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Abstract In this paper, we present monotonicity properties of the Leaky

Bucket (LB) input rate regulation scheme. We show that the asymptotic
version of the inter-departure time decreases in the convex ordering as the
size of the token pool decreases or as the token generation period increases.
When measured by the coefficients of variations of the inter-departure times,
the burstiness of the output traffic from the LB increases with the size of the
token pool, and decreases with the token generation period. These results

may prove useful in designing the LB.

1 Introduction

Congestion control in high speed networks is one of the challenges raised
by the emerging of the Broadband ISDN. There are two kinds of congestion
controls techniques: reactive congestion control and preventive congestion
contro]. Reactive congestion control has been successfully used in conven-
tional networks such as X.25 packet switching networks, where appropriate
actions are taken whenever congestion is detected inside the network. It is
widely accepted, however, that preventive congestion control is more suit-
able for high speed networks. Because of the high speed, actions taken after
congestion occurs may already be too late to avoid performance degradation.
Instead, precautions must be taken to prevent congestion from arising, and
the Leaky Bucket (LB) input rate regulation scheme is one of the most promi-

nent preventive congestion control methods. The original LB was proposed



in [10] for monitoring the traffic into the network and keeping its rate within
a certain range. It has, however, little effect on reducing the burstiness of the
traffic. To increase the LB’s ability of reducing traffic burstiness, Eckberg et
al [4] proposed a variation of the LB in [10] by adding an input buffer to it.

A lot of studies have been done for finding numerically tractable solutions
to assess the performance of the LB [2, 1, 8]. Fluid models have been used to
get approximation results {3]. Structural properties, however, have received

little attention.

In this paper, we study the monotonicity properties of the LB with respect
to various parameters using a method proposed in [6], where the author
showed that the output traffic from the LB is less bursty than the input
traffic. It turns out that the results in [6] can be viewed as a special case of
the results presented here.

We shall describe the LB in detail in section 2, and present the main
results in section 3. We then sketch the proof in section 4 by exploring the

burst structure of the output traffic from the LB.

2 The Leaky Bucket

The LB studied in this paper is composed of an input buffer, a token pool,
and a mechanism for generating tokens into the token pool at a constant rate
(Fig. 1). If the capacity of the token pool is reached while a new token is

generated, the newly generated token is discarded. Cells (i.e., short, fixed
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Figure 1: The leaky bucket.

length packets) must first obtain tokens from the LB before entering the

network. Available tokens will be distributed to the cells in a FCFS manner.

Cells which have obtained tokens enter the network instantaneously, and
consume the tokens, whereas cells which cannot get a token upon arrival
have to wait in the input buffer. In this paper, we only consider the case
where the input buffer has infinite capacity. So there will be no cell loss in

the LB.

A LB can then be characterized by two parameters M and D, where M
1s the size of the token pool, and D is the token generation period which is
assumed constant. Tokens are generated at times {kD,k = 0,1,---}. Cells
are tagged upon arrival in the order of their arrival, and we assume that the
first cell arriving at time ¢t = 0 finds an empty buffer. These assumptions are
made only for notational convenience and do not affect the results obtained
in this paper. A LB with parameters D and M is denoted by LB(D, M).

The output traffic from the LB can be easily described by a sequence of



R -valued random variables (rvs) & 2 {6n,n = 1,2,---}. We interpret &,
as the first departure epoch, and for n = 1,2,---, we interpret 8,41 as the
inter-departure time between the n'* and the (n + 1)* cells. The purpose of
this paper is to establish relations between the parameters of the LB and the
burstiness of this sequence. |

Before presenting our main results, we need the following notion of sta-

bility. For any R.-valued sequence of rvs ¢ 2 {Cnyn = 1,2,---}, we say
that ¢ is convezly stable if there exists an integrable R, -valued rv ( (i.e.,

IE[¢] < 00) such that

lm 230 6() =F(Q] e )
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for any convex function ¢ : IR — IR, in which case we call { the asymptotic

version of ¢. Note that the convex stability of ¢ implies
lim =) ¢ = E[(] a.s. (2)

In particular if ¢ represents the inter-arrival times, then under the assumption
of convex stability, the (long-run) cell arrival rate X is well defined by 1/ IE[(].

We shall say that a LB LB(D, M) is stable to the input traffic of rate A, if

AD < 1. (3)

J

In this paper we consider the case where the LBs are stable, although the

intermediate transient results hold without this condition.



The main results of the paper are the asymptotic monotonicity of the
inter-departure times with respect to the parameters of the LB in the sense of
convex ordering. We recall [9] that an IR-valued rv X is smaller than another

IR-valued rv Y in the sense of convex ordering, and we write X <., Y, if

E[¢(X)] < E[g(Y)] (4)

for all convex functions ¢ : IR — IR whenever the expectations exist in (4).
Note that for any IR -valued rvs all moments exist (though possibly infinite),
so that X <., Y implies

E[X] = E[Y]
and

E[X*] < E[Y*], k=1,2,---
Consequently,
c*(X) < (Y,
where ¢2(X) is the coefficient of variation of the Ry-valued rv X which is

defined by

9 N Var(X)
“0 = mpay

We are now ready to present our main results.



3 Monotonicity in D and M

From now on we assume that all LBs we are considering are fed with the
same input traffic of rate A\. We first consider the monotonicity of the inter-
departure times with respect to M. As introduced in section 2, § = {6,,,n =

1,2,---} denotes the sequence of inter-departure times from LB(M, D), with
M>0and D >0.For 0 < M < M, let 6 = {Sn,n =1,2,---} denote the

sequence of inter-departure times from LB(D,M). Then we have our first

theorem.

Theorem 3.1 (Monotonicity in M) Assuming & and & to be convezly stable
and (8) to hold, we have

§ <ew 6, (5)

where § and § are the asymptotic versions of § and 8, respectively, and there-

fore, 02(3) < c2(é).

Theorem 3.1 says that the smaller the token pool size is, the less bursty the
output traffic from the LB will be as would be expected.
The monotonicity of the inter-departure times with respect to D is con-

sidered next. We first assume M = oo. For 0 < D < D, let 5 = {Sn,n =

1,2,---} denote the sequence of inter-departure times from LB(D,]W). In

close parallel with the monotonicity results in M, we have the following



Theorem 3.2 (Monotonicity in D) Assuming § and & to be convexly stable
and (3) to hold, we have

6 <ex 6, (6)

where 8§ and § are the asymptotic versions of § and 8, respectively, and there-

fore, ¢2(8) < ¢*(9).

So in the case where the token pool has infinite capacity, the larger the token
generation period is, the less bursty the output traffic from the LB will be.

The assumption M = oo in Theorem 3.2 can be relaxed. In fact, the
sample path property leading to Theorem 3.2 will be retained as long as the
tilde LB can hold the extra tokens it generates due to its faster token gener-
ation rate. Combining the previous results and the comments just made, we
have the following results.

Let = {6,,n = 1,2,---} denote the sequences of inter-departure times

from LB(D, M), with 0 < D < D and 0 < M < M, then we have

Theorem 3.3 (Monotonicity in D and M) Assuming § and & to be convexly

stable and (3) to hold, then we have
b Zex 9, (7)

where 6 and & are the asymptotic versions of & and 8, respectively, and there-

fore, *(6) < 2(6).
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Figure 2: Burst structures of the output traffic from two LBs with different
token generation periods.

Taking D = 0, it is easily seen that & is just the inter-arrival times to the

LB, thus the results obtained in [6] is simply a special case of theorem 3.3.

4 Discussions

The results presented in section 3 are direct consequences of the burst struc-
ture of the traffic which can be characterized by means of majorization [7].
An example of this burst structure is depicted in Fig. 2. Full details are
available in [5].

For any vector @ = (zy,...,2,) in R” we denote by z[; the :** largest

elementof &, 2 =1,---,n, ie.,



For vectors @ = (21,...,2,) and ¥y = (y1,...,¥n) in R" such that

Zmi = Zyi, (9)

=1 i=1
we say that & majorizes y, and write y < @, if

n

Sy =D g, k=1,---,n. (10)
1=k 1=k

To simplify the notation, we use the following convention. For any se-
quence § = {€,n = 1,2,---} of Ry-valued rvs, we define the R} ™"+!-valued

18 &y M < yn = 1,2, by

&m,n é (€m7 e 757?.)

Let Z() be the collection of tags of cells which obtain tokens immediately
upon their arrival. The following theorem establishes the transient orderings

of the sequences of inter-departure times from L.Bs studied in section 3.

Theorem 4.1 The following results hold.

(i) For any n € ZW with respect to LB(D,M), we have
817 < 81 (11)
(ii) For any n € ZW) with respect to LB(D, c0), we have

61,n < 51,71' (12)



(ii1) For any n € ZW with respect to LB(D, M), we have
61,71 < El,n- (13)

To see why the theorem might be true, we focus on (i) for instance: If
n € Z(l), then n € ZM, because LB(D, M) will never have fewer tokens than
LB(D, M) Since cells with tags in ZW leave the LB instantaneously, they
have the same departure epochs in both LBs. Thus Z) induces a partition

on both sequences & and 8. We showed in [6] that the majorization ordering
holds for each corresponding segments of such partition of both sequences.
So (i) follows from the closure property of majorization under concatenation
[7, Proposition 5.A.7, p. 121]. Similar comments apply for (ii) and (iii).

Applying Proposition 4.B.1 in [7, p. 108], Theorem 4.1 then implies

Theorem 4.2

(1) For anyn € Z® with respect to LB(D,N[), we have

‘l‘zn:fﬁ(‘i) < ;Zﬂ&) (14)

n =1 1=1

LS es) < > 6(d). (15)



(iii) For any n € Z(M) with respect to LB(D, M), we have

=D 8(6) < %Z«zﬁ(&). (16)

Notice that Theorems 4.1 and 4.2 hold without any condition. The sta-
bility conditions are needed only in obtaining steady state results. Under
condition (3), Z(") can be seen to contain infinitely many tags. Thus by
taking limits along such subsequence, Theorems 3.1-3.3 follow directly from

Theorem 4.2 and the assumptions of convex stability.

5 Conclusion

The results obtained in this paper will shed light on the design of the pa-
rameters of a LB. Larger D or smaller M will usually reduce the burstiness
of the traffic which in turn may lead to smaller network delay. It introduces,
however, more buffering delay at the LB. Trade-off between burstiness and
buffering delay at the LB is then an important issue to the network designers.
Together with bandwidth allocation, this issue will be addressed further in

future research.
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