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Abstract

Large client-server data intensive applications can place high demands on system and network re-
sources. This is especially true when the connection between the client and server spans a wide-area
internet link. In this paper, we consider changing the typical client-server architecture of a class of data
intensive applications. We show that given sufficient common interest among multiple clients, our en-
hancements reduce the response time per-client and reduce the amount of data sent across the wide-area
link. In addition, we also see a reduction in server utilization which helps to improve server scalability
as more clients are added to the system.

1 Introduction

Image processing and image browsing are very popular resource intensive applications, spanning many dis-
ciplines from Atmospheric Science to Clinical Pathology. When designed for a client-server environment,
these applications can place high demands on the underlying system and network resources. For example,
the Microsoft TerraServer archive of high resolution satellite imagery [18] currently contains about 3.5 Ter-
aBytes of data (uncompressed) that are available for interactive browsing. When interactivity is needed and
the client to server connection spans a wide-area internet connection, the demands on the network can be
extremely high.

In this paper, we propose a modification to the typical client-server architecture to include a caching proxy
server in between the client(s) and the data server. With the proxy in place and given sufficient common in-
terest among multiple clients, several benefits can be realized. The response time seen by each client can be
reduced, the amount of redundant data sent across the wide-area network can be reduced, and server scala-
bility can be improved by reducing its utilization. On the other hand, the magnitude of any benefit provided
by the proxy server is directly related to the amount of common interest among the clients and how well syn-
chronized they are in time. While the current main target of the proxy server is applications that perform�This research was supported by the National Science Foundation under Grants #ASC-9619020 (UC Subcontract #10152408),
#ASC 9318183 and #CDA9401151, by DARPA under Grant #DABT63-94-C-0049 (Caltech Subcontract #9503), and by the Office
of Naval Research under Grant #N66001-97-C-8534.
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interactive scanning through two- and three-dimensional datasets, we now discuss a more general class of
data intensive applications in more detail.

1.1 Data intensive applications

We have been building infrastructure for constructing parallel database systems, called T2 [8], that enables
integration of storage, retrieval and processing of multi-dimensional datasets. T2 provides support for com-
mon operations including index generation, data retrieval, memory management, scheduling of processing
across a parallel machine and user interaction. It achieves its primary advantage from the ability to seamlessly
integrate data retrieval and processing for a wide variety of applications and from the ability to maintain and
jointly process multiple datasets with different underlying grids. Most other systems for multi-dimensional
data have focused on uniformly distributed datasets, such as images, maps, and dense multi-dimensional
arrays. Many real datasets, however, are non-uniform or unstructured. T2 can handle both uniform and non-
uniform datasets.

T2 has been developed as a set of modular services. Since its structure mirrors that of a wide variety of
applications, T2 is easy to customize for different types of processing. To build a version of T2 customized
for a particular application, a user has to provide functions to pre-process the input data, map input data to
elements in the output data, and aggregate multiple input data items that map to the same output element.

Data intensive applications that are currently being implemented using the T2 services include satellite
data processing systems [9], analysis of digitized light microscopy data [2, 12] and water contamination stud-
ies that couple multiple physical process simulators through a shared database [10, 7]. A common thread
through all these applications is that their datasets have an underlying multi-dimensional attribute space. The
data dimensions can be spatial coordinates, time, or varying experimental conditions such as temperature, ve-
locity or magnetic field. We will be using the Virtual Microscope, a system for browsing light microscope
images, as an example T2 system throughout this paper. We therefore now describe the Virtual Microscope
system in more detail.

1.1.1 The Virtual Microscope

The Virtual Microscope [2, 12] is a client-server software system that emulates a high power light micro-
scope. The system is required to provide interactive response times for standard physical microscope behav-
ior, including continuously moving the stage and changing magnification and focus. The client software runs
on an end user’s PC or workstation, while the server database software for storing, retrieving and processing
the microscope image data runs on a high performance parallel computer, potentially at a remote site.

The queries supported by the server are small in size, and allow a client to request a rectangular region at
an available resolution from within the bounds of a given slide data set. The reply consists of image data for
the requested region and can be several orders of magnitude larger than the size of the request. Moreover,
the amount of data processed by the server in order to produce the response for the client can be much larger
than the reply.

The greatest difficulty in implementing the Virtual Microscope system is dealing with the extremely large
quantities of data representing a collection of slides. For example, using the digitizing microscope currently
available at Johns Hopkins Hospital, a single spot at a magnification of 400X produces a grid of 1000x1000
pixels. We estimate that an array of 50x50 spots is required to cover an entire slide, and each pixel is a three
byte RGB color value. Under this scenario, one slide image requires over 7GB. However, such an image
captures only a single focal plane, and many specimens will require capture of between five and thirty focal
planes. Clearly there is an enormous storage requirement.
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Figure 1: Virtual Microscope client browsing a slide

1.2 Challenges

Reduction of wide-area usage Traditional applicationswere typically confined to a single machine, whether
it be a single processor workstation or a multi-node parallel machine. Such environments have many nice
properties. The machines are all trusted, the interconnection network between machines is fast and fairly
reliable, and all the machines are under the control of a centralized administrative entity. As internet usage
increases and users are envisioning applications that collectively employ many machines connected via a
wide-area network, this nice environment changes in many ways. Trust may not exist, the fast reliable con-
nections are replaced by slower less reliable links, and there are many administrative domains. In addition,
the ability to have strong consistency in the presence of updates may not be feasible.

A subtle (but important) difference is seen when considering who owns the resources used by an appli-
cation. Traditional applications use resources in machines and networks owned by the organization running
them. For wide-area applications, even if all the machines where computation is performed are owned, the
wide-area links and intermediate hops are usually not. If more wide-area network resources are used by a
particular application, this could degrade the performance of other wide-area applications. In the current
wide-area network environment, the cost to send data is effectively free. As usage increases, this cost model
may very well change to one where users pay in some manner for the amount of data sent. For example,
Sprint has recently unveiled a new nationwide network that supports voice and data over a single line, with
a cost model that eliminates the concept of long distance. Instead, users are charged by the amount of data
actually sent. Both the network good citizen and cost-per-byte-transmitted arguments motivate the need for
techniques to reduce wide-area bandwidth consumption.

Reduced response time For interactive applications, including those that use the T2 infrastructure, the
system as a whole needs acceptably small response times for it to be usable. Response time is the amount of
time between the initiation of a request and when the last piece of data is delivered. If a response takes too
long, it simply will not be used, so performance is critical for acceptance. Techniques are needed to reduce
or eliminate the perceived latency seen between the client and the server. In addition, the server should be
able to handle multiple simultaneous clients without prohibitively degrading response time.

System scalability A system that scales well, should gracefully degrade as more clients are added to the
system. We expect performance to suffer, but it should be closer to following a linear curve rather than ex-
ponential. Most of the scalability seen in T2-based systems is achieved through the use of a parallelized data
server, wherein a single query is handled by many processors and disks. Reduction in workload is the only
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way to improve system scalability from outside the server. With less applied workload, the system should
see reduced utilization, and hence better performance as more clients are added.

1.3 Overview

The approach we are studying in this paper has many features similar to Semantic Data Caching [11]. We are
taking advantage of the semantic knowledge available about T2 datasets, about the relationship between T2
datasets and their corresponding meta-data, and also about the coordinate systems and spatial relationships
present in such multi-dimensional datasets. This knowledge is leveraged to perform data specific perfor-
mance optimizations.

In the next section we describe the existing T2 system architecture, and present our changes. Next we
show how interactive users are modeled for a set of experiments. Then simulation and implementation results
are given for the Virtual Microscope system, followed by interpretation and conclusions.

2 Architecture

2.1 Original System

The original T2 system is comprised of a server and one or more clients. The server is further decomposed
into a single frontend process and one or more backend processes with attached disks. Since the server is
designed to run on a parallel machine, the backend processes are intended to each run on a separate node of
the parallel machine. The application data is declustered across the backend disks. The dissemination model
used is request-response. Clients send a single multi-dimensional rectangular range query to the frontend
process. The frontend reads a batch of queries, and broadcasts them to the backend processes. Most backend
processes will have data for a given query on one of their local disks, given good spatial declustering. Each
backend process with data for the batch of queries will read the data from the disks, process it as customized
for the T2 application, and send it directly to the requesting clients.

The original system was designed primarily for fast data movement in the server. The proposed changes
to the system are explicitly for supporting multiple co-located remote clients, where remote means the client
and server are separated by a wide-area network connection. We want to find ways to reduce the impact on
the wide-area network by eliminating redundant requests for the same data, reduce the perceived response
time problem, and make the system scale more gracefully, as discussed in Section 1.2.

The T2 design already existed when we were considering alternate architectures, with multiple clients
written and both sequential and parallel versions of the server implemented. There was also a well-defined
communication protocol between the clients and the server. With an eye toward interoperability and mini-
mization of total system changes, a major design goal was to change the existing system as little as possible.
In certain places we were successful, and in other places, changes were necessary.

We want the techniques used to be generally available for (at least) all T2 applications. Toward this goal,
we want to avoid needing to know what the structure of the data is. For example, for the Virtual Microscope
system implemented with T2, all image data blocks are tagged with meta-data describing what slide the data
is from, which focal plane it is from, what its spatial coordinates are, etc. All the meta-data is essential, but
the actual image data structure should be ignored, and treated as black box data. A black box approach is im-
portant for various reasons, for example to allow for compression of data by the server and decompression by
the clients, which could only be supported through the opaque treatment of data in the modified architecture.
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Figure 2: Architecture for one remote server and one clustered set of clients

2.2 Modified System

Proxy

The major architectural change is the addition of a proxy as an intermediary in between a set of co-located
clients and a remote server. Figures 2(a) and 2(b) show this scenario for both architectures. The proxy will
appear to the server as a client, and to the clients as a server. It is possible for such a proxy to perform various
functions such as caching, predictive prefetching, and computation on the data. For this initial design we only
consider caching. This is primarily due to the fact that more advanced functionality would require changes
in the server and client, thus breaking one of our original design goals.

Caching at the proxy provides a benefit when the clients are local to the proxy and there is some degree
of commonality of interest between the set of clients. Ensuring the proxy is local to the clients reduces the
long latency seen in contacting the remote server to request data if the needed data is in the proxy’s cache.
Having sufficient commonality among the client requests is important in reducing the working set size such
that the cache does not overflow. With both these conditions satisfied, the best case is when the first request
for a block of data is a cache miss in the proxy, causing it to be faulted in by the proxy with a request to the
server. All subsequent client requests will hit in the cache, and be answered quickly over the local connection
to the proxy.

Cache Model

The use of a proxy makes requests that miss the cache slower than when the proxy is not used. This can be
minimized by making the cache lookup as fast as possible, thus speed is the main design goal in laying out
the cache structure.

The first decision involves the unit of storage for the cache. The classic options here include variable
or uniform sized blocks [6]. We chose to use uniform blocks for several reasons. Uniform blocks make the
cache replacement decisions simpler. This occurs when the cache is full, and some new data arrives and
needs to be cached. Picking a victim is easier when all cache entry sizes are the same since the space gain for
evicting any block is the same. Another reason supporting uniform cache entry size is related to detecting
when requests have some commonality. Given two requests R1 and R2, the question becomes, is there any
overlap? Intersection of rectangles is simple to compute, since we know the orientation of the rectangles
is guaranteed to be aligned with the x and y axes. What becomes harder to do quickly is determining the
best way to handle the commonality. There could be a relatively small amount of overlap, in which case the
benefit of eliminating the redundant data being requested from the remote server might not be great enough
to outweigh the work to detect it. Another question is how to handle commonality in requests that are offset
temporally. Should Rk be delayed for future requests, with the intention to coalesce them together into a
single request? If so, how long shouldRk be delayed? This approach may be good for reducing the volume
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Figure 3: Client Query Control Flow
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(b) RequestR2 arrives at time t2
Figure 4: Proxy Cache state as requests arrive

of redundant wide-area data sent, but it sacrifices response time.
Taking into consideration these and various other issues, we chose to break up the data space into uni-

form size blocks. Each incoming query is mapped to the set of blocks containing the query result, as seen in
Figure 3(b). Blocks that are cache misses are immediately requested from the server. Blocks that are cache
hits are sent to the set of clients waiting for them. Pending blocks (those that have been requested from the
server but are not yet in the cache) are tagged with the client as being another recipient. Misses are handled
first, since they will take the longest to ultimately arrive at the client. Uniform blocking of the slide image
also helps in detecting commonality in a passive yet efficient manner. No request is ever delayed in the hope
of finding regions in common with those of another request, yet block-level commonality is taken advantage
of. Figure 4(a) shows request R1 arriving with an empty cache in the proxy. All blocks for the request are
faulted from the server. Consider the case where blocks f1; 2; 3; 6ghave arrived at the proxy, and blocks 7; 8
are pending when request R2 arrives, as shown in Figure 4(b). In this case, the proxy faults blocks f4; 9g
from the server and sends blocks f2; 3g immediately from the cache. Recognizing the commonality between
these requests, the proxy does not redundantly fault in blocks f7; 8g from the server because they have al-
ready been requested.

3 Workload

While the Virtual Microscope T2 application we used for our experiments is becoming mature and is starting
to be used routinely by pathologists, the current version is still a research prototype, which makes workload
characterization difficult for even a single client. We instrumented one of the Virtual Microscope client pro-
grams and captured sets of traces of a trained pathologist using the system. The user examined several slides,
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thoroughly searching each slide for any abnormality, as they would with a real microscope. We performed
tracing for several sessions, and derived an abstract model of user behavior. We are actively encouraging use
of the system and collecting more traces to refine our workload model.

Zoom P(400X) P(200X) P(100X) P(50X)

400X 0.65 0.35 0.00 0.00
200X 0.02 0.68 0.18 0.12
100X 0.00 0.05 0.50 0.45
50X 0.15 0.04 0.08 0.73

(a) Choose next magnification

Zoom P(3MB) P(300KB)

400X 0.99 0.01
200X 0.99 0.01
100X 0.92 0.08
50X 0.70 0.30

(b) Choose next request size

Table 1: Workload model probability transition matrices

The available magnifications for our test slide data set were 50X , 100X , 200X , and 400X . Through
analysis of the traces, we discovered that the previous magnification selected heavily influences the magni-
fication to be chosen next. Table 1(a) shows the probability matrix used for choosing a magnification, based
on the current magnification.

The client generates two sizes of requests. The larger request size is for the full view screen, which for a
default window size is approximately 3MB. The smaller request size results from the fine control buttons in
the client that allow for incremental movement in any direction, which generate a request of approximately300KB. We expected magnification to be a predictor variable for data size, since at lower magnification
the fine control buttons would not be used, and at high magnification fine control would sometimes be used.
Instead, the pathologistswho generated our traces never use the fine control. Still, we felt this may be atypical
behavior, and included small non-zero probabilities for using fine control, as shown in Table 1(b).

Next we consider inter-request time, also known as think time. Here again, magnification worked well
to predict the amount of think time after a given request. Since the distribution of the times was markedly
different depending on the magnification, we chose not to try to find compact representative distributions to
generate the inter-request times. Instead, we randomly choose values from a histogram of the values in the
traces.

4 Simulation

We simulated the system to validate our hypotheses and to quantify the potential benefits of using a proxy.
Here we present highlights of a more complete simulation study [5].

We are interested in determining the number of clients that can be supported at varying quality of ser-
vice levels. To this end, we instrumented the Virtual Microscope client and server as well as prototype of
the proxy. From the resulting execution traces on a server with a single backend process, we generated com-
ponent level performance histograms, which are used to find representative distributions. These, combined
with the workload model, are used to drive a discrete event-driven simulation. For network wide-area (WAN)
and local area (LAN) characterizations, we ran micro-benchmarks on our local test machines, and between
our local test machines and a test machine at the San Diego Supercomputing Center. These histograms of
application level data transfer were abstracted into distributions for the local case, but the wide-area case was
not as easily represented, so we use the raw histograms for wide-area simulation.

The factors and levels we used for simulation are listed in Table 2. One abstraction that was necessary for
simulation was to decouple cache hits from actual request regions. Requests are modeled in an opaque way,
never specifying the spatial coordinates within the slide . Each request is broken into 256KB sized blocks,
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Figure 5: Client Response Time with Increasing Number of Clients

and a Bernoulli trial is used for each block based on the cache hit rate. This allows us to easily consider the
effects of different cache hit rates while keeping the workload volume abstract and constant.

Location Name Levels

Client Number 1, 2, 4, 8, 10, 20, 30
Proxy Used Yes, No

Cache hit rate 0, 0.25, 0.5, 0.75, 1.0

Table 2: Factors and Levels for Simulation

4.1 Response Time

The response time we care about is the time between the client request and when the client receives all the
data for that request. We consider response time separately for queries resulting in large and small replies
in Figures 5(a) and 5(b), respectively. For both graphs, the mean response time across all clients is shown
as we scale the number of clients in the system. The system without a proxy is shown as a baseline, where
the proxy machine would be a gateway merely passing packets between the client and server. The remaining
curves are for configurations with the proxy turned on, with different cache hit probabilities.

For the No Proxy case, the response time increases almost linearly as the number of clients is increased.
This is expected to not be completely true for the real system due to congestion effects we did not model.
Our network model only insures that a single entity will be writing to the network at a given point in time.
The 0% cache hit rate follows the No Proxy baseline very closely, as expected. The only overhead is the
constant time for the data to pass through the proxy. The 25%, 50% and 75% curves all show improvement
in the response time due to the reduction in WAN communication and reduced server load. It is interesting
to note the large reduction in response time between the 75% and 100% cache hit rates, which indicates that
very good cache hit rates are critical to getting acceptable performance.

Next we consider the relative performance differences between the small and large cases. For large re-
quests, the 0%, 25% and 50% configurations all somewhat closely follow the baseline No Proxy perfor-
mance. In contrast, for small requests the 50% cache hit rate response time is approximately half that of the
large requests. Larger requests cover more cache blocks, so are more likely to include the full latency cost of
contacting the server over the WAN, making the cache policy more important for large requests. Interpreted
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Figure 6: Component Utilization with Increasing Number of Clients

another way, if the request protocol was enhanced to perform some sort of pre-fetching of data so that long
haul requests to the server are removed from the critical path for client response time, such an optimization
would help most for large queries.

4.2 Utilization

Another benefit of cache hits in the proxy is to reduce the load seen at the server. This indirectly improves
service time of requests handled by the server when server utilization is close to capacity. Server utilization is
the percentage of time the server is busy, and is shown in Figure 6(a). For the case of 100% proxy cache hits,
no blocks will ever be requested from the server, so the utilization is zero. The baseline curve is the No Proxy
case. Utilization increases as clients are added to the system until saturation, and then levels off. Since the
maximum utilization seen is about 32:5%, this would suggest that the WAN plays a large role in limiting how
fast the server can receive and respond to requests. We expected the server to be more of a limiting factor.
The version of the server used for benchmarking was a parallel data server with multiple disks per node, and
we conclude that this prevents the server from being a bottleneck. The 0% hit rate curve should illustrate
worse behavior than the baseline No Proxy case, because the proxy is adding overhead and is breaking the
request into multiple requests for blocks. This is a case where our simulation model does not reflect the real
system perfectly. The other curves lie between 0% and 100% as expected. The higher the cache hit rate, the
fewer the number of requests that actually reach the server.

Proxy utilization follows the expected inverse trend. For low cache hit rates, the proxy does not have
much work to do. When the cache hit rate is higher, the overhead of cache maintenance increases, and proxy
utilization rises. The main reason we suspect the utilization is very low for all cases except the 100% cache
hit rate, is due to the way time is charged in our simulation. Only the WAN is charged during contention, so
the proxy appears idle while sending data. Had this time been charged to the proxy, the 0%, 25%, 50% and75% curves would all be higher, but still far from full utilization, since much proxy time is spent waiting in
the WAN/server loop. The 100% cache hit rate curve saturates the proxy at 20 clients, and would likely be
fewer if the charging of time was changed. Initially we had expected the number of clients that a proxy could
handle would be higher, so this low number was surprising. An efficient cache lookup scheme is absolutely
imperative in supporting as many clients as possible with a single proxy.

9



5 Prototype Proxy Implementation

As described in Section 2.2, our proxy implementation for T2 caches blocks based on a tiling of the data
space. The simulation results indicated that fast operation in cache lookups are imperative for proxy scal-
ing with increasing clients, and overall fast operation in translating queries to block queries is required to
avoid increasing client response time. In response to these requirements, we designed the prototype proxy
to internally use hashing for cache indexing. The hash key for Virtual Microscope data was based on the
server number, slide number and data block number. These attributes provide enough information to give
any data block a globally unique ID, while still allowing a fairly small key. Virtual Microscope data blocks
are uniform in size, regardless of magnification level.

Every block in the cache is also indexed by other data structures to enable different cache replacement
policies. At this time, we have added FIFO, LRU, and RANDOM policies. Briefly, FIFO keeps a list of
cached blocks. New blocks are appended to the tail of the list, and the blocks chosen to be the victim for
cache eviction when the cache is full is the block at head of the list. LRU maintains reference information,
such that the victim is the block that has not been accessed for the longest time. RANDOM chooses a victim
randomly from the set of cached blocks. For the rest of this discussion, we use the LRU replacement policy.
We intend to investigate these standard replacement policies and other domain specific policies in the future.

5.1 Experimental Setup

Experiments were run such that one of our driving scenarios for the Virtual Microscope system is emulated.
This involves a classroom setting where students are remote with respect to the data. Several users start at
approximately the same time, and search a slide looking for interesting regions, presumably to make a diag-
nosis. This is an ideal situation to experiment with a proxy, due to the geographical proximity of several users
with common interest in remote data. The data server is run on an UltraSparc at the University of Maryland,
and all raw image data was local to this machine. Clients were run on different nodes of the 128 node IBM
SP at the San Diego Supercomputing Center, over the fast wide-area vBNS [16] connection between these
sites.1 When a proxy was used, it ran on another of the San Diego IBM SP nodes, with various cache and
block sizes. This setup does not exactly match the architecture shown in Figure 2(b), because the proxy is
not running on the network gateway machine, and results in a slight performance penalty by causing request
and reply data to make two trips over the client LAN, resulting in more contention and slower performance.
Use of a gateway is ideal in this respect, although not practical for many situations.

(a) Left/Right (odd clients) (b) Up/Down (even clients)

Figure 7: Sweeping patterns over interesting points

1This fast network (155 Mbit/sec ATM) was used to approach usability in response times. Had we used traditional wide-area
connections, the gain in using a proxy would be even better.
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We use the same workload model for these experiments as we did for the simulations. This was accom-
plished by writing a driver to emulate client behavior based on the workload model. The client driver sends
requests, accepts data and sits idle for some amount of think time in between requests. Interesting regions
are modeled as points in the slide. When a user pans across an interesting region, there is a high probability
a request will be generated. When the driver generates client events, some noise is added to avoid multiple
clients asking for the same exact region. In addition, we need to avoid having all the clients scan the slide in
the same manner. While this may be the best case for any caching mechanism, it is unrealistic. The driver
either sweeps through the slide in an up-down fashion or a left-right fashion as shown in Figure 7, as was ob-
served from real microscope users. The interesting regions were chosen once, and hard coded into the client
driver.

5.2 Results

We now present a subset of the experiments we ran. In all cases, the client driver was run until a total of 20
requests were issued per client. This results in approximately 1:6GB of raw image data being read from the
disk by the backend process and 47:2MB of image data being sent over the network for each client. The
client image data size is important, because the cache sizes were chosen to avoid having everything fit in
cache, thus exercising the replacement policy. This choice biases the importance of temporal commonality.

Figure 8 shows separate response time curves for 1, 2, 4, and 8 clients. Each curve represents all the
clients, with data points being the mean response time value and the error bars extending to the minimum
and maximum response times. For the 1 client case shown in Figure 8(a), the results are as expected. There
is no commonality across clients when there is only a single client, so the proxy is only adding overhead by
breaking a single query into several block queries, and forcing all server data to flow through the proxy on
the way back to the client. This is seen most dramatically for the first query with a proxy, where all data
must be faulted from the server. Despite these problems, there are times when improvement is seen over the
No Proxy curve. This occurs when the blocking of the slide causes extra image data to be retrieved by the
proxy for a given request, and the next request is for a nearby region already in the proxy’s cache. In essence,
blocking the data causes a type of prefetching. Of course, there is a tradeoff in the choice of block size, in
that larger blocks will improve the prefetching effect, but will also add to the cost of reading and sending the
data. A 64KB block size was empirically found to be a good overall choice for the data set and workload
used.

The 2 client case in Figure 8(b) is similar to the 1 client case in that commonality is limited. The two
clients are performing different sweep patterns, and any commonality resulting from the common set of in-
teresting points is scattered over time, thus cache misses are common. In considering 4 clients in Figure 8(c),
we introduce explicit temporal commonality in the client sets f1,3g and f2,4g from the sweep patterns. In
this case, we see the response time curves for both proxy cases are generally at or below the No Proxy case.
This trend continues in Figure 8(d) as more commonality is added with the introduction of more clients while
keeping the same two classes of sweep patterns. Another important observation applies to all the cases, where
adding more clients and commonality reduces the response time variation as seen by the error bars in the plots.
Not only can the use of a proxy reduce the response time, but it makes the response time more deterministic
by avoiding the high variability of WAN communication.

For all experiments, doubling the size of the cache from 20MB to 40MB does not seem to make a dif-
ference. For most cases, the curves are similar. This is probably due to the working set size being less than
or approximately equal to 20MB. Further experiments with smaller cache sizes are needed to explore cache
size sensitivity.

We now consider the effect a proxy has on server utilization. As in the simulated experiments, we expect
the reduction of requests that are sent to the server to reduce overall server utilization. Table 3 shows server
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Figure 8: Response Time as number of clients is increased, 64KB Proxy Block Size. The error bars delimit
min and max times over all clients.
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No. Clients No Proxy Proxy (20MB Cache) Proxy (40MB Cache)

1 90:89% 85:79% 88:57%
2 98:11% 84:39% 83:31%
4 98:35% 85:48% 83:92%
8 98:94% 86:17% 82:01%

Table 3: Server Utilization

utilization for the same set of experiments. For the single backend process configuration we used, only 2
clients are enough to saturate the server. Addition of the proxy reduces the utilization overall by 2% to 12%.
Another way of thinking about the effects of a proxy is that the request density is reduced. Request density is
the number of requests per unit of time. By satisfying certain blocks in the proxy cache, the stream of block
requests is spaced out, thus reducing the request density. Given this reduction, the server can better keep pace
with the request stream it is presented, as demonstrated by the utilization numbers, so is able to handle more
clients concurrently.

Finally we look at the reduction in wide-area communication volume for these experiments. The general
trend was that the WAN volume increases by about 49MB for each client in the No Proxy configuration.
When a proxy is used, this reduces to about 30MB for both cache sizes. Seeing the same volume decrease
for both cache sizes, and the small increase in communication volume as clients are added, indicates that
for most cases the first request for data results in a cache miss and most subsequent requests are satisfied in
the cache. Even though all the data required by the clients does not fit in the cache, the current working set
probably does. More cache statistics are needed to determine if this is the case. If this is true, we should either
add more interesting regions to increase the working set size, add more noise to the workload or reduce the
cache size to make the experiments more fair and exercise the replacement policy. We can still conclude that
for cases when commonality is present, the proxy cache can result in a large reduction in wide area network
traffic. The 1 client case again illustrates the benefit of blocking and the prefetching effect, in the absence of
inter-client commonality.

6 Discussion

We can make several key observations from simulating and building a proxy for the T2 system. Better un-
derstanding of these issues is important for improving the performance of T2-like applications.

Server Phasing

The proxy transforms client queries into a series of block queries. One major problem that can arise is phasing
at the server. The T2 frontend process reads a set of requests up to some fixed maximum number, and then
broadcasts the query batch to the backend processes. Each backend processes the query batch as a single
unit, scheduling disk I/O, performing computation as needed, and sending the result data to the clients. When
completed, the backend processes are then ready to handle the next query batch.

This model of operation is well suited for individualclients sending large queries directly to the server, but
can cause phasing problems when used by the proxy sending many small queries. Consider the case where the
set of block queries sent by the proxy are not all included in the same query batch sent to the backends. In that
case, the data for the original single client query will not arrive at the proxy until at least two backend query
batches are completed. This defeats the whole point of using a parallel server and declustering to achieve
fast disk I/O for each query.

This problem could be solved in various ways. The T2 protocol packet format could be augmented to
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include a flag that asks the frontend to continue reading client queries until the one marked last. Then all the
proxy block queries would be executed in a single backend processing phase. Alternatively, we could add
a new T2 query packet that can hold more than one multi-dimensional range request, and the proxy would
only send one multi-query to the server.

Uniform Cache Block Size

In the design of the proxy prototype for the Virtual Microscope, we wanted all magnification levels for a par-
ticular block of data to land in the same hash bucket. This would have allowed for automatic down-sampling
of block data when a request arrives for a lower resolution image for which higher resolution blocks exist
in the cache. Slide data opaqueness is violated, but we wanted to keep that possibility open if there were
sufficient need. Considering a request for a given reply size, the size of the blocks and therefore the number
of blocks would vary based on the magnification level in the query.

The problem is this design decision causes a significant loss in performance. Since Virtual Microscope
slides are two-dimensional, the reduction in block size is quite dramatic as magnification is reduced. For
example, a 64KB block size at 400X magnification corresponds to a 64KB=4 = 16KB block size at 200X.
Thus we have a block size of only1KB at 50X! This results in a huge number of block queries to the server for
a large query at low resolution (approx. 3072), all to answer a single client query that completely misses the
cache. In these cases, it almost did not matter if anything was cached, because response time was dominated
by the nearly universal need to access the server for some of the blocks.

This design problem also added a large amount of overhead because of smaller work unit sizes and pay-
load sizes in the server, proxy, and even the network. Without amortizing cost over large work units, the
system overhead become quite significant. Suffice to say, the entire system ran very slowly with variable
block sizes.

Communication Protocol Issues

The communication protocol between the client and server makes a large impact on how amenable the ap-
plication is to proxy-based performance improvements. Since T2 uses a request-response style dissemina-
tion mechanism [13], forcing queries and responses to pass through an intermediary causes a guaranteed
latency penalty. Simply moving up the protocol stack in the proxy and back down again will add overhead.
In early tests of the system with the proxy, a simple pass-thru intermediary caused a doubling of the client
latency. Any proxy for a request-response based application will see a similar effect. Perhaps better would be
a publish-subscribe model of dissemination where clients instead ask for data ahead of time, and the server
simply pushes data to the client. Of course, this is only useful if there is a way to know what future data inter-
ests will be. For many T2 applications, the proxy could monitor direction vectors from concise information
provided by the client to estimate future requests, and have the server send data without the client asking for
it. In this model, the client steers the data flow, rather than asking for each piece. Wide-area applications
may have to mandate such protocols if interactivity is needed.

Beyond publish-subscribe dissemination, we could also try other methods to alleviate the penalty in-
volved in sending the reply image data through the proxy before it gets to the client. IP Multicast could
be used to send data simultaneously to both the original client that requested it and the proxy. In addition to
reducing the response time for the client query, this model would also reduce server utilization. The server
only has to spend time sending the data onto the network once, and the network is responsible for forking
the data somewhere en route. It would be difficult to have the reply data sent to all recipients of a block and
the proxy, because the main expense in using IP Multicast is in building and maintaining the multicast tree
as users join and leave a multicast group. The multicast model may work well for long running jobs that
infrequently have clients joining and leaving the multicast group, but would be prohibitively expensive for
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the fine granularity changes that would be needed to handle common block requests in the proxy. The proxy
architecture would potentially require multicast group membership changes for every query and block, for
which current IP Multicast is ill suited.

6.1 Related Work

Much work is being done to find ways to make wide-area data access more efficient. To reduce latency in
processing queries on relational databases, Query Scrambling [1, 3, 4] is a technique that changes the query
plan at runtime to do useful work when delays are seen from some data sources. Our proxy technique does
not require more than one data source. We are taking advantage of spatial locality in a specific type of non-
relational data. Scrambling is dealing with a different problem on a different type of data.

Broadcast Disks [14] tries to alleviate request-response protocol problems by pushing commonly used
data onto a constantly broadcast circular stream. This requires techniques to decide when a client should wait
for the next occurrence of needed data on the “disk”, or request it directly from the server. This work closely
resembles where our work is heading, with the exception that we utilize intermediate nodes in the path from
the client to the server. The use of intermediate nodes is a primary distinction between our work and most
related database research. Tradeoffs in using client and server resources has been considered for some time
now [15].

Due to the explosion of World Wide Web use, there is a large body of work in trying to effectively deal
with reducing impact on the wide-area network. Caching web proxies have been studied to great length [17].
A difficult problem here is trying to find a model that does a good job of representing typical web traffic [19].
Our work is different in that we are primarily dealing with multi-dimensional data, and can leverage the se-
mantics of the data and usage to have a better idea of what data will be requested in the future. In addition
web data is inherently variable sized [6], whereas we are able to use a uniform sized cache unit.

7 Conclusion

We have shown how the addition of an intermediary proxy in between the clients and server of T2 data in-
tensive applications can improve performance. Given sufficient commonality among a set of clients local
to the proxy, we have demonstrated utility by reducing overall system response time, and increased server
scalability by decreasing server utilization. In addition, we have reduced the amount of data sent over the
wide-area connection between the server and the clients. Even in cases with no inter-client commonality, we
see some prefetching improvements for a single client. All these benefits were achieved without changing
the existing client or server T2 application code.

To be fair, there are cases when commonality between client requests does not exist, or the commonality is
so temporally distributed that it cannot be taken advantage of. We plan to follow up this work by investigating
techniques for deciding when the use of a proxy will be advantageous. If this can be determined, the proxy
could be automatically used for cases where it improves performance, and avoided when it does not.
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