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Abstract

This paper presents approximations for open queueing networks. The approximations include
the wait-in-batch-time, the departure variability at self-service stations, and the arrival variability
for process batches.

1. Introduction

This work in this paper is motivated by the study of mass dispensing and vaccination clinics.
While the study of queueing networks has resulted in numerous results, the need to model
queueing networks with batch processes performed by multiple parallel servers and self-service
stations led us to develop new approximations. This paper presents results that justify the
approximations in Pilehvar et al. (2006).

The fundamental problem is to evaluate the capacity and queueing of a given clinic design, given
information about the arrival of residents to the clinic, the flow of residents through the clinic,
and the processing at each workstation in the clinic.

Due to the nature of these facilities, we model a clinic as an open queueing network. In the
clinic queueing model, county residents are the customers, and the servers are the clinic staff,
who are the critical resource. Residents arrive according to an external (not necessarily Poisson)
arrival process. When buses are used to transport residents to a clinic, arrivals will be batches of
residents. The queueing network operates in the following manner. When a resident arrives, he
goes to the first workstation. Based on that resident’s personal information (including current
state of health and medical allergies), the resident moves from one workstation to another in the
clinic. Most residents will receive treatment (medication or vaccination) and then leave.
However, some residents will leave without receiving treatment, and others will be transported to
a hospital.

We decompose the queueing network by estimating the performance of each workstation using a
combination of exact and approximate models. A key contribution of this paper is to introduce
approximations for workstations with batch arrivals and multiple parallel servers, for
workstations with batch processes and multiple parallel servers, and for self-service
workstations.

Most of the workstations in a clinic have multiple, parallel servers that treat one resident at a
time. For example, a vaccination workstation may have a dozen nurses, and each nurse
vaccinates one resident at a time. However, some workstations in a clinic have batch processes
that serve multiple residents simultaneously as a group. Moreover, there may be multiple servers
so that multiple batches can be processed in parallel. For instance, at the education station,
residents sit in classrooms in which they watch an informational video about the smallpox
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vaccine (under the direction of a staff member). Because there are multiple classrooms, different
groups begin and end the process at different times.

There are also self-service stations where residents complete paperwork (typically, medical
history questionnaires) on their own. Staff may be present to answer questions, but they are not
the critical resource, and modeling the process by which residents ask for and receive assistance
is not essential to estimate clinic performance. One could also model the time that residents
spend walking from one station to another as a self-service station.

Motivated by the setup of typical clinics, we assume that there is no re-entrant flow. The overall
model is described by Pilehvar et al. (2006). This paper provides supporting derivations and
results of computational experiments.

2. Wait-in-batch-time derivation

This section considers the case with a general arrival process. Residents arrive to the
workstation in batches and individually. The arrival batches may come from different batch
processing workstations, and the batch sizes from each workstation may vary due to the routing
probabilities. There are also individual arrivals from individual processing workstations. The
workstation has multiple, parallel servers that serve residents individually. To analyze this case
we model all of the arrivals as batches. Each batch must wait to get to the head of the queue, at
which point it “opens” and at least one of the residents in the batch begins service. The other
residents must wait in the batch for a server.

A key quantity is the estimate of the wait-in-batch-time, the average time that a resident spends
in the batch from the time that the batch “opens” until the resident begins service.

We will use the following notation:
m; = Number of staff at station i
t; = Mean process time at station i (minutes)

Aa; = Batch arrival rate at station i (batches per minute)

K ,; = Average batch size of all batches that come to station i
u; = Utilization at station 1
p, (i) = Steady-state probability of having n residents in station i.

U; = Steady-state probability of all of the servers at station i being busy

X; = Average number of residents that wait in the batch at station i.



WIBT; =Average wait in batch time at station i (minutes)

If we replace the workstation by the equivalent single-server workstation with a mean processing
time equal to ¢,/ m,, we would estimate the wait-in-batch-time as follows:

(EAi -1,

2m.

i

WIBT, =

As we will see, this estimate (which we call Formula 1) is not a good approximation, so we will
derive a new formula for the wait-in-batch-time. To do so, we start by calculating the following
terms:

m;—1

U=3 p)=1-3 pG)

n=ny n=0

It will be useful to note the following:

m;—1

ann (i) =mu, —m, Z p,()=m, (ul. —U,.)

n=0 n=ny

If, when the batch arrives, the number of residents is greater or equal to the number of servers,
all of the servers are busy, so the batch waits in the queue. Eventually, the batch is at the head of
the queue and one of the servers completes a resident. Then the batch opens, one resident begins
service without waiting in batch, and all of the others wait in the batch.

If, when the batch arrives, the number of residents is less than the number of servers, one or
more servers are idle, so the batch opens and one or more residents begin service immediately.

From this we estimate X, as follows:

m;—1

X, =3 p,()(Ky-m+n)+ Y p, ()(K, 1)

n=0 n=ny

= EA[ —-m, (I_Ui)+mi (”i _U')_U'

i i

=K, —m+mu, —U,

Thus, K ,, — X, residents go to servers immediately. For them the wait-in-batch-time is zero.

. . I . .
Assuming that the servers, when busy, complete a resident every —— minutes, the first resident
m,
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of those remaining must wait-in-batch for —— minutes. The second waits —- minutes, and so
m, m,

4 i

forth. The last resident in the batch waits for — minutes. We then estimate the average wait-
m

i

in-batch-time as follows (we call this estimate Formula 2):

Xi
WIBT, =—LZH—I’=M.L
KAi n=1 M, ZKA’. m,
= (EAi R _Ui)(EAi —m, + L, _U,' +1) l
_ 2K, T

The only remaining task is to estimate U;. Following Shore (1988) and dropping the station
subscript for the moment, we let E(N,) be the mean number of customers in the system and

E(N,) be the mean number in of customers in the corresponding GI/G/1 queue having the same
traffic intensity.

B N2m+2 2 2
+
E(N,)=mu+| = HG @ C€:|

E(Nl)=u+ u :||:C atC e:|

Shore shows that

U=u(E(N,))—mu)/(E(N,)—u)

From this, we can determine that U = u¥*"**™". Since this is not affected by the arrival
variability, we will use this result for our batch arrival case. Going back to the original notation,
we have

U _ 2my;+2-1
i =Y

3. Wait-in-batch-time experiments

To evaluate Formula 1 and Formula 2, we conducted a set of computational experiments using a
discrete-event simulation model of the station. In each scenario, the arrival batches had a fixed
size (either 5 or 20), and the interarrival times were exponentially distributed. The mean
interarrival time varied from 0.1684 minutes to 0.3333 minutes. The distribution of the
processing times was an exponential distribution or a gamma distribution. For the exponential
distributions, the mean was either 0.0333 minutes or 0.10 minutes. For the gamma distributions,
the alpha was always 0.5, while the beta was set to 0.0167, 0.050, 0.0667, and 0.20. The number
of servers was either 1 or 3. Tables 1, 2, and 3 describes the scenarios. The name of each

4



scenario refers to the processing time distribution, the batch size, the number of servers, and the
expected utilization.

Table 1. Scenarios with exponentially distributed processing times.

Scenario Batch size Mean Interarrival Mean Processing | Number of servers
Time (mins) Time (mins)
E-5-1-99 5 0.1684 0.0333 1
E-5-1-95 5 0.1754 0.0333 1
E-5-1-90 5 0.1852 0.0333 1
E-5-1-80 5 0.2083 0.0333 1
E-5-1-50 5 0.3333 0.0333 1
E-5-3-99 5 0.1684 0.1000 3
E-5-3-95 5 0.1754 0.1000 3
E-5-3-90 5 0.1852 0.1000 3
E-5-3-80 5 0.2083 0.1000 3
E-5-3-50 5 0.3333 0.1000 3

Table 2. Scenarios with processing times that have a gamma distribution and one server.
Scenario Batch size Mean Interarrival Mean Processing | Number of servers

Time (mins) Time (mins)
G-5-1-99 5 0.1684 0.0333 1
G-5-1-95 5 0.1754 0.0333 1
G-5-1-90 5 0.1852 0.0333 1
G-5-1-80 5 0.2083 0.0333 1
G-5-1-50 5 0.3333 0.0333 1
G-20-1-99 20 0.1684 0.0083 1
G-20-1-95 20 0.1754 0.0083 1
G-20-1-90 20 0.1852 0.0083 1
G-20-1-80 20 0.2083 0.0083 1
G-20-1-50 20 0.3333 0.0083 1




Table 3. Scenarios with processing times that have a gamma distribution and three servers.

Scenario Batch size Mean Interarrival Mean Processing | Number of servers
Time (mins) Time (mins)
G-5-3-99 5 0.1684 0.1000 3
G-5-3-95 5 0.1754 0.1000 3
G-5-3-90 5 0.1852 0.1000 3
G-5-3-80 5 0.2083 0.1000 3
G-5-3-50 5 0.3333 0.1000 3
G-20-3-99 20 0.1684 0.0250 3
G-20-3-95 20 0.1754 0.0250 3
G-20-3-90 20 0.1852 0.0250 3
G-20-3-80 20 0.2083 0.0250 3
G-20-3-50 20 0.3333 0.0250 3




For each scenario, we ran a simulation model with 100 replications, each 30,000 minutes long
with a warm-up period of 25,000 minutes. From the simulation model we could calculate the
average wait-in-batch-time of residents. We also used Formula 1 and Formula 2 to estimate the
average wait-in-batch-time. Tables 4, 5, and 6 shows the results. For each scenario, the table
lists the average wait-in-batch-time from the simulation model, the estimate from Formula 1, and
the estimate from Formula 2. Also listed are the relative errors for the estimates. We see that
Formula 2 provides a much better estimate than Formula 1.

Table 4. Results for scenarios with exponentially distributed processing times.

Scenario WIBT from WIBT from Relative WIBT from Relative
simulation Formula 1 error, Formula 2 error,
(mins) (mins) Formula 1 (mins) Formula 2
E-5-1-99 0.0667 0.0667 0.050% 0.0667 0.050%
E-5-1-95 0.0667 0.0667 0.050% 0.0667 0.050%
E-5-1-90 0.0667 0.0667 0.050% 0.0667 0.050%
E-5-1-80 0.0667 0.0667 0.050% 0.0667 0.050%
E-5-1-50 0.0667 0.0667 0.050% 0.0667 0.050%
E-5-3-99 0.0660 0.0667 1.010% 0.0663 0.475%
E-5-3-95 0.0660 0.0667 1.010% 0.0649 1.720%
E-5-3-90 0.0600 0.0667 11.111% 0.0630 4.959%
E-5-3-80 0.0600 0.0667 11.111% 0.0590 1.748%
E-5-3-50 0.0480 0.0667 38.889% 0.0453 5.717%




Table 5. Results for scenarios with Gamma distributed processing times with 1 server.

Scenario WIBT from WIBT from Relative WIBT from Relative
simulation Formula 1 error, Formula 2 error,

(mins) (mins) Formula 1 (mins) Formula 2
G-5-1-99 0.0665 0.0667 0.251% 0.0667 0.251%
G-5-1-95 0.0665 0.0667 0.251% 0.0667 0.251%
G-5-1-90 0.0665 0.0667 0.251% 0.0667 0.251%
G-5-1-80 0.0665 0.0667 0.251% 0.0667 0.251%
G-5-1-50 0.0665 0.0667 0.251% 0.0667 0.251%
G-20-1-99 0.0790 0.0792 0.211% 0.0792 0.211%
G-20-1-95 0.0790 0.0792 0.211% 0.0792 0.211%
G-20-1-90 0.0790 0.0792 0.211% 0.0792 0.211%
G-20-1-80 0.0790 0.0792 0.211% 0.0792 0.211%
G-20-1-50 0.0790 0.0792 0.211% 0.0792 0.211%

Table 6. Results for scenarios with Gamma distributed processing times with 3 servers.

Scenario WIBT from WIBT from Relative WIBT from Relative
simulation Formula 1 error, Formula 2 error,
(mins) (mins) Formula 1 (mins) Formula 2

G-5-3-99 0.0660 0.0667 1.010% 0.0663 0.475%
G-5-3-95 0.0643 0.0667 3.681% 0.0649 0.878%
G-5-3-90 0.0621 0.0667 7.354% 0.0630 1.409%
G-5-3-80 0.0576 0.0667 15.741% 0.0590 2.346%
G-5-3-50 0.0429 0.0667 55.400% 0.0453 5.491%
G-20-3-99 0.0787 0.0792 0.593% 0.0729 7.373%
G-20-3-95 0.0779 0.0792 1.626% 0.0729 6.422%
G-20-3-90 0.0770 0.0792 2.814% 0.0729 5.328%
G-20-3-80 0.0750 0.0792 5.556% 0.0729 2.803%
G-20-3-50 0.0688 0.0792 15.068% 0.0729 5.956%




4. Self-service

In this case, residents arrive individually to the workstation. The residents perform the process
themselves without any external resources. In this domain, an example would be a workstation
where each resident must complete a form. Thus, the workstation can be modeled as a G/G/oo
queueing system.

We will use the following notation:

r; = Arrival rate at station i (residents per minute)
¢’ = Aggregate batch arrival SCV at station i
t; = Mean process time at station i (minutes)

¢, = Processing time SCV at station i
p; =rt, = Load

¢;, = Departure SCV at station i

To estimate the departure variability we first take into account the following facts. For a G/D/c
system, the departure variability equals the arrival variability because the departure process is
simply the arrival process shifted by a constant equal to the processing time. For a M/G/oo
system, the departure process is a Poisson process; thus the departure variability equals 1 (Burke,
1958, and Mirasol, 1963). For a G/G/oo system, Whitt (1983) suggests that the departure
variability approaches 1 as the load (the arrival rate divided by the service rate) goes to infinity.
On the other hand, if the load is near O, the service rate is relatively fast, implying that customers
spend very little time in the system. Thus, we would expect the departure variability to equal the
arrival variability. These imply that, in the general case (a G/G/o system with moderate load),
the departure variability will be somewhere between the arrival variability and one. Exactly
where will depend upon the load.

Therefore, we conducted experiments to characterize this relationship and to examine various
weights for interpolating between the arrival variability and one as a function of the load
p; = rt,. The weight should be between 0 and 1.

The general form of the interpolation can be expressed as follows:

ci=(-o)c+w

ai

Note that, if the arrival variability equals 1, then (for any weight), the departure variability equals
1. The purpose of the experiments was to evaluate various functions that could be used to
determine the weight for this interpolation.

Three candidates were tried:
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All of these are between 0 and 1 and have the following desirable properties:

e As the processing time variability goes to 0, the weight goes to 0, and the departure
variability approaches the arrival variability.

e As the load goes to 0, the weight goes to 0, and the departure variability approaches the
arrival variability.

e As the load goes to infinity, the weight goes to 1, and the departure variability approaches 1.

Based on the results (discussed in the next section), we decided to use w,, which yields the

a’

following approximation:

22 22
2 2 PiC,i " Pi Coi
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5. Self-service experiments

To evaluate these weights, we conducted sets of computational experiments using a discrete-
event simulation model of the station. In all cases, we ran five replications and measured the
interdeparture times of the residents. We then calculated the departure SCV for each replication
and calculated 95% confidence intervals. The run lengths and warmup periods were proportional
to the mean interarrival time as indicated below.

In the first set (which we denote as Set DE), the interarrival times were constant, and the
processing times were exponentially distributed. The mean interarrival time went from 0.0006
minutes to 100 minutes. The mean processing time was 3 minutes in all scenarios. Thus, the
load varied from 0.03 to 5000. The run length was set equal to 260,000 times the mean
interarrival time, and the warmup period was set equal to 200,000 times the mean interarrival
time.

In the second set (Set GE), the interarrival times had a gamma distribution, and the processing
times were exponentially distributed. The mean interarrival time went from 0.04 minutes to 40
minutes. The alpha parameter was always equal to 0.2, so the interarrival variability was always
5. The mean processing time was 3 minutes in all scenarios. Thus, the load varied from 0.075 to
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750. The run length was set equal to 110,000 times the mean interarrival time, and the warmup
period was set equal to 50,000 times the mean interarrival time.

In the third set (Set EG), the interarrival times were exponentially distributed, and the processing
times had a gamma distribution. The mean interarrival time was always 4 minutes. The mean
processing time varied from 0.05 to 2000 minutes. The alpha parameter was always equal to 0.5,
so the processing time variability was always 2. Thus, the load varied from 0.0125 to 500. The
run length was set equal to 865,000 times the mean interarrival time, and the warmup period was
set equal to 800,000 times the mean interarrival time.

In the fourth set (Set GG), the interarrival times had a gamma distribution, and the processing
times had a gamma distribution. The mean interarrival time was always 4 minutes. The alpha
parameter was always 0.1, so the arrival variability was always 10. The mean processing time
varied from 0.25 to 2000 minutes. The alpha parameter was always equal to 0.5, so the
processing time variability was always 2. Thus, the load varied from 0.0625 to 500. The run
length was set equal to 1,315,000 times the mean interarrival time, and the warmup period was
set equal to 1,250,000 times the mean interarrival time.

In the fifth set (Set UG), the interarrival times had a uniform distribution, and the processing
times had a gamma distribution. The interarrival time distribution was always between 3 and 5
minutes. Thus, the arrival variability was always 0.02. The mean processing time varied from
0.25 to 2000 minutes. The alpha parameter was always equal to 0.5, so the processing time
variability was always 2. Thus, the load varied from 0.0625 to 500. The run length was set
equal to 140,000 times the mean interarrival time, and the warmup period was set equal to
75,000 times the mean interarrival time.

Tables 7 to 11 present the results for sets DE, GE, EG, GG and UG. For each scenario, the table
lists the load, the departure SCV from the simulation, the lower and upper bound on the
confidence interval. In addition, it provides the three departure SCV estimates (one using each
weight) and the relative error for each. Figures 1, 2, 3, 4, and 5 compare the estimates using @,

to the simulation results.
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Table 7. Departure variability results for Set DE.

Load SCV Lower Upper SCV Relative SCV Relative SCV Relative
(sim.) bound bound a error b error C error
5000 | 1.0055 0.027 1.0325 | 0.9996 0.590% 1.0000 0.550% 09998  0.570%
3000 | 1.0081 | 0.0258 1.0339 | 0.9993 0.873% 1.0000 0.807% 0.9997  0.840%
1000 | 1.0014 0.03 1.0314 | 0.9980 0.343% 1.0000 0.143% 09990 0.243%
500 0.9956 0.023 1.0185 | 0.9960 0.043% 1.0000 0.443% 09980 0.243%
400 1.0027 | 0.0268 1.0295 | 0.9950 0.771% 1.0000 0.275% 09975  0.523%
300 1.0077 | 0.0271 1.0348 | 0.9934 1.420% 1.0000 0.763% 09967  1.092%
200 0.9882 | 0.0245 1.0127 | 0.9901 0.195% 1.0000 1.197% 09950  0.696%
100 1.0012 | 0.0303 1.0316 | 0.9803 2.092% 0.9999 0.134% 09901 1.113%
60 0.9776 0.019 0.9966 | 0.9675 1.032% 0.9997 2.266% 09836 0.617%
30 09545 | 0.0158 09703 | 0.9365 1.879% 0.9989 4.656% 09677  1.392%
6 0.8499 | 0.0199  0.8697 | 0.7347 13.553% | 0.9730 14.484% | 0.8571 0.855%
3 0.7564 | 0.0215  0.7778 | 05625  25.630% | 0.9000 18.991% | 0.7500 0.841%
2 0.6796 | 00176  0.6972 | 04444  34.599% | 0.8000 17.722% | 0.6667  1.898%
1.5 0.5933 | 0.0143  0.6076 | 0.3600  39.325% | 0.6923 16.683% | 0.6000 1.126%
0.75 | 0.3957 | 0.0099 04056 | 0.1837  53.578% | 0.3600 9.012% 0.4286  8.319%
0.5 0.2753 | 0.0045 02798 | O.l1111 59.642% | 0.2000  27.355% | 0.3333  21.07%
0.3 0.1446 | 0.0013  0.1458 | 0.0533  63.160% | 0.0826  42.881% | 0.2308  59.64%
0.2 0.0741 | 0.0008 0.0749 | 0.0278  62.513% | 0.0385  48.095% | 0.1667 124.9%
0.15 | 0.0434 | 0.0007 0.0441 | 0.0170  60.754% | 0.0220  49.239% | 0.1304  200.8%
0.12 | 0.0280 | 0.0006  0.0286 | 0.0115  59.058% | 0.0142  49.372% | 0.1071 282.1%
0.1 0.0195 | 0.0004 0.0199 | 0.0083  57.639% | 0.0099  49.251% | 0.0909  365.9%
0.03 | 0.0018 | 3.3E-05 0.0018 | 0.0008  51.524% | 0.0009 48.618% | 0.0291  1564.%
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Table 8. Departure variability results for Set GE.

Load SCV Lower Upper SCV Relative SCV Relative SCV Relative
(sim.) bound bound a error b error C error
750 0.9995 0.9755 1.0234 1.0106 1.115% 1.0000 0.051% 1.0053 0.583%
250 1.0074 0.9657 1.0491 1.0318 2.423% 1.0001 0.728% 1.0159 0.847%
125 1.0299 1.0144 1.0453 1.0632 3.237% 1.0003 2.878% 1.0317 0.179%
100 1.0075 0.9505 1.0645 1.0788 7.078% 1.0004 0.705% 1.0396 3.186%
75 1.0689 1.0372 1.1007 1.1046 3.337% 1.0007 6.379% 1.0526 1.522%
50 1.0607 1.042 1.0795 1.1553 8.921% 1.0016 5.572% 1.0784 1.672%
25 1.1834 1.1294 1.2374 1.3018 10.003% 1.0064 14.958% 1.1538 2.497%
15 1.3269 1.2303 1.4235 1.4844 11.868% 1.0177 23.303% 1.2500 5.795%
7.5 1.8037 1.5534 2.0539 1.8858 4.552% 1.0699 40.685% 1.4706 18.468%
1.5 3.7072 3.2701 4.1444 3.5600 3.971% 2.2308 39.826% 2.6000 29.866%
0.75 4.328 3.8798 47763 4.2653 1.449% 3.5600 17.745% 3.2857 24.082%
0.5 4.5708 4.1191 5.0226 4.5556 0.334% 4.2000 8.112% 3.6667 19.781%
0.375 4.6949 4.2422 5.1475 4.7025 0.161% 4.5068 4.005% 3.9091 16.738%
0.1875 4.8676 4.3642 5.371 4.9003 0.671% 4.8642 0.071% 4.3684 10.255%
0.125 4.9324 4.4765 5.3882 4.9506 0.369% 4.9385 0.123% 4.5556 7.640%
0.075 49721 4.5159 5.4284 4.9805 0.170% 49776 0.111% 4.7209 5.052%
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Table 9. Departure variability results for Set EG.

Load SCV Lower Upper SCV Relative SCV Relative SCV | Relative
(sim.) bound bound a error b error C error

500 0.9892 0.9729 1.0056 1.00 1.089% 1.00 1.089% 1.00 1.089%
250 0.9924 0.9737 1.0112 1.00 0.761% 1.00 0.761% 1.00 0.761%
125 0.9993 09714 1.0273 1.00 0.063% 1.00 0.063% 1.00 0.063%
87.5 1.0132 0.9892 1.0373 1.00 1.308% 1.00 1.308% 1.00 1.308%
62.5 0.9946 0.9686 1.0206 1.00 0.543% 1.00 0.543% 1.00 0.543%

50 0.9898 0.9769 1.0027 1.00 1.029% 1.00 1.029% 1.00 1.029%
37.5 0.9933 09717 1.015 1.00 0.670% 1.00 0.670% 1.00 0.670%

25 0.9972 0.962 1.0324 1.00 0.278% 1.00 0.278% 1.00 0.278%
12.5 0.9897 0.9704 1.0091 1.00 1.037% 1.00 1.037% 1.00 1.037%
6.25 0.9947 0.9679 1.0215 1.00 0.531% 1.00 0.531% 1.00 0.531%
25 0.9947 0.9831 1.0064 1.00 0.527% 1.00 0.527% 1.00 0.527%
1.25 0.9893 0.9764 1.0022 1.00 1.080% 1.00 1.080% 1.00 1.080%
0.63 0.9904 0.9694 1.0115 1.00 0.960% 1.00 0.960% 1.00 0.960%
0.13 0.9995 0.9802 1.0188 1.00 0.046% 1.00 0.046% 1.00 0.046%
0.06 1.0010 0.9822 1.02 1.00 0.107% 1.00 0.107% 1.00 0.107%
0.01 1.0021 0.984 1.0203 1.00 0.214% 1.00 0.214% 1.00 0.214%
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Table 10. Departure variability results for Set GG.

Load SCV Lower Upper SCV Relative SCV Relative SCV Relative
(sim.) bound bound a error b error C error
500 1.0172 0.9984 1.0359 1.0254 0.806% 1.0000 1.689% 1.0090 0.807%
250 1.0557 1.0254 1.086 1.0507 0.474% 1.0001 5.269% 1.0180 3.574%
125 1.0935 1.0588 1.1281 1.1010 0.683% 1.0003 8.524% 1.0359 5.271%
87.5 1.158 1.1211 1.1949 1.1437 1.233% 1.0006 13.593% 1.0511 9.228%
62.5 1.2288 1.1585 1.2991 1.2002 2.324% 1.0012 18.526% 1.0714 12.807%
50 1.2752 1.1668 1.3837 1.2493 2.034% 1.0018 21.440% 1.0891 14.593%
375 1.4536 1.2319 1.6752 1.3300 8.500% 1.0032 30.985% 1.1184 23.059%
25 1.7081 1.3121 2.1041 1.4883 12.868% 1.0072 41.034% 1.1765 31.124%
12.5 2.723 1.667 3.779 1.9379 28.831% 1.0287 62.222% 1.3462 50.564%
6.25 4.2706 2.6963 5.845 2.7365 35.922% 1.1137 73.921% 1.6667 60.973%
25 6.9288 4.9615 8.8961 4.5312 34.604% 1.6667 75.946% 2.5000 63.919%
1.25 8.5373 6.5603 10.5144 6.3286 25.871% 3.1818 62.730% 3.5714 58.167%
0.625 9.7565 7.7646 11.7483 8.0188 17.811% 6.0526 37.963% 5.0000 48.752%
0.125 10.7301 8.7557 12.7045 9.7969 8.697% 9.7273 9.346% 8.2000 23.579%
0.062 10.8393 8.868 12.8107 9.9415 8.283% 9.9313 8.377% 9.0071 16.903%
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Table 11. Departure variability results for Set UG.

Load SCV Lower Upper SCV Relative SCV Relative SCV Relative
(sim.) bound bound a error b error C error
500 0.9884 0.9591 1.0178 0.9972 0.894% 1.0000 1.173% 0.9990 1.075%
250 0.9938 0.9752 1.0125 0.9945 0.069% 1.0000 0.623% 0.9980 0.427%
125 0.9809 0.9551 1.0067 0.9890 0.827% 1.0000 1.944% 0.9961 1.549%
87.5 0.979 0.9636 0.9943 0.9844 0.548% 0.9999 2.139% 0.9944 1.577%
62.5 0.9727 0.9474 0.998 0.9782 0.567% 0.9999 2.794% 0.9922 2.008%
50 0.9703 0.9604 0.9802 0.9729 0.266% 0.9998 3.041% 0.9903 2.062%
375 0.9564 0.9403 0.9724 0.9641 0.804% 0.9997 4.522% 0.9871 3.212%
25 0.9402 0.9211 0.9594 0.9469 0.710% 0.9992 6.277% 0.9808 4.318%
12.5 0.8928 0.8797 0.9059 0.8980 0.578% 0.9969 11.657% 0.9623 7.789%
6.25 0.8288 0.8157 0.842 0.8111 2.139% 0.9876 19.163% 0.9275 11.905%
25 0.6933 0.6852 0.7013 0.6158 11.175% 0.9275 33.776% 0.8368 20.699%
1.25 0.5455 0.5358 0.5552 0.4203 22.957% 0.7626 39.803% 0.7202 32.032%
0.625 0.3736 0.3661 0.3811 0.2364 36.730% 0.4503 20.527% 0.5648 51.181%
0.125 0.0758 0.0738 0.0777 0.0429 43.369% 0.0505 33.375% 0.2167 185.83%
0.062 0.0366 0.0358 0.0374 0.0273 25.443% 0.0284 22.348% 0.1296 254.17%
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Figure 1. Departure variability results for Set DE.
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Figure 2. Departure variability results for Set GE.
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Figure 3. Departure variability results for Set EG.
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Figure 4. Departure variability results for Set GG.
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Figure 5. Departure variability results for Set UG.
6. Batch formation

In this case, residents arrive in batches (arrival batches) to the workstation. The arriving batches
may come from multiple workstations and may be of different sizes. Arriving residents are
grouped into process batches of a given size to perform the process. There may be multiple
servers that can process different batches in parallel. We assume that the process batches are
larger than the arrival batches. In this domain, an example would be a workstation where
residents must view an educational video. The process batch is the group of residents watching
the video at the same time.

Arriving residents enter a batch formation queue. A process batch is formed whenever there are
k. residents waiting in this queue. These residents then leave this queue, and the newly formed

process batch enters a process queue, where it waits for a server to process it.

We will use the following notation:

¢’ = Aggregate batch arrival SCV at station i

c;, = Arrival SCV for process batches at station i (after being formed)

k; = Processing batch size at station i

K,, = Average batch size of all batches that come to station i
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C’ = SCV of the batch size of all batches that come to station i
K,, = Average batch size of batches that come to station i from station

Agj; = Batch flow rate from station j to station i (batches per minute)

clzgj,. = SCV of the inter-arrival times for batches that come to station i from station j

A key quantity for estimating the performance of such a workstation is the variability associated
with the formation of process batches. The time between two consecutive process batches

forming is a random variable with a SCV of c,f,., which we call the bartch formation variability.
There is no established estimate for this term. Thus, we developed and tested four different
estimates X,.h ,forh=1, 2,3, and 4.

Next, we consider two special cases. First, if all of the residents arrive individually, then it is
easy to see that the variability is pooled:

Second, if all of the arrival batches have exactly K, residents, then each process batch has

exactly k,/ K, arrival batches:

G =X = Tk
In general, however, the size of the arrival batches varies and has SCV of C>,. Thus, in the

general case, the above equation is only an approximation.

Intuitively it is clear that the arrival batch size variability C?, affects the batch formation
variability. Therefore, we decided to create and test a second estimate:

Ky (cjzli + Eji)
k.

i

X} =

The next section will discuss the results of these tests.
7. Initial batch formation experiments

To evaluate these first two estimates, we conducted sets of computational experiments using a
discrete-event simulation model of the station. Each simulation replication was 150,000 to
600,000 minutes long, with a warm-up period of 100,000 to 400,000 minutes. Ten replications
were conducted for each scenario. Simulation results are shown as 95% confidence intervals.
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Initially, seven scenarios were tested. In all of the scenarios, three workstations (1, 2, and 3) sent
batches to a fourth workstation, which is the workstation of interest. This forms three arrival
streams, one from each workstation. In this set of scenarios, the batch size for each arrival
stream is a constant (that is, all of the batches in each arrival stream has the same number of
residents), and the interarrival times are exponentially distributed. The batch sizes and mean
interarrival times for each stream were changed. The process batch size k; varied as well.

Table 12 describes the seven scenarios, and Table 13 describes the results for the scenarios.

Table 12. Description of Scenarios 1 to 7.

Scenario ¢ Mean interrarrival Arrival batch size
times (mins)

1 [ 2 | 3 1 | 2 | 3
1 10 6 7 10 1 2 2
2 10 [ 7 10 1 3 5
3 10 6 7 10 2 4 6
4 10 6 7 10 8 1 5
5 15 [ 4 10 8 7 [
[ 30 [ 4 10 [ 2 12
7 30 6 4 10 3 11 7

Table 13. Results for Scenarios 1 to 7.

Batch formation Confidence interval on batch Relative errors
variability formation variability from
estimates simulation results
Scenario Xil Xiz Midpoint L;i)nv'\:i?r L#?Tr]):ter Xil Xiz
1 0.159 0.174 0.173 0.165 0.182 8.128% 0.609%
2 0.267 0.361 0.37 0.361 0.379 27.718% 2.468%
3 0.367 0.435 0.452 0.443 0.461 18.689% 3.641%
4 0.483 0.673 0.722 0.713 0.732 33.183% 6.746%
5 0.467 0.474 0.504 0.496 0.512 7.377% 6.002%
6 0.236 0.313 0.325 0.318 0.332 27.277% 3.753%
7 0.221 0.272 0.283 0.275 0.292 21.907% 4.088%
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Next, we tested scenarios in which the interarrival time distributions of each arrival stream in
Scenario 4 were changed in order to vary the variability in each arrival stream. The mean
interarrival times and other parameters remained as specified for Scenario 4, and the other two
arrival streams kept exponentially distributed interarrival times. Scenarios 4.1.1 to 4.1.8 changed
the first arrival stream as shown in Table 14. (Note Scenario 4.1.4 is the same as the original
Scenario 4.)

Table 14. Description of Scenarios 4.1.1 to 4.1.8.

Scenario Interrarrival time A_rrivgl_l
distribution "?gacb\y;ty
411 Constant 0
41.2 Gamma(2, 3.5) 0.5
413 Gamma(4/3, 21/4) 0.75
4.1.4 Exponential 1
415 Gamma(2/3, 21/2) 1.5
41.6 Gamma(1/2, 14) 2
41.7 Gamma(1/4, 28) 4
4.1.8 Gamma(1/5, 35) 5
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Scenarios 4.2.1 through 4.2.8 modified the interarrival time distributions of the second arrival
stream to increase the arrival variability in the same way. The mean interarrival time remained 7
minutes for these eight scenarios. Likewise, Scenarios 4.3.1 through 4.3.8 modified the
interarrival time distributions of the third arrival stream to increase the arrival variability in the
same way. The mean interarrival time remained 10 minutes for these eight scenarios.

Table 15. Results for Scenarios 4.1.1 to 4.1.8.

Batch formation Confidence interval on batch Relative errors
variability formation variability from
estimates simulation results
Scenario Xil Xiz Midpoint L;i)nv'\:i?r L#?Tr]):ter Xil Xiz

411 0.29 0.48 0.21 0.201 0.219 36.5% 127.6%
4.1.2 0.38 0.58 0.50 0.495 0.513 23.7% 14.2%
4.1.3 0.43 0.62 0.63 0.620 0.638 31.1% 0.7%
4.1.4 0.48 0.67 0.72 0.713 0.731 33.2% 6.7%
4.1.5 0.58 0.77 0.90 0.893 0.911 35.6% 14.4%
4.1.6 0.68 0.87 1.04 1.027 1.045 34.5% 16.0%
41.7 1.07 1.26 1.36 1.355 1.373 21.4% 7.4%
4.1.8 1.27 1.46 1.48 1.472 1.490 14.4% 1.5%

Table 16. Results for Scenarios 4.2.1 to 4.2.8.

Batch formation Confidence interval on batch Relative errors
variability formation variability from
estimates simulation results
Scenario Xil Xiz Midpoint Lm?r Lfm(ter Xil Xiz
421 0.31 0.51 0.717 0.708 0.726 56.2% 29.5%
4.2.2 0.40 0.59 0.707 0.698 0.716 43.7% 16.7%
423 0.44 0.63 0.727 0.718 0.736 39.4% 13.1%
4.2.4 0.48 0.67 0.722 0.713 0.731 33.2% 6.7%
4.2.5 0.57 0.76 0.739 0.730 0.748 23.3% 2.5%
42.6 0.65 0.84 0.737 0.728 0.745 11.6% 14.3%
427 0.99 1.18 0.754 0.745 0.763 31.0% 56.4%
4.2.8 1.16 1.35 0.743 0.714 0.771 55.6% 81.4%
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Table 17. Results for Scenarios 4.3.1 to 4.3.8.

Batch formation Confidence interval on batch Relative errors
variability formation variability from
estimates simulation results
Scenario Xil Xiz Midpoint Lfi)nv'\;i?r L#?Tr]):ter Xil Xiz
4.3.1 0.36 0.56 0.62 0.612 0.636 41.5% 10.9%
4.3.2 0.42 0.61 0.68 0.660 0.701 37.7% 9.6%
4.3.3 0.45 0.64 0.70 0.683 0.715 35.2% 7.9%
4.3.4 0.48 0.67 0.73 0.716 0.742 33.8% 7.6%
4.3.5 0.54 0.73 0.77 0.756 0.785 29.7% 5.0%
4.3.6 0.60 0.79 0.78 0.734 0.831 23.3% 1.1%
4.3.7 0.84 1.03 0.86 0.817 0.901 2.7% 19.5%
4.3.8 0.95 1.14 0.90 0.861 0.935 6.2% 27.5%

Scenarios 7.1.1 through 7.1.8 modified the interarrival time distributions of the first arrival
stream in Scenario 7 to increase the arrival variability, but the mean interarrival time remained 6
minutes. Scenarios 7.2.1 through 7.2.8 modified the interarrival time distributions of the second
arrival stream to increase the arrival variability, but the mean interarrival time remained 4
minutes.
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Table 18. Results for Scenarios 7.1.1 to 7.1.8.

Batch formation

Confidence interval on batch

Relative errors

variability formation variability from
estimates simulation results
Scenario Xil Xiz Midpoint Ll(i)nv;li(ter L:ir;r]):ter Xil Xiz
711 0.18 0.23 0.27 0.257 0.275 33.5% 14.5%
71.2 0.20 0.25 0.27 0.266 0.280 271% 8.6%
713 0.21 0.26 0.28 0.273 0.297 26.2% 8.5%
7.1.4 0.22 0.27 0.27 0.268 0.282 19.5% 1.2%
715 0.24 0.29 0.29 0.257 0.325 16.3% 1.0%
716 0.27 0.32 0.29 0.276 0.308 9.2% 8.0%
71.7 0.35 0.40 0.31 0.290 0.332 14.0% 30.2%
7.1.8 0.40 0.45 0.31 0.294 0.330 27.6% 43.7%
Table 19. Results for Scenarios 7.2.1 to 7.2.8.
Batch formation Confidence interval on batch Relative errors
variability formation variability from
estimates simulation results
Scenario Xil Xiz Midpoint Ll(i)nv;li(ter L#?Tr]):ter Xil Xiz
7.2.1 0.19 0.24 0.126 0.118 0.134 49.3% 89.3%
722 0.20 0.26 0.213 0.204 0.222 4.0% 19.7%
7.2.3 0.21 0.26 0.251 0.242 0.260 15.1% 5.0%
7.2.4 0.22 0.27 0.283 0.271 0.295 21.8% 3.9%
725 0.24 0.29 0.337 0.328 0.347 29.5% 14.5%
7.2.6 0.25 0.30 0.377 0.354 0.400 32.5% 19.1%
7.2.7 0.32 0.37 0.474 0.466 0.481 32.3% 21.6%
728 0.35 0.40 0.504 0.502 0.506 29.8% 19.8%
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The next step was to look at the impact of varying the arrival rates. To do this, we created
Scenarios 4.4.1 through 4.4.5 and Scenarios 4.5.1 through 4.5.5 from the original Scenario 4.
The interarrival time distributions of the first and second arrival streams remained as exponential
distributions. For Scenarios 4.4.1 through 4.4.5, the interarrival times for the third arrival stream
were constant. For Scenarios 4.5.1 through 4.5.5, the interarrival times for the third arrival
stream had a gamma distribution with alpha equal to 0.5. Thus, the arrival SCV equals 2. The
mean interarrival times were varied as shown in Table 20.

Table 20. Description of Scenarios 4.4.1 to 4.4.5 and Scenarios 4.5.1 through 4.5.5.

Interrarrival time means (mins)
Scenario Arrival stream 1 Arrival stream 2 Arrival stream 3
4.4.1(4.5.1) 6 10 10
442 (452) 7 5 10
4.4.3(4.5.3) 6 7 10
4.4.4(4.5.4) 15 10 6
4.4.5 (4.5.5) 10 15 5

In addition, we created Scenarios 7.3.1 through 7.3.5 and Scenarios 7.4.1 through 7.4.5 from the
original Scenario 7. In Scenarios 7.3.1 to 7.3.5, the interarrival time distributions of the second
and third arrival streams remained as exponential distributions, but the interarrival times for the
first arrival stream had a gamma distribution with alpha equal to 2. In Scenarios 7.4.1 to 7.4.5,
the interarrival time distributions of the first and third arrival streams remained as exponential
distributions, but the interarrival times for the second arrival stream had a gamma distribution
with alpha equal to 2/3. The mean interarrival times were varied as shown in Table 21.

Table 21. Description of Scenarios 7.3.1 to 7.3.5 and Scenarios 7.4.1 to 7.4.5.

Interrarrival time means (mins)

Scenario Arrival stream 1 Arrival stream 2 Arrival stream 3
7.3.1(7.4.1) 3 12 3
732(7.4.2) 6 6 12
7.3.3(7.4.3) 12 10 20/3
7.3.4(7.4.4) 4 20 15
7.3.5(7.4.5) 12 4 15
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Table 22. Results for Scenarios 4.4.1 to 4.4.5.

Batch formation

Confidence interval on batch

Relative errors

variability formation variability from
estimates simulation results
Scenario Xil Xiz Midpoint Ll(i)nv;li(ter L:ir;r]):ter Xil Xiz
4.4.1 0.38 0.54 0.63 0.623 0.641 39.141% | 13.993%
4.4.2 0.33 0.55 0.57 0.558 0.576 42.506% 2.572%
4.4.3 0.60 0.79 0.62 0.611 0.636 3.732% 26.886%
4.4.4 0.29 0.43 0.31 0.295 0.319 5.564% 40.660%
4.4.5 0.24 0.34 0.35 0.331 0.375 32.410% 2.595%
Table 23. Results for Scenarios 4.5.1 to 4.5.5.
Batch formation Confidence interval on batch Relative errors
variability formation variability from
estimates simulation results
Scenario Xil Xiz Midpoint Ll(i)nv;li(ter L#?Tr]):ter Xil Xiz
4.5.1 0.67 0.83 0.81 0.800 0.829 17.796% 1.707%
45.2 0.51 0.73 0.74 0.730 0.758 31.971% 1.526%
4.5.3 0.60 0.79 0.77 0.752 0.796 22.463% 2.201%
454 0.59 0.73 0.81 0.801 0.819 27.133% 9.625%
455 0.78 0.88 0.88 0.869 0.884 11.043% 0.958%
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Table 24. Results for Scenarios 7.3.1 to 7.3.5.

Batch formation Confidence interval on batch Relative errors
variability formation variability from
estimates simulation results
Scenario Xil Xiz Midpoint Ll(i)nv;li(ter L:ir;r]):ter Xil Xiz
7.3.1 0.20 0.25 0.27 0.249 0.293 26.611% | 8.006%
7.3.2 022 0.28 0.30 0.283 0.318 25971% | 5.678%
7.33 0.23 0.27 0.29 0.278 0.302 19.323% | 5.334%
7.3.4 0.14 0.20 0.19 0.184 0.202 25.015% | 4.874%
7.35 0.28 032 0.35 0.338 0.353 19.547% | 7.798%

Table 25. Results for Scenarios 7.4.1 to 7.4.5.

Batch formation Confidence interval on batch Relative errors
variability formation variability from
estimates simulation results
Scenario Xil Xiz Midpoint Ll(i)nv;li(ter L#?Tr]):ter Xil Xiz
7.4.1 0.24 0.29 0.26 0.193 0.317 6.749% 13.046%
74.2 0.24 0.31 0.41 0.383 0.427 39.675% | 24.625%
7.4.3 0.25 0.29 0.34 0.332 0.356 28.100% | 16.311%
7.4.4 0.16 0.22 0.25 0.217 0.275 33.411% 9.983%
7.45 0.32 0.36 0.49 0.472 0.500 33.833% | 25.479%

8. Discussion of initial batch formation experiments

Based on these results, we see that X ,.1 , the first estimate for batch formation variability, is

generally much worse than X, the second estimate for batch formation variability. The latter

estimate is, however, only acceptable when all of the arrival streams have interarrival time
distributions with moderate variability, which occurs in Scenarios 1 to 7, Scenarios 4.1.3 to
4.1.5, Scenarios 4.2.3 to 4.2.5, Scenarios 4.3.3 to 4.3.5, Scenarios 7.1.3 to 7.1.5, and Scenarios
7.23t07.2.5.

Clearly, changes to arrival variability affect the batch formation variability. Moreover, changes

in the arrival variability of smaller batches have less impact than changes in the arrival
variability of larger batches. For example, the batch formation variability changes much more
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across Scenarios 4.1.1 to 4.1.8 (which modifies the arrival stream with the largest batch size)
than it does across Scenarios 4.2.1 to 4.2.8, which modifies the arrival stream with the smallest

batch size.

Similarly, the batch formation variability changes much more across Scenarios 7.2.1 to 7.2.8
(which modifies the arrival stream with the largest batch size) than it does across Scenarios 7.1.1
to 7.1.8, which modifies the arrival stream with the smallest batch size.

However, X ,.2 , the second estimate for batch formation variability, does not include information

about the batch sizes. Based on these observations, we developed two more estimates that
replace the aggregate batch arrival variability term with terms that explicitly incorporate batch

size information:
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9. Evaluation of additional estimates

To evaluate these two new estimates, we calculated them for the scenarios discussed in Section
2. Tables 26 to 34 show the results, along with the X estimates previously calculated. These
results show the fourth estimate X' is more accurate than the others. It is especially good with

the arrival variability is moderate (between 0.5 and 1.5). Figures 6 to 8 show the results
graphically. (In these graphs, “Estimate 2” refers to X, “Estimate 3” refers to X', and

“Estimate 4" refers to X;'.)

Table 26. Results for Scenarios 4.1.1 to 4.1.8.

Batch formation variability estimates Relative errors

Scenario Xiz Xi3 Xi4 Xiz Xi3 Xi4
411 0.48 0.348 0.287 127.6% 65.8% 36.6%
41.2 0.58 0.511 0.480 14.2% 2.2% 3.9%
413 0.62 0.592 0.577 0.7% 6.0% 8.4%
4.1.4 0.67 0.674 0.674 6.7% 6.4% 6.4%
415 0.77 0.837 0.867 14.4% 71% 3.7%
416 0.87 0.999 1.060 16.0% 3.9% 2.0%
41.7 1.26 1.651 1.834 7.4% 21.4% 34.9%
4.1.8 1.46 1.976 2.221 1.5% 33.5% 50.1%
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Table 27. Results for Scenarios 4.2.1 to 4.2.8.

Batch formation variability estimates

Relative errors

Scenario Xiz Xi3 Xi4 Xiz Xi3 Xi4
421 0.51 0.639 0.669 29.5% 10.9% 6.7%
4.2.2 0.59 0.656 0.671 16.7% 7.2% 5.1%
423 0.63 0.665 0.672 13.1% 8.5% 7.5%
424 0.67 0.674 0.674 6.7% 6.7% 6.7%
4.2.5 0.76 0.691 0.676 2.5% 6.5% 8.5%
4.2.6 0.84 0.709 0.679 14.3% 3.9% 7.9%
4.2.7 1.18 0.778 0.689 56.4% 3.2% 8.6%
4.2.8 1.35 0.813 0.694 81.4% 9.5% 6.5%

Table 28. Results for Scenarios 4.3.1 to 4.3.8.
Batch formation variability estimates Relative errors

Scenario Xiz Xi3 Xi4 Xiz Xi3 Xi4
4.3.1 0.56 0.552 0.583 10.9% 11.0% 6.0%
432 0.61 0.613 0.628 9.6% 9.9% 7.6%
4.3.3 0.64 0.643 0.651 7.9% 8.1% 7.0%
4.3.4 0.67 0.674 0.674 7.6% 7.7% 7.7%
435 0.73 0.735 0.719 5.0% 4.6% 6.6%
4.3.6 0.79 0.796 0.764 1.1% 2.0% 2.0%
4.3.7 1.03 1.040 0.946 19.5% 20.9% 10.0%
4.3.8 1.14 1.162 1.036 27.5% 29.1% 15.1%
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Table 29. Results for Scenarios 7.1.1 to 7.1.8.

Batch formation variability estimates

Relative errors

Scenario Xiz Xi3 Xi4 Xiz Xi3 Xi4
711 0.23 0.24 0.26 14.5% 12.9% 4.4%
7.1.2 0.25 0.25 0.26 8.6% 6.1% 1.9%
713 0.26 0.26 0.27 8.5% 6.2% 4.2%
7.1.4 0.27 0.27 0.27 1.2% 0.6% 0.6%
7.15 0.29 0.29 0.28 1.0% 0.1% 4.0%
7.1.6 0.32 0.31 0.29 8.0% 6.2% 1.7%
717 0.40 0.38 0.31 30.2% 22.8% 0.6%
7.1.8 0.45 0.42 0.33 43.7% 34.5% 4.9%

Table 30. Results for Scenarios 7.2.1 to 7.2.8.
Batch formation variability estimates Relative errors

Scenario Xiz Xi3 Xi4 Xiz Xi3 Xi4
7.2.1 0.24 0.17 0.14 89.3% 36.2% 8.5%
7.2.2 0.26 0.22 0.20 19.7% 4.1% 4.2%
723 0.26 0.25 0.24 5.0% 1.7% 5.2%
7.24 0.27 0.27 0.27 3.9% 4.0% 4.0%
7.25 0.29 0.32 0.34 14.5% 4.6% 0.6%
7.26 0.30 0.37 041 19.1% 1.4% 7.8%
7.27 0.37 0.57 0.68 21.6% 20.6% 42.7%
7.28 0.40 0.67 0.81 19.8% 33.3% 61.0%
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Table 31. Results for Scenarios 4.4.1 to 4.4.5.

Batch formation variability estimates

Relative errors

Scenario Xiz Xi3 Xi4 Xiz Xi3 Xi4
4.41 0.54 0.55 0.586 13.9% 12.9% 7.0%
4.4.2 0.55 0.53 0.553 2.6% 7.4% 3.0%
443 0.79 0.55 0.585 26.9% 10.6% 5.6%
4.4.4 0.43 0.33 0.366 40.7% 6.7% 18.1%
4.45 0.34 0.34 0.394 2.6% 1.9% 12.6%

Table 32. Results for Scenarios 4.5.1 to 4.5.5.
Batch formation variability estimates Relative errors

Scenario Xiz Xi3 Xi4 Xiz Xi3 Xi4
4.5.1 0.83 0.82 0.784 1.7% 1.4% 3.2%
452 0.73 0.75 0.728 1.5% 1.8% 1.6%
453 0.79 0.80 0.767 2.2% 3.7% 0.4%
454 0.73 0.83 0.796 9.6% 2.6% 1.8%
455 0.88 0.89 0.838 0.9% 1.0% 4.8%

Table 33. Results for Scenarios 7.3.1 to 7.3.5
Batch formation variability estimates Relative errors

Scenario Xiz Xi3 Xi4 Xiz Xi3 Xi4
7.31 0.25 0.25 0.26 8.0% 8.8% 3.4%
7.3.2 0.28 0.27 0.29 5.7% 8.7% 4.3%
7.3.3 0.27 0.27 0.28 5.4% 7.5% 4.7%
7.34 0.20 0.18 0.20 4.9% 2.9% 6.8%
7.35 0.32 0.32 0.33 7.8% 8.8% 6.8%
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Table 34. Results for Scenarios 7.4.1 to 7.4.5

Batch formation variability estimates Relative errors
Scenario Xiz Xi3 Xi4 Xiz Xi3 Xi4
7.41 0.29 0.30 0.31 13% 13.9% 19.3%
7.4.2 0.31 0.37 0.39 24.7% 10.4% 6.0%
7.4.3 0.29 0.34 0.35 16.3% 1.2% 3.7%
7.4.4 0.22 0.24 0.26 9.9% 2.6% 4.2%
7.4.5 0.36 0.44 0.46 25.5% 9.4% 6.7%
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Figure 6. Results for Scenarios 4.1.1 to 4.3.8
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Figure 7. Results for Scenarios 7.1.1 to 7.2.8
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Figure 8. Results for Scenarios 4.4.1 to 4.5.5 and Scenarios 7.3.1 to 7.4.5

10. Summary and Conclusions

This paper has presented the results of computational experiments completed to evaluate
different estimates for wait-in-batch-time, departure variabiility, and batch formation variability.
While these results suggest that some approximations are better than others, we cannot guarantee
the accuracy of any. Additional work would be useful to characterize their accuracy in other
scenarios and to seek better approximations for those scenarios where they perform poorly.
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