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Abstract

The probability distribution of a Markov chain is viewed as the information state of an additive
optimization problem. This optimization problem is then generalized to a product form whose
information state gives rise to a generalized notion of probability distribution for Markov chains.
The evolution and the asymptotic behavior of this generalized or “risk-sensitive” probability dis-
tribution is studied in this paper and a conjecture is proposed regarding the asymptotic periodicity
of risk-sensitive probability. The relation between a set of simultaneous non-linear equations and
the set of periodic attractors is analyzed.
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1 Introduction

It is well known that the probability distribution of an ergodic Markov chain is asymptotically
stationary, independent of the initial probability distribution, and that the stationary distribution
is the solution to a fixed point problem [5]. This probability distribution can be viewed as the
information state for an estimation problem arising from the Maximum A Posterior Probability
Estimator (MAP) estimation of the Markov chain for which no observation is available.

Risk-sensitive filters [7]-[13] take into account the “higher order” moments of the estimation
error. Roughly speaking, this follows from the analytic property of the exponential ex =

∑∞
k=0 xk/k!

so that if Ψ stands for the sum of the error functions over some interval of time then

E[exp(γΨ)] = E[1 + γΨ + (γ)2(Ψ)2/2 + ...].

Thus, at the expense of the mean error cost, the higher order moments are included in the minimiza-
tion of the expected cost, reducing the “risk” of large deviations and increasing our “confidence”
in the estimator. The parameter γ > 0 controls the extent to which the higher order moments are
included. In particular, the first order approximation, γ → 0, E[exp(γΨ] ∼= 1 + γEΨ, indicates
that the original minimization of the sum criterion or the risk-neutral problem is recovered as the
small risk limit of the exponential criterion.

Another point of view is that the exponential function has the unique algebraic property of
converting the sum into a product. In this paper we show that a notion of probability for Markov
chains follows from this point of view which due to its connection to risk-sensitive filters, will be
termed “risk-sensitive probability (RS-probability)”. We consider an estimation problem of the
states of a Markov chain in which the cost has a product structure. We assume no observation is
available and that the initial probability distribution is known. We will define the RS-probability of
a Markov chain as an information state for this estimation problem whose evolution is governed by a
non-liear operator. The asymptotic behavior of RS-probability appears to be periodic. Asymptotic
periodicity has been reported to emerge from random perturbations of dynamical systems governed
by constrictive Markov integral operators [3][4]. In our case, the Markov operator is given by a
matrix; the perturbation has a simple non-linear structure and the attractors can be explicitly
calculated.

In Section 2, we view the probability distribution of a Markov chain as the information state
of an additive optimization problem. RS-probability for Markov chains are introduced in section
3. We show that its evolution is governed by an operator (denoted by F γ) which can be viewed
as a generalization of the usual linear Markov operator. The asymptotic behavior of this operator
is studied in section 3 and a conjecture is proposed. Under mild conditions, it appears that RS-
probability is asymptotically periodic. This periodic behavior is governed by a set of simultaneous
quadratic equations.
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2 Probability as an information state

In [2],[1] we studied the exponential (risk-sensitive) criterion for the estimation of HMM’s and
introduced risk-sensitive filter banks.

The probability distribution of a Markov chain, knowing only initial distribution, determines
the most “likely state” in the sense of MAP. In the context of Hidden Markov Models (HMM), the
problem can be viewed as that of “pure prediction”; i.e., an HMM whose states are entirely hidden.

Define a Hidden Markov Model as a five tuple < X,Y,X,A, Q >; here A is the transition
matrix, Y = {1, 2, ..., NY} is the set of observations and X = {1, 2, ..., NX} is the finite set of
(internal) states as well as the set of estimates or decisions. In addition, we have that Q := [qx,y]
is the NX ×NY state/observation matrix, i.e., qx,y is the probability of observing y when the state
is x. We consider the following information pattern. At decision epoch t, the system is in the
(unobservable) state Xt = i and the corresponding observation Yt is gathered, such that

P (Yt = j|Xt = i) = qi,j. (1)

The estimators Vt are functions of observations (Y0, .....Yt) and are chosen according to some speci-
fied criterion. Consider a sequence of finite dimensional random variables Xt and the corresponding
observations Yt defined on the common probability space (Ω,M ,P). Let X̂t be a Borel measurable
function of the filtration generated by observations up to Yt denoted by Yt. The Maximum A
Posteriori Probability (MAP) estimator is defined recursively; given X̂0, ..., X̂t−1, X̂t is chosen such
that the following sum is minimized:

E[
t∑

i=0

ρ(Xi, X̂i)], (2)

where
ρ(u, v) =

{
0 if u = v;
1 otherwise,

The usual definition of MAP as the argument with the greatest probability given the observation
follows from the above [6]. The solution is well known; we need to define recursively an information
state

σt+1 = NY · Q(Yt+1)AT · σt, (3)

where Q(y) := diag(qi,y), AT denotes the transpose of the matrix A. σ0 is set equal to NY ·Q(Y0)p0,
where p0 is the initial distribution of the state and is assumed to be known.

When no observation is available, it is easy to see that NY · Q(Yt) = I, where I is the identity
matrix. Thus, the information state for the prediction case evolves according to σt+1 = AT ·σt which
when normalized is simply the probability distribution of the chain. This “prediction” optimization
problem for a multiplicative cost will be considered next.
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3 RS-Probability for Markov chains

With the notation of the previous section, given X̂0, ..., X̂t−1, define X̂t recursively as the estimator
which minimizes the product

E[
t∏

i=0

ρ∗(Xi, X̂i)] (4)

ρ∗(u, v) =
{

1 if u = v;
r = eγ otherwise.

Associate with each i ∈ X, a unit vector in RN
X whose ith component is 1. Assume that no

observation is available and that the initial probability distribution is given.

Theorem 1: The estimator which minimizes (4) is given by

X̂t = argmax i∈SX
< Ut , ei >,

where Ut evolves according to

Ut+1 = AT · H{diag ( exp(γ < eargmax
i

U i
t

, ej >) ) · Ut} =: F γ(Ut), (5)

and H(X) = X∑
i
(Xi)

and U0 = p0.

Proof: See [2].

The operator F γ can be viewed as a non-linear generalization of the linear operator AT . It can
be shown that that this operator plays a similar role in the estimation of risk-sensitive MAP for
HMM’s as the operator AT in the risk-neutral case. The purpose of this paper is to compare the
asymptotic behavior of F γ and AT .

It is well known that under primitivity of the matrix A, the dynamical system defined by

pn+1 = AT pn, (6)

for every choice of the initial probability distribution p0, converges to p∗ which satisfies ATp∗ =
p∗[5].

Definition: A Cycle of RS-Probability ( CRP ) is a finite set of probabilities {v1, ..., vm} such that
F γ(vi) = vi+1 with F γ(vm) = v1; m is called the period of the CRP.

We pose the following conjecture:

Conjecture: Let the stochastic matrix A be primitive. Then, for every choice of the initial
probability distribution p0, the dynamical system

Ut+1 = F γ(Ut) (7)
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is asymptotically periodic, i.e., Ut approaches a CRP as t → ∞ satisfying the equations

F γ(v1) = v2, F γ(v2) = v3, ..., F γ(vm) = v1. (8)

The condition F γ(v1) = v2, F γ(v2) = v3, ..., F γ(vm) = v1 can be considered a generalization of the
equation AT p∗ = p∗. It is not difficult to show that in general, the equations are quadratic. Note
that we do not exclude the case m = 1; the CRP only has one element and thus F γ is asymptotically
stationary. Next, we report a number of other properties of F γ .

Property 1: Dependence of the asymptotic behavior on the initial condition. The
asymptotic behavior of F γ may depend on the initial conditions. That is, depending on the initial
condition a different CRP may emerge. Let A be given by

A =
[
0.2 0.8
0.6 0.4

]
eγ = 100. (9)

Let the initial condition be given by (u1, u2). There are two different CRP’s depending on the
initial conditions:

F γ(u) = u =
[
0.594
0.405

]
if u1 ≥ u2 (10)

F γ(v) = v =
[
0.214
0.785

]
if u2 > u1. (11)

When is the asymptotic behavior independent of the initial condition? We believe this depends on
the relation between the diagonal and off-diagonal elements of A. For example, consider the matrix

A =
[

0.6 0.4
0.25 0.75

]
eγ = 10. (12)

The CRP, for every initial condition, has two elements

CRP : (v1, v2) F γ(v1) = v2 F γ(v2) = v1. (13)

v1 =
[
0.283
0.716

]
v2 =

[
0.534
0.465

]
. (14)

It appears that when the diagonal elements “dominate” the off-diagonal elements, the asymptotic
behavior is independent of the initial condition. We have carried out a thorough investigation
for 6 × 6 stochastic matrices and lower dimensions, but we suspect the property holds in higher
dimensions. One could reason that large diagonal elements indicate a more “stable” dynamical
system compared to the case with high “cross-flow” among the states. The non-linear perturbation
of our dynamical system with higher levels of cross-flow tends to “split” the stationary attractor.
Understanding the precise behavior is an open problem. But, below we describe some special cases.

Property 2: Dependence of the period on γ. Our simulations show that for small
values of γ the period is 1; i.e., F γ is asymptotically stationary. As γ increases periodic behavior
may emerge; based on simulation of the examples we have studied, the period tends to increase
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with increasing γ but then decrease for large values. So, the most complex behavior occurs for the
mid-range values of γ. Consider

A =
[
0.8 0.2
0.4 0.6

]
, (15)

and let m be the period. Our simulations show that the period m of the CRP’s depends on the
choice of γ; our simulations results in the pairs (eγ , m):(2.1,1) (2.7,1) (2.9,1) (3,1) (3.01,7) (3.1,5)
(3.3,4) (3.9,3) (10,2) (21,2). We can see that even in two dimensions, the behavior of F γ is complex.

When does the periodic behavior emerge? The fixed point problem provides the answer. If the
fix point problem F γ(u) = u does not have a solution satisfying 0 ≤ u ≤ 1, the asymptotic behavior
cannot be stationary. For two dimensions, the equation F γ(u) = u = (u1, u2)T is easy to write.
Assume u1 > u2 (for the case u2 > u1, we transpose 1 and 2).

A =
[
a11 a12

a21 a22

]
, (16)

and recall that u1 + u2 = 1. This yields

(eγ − 1)u2
1 + u1(a11 − eγa21 − eγ) + a21e

γ = 0 u1 ≥ u2 (17)

(eγ − 1)u2
2 + u1(a22 − eγa12 − eγ) + a12e

γ = 0 u2 > u1 (18)

First, note that when γ = 0, we have

u1(a12 + a21) = a21 (19)

which is linear and is the fixed point problem AT (u) = u. For the above example, the roots of the
equation resulting from the assumption u2 > u1 are greater than one for all ranges of eγ > 1. Thus,
stationarity requires that a solution to

(eγ − 1)u2
1 + u1(0.8 − eγ0.4 − eγ) + 0.4eγ = 0 u2 < u1 (20)

exist. One solution turns out to be greater than one. The other solution is plotted vs. r = eγ in
Figure 1. The condition u2 < u1 fails for eγ > 3. Thus for eγ > 3 no stationary solution can exist.
If the conjecture is correct, the periodic behavior must emerge, which is exactly what we observed
above. Based on the examples we have studied, this is a general property of F γ in two dimensions
when diagonal elements “dominate”.

Let a11 > a12 and a22 > a21. Also, assume without loss of generality, that a11 > a22. For the
stationary solution to exist as we showed above, (17) must have a solution. Let ∆ = a11−eγa21−eγ .
For small values of γ, the probability solution of (17) (0 ≤ u1 ≤ 1) turns out to be

−∆ − √
∆2 − 4a21eγ(eγ − 1)
2(eγ − 1)

, (21)

and as u2 < u1 implies 1/2 < u1, we must have

−∆ − √
∆2 − 4a21eγ(eγ − 1)
2(eγ − 1)

> 1/2,
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Figure 1: The emergence of periodicity.

which after some simple algebra implies

eγ <
2a11 − 1
1 − 2a21

. (22)

If we plug in a11 = 0.8 and a21 = 0.4, we get eγ < 3. If the conjecture is true, periods must
appear for eγ > 3. At eγ = 2a11−1

1−2a21
, we get u1 = u2 = 1/2 which can be shown to be an acceptable

stationary solution; hence 2a11−1
1−2a21

is a sharp threshold. Our computations have been consistent with
this result. For the case a11 < a22, we obtain

eγ <
2a22 − 1
1 − 2a12

. (23)

Writing aii = 1/2 + ε and aji = 1/2 − δ, both results can be written as

eγ <
ε

δ
. (24)

(24) is a measure of sensitivity to risk.

Periodicity seems persistent; once the periodic solutions emerge, increasing eγ does not seem to
bring back the stationary behavior. In two dimensions for large values of eγ , an interesting classi-
fication is possible. Given that the conjecture hold, an obvious sufficient condition for periodicity
would be for the roots of (17) and (18) to be complex:

(a11 − eγa21 − eγ)2 − 4(eγ − 1)a21e
γ < 0 (25)

(a22 − eγa12 − eγ)2 − 4(eγ − 1)a12e
γ < 0 (26)
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Figure 2: The classification in two dimensions.

But, further inspection shows for sufficiently large values of eγ , the inequalities give

e2γ(1 − a21)2 < 0 (27)

e2γ(1 − a12)2 < 0 (28)

which are clearly false and so real roots exist. Other relations can be exploited to show that these
roots are unacceptable and hence demonstrate the existence of periodic attractors as we will show
next. Consider the case eγ >> aij, 0 < aij < 1. Then, the fixed point problem (17) can be written
as

eγu2
1 − eγ(1 + a21)u1 + a21e

γ = 0 (29)

u2
1 − u1(1 + a21) + a21 = (u1 − 1)(u1 − a21). (30)

The solutions turn out to be (1, 0) and (a21, a22). (1, 0) can be ruled out by the assumption
0 < aij < 1. The assumption u1 < u2, (18), leads by transposition to solutions (1, 0) and (a11, a12).
Thus, if we assume a11 > a12 and a22 > a21, both solutions can be ruled out; for large values of eγ

the fixed point value problem with period one (the stationary case) does not have a solution and
the period must be 2 or more.

If we assume a21 > a22 and a12 > a11 then both (a21, a22) and (a11, a12) are acceptable solutions.
This was the case in (10) and (11); our computations show that there are in fact two stationary
solutions close to (a21, a22) and (a12, a11) depending on the initial conditions. Likewise, we can use
the simultaneous quadratic equations to classify all the attractors in two dimensions which emerge
with increasing eγ . For the matrix A given by (15), we see that this behavior is already emergent
at about eγ = 10. Figure 2 shows the classification. It is possible to write down these equations
in higher dimensions as simultaneous quadratic equations parameterized by eγ . Classifying the
solutions of these equations is an interesting open problem.

Property 3: Dependence of the period and and the periodic attractors on transition
probabilities. The dependence of the period on transition probabilities is shown next. Let
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ε 0.1 0.01 0.008 0.006 0.004 0.002 0.001 0.0002
Period 4 4 29 21 17 78 430 682

Table 1: The periodic behavior for (31)
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Figure 3: The first component of RS-probability vs. time for ε = 0.001.

A =


 0.9 − ε 0.1 ε

0.4 0.6 0.0
0.0 ε 1.0 − ε


 , (31)

and eγ = 101. The CRP’s appear to be independent of the initial conditions but the period can
depend strongly on ε as Table 1 shows. Figure 3 shows the values of the first component of the
RS-probability vs. time for ε = 0.001. (There are 2000 data points and hence some apparent
overlaps). In Table 1, we see that as ε → ∞, the period increases rapidly. One possible explanation
is that ε controls the mixing properties of (31); the matrix A is primitive only for strictly positive
values of ε and as ε approaches zero, (31) “approaches” a non-mixing dynamical system and hence
its stationary behavior becomes less “stable”.

The result suggests that the asymptotic behavior of non-primitive stochastic matrices under
risk-sensitivity is interesting and merits investigation.
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Figure 4: Comparing F γ and AT .

4 Conclusions

The risk-sensitive estimation of HMM’s gives rise to a notion of probability for Markov chains arising
from a non-linear generalization of the linear operator AT , where A is a row-stochastic primitive
matrix. This operator, denoted by F γ in this paper, has a number of properties summarized in
the table above. There is an interesting relation between the asymptotic behavior of F γ and a
set of simultaneous non-linear equations parameterized by eγ determining the periodic solutions.
We provided some description of this relation for the two-dimensional case in this paper. We have
posed a series of open problems which are the subject of our further research.
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