al., 2003). These findings may explain the observation that Aβ42 globulomer causes a 

decrease in basal synaptic transmission at the Schaffer collateral to CA1 synapses in 

hippocampal slice culture (Nimmrich et al., 2010). Recently, Kelly et al. reported that 

the reduction in dynamin is dependent on Ca2+ influx through activated NMDARs as 

well as activation of a calcium-activated intracellular cysteine protease calpain (Kelly 

et al., 2005; Kelly and Ferreira, 2006). These results not only suggest that there may 

be retrograde signaling from postsynaptic to presynaptic terminals, but also establish 

an interesting relationship between Aβ, NMDARs and calpain. It has been found that 

Aβ42 peptides can activate calpain-mediated cleavage of p35 to p25 (Lee et al., 

2000b), which then upregulates mRNA and protein expression of β-secretase 

(BACE1) (Wen et al., 2008; Liang et al., 2010), a critical enzyme for Aβ formation 

(discussed in the following sections). This indicates that there is a positive feedback 

between Aβ production and calpain activation. The observation that calpain inhibitors 

can fully recover deficits in basal synaptic transmission caused by Aβ globulomer 

application in hippocampal slice culture, to the level that is comparable to using an 
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NMDAR antagonist (Nimmrich et al., 2010), suggests that Aβ induced activation of 

NMDARs and calpain may share a common pathway. It is likely that Aβ induces 

Ca2+ influx through NMDARs and activates intracellular calpain, which further 

promotes p25/cdk5 dependent transcription of downstream genes, including BACE1 

(Wen et al., 2008).  

In addition to NMDARs, recent studies suggest that the α7-nicotinic 

acetylcholine receptor (α7-nAChR), a Ca2+-permeable homopentameric ion channel 

highly expressed in the hippocampus and cerebral cortex (Seguela et al., 1993), is 

another potential target of Aβ. High affinity binding between Aβ42 peptides and α7-

nAChRs (Wang et al., 2000b; Wang et al., 2000a) either inhibit (Guan et al., 2001; 

Liu et al., 2001a; Pettit et al., 2001; Chen et al., 2006) or activate α7-nAChR 

signaling (Dineley et al., 2001). It is possible that Aβ42 peptides may facilitate α7-

nAChRs at low concentrations, but may inhibit α7-nAChRs when the burden of Aβ 

increases (Dineley et al., 2001; Dougherty et al., 2003). This concentration-dependent 

dual role of Aβ42 peptides is also suggested from a study showing that picomolar 

concentrations of synthetic Aβ42 peptides facilitate, but nanomolar concentrations 

abolish, hippocampal LTP and learning via their interaction with α7-nAChRs (Puzzo 

et al., 2008).  

Moreover, the double-edged sword effect of Aβ is also reflected by its ability 

to regulate reactive oxygen species (ROS). ROS have been found to have normal 

physiological roles in maintaining normal synaptic plasticity. However, high levels of 

ROS have been found in both AD animal models and human patients, leading to 

oxidative damage related to AD pathology (reviewed in (Massaad and Klann, 2011)). 
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Figure 1.2. Aβ is double-edged sword on synaptic function.  
At normal physiological levels (picomolar range), Aβ peptides have positive 
effects on synaptic function: they can facilitate learning and LTP in CA1 by 
activating α7-nAChRs. However, under pathological conditions, such as 
increased neuronal activity, stress or the presence of familial Alzheimer’s disease 
(FAD) mutations, the increase in Aβ peptide concentration produces pathological 
effects, including decreased basal synaptic transmission, decreased presynaptic 
release, LTP impairment and LTD facilitation. Therefore, maintaining the 
concentration of Aβ peptides within a normal physiological level is essential, 
which should be the goal for developing effective treatments for Alzheimer’s 
disease. 

Recently, Ma and colleagues found that exogenous treatment of Aβ42 (500 nM) 

increased mitochondria superoxide, which they reported is a cause of synaptic 

dysfunction induced by Aβ. In particular, decreasing the level of mitochondrial 

superoxide reversed Aβ-induced CA1 LTP impairments (Ma et al., 2011). Given the 

normal physiological role of Aβ and ROS at low levels, this finding suggests that 

ROS imbalance, caused by Aβ toxicity, may lead to synaptic dysfunction in AD. Also, 

it implies that Aβ levels exceeding the normal range may initiate the abnormalities in 

synaptic function (Fig. 1.2).  
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In summary, pathologically high levels of Aβ can disturb ROS balance and 

interfere with both pre- and postsynaptic function, presumably by affecting NMDARs, 

presynaptic P/Q Ca2+ channels, and/or α7-nAChRs; thereby interrupting subsequent 

Ca2+ signaling leading to altered synaptic function. 

Subsection 5 Neuronal activity can regulate APP processing and Aβ levels 

Data from both transgenic mice and exogenous Aβ application studies suggest 

that alterations in Aβ levels change neuronal activity and synaptic function. It is now 

evident that neuronal activity itself can also regulate APP processing leading to 

alterations in Aβ production. In 1993, a study reported that electrical stimulation not 

only increases neurotransmitter release in rat hippocampal slices, but also enhances 

the release of APP cleavage products (Nitsch et al., 1993). In agreement with this 

finding, ten years later, Kamenetz and colleagues (Kamenetz et al., 2003) found that 

neuronal activity can bidirectionally control Aβ levels in organotypic hippocampal 

slice cultures from APPSwe Tg mice. Blocking neuronal activity in this preparation by 

tetrodotoxin (TTX) treatment reduced Aβ levels, while increasing neuronal activity 

with picrotoxin (PTX) enhanced Aβ secretion (Kamenetz et al., 2003). The 

experimental paradigm used by Kamenetz et al. to manipulate neuronal activity is 

reported to produce homeostatic synaptic plasticity termed “synaptic scaling” 

(Turrigiano et al., 1998), which globally up- or down-regulates all excitatory synaptic 

synapses following prolonged decrease or increase, respectively, in neuronal activity 

(Turrigiano and Nelson, 2004). This suggests that Aβ may play a role in regulating 

homeostasis of excitatory synapses in normal brains. In addition, the cellular 

mechanism responsible for regulating APP processing and Aβ production in response 
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to neuronal activity, is possibly through enhancing the accessibility of APP to γ-

secretase cleavage (Kamenetz et al., 2003) and/or depressing γ-secretase function 

(Lesne et al., 2005). It has recently been shown that PS1, the catalytic subunit of the 

γ-secretase complex, is necessary to scale up excitatory synapses following reduced 

network activity and that PS1 knockout mice show deficits in synaptic scaling (Pratt 

et al., 2011). Moreover, Wu and colleagues have reported that the IEG Arc is required 

for activity-dependent increases of Aβ production (Wu et al., 2011). They found that 

Arc directly binds the N terminus of PS1 and plays an important role in trafficking γ-

secretase to early endosomes where APP is processed through β-secretase pathway to 

produce Aβ. In addition, Arc contributes to Aβ levels and plaque load in 

APPswe;PS1ΔE9 AD mice, and Arc expression is elevated in medial frontal cortex of 

AD patients (Wu et al., 2011). These results provide cellular mechanism of Aβ 

generation coupled to neuronal activity, and may explain why people who suffer from 

hypoxia, which usually causes an abnormal enhancement in neuronal activity (Talos 

et al., 2006), have a higher risk for developing AD (Desmond et al., 2002). 

Consistent with the idea that Aβ induces homeostatic adaptation to increase in 

activity, in vivo studies have also shown that either electrical stimulation or 

endogenous whisker activity proportionally regulate interstitial fluid (ISF) Aβ levels 

in Tg2576 mice, which overexpress human APP carrying the Swedish 

(K670N/M671L) mutation (Cirrito et al., 2005; Cirrito et al., 2008; Bero et al., 2011). 

However, there are also contradictory results. Tampellini et al. have shown that 

synaptic activity decreases intracellular Aβ in primary neuronal culture, as well as in 

the barrel cortex of 4 month old Tg19959 mice, which overexpress human APP 



 

 18 
 

carrying the Swedish (K670N/M671L) and Indiana (V717F) mutations (Li et al., 

2004a), likely by enhancing Aβ degradation (Tampellini et al., 2009). Zhang et al. 

have reported that prolonged olfaction deprivation facilitates amyloid plaque 

deposition in the olfactory bulb and piriform cortex of 7-24 month old Tg2576 mice 

(Zhang et al., 2010). These contradictions may be due to age, region, and paradigm 

differences. Another possibility is that normal neuronal activity regulates Aβ levels 

by balancing Aβ release and degradation, and that either hyperactivity or hypoactivity 

may break this balance leading to Aβ accumulation. 

Subsection 6 Physiological roles of APP and Aβ 

Proteolytic processing of APP not only produces Aβ peptides, but also other 

products. Some functions of these products have been identified (reviewed in 

(Pearson and Peers, 2006)). For example, the cytoplasmic tail of APP, APP 

intracellular domain (AICD), is shown to participate in transcriptional regulation 

(Cao and Sudhof, 2001). To evaluate other physiological roles of APP, mice lacking 

APP were generated. APP knockouts show enhanced excitatory synaptic activity and 

neurite growth (Priller et al., 2006), which is consistent with the finding that APP-

deficient mice are more susceptible to glutamate-induced toxicity (Steinbach et al., 

1998). Similar to APP, Aβ peptides also have normal physiological functions. Normal 

physiological levels (picomolar range) of Aβ peptides regulate synaptic function by 

facilitating learning and LTP in CA1 (Puzzo et al., 2008). Additionally, preventing 

Aβ production by adding β- or γ-secretase inhibitors in cultured neurons causes cell 

death, which can be rescued by applying synthetic Aβ peptides to culture medium 

(Plant et al., 2003). The resulting cell death is likely caused by excitotoxicity, as Aβ 
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has been identified as a negative feedback regulator of excitatory synaptic 

transmission (Kamenetz et al., 2003).   

Collectively, these data suggest that proteolytic processing of APP and the 

presence of a physiological dose of Aβ may be required for maintaining proper 

neuronal activity and brain function. While the therapeutic benefits of targeting APP 

processing and Aβ production are still attractive, it should be noted that AD 

pathology is most likely triggered only when Aβ levels exceed the normal range, and 

that the physiological processing of APP and Aβ production may be important in 

maintaining normal brain functions. Therefore, partial inhibition, but not complete 

blockade, of Aβ production might be a useful approach for AD therapeutics. A recent 

study supports this view. Immunizing APPInd Tg mice against Aβ, which lowered Aβ 

levels, decreased senile plaque formation, and rescued loss of neuronal integrity seen 

previously in aged mice (Buttini et al., 2005). 

Subsection 7 Role of BACE1 in synaptic function 

As mentioned in Subsection 1, Aβ peptides are generated from sequential 

cleavage of APP by β- and γ-secretase (Fig. 1.1). In the brain, beta-site APP cleaving 

enzyme (BACE1), a transmembrane aspartic protease, has been found to be the major 

neuronal β-secretase (Vassar et al., 1999; Cai et al., 2001; Luo et al., 2001; Roberds et 

al., 2001). Mice lacking the BACE1 gene show no β-secretase activity and essentially 

no Aβ (Aβ40 and Aβ42) production in the brain compared to wildtype littermates. 

Initial characterization of BACE1 knockouts (BACE1 KOs) showed that they are 

viable and fertile, with no gross differences in behavior and development (Cai et al., 

2001; Luo et al., 2001; Roberds et al., 2001; Ohno et al., 2004). Furthermore, 
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knocking out the BACE1 gene in mouse models of AD was able to rescue 

hippocampus-dependent memory deficits (Ohno et al., 2004; Laird et al., 2005; Ohno 

et al., 2006) and ameliorate impaired hippocampal cholinergic regulation of neuronal 

excitability (Ohno et al., 2004). These findings were quite encouraging and suggested 

that BACE1 may be a good therapeutic target for treating AD (Citron, 2002; Vassar, 

2002; Citron, 2004b). 

However, recent studies have found that BACE1 has normal physiological 

functions in synaptic transmission and plasticity in CA1 region of hippocampus. 

Laird et al. found that BACE1 KO mice display deficits in both synaptic transmission 

and plasticity at the hippocampal Schaffer-Collateral to CA1 synapses (Laird et al., 

2005). While BACE1 KO mice display normal AMPAR- and NMDAR-mediated 

synaptic transmission, these synapses show a larger paired-pulse facilitation (PPF) 

ratio compared to wildtype littermates when tested with paired-pulse stimuli at a 

50ms interstimulus interval (Laird et al., 2005). Changes in PPF ratio are linked to 

alterations in presynaptic function (Manabe et al., 1993). Therefore, the increase in 

PPF ratio observed in BACE1 KO mice, indicates a reduction in presynaptic function, 

which is consistent with the high expression of BACE1 in presynaptic terminals 

(Laird et al., 2005). In addition to reflecting presynaptic changes, recent data suggest 

that alterations in PPF ratio can also be caused by postsynaptic modifications, such as 

by varying the subunit composition of AMPARs (Rozov et al., 1998). Therefore, it is 

possible that knocking out of BACE1 may also affect postsynaptic AMPAR function. 

Besides alterations in the PPF ratio, BACE1 KO mice also showed a larger de-

depression (reversal of LTD) induced by high frequency theta burst stimulation (TBS) 
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at the Schaffer collateral inputs to CA1 (Laird et al., 2005). In contrast, the same TBS 

protocol induced-LTP remained unchanged (Laird et al., 2005). As LTP and de-

depression have separate underlying mechanisms (Lee et al., 2000a), these data 

suggest BACE1 may play a regulatory role in the de-depression pathway, while not 

affecting the mechanisms that lead to LTP.  Laird and colleagues also found evidence 

that the enhanced de-depression is due to larger summation of responses during TBS, 

specifically following LTD induction. Enhanced summation of synaptic responses 

during the induction of de-depression despite normal basal synaptic transmission 

suggests that BACE1 may play a specific role in activity-dependent high frequency 

information transfer across synapses. Also, the abnormal increase in the magnitude of 

de-depression reflects that LTD expression may be easily disrupted when knocking 

out BACE1, which could interfere with memory formation and storage. Consistent 

with this interpretation, detailed behavioral studies on BACE1 KO mice reported 

problems in both cognitive and emotional memory tests (Harrison et al., 2003; Laird 

et al., 2005; Ma et al., 2007). Although the majority of studies characterizing synaptic 

function of BACE1 KOs have been performed in the CA1 region of hippocampus 

(Ohno et al., 2004; Laird et al., 2005; Ma et al., 2007), the expression of BACE1 is 

most prominent in the CA3 area of hippocampus (Laird et al., 2005; Zhao et al., 

2007). Therefore, it is essential to investigate the synaptic alteration caused by 

BACE1 inhibition in CA3 area, which is the main focus of my thesis.  

Since synaptic deficits are seen in the CA1 region of hippocampus in BACE1 

KO mice, it indicates that BACE1 may play a general role in regulating synaptic 

function. Whether synaptic deficits in BACE1 KO mice are solely due to a lack of 
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Figure 1.3. The roles of BACE1 in synaptic function. 
Besides cleaving APP to produce Aβ peptides, BACE1 has been found to have 
other substrates. It can process the β2 subunit of voltage-gated sodium (Na+) 
channel, which can regulate Na+ channel surface expression and in turn modulate 
neuronal excitability. In addition, BACE1 can cleave NRG1 which plays a crucial 
role in myelination and NRG1/ErB4 signaling. Recently, it has been showed that 
NRG1 can regulate the cell surface expression of α7-nAChRs, which can also 
affect synaptic transmission. 

APP processing is unclear. From the view that Aβ suppresses synaptic transmission 

(discussed in Subsection 4), it seems counterintuitive that abolishing Aβ production, 

as in BACE1 KO mice, would reduce presynaptic function. However, considering the 

fact that physiological concentration of Aβ (pM range) facilitates synaptic plasticity 

(Puzzo et al., 2008), the absence of Aβ could produce synaptic deficits. An alternative 

possibility is that the synaptic dysfunction of BACE1 KO mice may arise from 

abnormal processing of substrates other than APP (Fig. 1.3).  
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It has been shown that the auxiliary β2 subunit of the voltage-gated sodium 

channel (Nav1), is a substrate of BACE1 (Wong et al., 2005; Kim et al., 2007). The 

β2 subunit of the Nav1 channel is important for plasma membrane expression of 

functional Na+ channels, which is critical for generating action potentials. Among the 

ten different types of Nav1 channels, Nav1.1, Nav1.2, Nav1.3 and Nav1.6 are expressed 

mainly in the central nervous system (CNS) (Lai and Jan, 2006). By cleaving the β2 

subunit, BACE1 regulates the surface expression of these types of Nav1 channels. In 

transgenic mice over-expressing BACE1, there is an increase in Nav1.1 α-subunit 

mRNA and protein levels, but a decrease in the surface expression of functional 

Nav1.1 channels due to cleavage of the β2 subunits (Kim et al., 2007; Kim and 

Kovacs, 2011). The interpretation is that the full-length β2 subunit promotes surface 

expression of Nav1.1 channels, but the β2-intracellular domain (ICD), which is 

produced by a sequential cleavage by BACE1 and γ-secretase, increases transcription 

of the Nav1.1 α-subunit gene. Consistent with this, BACE1 KO mice display a 

decrease in Nav1.1 α-subunit mRNA and protein (Kim et al., 2011). However, there is 

a compensatory increase in the surface expression of Nav1.2 in the BACE1 KO mice, 

which correlates with the hyperexcitability and seizure phenotypes seen in BACE1 

KOs (Hu et al., 2010). These results suggest that the ability of BACE1 to regulate the 

Nav1 family of Na+ channels is rather complex, but suggests a role for BACE1 in 

regulating neuronal excitability.  

Another candidate substrate for BACE1 is neuregulin-1 (NRG1), which is an 

axonal signaling molecule critical for regulating myelination (Lemke, 2006). Willem 

and colleagues found that BACE1 KO mice show hypomyelination in the peripheral 
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nerves (Willem et al., 2006), while another study detected loss of myelination in the 

central nerves (Hu et al., 2006). Both of these studies showed an accumulation of 

unprocessed NRG1 and a reduction in its cleavage products, suggesting that NRG1 is 

a potential substrate for BACE1 cleavage and that this process is important for 

myelination of axons (Hu et al., 2006; Willem et al., 2006). Recently, it has been 

shown that the absence of NRG1 processing in BACE1 KO mice decreased 

postsynaptic function of ErbB4, a receptor for NRG1 (Savonenko et al., 2008). 

NRG1/ErbB4 signaling has been suggested to regulate synaptic function and 

plasticity, mainly via regulation of postsynaptic glutamate receptors(Huang et al., 

2000; Gu et al., 2005b; Li et al., 2007). Additionally, abnormal processing of NRG1 

may also affect presynaptic release by regulating the expression of α7-nAchRs (Liu et 

al., 2001b; Zhong et al., 2008), which allows Ca2+ influx (Seguela et al., 1993).  

Indeed, presynaptic nAChRs can increase glutamate release (McGehee et al., 1995; 

Gray et al., 1996; Maggi et al., 2003a), likely via the α7 containing nAchRs (Le 

Magueresse et al., 2006). These results suggest that the abnormal NRG1 cleavage 

caused by BACE1 inhibition can alter synaptic function both pre- and 

postsynaptically. 

Accumulating data on the biological roles of BACE1 suggest caution for using 

BACE1 inhibitors as a treatment for AD. More and more studies indicate that 

complete inhibition of BACE1 activity is deleterious for neuronal function. In order 

to improve the development of effective therapeutics that target this enzyme, we need 

to seek potential ways to overcome the synaptic dysfunction associated with blocking 

BACE1. 
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Figure 1.4. A sketch of hippocampal CA3 circuitry. 
Mossy fibers (MF) form glutamatergic excitatory synapses onto CA3 pyramidal 
cells (PCs) (1) as well as onto inhibitory interneurons (INTs) (2) in the stratum 
lucidum; inhibitory neurons project GABAergic synapses onto CA3 PCs (3). This 
configuration is feedforward inhibition, in which PCs and INTs are excited 
simultaneously by common afferents (MF inputs), with INTs in turn inhibiting 
PCs with a short delay relative to the monosynaptic excitation. 

Section 2 Synaptic plasticity at mossy fiber synapses 

As one of the three important pathways in hippocampus, the mossy fiber 

pathway is composed of dentate gyrus granule cell axon projections, the so called 

mossy fibers on dendrites of pyramidal cells within the stratum lucidum of CA3 area 

and the filopodial extensions from mossy fiber boutons, which contact inhibitory 

interneurons forming feedforward inhibition in local CA3 circuitry (Chicurel and 

Harris, 1992; Acsady et al., 1998) (Fig. 1.4). Although they are originated from 

common mossy fiber input, synapses on CA3 pyramidal cells and those on CA3 

interneurons are not only anatomically different, but also functionally specialized.  
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Subsection 1 Mossy fiber at CA3 pyramidal cell synapses 

i) Short-term plasticity 

The axons of the dentate gyrus granule cells innervate their pyramidal neuron 

targets via giant mossy fiber boutons which have multiple active zones (Chicurel and 

Harris, 1992; Henze et al., 2000). The mossy fiber synapse onto CA3 pyramidal cells 

is distinct from most other synapses in the CNS due to its large paired-pulse 

facilitation (PPF) and uniquely robust frequency facilitation (Salin et al., 1996), 

which are presynaptic forms of short-term plasticity. The large PPF and robust 

frequency facilitation are consistent with a low probability of neurotransmitter release 

at these synapses (Jonas et al., 1993; Lawrence et al., 2004). 

CA3 pyramidal cells not only receive mossy fiber inputs, they also receive 

inputs from other CA3 pyramidal cells, forming associational-commissural synapses. 

Associational inputs are the projections from other CA3 pyramidal cells on the same 

side of the brain, commissural inputs are CA3 - CA3 connections between the two 

hemispheres. Unlike mossy fiber synapses onto CA3 pyramidal cells, associational-

commissural synapses show very little facilitation (Salin et al., 1996; Dobrunz and 

Stevens, 1999), suggesting a stronger presynaptic release.  

ii) Long-term potentiation 

In striking contrast to LTP in CA1 region of hippocampus discussed in 

Section 1, high frequency stimulation induced mossy fiber LTP is a presynaptic form 

of LTP, which is NMDAR independent (Harris and Cotman, 1986). As early as 1994, 

Weisskopf and colleagues reported that the mechanism of mossy fiber LTP is 

mediated by presynaptic cAMP pathway (Weisskopf et al., 1994), which is initiated 
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by Ca2+ influx in response to high frequency stimulation at mossy fiber terminals. The 

increased Ca2+ activates calmodulin, which in turn stimulates adenylyl cyclase, 

therefore increasing cAMP level and activating cAMP dependent protein kinase A 

(PKA). PKA phosphorylation of specific synaptic vesicle proteins facilitates 

presynaptic vesicle release, which results in a long-lasting increase in presynaptic 

release. Recent studies have indicated several PKA phosphorylation targets that are 

indispensable for mossy fiber LTP. The synaptic vesicle protein Rab3A is required 

for mossy fiber LTP as shown by an absence of mossy fiber LTP in mice lacking 

Rab3A (Castillo et al., 1997). In addition, Lonart et al. identified that RIM1α, an 

active zone protein that binds to Rab3A, is a PKA substrate that is necessary to 

presynaptic LTP (Lonart et al., 2003). Another candidate of PKA phosphorylation is 

Rabphilin, an effector protein of Rab3A, PKA phosphorylation of Raphilin is 

specifically detected in CA3 region in response to LTP induction compared to CA1 

(Lonart and Sudhof, 1998).  

Although LTP at mossy fiber terminals on CA3 pyramidal cell synapses is 

widely accepted as a presynaptic form of LTP, recently it has been found that 

NMDAR dependent LTP can also be induced by relative weak stimulation at these 

synapses. Kwon and colleagues found that this form of LTP is not due to an increase 

in presynaptic release probability. In contrast to the “classical” mossy fiber LTP, the 

induction of NMDAR dependent mossy fiber LTP requires not only NMDAR, but 

also mGluR5 activation, which stimulates postsynaptic PKC pathway, and further 

induces postsynaptic Ca2+ release from internal Ca2+ store (Kwon and Castillo, 

2008b). Identification of NMDAR mediated mossy fiber LTP has profound 



 

 28 
 

significance. Given the slow kinetics of NMDAR-mediated synaptic responses, 

NMDAR mediated mossy fiber LTP could modify the temporal nature of synaptic 

integration in CA3 pyramidal cells. Moreover, it has been reported that selective 

removal of NMDAR NR1 subunit from CA3 pyramidal cells by genetic manipulation 

has an important impact on memory acquisition (Nakazawa et al., 2003), associative 

memory recall, and pattern completion (Nakazawa et al., 2002), contextual learning 

(Cravens et al., 2006), and trace conditioning learning (Kishimoto et al., 2006). 

Before NMDAR mediated mossy fiber LTP was discovered, it is commonly assumed 

that NMDARs at associational - commissural synapses mediate this effect on learning 

and memory, but with Kwon and colleagues’ finding, it suggests that NMDARs at 

mossy fiber CA3 pyramidal neuron synapses may also contribute. 

iii) Long-term depression 

Metabotropic glutamate receptor 2 (mGluR2), one of Group-II mGluRs, is 

found primarily at the presynaptic terminals of mossy fiber-CA3 pyramidal cell 

synapses (Yokoi et al., 1996). These receptors are thought to suppress transmission in 

response to excess glutamate release (Scanziani et al., 1997), and also play an 

essential role in inducing LTD (Kobayashi et al., 1996; Yokoi et al., 1996). The 

mechanistic studies of this form of LTD have found that the G proteins coupled with 

mGluR2 are Gi proteins, which contain an inhibitory αi-type subunit (Pin and 

Duvoisin, 1995; Nicholls et al., 2006). Activation of mGluR2 activates Gi proteins, 

which results in a decrease in adenylyl cyclase activity followed by a decrease in 

PKA activity (Tzounopoulos et al., 1998), which leads to reduction of 

neurotransmitter release. Therefore, this LTD is a reversal of the presynaptic 
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processes involved in mossy fiber LTP. Since mGluR2 is exclusively expressed at 

mossy fiber terminals but not at associational – commissural synapses, detecting the 

existing of mGluR2 can be used to distinguish mossy fiber inputs, therefore, 

(2S,s’R,3’R)-2-(2’,3’-dicarboxycyclopropyl) glycine (DCG-IV), a mGluR2 agonist, 

is commonly applied to suppress synaptic transmission originated from mossy fiber 

terminals (Toth and McBain, 1998; Toth et al., 2000; Torborg et al., 2010). 

Besides mGluR2 mediated LTD, there is another form of LTD existing at 

these synapses. In young animals, it has been reported that high frequency stimulation 

(Domenici et al., 1998) or prolonged depolarization (5 min) in the absence of 

stimulation (Lei et al., 2003) induces LTD that is independent of NMDARs and 

mGluRs, but is dependent on a rise in postsynaptic Ca2+. This LTD coexists with, and 

is mechanistically distinct from, the mGluR-dependent LTD discussed above. 

However, there is disagreement as to whether this form of LTD is expressed 

presynaptically (Domenici et al., 1998) or postsynaptically (Lei et al., 2003). 

Subsection 2 Mossy fiber at CA3 interneuron synapses 

i) Short-term plasticity 

Unlike pyramidal cells which receive inputs from large mossy fiber boutons, 

interneurons within the stratum lucidum are innervated by small en passant or 

filopodial mossy fiber synapses (Acsady et al., 1998). Not only is there structure 

differences, the subunit composition of postsynaptic AMPARs at these two kinds of 

synapses are also different. Whereas mossy fiber onto CA3 pyramidal neuron 

synapses express only calcium-impermeable (CI) AMPARs, which contain the GluA2 

(or GluR2) subunit (Toth et al., 2000); mossy fiber to CA3 interneuron synapses 
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contain both calcium-impermeable (CI) and GluA2-lacking calcium-permeable (CP) 

AMPARs (Toth and McBain, 1998). In addition, pronounced short-term facilitation is 

particularly prominent for the large mossy fiber boutons; mossy fiber terminals 

targeting interneurons show much less frequency facilitation or can even undergo 

depression, which is not due to the subunit composition of postsynaptic AMPARs 

(Toth et al., 2000). However, CP-AMPAR synapses show a voltage-dependent 

facilitation because of relief from blockade by polyamine spermine at these GluA2-

lacking AMPARs (Toth et al., 2000).  

ii) Long-term plasticity 

High frequency stimulation, which induces NMDAR independent LTP at 

mossy fiber to CA3 pyramidal cell synapses, generates NMDAR dependent LTD at 

interneuron CI-AMPAR synapses (Lei and McBain, 2002), and NMDAR 

independent LTD at CP-AMPARs containing synapses on interneurons (Toth et al., 

2000). The induction of both forms of LTD required elevation of postsynaptic Ca2+ 

through NMDAR activation in the case of the former, and CP-AMPAR activation for 

the latter.  

Although early studies failed to show LTP at mossy fiber synapses onto 

interneurons, more recent studies indicate that this form of plasticity can be induced. 

Alle et al. found that high frequency stimulation evokes LTP at mossy fiber synapses 

to dentate basket cells. This LTP is attenuated by high doses of BAPTA in the basket 

cell. Compared to mossy fiber to pyramidal cell LTP, LTP at the mossy fiber to 

dentate basket cell synapses is also expressed presynaptically but is abolished by PKC 

inhibition (Alle et al., 2001). Moreover, Pelkey et al. have discovered a presynaptic 
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form of LTP at mossy fiber on stratum lucidum interneurons expressing CP-

AMPARs at synapses. In the presence of group III mGluR agonist L-AP4, a brief 

tetanus induces LTP. Surprisingly, this form of LTP actually requires the 

internalization of mGluR7, but not mGluR activity blockade, because a tetanus with 

mGluR7 antagonist application does not induce LTP (Pelkey et al., 2005). 

The differences of synaptic transmission and plasticity at the two types of 

mossy fiber innervated synapses suggest that the regulation of synaptic function at 

these sites is specialized depending on the nature of the postsynaptic target cell. 

The following three chapters, which include two papers I have published in 

Journal of Neuroscience and one paper under preparation, are the result sections of 

my thesis. In Chapter 2 and 3, I used field potential recording as well as whole-cell 

patch-clamp recording to examine the synaptic function of all three synapses within 

CA3 circuit (see Fig. 1.4), and specifically located the synaptic dysfunction of this 

circuit in BACE1 KOs. Furthermore, in Chapter 4, I report that nicotine and alpha-7 

nicotinic acetylcholine receptor activators can rescue the presynaptic deficits seen in 

BACE1 KOs. 
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Chapter 2: Beta-amyloid precursor protein cleavage enzyme 1 
(BACE1) knockouts display deficits in activity-dependent 
potentiation of synaptic transmission at mossy fiber to CA3 
synapses in the hippocampus 
 
Published in Journal of Neuroscience:  
Wang H, Song L, Laird F, Wong PC, Lee HK (2008) J Neurosci 28: 8677-8681 
  
My contribution: All of the experiments reported in this study.  
 

Section 1 Introduction 

Alzheimer’s disease (AD) is the most prevalent form of senile dementia. 

Current treatment of AD remains limited, and there is no effective disease-modifying 

treatment as of yet (Citron, 2004b). It is widely believed that AD is initiated as a 

synaptic dysfunction, which correlates with the loss of memory function in the early 

stages of the disease (Selkoe, 2002). A current hypothesis states that over-production 

of amyloid-beta (Aβ) peptide initiates the pathogenesis of AD (Hardy and Selkoe, 

2002; Citron, 2004b; Walsh and Selkoe, 2007). Aβ is produced from the sequential 

cleavage of amyloid precursor proteins (APPs) by β- and γ-secretases, which are one 

of the major disease-modifying targets to treat AD (Citron, 2004b). However, it 

became apparent that γ-secretase processes other critical substrates essential for 

normal cell development and function, such as Notch (Sisodia and St George-Hyslop, 

2002; Selkoe and Kopan, 2003). Therefore, inhibiting β-secretase is now receiving 

renewed attention (Vassar, 2002; Citron, 2004a, b). The amount and activity of β-

secretase is elevated in sporadic AD brains (Yang et al., 2003; Li et al., 2004b; Zhao 

et al., 2007), further suggesting that effective methods to reduce its activity may be 

beneficial to a large population of AD patients.  
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A transmembrane aspartic protease, called BACE1 (beta-site APP cleavage 

enzyme 1), was identified as the major neuronal β-secretase (Hussain et al., 1999; 

Sinha et al., 1999; Vassar et al., 1999; Yan et al., 1999). BACE1 knockout mice were 

generated to determine the functional consequences of chronically inhibiting the 

activity of β-secretase. Initial characterization of the BACE1 knockouts suggested 

that there are no gross anatomical or functional abnormalities (Luo et al., 2001; Luo 

et al., 2003). Moreover, knocking out BACE1 in APP transgenic lines, which 

normally develop Aβ plaques and behavioral deficits, essentially alleviated the AD 

symptoms (Luo et al., 2003; Ohno et al., 2004; Laird et al., 2005). However, recent 

studies, including our own, showed that BACE1 knockouts display specific 

dysfunctions in synaptic transmission and plasticity (Ohno et al., 2004; Laird et al., 

2005), as well as behavioral deficits (Harrison et al., 2003; Laird et al., 2005; 

Savonenko et al., 2008). While all of the studies characterizing synaptic function of 

BACE1 knockouts so far have been carried out in the CA1 region of the hippocampus 

(Ohno et al., 2004; Laird et al., 2005; Ma et al., 2007), the expression of BACE1 is 

most prominent in the mossy fiber terminals that synapse onto CA3 pyramidal 

neurons (Laird et al., 2005; Zhao et al., 2007). Therefore, we examined synaptic 

function and plasticity of the BACE1 knockouts at the mossy fiber synapses. 

 

Section 2 Methods and Materials 

Subsection 1 Animals 

All mice used (BACE1 +/+ and –/–) were derived from heterozygous breeders 

(+/–) as described previously (Laird et al., 2005). The Institutional Animal Care and 
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Use Committees of both University of Maryland at College Park and Johns Hopkins 

University approved all procedures involving animals. 

Subsection 2 Acute hippocampus slices preparation for electrophysiology 

Hippocampal slices were prepared from adult (3-6 months old) male BACE1 

knock-out or wild-type mice as described previously (Laird et al., 2005). Briefly, 

under deep anesthesia by isoflurane, mice were killed by decapitation, and their 

brains were removed quickly and transferred to the ice-cold dissection buffer  

containing the following (in mM): 212.7 sucrose, 2.6 KCl, 1.23 NaH2PO4, 26 

NaHCO3, 10 dextrose, 3 MgCl2, and 1 CaCl2  (bubbled with a mixture of 5% CO2 and 

95% O2). A block of hippocampus was removed and sectioned into 400 µm-thick 

slices using a vibratome. The slices were recovered for 1 h at room temperature in 

artificial CSF (ACSF) (in mM): 124 NaCl, 5 KCl, 1.25 NaH2PO4, 26 NaHCO3, 10 

dextrose, 1.5 MgCl2, and 2.5 CaCl2 (bubbled with a mixture of 5% CO2 and 95% O2). 

Subsection 3 Electrophysiological Recordings 

Recordings were done in a submersion-type recording chamber perfused with 

ACSF (saturated with 5% CO2/95% O2; 29.5°C–30.5°C, 2 ml/min). Synaptic 

responses were evoked through bipolar stimulating electrodes (double-barreled 

borosilicate glass capillaries [Sutter Instruments, Novato, CA]) placed in the dentate 

granule cell layer to activate the mossy fibers with pulse durations of 0.2 ms (baseline 

stimulation at 0.067 Hz), and recorded extracellularly in the stratum lucidum of CA3. 

Both the stimulating and recording electrodes were filled with ACSF. To induce long-

term potentiation (LTP), three trains of 100 Hz (1 sec) stimuli were given at 20 sec 
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intervals. Long-term depression (LTD) was induced by a paired-pulse 1Hz protocol 

(interstimulus interval (ISI) = 50 ms, 15min). For measurement of paired-pulse 

facilitation (PPF), ISIs of 25, 50, 100, 200, 400, 1000, and 2000 ms were used. In 

some experiments, extracellular Ca2+ concentration was increased to 5.0 mM for 10 

minutes before delivering HFS (Castillo et al., 2002). To activate cAMP production, 

50 μM forskolin (Sigma-Aldrich, St. Louis, MO) was applied for 5 minutes. All 

experiments were done in the presence of 100 µM D,L-2-amino-5-phosphonovaleric 

acid (D,L-APV) (Sigma-Aldrich, St. Louis, MO) to block NMDA receptors. At the 

end of each experiment, 1 µM (2S,s’R,3’R)-2-(2’,3’-dicarboxycyclopropyl) glycine 

(DCG-IV) (Tocris Bioscience, Ellisville, MI) was added, and blockade ≥ 80% were 

taken to be mossy fiber inputs.  

Subsection 4 Analysis of Electrophysiology data 

The evoked extracellular field potential were digitized and stored in the 

computer by the Igor software (WaveMetrics). Using a custom-made Igor program, 

initial slope (for measurement of AMPA receptor responses) of population field 

potential was measured as the strength of synaptic transmission, and data are 

expressed as mean ± standard error of mean. For statistic, Fisher’s PLSD post hoc test 

was used to compare the PPF ratio. For the LTP and LTD data, the measurements at 

the end of each recording (60 min after baseline for LTP and LTD ) were compared 

using student’s t-test. 
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Section 3 Results 

Subsection 1 Reduction in presynaptic function at mossy fiber synapses in 

BACE1 knockouts 

We previously observed that mossy fiber terminals are enriched in BACE1 

protein compared to other hippocampal subfields (Laird et al., 2005). Therefore, we 

hypothesized that BACE1 knockouts may exhibit alterations in synaptic transmission 

and plasticity at this particular set of synapses. We first measured presynaptic 

function by comparing paired-pulse facilitation (PPF) ratio at various interstimulus 

intervals (ISIs). We found a significant interaction between the genotype and ISIs 

(Two-factor ANOVA, genotype * ISI: F(6, 203) = 2.586, P < 0.02), particularly 

BACE1 KOs displayed larger PPF ratios at shorter ISIs (25 ms ISI: WT = 3.4 ± 0.57; 

KO = 6.1 ± 0.79; 50 ms ISI: WT = 3.6 ± 0.65, n = 14; KO = 5.7 ± 0.77, n = 17; 

Fisher’s PLSD post hoc test: P < 0.002 for 25 and 50 ms ISI between WT and KO; 

Fig. 2.1A). The increase in PPF ratio suggests a reduction in presynaptic release.  

Pyramidal cells in the CA3 region receive inputs not only from mossy fibers 

but also from CA3 pyramidal cell collaterals. Therefore, it was important to confirm 

in that the recorded field potentials originated from granule cell activation. Group II 

metabotropic glutamate receptors (mGluRs) are expressed exclusively on mossy fiber 

terminals but not on CA3 collaterals (Nicoll and Schmitz, 2005). DCG-IV, a group II 

mGluRs agonist, can therefore be used to identify synaptic transmission at mossy 

fiber to CA3 synapses. Bath application of 1 µM DCG-IV at the end of the recording 

produced a comparable reduction in basal synaptic transmission in both knockouts 
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Figure 2.1. BACE1 knockouts 
display a reduction in presynaptic 
function at the mossy fiber 
synapses. 
A. Larger PPF ratio in BACE1 
knockouts. The difference between 
wildtype (WT: white circles) and 
knockouts (KO: black circles) are 
significant at 25 and 50 msec ISIs.  
B. Application of Group II mGluR 
agonist (1 µM DCG-IV) reduces 
mossy fiber synaptic transmission in 
wildtype (white circles) and 
knockouts (black circles). Top: 
Representative field potential (FP) 
traces following paired-pulse 
stimulation at 50 msec ISI before and 
after DCG-IV application in wildtype 
and knockout. 

and wildtypes (WT: 12 ± 4% of baseline at 20 min DCG-IV, n = 14; KO: 11 ± 2%, n 

= 17; Fig. 2.1B). 

 

 

 

 

Subsection 2 Activity-dependent synaptic strengthening at mossy fiber 

synapses is abolished in BACE1 knockouts 

Next we examined whether knocking out BACE1 affects synaptic plasticity at 

the mossy fiber synapses. We first compared LTP induced by high frequency 
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stimulation (HFS: 3 x 100 Hz, 1 sec). BACE1 knockouts showed a larger initial 

potentiation, suggesting an enhanced facilitation during HFS, however, the responses 

relaxed back to baseline by 1 hour (WT: 149 ± 10% of baseline at 1 hour post-HFS, n 

= 13 slices/6 mice; KO: 96 ± 7%, n = 16 slices/7 mice; t-test: P < 0.01; Fig. 2.2A). 

Consistent with a presynaptic locus of expression, LTP in wildtypes was 

accompanied by a decrease in PPF ratio measured at 50 ms ISI (baseline = 3.1 ± 0.5, 

1 hour post-HFS = 2.6 ± 0.4, n = 13 slices/6 mice, paired t-test: P < 0.03), but 

knockouts displayed no change in PPF ratio (baseline = 5.9 ± 1.0, 1 hour post-HFS = 

6.1 ± 1.2, n = 16 slices/7 mice, paired t-test: P = 0.26). 

To test LTD, we used a paired-pulse 1 Hz protocol (PP-1 Hz, 15 min), 

because a standard 1 Hz (15 min) protocol (Kobayashi et al., 1996) failed to produce 

LTD in the wildtypes at the ages used for our study (data not shown). LTD induced 

by the PP-1 Hz was slightly larger in BACE1 knockouts (WT: 75 ± 4.3% of baseline 

at 1 hour post-onset of PP-1 Hz, n = 7 slices/5 mice; KO: 62 ± 3.8% of baseline, n = 6 

slices/4 mice; t-test: P < 0.04; Fig. 2.2B). This form of LTD did not significantly 

change PPF ratio either in wildtypes or knockouts (WT: baseline = 3.8 ± 1.0, 1 hour 

post-PP 1 Hz = 3.2 ± 0.9, n = 6 slices/4 mice, paired t-test: P = 0.16; KO: baseline = 

7.1 ± 1.5, 1 hour post-PP 1Hz = 5.5 ± 1.1, n = 6 slices/4 mice, paired t-test: P = 0.10). 

Unlike in wildtypes, HFS failed to reverse LTD in the knockouts (WT: 195 ± 28.0% 

of renormalized baseline at 1 hour post-HFS, n = 6 slices/4 mice; KO: 100 ± 5.4%, n 

= 6 slices/4 mice; t-test: P < 0.02; Fig. 2.2B). 
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Figure 2.2. Absence of activity-dependent potentiation at mossy fiber 
synapses in BACE1 knockouts. 
A. Mossy fiber LTP is absent in BACE1 knockouts. Left: Summary graph 
plotting changes in normalized field potential against time. The arrow depicts 
when HFS (100 Hz, 1 sec x 3) was delivered. Note that knockouts (black circles) 
showed larger post-tetanic potentiation, but no LTP when compared to wildtypes 
(white circles). Middle: Superimposed representative FP traces taken from 
wildtype and knockouts at times indicated in the left panel. Right: Average 
magnitude of LTP at 1-hour post-HFS (last 10 min averages) between wildtype 
and knockouts. 
B. BACE1 knockouts show a slightly larger LTD, but no dedepression. Left 
bottom: Summary graph of the averages. The bar and arrow indicate delivery of 
PP-1 Hz (15 min), and HFS (100 Hz, 1 sec x 3), respectively. Left top: 
Representative FP traces taken at times indicated in the summary graph. Right: 
Average magnitude of dedepression measured 1-hour post-HFS (averages of last 
10 min) between wildtype and knockouts. The responses were re-normalized to 
the 10 min preceding HFS. 
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Subsection 3 Rescue of mossy fiber LTP in BACE1 knockouts by 

increasing extracellular Ca2+ concentration 

Mossy fiber LTP is triggered by a rise in presynaptic Ca2+(Castillo et al., 

1994), and a further recruitment of cAMP-dependent signaling mechanisms (Nicoll 

and Schmitz, 2005). Therefore, we investigated whether the lack of mossy fiber LTP 

in BACE1 knockouts is due to abnormal regulation of presynaptic Ca2+ or signaling 

downstream. We found that transiently increasing the concentration of extracellular 

Ca2+ (from 2.5 mM to 5 mM) during HFS recovered mossy fiber LTP in BACE1 

knockouts (146.7 ± 8.5% of baseline at 1 hour post-HFS, n = 6 slices/4 mice; paired t-

test: P < 0.01; Fig. 2.3). Furthermore, LTP was accompanied by a decrease in PPF 

ratio measured at 50 ms ISI (baseline = 3.8 ± 1.0, 1 hour post-HFS = 2.2 ± 0.4, n = 6 

slices/4 mice, paired t-test: P < 0.05) consistent with a presynaptic expression. This 

suggests that the induction of mossy fiber LTP is defective in the BACE1 knockouts  

To further confirm whether signaling downstream of the Ca2+ influx is intact 

in BACE1 knockouts, we directly activated cAMP signaling by a brief application of 

an adenylyl cyclase activator forskolin. This caused a dramatic enhancement of 

synaptic transmission in both wildtypes and knockouts to similar magnitudes (WT: 

622.5 ± 57.8% of baseline at 1 hour post-forskolin, n = 7 slices/5 mice; KO: 741.8 ± 

110.1%, n = 7 slices/4 mice; t-test: P = 0.36; Fig. 2.3). This was accompanied by a 

significant decrease in PPF ratio in both genotypes (WT: baseline = 3.2 ± 0.34, 1 hour 

post-forskolin = 1.5 ± 0.15, n = 7 slices/5 mice, paired t-test: P < 0.01; KO: baseline = 

4.9 ± 0.63, 1 hour post-forskolin = 1.7 ± 0.16, n = 7 slices/4 mice, paired t-test: P < 

0.01), consistent with a presynaptic mechanism of potentiation. This demonstrates 
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Figure 2.3. BACE1 knockouts 
express mossy fiber LTP 
under high extracellular Ca2+, 
and produce normal 
forskolin-induced 
potentiation.  
A. Transient elevation of 
external Ca2+concentration (5 
mM Ca2+, 10 min; gray bar) 
rescued mossy fiber LTP in 
knockouts. Right: 
Representative traces taken at 
times indicated. 
B. Transient application of 
forskolin (50 µM, 5 min; gray 
bar) potentiated mossy fiber 
synaptic transmission in 
wildtypes (white circles) and 
knocks (black circles) to the 
same magnitude. Top: 
Representative traces taken at 
times indicated. 

that the presynaptic deficits seen in BACE1 knockouts are upstream of cAMP 

signaling. 
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Section 4 Discussion 

We found that BACE1 knockouts display severe deficits in presynaptic 

function at mossy fiber synapses in CA3: a reduction in presynaptic release and an 

absence of mossy fiber LTP. In addition, BACE1 knockouts exhibited a slightly 

larger LTD, which could not be reversed. These results suggest that BACE1 function 

is critical for normal synaptic transmission and plasticity, especially activity-

dependent potentiation, at these synapses. We further found that the specific deficit in 

mossy fiber LTP in BACE1 knockouts can be rescued by increasing extracellular 

Ca2+ concentration. Since a direct activation of cAMP production was not impaired in 

the BACE1 knockouts, our data suggests that the presynaptic dysfunction is likely at 

the level of presynaptic Ca2+ regulation. 

Previous studies suggest that BACE1 is highly localized to presynaptic 

terminals, especially at the mossy fiber boutons in the CA3 (Laird et al., 2005; Zhao 

et al., 2007). This localization is consistent with our observation of a deficit in 

presynaptic function and plasticity at this synapse. Taken together with our previous 

results from the CA1 also showing an increase in PPF ratio (Laird et al., 2005), these 

results indicate that BACE1 may play a general role in regulating presynaptic 

function under physiological conditions. However, whether presynaptic deficits in 

BACE1 knockouts are directly due to lacking APP processing is unclear. Previous 

studies suggest that generation of excess Aβ depresses excitatory synaptic 

transmission (Kamenetz et al., 2003; Hsieh et al., 2006; Ting et al., 2007) mainly by 

postsynaptic removal of AMPA receptors and loss of synapses (Hsieh et al., 2006; 

Priller et al., 2006; Ting et al., 2007). These results would predict that lacking Aβ 
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production, as in BACE1 knockouts, would cause a postsynaptic increases in AMPA 

receptor function, not a decrease in presynaptic function as observed in our studies. 

Our previous work in CA1, where BACE1 knockouts showed normal basal synaptic 

transmission despite the apparent reduction in presynaptic release (Laird et al., 2005), 

implies that there may be a compensatory increase in postsynaptic function. 

Another possibility is that the presynaptic effects of BACE1 knockout may be 

from abnormal processing of substrates other than APP. It is now known that BACE1 

can also cleave APP-like proteins (APLPs) (Li and Sudhof, 2004), β subunits of 

voltage-gated Na+ channel (Wong et al., 2005; Kim et al., 2007), and neuregulin-1 

(NRG1) (Hu et al., 2006; Willem et al., 2006). Regulation of the latter two substrates 

is particularly interesting. The β2 subunit of Na+ channel is critical for plasma 

membrane expression of functional Na+ channels (Schmidt and Catterall, 1986), 

which are essential for action potential generation. However, over-expressing BACE1 

actually decreases the density of functional Na+ channels (Kim et al., 2007), hence it 

cannot directly account for the observed reduction in presynaptic release in the 

BACE1 knockouts. Potential regulation of NRG1 by BACE1 was discovered from 

observations that BACE1 knockouts display a hypomyelination phenotype with a 

correlated accumulation of full-length NRG1 and a significant loss of NRG1 cleavage 

products (Hu et al., 2006; Willem et al., 2006). Recently, we demonstrated that the 

lack of NRG1 processing in BACE1 knockouts reduces postsynaptic function of 

ErbB4, a receptor for NRG1 (Savonenko et al., 2008). NRG1/ErbB4 signaling has 

been suggested to regulate synaptic function and plasticity, mainly via regulation of 

postsynaptic glutamate receptors (Huang et al., 2000; Gu et al., 2005a; Li et al., 2007). 
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Nevertheless, abnormal processing of NRG1 may also affect presynaptic release by 

regulating the expression of nicotinic acetylcholine receptor (nAChR) subunit α7 (Liu 

et al., 2001b), which allows Ca2+ influx (Seguela et al., 1993). Indeed, presynaptic 

nAChRs can increase glutamate release (McGehee et al., 1995; Gray et al., 1996; 

Maggi et al., 2003b), likely via the α7 containing nAChRs (Le Magueresse et al., 

2006). These results suggest that lacking NRG1 cleavage, as in BACE1 knockouts, 

would reduce presynaptic release. Whether this is the case for mossy fiber synapses is 

unclear (Vogt and Regehr, 2001).  

Our results indicate that a complete inhibition of BACE1 activity is 

deleterious for neuronal function, especially at the mossy fiber synapses in CA3 

compared to Schaffer collateral inputs in CA1. This suggests that mossy fiber 

dysfunction may have had a larger impact on the behavioral phenotypes seen in the 

BACE1 knockouts (Harrison et al., 2003; Laird et al., 2005; Savonenko et al., 2008). 

We demonstrate that signaling downstream of presynaptic Ca2+ influx is intact in 

BACE1 knockouts. Therefore, we were able to restore mossy fiber LTP in the 

BACE1 knockouts by simply increasing extracellular Ca2+ concentration during LTP 

induction. This has significant clinical implications, because it suggests that means to 

enhance presynaptic Ca2+ will circumvent synaptic deficits, and perhaps alleviate the 

behavioral phenotypes, associated with inhibiting BACE1 activity. 
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Chapter 3: Synaptic dysfunctions in the CA3 circuit of BACE1 
knockout mice 
 
This manuscript is in preparation. 
Putative authors: Hui Wang, Philip C. Wong, and Hey-Kyoung Lee 
 
My contribution: All of the experiments performed in this study. 
 
 

Section 1 Introduction 

Beta-amyloid precursor protein cleavaging enzyme 1 (BACE1), a major 

neuronal β-secretase critical for the formation of β-amyloid (Aβ) peptide, is thought 

to be one of the key therapeutic targets that can prevent the progression of 

Alzheimer’s disease (AD) (Vassar, 2002; Citron, 2004b, a; Vassar et al., 2009). 

However, many recent studies, including my own in Chapter 2, have shown that 

although BACE1 knockouts (KOs) lack Aβ peptides (Cai et al., 2001) and show no 

gross anatomical or functional abnormalities (Luo et al., 2001; Luo et al., 2003), they 

display specific synaptic dysfunctions in CA1 and CA3 regions of the hippocampus 

(Laird et al., 2005; Wang et al., 2008). In particular, we investigated synaptic function 

and plasticity of the BACE1 knockouts using extracellular field recordings, and found 

that BACE1 KOs showed presynaptic dysfunctions especially at the mossy fiber to 

CA3 synapses, which is one of the major loci of BACE1 expression in the brain 

(Laird et al., 2005), we also pinpointed the presynaptic dysfunction of BACE1 KOs to 

the level of presynaptic Ca2+ signaling (Wang et al., 2008). 

The CA3 pyramidal neurons not only receive excitatory inputs from mossy 

fibers, but also get feedforward inhibition formed by the interneurons (INTs) within 

stratum lucidum of CA3, which are activated by mossy fibers (Lawrence and McBain, 
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2003). How blocking BACE1 influences excitatory and/or inhibitory synapses in this 

feedforward inhibitory circuit is unknown. Because many of the neuronal functions 

depend on a critical balance between excitatory and inhibitory circuits, understanding 

the impact of BACE1 inhibition on each synapse-type present in an intact circuitry is 

critical. Furthermore, by providing understanding of how a lack of BACE1 activity 

affects specific synapses, it will aid in the development of effective methods to 

overcome the synaptic deficits and potentially benefit the therapeutics of AD. 

Therefore, in this chapter, we expanded the analysis to a circuit level in the CA3 area 

of hippocampus by performing whole-cell recording from pyramidal cells (PCs) and 

inhibitory interneurons (INTs) in the CA3 area that receive mossy fiber inputs to 

examine the mossy fiber (MF) synapses onto CA3 PCs and INTs, as well as 

inhibitory synapses from INTs to CA3 PCs, to specifically locate the synapses 

affected by losing BACE1 activity (see Fig. 1.4 in Chapter 1). 

 

Section 2 Methods and Materials 

Subsection 1 Animals 

All mice used (BACE1 +/+ and –/–) were derived from heterozygous breeders 

(+/–) as described previously (Laird et al., 2005). The Institutional Animal Care and 

Use Committees of both University of Maryland and Johns Hopkins University 

approved all procedures involving animals. 
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Subsection 2 Acute hippocampus slices preparation for electrophysiology 

Acute hippocampal slices were prepared from 16 - 25 d-old BACE1 KO or 

WT mice as described previously (Laird et al., 2005; Wang et al., 2008). Briefly, each 

mouse was euthanized by decapitation following overdose of isoflurane. Hippocampi 

were rapidly removed and sectioned into either 300-μm (for whole cell recording) or 

400-μm (for field potential recording) slices on a vibratome (Vibratome 3000 series, 

Ted PellaInc.) using ice-cold dissection buffer (212.7 mM sucrose, 2.6 mM KCl, 1.23 

mM NaH2PO4, 26 mM NaHCO3, 10 mM dextrose, 3 mM MgCl2, and 1 mM CaCl2) 

saturated with 5% CO2/95% O2.The slices were transferred to a holding chamber 

containing artificial cerebrospinal fluid (ACSF: 124 mM NaCl, 5 mM KCl, 1.25 mM 

NaH2PO4, 26 mM NaHCO3, 10 mM dextrose, 1.5 mM MgCl2, and 2.5 mM CaCl2, 

saturated with a mixture of 5% CO2/95%O2) and recovered for at least1hat room 

temperature before being used for all experiments. 

Subsection 3 Field Potential Recording from mossy fiber pathway in CA3 

area 

Recordings were done in a submersion-type chamber perfused with ACSF 

(29.5°C–30.5°C, 2 ml/min). Synaptic responses were evoked through glass bipolar 

stimulating electrodes placed in the dentate granule cell layer to activate MFs with 

pulse duration of 0.2 ms (at 0.067 Hz), and recorded extracellularly in the stratum 

lucidum of CA3. Paired-pulse facilitation (PPF) was measured at 25, 50, 100, 200, 

400, 1000, and 2000 ms interstimulus intervals (ISIs). To induce mfLTP, three trains 

of 100 Hz (1 sec) stimuli were given at 20 sec intervals. All experiments were done in 

the presence of 100 µM D,L-2-amino-5-phosphonovaleric acid (D,L-APV) (Sigma-
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Aldrich) to isolate the presynaptic NMDAR-independent mfLTP (Nicoll and Schmitz, 

2005). At the end of each experiment, 1 µM (2S,2’R,3’R)-2-(2’,3’-

dicarboxycyclopropyl) glycine (DCG-IV) (Tocris Bioscience) was added, and 

blockade ≥ 80% were taken to be MF inputs. Field potential slopes were measured, 

and data are expressed as mean ± standard error of mean. 

Subsection 4 Whole-cell recording of evoked AMPAR-mediated 

excitatory postsynaptic currents (EPSCs) 

The slices were visualized by an upright microscope (Nikon E600FN) 

equipped with infra-red oblique illumination. CA3 PCs and INTs located within the 

stratum lucidum of CA3 were initially identified on the basis of somata shape and 

position within the CA3 subfield, and patched by a whole-cell patch pipette (tip 

resistance, 3-5 MΩ) filled with the following (in mM): 120 CH3O3SCs, 5 MgCl2, 8 

NaCl, 1 EGTA, 10 HEPES, 1 QX-314, 0.5 Na3GTP, and 2 MgATP (pH 7.2-7.3, 280-

290 mOsm) in presence of 20 μM bicuculline, and 100 μM D,L-APV in the ACSF to 

isolate AMPAR-mediated EPSCs. Biocytin (Sigma-Aldrich, 1mg/ml) was routinely 

added to the recording electrode solution to allow post hoc morphological processing 

of the recorded cells. Recordings were made at 30°C at a holding potential of -70 mV. 

Additionally, 150 nM CNQX (Tocris Bioscience) was added to prevent polysynaptic 

responses for evoked EPSC in CA3 PCs. For evoked EPSC in INTs, CNQX was not 

used, as INTs were reported to show less recurrent excitation (Toth et al., 2000). A 

double-barrel glass electrode filled with ACSF as stimulation electrode was placed in 

the dentate granule cell layer to activate the MF inputs. Minimum-intensity 

stimulation (15–25 μA intensity) was used to induce monosynaptic response. DCG-
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IV was applied at the end of the recordings to verify that the currents were elicited by 

MF inputs. 20-30 waveforms were used to produce the average evoked EPSCs, and 

the amplitude was calculated by Igor Pro software (WaveMetrics). PPF was measured 

at 50 ms ISI. Only the cells and recording conditions that met the following criteria 

were studied: no obvious multiple EPSCs or polysynaptic waveforms, Rinput ≥ 125 

MΩ and Rseries ≤ 25 MΩ, and Rinput or Rseries changed less than 15% during the course 

of the experiment. 

Subsection 5 Whole-cell recording of miniature AMPAR-mediated 

EPSCs (mEPSCs) 

To record AMPAR-mediated mEPSCs, the same intracellular solution as 

evoked EPSCs was used in the recording pipette, 1 μM TTX (Tocris Bioscience), 20 

μM bicuculline (Enzo Life Science) and 100 μM DL-APV were added to the ACSF 

(29.5°C–30.5°C, 2 ml/min). mEPSCs were recorded at a holding potential of -70mV 

in CA3 PCs or INTs using an Axopatch 700B amplifier (Molecular Devices), 

digitized at 10 kHz by a data acquisition board (National Instruments), and acquired 

using a custom-made Igor Pro software (WaveMetrics). Acquired mEPSCs were 

analyzed using the Mini Analysis program (Synaptosoft). The threshold for detecting 

mEPSCs was set at three times the root mean square (RMS) noise. mEPSCs with > 3 

ms rise time (measured between 10 and 90% of amplitude) were excluded from 

analysis. Average mEPSC amplitude and frequency were calculated and compared 

between two genotypes using unpaired Student’s t test as noted in text. Only the cells 

with Rinput > 200 MΩ and Rseries < 25 MΩ were studied, cells were discarded if Rinput 

or Rseries changed > 15%. 
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Subsection 6 Whole-cell recording of evoked GABAAR-mediated 

inhibitory postsynaptic currents (IPSCs) 

To record evoked GABAAR currents, 10 μM NBQX (Sigma-Aldrich) and 100 

μM DL-APV were added to isolate GABAAR component. Evoked IPSCs were 

recorded at 30°C at a holding potential of -70 mV in CA3 PCs with recording pipette 

filled with (in mM): 140 CsCl, 0.2 CaCl2, 8 NaCl, 2 EGTA, 10 HEPES, 0.5 Na3GTP, 

and 4 MgATP (pH 7.2, 275-285 mOsm). A double-barrel glass electrode filled with 

ACSF as stimulation electrode was placed in the stratum lucidum of CA3 where cell 

bodies of INTs are located. Minimum-intensity stimulation (15–30 μA intensity) was 

used to induce monosynaptic response. 20-30 waveforms were used to generate the 

average evoked EPCSs, and the amplitude was calculated by Igor Pro software 

(WaveMetrics). PPF was measured at 50, 100, 400 and 1000ms ISIs. Only cells with 

no obvious multiple EPSCs or polysynaptic waveforms, Rinput ≥ 125MΩ and Rseries 

≤ 25 MΩ, as well as cells showing less than 15% change in Rinput or Rseries during the 

course of the experiment, were included in the analyses. 

Subsection 7 Whole-cell recording of miniature GABAAR-mediated 

IPSCs (mIPSCs) 

For mIPSCs in CA3 PCs, the recording pipette was filled with (in mM): 140 

CsCl, 8 KCl, 10 EGTA, 10 HEPES, and 10 QX-314 (pH 7.3, 275-285 mOsm) in the 

presence of 1 μM TTX, 100 μM D,L-APV, and 10 μM NBQX in the ACSF to isolate 

GABAR-mediated currents. mIPSCs were recorded at a holding potential of -70mV 

and analyzed with the Mini Analysis program (Synaptosoft). The threshold for 

detecting mIPSCs was set at three times the RMS noise. mIPSCs with > 5 ms rise 
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time (measured between 10 and 90% of amplitude) were excluded from analysis. 350 

to 500 consecutive events from each experiment were considered for the 

determination of mIPSC frequency, but highly superimposed events constituting 

“bursts” (more than two events, interevent interval < 10 ms) were excluded from the 

measurement of amplitudes (300 non-burst events from each cell were used for 

average mIPSC amplitude calculations). The decay time constant was calculated 

using the average of 150–200 well-isolated events. 

 

Section 3 Results 

Subsection 1 Younger BACE1 KOs show similar synaptic dysfunctions at 

mossy fiber to CA3 synapses as adults 

In the Chapter 2, we found that 3-6 month old BACE1 KOs display severe 

deficits in presynaptic function at mossy fiber synapses in CA3 including a reduction 

in presynaptic release and an absence of mossy fiber LTP. In order to use young 

BACE1 KOs for whole-cell recordings, we need to first verify that similar synaptic 

deficits at CA3 area can be detected at this age. Therefore, we performed extracellular 

field potential recording at mossy fiber to CA3 pathway of hippocampus in 3-week 

old BACE1 WT and KO mice. We measured presynaptic function by comparing 

paired-pulse facilitation (PPF) ratio at various interstimulus intervals (ISIs). Similar 

to results from older animals we found that young BACE1 KOs displayed 

significantly larger PPF ratios at shorter ISIs (25 ms ISI: WT = 3.4 ± 0.24; KO = 6.0 

± 0.44; 50 ms ISI: WT = 3.5 ± 0.23, n = 8 slices/4 mice; KO = 5.6 ± 0.49, n = 8 

slices/4 mice; ANOVA: P < 0.001; Fisher’s PLSD post hoc test: P < 0.001 for 25 and 
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Figure 3.1. Abnormal 
synaptic function at MF to 
CA3 synapses in young 
BACE1 KOs.  
A. Young BACE1 KOs (black 
circles) displayed larger PPF 
ratio (especially at 25 and 50 
msec ISIs) compared to WTs 
(white circles), which indicates 
a reduction in presynaptic 
release. Top panel: 
Representative field potential 
traces following paired-pulse 
stimulation at 50 msec ISI. 
*ANOVA: P < 0.001; Fisher’s 
PLSD post hoc test: P < 0.001 
between the two genotypes. 
B. Absence of mossy fiber 
LTP in young BACE1 KOs. 
Left: Summary graph plotting 
changes in normalized field 
potential against time. The 
arrow depicts when HFS (100 
Hz, 1 sec x 3) was delivered. 
Note that KOs (black circles) 
showed no LTP 60 minutes 
after LTP induction compared 
to WTs (white circles). Right: 
Superimposed representative 
field potential traces taken 
from WTs and KOs at times 
indicated in the left panel. 

50 ms ISI between WT and KO; data from slices were used for statistical analysis, see 

Appendix on Page 125; Fig. 3.1A) The increase in PPF ratio suggests a reduction in 

presynaptic function. 
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Next we compared mossy fiber LTP induced by high frequency stimulation 

(HFS: 3 x 100 Hz, 1 sec) from 3-week old BACE1 WT and KO mice. Again similar 

to our previous data from adults, we found that young BACE1 KOs display a larger 

initial potentiation, suggesting an enhanced facilitation during HFS, however, the 

responses returned to baseline by 1 hour (WT: 146 ± 5% of baseline at 1 hour post-

HFS, n = 8 slices/4 mice; KO: 106 ± 4%, n = 8 slices/4 mice; t-test: P < 0.001; Fig. 

3.1B). Consistent with a presynaptic locus of expression, LTP in WTs was 

accompanied by a decrease in PPF ratio measured at 50 ms ISI (baseline = 3.4 ± 0.26, 

1 hour post-HFS = 2.6 ± 0.20, n = 8 slices/4 mice, paired t-test: P < 0.001), but KOs 

displayed no change in PPF ratio (baseline = 5.4 ± 0.54, 1 hour post-HFS = 5.5 ± 0.56, 

n = 8 slices/4 mice, paired t-test: P = 0.54).  

These results suggest that 3-week old BACE1 KOs display both presynaptic 

release decrease and mossy fiber LTP abolishment at CA3 area of hippocampus 

similar to adults. Therefore, animal at this age were used in subsequent whole-cell 

patch-clamp recording experiments. 

Subsection 2 Reduced presynaptic function at MF to CA3 PC synapses in 

BACE1KOs 

The first set of synapses we examined in the CA3 circuit was the excitatory 

monosynaptic MF inputs to CA3 PCs. We stimulated dentate gyrus granule cell layer 

(Langdon et al., 1993) and performed whole-cell patch-clamp recordings from CA3 

PCs in CA3 pyramidal cell layer. Monosynaptic AMPAR-mediated EPSCs were 

isolated pharmacologically by applying APV, which is an antagonist of NMDARs, 

and bicuculline, which is a GABAAR antagonist. The latency, rise time and decay 
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time of the evoked EPSC traces were analyzed, and there were no differences of these 

properties between the two genotypes (t test: P > 0.6 for each property; Table 3.1). 

We calculated PPF ratio as a measure of presynaptic function. Consistent with our 

previous extracellular field potential recording findings, BACE1 KOs displayed 

dramatic increase in PPF ratio at 50 ms ISIs compared to WT mice (WT = 3.1 ± 0.28, 

n = 11; KO = 5.4 ± 0.61, n = 10; t test: P < 0.01; Fig. 3.2C), suggesting a decrease in 

presynaptic function. To verify that the responses were elicited from MF inputs, 1 µM 

DCG-IV was bath applied at the end of the recording, which produced a comparable 

reduction in basal synaptic transmission in both genotypes (WT: 20.3 ± 3.7% of 

baseline, n = 11; KO: 17.6 ± 3.6%, n = 10; Fig. 3.2D). 

We next examined miniature EPSCs (mEPSCs) from CA3 PCs and compared 

the frequency and amplitude of the recorded mEPSCs between the two genotypes. 

BACE1 KOs showed a significant reduction in frequency (WT = 1.4 ± 0.3 Hz, n = 19; 

KO = 0.6 ± 0.1 Hz, n = 19; t test: P < 0.01; Fig. 3.3B), without changes in mEPSC 

amplitude distribution (the cumulative probability curve of mEPSC amplitude from 

KO and WT were overlapped, Kolmogorov-Smirnov test: P > 0.5; Fig. 3.3C) or the 

average mEPSC amplitude (WT = 19.4 ± 1.0 pA, n = 19; KO = 17.5 ± 1.4 pA, n = 19; 

t test: P = 0.28; Fig. 3.3C inset). These results are consistent with PPF ratio changes 

indicating presynaptic alteration. Together, these findings suggest that there is a 

decrease in presynaptic function at MF to CA3 PC synapses in BACE1 KOs. 
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Figure 3.2. Reduced presynaptic release at MF to CA3 PC monosynapses in 
BACE1 KOs. 
A. A sketch showing MF terminals onto PCs monosynapses within CA3 circuit. 
B. Representative evoked EPSCs traces from CA3 PCs following paired-pulse 
stimulation at 50 msec ISI before and after DCG-IV application in WTs and KOs. 
C. PPF ratio was significantly increased in BACE1 KOs (black bar) at 50 msec ISI 
compared to WTs (white bar). *t test: P < 0.01. 
D. Application of 1 µM DCG-IV reduced eEPSCs from CA3 PCs elicited by 
mossy fiber inputs in both WTs (white bar) and KOs (black bar). 

 

Table 3.1. ePSC properties 
Experiment Genotype Num. of 

cells 
Latency 
(ms) 

Rise time 
(ms) 

Decay time    
(τ, ms) 

PCs eEPSCs WT n = 11 2.4 ± 0.1 1.8 ± 0.1 7.7 ± 0.5 
 KO n = 10 2.5 ± 0.1  1.9 ± 0.2 7.9 ± 0.6 
INTs eEPSCs WT n = 8 2.4 ± 0.1 1.1 ± 0.1 3.1 ± 0.3 
 KO n = 5 2.3 ± 0.2 1.0 ± 0.1 3.0 ± 0.2 
PCs eIPSCs WT n = 11 1.5 ± 0.1 2.3 ± 0.2 20.6 ± 1.9 
 KO n = 12  1.6 ± 0.1 2.2 ± 0.2 20.0 ± 1.1 
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Figure 3.3. Altered mEPSCs from CA3 PCs in BACE1 KOs. 
A. Representative miniature EPSCs traces from CA3 PCs in WTs and KOs. 
B. BACE1 KOs (black bar) showed significantly decreased mEPSCs frequency in 
CA3 PCs compared to WTs (white bar). *t test: P < 0.01. 
C. Amplitude of mEPSCs in CA3 PCs was not altered in KOs. Left: The 
cumulative probability curve of KO mEPSC amplitudes (black solid line) 
superimposed with that of WT (gray solid line) (K–S test, P > 0.5). Inset: Average 
of mEPSC amplitude from CA3 PCs showed no change between the two groups 
(WT: white bar, KO: black bar). Right: Average mEPSC traces from PCs of the 
two groups. 
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Subsection 3 Normal synaptic function at MF to CA3 INT synapses in 

BACE1KOs 

The granule cell axons (MFs) have more than one terminal type including 

large complex mossy boutons, small en passant terminals, and small filopodial 

extensions of the mossy fiber boutons. MFs only innervate PCs via the large complex 

mossy boutons, whereas either small en passant or filopodial terminals preferentially 

target the stratum lucidum INTs (Chicurel and Harris, 1992; Acsady et al., 1998). To 

assess whether the MF synapses onto INTs in the stratum lucidum are altered in 

BACE1 KOs, we isolated excitatory MF inputs on INTs and recorded evoked EPSCs. 

The latency, rise time and decay time of the evoked EPSC traces were analyzed, and 

there were no differences of these properties between the two genotypes (t test: P > 

0.5 for each property; Table 3.1). In addition, there was no change in the PPF ratio 

between the two genotypes (WT = 1.8 ± 0.29, n = 8; KO = 1.7 ± 0.16, n = 5; t test: P 

= 0.84; Fig. 3.4C) suggesting that presynaptic function is not affected at this synapse. 

Bath application of 1 µM DCG-IV at the end of the recording resulted in a significant 

reduction in basal synaptic transmission in WTs and KOs (WT: 13.4 ± 5.5% of 

baseline, n = 8; KO: 12.7 ± 6.4%, n = 5; Fig. 3.4D), which confirmed that we were 

recording MF mediated synaptic responses. 

In addition to the evoked EPSCs, we examined mEPSCs from CA3 INTs and 

compared the frequency and amplitude between the two genotypes. We did not 

observe a significant change in the frequency (WT = 4.8 ± 0.7 Hz, n = 19; KO = 4.4 ± 

0.7 Hz, n = 14; t test: P = 0.69; Fig. 3.5B) or the amplitude of mEPSCs (the 

cumulative probability curve of mEPSCs amplitude from KO and WT were 
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Figure 3.4. No change has been detected at MF onto CA3 INT synapses in 
BACE1 KOs. 
A. A sketch showing the synapses of MF terminals onto inhibitory neurons within 
stratum lucidum. 
B. Representative evoked EPSCs traces from CA3 INTs following paired-pulse 
stimulation at 50 msec ISI before and after DCG-IV application in WTs and KOs.
C. PPF ratio was not changed between the two genotypes (WT: white bar, KO: 
black bar) at 50 msec ISI. 
D. Application of 1 µM DCG-IV reduced eEPSCs from CA3 INTs elicited by 
mossy fiber inputs in both WTs (white bar) and KOs (black bar). 

overlapped, Kolmogorov-Smirnov test: P = 0.2; Average: WT = 22.5 ± 2.0 pA, n = 

19; KO = 22.0 ± 2.2 pA, n = 14; t test: P = 0.88; Fig. 3.5C). These results suggest that 

there is no change in pre- or postsynaptic function at MF to INT synapses of BACE1 

KOs.  

These observations indicate that only MF synapses onto CA3 PCs are 

impaired, while the same afferent inputs projecting onto INTs are normal in BACE1 

KOs. This suggests that the effect of BACE1 KO is postsynaptic target specific. 
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Figure 3.5. No change in mEPSCs from CA3 INTs between BACE1 WTs 
and KOs. 
A. Representative miniature EPSCs traces from CA3 INTs in WTs and KOs. 
B. There was no change in frequency of mEPSCs from CA3 INTs (WT: white 
bar, KO: black bar). 
C. Amplitude of mEPSCs in CA3 INTs was not altered in KOs. Left: The 
cumulative probability curve of KO mEPSC amplitudes (black solid line) 
superimposed with that of WT (gray solid line) (K–S test, P = 0.2). Inset: 
Average of mEPSC amplitude from CA3 INTs showed no change between the 
two groups (WT: white bar, KO: black bar). Right: Average mEPSC traces from 
INTs of the two groups. 
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Subsection 4 Reduced presynaptic function at CA3 INT to PC inhibitory 

synapses in BACE1KOs 

We have demonstrated that BACE1 can regulate excitatory synaptic 

transmission, which is postsynaptic target specific. However, whether BACE1 plays a 

role in modulating inhibitory synapses is unknown. We therefore investigated 

inhibitory inputs from CA3 INTs onto PCs in BACE1 KOs by isolating GABAAR-

mediated IPSCs within CA3 area using AMPAR antagonist NBQX and NMDAR 

antagonist APV. Stratum lucidum of CA3 were stimulated where INT cell bodies are 

located and recordings were made from CA3 PCs in CA3 pyramidal cell layer. We 

measured evoked IPSCs at a negative holding potential of -70mV using a 

symmetrical chloride internal solution that reverses IPSCs at 0 mV, and confirmed 

the isolation of IPSCs by showing a complete and reversible block of current by 

application of bicuculline (Fig. 3.6B). The latency, rise time and decay time of the 

evoked IPSC traces were analyzed, and there were no differences of these properties 

between the two genotypes (t test: P > 0.4 for each property; Table 3.1). Consistent 

with the high release probability at inhibitory synapses (Jiang et al., 2010), BACE1 

WT mice showed large paired-pulse depression (PPD) especially at shorter ISIs (PPD 

ratio: 50 ms ISI = 0.59 ± 0.04, n = 11; Fig. 3.6C). Surprisingly, the PPD was 

significantly impaired in BACE1 KOs (PPD ratio: 50 ms ISI = 0.92 ± 0.08, n = 12; 

ANOVA: P < 0.001; Fisher’s PLSD post hoc test: P < 0.001 for 50 ms ISI between 

WTs and KOs; Fig. 3.6C). The reduction in PPD seen in KOs suggests that there is a 

decrease in presynaptic function at these synapses. To our knowledge, it is the first 

evidence that BACE1 regulates inhibitory synaptic transmission.  
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Figure 3.6. Reduced presynaptic function at INT to CA3 PC inhibitory 
synapses in BACE1 KOs. 
A. A diagram showing the inhibitory projections from CA3 INTs to PCs. 
B. Left: Verification that the internal solution we used reversed mIPSCs at 0 mV. 
Each evoked IPSCs trace was recorded under different holding voltage as 
indicated. Right: The pharmacologically isolated eIPSCs were blocked by addition 
of 20 μM bicuculline (+Bic), and the currents were reversible when bicuculline 
was washed out. 
C. Paired-pulse depression was impaired in BACE1 KOs (black circles) especially 
at 50 msec ISI compared to WTs (white circles). Top panel: Representative 
evoked IPSCs traces from CA3 PCs following paired-pulse stimulation at 50 msec 
ISI. *ANOVA: P < 0.001; Fisher’s PLSD post hoc test: P < 0.001 between the two 
genotypes. 
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In addition, we compared mIPSCs from CA3 PCs across the two genotypes. 

Consistent with evoked IPSCs results showing a decrease in presynaptic function, 

BACE1 KOs displayed a significant reduction in frequency (WT = 18.6 ± 1.3 Hz, n = 

19; KO = 13.7 ± 1.3 Hz, n = 17; t test: P < 0.05; Fig. 3.7B), without changes in 

mIPSC amplitude distribution (The cumulative probability curve of mIPSC amplitude 

from KO and WT were overlapped, Kolmogorov-Smirnov test: P > 0.7; Fig. 3.7C) 

nor averaged mIPSC amplitude (WT = 42.2 ± 3.2 pA, n = 19; KO = 45.7 ± 3.6 pA, n 

= 17; t test: P = 0.46; Fig. 3.7C inset).  

These data suggest that in the CA3 circuit, BACE1 inhibition not only reduce 

presynaptic function at excitatory inputs, but also at inhibitory synapses. 
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Figure 3.7. Reduced frequency of mIPSCs from CA3 PCs in BACE1 KOs. 
A. Representative miniature IPSCs traces from CA3 PCs in WTs and KOs. 
B. BACE1 KOs (black bar) showed significantly reduced mIPSCs frequency in 
CA3 PCs compared to WTs (white bar). *t test: P < 0.05. 
C. Amplitude of mIPSCs in CA3 PCs was not altered in KOs. Left: The 
cumulative probability curve of KO mIPSC amplitudes (black solid line) 
superimposed with that of WT (gray solid line) (K–S test, P > 0.7). Inset: Average 
of mIPSC amplitude from CA3 PCs showed no change between the two groups 
(WT: white bar, KO: black bar). Right: Average mIPSC traces from PCs of the 
two groups. 

 

 

 

 

 

 



 

 64 
 

Section 4 Discussion 

This study indicates that within the CA3 circuit of hippocampus, presynaptic 

function of both excitatory inputs from MF and inhibitory inputs from INTs onto 

CA3 PCs are reduced in the BACE1 KOs. On the other hand, there was no change at 

excitatory projections from MF onto INTs. Our data, for the first time, suggest that 

BACE1 can regulate synaptic transmission of both excitatory and inhibitory 

component within the same neuronal circuit. The fact that the synapses affected by 

BACE1 inhibition are both targeted to CA3 PCs reveals that this effect is likely 

specified by the postsynaptic target independent of the type of inputs.  

Our finding that only synapses of MF inputs onto CA3 PCs, but not MF 

projections onto INTs, were altered by BACE1 inhibition is very intriguing. This 

further strengthens the idea that even though these two sets of synapses have common 

inputs, the functional characteristic of these two sets of synapses is quite different. 

Previous studies have shown that MF synapses onto CA3 PCs display distinct high 

level of facilitation indicative of low release probability (Nicoll and Schmitz, 2005); 

while MF synapses to INTs exhibit a higher probability of release and display either 

facilitation or depression by brief trains of stimulation (Toth et al., 2000). Recently, it 

has been found that different types of AMPARs are present at the two sets of 

synapses. MF inputs onto CA3 PC synapses contain only calcium-impermeable (CI) 

AMPARs (Toth et al., 2000); whereas MF inputs onto CA3 INT synapses contain 

both calcium-impermeable (CI) and calcium-permeable (CP) AMPARs (Toth and 

McBain, 1998). Interestingly, high frequency stimulation (100 Hz), which induces 

LTP at MF to CA3 PC synapses, produce NMDAR dependent LTD at interneuron 
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CI-AMPAR synapses (Lei and McBain, 2002), and NMDAR independent LTD at 

CP-AMPARs containing synapses on interneurons (Toth et al., 2000). Our results add 

to these differences and suggest that BACE1 function is more critical for maintaining 

normal synaptic transmission at the MF to CA3 PC synapses.  

Our study, for the first time, provides evidence that inhibiting BACE1 not 

only affected excitatory inputs, but also impaired feedforward inhibition of the CA3 

circuit. When interneurons and principal cells receive the same excitatory input, the 

inhibitory projections from interneurons onto principal cells form disynaptic 

feedforward inhibition (Buzsaki, 1984), which inhibits the excitability and tunes the 

firing pattern of the principal cells. Feedforward inhibition is one of the major 

components within neuronal circuits in many brain areas, such as hippocampal 

formation, visual cortex, sensory cortex, etc. (Buzsaki, 1984; Swadlow, 2003; 

Callaway, 2004), and plays a crucial role in circuit development as well as balancing 

excitation and inhibition to maintain neural activity (Chittajallu and Isaac, 2010). In 

the CA3 area of hippocampus, MF terminals innervating PCs are large with multiple 

release sites; whereas INTs receive small MF branches but large number of synapses. 

In addition, a single MF targets tens of inhibitory neurons, and each inhibitory 

interneuron can contact hundreds of CA3 PCs. This anatomy allows the CA3 circuit 

to form a high frequency filter, which permits high frequency responses to pass but 

low frequency responses are dampened by feedforward inhibition (Lawrence and 

McBain, 2003). If inhibitory synaptic transmission is damaged by blocking BACE1 

activity, the function of CA3 circuit is certainly impacted in BACE1 KOs. 
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The evidence that both of the synapses modified by blocking BACE1 activity 

are synapsing onto CA3 PCs suggests that BACE1 in the postsynaptic PCs may 

actually plays an important role, and may bring about target specific regulation of 

synaptic transmission. However, it is still unknown how BACE1 at postsynaptic site 

would modulate presynaptic function. One potential candidate is Aβ generated by 

BACE1 processing of APP. Aβ, which can be secreted into synaptic cleft, may at as a 

retrograde signal from postsynaptic to presynaptic terminals to modify presynaptic 

function. In support of this, Aβ is implicated in presynaptic modifications by 

affecting presynaptic P/Q type Ca2+ channels and critical synaptic vesicle endocytosis 

protein dynamin (Kelly et al., 2005; Kelly and Ferreira, 2007; Nimmrich et al., 2008). 

Although from those studies, Aβ suppresses synaptic transmission, hence it seems 

counterintuitive that abolishing Aβ production, as in BACE1 KO mice, would reduce 

presynaptic function. However, we need to consider the fact that physiological 

concentration of Aβ (pM range) facilitates synaptic plasticity (Puzzo et al., 2008), and 

in this context the absence of Aβ in BACE1 KO mice is expected to produce synaptic 

deficits. 

Another possibility is that the presynaptic effects of BACE1 KOs may be from 

abnormal processing of neuregulin-1 (NRG1), a substrate of BACE1 (Hu et al., 2006; 

Willem et al., 2006), which affects presynaptic release by regulating the surface 

expression of presynaptic Ca2+ permeable α7-nAchRs (Seguela et al., 1993; Liu et al., 

2001b; Zhong et al., 2008). Presynaptic nAChRs can increase glutamate release 

(McGehee et al., 1995; Gray et al., 1996; Maggi et al., 2003b), likely via the α7 

containing nAChRs (Le Magueresse et al., 2006). Whether activation of α7-nAchRs 
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can rescue the presynaptic deficits seen at MF to CA3 pathway in BACE1 KOs will 

be discussed in the next chapter. 

By isolating excitation and inhibition within the same neuronal circuit, we 

demonstrated that the absence of BACE1 produces presynaptic dysfunction at both 

excitatory and inhibitory components on CA3 PCs. Although reduction of presynaptic 

function at both types of synapses may be a compensation mechanism to keep the 

balance of excitation and inhibition, these changes likely impact synaptic function in 

the CA3 area of hippocampus as seen by an abolishment of mossy fiber LTP (Wang 

et al., 2008). The current study reveals BACE1 function at a circuit level, and may 

provide useful mechanistic information to circumvent the negative side effects caused 

by BACE1 inhibition. 
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Chapter 4: Mossy fiber LTP deficits in BACE1 knockouts can 

be rescued by activation of α7 nicotinic acetylcholine receptors 

 
Published in Journal of Neuroscience:  
Wang H, Song L, Lee A, Laird F, Wong PC, Lee HK (2010) J Neurosci 30: 13808-
13813 
  
My contribution: Measurement of field potentials recordings and analyses 
 
 

Section 1 Introduction 

Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), the neuronal 

β-secretase responsible for producing β-amyloid (Aβ) peptides, emerged as one of the 

key therapeutic targets of Alzheimer’s disease (AD) (Vassar, 2002; Citron, 2004b, a; 

Vassar et al., 2009). Although complete ablation of the BACE1 gene prevents Aβ 

formation (Cai et al., 2001), in the previous two chapters, we have shown that 

BACE1 KOs display severe presynaptic dysfunctions (Wang et al., 2008). The 

deficits include a reduction in presynaptic release at mossy fiber to CA3 synapses and 

an absence of mossy fiber long-term potentiation (mfLTP), which are due to 

abnormal presynaptic Ca2+ signaling (Wang et al., 2008). These studies caution the 

use of BACE1 inhibitors as a practical treatment for AD.  

Cholinergic system modulates neurotransmitter release from glutamatergic 

and GABAergic terminals via the action of nicotinic acetylcholine receptors (nAChRs) 

(Gray et al., 1996; Radcliffe et al., 1999; Giocomo and Hasselmo, 2005; Jiang and 

Role, 2008; Bancila et al., 2009). Among them, α7-nAChR is a Ca2+-permeable 

homopentameric ion channel highly expressed in the hippocampus and cerebral 
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cortex (Seguela et al., 1993). Several studies have linked α7-nAChR with 

neurodegenerative disorders, including AD (Perry et al., 2000). In this chapter, we 

present data that activating α7-nAChRs, by nicotine or a specific agonist PNU282987, 

can restore presynaptic function at mossy fiber to CA3 synapses and mfLTP in 

BACE1 KOs via recruiting Ca2+-induced Ca2+ release (CICR). 

 

Section 2 Methods and Materials 

Subsection 1 Animals 

All mice used (BACE1 +/+ and –/–) were derived from heterozygous breeders 

(+/–) as described previously (Laird et al., 2005). The Institutional Animal Care and 

Use Committees of both University of Maryland and Johns Hopkins University 

approved all procedures involving animals. 

Subsection 2 Acute hippocampus slices preparation for electrophysiology 

Hippocampal slices were prepared from adult (3-6 months old) male BACE1 

knock-out or wild-type mice as described previously (Laird et al., 2005). Briefly, 

under deep anesthesia by isoflurane, mice were killed by decapitation, and their 

brains were removed quickly and transferred to the ice-cold dissection buffer  

containing the following (in mM): 212.7 sucrose, 2.6 KCl, 1.23 NaH2PO4, 26 

NaHCO3, 10 dextrose, 3 MgCl2, and 1 CaCl2  (bubbled with a mixture of 5% CO2 and 

95% O2). A block of hippocampus was removed and sectioned into 400 µm-thick 

slices using a vibratome. The slices were recovered for 1 h at room temperature in 
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artificial CSF (ACSF) (in mM): 124 NaCl, 5 KCl, 1.25 NaH2PO4, 26 NaHCO3, 10 

dextrose, 1.5 MgCl2, and 2.5 CaCl2 (bubbled with a mixture of 5% CO2 and 95% O2). 

Subsection 3 Electrophysiological Recordings 

Recordings were done in a submersion-type recording chamber perfused with 

ACSF (saturated with 5% CO2/95% O2; 29.5°C–30.5°C, 2 ml/min). Synaptic 

responses were evoked through glass bipolar stimulating electrodes placed in the 

dentate granule cell layer to activate MFs with pulse duration of 0.2 ms (at 0.067 Hz), 

and recorded extracellularly in the stratum lucidum of CA3. PPF was measured at 25, 

50, 100, 200, 400, 1000, and 2000 ms ISIs. To induce mfLTP, three trains of 100 Hz 

(1 sec) stimuli were given at 20 sec intervals. We used α7-nAChR agonists (-)-

Nicotine (Sigma-Aldrich) and PNU282987 (Tocris Bioscience), and an antagonist α-

bungarotoxin (Tocris Bioscience). To block intracellular Ca2+ release, ruthenium red 

(Tocris Bioscience) or ryanodine (Tocris Bioscience) was applied. All experiments 

were done in the presence of 100 µM D,L-2-amino-5-phosphonovaleric acid (D,L-

APV) (Sigma-Aldrich) to isolate the presynaptic NMDAR-independent mfLTP 

(Nicoll and Schmitz, 2005). At the end of each experiment, 1 µM (2S,2’R,3’R)-2-

(2’,3’-dicarboxycyclopropyl) glycine (DCG-IV) (Tocris Bioscience) was added, and 

blockade ≥ 80% were taken to be MF inputs. Field potential slopes were measured, 

and data are expressed as mean ± standard error of mean. 

Subsection 4 Immunohistochemistry and confocal imaging 

Hippocampal slices (300-µm-thick) prepared from transgenic mice expressing 

yellow fluorescence protein (YFP) in a subset of neurons (YFP-2J line, Jackson 
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Laboratory) were placed in 4% paraformaldehyde overnight (4°C) and transferred to 

30% sucrose [in 0.1 M sodium phosphate (SP) buffer] overnight before re-sectioning 

to 20 μm thickness using a freezing sliding microtome (Leica). The sections were 

collected in cryoprotectant (20% sucrose, 30% ethylene glycol in pH 7.4 SP buffer) 

and kept at -20°C. The day before primary antibody incubation, the sections were 

frozen at -80°C in 30% sucrose (in 0.1 M SP buffer). The following day, sections 

were defrosted and rinsed in PBS (4 5 min) and permeabilized [2% Triton X-100 

(TX-100) in SP buffer, 1 hour]. They were then incubated in -20°C methanol (10 

min), rinsed in PBS (4 5 min), and placed in 1% TX-100 blocking solution [10% 

normal donkey serum (NDS), 4% BSA in PBS] for 1 h at room temperature. Sections 

were then incubated in 0.2% TX-100 blocking solution with α7-nAChR antibody 

(1:500, rabbit polyclonal antibody, Abcam, Cambridge, MA) and synaptophysin 

antibody (1:20, mouse monoclonal antibody, Millipore, Billerica, MA) for 7 days at 

4°C. After washing (PBS, 4 5 min), sections were incubated for 2 h at room 

temperature in secondary antibodies [Alexa633 goat anti-rabbit IgG (1:500, 

Molecular Probes, Eugene, OR) and Alexa555 goat anti-mouse IgG (1:200, 

Molecular Probes, Eugene, OR)] in 1.5% NDS in PBS. Sections were rinsed in PBS, 

mounted on glass slides, and air-dried. The slides were coverslipped with ProlongTM 

mounting solution (Molecular Probes, Eugene, OR) and sealed with nail polish. The 

stained sections were imaged using a Leica SP5X confocal microscope with a 63 oil 

immersion objective lens. The CA3 subfield of the hippocampus was imaged through 

the z-axis at 0.5 μm steps with x/y/z resolution of 0.24/0.24/0.50 μm/pixel. 
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Subsection 5 Steady-state surface biotinylation 

Hippocampal slices (400 μm thick) were prepared as described above, and the 

CA3 region was isolated. After 30 min recovery at room temperature, the isolated 

CA3 slices were transferred to 30°C for additional 30 min recovery. The slices were 

then transferred to ice-cold ACSF for 10 min, and subsequently to ice-cold ACSF 

containing 2 mg/ml biotin (EZ-Link Sulfo-NHS-Biotin, Pierce) saturated with 5% 

CO2/95% O2 for 15 min. The slices were then washed in tris-buffered saline (TBS: 50 

mM Tris, 0.9% NaCl, pH 7.4) containing 100 mM glycine (5 times, 1 min each) 

before homogenized in ice-cold 0.2% SDS/1% Triton X-100 IPB (20 mM Na3PO4, 

150 mM NaCl, 10 mM EDTA, 10 mM EGTA, 10 mM Na4P2O7, 50 mM NaF, and 1 

mM Na3VO4, pH 7.4; with 1 µM okadaic acid and 10 KIU/ml aprotinin) by ~30 

gentle strokes using glass-teflon tissue homogenizers (Pyrex). The homogenates were 

centrifuged for 10 min at 13,200 × g, 4°C. Protein concentration of the supernatant 

was measured and normalized to 2 mg/ml. Some of the supernatants were saved as 

inputs by adding gel sampling buffer and boiled for 5 min. 300 µg of each 

supernatant was mixed with neutravidin slurry [1:1 in 1% Triton X-100 IPB (TX-

IPB)] and rotated overnight at 4°C. The neutravidin beads were isolated by brief 

centrifugation at 1,000 × g. Some of the supernatants were saved by adding gel 

sample buffer and boiled for 5 min. The neutravidin beads were washed 3 times with 

1% TX-IPB, 3 times with 1% TX-IPB containing 500 mM NaCl, followed by 2 

washes in 1% TX-IPB. The biotinylated surface proteins were then eluded from the 

neutravidin beads by boiling in gel sampling buffer for 5 min. The input (I, total 

homogenate), supernatant (S, intracellular fraction), and biotinylated samples (B, 
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surface fraction) were run on the same gel, and processed for immunoblot analysis 

using α7-nAchR and actin antibodies. The band intensity in the input lanes and biotin 

lanes, which fell within the linear range, was quantified to calculate the % of total α7-

nAchR on the surface for each sample. 

Subsection 6 Immunoblot analysis 

SDS-PAGE gels were transferred to polyvinyl difluoride (PVDF) membranes 

(ImmobilonTM, Millipore). The PVDF membrane blots were blocked for ~1 hr in 

blocking buffer (1% bovine serum albumin and 0.1% Tween-20 in phosphate 

buffered saline (PBS), pH 7.4), and subsequently incubated for 1-2 hrs in primary 

antibodies diluted in blocking buffer. After 5 x 5 min washes in blocking buffer, the 

blots were incubated for 1 hr in secondary antibodies linked to Cy3 and Cy5. After 

washes, blots were scanned using Typhoon Trio (GE Health), and signals were 

quantified using Image Quant TL software (GE Health). The fluorescence intensity 

values for each band was then normalized to the average value of WT samples on the 

same blot to obtain the % of average WT values, which were compared across 

different experimental groups using unpaired Student’s t-test. The biotinylation blots 

were also probed simultaneously with α7-nAchR and actin antibodies using the ECL 

plex system. The band intensities of biotinylated samples were normalized to that of 

the input lanes (total protein) to obtain the level of surface α7-nAchR as a % of total 

value. 
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Section 3 Results 

Subsection 1 Nicotine restores presynaptic function at MF to CA3 

synapses in BACE1 KOs 

We first examined the effect of nicotine on the presynaptic function of MF to 

CA3 synapses in BACE1 KOs by measuring paired-pulse facilitation (PPF). The 

results showed that nicotine decreased PPF ratio in a dose dependent manner at 25 

and 50 ms ISIs in KOs (n = 7 slices/3 mice; ANOVA: P < 0.05; Fig. 4.1A), and 10 

μM was the lowest concentration that significantly decreased PPF ratio in both 

genotypes (KO: control = 4.81 ± 0.16, nicotine = 4.05 ± 0.22, n = 15 slices/10 mice, 

paired t-test: P < 0.001; WT: control = 3.77 ± 0.43, nicotine = 3.50 ± 0.40, n = 10 

slices/9 mice, paired t-test: P < 0.001; Fig. 4.1B). We previously showed that BACE1 

KOs display a significant increase in PPF ratio at MF synapses indicating a reduction 

in presynaptic release (Wang et al., 2008). Nicotine at 10 μM concentration decreased 

the PPF ratio of KOs to a similar level of WTs (t-test: P = 0.57) without affecting 

synaptic transmission in either genotype (KO: 100 ± 1% of baseline at 20 min post-

nicotine, n = 15 slices/10 mice; paired t-test: P = 0.97; WT: 99 ± 1%, n = 10 slices/9 

mice; paired t-test: P = 0.54; Fig. 4.1B). These results suggest that 10 μM nicotine 

reverses PPF deficits in BACE1 KOs without affecting synaptic strength. Therefore, 

10 μM nicotine was used in subsequent experiments. 
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Figure 4.1. Nicotine recovers deficits in PPF at MF synapses in BACE1 KOs. 
A. Nicotine reduced PPF ratio in a dose-dependent manner, which was significant 
at 25 and 50 ms ISIs. *ANOVA, P < 0.05; Fisher’s PLSD, P < 0.05 between 
control and 10, 50, 100 µM nicotine groups. 
B. Nicotine (10 μM) significantly decreased PPF ratio in both genotypes, but did 
not influence basal synaptic transmission. Top: Representative FP traces of 
paired-pulse stimulation (50 ms ISI) before (thin traces) and after (thick traces) 
nicotine. Scale: KO 1 mV, WT 0.5 mV, 10 ms. Bottom left: No change in basal 
synaptic strength with nicotine (KO, black circles; WT, white circles). Bottom 
right: Comparison of PPF ratio (50 ms ISI) before (C) and after (N) nicotine 
application. *paired t-test, P < 0.001. 
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Subsection 2 Nicotine rescues mfLTP in BACE1 KOs without affecting 

mfLTP in WTs 

Consistent with our previous results, KOs lacked mfLTP under control 

conditions, but 10 μM nicotine applied during the whole duration of the experiment 

restored mfLTP (control: 95 ± 4% at 1 hour post-HFS, n = 6 slices/4 mice; nicotine: 

133 ± 7%, n = 8 slices/7 mice; t-test: P < 0.001; Fig 4.2A). Nicotine-induced rescue 

of mfLTP was accompanied by a significant decrease in PPF ratio (50 ms ISI; 

baseline: 4.36 ± 0.26, 1 hour post-HFS: 3.01 ± 0.27, paired t-test: P < 0.001; Fig. 

4.2A inset) suggesting presynaptic expression. Interestingly, 10 μM nicotine did not 

alter the magnitude of mfLTP in WTs (control: 148 ± 3% at 1 hour post-HFS, n = 5 

slices/3 mice; nicotine: 144 ± 6%, n = 7 slices/6 mice; t-test: P = 0.52; Fig. 4.2B).  

To investigate whether nicotine affects the induction mechanisms of mfLTP, 

we transiently applied nicotine for 10 min before and during the HFS. KOs displayed 

significant mfLTP, which was similar in magnitude with that evoked in WTs (KO = 

147 ± 2% at 1 hour post-HFS, n = 8 slices/5 mice, paired t-test: P < 0.001; WT: 157 ± 

8%, n = 8 slices/5 mice, paired t-test: P < 0.001; Fig. 4.2C, D). Furthermore, mfLTP 

was accompanied by a significant decrease in PPF ratio (50 ms ISI) in both genotypes 

(WT: baseline = 3.66 ± 0.16, 1 hour post-HFS = 2.55 ± 0.21, paired t-test: P < 0.001; 

KO: baseline = 4.59 ± 0.35, 1 hour post-HFS = 2.95 ± 0.33, paired t-test: P < 0.001; 

Fig. 4.2C, D insets), consistent with an increase in presynaptic release. These results 

demonstrate that nicotine specifically rescues the induction mechanisms of mfLTP in 

BACE1 KOs. 
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Figure 4.2. Nicotine rescues mfLTP in BACE1 KOs without effects in WTs. 
A. KO slices treated with 10 μM nicotine (black circles) showed significant 
mfLTP compared to control slices without nicotine (white circles).  
B. The magnitude of mfLTP in WT slices treated with 10 μM nicotine (black 
squares) was similar to that of control WT slices (white squares).  
C. Transient application of nicotine (10 μM, 10 min; gray bar) before and during 
HFS rescued mfLTP in KOs (black circles).  
D. The same transient nicotine (10 μM, 10 min; gray bar) application did not 
influence mfLTP in WT (black squares).  
Insets: (A, B) Changes in PPF ratio with HFS [ΔPPF ratio = (PPF ratio at time 
b) – (PPF ratio time a)] for control (Ctl) and nicotine (Nic); (C, D) ΔPPF ratio 
with nicotine application [= (PPF ratio at time b) – (PPF ratio at time a)] and 
with HFS [= (PPF ratio at time c) – (PPF ratio at time a)]. Bars: average ± sem. 
Open circles: individual data points. *paired t-test, P < 0.001. 
Arrow: HFS (100 Hz, 1s × 3). Right panels: Superimposed FP traces taken at 
times indicated in the left panels. Scale: 0.5 mV, 5 ms. 
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Subsection 3 Nicotine-induced rescue of mfLTP in BACE1 KOs is 

mediated by α7-nAChRs 

We showed that presynaptic dysfunction of MF synapses in BACE1 KOs is at 

the level of Ca2+ regulation (Wang et al., 2008). To determine whether nicotine acts 

via the Ca2+-permeable α7-nAChRs, we used a specific agonist PNU282987 (Bodnar 

et al., 2005). A brief application of PNU282987 (500 nM, 10 min) before and during 

HFS recovered mfLTP in KOs (1 hour post-HFS: 167 ± 19%, n = 8 slices/5 mice; 

paired t-test: P < 0.05; Fig 4.3A). Furthermore, PPF ratio decreased significantly after 

PNU282987 application and further by LTP induction (baseline: 6.29 ± 0.77, 

+PNU282987: 5.81 ± 0.76, 1 hour post-HFS: 4.80 ± 0.69, Fig. 4.3A inset). 

PNU282987 alone did not produce changes in synaptic strength (1 hour post-

PNU282987: 105 ± 4%, n = 4 slices/2 mice; paired t-test: P = 0.30; Fig 4.3A).  

To further test whether nicotine-induced rescue of mfLTP was mediated by 

α7-nAChRs, we applied 100 nM α-bungarotoxin (αBTX), a selective antagonist. 

αBTX abolished the effect of nicotine on mfLTP (1 hour post-HFS: 105 ± 4%, n = 10 

slices/6 mice; paired t-test: P > 0.05; Fig 4.3B) and PPF ratio (αBTX: 5.22 ± 0.65, 

αBTX+nicotine: 5.17 ± 0.65, 1 hour post-HFS: 5.19 ± 0.73; Fig. 4.3B inset) in KOs. 

Application of αBTX and nicotine in the absence of HFS did not alter synaptic 

transmission (1 hour-post αBTX+Nic: 100 ± 1%, n = 4 slices/2 mice; paired t-test: P 

= 0.86; Fig 4.3B). These results suggest that nicotine-induced rescue of presynaptic 

deficits in BACE1 KOs is mediated by α7-nAChRs.  

Finally, we tested whether α7-nAChRs are required for mfLTP in WTs. A 

brief application of αBTX (10 min) before and during HFS failed to block mfLTP in 
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Figure 4.3. Nicotine-induced 
rescue of mfLTP in BACE1 KO is 
mediated by α7-nAChRs. 
A. Transient bath application of 
PNU282987 (PNU: 500 nM, 10 min; 
gray bar) rescued mfLTP in KOs 
(black circles). PNU282987 alone 
did not alter synaptic transmission 
(white circles). Inset: ΔPPF ratio in 
KO PNU+HFS experiments. ΔPPF 
ratio with PNU282987 application 
[= (PPF at b) – (PPF at a)]; ΔPPF 
ratio with HFS [= (PPF at c) – (PPF 
at a)], *paired t-test: P < 0.01. 
B. Application of αBTX (100 nM, 
black bar) blocked nicotine-induced 
rescue of mfLTP in KOs (black 
circles). Application of αBTX and 
nicotine without HFS did not 
influence basal synaptic 
transmission (white circles). Inset: 
ΔPPF ratio in KO αBTX+Nic+HFS 
experiments. ΔPPF ratio with 
nicotine application in the presence 
of αBTX [= (PPF at b) – (PPF at a)]; 
ΔPPF ratio with HFS [= (PPF at c) – 
(PPF at a)]. 
C. MfLTP in wildtype is not blocked 
by αBTX. αBTX alone (100 nM, 10 
min; gray bar) did not affect 
synaptic transmission (white 
squares). αBTX+HFS: black 
squares. Inset (for αBTX+HFS 
experiments): ΔPPF ratio with 
αBTX [= (PPF at b) – (PPF at a)]; 
ΔPPF ratio with HFS [= (PPF at c) – 
(PPF at a)]; *Paired t-test, P < 0.001. 
Right: FP traces. Scale: 0.5 mV, 5 
ms. 

WTs (1 hour post-HFS: 148 ± 6%, n = 9 slices/7 mice; paired t-test: P < 0.001; Fig. 

4.3C). This indicates that activation of α7-nAChRs is not necessary for mfLTP 

induction in WTs, hence the rescue of mfLTP in KOs by α7-nAChR activation is 

probably via recruitment of an alternative pathway not normally used in WTs. 
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Subsection 4 Calcium-induced calcium release (CICR) is involved in 

nicotine-induced rescue of mfLTP in BACE1 KOs 

Activation of α7-nAChRs enhances CICR from ryanodine-sensitive Ca2+ 

stores (Sharma and Vijayaraghavan, 2003; Sharma et al., 2008). To investigate 

whether CICR is also involved in nicotine-induced rescue of mfLTP in KOs, we used 

20 μM ruthenium red (RR) or 100 μM ryanodine (Ryan), which are blockers of 

ryanodine-sensitive stores. Both drugs completely abolished nicotine-induced 

recovery of PPF ratio (RR: 5.00 ± 0.69, RR+Nic: 4.97 ± 0.70, 1 hour post-HFS: 4.62 

± 0.74, Fig. 4.4A inset; Ryan: 5.01 ± 0.20, Ryan+Nic: 5.03 ± 0.23, 1 hour post-HFS: 

4.93 ± 0.25) and mfLTP in KOs (1 hour-post RR+Nic: 91 ± 5%, n = 9 slices/5 mice; 

paired t-test: P = 0.18; 1 hour-post Ryan+Nic: 100 ± 2%, n = 6 slices/3 mice; paired t-

test: P = 0.66; Fig 4.4A) without influencing basal synaptic transmission. MfLTP was 

present in WTs treated with RR (1 hour-post HFS: 124 ± 5%, n = 9 slices/5 mice; 

paired t-test: P < 0.01; Fig 4.4B), but was significantly less than that in control WTs 

(t-test: P < 0.01), suggesting that CICRs are only partially involved. 
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Figure 4.4. Nicotine-
induced rescue of mfLTP 
in BACE1 KOs requires 
Ca2+ induced Ca2+ release 
(CICR). 
A. Application (black bar) 
of ruthenium red (RR, 20 
μM) or ryanodine (Ryan, 
100 μM) abolished 
nicotine-induced rescue of 
mfLTP in KOs (RR: black 
circles, Ryan: gray 
triangles). Inset: ΔPPF ratio 
of RR application [= (PPF 
at b) – (PPF at a)]; 
+nicotine [= (PPF at c) – 
(PPF at b)]; +HFS [= (PPF 
at d) – (PPF at b)]. 
B. RR (20 μM; black bar) 
reduced mfLTP in WTs 
(white squares). Inset: 
ΔPPF ratio of RR 
application [= (PPF at b) – 
(PPF at a)]; +HFS [= (PPF 
at c) – (PPF at b)], *paired 
t-test: P < 0.01. 
Right: FP traces. Scale: 0.5 
mV, 5 ms. 
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Section 4 Discussion 

We found that nicotine restores PPF and LTP at MF to CA3 synapses in 

BACE1 KOs. The nicotine effect was mimicked by α7-nAChR specific agonist 

PNU282987, and blocked by α7-nAChR antagonist αBTX. We have evidence that 

nicotine acts via recruiting CICR. These results suggest nicotine and α7-nAChR 

agonists as potential pharmacological means to circumvent the presynaptic deficits 

caused by BACE1 inhibition. 

MfLTP is presynaptically expressed requiring an increase in presynaptic Ca2+ 

and a subsequent activation of cAMP-PKA signaling pathway (Nicoll and Schmitz, 

2005). We previously demonstrated that presynaptic dysfunction seen in BACE1 KOs 

is at the level of Ca2+ regulation, but the downstream PKA signaling is intact (Wang 

et al., 2008). These results predict that restoring presynaptic Ca2+ signaling should 

recover mfLTP in BACE1 KOs. Presynaptic α7-nAChR elevates the intracellular 

concentration of free Ca2+ (Vijayaraghavan et al., 1992) and enhances glutamate 

release at MF terminals (Sharma and Vijayaraghavan, 2003; Sharma et al., 2008; 

Bancila et al., 2009). The nicotine-induced rescue of PPF and mfLTP without much 

effect on basal synaptic transmission is likely via the recruitment of CICR, which is 

known to preferentially amplify use-dependent release (Shimizu et al., 2008). Short-

term presynaptic plasticity, including PPF, does not depend on CICR at MF terminals 

(Carter et al., 2002). Consistent with this, inhibiting CICRs in WTs did not alter PPF 

ratio, but reduced mfLTP magnitude, which suggests that HFS recruits CICR. In the 

case of KOs, it is clear that the CICR triggered by α7-nAChR activation is needed to 

rescue mfLTP. Although we cannot rule out the possible involvement of α7-nAChRs 
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Figure 4.5. Immunohistochemical labeling of α7-nAChRs in the CA3 region 
of a YFP-2J mouse. 
Top left: YFP signal in a subset of CA3 neurons. Top right: α7-nAChR 
immunoreactivity (Alexa633-linked secondary antibody). Note a higher signal in 
the stratum lucidum. Bottom left: Synaptophysin immunoreactivity (Alexa555-
linked secondary antibody). Bottom right: Overlay of YFP (green), α7-nAChR 
(red), and synaptophysin (blue). Note purple signal in stratum lucidum, which 
indicates overlap of α7-nAChR and synaptophysin immunoreactivity. Scale: 40 
µm. 

on interneurons, the detection of α7-nAChR immunoreactivity in the MF input region 

(Fig 4.5) provides a substrate for α7-nAChR agonists to act on MF terminals. This is 

further corroborated by a recent electron microscopy study, which localized α7-

nAChRs on MF terminals (Bancila et al., 2009). Interestingly, the α7-nAChRs were 

present away from the active zone suggesting an indirect regulation of presynaptic 

release. 
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It is known that α7-nAChRs can rapidly desensitize upon agonist binding in a 

dose-dependent manner (Peng et al., 1994). Because nicotine-induced rescue of 

mfLTP was blocked by αBTX, we suspect residual α7-nAChR activity even with the 

prolonged application of nicotine used in our study. Interestingly, the increase in 

glutamate release at MF terminals with α7-nAChR activation is rather slow and 

involves presynaptic Ca2+ increase via CICR from internal stores (Sharma and 

Vijayaraghavan, 2003; Sharma et al., 2008). In synaptosomes isolated from the 

prefrontal cortex, α7-nAChR agonist-induced glutamate release is dependent on 

CICR and a downstream activation of extracellular signal-regulated kinase (ERK) 

signaling (Dickinson et al., 2008). These results suggest that presynaptic signaling of 

α7-nAChRs leading to glutamate release may outlast the initial activation of the 

receptor. 

The regulation of α7-nAChRs has been implicated in the pathology of AD. 

There are studies reporting high affinity binding between Aβ42 and α7-nAChRs 

(Wang et al., 2000b; Wang et al., 2000a), which either inhibit (Guan et al., 2001; Liu 

et al., 2001a; Pettit et al., 2001) or activate α7-nAChR signaling (Dineley et al., 2001). 

It is possible that Aβ42 may facilitate α7-nAChRs at low concentration, but may 

inhibit nAChRs when the burden of Aβ peptides increases (Dineley et al., 2001; 

Dougherty et al., 2003). The concentration-dependent dual role of Aβ42 is evident in 

a study showing that picomolar range of Aβ42 facilitates, but nanomolar range 

abolishes, LTP in CA1 and learning via its action on α7-nAChRs (Puzzo et al., 2008). 

It is unlikely that endogenous Aβ42 acts in this manner to influence mfLTP, because 

blocking α7-nAChRs with α-BTX did not affect mfLTP in WTs. This result indirectly 
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argues that the lack of mfLTP in BACE1 KOs may not be a strict consequence of 

lacking Aβ. Interestingly, BACE1 has been found to regulate neuregulin-1 (NRG1) 

cleavage (Hu et al., 2006; Willem et al., 2006), and indeed this process is affected in 

BACE1 KOs (Savonenko et al., 2008). NRG1 is critically involved in maintaining 

surface expression of presynaptic α7-nAChRs (Hancock et al., 2008; Zhong et al., 

2008). However, in isolated CA3 slices, we did not see a change in the total or cell 

surface levels of α7-nAChRs and NRG1 in the KOs (Fig 4.6). Furthermore, our 

ability to rescue mfLTP in KOs with α7-nAChR agonists suggests sufficient presence 

of functional α7-nAChRs.  

Several potential methods are being developed to overcome dysfunctions 

caused by complete BACE1 inhibition, such as partial BACE1 inhibition (Vassar et 

al., 2009). While our results might reflect a developmental loss of BACE1, they 

suggest that combining α7-nAChR agonists with BACE1 inhibitors may be another 

alternative. 
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Figure 4.6. Normal expression of α7-nAChRs in the CA3 region of BACE1 
KOs. 
A. Comparison of α7-nAChR and neuregulin-1 (NRG1) levels in the total 
homogenates of isolated CA3 regions of WT and KOs. Left: An example 
immunoblots probed with α7-nAChR or NRG1 antibody. Right: Quantification of 
the immunoblots for total α7-nAChR (WT = 100 ± 5.7% of average WT value; 
KO = 92 ± 12.9% of average WT value; n = 10 mice each group; t-test: P > 0.58) 
and total NRG1 (WT = 100 ± 5.2% of average WT value; KO = 96 ± 14.6% of 
average WT value; n = 10 mice each group; t-test: P > 0.82).  
B. Comparison of cell surface α7-nAChR levels in isolated CA3 slices between 
WT and KO. Cell surface α7-nAChRs were isolated using steady-state surface 
biotinylation. The total protein (input, I), the resulting supernatant (S: intracellular 
protein fraction), and biotin pull-down (B: cell surface fraction) were loaded onto 
the same gel, transferred to blots, and simultaneously probed with α7-nAChR and 
actin antibodies using the ECLplex system (GE Health). The intensity of signals 
in the input and the biotin lanes was used to calculate the fraction of surface α7-
nAChRs as a % of total α7-nAChR. Actin signal was used to assess the success of 
the biotinylation assay. Only the blots showing less than 5% actin signal in the 
biotin lane was used for quantification. Left: An example immunoblot from WT 
and KO. Right: Quantification of biotinylated α7-nAChR signals (Surface α7-
nAChR: WT = 21 ± 1.0% of total, n = 10 mice; KO = 23 ± 1.7% of total, n = 8 
mice; t-test: P = 0.51). 
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Chapter 5: General discussions and Future directions 
 

My thesis focused on the effect of inhibiting BACE1 on synaptic transmission and 

plasticity at synaptic loci where BACE1 is highly expressed in brain. In addition, I 

identified pharmacological means to circumvent the synaptic dysfunctions caused by 

BACE1 inhibition. In this chapter I will summarize the conclusions obtained from my 

studies, and discuss their significance and future directions. 

 

Section 1 Physiological function of BACE1 

From my study, the physiological function of BACE1 in both synaptic 

transmission and plasticity was characterized for the first time in the CA3 circuit of 

hippocampus by using BACE1 KO mice. At mossy fiber synapses on CA3 pyramidal 

neurons, BACE1 KO mice displayed severe deficits in presynaptic function including 

a reduction in presynaptic function and an absence of mossy fiber LTP, which is 

normally expressed by a long-term increase in presynaptic release (Weisskopf et al., 

1994). Moreover, BACE1 KO mice exhibited a slightly larger mossy fiber LTD, 

which could not be reversed. These results suggest that BACE1 function is crucial for 

normal synaptic transmission and activity-dependent presynaptic potentiation at these 

synapses. I further found evidence that the presynaptic dysfunction in BACE1 KO is 

likely at the level of presynaptic Ca2+ signaling, because the mossy fiber LTP deficit 

in BACE1 KO mice could be recovered by increasing the extracellular Ca2+ 

concentration. This suggests that the signaling downstream of Ca2+ is more or less 

intact in the BACE1 KO, which was confirmed by the fact that the magnitude of 
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presynaptic potentiation resulting from direct activation of the cAMP signaling 

pathway is normal in the BACE1 KO mice. The presynaptic deficits seen in BACE1 

KOs may be due to the absence of Aβ peptides. There is evidence that Aβ is involved 

in presynaptic modifications by affecting presynaptic P/Q type Ca2+ channels and 

critical synaptic vesicle endocytosis protein dynamin (Kelly et al., 2005; Kelly and 

Ferreira, 2007; Nimmrich et al., 2008), which indicate the possible role of Aβ in 

regulating preysnaptic Ca2+ and vesicle release. At first glance of these results, the 

evidence that Aβ reduces synaptic transmission, may contradict our findings, because 

the absence of Aβ as in BACE1 KOs is expected to increase presynaptic release. 

However, there is accumulating evidence that Aβ is a double-edged sword on 

regulating synaptic function (discussed in Chapter 1), where normal physiological 

concentration of Aβ (pM range) facilitates, but higher burden of Aβ peptides 

jeopardizes (Puzzo et al., 2008), synaptic function. Therefore, it is not surprising that 

the absence of Aβ in BACE1 KO mice may result in presynaptic deficits. 

Another possibility is that the presynaptic dysfunction of BACE1 KOs may be 

because of abnormal processing of neuregulin-1 (NRG1), a substrate of BACE1 (Hu 

et al., 2006; Willem et al., 2006), which affects presynaptic release by regulating the 

surface expression of presynaptic Ca2+ permeable α7-nAchRs (Seguela et al., 1993; 

Liu et al., 2001b; Zhong et al., 2008). Presynaptic nAChRs can increase glutamate 

release (McGehee et al., 1995; Gray et al., 1996; Maggi et al., 2003b), likely via the 

α7 containing nAChRs (Le Magueresse et al., 2006). Indeed, I have demonstrated that 

activation of α7-nAchRs by nicotine or α7-nAChRs agonist can restore presynaptic 

release as a measure of decrease in PPF ratio, and recover mossy fiber LTP in 
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BACE1 KO mice. The cellular mechanism of nicotine-induced rescue is dependent 

on the recruitment of Ca2+ induced Ca2+ release from intracellular Ca2+ stores through 

ryanodine receptors after α7-nAchR activation. 

A third possibility is the augmented α-secretase activity in the BACE1 KOs. 

α-secretase and β-secretase have been shown to compete with each other to cleave 

APP (reviewed in (Turner et al., 2003)), hence in BACE1 KO mice APP tends to be 

processed through the non-amyloidogenic α-secretase pathway, consistent with the 

evidence that BACE1 KO mice have higher level of sAPPα, a product of the α-

secretase (Luo et al., 2001). sAPPα has been shown to reduce the resting intracellular 

Ca2+ level and regulate cell excitability (Mattson et al., 1993; Furukawa et al., 1996). 

Therefore, the increased sAPPα level in the BACE1 KOs may downregulate the 

presynaptic function via these processes. 

To examine the effect of BACE1 on an intact neuronal circuit, I expanded the 

analysis to CA3 circuit containing both excitatory and inhibitory synaptic 

transmission. I found that not only is the presynaptic release at mossy fiber synapses 

on CA3 pyramidal cells decreased, the presynaptic function at the inhibitory inputs on 

CA3 pyramidal neurons is also impaired in the BACE1 KOs. Interestingly, BACE1 

KOs do not exhibit significant dysfunction at the mossy fiber input to CA3 inhibitory 

interneurons. These results suggest that the role of BACE1 in regulating synaptic 

function is specifically dependent on the nature of the postsynaptic target. My 

observation that both excitatory and inhibitory inputs to CA3 pyramidal cells are 

influenced by BACE1 ablation indicates that BACE1 modulates synaptic integration 

in CA3 pyramidal cells, which not only has impact on the excitability of CA3 
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pyramidal cells, but also has the potential to control the output of these neurons which 

relays information signals to CA1 region of hippocampus. The modification of 

input/output properties of CA3 neurons may be the cellular mechanisms of behavioral 

deficits seen in BACE1 KOs (Laird et al., 2005).  

 

Section 2 Nicotine and AD  

Subsection 1 The role of nicotine in modulating synaptic function and 

plasticity 

Nicotine has been found to regulate synaptic transmission in the brain, 

especially playing a prominent role in presynaptic modification of neurotransmitter 

release (for review, see (McGehee and Role, 1996; Wonnacott, 1997)). It has been 

clearly documented that nicotinic enhances dopaminergic transmission, which may be 

an important mechanism underlying the addictive properties of nicotine (for review, 

see (Stolerman and Shoaib, 1991; Dani and Heinemann, 1996)). Recently, nicotinic 

enhancement of glutamatergic transmission has been observed in several brain areas 

(McGehee et al., 1995; Alkondon et al., 1996; Guo et al., 1998), including the 

hippocampus (Gray et al., 1996) and neocortex (Vidal and Changeux, 1993). The 

mechanism underlying these involves interaction of nicotine with presynaptic 

nAChRs, especially α7-nAChRs. α7-nAChR has a pentameric structure, but differs 

from other neuronal nAChRs which are comprised of combination of α (α2-α6) and β 

(β2-β4) subunits, it contains five α7 subunits (Decker et al., 1995; Jones et al., 1999; 

McGehee, 1999; Hogg et al., 2003). The special property of this receptor is that it is 

highly Ca2+ permeable after activation (Seguela et al., 1993). There is evidence that 
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α7-nAChR activation plays an important role in nicotine induced enhancement of 

glutamate release due to its ability to increase presynaptic Ca2+. Radcliffe et al. found 

that a brief nicotine application strongly increased presynaptic glutamate release in 

hippocampal cell culture as measured by a significant increase in mEPSCs frequency 

and reduction of PPF ratio. This effect was mediated by α7-nAChRs and required 

Ca2+ influx in presynaptic terminals (Radcliffe and Dani, 1998). At mossy fiber to 

CA3 pyramidal cell synapses, it has been reported that 20 μM nicotine can increase 

spontaneous release, which is accompanied by Ca2+ increase in response to α7-

nAChR activation in mossy fiber boutons very likely via recruiting Ca2+ induced Ca2+ 

release through ryanodine receptors (Sharma et al., 2008). This study as well as others 

suggests that although a7 nAChRs desensitize rapidly upon exposure to agonist 

(Castro and Albuquerque, 1993; Peng et al., 1994; Zhang et al., 1994), it may 

contribute to prolonged enhancement of presynaptic release by allowing increases in 

Ca2+ in the presynaptic terminals via triggering Ca2+ release from internal stores 

(Sharma and Vijayaraghavan, 2003; Dickinson et al., 2008; Sharma et al., 2008). In 

addition to regulating synaptic transmission, nicotine is also demonstrated to 

modulate synaptic plasticity. Numerous studies have been done to investigate the 

effect of nicotine on Schaffer collateral-CA1 LTP and perforant path-dentate gyrus 

LTP (reviewed in (Kenney and Gould, 2008)). However, whether nicotine can 

influence mossy fiber-CA3 LTP has not been shown before. I have found that 10 μM 

nicotine significantly increases glutamate release at mossy fiber synapses on CA3 

pyramidal cells in WTs and BACE1 KOs. Furthermore, nicotine, by activating α7-

nAChRs and recruiting Ca2+ induced Ca2+ release, restores mossy fiber LTP in 
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BACE1 KOs with no influence on mossy fiber LTP in WTs. This finding is very 

promising because we expected to rescue the deficits in BACE1 KOs without 

introducing new side effects in the system. The fact that nicotine does not affect 

normal mossy fiber LTP in WTs is likely because preysnaptic Ca2+ signaling in 

response to high frequency stimulation in WTs is already saturated. And the evidence 

that inhibiting α7-nAChRs by α-bungarotoxin during mossy fiber LTP induction does 

not block LTP in WTs supports the idea that activation of α7-nAChRs is not normally 

required for LTP induction at these synapses. These results suggest that nicotine-

induced rescue of mossy fiber LTP in BACE1 KOs utilizes a bypass mechanism, 

which is not normally recruited in WT mice.  

Besides regulating glutamatergic transmission, nicotine has also been found to 

modulate GABAergic transmission. It has been reported that nicotine can increase 

inhibitory inputs to the principal cells of local circuits in both CNS and PNS 

(Radcliffe et al., 1999; Genzen and McGehee, 2005; McGehee, 2007), which involves 

presynaptic nAChRs activation on interneurons in a Ca2+-dependent manner 

(Radcliffe et al., 1999; Liu et al., 2007). Interestingly, in the CA1 circuit of 

hippocampus, activation of interneurons not only directly inhibits pyramidal neuron 

activity, but also produces inhibition of other GABAergic cells leading to 

disinhibition of pyramidal cells. Both the inhibition and disinhibition effects are 

mediated by α7-nAChRs (Ji and Dani, 2000; Buhler and Dunwiddie, 2002). The dual 

mechanism allows fine-tuned control of nicotine on inhibition within a neuronal 

circuit, which in turn modulates the input/output of the information flow. Although 

my study suggests that nicotine can regulate excitatory synaptic transmission at 
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mossy fiber synapses in CA3 area, whether nicotine can also regulate inhibitory 

inputs in the circuit is unknown. Future studies will be necessary to verify whether 

nicotine has inhibition and/or disinhibition effects on the CA3 circuit, which may 

control the output from CA3 to CA1 area of hippocampus where many learning and 

memory formations are associated (Kenney and Gould, 2008). Besides, it is very 

interesting to know whether nicotine can also rescue the deficits in GABAergic 

terminals of CA3 interneurons caused by BACE1 inhibition, which will provide full 

evidence of the mechanism underlying nicotine induced rescue of the synaptic 

dysfunction, hence will allow better development of therapeutics that can overcome 

the negative effects of long-term BACE1 inhibition needed for AD treatment. 

Subsection 2 Nicotine therapy as a potential treatment for AD 

Another characteristic of AD is degeneration of the cholinergic neurons in the 

basal forebrain, reduction of cholinergic projections, and loss of nicotinic receptors in 

the cortex and hippocampus (Paterson and Nordberg, 2000; Auld et al., 2002). 

Therefore, nicotine and nicotinic receptor agonist application could be potential 

therapy for AD. The emerging evidences suggest that it may be the case. An in vivo 

study showed that nicotine treatment (2 mg/kg/day, 6 weeks) prevents CA1 LTP and 

LTD deficits in an AD mouse model (Alkadhi et al., 2011). Echeverria et al. found 

that cotinine, the main metabolite of nicotine, which does not have addictive side 

effects in humans, significantly decreased Aβ deposition, inhibited Aβ42 aggregation, 

and more impressively, improved working and reference memories in a transgenic 

AD mouse model (Echeverria et al., 2011). Although a lot of work still needs to be 

done, current studies are revealing that nicotine or nicotinic agonists may have 
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significant effect on AD. Indeed, α7-nAChR has become a drug target for many 

cognitive disorders including AD (reviewed in (Wallace and Porter, 2011; Russo et 

al., 2012)). In my study, I have shown that nicotine or α7-nAChR agonist can 

overcome presynaptic dysfunction and restore the abolished mossy fiber LTP due to 

blocking of BACE1. My results suggest that nicotine or α7-nAChR agonist 

application combining with BACE1 inhibition minimizes the side-effect of 

presynaptic dysfunction, hence may be a better treatment for AD. Future studies will 

be necessary to examine whether nicotine or α7-nAChR agonist can rescue the 

behavioral deficits seen in BACE1 KOs, and more importantly the combination 

treatment needs to be examined in AD models. Furthermore, studies need to be done 

to determine the optimal dose and treatment duration of nicotine or α7-nAChR 

agonist to avoid addiction during AD treatment. 

 

Section 3 Feasibility of BACE1 inhibition as AD treatment 

Inhibition of BACE1, the major neuronal form of β-secretase, has received 

more and more attention as the treatment of AD. It was initially promising because 

knocking out BACE1 in APP transgenic lines, which normally develop Aβ plaques 

and behavioral deficits essentially, alleviated the AD symptoms (Luo et al., 2003; 

Ohno et al., 2004; Laird et al., 2005). However, recent studies, including mine, 

showed that BACE1 knockouts display specific dysfunctions in synaptic transmission 

and plasticity (Ohno et al., 2004; Laird et al., 2005; Wang et al., 2008), as well as 

behavioral deficits (Harrison et al., 2003; Laird et al., 2005; Savonenko et al., 2008). 

In addition, studies showing that BACE1 has other substrates, besides APP, which 
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have normal physiological functions, further caution the use of BACE1 inhibition as a 

practical treatment for AD (Wong et al., 2005; Hu et al., 2006; Willem et al., 2006; 

Kim et al., 2007). In order to improve the development of effective therapeutics that 

targets this enzyme, we need to find potential ways to overcome the synaptic deficits 

due to the absence of BACE1 activity or resort to partial inhibition strategies.  

Subsection 1 Partial inhibition or conditional knockdown of BACE1 

It has been shown that Aβ burden is dose-dependent on BACE1 activity. 

Therefore, partial inhibition of BACE1 may be beneficial for AD treatment. To test 

this, Kimura and colleagues crossed BACE1 heterozygous (HT) mice with a line of 

transgenic mice carrying human APP and PS1 with 5 familial AD mutations 

(5XFAD), and found that partial reduction of BACE1 improved remote and recent 

memory and restored CA1 LTP (Kimura et al., 2010). In addition, I have tested 

synaptic function at mossy fiber CA3 synapses using BACE1 HT mice. My 

preliminary data showed that presynaptic function at these synapses in BACE1 HTs is 

recovered compared to KOs as a measure of reduced PPF ratios at 25 and 50 ms ISIs 

(25 ms ISI: HT = 4.3 ± 0.25; KO = 6.1 ± 0.79; 50 ms ISI: HT = 4.0 ± 0.21, n = 12; 

KO = 5.7 ± 0.77, n = 17; Fisher’s PLSD post hoc test: P < 0.01 between HTs and 

KOs; Fig. 2.1A and 5.1A), although the ratios are not restored completely back to the 

levels of WTs (25 ms ISI: WT = 3.3 ± 0.27; HT = 4.3 ± 0.25; 50 ms ISI: WT = 3.4 ± 

0.21, n = 12; HT = 4.0 ± 0.21, n = 12; Fisher’s PLSD post hoc test: P < 0.01 between 

WTs and HTs; Fig. 5.1A). BACE1 HTs display significant mossy fiber LTP 

compared to BACE1 KOs (HT: 128 ± 3% of baseline at 1 hour post-HFS, n = 12 

slices/5 mice; KO: 96 ± 7%, n = 16 slices/7 mice; t-test: P < 0.01 between HTs and 
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Figure 5.1. BACE1 HTs display a slight reduction in presynaptic function at 
mossy fiber to CA3 PCs synapses remaining partial mossy fiber LTP. 
A. Slightly larger PPF ratio in BACE1 HTs. The difference between WTs (white 
circles) and HTs (grey circles) are significant at 25 and 50 msec ISIs. *ANOVA: 
P < 0.01; Fisher’s PLSD post hoc test: P < 0.01 between the two genotypes. 
B. BACE1 HTs display partial mossy fiber LTP. Left: Summary graph plotting 
changes in normalized field potential against time. The arrow depicts when HFS 
(100 Hz, 1 sec x 3) was delivered. Right: Superimposed representative field 
potential traces taken from WTs and HTs at times indicated in the left panel. 

KOs; Fig. 2.2A and 5.1B), although the magnitude of the LTP is less than that of 

WTs (WT: 149 ± 3% of baseline at 1 hour post-HFS, n = 12 slices/6 mice; HT: 128 ± 

3%, n = 12 slices/5 mice; t-test: P < 0.01 between WTs and HTs; Fig. 5.1B). These 

data suggest that although the presynaptic release is also impaired in BACE1 HTs, the 

damage is not as severe as that in BACE1 KOs, and mossy fiber LTP is partially 

expressed in BACE1 HTs. Therefore partial inhibition of BACE1 produces less 

synaptic dysfunction at mossy fiber synapses to CA3 pyramidal cells compared to 

completed BACE1 inhibition.  
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Another potential method is knockdown of BACE1. Researchers have 

successfully suppressed BACE1 activity by using RNA interference (RNAi) in vitro 

(Kao et al., 2004; Dong et al., 2006) and in vivo (Laird et al., 2005; Singer et al., 

2005). Lentiviral BACE1 siRNA delivered into the hippocampus has been found to 

effectively reduce Aβ production, neurodegeneration, and behavioral deficits in APP 

transgenic mice (Laird et al., 2005; Singer et al., 2005). Characterizing synaptic 

function in the BACE1 siRNA knockdown models may provide information about 

acute effects of blocking BACE1 function. In addition, siRNA knockdown of BACE1 

in APP transgenic lines will better approximate clinical situations, and hence allow us 

to better estimate the feasibility of developing an effective treatment of AD by 

BACE1 inhibition. 

Subsection 2 BACE1 inhibitors 

Since the identification of BACE1, the development of BACE1 inhibitors has 

been initiated. However, the progress was slow, probably due to the difficulty of 

identifying small molecules that can pass through the blood brain barrier and also 

have high stability and good pharmaceutical properties (Citron, 2004a; Ghosh et al., 

2008a). So far, several BACE1 inhibitors have been discovered, among them only 

CTS-21166 has passed Phase I clinical trials (see review (Ghosh et al., 2008a; Luo 

and Yan, 2010)). Many BACE1 inhibitors have been shown to decrease soluble Aβ 

production, amyloid plaque deposition, as well as improve cognitive function in AD 

animal models (Hussain et al., 2007; Ghosh et al., 2008b; Fukumoto et al., 2010; 

Takahashi et al., 2010; Zhu et al., 2010; Chang et al., 2011). Surprisingly, none of 

them have been tested to determine their ability to improve synaptic dysfunction, the 
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cellular mechanism that correlates with cognitive decline. A critical question is 

whether these inhibitors can recover synaptic deficits seen in AD models, or whether 

they may produce additional defects in the normal brain. 

Subsection 3 Transcriptional and miRNA regulation of BACE1regulation 

of BACE1 

There are several reports of transcriptional regulation of BACE1. Nie et al. 

have shown that activation of α4β2 nAChR can decrease BACE1 transcription 

through the ERK1-NFκB pathway in SH-EP1 cell line expressing human APP695 

and human nAChR α4 and β2 subunit (Nie et al., 2011); Wen and colleagues reported 

that overexpression of p25, an activator of cdk5, can increase levels of BACE1 

mRNA and protein likely through interactions of signal transducer and activator of 

transcription (STAT3) with the BACE1 promoter (Wen et al., 2008). In addition, in 

sporadic AD patients’ brains, an increase in BACE1 levels is correlated with a 

decrease in a subset of microRNAs (miRNA), especially the miR-29a/b-1 miRNA 

cluster (Hebert et al., 2008). miRNAs can regulate mRNA translation. Therefore, it is 

possible that an increase in specific miRNA levels can down regulate BACE1 protein 

expression and decrease Aβ burden. These findings provide various ways to regulate 

BACE1 expression. 

Subsection 4 Endogenous BACE1 activity modulators 

Recently, studies have shown that during sporadic AD or in AD animal 

models, the activities of certain endogenous molecules are modified, which 

upregulates BACE1 activity. For example, sphingosine-1-phosphate (S1P), 
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phosphorylation of the translation initiation factor eIF2α and calpain activity are 

increased in AD, which can lead to an increase in BACE1 activity (O'Connor et al., 

2008; Liang et al., 2010; Nimmrich et al., 2010; Ill-Raga et al., 2011; Takasugi et al., 

2011). On the other hand, conjugated linoleic acid (CLA), acetylcholinesterase 

inhibitor galantamine (Gal), copper chaperone for superoxide dismutase (CCS), 

PPARγ co-activator-1α (PGC-1α), trafficking molecule GGA3, as well as Fbx2-E3 

ligase activity are decreased in AD, which leads to increased BACE1 protein levels 

(Tesco et al., 2007; Sarajarvi et al., 2009; Gong et al., 2010; Gray et al., 2010; Kang 

et al., 2010; Li et al., 2010; Katsouri et al., 2011; Li et al., 2011). So far, only the 

effect of Fbx2 on synaptic plasticity has been tested. Adenoviral-Fbx2 transfection 

significantly improves LTP in the CA1 region of the hippocampus of Tg2576 mice 

without affecting basal synaptic transmission (Gong et al., 2010). Although 

modulating these molecules or signaling pathways can be potential methods to 

control BACE1 activity, further studies need to be done to verify whether synaptic 

function can be improved by manipulating BACE1 modulators. 

Subsection 5 Pharmacological means that increase presynaptic Ca2+ 

signaling 

From my study, I have found that the presynaptic dysfunction in BACE1 KOs 

is likely at the level of presynaptic Ca2+ signaling, therefore, it is possible that 

manipulations that enhance presynaptic Ca2+ may overcome the synaptic deficits 

caused by inhibiting BACE1 activity. This opens up possibilities of using 

pharmacological means to enhance presynaptic Ca2+ signal, which in turn can restore 

synaptic dysfunctions in BACE1 KOs. Exploring these possibilities will allow 
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development of effective pharmacological means for treating AD by combining 

BACE1 inhibitors with specific agents that can enhance presynaptic Ca2+ signal. 

One possible way is modulating presynaptic Ca2+ permeable α7-nAChRs. My 

study showed that activation of α7-nAChRs, by nicotine or α7-nAChRs agonist, can 

restore PPF ratio and mossy fiber LTP in BACE1 KO mice. The cellular mechanism 

of nicotine-induced rescue is dependent on the recruitment of Ca2+ induced Ca2+ 

release from intracellular Ca2+ stores through ryanodine receptors. These results 

suggest that nicotine or α7-nAChR agonists may be potential pharmacological means 

to circumvent the presynaptic dysfunctions caused by BACE1 inhibition.  

Another candidate is mGluR2 which acts as inhibitory autoreceptor at mossy 

fiber terminals to potently block glutamate release by a mechanism that likely 

includes inhibition of presynaptic voltage-gated Ca2+ channels (Kamiya and Ozawa, 

1999; Pelkey et al., 2006). Therefore, it is possible that by using specific antagonist of 

mGluR2, it would facilitate presynaptic voltage-gated Ca2+ channels and enhance 

presynaptic Ca2+ influx. However, recent study has shown that repetitive stimulation 

can activate mGluR2, which limits the magnitude of frequency facilitation, and 

antagonist of mGluR2 is reported to enhance frequency facilitation during low 

frequency stimulation (Kwon and Castillo, 2008a). Therefore, mGluR2 inhibition 

may not reduce PPF ratio in BACE1 KOs. To verify whether blocking mGluR2 is 

beneficial to presynaptic function recovery, future study should be done to compare 

frequency facilitation in BACE1 KOs with and without mGluR2 antagonist, to see 

whether BACE1 KOs show deficits in frequency facilitation, and whether mGluR2 

antagonist overcomes this defect. 
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A third potential target that is thought to regulate presynaptic release is kainate 

receptor (KAR), which is another ionotropic glutamate receptor aside from NMDAR 

and AMPAR. It has been shown that dentate gyrus granule cells strongly express 

KARs especially in stratum lucidum which is the mossy fiber terminal zone 

suggesting presynaptic location of KARs (Monaghan and Cotman, 1982; Wisden and 

Seeburg, 1993; Darstein et al., 2003). Interestingly, low concentrations of kainate (20-

100 nM), which activate KARs, have been found to enhance synaptic transmission at 

hippocampal mossy fiber synapses (Schmitz et al., 2001; Ji and Staubli, 2002; 

Contractor et al., 2003; Rodriguez-Moreno and Sihra, 2004). This enhancement is 

mediated, at least partially, by increased release probability (Schmitz et al., 2001; Ji 

and Staubli, 2002). Additionally, several studies have suggested that presynaptic 

KARs may facilitate the induction of mossy fiber LTP (Contractor et al., 2001; Lauri 

et al., 2001; Bortolotto et al., 2003; Schmitz et al., 2003). Although the detailed 

mechanism of KAR mediated enhancement of glutamate release is not very clear, 

Kamiya et al. found that increase of presynaptic Ca2+ is likely involved (Kamiya et al., 

2002). These evidences provide possibility that activation of KARs may rescue the 

presynaptic deficits seen in BACE1 KOs. However, contradictory results also exit. 

Kwon and colleagues have evidence suggesting that activation of KARs by 50nM 

kainite does not enhance transmitter release at mossy fiber to CA3 synapses, and 

short-term plasticity at these synapses is KAR independent (Kwon and Castillo, 

2008a). If this is the case, KARs activation may not rescue the presynaptic 

dysfunction in BACE1 KOs; but if future studies show that activation of these 

receptors rescues phenotypes in BACE1 KOs, it would suggest that KAR mediated 
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rescue of presynaptic deficits involve utilizing signaling pathways which are normally 

not recruited.  
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Appendix 
 
Comparison of statistical analysis using data from slices or data from animals 
 
Take paired-pulse facilitation (PPF) ratio data from wild type animals as an example: 
 
Statistics using data from slices 

ISI(ms) Ave. PPF ratio SD SEM CV Num. of slices
25 3.392429 0.682648 0.241353 0.201227 8
50 3.452732 0.657079 0.232313 0.190307 8

100 3.122592 0.595195 0.210433 0.190609 8
200 2.185701 0.230974 0.081662 0.105675 8
400 1.708131 0.114219 0.040383 0.066868 8

1000 1.460462 0.113193 0.040020 0.077505 8
2000 1.232870 0.070771 0.025021 0.057404 8

 
Statistics using data from animals 

ISI(ms) Ave. PPF ratio SD SEM CV Num.of animals
25 3.392429 0.355143 0.177571 0.104687 4
50 3.452732 0.417338 0.208669 0.120872 4

100 3.122592 0.424468 0.212234 0.135935 4
200 2.185701 0.198730 0.099365 0.090923 4
400 1.708131 0.051059 0.025530 0.029892 4

1000 1.460462 0.059047 0.029523 0.040430 4
2000 1.232870 0.037512 0.018756 0.030426 4

 
The tables above show that the Coefficient of Variation (CV) of data from slices 

is consistently larger than that from animals, suggesting that the major variability 
tends to come from the difference among the slices not that across the animals. 
Therefore, data from slices were used to perform all the statistical analysis. 
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