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Abstract

Large client-server data intensive applications can place high demands on system and network re-
sources. This is especiadly true when the connection between the client and server spans a wide-area
internet link. In this paper, we consider changing the typical client-server architecture of a class of data
intensive applications. We show that given sufficient common interest among multiple clients, our en-
hancements reduce the response time per-client and reduce the amount of data sent across the wide-area
link. In addition, we also see areduction in server utilization which helps to improve server scalability
as more clients are added to the system.

1 Introduction

Image processing and image browsing are very popular resource intensive applications, spanning many dis-
ciplines from Atmospheric Science to Clinical Pathology. When designed for a client-server environment,
these applications can place high demands on the underlying system and network resources. For example,
the Microsoft TerraServer archive of high resolution satelliteimagery [18] currently contains about 3.5 Ter-
aBytes of data (uncompressed) that are availablefor interactive browsing. When interactivity is needed and
the client to server connection spans a wide-area internet connection, the demands on the network can be
extremely high.

Inthispaper, weproposeamodificationto thetypical client-server architecturetoincludeacaching proxy
server in between the client(s) and the data server. With the proxy in place and given sufficient common in-
terest among multipleclients, severa benefits can berealized. The response time seen by each client can be
reduced, the amount of redundant data sent across the wide-area network can be reduced, and server scad a-
bility can be improved by reducing its utilization. On the other hand, the magnitude of any benefit provided
by the proxy server isdirectly related to the amount of common interest among the clients and how well syn-
chronized they are in time. While the current main target of the proxy server is applications that perform
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interactive scanning through two- and three-dimensiona datasets, we now discuss a more general class of
dataintensive applicationsin more detail.

1.1 Dataintensiveapplications

We have been building infrastructure for constructing parallel database systems, called T2 [8], that enables
integration of storage, retrieval and processing of multi-dimensional datasets. T2 provides support for com-
mon operations including index generation, data retrieval, memory management, scheduling of processing
acrossaparallel machineand user interaction. It achievesitsprimary advantagefrom theability to seamlessly
integrate dataretrieval and processing for awide variety of applicationsand from the ahility to maintain and
jointly process multiple datasets with different underlying grids. Most other systems for multi-dimensional
data have focused on uniformly distributed datasets, such as images, maps, and dense multi-dimensional
arrays. Many real datasets, however, are non-uniform or unstructured. T2 can handle both uniform and non-
uniform datasets.

T2 has been developed as a set of modular services. Sinceits structure mirrors that of awide variety of
applications, T2 iseasy to customize for different types of processing. To build aversion of T2 customized
for a particular application, a user has to provide functions to pre-process the input data, map input data to
elementsin the output data, and aggregate multipleinput data items that map to the same output el ement.

Data intensive applicationsthat are currently being implemented using the T2 services include satellite
dataprocessing systems[9], analysisof digitized light microscopy data[2, 12] and water contamination stud-
ies that couple multiple physical process simulators through a shared database [10, 7]. A common thread
throughall theseapplicationsisthat their datasets have an underlying multi-dimensional attribute space. The
datadimensionscan be spatia coordinates, time, or varying experimenta conditionssuch astemperature, ve-
locity or magnetic field. We will be using the Virtual Microscope, a system for browsing light microscope
images, as an example T2 system throughout this paper. We therefore now describe the Virtual Microscope
system in more detail.

1.1.1 The Virtual Microscope

The Virtual Microscope [2, 12] is a client-server software system that emulates a high power light micro-
scope. The systemisrequired to provideinteractiveresponsetimesfor standard physical microscope behav-
ior, including continuously moving the stage and changing magnification and focus. The client softwareruns
on an end user’s PC or workstation, whilethe server database software for storing, retrieving and processing
the microscope image data runs on a high performance paralel computer, potentialy at aremote site.

The queries supported by the server are small in size, and alow aclient to request arectangular region at
an available resolution from within the bounds of a given slidedata set. The reply consistsof image datafor
the requested region and can be severa orders of magnitude larger than the size of the request. Moreover,
the amount of data processed by the server in order to produce the responsefor the client can be much larger
than the reply.

Thegreatest difficulty inimplementing the Virtual Microscope systemisdealing with the extremely large
quantitiesof datarepresenting a collection of slides. For example, using the digitizing microscope currently
available at Johns HopkinsHospital, asingle spot at amagnification of 400X producesagrid of 100021000
pixels. We estimate that an array of 50250 spotsisrequired to cover an entire slide, and each pixel isathree
byte RGB color value. Under this scenario, one slide image requires over 7G'B. However, such an image
captures only asinglefocal plane, and many specimens will require capture of between five and thirty focal
planes. Clearly thereis an enormous storage requirement.



Figure 1: Virtual Microscope client browsing aslide

1.2 Challenges

Reduction of wide-areausage Traditiona applicationsweretypically confined to asinglemachine, whether
it be a single processor workstation or a multi-node parallel machine. Such environments have many nice
properties. The machines are all trusted, the interconnection network between machines is fast and fairly
reliable, and al the machines are under the control of a centralized administrative entity. Asinternet usage
increases and users are envisioning applications that collectively employ many machines connected via a
wide-area network, this nice environment changes in many ways. Trust may not exist, the fast reliable con-
nections are replaced by slower lessreliable links, and there are many administrative domains. In addition,
the ability to have strong consistency in the presence of updates may not be feasible.

A subtle (but important) difference is seen when considering who owns the resources used by an appli-
cation. Traditional applicationsuse resources in machines and networks owned by the organization running
them. For wide-area applications, even if al the machines where computation is performed are owned, the
wide-area links and intermediate hops are usually not. If more wide-area network resources are used by a
particular application, this could degrade the performance of other wide-area applications. In the current
wide-areanetwork environment, the cost to send datais effectively free. Asusage increases, thiscost model
may very well change to one where users pay in some manner for the amount of data sent. For example,
Sprint has recently unveiled a new nationwide network that supportsvoice and data over asingleline, with
acost model that eliminates the concept of long distance. Instead, users are charged by the amount of data
actually sent. Both the network good citizen and cost-per-byte-transmitted arguments motivate the need for
techniques to reduce wide-area bandwidth consumption.

Reduced response time For interactive applications, including those that use the T2 infrastructure, the
system as awhol e heeds acceptably small responsetimesfor it to be usable. Response timeisthe amount of
time between the initiation of arequest and when the last piece of datais delivered. If aresponse takes too
long, it simply will not be used, so performance is critical for acceptance. Techniques are needed to reduce
or eliminate the perceived latency seen between the client and the server. In addition, the server should be
able to handle multiple simultaneous clients without prohibitively degrading response time.

System scalability A system that scales well, should gracefully degrade as more clients are added to the
system. We expect performance to suffer, but it should be closer to following alinear curve rather than ex-
ponential. Most of the scalability seen in T2-based systemsis achieved through the use of aparallelized data
server, wherein a single query is handled by many processors and disks. Reduction in workload is the only



way to improve system scal ability from outside the server. With less applied workload, the system should
see reduced utilization, and hence better performance as more clients are added.

1.3 Overview

The approach we are studyingin this paper has many features similar to Semantic Data Caching [11]. We are
taking advantage of the semantic knowledge available about T2 datasets, about the rel ationship between T2
datasets and their corresponding meta-data, and aso about the coordinate systems and spatial rel ationships
present in such multi-dimensional datasets. This knowledge is leveraged to perform data specific perfor-
mance optimizations.

In the next section we describe the existing T2 system architecture, and present our changes. Next we
show how interactive usersare model ed for aset of experiments. Then simulationand implementation results
are given for the Virtual Microscope system, followed by interpretation and conclusions.

2 Architecture

2.1 Original System

Theoriginal T2 system is comprised of a server and one or more clients. The server is further decomposed
into a single frontend process and one or more backend processes with attached disks. Since the server is
designed to run on a parallel machine, the backend processes are intended to each run on a separate node of
the parallel machine. The application datais declustered across the backend disks. The dissemination model
used is request-response. Clients send a single multi-dimensional rectangular range query to the frontend
process. Thefrontend reads a batch of queries, and broadcasts them to the backend processes. Most backend
processes will have datafor a given query on one of their local disks, given good spatia declustering. Each
backend processwith datafor the batch of querieswill read the datafrom the disks, processit as customized
for the T2 application, and send it directly to the requesting clients.

The original system was designed primarily for fast datamovement in the server. The proposed changes
to the system are explicitly for supporting multiple co-located remote clients, where remote means the client
and server are separated by a wide-area network connection. We want to find ways to reduce the impact on
the wide-area network by eliminating redundant requests for the same data, reduce the perceived response
time problem, and make the system scale more gracefully, as discussed in Section 1.2.

The T2 design already existed when we were considering alternate architectures, with multiple clients
written and both sequentia and parallel versions of the server implemented. There was also a well-defined
communication protocol between the clients and the server. With an eye toward interoperability and mini-
mi zation of total system changes, a major design goa was to change the existing system aslittle as possible.
In certain places we were successful, and in other places, changes were necessary.

We want the techniquesused to be generally availablefor (at least) all T2 applications. Toward thisgoal,
wewant to avoid needing to know what the structure of the datais. For example, for the Virtual Microscope
system implemented with T2, al image data blocks are tagged with meta-data describing what slide the data
isfrom, which focal planeit isfrom, what its spatial coordinates are, etc. All the meta-datais essential, but
the actual image data structure should beignored, and treated as black box data. A black box approachisim-
portant for variousreasons, for exampleto alow for compression of data by the server and decompression by
the clients, which could only be supported through the opaque treatment of datain the modified architecture.
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Figure 2: Architecturefor one remote server and one clustered set of clients

2.2 Modified System
Proxy

The major architectural change isthe addition of a proxy as an intermediary in between a set of co-located
clients and aremote server. Figures 2(a) and 2(b) show this scenario for both architectures. The proxy will
appear to the server asaclient, andto theclientsasaserver. Itispossiblefor such aproxy to perform various
functionssuch as caching, predictive prefetching, and computation onthedata. For thisinitial designweonly
consider caching. Thisis primarily dueto the fact that more advanced functionality would require changes
in the server and client, thus breaking one of our origina design goals.

Caching at the proxy provides a benefit when the clients are local to the proxy and there is some degree
of commonality of interest between the set of clients. Ensuring the proxy islocal to the clients reduces the
long latency seen in contacting the remote server to request dataif the needed dataisin the proxy’s cache.
Having sufficient commonality among the client requestsisimportant in reducing the working set size such
that the cache does not overflow. With both these conditions satisfied, the best case iswhen the first request
for ablock of datais a cache missin the proxy, causing it to be faulted in by the proxy with arequest to the
server. All subsequent client requestswill hit in the cache, and be answered quickly over thelocal connection
to the proxy.

Cache Mod€

The use of a proxy makes requests that miss the cache slower than when the proxy is not used. This can be
minimized by making the cache lookup as fast as possible, thus speed is the main design goal in laying out
the cache structure.

The first decision involves the unit of storage for the cache. The classic options here include variable
or uniform sized blocks[6]. We chose to use uniform blocks for severa reasons. Uniform blocks make the
cache replacement decisions simpler. This occurs when the cache is full, and some new data arrives and
needsto be cached. Picking avictimiseasier when all cache entry sizes are the same sincethe space gain for
evicting any block is the same. Another reason supporting uniform cache entry sizeis related to detecting
when requests have some commonality. Given two reguests R, and R, the question becomes, is there any
overlap? Intersection of rectanglesis simple to compute, since we know the orientation of the rectangles
is guaranteed to be aigned with the = and y axes. What becomes harder to do quickly is determining the
best way to handle the commonality. There could be arelatively small amount of overlap, in which casethe
benefit of eliminating the redundant data being requested from the remote server might not be great enough
to outweigh the work to detect it. Another question is how to handle commonality in requeststhat are offset
temporally. Should R, be delayed for future requests, with the intention to coal esce them together into a
singlerequest? If so, how long should R, be delayed? This approach may be good for reducing the volume
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Figure 3: Client Query Control Flow
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Figure 4: Proxy Cache state as requests arrive

of redundant wide-area data sent, but it sacrifices responsetime.

Taking into consideration these and various other issues, we chose to break up the data space into uni-
form size blocks. Each incoming query is mapped to the set of blocks containing the query result, asseenin
Figure 3(b). Blocksthat are cache misses are immediately requested from the server. Blocks that are cache
hits are sent to the set of clients waiting for them. Pending blocks (those that have been requested from the
server but are not yet in the cache) are tagged with the client as being another recipient. Misses are handled
first, since they will take the longest to ultimately arrive at the client. Uniform blocking of the slide image
also helpsin detecting commonality in a passiveyet efficient manner. No request isever delayed in the hope
of finding regionsin common with those of another request, yet block-level commonality istaken advantage
of. Figure 4(a) showsrequest R, arriving with an empty cache in the proxy. All blocksfor the request are
faulted from the server. Consider the case where blocks{1, 2, 3, 6 } have arrived at the proxy, and blocks 7, 8
are pending when request R, arrives, as shown in Figure 4(b). In this case, the proxy faults blocks {4, 9}
from the server and sendsblocks {2, 3} immediately from the cache. Recognizing the commonality between
these requests, the proxy does not redundantly fault in blocks {7, 8} from the server because they have a-
ready been regquested.

3 Workload

Whilethe Virtual Microscope T2 applicationwe used for our experimentsis becoming mature and is starting
to be used routinely by pathologists, the current version is still aresearch prototype, which makes workload
characterization difficult for even asingle client. We instrumented one of the Virtual Microscope client pro-
grams and captured setsof traces of atrained pathol ogist using the system. The user examined several slides,
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thoroughly searching each slide for any abnormality, as they would with area microscope. We performed
tracing for several sessions, and derived an abstract model of user behavior. We are actively encouraging use
of the system and collecting more traces to refine our workload model.

| Zoom | P(400X) | P(200X) | P(100X) | P(50X) | | Zoom | P(3MB) | P(300KB) |
400X 0.65 0.35 0.00 0.00 400X 0.99 0.01
200X 0.02 0.68 0.18 0.12 200X 0.99 0.01
100X 0.00 0.05 0.50 0.45 100X 0.92 0.08
50X 0.15 0.04 0.08 0.73 50X 0.70 0.30
(a) Choose next magnification (b) Choose next request size

Table 1: Workload model probability transition matrices

The avail able magnifications for our test slide data set were 50.X, 100X, 200X, and 400.X . Through
analysis of the traces, we discovered that the previous magnification selected heavily influences the magni-
fication to be chosen next. Table 1(a) showsthe probability matrix used for choosing a magnification, based
on the current magnification.

The client generates two sizes of requests. The larger request sizeisfor thefull view screen, which for a
default window sizeis approximately 3 M B. The smaller request size resultsfrom the fine control buttonsin
the client that allow for incremental movement in any direction, which generate a request of approximately
300K B. We expected magnification to be a predictor variable for data size, since at lower magnification
the fine control buttonswould not be used, and at high magnification fine control would sometimes be used.
Instead, the pathol ogistswho generated our traces never usethefine control. Still, wefelt thismay beatypical
behavior, and included small non-zero probabilitiesfor using fine control, as shown in Table 1(b).

Next we consider inter-request time, also known as think time. Here again, magnification worked well
to predict the amount of think time after a given request. Since the distribution of the times was markedly
different depending on the magnification, we chose not to try to find compact representative distributionsto
generate the inter-request times. Instead, we randomly choose values from a histogram of the valuesin the
traces.

4 Simulation

We simulated the system to validate our hypotheses and to quantify the potential benefits of using a proxy.
Here we present highlightsof a more complete simulation study [5].

We are interested in determining the number of clientsthat can be supported at varying quality of ser-
vice levels. To thisend, we instrumented the Virtual Microscope client and server as well as prototype of
the proxy. From the resulting execution traces on a server with a single backend process, we generated com-
ponent level performance histograms, which are used to find representative distributions. These, combined
withtheworkload model, are used to drive adiscrete event-driven simulation. For network wide-area (WAN)
and local area (LAN) characterizations, we ran micro-benchmarks on our local test machines, and between
our local test machines and a test machine at the San Diego Supercomputing Center. These histograms of
applicationlevel datatransfer were abstracted into distributionsfor theloca case, but the wide-areacasewas
not as easily represented, so we use the raw histograms for wide-area simulation.

Thefactorsandlevelswe used for simulationarelistedin Table2. One abstraction that was necessary for
simul ation was to decouple cache hitsfrom actual request regions. Requests are model ed in an opague way,
never specifying the spatial coordinateswithin the slide. Each request is broken into 256 ' B sized blocks,
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Figure 5: Client Response Time with Increasing Number of Clients

and a Bernoulli trial is used for each block based on the cache hit rate. Thisallows usto easily consider the
effects of different cache hit rates while keeping the workload volume abstract and constant.

| Location | Name | Levels |
Client | Number 1,2, 4,8, 10, 20, 30
Proxy | Used Yes, No
Cachehitrate | 0,0.25, 0.5, 0.75, 1.0

Table 2: Factorsand Levelsfor Simulation

4.1 ResponseTime

The response time we care about is the time between the client request and when the client receives al the
data for that request. We consider response time separately for queries resulting in large and small replies
in Figures 5(a) and 5(b), respectively. For both graphs, the mean response time across al clientsis shown
as we scale the number of clientsin the system. The system without a proxy is shown as a baseline, where
the proxy machinewould be agateway merely passing packets between the client and server. The remaining
curves are for configurations with the proxy turned on, with different cache hit probabilities.

For the No Proxy case, the response time increases almost linearly as the number of clientsisincreased.
Thisis expected to not be completely true for the real system due to congestion effects we did not model.
Our network model only insures that a single entity will be writing to the network at a given point in time.
The 0% cache hit rate follows the No Proxy baseline very closely, as expected. The only overhead is the
constant time for the data to pass through the proxy. The 25%, 50% and 75% curves al show improvement
in the response time due to the reduction in WAN communication and reduced server load. It isinteresting
to note the large reduction in response time between the 75% and 100% cache hit rates, which indicatesthat
very good cache hit rates are critical to getting acceptable performance.

Next we consider the relative performance differences between the small and large cases. For large re-
quests, the 0%, 25% and 50% configurations all somewhat closely follow the baseline No Proxy perfor-
mance. In contrast, for small requeststhe 50% cache hit rate response time is approximately half that of the
largerequests. Larger requests cover more cache blocks, so are morelikely to includethefull latency cost of
contacting the server over the WAN, making the cache policy more important for large requests. Interpreted
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Figure 6: Component Utilization with Increasing Number of Clients

another way, if the request protocol was enhanced to perform some sort of pre-fetching of data so that long
haul requeststo the server are removed from the critical path for client response time, such an optimization
would help most for large queries.

4.2 Utilization

Another benefit of cache hitsin the proxy is to reduce the load seen at the server. Thisindirectly improves
servicetime of requests handled by the server when server utilizationis closeto capacity. Server utilizationis
the percentage of time the server isbusy, and isshownin Figure 6(a). For the case of 100% proxy cache hits,
no blockswill ever be requested from the server, so the utilizationiszero. Thebaselinecurveisthe No Proxy
case. Utilization increases as clients are added to the system until saturation, and then levels off. Sincethe
maximum utilization seenisabout 32.5%, thiswould suggest that the WAN playsalargerolein limiting how
fast the server can receive and respond to requests. We expected the server to be more of alimiting factor.
Theversion of the server used for benchmarking was aparallel data server with multiple disksper node, and
we conclude that this prevents the server from being a bottleneck. The 0% hit rate curve should illustrate
worse behavior than the baseline No Proxy case, because the proxy is adding overhead and is breaking the
request into multiple requestsfor blocks. Thisisacase where our simulation model does not reflect the real
system perfectly. The other curveslie between 0% and 100% as expected. The higher the cache hit rate, the
fewer the number of requests that actually reach the server.

Proxy utilization follows the expected inverse trend. For low cache hit rates, the proxy does not have
much work to do. When the cache hit rateis higher, the overhead of cache maintenance increases, and proxy
utilization rises. The main reason we suspect the utilizationis very low for al cases except the 100% cache
hit rate, is due to the way time is charged in our simulation. Only the WAN is charged during contention, so
the proxy appearsidle while sending data. Had thistime been charged to the proxy, the 0%, 25%, 50% and
75% curveswould all be higher, but still far from full utilization, since much proxy time is spent waiting in
the WAN/server loop. The 100% cache hit rate curve saturates the proxy at 20 clients, and would likely be
fewer if the charging of time was changed. Initially we had expected the number of clientsthat a proxy could
handle would be higher, so thislow number was surprising. An efficient cache lookup scheme is absolutely
imperative in supporting as many clients as possible with a single proxy.



5 Prototype Proxy Implementation

As described in Section 2.2, our proxy implementation for T2 caches blocks based on atiling of the data
space. The simulation results indicated that fast operation in cache lookups are imperative for proxy scal-
ing with increasing clients, and overall fast operation in translating queries to block queriesis required to
avoid increasing client response time. In response to these requirements, we designed the prototype proxy
to internally use hashing for cache indexing. The hash key for Virtual Microscope data was based on the
server number, slide number and data block number. These attributes provide enough information to give
any data block a globally unique ID, whilestill allowing afairly small key. Virtual Microscope data blocks
are uniform in size, regardless of magnification level.

Every block in the cache is a so indexed by other data structures to enable different cache replacement
policies. At thistime, we have added FIFO, LRU, and RANDOM policies. Briefly, FIFO keeps alist of
cached blocks. New blocks are appended to the tail of the list, and the blocks chosen to be the victim for
cache eviction when the cacheis full isthe block at head of thelist. LRU maintains reference information,
such that the victimisthe block that has not been accessed for thelongest time. RANDOM choosesavictim
randomly from the set of cached blocks. For the rest of this discussion, we use the LRU replacement policy.
We intend to investigate these standard replacement policiesand other domain specific policiesin thefuture.

5.1 Experimental Setup

Experiments were run such that one of our driving scenarios for the Virtual Microscope system is emulated.
Thisinvolves a classroom setting where students are remote with respect to the data. Several users start at
approximately the same time, and search a slide looking for interesting regions, presumably to make adiag-
nosis. Thisisanideal situationto experiment with aproxy, dueto the geographical proximity of several users
with common interest in remote data. The dataserver isrun on an UltraSparc at the University of Maryland,
and all raw image datawas local to this machine. Clients were run on different nodes of the 128 node IBM
SP at the San Diego Supercomputing Center, over the fast wide-area VBNS [16] connection between these
sites! When a proxy was used, it ran on another of the San Diego IBM SP nodes, with various cache and
block sizes. This setup does not exactly match the architecture shown in Figure 2(b), because the proxy is
not running on the network gateway machine, and resultsin a slight performance penalty by causing request
and reply datato make two trips over the client LAN, resulting in more contention and slower performance.
Use of agateway isideal in thisrespect, although not practical for many situations.

e . A b b
D - .
e SRS R R B N v Ve Vo
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(a) Left/Right (odd clients) (b) Up/Down (even clients)

Figure 7: Sweeping patterns over interesting points

1This fast network (155 Mbit/sec ATM) was used to approach usability in response times. Had we used traditional wide-area
connections, the gain in using a proxy would be even better.
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We use the same workload model for these experiments as we did for the simulations. Thiswas accom-
plished by writing a driver to emulate client behavior based on the workload model. The client driver sends
requests, accepts data and sits idle for some amount of think time in between requests. Interesting regions
are modeled as pointsin the slide. When a user pans across an interesting region, thereis a high probability
arequest will be generated. When the driver generates client events, some noiseis added to avoid multiple
clientsasking for the same exact region. In addition, we need to avoid having all the clientsscanthe slidein
the same manner. While this may be the best case for any caching mechanism, it is unrealistic. The driver
either sweepsthrough the slidein an up-down fashion or aleft-right fashion asshownin Figure 7, aswas ob-
served from real microscope users. The interesting regionswere chosen once, and hard coded into the client
driver.

5.2 Reaults

We now present a subset of the experiments we ran. In all cases, the client driver was run until atotal of 20
requests wereissued per client. Thisresultsin approximately 1.6G' B of raw image data being read from the
disk by the backend process and 47.2M B of image data being sent over the network for each client. The
client image data size is important, because the cache sizes were chosen to avoid having everything fit in
cache, thus exercising the replacement policy. This choice biases the importance of temporal commonality.

Figure 8 shows separate response time curves for 1, 2, 4, and 8 clients. Each curve represents al the
clients, with data points being the mean response time value and the error bars extending to the minimum
and maximum responsetimes. For the 1 client case shown in Figure 8(a), the results are as expected. There
isno commonality across clients when thereis only asingle client, so the proxy isonly adding overhead by
breaking a single query into severa block queries, and forcing al server datato flow through the proxy on
the way back to the client. Thisis seen most dramatically for the first query with a proxy, where al data
must be faulted from the server. Despitethese problems, there are times when improvement is seen over the
No Proxy curve. This occurs when the blocking of the slide causes extraimage data to be retrieved by the
proxy for agiven request, and the next request isfor anearby region already inthe proxy’scache. In essence,
blocking the data causes a type of prefetching. Of course, there is a tradeoff in the choice of block size, in
that larger blockswill improvethe prefetching effect, but will also add to the cost of reading and sending the
data. A 64KB block size was empirically found to be a good overall choice for the data set and workload
used.

The 2 client case in Figure 8(b) is similar to the 1 client case in that commonality is limited. The two
clientsare performing different sweep patterns, and any commonality resulting from the common set of in-
teresting pointsisscattered over time, thus cache misses are common. In considering 4 clientsin Figure 8(c),
we introduce explicit temporal commonality in the client sets{1,3} and {2,4} from the sweep patterns. In
this case, we see the responsetime curves for both proxy cases are generally at or below the No Proxy case.
Thistrend continuesin Figure 8(d) as more commonality isadded with theintroduction of more clientswhile
keeping the same two classesof sweep patterns. Another important observationappliestoal the cases, where
adding more clientsand commonality reducesthe responsetime variation as seen by the error barsintheplots.
Not only can the use of aproxy reduce the response time, but it makes the response time more deterministic
by avoiding the high variability of WAN communication.

For all experiments, doubling the size of the cache from 20M B to 40 M B does not seem to make a dif-
ference. For most cases, the curves are similar. Thisis probably due to the working set size being less than
or approximately equal to 20 M B. Further experimentswith smaller cache sizes are needed to explore cache
size sensitivity.

We now consider the effect a proxy has on server utilization. Asin the simulated experiments, we expect
the reduction of requeststhat are sent to the server to reduce overall server utilization. Table 3 shows server
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| No. Clients || NoProxy | Proxy (20MB Cache) | Proxy (40MB Cache) |

1 90.89% 85.79% 88.57%
2 98.11% 84.39% 83.31%
4 98.35% 85.48% 83.92%
8 98.94% 86.17% 82.01%

Table 3: Server Utilization

utilization for the same set of experiments. For the single backend process configuration we used, only 2
clientsare enough to saturate the server. Addition of the proxy reduces the utilization overal by 2% to 12%.
Another way of thinking about the effects of aproxy isthat the request densityisreduced. Request density is
the number of requests per unit of time. By satisfying certain blocksin the proxy cache, the stream of block
requestsisspaced out, thusreducing the request density. Given thisreduction, the server can better keep pace
with the request stream it is presented, as demonstrated by the utilization numbers, sois ableto handle more
clients concurrently.

Finally welook at the reduction in wide-area communication volumefor these experiments. The general
trend was that the WAN volume increases by about 49 M B for each client in the No Proxy configuration.
When a proxy is used, this reduces to about 30 M B for both cache sizes. Seeing the same volume decrease
for both cache sizes, and the small increase in communication volume as clients are added, indicates that
for most cases the first request for data resultsin a cache miss and most subsequent requests are satisfied in
the cache. Even though al the data required by the clients does not fit in the cache, the current working set
probably does. More cache statisticsare needed to determineif thisisthecase. If thisistrue, weshould either
add more interesting regions to increase the working set size, add more noise to the workload or reduce the
cache size to make the experiments more fair and exercisethe replacement policy. We can still conclude that
for cases when commonality is present, the proxy cache can result in alarge reduction in wide area network
traffic. The 1 client case again illustratesthe benefit of blocking and the prefetching effect, in the absence of
inter-client commonality.

6 Discussion

We can make severa key observationsfrom simulating and building a proxy for the T2 system. Better un-
derstanding of theseissuesisimportant for improving the performance of T2-like applications.

Server Phasing

Theproxy transformsclient queriesinto aseriesof block queries. Onemajor problem that can ariseisphasing
at the server. The T2 frontend process reads a set of requests up to some fixed maximum number, and then
broadcasts the query batch to the backend processes. Each backend processes the query batch as a single
unit, scheduling disk I/O, performing computation as needed, and sending theresult datato theclients. When
completed, the backend processes are then ready to handle the next query batch.

Thismodel of operationiswell suited for individual clientssending largequeriesdirectly tothe server, but
can cause phasing problemswhen used by the proxy sending many small queries. Consider the casewherethe
set of block queries sent by the proxy are not all included in the same query batch sent to the backends. In that
case, the datafor the original singleclient query will not arrive at the proxy until at least two backend query
batches are completed. This defeats the whole point of using a paralel server and declustering to achieve
fast disk 1/0 for each query.

This problem could be solved in various ways. The T2 protocol packet format could be augmented to
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include aflag that asks the frontend to continue reading client queries until the one marked last. Then all the
proxy block queries would be executed in a single backend processing phase. Alternatively, we could add
anew T2 query packet that can hold more than one multi-dimensional range request, and the proxy would
only send one multi-query to the server.

Uniform CacheBlock Size

In the design of the proxy prototypefor the Virtual Microscope, wewanted all magnification levelsfor a par-
ticular block of datato land in the same hash bucket. Thiswould have allowed for automatic down-sampling
of block data when a request arrives for a lower resolution image for which higher resolution blocks exist
in the cache. Slide data opagueness is violated, but we wanted to keep that possibility open if there were
sufficient need. Considering arequest for agiven reply size, the size of the blocks and therefore the number
of blockswould vary based on the magnification level in the query.

The problem is this design decision causes a significant loss in performance. Since Virtual Microscope
dlides are two-dimensional, the reduction in block size is quite dramatic as magnification is reduced. For
example, a64 K B block size at 400X magnification correspondstoat4 K B/4 = 16 K’ B block sizeat 200X.
Thuswehaveablock sizeof only 1 K B a 50X! Thisresultsinahugenumber of block queriestotheserver for
alarge query at low resolution (approx. 3072), al to answer a single client query that completely missesthe
cache. Inthese cases, it amost did not matter if anything was cached, because response time was dominated
by the nearly universal need to access the server for some of the blocks.

Thisdesign problem also added alarge amount of overhead because of smaller work unit sizes and pay-
load sizes in the server, proxy, and even the network. Without amortizing cost over large work units, the
system overhead become quite significant. Suffice to say, the entire system ran very slowly with variable
block sizes.

Communication Protocol |ssues

The communication protocol between the client and server makes alarge impact on how amenable the ap-
plication is to proxy-based performance improvements. Since T2 uses a request-response style dissemina-
tion mechanism [13], forcing queries and responses to pass through an intermediary causes a guaranteed
latency penalty. Simply moving up the protocol stack in the proxy and back down again will add overhead.
In early tests of the system with the proxy, a simple pass-thru intermediary caused a doubling of the client
latency. Any proxy for arequest-responsebased applicationwill seeasimilar effect. Perhaps better would be
a publish-subscribe model of dissemination where clientsinstead ask for data ahead of time, and the server
simply pushesdatato the client. Of course, thisisonly useful if thereisaway to know what future datainter-
estswill be. For many T2 applications, the proxy could monitor direction vectors from conciseinformation
provided by the client to estimate future requests, and have the server send datawithout the client asking for
it. Inthis mode, the client steers the data flow, rather than asking for each piece. Wide-area applications
may have to mandate such protocolsif interactivity is needed.

Beyond publish-subscribe dissemination, we could aso try other methods to alleviate the penalty in-
volved in sending the reply image data through the proxy before it gets to the client. IP Multicast could
be used to send data simultaneously to both the original client that requested it and the proxy. In addition to
reducing the response time for the client query, this model would a so reduce server utilization. The server
only has to spend time sending the data onto the network once, and the network is responsible for forking
the data somewhere en route. It would be difficult to have the reply data sent to all recipients of ablock and
the proxy, because the main expense in using IP Multicast is in building and maintaining the multicast tree
as usersjoin and leave a multicast group. The multicast model may work well for long running jobs that
infrequently have clients joining and leaving the multicast group, but would be prohibitively expensive for
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the fine granularity changes that would be needed to handle common block requestsin the proxy. The proxy
architecture would potentially require multicast group membership changes for every query and block, for
which current IP Multicast isill suited.

6.1 Rdated Work

Much work is being done to find ways to make wide-area data access more efficient. To reduce latency in
processing queries on relational databases, Query Scrambling [1, 3, 4] isatechniquethat changesthe query
plan at runtime to do useful work when delays are seen from some data sources. Our proxy technique does
not require more than one data source. We are taking advantage of spatial locality in a specific type of non-
relational data. Scrambling is dealing with a different problem on a different type of data.

Broadcast Disks [14] tries to aleviate request-response protocol problems by pushing commonly used
dataonto aconstantly broadcast circular stream. Thisrequirestechniquesto decidewhen aclient shouldwait
for the next occurrence of needed data on the“disk”, or request it directly from the server. Thiswork closely
resembles where our work is heading, with the exception that we utilize intermediate nodesin the path from
the client to the server. The use of intermediate nodes is a primary distinction between our work and most
related database research. Tradeoffs in using client and server resources has been considered for sometime
now [15].

Due to the explosion of World Wide Web use, thereis alarge body of work in trying to effectively deal
with reducing impact on thewide-area network. Caching web proxieshave been studied to great length [17].
A difficult problem hereistrying to find amodel that does agood job of representing typical web traffic [19].
Our work isdifferent in that we are primarily dealing with multi-dimensional data, and can leverage the se-
mantics of the data and usage to have a better idea of what data will be requested in the future. In addition
web dataisinherently variable sized [6], whereas we are able to use a uniform sized cache unit.

7 Conclusion

We have shown how the addition of an intermediary proxy in between the clients and server of T2 datain-
tensive applications can improve performance. Given sufficient commonality among a set of clients loca
to the proxy, we have demonstrated utility by reducing overall system response time, and increased server
scalahility by decreasing server utilization. In addition, we have reduced the amount of data sent over the
wide-area connection between the server and the clients. Even in cases with no inter-client commonality, we
see some prefetching improvements for a single client. All these benefits were achieved without changing
the existing client or server T2 application code.

Tobefair, there are caseswhen commonal ity between client requestsdoes not exist, or thecommonality is
so temporally distributedthat it cannot be taken advantage of . We planto follow up thiswork by investigating
techniques for deciding when the use of a proxy will be advantageous. If this can be determined, the proxy
could be automatically used for cases where it improves performance, and avoided when it does not.
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