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This paper presents a new randomized search method called Evolutionary Random Policy

Search (ERPS) for solving infinite horizon discounted cost Markov Decision Process (MDP)

problems. The algorithm is particularly targeted at problems with large or uncountable

action spaces. ERPS approaches a given MDP by iteratively dividing it into a sequence of

smaller, random, sub-MDP problems based on information obtained from random sampling

of the entire action space and local search. Each sub-MDP is then solved approximately

by using a variant of the standard policy improvement technique, where an elite policy is

obtained. We show that the sequence of elite policies converges to an optimal policy with

probability one. An adaptive version of the algorithm that improves the efficiency of the

search process while maintaining the convergence properties of ERPS is also proposed. Some

numerical studies are carried out to illustrate the algorithm and compare it with existing

procedures.

Keywords: Markov decision process (MDP), policy iteration (PI), evolutionary policy it-

eration (EPI), genetic algorithms (GAs), global optimization.
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1 Introduction

From operations research to artificial intelligence, a broad range of problems can be formu-

lated and described by Markov decision process (MDP) models. Up to now, the majority of

the solution methods have concentrated on reducing the size of the state space in order to

address the well-known “curse of dimensionality” (i.e., the typical exponential growth in the

state space size with the parameters of the problem). Some well-established approaches are

state aggregation (Bertsekas and Castañon 1989), feature extraction (Tsitsiklis and Van Roy

1996), random successive approximations and random multigrid algorithms (Rust 1997), and

various value function approximation schemes via the use of basis functions (de Farias and

Van Roy 2003, Trick and Zin 1997), just to name a few. The key idea throughout is to

avoid enumerating the entire state space. However, most of the above approaches generally

require the ability to search the entire action space in order to choose the best action at each

step of the iteration procedure; thus problems with very large action spaces may still pose a

computational challenge.

The approach proposed in this paper is meant to complement these highly successful

techniques. In particular, we will focus on MDPs where the state space is relatively small but

the action space is very large, so that enumerating the entire action space becomes practically

inefficient. These types of problems often arise in control of queues. For example, consider

the problem of controlling the service rate of a single-server queue with a finite buffer size,

say M , in order to minimize the average number of jobs in queue and the service cost. The

state space of this problem is the possible number of jobs in the queue {0, 1, . . . ,M}, so the

size of the state space is M+1, whereas the possible actions might be all values on an interval

(e.g., representing a service rate), in which case the action space is uncountable. From a

more general point of view, if one of the aforementioned state space reduction techniques is

considered, for instance, say state aggregation, then MDPs with small state spaces and large

action spaces can also be regarded as the outcomes resulting from the aggregation of MDPs

with large state and action spaces.

The issue of large action spaces was addressed in early work by MacQueen (1966), who

used some inequality forms of Bellman’s equation together with bounds on the optimal

value function to identify and eliminate non-optimal actions in order to reduce the size of

the action sets to be searched at each iteration of the algorithm. Since then, the procedure

has been applied to several standard methods like policy iteration (PI), value iteration (VI)
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and modified policy iteration (cf. e.g., Puterman 1994 for a review). All of these algorithms

generally require that the admissible set of actions at each state is finite. In this paper, we

approach this problem in an entirely different manner, by using an evolutionary, population-

based approach, and directly searching the policy space to avoid carrying out an optimization

over the entire action space. Such an approach has proven effective in attacking many

traditional optimization problems, both deterministic (combinatorial) and stochastic. Our

work applies this approach to infinite horizon discounted cost MDP models and results in a

novel algorithm we call Evolutionary Random Policy Search (ERPS).

For a given MDP problem, ERPS proceeds iteratively by constructing and solving a

sequence of sub-MDP problems, which are MDPs defined on smaller policy spaces. At each

iteration of the algorithm, two steps are fundamental: (1) The sub-MDP problem constructed

in the previous iteration is approximately solved by using a variant of the policy improvement

technique called policy improvement with cost swapping (PICS), and a policy called an elite

policy is generated. (2) Based on the elite policy, a group of policies is then obtained by using

a “nearest neighbor” heuristic and random sampling of the entire action space, from which

a new sub-MDP is created by restricting the original MDP problem (e.g., cost structure,

transition probabilities) on the current available subsets of actions. Under some appropriate

assumptions, we show that the sequence of elite policies converges with probability one to

an optimal policy.

We briefly review the relatively sparse research literature applying evolutionary search

methods such as genetic algorithms (GAs) and simulated annealing algorithms (SAs) for

solving MDPs. Wells et al. (1999) use GAs to find good finite horizon policies for partially

observable MDPs and discuss the effects of different GA parameters. Barash (1999) pro-

poses a genetic search in policy space for solving infinite horizon discounted MDPs, and by

comparing with the standard policy iteration (PI), concludes that it is unlikely that policy

search based on GAs can offer a competitive approach in cases where PI is implementable.

More recently, Chang et al. (2002) propose an algorithm called evolutionary policy itera-

tion (EPI) for solving infinite horizon discrete MDPs with large action spaces by imitating

the standard procedures of GAs. Although the algorithm is guaranteed to converge with

probability one, no performance comparisons with existing techniques are provided, and the

theoretical convergence requires the action space to be finite.

ERPS shares some similarities with the EPI algorithm introduced in Chang et al. (2002),

where a sequence of “elite” policies is also produced at successive iterations of the algorithm.
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However, the fundamental differences are that in EPI, policies are treated as the most es-

sential elements in optimization, and each “elite” policy is directly generated from a group

of policies. On the other hand, in our approach, policies are regarded as intermediate con-

structions from which sub-MDP problems are then constructed and solved; EPI follows the

general framework of GAs, and thus operates only at the global level, which usually results in

slow convergence. In contrast, ERPS combines global search with a local enhancement step

(the “nearest neighbor” heuristic) that leads to rapid convergence once a policy is found in a

small neighborhood of an optimal policy. We argue that our approach substantially improves

the performance of the EPI algorithm while maintaining the computational complexity at

relatively the same level.

Perhaps the most straightforward and the most commonly used numerical approach in

dealing with MDPs with uncountable action spaces is via the use of discretization (cf. Rust

1997). In practice, this could lead to computational difficulties, either resulting in an action

space that is too large or in a solution that is not accurate enough. In contrast, our approach

works directly on the action space, requiring no explicit discretization, and the adaptive ver-

sion of the algorithm we proposed improves the efficiency of the search process and produces

high quality solutions. As in standard approaches such as PI and VI, the computational

complexity of each iteration of ERPS is polynomial in the size of the state space, but unlike

these procedures, it is insensitive to the size of the action space, making the algorithm a

promising candidate for problems with relatively small state spaces but uncountable action

spaces.

The rest of the paper is organized as follows. In Section 2, we begin with the problem

setting. In Sections 3 and 4, we give a detailed description of the ERPS algorithm and

present some convergence results. In Section 5, we introduce an adaptive version of ERPS.

Numerical studies and comparisons with EPI and PI are reported in Section 6. Finally some

future research topics are outlined in Section 7.

2 Problem Setting

We consider the infinite horizon discounted cost MDP problem G = (X,A, P,R, α) with

finite state space X, a general action space A, a bounded non-negative cost function R :

X×A→ �+∪{0}, a fixed discount factor α ∈ (0, 1), and a transition function P that maps
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a state-action pair to a probability distribution over X. The probability of transitioning to

state y ∈ X given that we are in state x taking action a ∈ A, is denoted by Px,y(a).

Throughout this paper, unless otherwise specified, we will always denote the set of all

stationary deterministic policies π : X → A by Π and the size of the state space by |X|.
And without lost of generality, we assume that all actions a ∈ A are admissible for all states

x ∈ X.

Define the optimal value associated with an initial state x as

J∗(x) = infπ∈Π J
π(x), where

Jπ(x) = E [
∑∞

t=0 α
tR(xt, π(xt))|x0 = x] , x ∈ X, α ∈ (0, 1),

(1)

xt is the state of the MDP at time t, and E(·) is understood with respect to the sample

space induced by the transition probabilities. Assume there exists a stationary optimal

policy π∗ ∈ Π that achieves the optimal value J∗(x) for all initial states x ∈ X. The

problem is to find such a policy π∗.

3 Evolutionary Random Policy Search

A high-level description of the ERPS algorithm is summarized in Figure 1. We will provide

a detailed discussion in the following subsections.

3.1 Initialization

We start by specifying an action selection distribution P, the exploitation probability q0 ∈
[0, 1], the population size n, and a search range ri for each state xi ∈ X. Once chosen, these

parameters are fixed throughout the algorithm. We then select an initial group of policies;

however, because of the exploration step used in ERPS, the performance of the algorithm is

relatively insensitive to this choice. One simple method is to choose each individual policy

uniformly from the policy space Π.

The action selection distribution P is a probability distribution over the action space, and

will be used to generate sub-MDPs (cf. Section 3.3). Note that P could be state dependent in

general, i.e., we could prescribe for each state x ∈ X a different action selection distribution

according to some prior knowledge of the problem structure. One simple choice of P is

the uniform distribution. The exploitation probability q0 and the search range ri will be

used to construct sub-MDPs; the detailed discussion of these two parameters is deferred to

Section 3.3.
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Evolutionary Random Policy Search (ERPS)

• Initialization: Specify an action selection distribution P , the population size n > 1, and the

exploitation probability q0 ∈ [0, 1]. Specify a search range ri for each state xi ∈ X, i = 1, . . . , |X |.
Select an initial population of policies Λ0 = {π0

1 , π
0
2 , . . . , π

0
n}. Construct the initial sub-MDP as

GΛ0 := (X, Γ0, P, R, α), where Γ0 =
⋃

x Λ0(x). Set π−1
∗ := π0

1 , k = 0.

• Repeat until a specified stopping rule is satisfied:

– Policy Improvement with Cost Swapping (PICS):

∗ Obtain the value function Jπk
j for each πk

j ∈ Λk.

∗ Generate the elite policy for GΛk
as

πk
∗ (x) = argmin

u∈Λk(x)

{
R(x, u) + α

∑
y

Px,y(u)[ min
πk

j ∈Λk

Jπk
j (y)]

}
, ∀x ∈ X.

– Sub-MDP Generation:

∗ for j = 2 to n

for i = 1 to |X |
generate a random sample u from the uniform distribution over [0, 1],

if u ≤ q0 (exploitation)

choose the action πk+1
j (xi) in the neighborhood of πk

∗ (xi)

by using the “nearest neighbor” heuristic.

elseif u > q0 (exploration)

choose the action πk+1
j (xi) ∈ A according to P .

end if

end for

end for

∗ Set the next population generation as Λk+1 =
{
πk
∗ , πk+1

2 , . . . , πk+1
n

}
.

∗ Construct a new sub-MDP problem as GΛk+1 := (X, Γk+1, P, R, α),

where Γk+1 =
⋃

x Λk+1(x).

∗ k ← k + 1.

Figure 1: Evolutionary Random Policy Search

3.2 Policy Improvement with Cost Swapping

As mentioned earlier, the idea behind ERPS is to randomly split a large MDP problem into a

sequence of smaller, manageable MDPs, and to extract a possibly convergent sequence of poli-
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cies via solving these smaller problems. For a given policy population Λ = {π1, π2, . . . , πn},
if we restrict the original MDP (e.g., costs, transition probabilities) on the subsets of actions

Λ(x) := {π1(x), π2(x), . . . , πn(x)} ∀x ∈ X, then a sub-MDP problem is induced from Λ as

GΛ := (X,Γ, P, R, α), where Γ :=
⋃
x Λ(x). Note that in general Λ(x) is a multi-set, which

means that the set may contain repeated elements; however, we can always discard the re-

dundant members and view Λ(x) as the set of admissible actions at state x. Since ERPS is

an iterative random search algorithm, rather than attempting to solve GΛ exactly, it is more

efficient to utilize some approximation schemes and to obtain an improved policy and/or

good candidate policies with some worst-case performance guarantee.

Here we adopt a variant of the policy improvement technique to find an “elite” policy,

one that is superior to all of the policies in the current population, by executing the following

two steps:

Step 1: Obtain the value functions Jπj , j = 1, . . . , n, by solving the equations:

Jπj(x) = R(x, πj(x)) + α
∑
y

Px,y(πj(x))J
πj(y), ∀x ∈ X. (2)

Step 2: Compute the elite policy π∗ by

π∗(x) = arg min
u∈Λ(x)

{
R(x, u) + α

∑
y

Px,y(u)[min
πj∈Λ

Jπj (y)]

}
, ∀x ∈ X. (3)

Since in equation (3), we are basically performing the policy improvement on the “swapped

cost” minπj∈Λ J
πj (x), we call this procedure “policy improvement with cost swapping” (PICS).

We remark that the “swapped cost” minπj∈Λ J
πj(x) may not be the value function corre-

sponding to any policy. We now show that the elite policy generated by PICS improves any

policy in Λ.

Theorem 1 Given Λ = {π1, π2, . . . , πn}, let J̄(x) = minπj∈Λ J
πj(x) ∀x ∈ X, and let

µ(x) = arg min
u∈Λ(x)

{
R(x, u) + α

∑
y

Px,y(u(x))J̄(y)

}
.

Then Jµ(x) ≤ J̄(x), ∀x ∈ X. Furthermore, if µ is not optimal for GΛ, then Jµ(x) < J̄(x)

for at least one x ∈ X.

Proof: Let J0(x) = R(x, µ(x))+α
∑

y Px,y(µ(x))J̄(y), and consider the sequence J1(x), J2(x), . . .

generated by the recursion Ji+1(x) = R(x, µ(x)) + α
∑

y Px,y(µ(x))Ji(y), ∀ i = 0, 1, 2, . . .. At
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state x, by definition of J̄(x), there exists πj such that J̄(x) = Jπj (x). It follows that

J0(x) ≤ R(x, πj(x)) + α
∑

y Px,y(πj(x))J̄(y)

≤ R(x, πj(x)) + α
∑

y Px,y(πj(x))J
πj (y)

= Jπj(x)

= J̄(x) ,

and since x is arbitrary, we have

J1(x) = R(x, µ(x)) + α
∑

y Px,y(µ(x))J0(y)

≤ R(x, µ(x)) + α
∑

y Px,y(µ(x))J̄(y)

= J0(x) .

By induction Ji+1(x) ≤ Ji(x), ∀x ∈ X and ∀ i = 0, 1, 2, . . .. It is well known (Bertsekas

1995) that the sequence J0(x), J1(x), J2(x), . . . generated above converges to Jµ(x), ∀x ∈ X.

Therefore Jµ(x) ≤ J̄(x), ∀x. If Jµ(x) = J̄(x), ∀x ∈ X, then PICS reduces to the standard

policy improvement on policy µ, and it follows that µ satisfies the Bellman’s optimality

equation and is thus optimal for GΛ. Hence we must have Jµ(x) < J̄(x) for some x ∈ X

whenever µ is not optimal.

Now at the kth iteration, given the current policy population Λk, we compute the kth

elite policy πk∗ via PICS. According to Theorem 1, the elite policy improves any policy in

Λk, and since πk∗ is directly used to generate the (k + 1)th sub-MDP (cf. Figure 1 and

Section 3.3), the following monotonicity property is immediately clear:

Corollary 1 For all k ≥ 0,

Jπ
k+1∗ (x) ≤ Jπ

k∗ (x), ∀x ∈ X.

Proof: Follows by induction.

In EPI, an “elite” policy is also obtained at each iteration by a method called “policy

switching”. Unlike PICS, policy switching constructs an elite policy by directly manipulating

each individual policy in the population. To be precise, for the given policy population

Λ = {π1, π2, . . . , πn}, the elite policy is constructed as

π∗(x) ∈
{

arg min
πi∈Λ

(Jπi(x))(x)

}
, ∀x ∈ X, (4)

where the value functions Jπi, ∀ πi ∈ Λ are obtained by solving equation (2). It is proven in

Chang et al. (2002) that the elite policy π∗ generated by policy switching also improves any

8



policy in the population Λ. Note that the computational complexity of executing equation (4)

is O(n|X|).
We now provide a heuristic comparison between PICS and policy switching. For a given

group of policies Λ, let Ω be the policy space for the sub-MDP GΛ; it is clear that the size

of Ω is on the order of n|X|. Policy switching only takes into account each individual policy

in Λ, while PICS tends to search the entire space Ω, which is a much larger set than Λ.

Although it is not clear in general that the elite policy generated by PICS improves the elite

policy generated by policy switching, since the policy improvement step is quite fast and

it focuses on the best policy updating directions, we believe this will be the case in many

situations. For example, consider the case where one particular policy, say π̄, dominates all

other policies in Λ. It is obvious that policy switching will choose π̄ as the elite policy; thus

no further improvement can be achieved. In contrast, PICS considers the sub-MDP GΛ; as

long as π̄ is not optimal for GΛ, a better policy can always be obtained.

The computational complexity of each iteration of PICS is approximately the same as

that of policy switching, because step 1 of PICS, i.e., equation (2), which is also used by

policy switching, requires solution of n systems of linear equations, and the number of

operations required by using a direct method (e.g., Gaussian Elimination) is O(n|X|3), and

this dominates the cost of step 2, which is at most O(n|X|2).

3.3 Sub-MDP Generation

The description of the “sub-MDP generation” step in Figure 1 is only at a conceptual level.

In order to elaborate, we need to distinguish between two cases. We first consider the discrete

action space case; then we discuss the setting where the action space is continuous.

3.3.1 Discrete Action Spaces

According to Corollary 1, the performance of the elite policy at the current iteration is

no worse than the performances of the elite policies generated at previous iterations. Our

concern now is how to achieve continuous improvements among the elite policies found

at consecutive iterations. One possibility is to use unbiased random sampling and choose

at each iteration a sub-MDP problem by making use of the action selection distribution

P. The sub-MDPs at successive iterations are then independent of one another, and it

is intuitively clear that we may obtain improved elite policies after a sufficient number of

iterations. Such an unbiased sampling scheme is very effective in escaping local optima

and is often useful in finding a good candidate solution. However, in practice persistent
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improvements will be more and more difficult to achieve as the number of iterations (sampling

instances) increases, since the probability of finding better elite policies becomes smaller and

smaller. See Lourenco, Martin, and Stützle (2001) for a more insightful discussion in a global

optimization context. Thus, it appears that a biased sampling scheme could be more helpful,

which can be accomplished by using a “nearest neighbor” heuristic.

To achieve a biased sampling configuration, ERPS combines exploitation (“nearest neigh-

bor” heuristic) with exploration (unbiased sampling). The key to balance these two types of

searches is the use of the exploitation probability q0. For a given elite policy π, we construct

a new policy, say π̂, in the next population generation as follows: At each state x ∈ X,

with probability q0, π̂(x) is selected from a small neighborhood of π(x); and with probability

1− q0, π̂(x) is chosen by using the unbiased random sampling. The preceding procedure is

performed repeatedly until we have obtained n − 1 new policies, and the next population

generation is simply formed by the elite policy π and the n − 1 newly generated policies.

Intuitively, on the one hand, the use of exploitation will introduce more robustness into

the algorithm and helps to locate the exact optimal policy, while on the other hand, the

exploration step will help the algorithm to escape local optima and to find attractive poli-

cies quickly. In effect, we see that this idea is equivalent to altering the underlying action

selection distribution, in that P is artificially made more peaked around the action π(x).

If we assume that A is a non-empty metric space with a defined metric d(·, ·), then the

“nearest neighbor” heuristic in Figure 1 could be implemented as follows:

Let ri, a positive integer, be the search range for state xi, i = 1, 2, . . . , |X|. We assume

that ri < |A| for all i, where |A| is the size of the action space.

• Generate a random variable l ∼ DU(1, ri), where DU(1, ri) represents the discrete

uniform distribution between 1 and ri. Set πk+1
j (xi) = a ∈ A such that a is the lth

closest action to πk∗(xi) (measured by d(·, ·)).

Remark 1: Sometimes the above procedure is not easy to implement. It is often necessary

to index a possibly high-dimensional metric space, whose complexity will depend on the

dimension of the problem and the cost in evaluating the distance functions. However, we

note that the action spaces of many MDP problems are subsets of �N , where a lot of efficient

methods can be applied, such as Kd-trees (Bentley 1979) and R-trees (Guttman 1984). The

most favorable situation is an action space that is “naturally ordered”, e.g., in inventory

control problems where actions are the number of items to be ordered A = {0, 1, 2, · · · }, in

which case the indexing and ordering becomes trivial.

Remark 2: In EPI, policies in a new generation are generated by the so-called “policy
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mutation” procedure, where two types of mutations are considered: “global mutation” and

“local mutation”. The algorithm first decides whether to mutate a given policy π “globally”

or “locally” according to a mutation probability Pm. Then at each state x, π(x) is mutated

with probability Pg or Pl, where Pg and Pl are the respective predefined global mutation and

local mutation probabilities. It is assumed that Pg � Pl; the idea is that “global mutation”

helps the algorithm to get out of local optima and “local mutation” helps the algorithm

to fine-tune the solution. If a mutation is to occur, the action is changed by using the

action selection probability P. As a result, we see that each action in a new policy generated

by “policy mutation” either remains unchanged or is altered by pure random sampling;

although the so-called “local mutation” is used, no local search element is actually involved

in the process. Thus, as mentioned before, the algorithm only operates at the global level.

We note that this is essentially equivalent to setting the exploitation probability q0 = 0 in

our approach.

3.3.2 Continuous Action Spaces

The biased sampling idea in the previous section can be naturally extended to MDPs with

continuous action spaces. We let BA be the smallest σ-algebra containing all the open sets

in A, and choose the action selection distribution P as a probability measure defined on

(A,BA). Again, denote the metric defined on A by d(·, ·).
By following the “nearest neighbor” heuristic, we now give a general implementation of

the exploitation step in Figure 1.

Let ri > 0 denote the search range for state xi, i = 1, 2, . . . , |X|.

• Choose an action uniformly from the set of neighbors {a : d(a, πk∗(xi)) ≤ ri, a ∈ A}.

Note the difference in the search range ri between the discrete action space case and

the continuous action space case. In the former case, ri is a positive integer indicating the

number of candidate actions that are the closest to the current elite action πk∗ (xi), whereas in

the latter case, ri is the distance from the current elite action, which may take any positive

value.

If we further assume that A is a non-empty open connected subset of �N with some

metric (e.g., the infinity-norm), then a detailed implementation of the above exploitation

step is as follows.

• Generate a random vector λi = (λi1, . . . , λ
i
N)T with each λih ∼ U [−1, 1] independent for

all h = 1, 2, . . . , N , and choose the action πk+1
j (xi) = πk∗(xi) + λiri.
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• If πk+1
j (xi) /∈ A, then repeat the above step.

In this specific implementation, the same search range ri is used along all directions of the

action space. However, in practice, it may often be useful to generalize ri to a N -dimensional

vector, where each component controls the search range in a particular direction of the action

space.

Remark 3: Note that the action space does not need to have any structure other than being

a metric space. The metric d(·, ·) used in the “nearest neighbor” heuristic implicitly imposes

a structure on the action space. It follows that the efficiency of the algorithm depends on

how the metric is actually defined. Like most of the random search methods for global

optimizations, our approach is designed to explore the structure that good policies tend to

be clustered together. Thus, in our context, a good metric should have a good potential in

representing this structure. For example, the discrete metric (i.e., d(a, a) = 0 ∀ a ∈ A and

d(a, b) = 1 ∀ a, b ∈ A, a �= b) should never be considered as a good choice, since it does not

provide us with any useful information about the action space. For a given action space,

a good metric always exists but may not be known a priori. In the special case where the

action space is a subset of �N , we take the Euclidean metric as the default metric, this is in

accord with most of the optimization techniques employed in �N .

3.4 Stopping Rule

Different stopping criteria can be used. The simplest one is to stop the algorithm when a

predefined maximum number of iterations is reached. In the numerical experiments reported

in Section 6, we use one of the most common stopping rules in standard GAs (Srinivas and

Patnaik 1994; Wells et al. 1999; Chang et al. 2002): the algorithm is stopped when no further

improvement in the value function is obtained for several, say K, consecutive iterations. To

be precise, we stop the algorithm if ∃ k > 0, such that ‖Jπk+m∗ −Jπk∗‖ = 0 ∀ m = 1, 2, . . . , K.

4 Convergence of ERPS

In this section, we discuss the convergence properties of ERPS. To do so, the following

notation is necessary.

As before, denote by d(·, ·) the metric on the action space A. We define the distance

between two policies π1 and π2 by

d∞(π1, π2) := max
1≤i≤|X|

d(π1(xi), π
2(xi)).
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For a given policy π̂ ∈ Π and any σ > 0, we further define the σ-neighborhood of π̂ by

N (π̂, σ) := {π| d∞(π̂, π) ≤ σ, ∀ π ∈ Π} .

For each policy π ∈ Π, we also define Pπ as the transition matrix whose (x, y)th entry is

Px,y(π(x)) and Rπ as the one-stage cost vector whose (x)th entry is R(x, π(x)).

As the ERPS method is randomized, different runs of the algorithm will give different

sequences of elite policies (i.e., sample paths); thus the algorithm induces a probability

distribution over the set of all sequences of elite policies. We denote by P̂(·) and Ê(·) the

probability and expectation taken with respect to this distribution.

Let ‖ · ‖∞ denote the infinity-norm, given by ‖J‖∞ := maxx∈X |J(x)|. We have the

following convergence result for the ERPS algorithm.

Theorem 2 Let π∗ be an optimal policy with corresponding value function Jπ
∗
, and let the

sequence of elite policies generated by ERPS together with their corresponding value functions

be denoted by {πk∗ , k = 1, 2, . . .} and {Jπk∗ , k = 1, 2, . . .}, respectively. Assume that:

1. q0 < 1.

2. For any given � > 0, P({a| d(a, π∗(x)) ≤ �, a ∈ A}) > 0, ∀x ∈ X, (recall that P(·) is

a probability measure on the action space A).

3. There exist constants σ > 0, φ > 0, L1 < ∞, and L2 < ∞, such that for all π ∈
N (π∗, σ) we have ‖Pπ − Pπ∗‖∞ ≤ min

{
L1d∞(π, π∗), 1−α

α
− φ}

(0 < α < 1), and

‖Rπ − Rπ∗‖∞ ≤ L2d∞(π, π∗).

Then for any given ε > 0, there exists a random variable Mε > 0 with Ê(Mε) < ∞ such

that ‖Jπk∗ − Jπ∗‖∞ ≤ ε ∀ k ≥Mε.

Remark 4: Assumption 1 restricts the exploitation probability from pure local search.

Assumption 2 simply requires that any “ball” that contains the optimal policy will have a

strictly positive probability measure. It is trivially satisfied if the set {a|d(a, π∗(x)) ≤ �, a ∈
A} has a positive (Borel) measure ∀ x ∈ X and the action selection distribution P has

infinite tails (e.g., Gaussian, exponential). Assumption 3 imposes some Lipschitz type of

conditions on Pπ and Rπ; as we will see, it formalizes the notion that near optimal policies

are clustered together (cf. remark 3). The assumption can be verified if Pπ and Rπ are

explicit functions of π (which is the case in our numerical examples; cf. Section 6). For a

given ε > 0, such a policy π satisfying ‖Jπ − Jπ∗‖∞ ≤ ε is referred to as an ε-optimal policy

(cf. Bertsekas 1995).
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Remark 5: The result in Theorem 2 implies the a.s. convergence of the sequence {Jπk∗ , k =

0, 1, . . .} to the optimal value function Jπ
∗
. To see this, note that Theorem 2 implies that

P̂(‖Jπk∗ − Jπ
∗‖∞ > ε) → 0 as k → ∞ for every given ε, which means that the sequence

converges in probability. Furthermore, since ‖Jπk∗ − Jπ∗‖∞ ≤ ε ∀ k ≥ Mε is equivalent to

supk̄≥k ‖Jπk̄∗ − Jπ∗‖∞ ≤ ε ∀ k ≥Mε, we will also have P̂(supk̄≥k ‖Jπk̄∗ − Jπ∗‖∞ > ε)→ 0 as

k →∞, and the a.s. convergence thus follows.

Proof: The first step in the proof is to derive an upperbound for ‖Jπ − Jπ∗‖∞ in terms of

the distance d∞(π, π∗). For policy π∗ and policy π we have:

Jπ
∗

= Rπ∗ + αPπ∗Jπ
∗
, (5)

Jπ = Rπ + αPπJ
π. (6)

Now subtract the above two equations and define ∆Jπ
∗

= Jπ − Jπ∗
, ∆Pπ∗ = Pπ − Pπ∗

and ∆Rπ∗ = Rπ − Rπ∗ . We have

∆Jπ
∗

= [I − (I − αPπ∗)−1α∆Pπ∗ ]−1(I − αPπ∗)−1(α∆Pπ∗Jπ
∗
+ ∆Rπ∗). (7)

Taking the norm of both sides of (7) and using the consistency property of the operator

norm (i.e., ‖AB‖ ≤ ‖A‖ · ‖B‖ ), it follows that

‖∆Jπ∗‖∞ ≤ ‖[I−(I−αPπ∗)−1α∆Pπ∗]−1‖∞‖(I−αPπ∗)−1‖∞(α‖∆Pπ∗‖∞‖Jπ∗‖∞+‖∆Rπ∗‖∞).

(8)

By assumption 3, we have ‖∆Pπ∗‖∞ < 1−α
α

, thus

‖(I − αPπ∗)−1α∆Pπ∗‖∞ ≤ ‖(I − αPπ∗)−1‖∞α‖∆Pπ∗‖∞
< ‖(I − αPπ∗)−1‖∞(1− α)

< 1.

We now try to divide both sides of equation (8) by ‖Jπ∗‖∞. Before we proceed, we need to

distinguish between two cases, ‖Jπ∗‖∞ = 0 and ‖Jπ∗‖∞ �= 0.

Case 1. If Rπ∗ = 0 (i.e., R(x, π∗(x)) = 0 for all x ∈ X), then we have Jπ
∗

= 0. Thus

∆Jπ
∗

= Jπ and ∆Rπ∗ = Rπ. By noting ‖Pπ‖∞ = 1, it follows from (6) that

‖∆Jπ∗‖∞ = ‖Jπ‖∞ ≤ 1

1− α‖Pπ‖∞‖Rπ‖∞ =
1

1− α‖∆Rπ∗‖∞.

Then by assumption 3,

‖∆Jπ∗‖∞ ≤ L2

1− αd∞(π, π∗). (9)
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Case 2. If Rπ∗ > 0 (i.e., R(x, π∗(x)) > 0 for some x ∈ X), then from (5), Jπ
∗
> 0. Divide

both sides of (8) by ‖Jπ∗‖∞, use the relation that ‖(I − B)−1‖ ≤ 1
1−‖B‖ whenever ‖B‖ < 1

and the consistency property; it immediately follows that

‖∆Jπ∗‖∞
‖Jπ∗‖∞ ≤ ‖(I − αPπ∗)−1‖∞

1− ‖(I − αPπ∗)−1‖∞α‖∆Pπ∗‖∞

{
α‖∆Pπ∗‖∞ +

‖∆Rπ∗‖∞
‖Jπ∗‖∞

}

=
‖(I − αPπ∗)−1‖∞‖I − αPπ∗‖∞

1− ‖(I − αPπ∗)−1‖∞α‖∆Pπ∗‖∞

{
α‖∆Pπ∗‖∞
‖I − αPπ∗‖∞ +

‖∆Rπ∗‖∞
‖I − αPπ∗‖∞‖Jπ∗‖∞

}

≤ K
1−K α‖∆Pπ∗‖∞

‖I−αPπ∗‖∞

{
α‖∆Pπ∗‖∞
‖I − αPπ∗‖∞ +

‖∆Rπ∗‖∞
‖Rπ∗‖∞

}

≤ K
1−K α‖∆Pπ∗‖∞

‖I−αPπ∗‖∞

{
αL1

‖I − αPπ∗‖∞ +
L2

‖Rπ∗‖∞

}
d∞(π, π∗), (10)

where K = ‖(I − αPπ∗)−1‖∞‖I − αPπ∗‖∞.

In view of (9) and (10), we conclude that for any given ε > 0, there exists a θ > 0 such

that for any π ∈ N (π∗, σ) where

d∞(π, π∗) := max
1≤i≤|X|

d(π(xi), π
∗(xi)) ≤ θ,

we have ‖Jπ−Jπ∗‖∞ = ‖∆Jπ∗‖∞ ≤ ε. Note that max1≤i≤|X| d(π(xi), π
∗(xi)) ≤ θ is equivalent

to

d(π(xi), π
∗(xi)) ≤ θ, ∀ i = 1, 2, . . . , |X|. (11)

By assumption 2, the set of actions that satisfies (11) will have a strictly positive proba-

bility measure, and since q0 < 1, it follows that the probability a population generation

does not contain a policy in the neighborhood N (π∗,min {θ, σ}) of the optimal policy is

strictly less than 1. Let ψ be the probability that a randomly constructed policy is in

N (π∗,min {θ, σ}). Then at each iteration, the probability that at least one policy is ob-

tained in N (π∗,min {θ, σ}) is 1 − (1 − ψ)n−1, where n is the population size. Thus, the

initial part of the proof together with Theorem 1 implies that the value function of the elite

policy obtained in the next iteration is ε-optimal at least with probability 1 − (1 − ψ)n−1.

Let Mε denote the number of iterations required to generate such an elite policy for the

first time. By the monotonicity of the sequence {Jπk∗ , k = 0, 1, . . .} (cf. Corollary 1), it

is clear that ‖Jπk∗ − Jπ
∗‖∞ ≤ ε ∀ k ≥ Mε. Now consider a random variable M̄ that is

geometrically distributed with a success probability of 1− (1− ψ)n−1. It is not difficult to

see that M̄ dominates Mε stochastically (i.e., M̄ ≥st Mε), and because ψ > 0, it follows

that Ê(Mε) ≤ Ê(M̄) = 1
1−(1−ψ)n−1 <∞.
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Remark 6: In the above proof, we have used the infinity-norm. Since in finite dimen-

sional spaces all norms are equivalent (cf. Demmel 1997), similar results can also be easily

established by using different norms, e.g., the Euclidean-norm.

Remark 7: It should be noted that the result presented in Theorem 2 is rather theoretical,

because nothing can be said about the convergence rate of the algorithm as well as how much

improvement can be achieved at each iteration. As a consequence, the random variableMε

could be extremely large in practice.

Note that for a discrete finite action space, assumption 3 in Theorem 2 is automatically

satisfied, and assumption 2 also holds trivially if we take P(a) > 0 for all actions a ∈ A.

Furthermore, when the action space is finite, there always exists an ε > 0 such that the only

ε-optimal policy is the optimal policy itself. We have the following stronger convergence

result for ERPS when the action space is finite.

Corollary 2 (Discrete finite action space) If the action space is finite, q0 < 1, and the

action selection distribution P(a) > 0 ∀ a ∈ A, then there exists a random variable M > 0

such that P̂(M <∞) = 1 and Ê(M) <∞, and Jπ
k∗ = Jπ

∗ ∀ k ≥M.

5 Adaptive ERPS

The search range parameter ri in ERPS is fixed throughout the algorithm. Intuitively, small

search ranges concentrate the search in small regions around the desirable points and are

helpful in refining promising solutions, but they often lead to small improvements in the cost

function, thus slowing down the convergence process. On the other hand, large search ranges

typically reduce the number of search steps needed to find a good or near optimal solution,

but can be less effective in developing finer details around desirable points and may result

in less accurate solutions. In this section, we present a modification of the ERPS method

in which the value of the search range parameter may change from one iteration to another.

The idea is to adaptively shrink and expand the search range so that we can speed up the

convergence process without sacrificing the solution quality. A detailed description of the

adaptive ERPS is given in Figure 2, where we only consider the continuous action space

case; the discrete action space version can be constructed similarly.

We start by running ERPS with an initially specified search range r (for simplicity, we

assume that the same search range is prescribed for all states), and monitor the performance

of the elite policy obtained at each iteration. If no improvements among the elite policies
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Adaptive ERPS

• Initialization: Specify an initial search range r, parameters K, 1 < K1 < K,

K2 > 1, K3 > 1, γ > 1 and a tolerance level ε > 0, where K is the stopping control

parameter as in ERPS. Set ı← 0, ← 0, and h← 0.

• while (ı ≤ K & h ≤ K3)

– Execute ERPS with search range r.

– Search range update:

if 0 < ‖Jπk+1
∗ − Jπk

∗‖ ≤ ε, then set ı← 0, ←  + 1;

elseif ‖Jπk+1
∗ − Jπk

∗‖ = 0, then set ı← ı + 1, ← 0;

else set ı← 0, ← 0.

end if

if ı ≥ K1, then set rold ← r, r ← r · 1
γ . end if

if  ≥ K2, then set r ← r · γ. end if

if r = rold, then set h← h + 1; else set h← 0. end if

end while

Figure 2: Adaptive ERPS

are achieved for several, say K1, consecutive iterations, then it indicates that the current

search range may be too large, and we decrease it by a factor γ > 1. On the other hand,

if for some consecutive iterations, say K2, the improvements are non-zero but smaller than

some given tolerance ε, then it is likely that the current search range is too small, and we

increase it by γ until the improvement is greater than the specified tolerance level. The

search range is updated repeatedly until it has been alternating between two values for K3

times. Intuitively, the adaptive ERPS ensures that each improvement in the elite policy is

(approximately) at least ε; when no further improvement is available either by increasing or

by decreasing the search range, the value function obtained will be within distance ε of the

optimal cost, i.e., the resulting elite policy is approximately ε-optimal.

Note that the validity of the ε-optimality claim relies on the assumption that if there is

an improvement of at least ε available, then the algorithm will be able to find it via adaptive

adjustment of the search range. The above approach retains the theoretical convergence

properties of the original ERPS method and can be applied, at least in principle, to many
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types of action spaces as long as a metric can be specified; however, we must again emphasize

that the efficiency of the approach will depend on the structure of the problem to be solved

and how the underlying metric is actually defined.

6 Numerical Examples

In this section, we apply ERPS to two discrete-time controlled queueing problems and com-

pare its performance with that of EPI (Chang et al. 2002) and standard PI. For ERPS, the

same search range parameter is prescribed for all states, denoted by a single variable r, and

the action selection distribution P is chosen to be the uniform distribution. All computations

were performed on an IBM PC with a 2.4 GHz Pentium 4 processor and 512 MB memory,

and the computational time units are in seconds.

6.1 A One-Dimensional Queueing Example

The following example is adapted from de Farias and Van Roy 2003 (cf. also Bertsekas

1995). We consider a finite capacity single-server queue with controlled service completion

probabilities. Assume that a server can serve only one customer in a period, and the service

of a customer begins/ends only at the beginning/end of any period. Customers arrive at a

queue independently with probability p = 0.2, and there is at most one arrival per period (so

no arrival with probability 0.8). The maximum queue length is L, and an arrival that finds

L customers in the queue is lost. We let xt, the state variable, be the number of customers

in the system at the beginning of period t. The action to be chosen at each state is the

service completion probability a, which takes value in a set A. In period t, a possible service

completion is generated with probability a(xt), a cost ofR(xt, a(xt)) is incurred, and resulting

in a transition to state xt+1. The goal is to choose the optimal service completion probability

for each state such that the total discounted cost E[
∑∞

t=0 α
tR(xt, a(xt))] is minimized.

6.1.1 Discrete Action Space

Two different choices of one-stage cost functions are considered: (i) a simple cost function

that is convex in both state and action; (ii) a complicated non-convex cost function. The

MDP problem resulting from case (i) may possess some nice properties (e.g., free of multiple

local optimal solutions), so finding an optimal solution should be a relatively easy task;

whereas the cost function in case (ii) introduces some further computational difficulties (e.g.,

multiple local minima), intended to more fully test the effectiveness of a global algorithm like
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ERPS. For both cases, unless otherwise specified, the following parameter settings are used:

maximum queue length L = 49; state space X = {0, 1, 2, . . . , 49}; discount factor α = 0.98;

action set A = {10−4k : k = 0, 1, . . . , 104}; and in ERPS, population size n = 10, search

range r = 10, and the standard Euclidean distance is used to define the neighborhood. All

results for ERPS are based on 30 independent replications.

For case (i), the one-stage cost at any period for being in state x and taking action a is

given by

R(x, a) = x+ 50a2.

We test the convergence of ERPS by varying the values of the exploitation probability.

Table 1 gives the performances of the algorithm, where the relative error of a value function

J is evaluated in the infinity-norm according to the following formula

relerr :=
‖J − J∗‖∞
‖J∗‖∞ , (12)

and J∗ is the optimal value function. The computational time required for PI to find

the optimal value function J∗ was 15 seconds, and the value of ‖J∗‖∞ is approximately

2.32e+03. Test results indicate superior performances of ERPS over PI; in particular, when

q0 = 0.25, 0.5, 0.75, ERPS attains the optimal solutions in all 30 independent trials within 2

seconds.

To explore the computational complexity of ERPS, tests were performed on MDPs with

increasing numbers of actions; for each problem, the foregoing setting is used except that

the action space now takes the form A =
{
hk : k = 0, 1, . . . , 1

h

}
, where h is the mesh size, se-

lected sequentially (one for each problem) from the set
{

1
100
, 1

250
, 1

500
, 1

1000
, 1

2500
, 1

5000
, 1

10000
, 1

25000
,

1
50000

, 1
100000

, 1
200000

}
.

In Figure 3, we plot the running time required for PI and ERPS to find the optimal

solutions as a function of the number of actions of each MDP considered, where the results

for ERPS are the averaged time over 30 independent replications. Empirical results indicate

that the computational time for PI increases linearly in the number of actions (note the log-

scale used in Figure 3), while the running time required for ERPS does so in an asymptotic

sense. We see that ERPS delivers very competitive performances even when the action space

is small; when the action space is relatively large (number of actions greater than 104), ERPS

reduces the computational efforts of PI by roughly a factor of 14. In the experiments, we

used a search range r = 10 in ERPS, regardless of the size of the action space; we believe the

performance of the algorithm could be enhanced by using a search range that is proportional

to the size of the action space. Moreover, the computational effort of ERPS can be reduced
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q0 stop rule (K) Avg. time (std err) mean relerr (std err)

2 0.84 (0.03) 7.63e-06 (8.50e-08)

4 1.41 (0.05) 2.78e-06 (3.29e-07)

0.0 8 2.67 (0.10) 7.83e-07 (1.06e-07)

16 5.12 (0.16) 1.81e-07 (1.88e-08)

32 8.91 (0.38) 6.19e-08 (1.07e-08)

2 0.94 (0.02) 3.32e-09 (1.42e-09)

4 1.08 (0.02) 9.65e-10 (2.59e-10)

0.25 8 1.24 (0.02) 3.02e-10 (9.51e-11)

16 1.52 (0.03) 4.54e-11 (3.86e-11)

32 1.85 (0.04) 0.00e-00 (0.00e-00)

2 0.92 (0.02) 2.14e-09 (1.29e-09)

0.50 4 1.00 (0.02) 2.53e-10 (1.10e-10)

8 1.11 (0.02) 7.61e-11 (5.02e-11)

16 1.27 (0.03) 0.00e-00 (0.00e-00)

2 1.14 (0.02) 4.14e-10 (2.84e-10)

0.75 4 1.19 (0.02) 2.40e-11 (1.67e-11)

8 1.27 (0.02) 1.18e-11 (1.18e-11)

16 1.44 (0.03) 0.00e-00 (0.00e-00)

2 12.14 (0.02) 1.66e-10 (5.18e-11)

1.0 4 12.19 (0.02) 4.85e-11 (3.49e-11)

8 12.28 (0.01) 0.00e-00 (0.00e-00)

Table 1: Convergence results for ERPS (n = 10, r = 10) based on 30 independent replica-

tions. The standard errors are in parentheses.

considerably if we are merely seeking solutions within some required accuracy rather than

insisting on the optimal solution.

For case (ii), we used the following one-stage cost function

R(x, a) = x+ 5

[ |X|
2
sin(2πa)− x

]2

,

which induces a tradeoff in choosing between large values of a to reduce the state x and

appropriate values of a to make the squared term small. Moreover, since the sine function

is not monotone, the resultant MDP problem has a very high number of local minima; some

typical locally optimal policies are shown in Figure 4.
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Figure 3: Running time required for PI & ERPS (n = 10, r = 10, based on 30 independent

replications) to find the optimal solutions to MDPs with different numbers of actions, (a)

using log-scale for horizontal axis; (b) using log-log plot.

Table 2 shows the convergence properties of EPI and ERPS, where both algorithms start

with the same initial population. The computational time required for PI to find the optimal

value function J∗ was 14 seconds, and the magnitude of ‖J∗‖∞ is approximately 1.03e+05.

For EPI, we have tested different sets of parameters (recall from Section 3.3.1, Remark 2,

that Pm is the mutation probability; and Pg (Pl) are the predefined global (local) mutation

probabilities); the results reported in Table 2 are the best results obtained. Also note that

because of the slow convergence of EPI, the values for the stopping control parameter K are

chosen much larger than those for ERPS.

In order to demonstrate the role of the exploitation probability q0 in the ERPS algorithm,

we fix the stopping control parameterK = 10 and vary q0. The numerical results are recorded

in Table 3, where Nopt indicates the number of times an optimal solution was found out of

30 trials. The q0 = 1.0 case corresponds to pure local search. Obviously in this case, the

algorithm gets trapped into a local minimum, which has a mean relative error of 5.62e-

3. However, note that the standard error is zero, which means that the local minimum

is estimated with very high precision. This shows that the “nearest neighbor” heuristic is

indeed useful in fine-tuning the solutions. In contrast, the pure random search (q0 = 0) case

is helpful in escaping from the local minima, yielding a lower mean relative error of 2.59e-5,

but it is not very good in locating the exact optimal solutions, as none was found out of 30

trials. Roughly, increasing q0 between 0 and 0.5 leads to a more accurate estimation of the

optimal solution; however, increasing q0 on the range 0.6 to 1.0 decreases the quality of the

21



0 10 20 30 40 49
0

0.2

0.4

0.6

0.8

1

state

ac
tio

n

optimal policy
locally optimal policy

0 10 20 30 40 49
0

0.2

0.4

0.6

0.8

1

state

ac
tio

n

optimal policy
locally optimal policy

0 10 20 30 40 49
0

0.2

0.4

0.6

0.8

1

state

ac
tio

n

optimal policy
locally optimal policy

0 10 20 30 40 49
0

0.2

0.4

0.6

0.8

1

state

ac
tio

n

optimal policy
locally optimal policy

Figure 4: Four typical locally optimal solutions to the test problem.

algorithms stop rule (K) Avg. time (std err) mean relerr (std err)

EPI 20 2.13 (0.11) 1.74e-02 (1.35e-03)

Pm = 0.1 40 3.80 (0.16) 1.12e-02 (8.81e-04)

Pg = 0.9 80 6.63 (0.34) 7.13e-03 (5.37e-04)

Pl = 0.1 160 16.30 (0.59) 3.22e-03 (2.26e-04)

2 1.03 (0.02) 9.81e-05 (5.17e-05)

ERPS 4 1.12 (0.03) 7.12e-05 (4.95e-05)

q0 = 0.5 8 1.28 (0.03) 2.37e-05 (1.64e-05)

r = 10 16 1.50 (0.03) 1.06e-09 (6.59e-10)

32 1.86 (0.04) 0.00e-00 (0.00e-00)

Table 2: Convergence results for EPI (n = 10) & ERPS (n = 10, r = 10) based on 30

independent replications. The standard errors are in parentheses.
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solution, because the local search part begins to gradually dominate, so that the algorithm is

more easily trapped in local minima. This also explains why we have larger variances when

q0 = 0.6, 0.7, 0.8, 0.9 in Table 3. Notice that the algorithm is very slow in the pure local

search case; setting q0 < 1 speeds up the algorithm substantially.

q0 Avg. time (std err) Nopt mean relerr (std err)

0.0 3.30 (0.13) 0 2.59e-05 (6.19e-06)

0.1 1.96 (0.04) 5 4.51e-08 (8.60e-09)

0.2 1.48 (0.03) 12 1.26e-08 (3.47e-09)

0.3 1.39 (0.02) 24 2.74e-09 (2.02e-09)

0.4 1.28 (0.02) 25 2.69e-05 (1.89e-05)

0.5 1.32 (0.03) 27 8.75e-10 (6.01e-10)

0.6 1.41 (0.04) 25 6.19e-05 (3.20e-05)

0.7 1.50 (0.04) 22 1.53e-04 (6.96e-05)

0.8 1.81 (0.04) 15 3.04e-04 (7.09e-05)

0.9 2.33 (0.08) 11 7.99e-04 (1.63e-04)

1.0 7.86 (0.02) 0 5.62e-03 (0.00e-00)

Table 3: Performance of ERPS with different exploitation probabilities (n = 10, K = 10, r =

10) based on 30 independent replications. The standard errors are in parentheses.

To provide a numerical comparison between the “nearest neighbor” heuristic (biased

sampling) and the policy mutation procedure (unbiased sampling), we call the algorithm

with the PICS step but policy mutation procedure as algorithm 1. In both ERPS and

algorithm 1, we fix the population size n = 10, and stop the algorithms only when a desired

accuracy is reached. In Table 4, we record the length of time required for different algorithms

to reach a relative error of at least 1.0e-6. Indeed, we see that ERPS uses far less time to

reach a required accuracy than algorithm 1 does.

6.1.2 Continuous Action Space

We test the algorithm when the action space A is continuous, where the service completion

probability can be any value between 0 and 1. Again, two cost functions are considered,

corresponding to cases (i) and (ii) in Section 6.1.1. In both cases, the maximum queue

length L, state space X, and the discount factor α are all taken to be the same as before.

In the numerical experiments, we approximated the optimal costs J∗
1 and J∗

2 for each of

the respective cases (i) and (ii) by two value functions Ĵ∗
1 and Ĵ∗

2 , which were computed by
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algorithms parameters Avg. time (std err) actual relerr (std err)

q0 = 0.0 13.31 (0.60) 7.63e-07 (3.71e-08)

q0 = 0.1 1.20 (0.03) 4.99e-07 (5.47e-08)

ERPS q0 = 0.3 0.96 (0.04) 3.26e-07 (4.83e-08)

r = 10 q0 = 0.5 0.97 (0.03) 3.84e-07 (5.08e-08)

q0 = 0.7 1.61 (0.18) 3.47e-07 (4.91e-08)

q0 = 0.9 4.03 (0.62) 2.33e-07 (4.62e-08)

Pm = 0.1, Pg = 0.9, Pl = 0.1 62.4 (3.0) 7.61e-07 (3.67e-08)

Pm = 0.3, Pg = 0.9, Pl = 0.1 33.3 (1.4) 8.42e-07 (2.76e-08)

ALG. 1 Pm = 0.5, Pg = 0.9, Pl = 0.1 26.6 (1.4) 8.35e-07 (2.93e-08)

Pm = 0.7, Pg = 0.9, Pl = 0.1 22.1 (1.2) 7.88e-07 (3.34e-08)

Pm = 0.9, Pg = 0.9, Pl = 0.1 20.2 (1.1) 8.44e-07 (2.55e-08)

Pm = 1.0, Pg = 1.0, Pl = 0.0 17.6 (0.9) 7.67e-07 (4.08e-08)

Table 4: Average time required to reach a precision of at least 1.0e-6 for different algorithms.

All results are based on 30 independent replications. The standard errors are in parentheses.

using the adaptive ERPS algorithm under the following parameter settings: population size

n = 10; stopping control parameter K = 10; exploitation probability q0 = 0.5; initial search

range r = 1
10

; tolerance ε = 1e-12 for case (i) and ε = 1e-10 for case (ii); K1 = 5; K2 = 5;

K3 = 5; γ = 2. We performed 200 independent runs of the adaptive ERPS algorithm for

each case, and Ĵ∗
1 (Ĵ∗

2 ) was obtained as the best solution out of the 200 replications.

We set the population size n = 10, termination control parameter K = 10, and test

the ERPS algorithm by using different values of the search range r. The performance of

the algorithm is also compared with that of a deterministic policy iteration (PI) algorithm,

where we first uniformly discretize the action space into evenly spaced points by using a mesh

size h, and then apply the standard PI algorithm on the discretized problem. Tables 5 and 6

give the performances of both algorithms for cases (i) and (ii), respectively. Note that the

relative errors are actually computed by replacing the optimal costs with their corresponding

approximations in equation (12).

Test results indicate that ERPS outperforms the discretization-based PI algorithm in

both cases, not only in computational time but also in solution quality. We observe that the

computational time for PI increases by a factor of 2 for each halving of the mesh size, while

the time for ERPS increases at a much slower rate.
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algorithms parameters Avg. time (std err) mean relerr (std err)

q0 = 0.25 2.54 (0.10) 1.92e-12 (3.64e-13)

ERPS q0 = 0.50 2.27 (0.09) 6.41e-13 (7.07e-14)

(r = 1
4000

) q0 = 0.75 2.92 (0.08) 1.92e-13 (2.69e-14)

q0 = 0.25 2.61 (0.10) 4.66e-13 (6.03e-14)

ERPS q0 = 0.50 2.91 (0.10) 1.08e-13 (1.59e-14)

(r = 1
8000

) q0 = 0.75 3.05 (0.11) 6.84e-14 (1.03e-14)

q0 = 0.25 2.84 (0.09) 1.33e-13 (2.35e-14)

ERPS q0 = 0.50 3.25 (0.10) 3.06e-14 (4.56e-15)

(r = 1
16000

) q0 = 0.75 3.68 (0.10) 1.89e-14 (2.50e-15)

h = 1
4000

6 (N/A) 7.96e-09 (N/A)

h = 1
8000

12 (N/A) 1.72e-09 (N/A)

PI h = 1
16000

23 (N/A) 4.74e-10 (N/A)

h = 1
32000

47 (N/A) 9.52e-11 (N/A)

h = 1
128000

191 (N/A) 6.12e-12 (N/A)

h = 1
512000

781 (N/A) 3.96e-13 (N/A)

Table 5: Comparison of the ERPS algorithm (n = 10, K = 10) with the deterministic PI

algorithm for case (i). The results of ERPS are based on 30 independent replications. The

standard errors are in parentheses.

6.2 A Two-Dimensional Queueing Example

The second example, shown in Figure 5, is a slight modification of the first one, with the

difference being that now we have a single queue that feeds two independent servers with

different service completion probabilities a1 and a2. We consider only the continuous action

space case. The action to be chosen at each state x is (a1, a2)
T , which takes value from the

set A = [0, 1]× [0, 1]. We assume that an arrival that finds the system empty will always be

served by the server with service completion probability a1. The state space of this problem

is X = {0, 1S1, 1S2, 2, . . . , 48}, where we have assumed that the maximum queue length (no

including those in service) is 46, and 1S1, 1S2 are used to distinguish the situations whether

server 1 or server 2 is busy when there is only one customer in the system. As before, the

discount factor α = 0.98.

The one-stage cost is taken to be

R(y, a1, a2) = y +

[ |X|
2

cos(πa1)− y
]2

I{S1} +

[ |X|
2

sin(πa2)− y
]2

I{S2},
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algorithms parameters Avg. time (std err) mean relerr (std err)

q0 = 0.25 2.75 (0.10) 8.49e-11 (1.50e-11)

ERPS q0 = 0.50 2.91 (0.09) 1.76e-11 (2.90e-12)

(r = 1
4000

) q0 = 0.75 3.16 (0.09) 8.53e-12 (1.21e-12)

q0 = 0.25 3.09 (0.12) 1.70e-11 (2.57e-12)

ERPS q0 = 0.50 3.00 (0.12) 4.17e-12 (4.94e-13)

(r = 1
8000

) q0 = 0.75 3.62 (0.08) 1.55e-12 (1.47e-13)

q0 = 0.25 3.20 (0.10) 6.08e-12 (1.17e-12)

ERPS q0 = 0.50 3.28 (0.11) 1.19e-12 (1.40e-13)

(r = 1
16000

) q0 = 0.75 4.20 (0.12) 4.25e-13 (5.05e-14)

h = 1
4000

6 (N/A) 2.71e-07 (N/A)

h = 1
8000

11 (N/A) 5.66e-08 (N/A)

PI h = 1
16000

22 (N/A) 1.58e-08 (N/A)

h = 1
32000

43 (N/A) 5.21e-09 (N/A)

h = 1
128000

176 (N/A) 3.58e-10 (N/A)

h = 1
512000

727 (N/A) 1.71e-11 (N/A)

Table 6: Comparison of the ERPS algorithm (n = 10, K = 10) with the deterministic PI

algorithm for case (ii). The results of ERPS are based on 30 independent replications. The

standard errors are in parentheses.

where

I{Si} =

{
1 if server i is busy,

0 otherwise,
(i = 1, 2), and y =

{
1 if x ∈ {1S1, 1S2},
x otherwise.

L
p=0.2 departure

1

2

a

a

Figure 5: A two-dimensional queueing example.

Again, in computing the relative error, we approximated J∗ by Ĵ∗, which was computed

by using the adaptive ERPS algorithm under the same settings (e.g., parameter settings,

number of replications) as in case (ii) of Section 6.1.2. The value of ‖Ĵ∗‖∞ is approximately

1.72e+04.
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algorithms parameters Avg. time (std err) mean relerr (std err)

q0 = 0.25 3.26 (0.14) 2.60e-06 (1.36e-07)

ERPS q0 = 0.50 3.20 (0.15) 1.06e-05 (9.17e-06)

(r = 1
100

) q0 = 0.75 3.64 (0.14) 8.98e-05 (2.54e-05)

q0 = 0.25 3.37 (0.12) 6.67e-07 (3.59e-08)

ERPS q0 = 0.50 3.28 (0.12) 9.58e-06 (9.20e-06)

(r = 1
200

) q0 = 0.75 3.89 (0.17) 9.38e-05 (2.47e-05)

q0 = 0.25 3.78 (0.11) 1.50e-07 (8.30e-09)

ERPS q0 = 0.50 3.85 (0.12) 9.30e-06 (9.21e-06)

(r = 1
400

) q0 = 0.75 4.45 (0.14) 4.59e-05 (1.90e-05)

h = 1
100

15 (N/A) 1.65e-04 (N/A)

PI h = 1
200

57 (N/A) 4.30e-05 (N/A)

h = 1
400

226 (N/A) 8.87e-06 (N/A)

Table 7: A two-dimensional test example. The results of ERPS are based on 30 independent

replications (n = 10, K = 10).

The performances of the ERPS and the discretization-based PI are reported in Table 7.

In ERPS, both the population size n and the stopping control parameter K are set to 10. In

PI, we adopt a uniform discretization, where the same mesh size h is used in both directions

of the action space. Notice that the computational time for PI increases by a factor of 4

for each halving of the mesh size, whereas the time required by ERPS increases much more

slowly.

In Table 8, we compare the performance of the adaptive ERPS algorithm and the original

ERPS algorithm in obtaining high quality solutions. In both algorithms, we choose the

population size n = 10, the stopping control parameter K = 10, and the exploitation

probability q0 = 0.5. In adaptive ERPS, the initial search range r = 0.1, γ = 2, parameters

K1, K2 and K3 are all set to 5, and the improvements in elite policies are evaluated in

the infinity-norm. We see that in order to obtain more and more accurate solutions, the

search range in ERPS has to be chosen excessively small, which causes significant increase in

computational effort. In contrast, the adaptive ERPS achieves better solutions within less

time; moreover, the algorithm provides us with a rough estimation of the solution quality:

as mentioned in Section 5, the average difference between the resultant value function J and

the optimal cost J∗ (i.e., ‖J − J∗‖∞) will be of the same order of magnitude as ε; and the
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relative error can also be estimated as:

relerr =
‖J − J∗‖∞
‖J∗‖∞ ≈ ‖J − Ĵ

∗‖∞
‖Ĵ∗‖∞

≈ ε

‖Ĵ∗‖∞
.

algorithms parameters Avg. time (std err) mean relerr (std err) ‖J − Ĵ∗‖∞ (std err)

r = 1
20000

16.4 (0.2) 2.25e-11 (8.88e-13) N/A (N/A)

ERPS r = 1
40000

24.8 (0.3) 5.04e-12 (1.95e-13) N/A (N/A)

r = 1
80000

39.1 (0.5) 1.02e-12 (7.18e-14) N/A (N/A)

Adaptive ε =1e-07 13.8 (0.7) 9.28e-12 (3.22e-12) 1.59e-07 (5.54e-08)

ERPS ε =1e-08 15.7 (0.8) 3.95e-13 (1.67e-13) 6.80e-09 (2.87e-09)

ε =1e-09 17.1 (0.7) 1.09e-13 (3.12e-14) 1.87e-09 (5.37e-10)

Table 8: Comparison of ERPS (n = 10, K = 10, q0 = 0.5) with adaptive ERPS (n =

10, K = 10, q0 = 0.5, r = 0.1, K1 = K2 = K3 = 5, γ = 2), based on 30 independent

replications.

7 Conclusions and Future Work

In this paper, we presented an evolutionary, population-based method called ERPS for solv-

ing infinite horizon discounted cost MDP problems. We showed that the algorithm converges

to an optimal policy w.p.1. We also illustrated the algorithm by applying it to two controlled

queueing examples with large or uncountable action spaces. Numerical experiments on these

small examples indicate that the ERPS algorithm is a promising approach, outperforming

some existing methods (including the standard policy iteration algorithm).

Many challenges remain to be addressed before the algorithm can be applied to realistic-

sized problems. The motivation behind ERPS is the setting where the action space is ex-

tremely large so that enumerating the entire action space becomes computationally imprac-

tical; however, the approach still requires enumerating the entire state space. To make it

applicable to large state space problems, the algorithm will probably need to be used in

conjunction with some other state space reduction techniques such as state aggregation or

value function approximation. This avenue of investigation clearly merits further research.

Another important issue is the dependence of ERPS on the underlying distance metric,

as determining a good metric could be challenging for those problems that do not have

a natural metric already available. One possible way to get around this is to adaptively
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updating/changing the action selection distribution P at each iteration of the algorithm

based on the sampling information obtained during the previous iterations. This actually

constitutes a learning process; the hope is that more promising actions will have larger

chances of being selected so that the future search will be biased toward the region containing

high quality solutions (policies).

Another practical issue is the choice of the exploitation probability q0. As noted earlier,

the parameter q0 serves as a tradeoff between exploitation and exploration in action selec-

tions. Preliminary experimental results indicate some robustness with respect to the value

of this parameter, in that values between 0.25 and 0.75 all seem to work well; however, this

may not hold for larger problems or other settings, so further investigation is required. One

approach is to design a similar strategy as in simulated annealing algorithms and study the

behavior of the algorithm when the value of q0 is gradually increasing from 0 to 1, which

corresponds to the transitioning of the search mechanism from pure random sampling to

pure local search.
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