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Abstract

A recursive estimation method for time series models following generalized linear models is
studied in two ways. The estimation procedure, suitably modified, gives rise to a stochastic
approximation scheme. We use the modified estimation procedure to illustrate a connection
between control theory and generalized linear models by employing a logistic regression model.
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iterative reweighted least squares.

1 Introduction

Generalized Linear Models (GLM)-as described by McCullagh & Nelder (1989)-provide a useful
framework for modeling time series, and there is a growing interest among statisticians regarding
this research topic. The papers by Fahrmeir & Kaufmann (1987), Zeger (1988), Zeger & Liang
(1991), Slud & Kedem (1994) and Li (1994), to name only a few, make this claim evident.
Primarily, the scientific interest is focused on the regression parameters. The main approaches
that have been used for the estimation of the parameters are either likelihood or estimating
functions based. This implies in particular that we fit a model after the termination of an
expirement. But there may be occasions where the analyst observes data sequentially in time
and wishes to update the estimators as soon as a new datum becomes available, without waiting
for the expirement to end.

The present work addresses this question in the context of GLM in proposing a recursive
estimation method for time series models. Our main results is the recursive relation (3.6). It is
derived by considering only canonical link models. We give two different proofs for the recursive
relation. One is based on the score and the other on the fitting procedure.



The next main result of this paper is a connection between GLM and adaptive control theory.
We show how to control a probability by using a simple logistic model. The logistic paradigm
throws light on the behavior of more general models. This will be reported in future work.

Finally, motivated by the adaptive control of linear systems, we modify the recursion (3.6).
This yields a new stochastic approximation scheme (4.12). We study briefly the adaptive control
law and derive several optimality results. The last problem is attacked along the lines of Becker,
Kumar & Wei (1985).

The plan of the paper is as follows. The next section describes the connection between GLM
and time series. Then we proceed by proving the recursive estimation method. In section 4 we
show how one can cross-fertilize ideas from GLM and control theory. This leads us to a stochastic
approximation type algorithm. We conclude the paper by some simulations and some comments.

2 Generalized Linear Models and Time Series

Suppose that {y;},t = 1,2,..., is a univariate time series. Assume that there exists a vector of
covariates, say {x;}, that influences the evolution of {y;}. Let F; denote the history of the joint
process {y:;x;} up to and including time time ¢. Generalized Linear Models for time series are
defined by the following assumptions:

1. We assume that fy(y:41 | Ft), the conditional distribution of y:+1 given the past, follows the
canonical exponential family of distributions

fo(yt+1 | -7:1:) = C(yt+1) eXP(9t+1yt+1 - b(9t+1))

with ¢ > 0 and measurable. It is not difficult to check that E(yi41 | Fi) = 0b(0t41)/00:41 =
f(8e41) = pegr and Var(yepr | Fo) = 0%6(0041)/00141 = v(0141) = vi41 Note, that we do
not take into account any dispersion parameters. This can be done without loss of generality
as we will see subsequently.

2. The covariate vector x¢ influences the response process by means of a linear predictor
!
Yi+1 = B2

Here 3 denotes a p-dimensional vector of parameters and z; is a vector of random time
dependent covariates. It may include past values of the response, past values of x;, or any
interactions between them.

3. The linear predictor is related to the mean p;4; by the link function g

Y41 = Q(Mt+1)

where g is monotone and differentiable function. In particular if ¢ = p=! then we obtain
the so called canonical link.



Throughout the paper we use canonical link. Tt simplifies all subsequent calculations, and
guarantees existence and uniqueness of the estimators (Weddeburn (1976)). The case of non-
canonical link can be treated, in principle in the same manner. However existence and uniqueness
of the estimators can be problematic issues.

A well known example of the canonical link is the logistic model (Cox & Snell (1989)). Ac-
cordingly, y; is a binary time series (for example yes/no), and the model is described by the

equation

/\t+1 = lOg 1 ft;tl-l-l = IBIZt (21)

with piy1 = E(ye41 | Ft) = P(ys+1 = 1 | Fi). Another well known model for the analysis of
binary data is the probit model (Finney (1971)). Here we have

per1 = ©(B'z)

with ® denoting the cumulative distribution function of a standard normal random variable. This
is a non-canonical link case. We will use the logistic model (2.1) to illustrate a connection between
control theory and GLM.

The goal is to estimate 3. We use for this purpose partial likelihood, in the event that random
time dependent covariates are under consideration (Slud & Kedem (1994)), conditional likelihood
(Kaufmann (1987)), or estimating functions approach (Zeger (1988), Zeger & Liang (1991)).

We employ the maximum partial likelihood (PL) estimator ( see Slud & Kedem (1994)). Then
the partial score under the above general setup and the canonical link assumption is given by

(McCullagh & Nelder (1989))

S:(8) = V1ogPL(B) = 3 201y — 15(8)) (2.2)

Furthermore the conditional information matrix is

t
= ZVar[zs_l(ys ) | Fs-1] Zzs 12 v5(B (2.3)
s=1

Note that if a dispersion parameter were present then the above quantities, (2.2)-(2.3), should
have been divided by it. Also, it turns out that

G(B) = VV'(- log(PL(8)))

The most widely used method for the solution of S;(8) = 0 is Fisher scoring. In the case of
canonical link this coincides with the Newton-Raphson method. Details are given in the second
chapter of McCullagh & Nelder (1989). A crucial property of this method is that the estimator can



be represented as the solution to a weighted least squares problem, in the limit of the iterations.
To see this, define the “working observation vector”

i = Zi8+ Vi ls, (2.4)
with
Z; = [ZO, .. ',Zt—-l]
and
V. = diag(vs)t_,;
St =¥t — Hy
where

yi= (U, %)
te = (B1y ey pie)'

Then, we can see that 3 is a solution to a so called Iterative Reweighted Least Squares problem.
( For a more general discussion of this phenomenon see Green (1984)). Upon convergence, the
estimator is given by

By = (ZVZY) ™ 24 V,§ (2.5)

The above representation will provide an alternative way to obtain the recursive relations that
we are about to derive.

3 Recursive Estimation

We will obtain now a recursive estimation method useful when the data are observed sequentially
in time, and illustrate it with an example from control theory in the next section.

Denote the estimator of 3, at time ¢, by B,. Suppose that a new observation, say (yi+1,2:)
becomes available. How can we go from B, to ,Bt_H? Note that B, does not admlt a closed
form from equation (2.2). However, a recursive formula for 3, can be obtained and we give two
different derivations of this fact. Let ) indicate the estimation of a random quantity at time &
that depends on the first [ observations. It is going to be used throughout the reminder of this
paper.

Following Sakrison (1965) ( for a comprehensive account of recursive estimation see Nevel’son
& Has’minski (1973)) we have by using Taylor expansion and equations (2.2)~(2.3),

0 = Sey1(Big1) = Ser1(By) = (Byyy — B)Ge41(B) + op (1B — Bill)

where 3 lies on the line segment connecting 3, and :Bt+1' The above relations lead to

0 = 2, (Ye41 — per1(Br) — (Begr — B)Ger1(B) + 0, (18141 — Bull)



upon noting that ) )
St+1(B¢) = St(Bs) + 2e(Ye41 — pe+1(8y))
and S¢(B,) = St+1([:1t+1) = 0. Therefore we can write :
rét+1 = Bt + Gt_-*-ll (Z’})Zt(yHl - Nt+1(:ét)) + Op(||,ét+1 - Bt”)

provided that the above inverse exists. Now, 3 is lying between [Bt and Bt+lv and the conditional
information matrix is a continuous function ( under some assumptions) of 3. This observation
indicates the possibility of replacing B by 3,. Therefore, the recursive algorithm becomes

/Bt+1 =B+ Gt_.|.11|tzt(yt+1 = Wegilt) (3.6)
with Gypqp = Gey1(B3;) and Pitile = pes1 (By).-
Equation (3.6) requires the inversion of a p x p matrix. This can be avoided by utilizing the
matrix inversion lemma (Rao (1973)). Writing

!
Gipr)e = Gy + 212,041

with vy = vi41(B,) we have that

B = Bt o (g = ) (3.7
= = t4+1 — 1 .
t+1 tT T ZéDt|tZtvt+11;t 41t
Dtltth;:Dtht
Dt+1 ¢ = Dy — — (3-8)
| | Ut+11|t + 2;Dyye2;

-1
tt

of any matrix but require starting value for Bt and Dy;. A good starting value for Dgjg = €I with
I the identity matrix. We need to point out that the above recursions do not necessarily produce
the maximum partial likelihood estimator as we do not solve S;(83) = 0 for a fixed sample. For
a related problem see Kedem (1994)[Ch. 7]. We conjecture however that the difference between
the resulting estimator and the maximum partial likelihood estimator tends to zero in probability
as the sample size increases. The recursive estimation procedure can be generalized to any link
function, provided that the maximum partial likelihood estimator is unique. We need to note
however that in the Taylor expansion, we used the fact that the link is canonical. In other words
the conditional information matrix coincides with the negative matrix of second derivatives of
the partial log-likelihood (see equation after (2.3)). Several other remarks follow.

If a dispersion parameter were present then it would have been cancelled out by equation (3.6).
Therefore the assumption of a dispersion parameter is not necessary for the proof of the recursive

after some algebra and by letting G}, = Dy);. These relations now do not call for the inversion



algorithm. Note also that the recursions (3.7)-(3.8) coincide with the well known recursion for
linear time series models ( see Kumar & Varaiya (1986)[Ch. 10]). We need to point out that
these equations can be used for independent data.

We derive now the relations (3.7)-(3.8) using a different approach. Namely, we are going to
use the fitting procedure (2.4) as described in section 2. To be more specific, Suppose we have
a fixed number of observations, say ¢{. In the limit of the Fisher-scoring iterations, the solution
of the partial score equations, ﬁt, is given by the weighted least squares estimator (2.5). Since
this has a closed form, the recursive formulas for the update of this weighted least squares can
be used with weights equal to the inverse of v;,1;. Then we have from (2.5)

~ ~ _1 ~ ~
Brir = B+ Grpuver1pz (G — 245y)

leading to ) )
Biy1 = B + Gt_.|.11|tzt(yt+1 - ,Ut+1|t)

upon noting that vyyy;z¢(Ji+1 — ztﬁt) = 2¢(ys41 — Me41)e) Dy employing (2.4). This result is
identical to (3.6). The rest follows as before. The last argument, just takes advantage of the
fitting procedure. If {y;} is a binary time series, and the logistic model is used then (3.7) and
(3.8) hold with

Vi1t = pt+1|t(1 - pt+l|t)

The result is in accordance with the algorithm proposed in Walker & Duncan (1967). Their proof
is based implicitly on the representation (2.4).

4 Controlling a Probability

The recursive estimation equations (3.7)-(3.8) will be suitably modified for an application to
control theory. There is nowadays well developed theory concerning the adaptive control of
linear systems. The books by Goodwin & Sin (1984), Kumar & Varaiya (1986), among others,
provide an introduction to this subject. In general both input and output are continuous random
variables and the goal of control is either to regulate or track the output with respect to some cost
function. If the parameters of the system are known then we have a standard feedback control
law. If the parameters of the system are unknown then we have an adaptive control problem.
We say that an adaptive control law is self-optimizing, with respect to some cost function, if it
yields the same cost as the optimal control law that would have been used if the parameters of the
system were completely known. We refer to an adaptive control law as self-tuning if it approaches
asymptotically the law that would have been used if the system were known. Another area of
significant importance is the adaptive control of Markov chains (see Hernandez-Lerma (1989)).
Here, we want to make the “best” decision under uncertainty with respect to some cost function.
A summary of the recent advances on the adaptive control is given by Kumar (1985).



We use the logistic model (2.1) to model binary (0-1) time series. The purpose of the control is
to keep the transition probabilities of the system,{p;}, close to some value. For instance, suppose
that one wants to keep a machine operational, say 90% of the times. Then it is wise to control the
system, in terms say of fuels or maintenance, such that this can be achieved. We will demonstrate
our point by controlling the transition probabilities near to 1/2. This implies that in the long run
we would expect equal number of occurrences of both states. We call this the regulation problem.
We are going to see that the control law that we propose posses analogous geometric properties
as in Becker et al. (1985). This implies that their results are applicable in our case yielding the
same kind of conclusions.

Let us be more specific. Suppose {y;} is a binary time series and let as in (2.1)

P P
Pt+1
A =log —— = a;Yi—; + biu_; 4.9
t+1 g 1— pen g Ye ; t (4.9)
= ﬁ'zt

with B8 = (ag,---,ap,boy..-,0,) € R¥P¥2 24 = (Y1, ..\ Ytmp, Uty - - -, U—p) b0 7# 0 and {w;} is
the control sequence. Clearly (4.9) implies that {y;} is a non-stationary Markov chain of order
p. We assume without loss of generality the same order for both past input and control. Our
original regulation problem now has been transformed to keeping the logits near zero. Although,
there is no available corresponding minimum variance control theory for such systems, it would
be sensible to choose the control law such that the right hand side of (4.9) becomes zero. In other
words we would be able to regulate such a system if we choose

1 ¥4 /4
U = —%[Z a;Yt—; + Z bit—i] (4.10)
1=0 =1

in the case that the coefficients are known, i.e. when the system is completely known. Equiva-
lently, this can be written as

= — 4.11
ut B(z) v (4:11)
with A(2) = 30, a;2%, B(z) = Y.F_y biz; and 2 denotes the lag-operator. As in the case of linear

systems we need to assume that B(z) has all its root outside the unit circle. That is our system
satisfies the minimum phase condition.
Now in conjunction with 3.6, motivated by the stochastic gradient algorithm which is used

for the control of linear system we propose the following stochastic approximation type algorithm
(Robbins & Monro (1951)):

. N z
Biy1 = Bi+ 7;f(yt+1 — Piy1ft) (4.12)
ry = Ty_1+ Z;tht; T‘(O) =1 (413)



where « is constant greater or equal to 1 and ¢ = exp(—Bizt)/(l + exp(—B;zt))Z. Notice that
the only difference between (3.6) and (4.12) is that we replace the conditional information matrix
by its trace r;.

Based on the parameter estimate Bt available at time ¢, the control input w; is chosen to satisfy
zéBt = 0. This is the so called Certainty Equivalence Principle. We replace the parameters by
their corresponding estimators in the control law (4.10). In other words !

1 &, .
U = —m[g a;(t)ye—i + ; bi(t)us—i] (4.14)

This is an on-line procedure. Given the data up to time ¢, (yo, uo, . - ., y¢), we update the estimators
and the control law is calculated by means of (4.12)-(4.13)-(4.14). This is applied to the system
and an output y;4; is obtained. The process continues by calculating a control u;y; and so on.
A natural candidate for judging the performance of this system would be the following cost

function .

Ct — Zs:l Ys

t

C close to 1/2, is equivalent to self-optimality. Indeed, if the system was completely known and
(4.10) had been used then p; = 1/2Vt. This means that we have a homogeneous stationary
Markov chain, so that

Ci— 1/2 as.

However, it doesn’t depend on control inputs or parameters. An appealing alternative measure
of performance is

t /\2

s=1"'s

t

which depends on the unknown parameters, past observations and control actions. Convergence
of D; to 0 indicates again self-optimality. The last criterion can be interpreted as “variance
output” in line with the linear models. Another possible measure of performance is

Dt:

Self-optimality means D; — 0, as t — co. We will examine all three measures of performance
in the following theorem whose proof is given in an appendix. First, we need to state some
assumptions.

Assumption C

'In spite of the fact that this notation is usually reserved for continuous time stochastic processes, we use it for
convenience.



C.1 The polynomial B(z) has all its root strictly outside the unit circle.

C.2 The true probability measure which governs {y:,z:}, obeys (4.9) with the true parameter
being 3.

C.3 The random variables z; belong to a non-random compact subset of R?P+2,

C.4 There exists a probability measure p such that under the true parameter and for all Borel
subsets A of R*P+2 ,
Es:l I[Zt € A]

; — p(A) as.

Theorem 4.1 Consider the system (4.9). Suppose that assumption (C) holds. If the stochastic
gradient based adaptive control law (4.12)-(4.13)-(4.14) is used then we have

1. The adaptive control law is self-optimizing with respect to all three criteria Cy, Dy and Dy.

2. |13, — B|| converges a.s.

Consider again the recursions (4.12)-(4.13)-(4.14). Then it is easy to check that ﬁtﬂ — B, is

orthogonal to 3. Indeed, since z{ﬁt = 0, equation (4.12) implies
~ a Z 1

Biy1 =B +7— (Y141 — 3)

Tt 2

so that Bt+1 —Bt is parallel to z;. However, z;Bt = 0 implies that Bt is orthogonal to z;. Therefore
, it follows that Bt+1 - ,fit and ﬁ'it are orthogonal.

We point out here that the last observation is a property of the algorithm and has no relation
with the system being controlled. The above fact gives the following very simple proposition. Its
proof is omited.

Proposition 4.1 Consider again the recursions (4.12)-(4.13)-(4.14). Then the following hold
a.e. :

L A1B41% = 11Ball? + b1 118 = By |12
2. 1Beall> > NIBAP® fort >0

3. If sup, ||B,]| < oo then {||B,]|} converges a.s.

4. If sup, ||B,]| < oo then llﬁt+1 — Bl = 0as. ast— oo

5. 1If || B, — B]| converges so does {||B:/|}



with || || denoting the eucledean norm.

Combining Theorem 4.1 and Proposition 4.1 we see that ﬁt converges to the intersection of two
random spheres. The one sphere is centered at the origin and the other at 3. The intersection of
two spheres, is a hypersphere, say H, of strictly smaller dimension. If we want to show that H
consists of only one point, the we need to show that the two spheres are tangential. But if this is
the case, then the point of intersection belongs to the straight line L which passes through 0 and
3. Now H consists of only one point if and only if H N L # (. To show that H and L are indeed
tangential, it suffices to show that there exists a subsequence ¢; such that

lim 3, = kB
50

This can be proved by using Becker et al. (1985)[Lemma 3]. Using now Becker et al. (1985)[Lem-
mas 10,13] and the following technical lemma the proof of self-tuning can be worked out along
the lines of Becker et al. (1985). The proof of the following lemma is given in the appendix.

Lemma 4.1 Assume that {n;} and {s;} are stochastic processes adapted to F;, such that {n:}
is bounded. Let {y;} be a binary stochastic process such that E[y; || Fi—1] = p:. Furthermore

assume that
N

1
li — (my— 1) =0 as. 4.15
Ngnm;N(m 1Yt + St-1) a.s ( )
Then N
lim Zin2=0 a.s
N—)ootle ¢ o
and N
lim ZLSZ:O a.s
N—)ootle ¢ o

Now we can state the theorem that shows that our proposed adaptive control law is self-tuning.

Theorem 4.2 Consider the system (4.9). Suppose that the system has no reduced minimum
variance controllers, that is the polynomials A(z) and B(z) are irreducible. Assume that (C) is
true. If the control law (4.12)-(4.13)-(4.14) is used then

1. The parameter estimates {{3;} converge to a random multiple of 3, vis.
i = k8

with

_IBOIR | ¥ &z
2
=1

k? =
et el -

]
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2. The adaptive control law is self-tuning:

) A(2)
Jm (e = Froyv) =0
For the calculation of the random variable k, note from (1) of Proposition 4.1 that as t — oo
we have

R8I = 1BO)I1 + Z”Z; Lo
t—1

since {y;} takes only the values 0 or 1.

5 Simulations

We present now a simulation study that clarifies some important points. We first generated
a time series of length equal to 850 according to the model Ay = —1.5y; + 2u; — uz—; with
us being generated by a first order autoregressive process with parameter .3. We have run 15
simulations and then took the average of the results. The first two hundred observations gave a
preliminary estimate using the method of partial likelihood. We had & = 1.0897, D, = 0.0521,
Cy = .4973 and D, = .00029. Figure (1) illustrates (a) the norm of the estimators ||3,|], (b) the
transition probabilities p; of the system, and (c) the norm of the difference i.e. ||3, —kB||?. We see
that the norm of estimators is an increasing and bounded sequence. The transition probabilities
fluctuate around 1/2 and the norm of the difference converges to 0. An unfortunate characteristic
is the slow rate of convergence being evident from Figure (1(c)). Although the partial likelihood
estimator is satisfactorily close to the true value, we see that convergence towards zero is very
slow. This is to be expected however since we have a stochastic approximation scheme.

By changing the starting values for the estimators to (—2,3.1,2) and still using the same
model we got k = 1.4360, Dy = 0.0981, Cy = 0.4566 and Dy = 0.0070. Figure (2) demonstrates
the same picture as figure (1). Note that (2(c)) shows that the norm of the difference converges
toward zero but again at a very slow rate (The dotted line indicates 0). We see that the recursions
are not close to convergence. This is to ensure that if we want to control such a system we would
rather obtain a preliminary estimator, like the maximum partial likelihood estimator and then
use this as a starting value.

We proceeded by fitting now the model A;y; = ys — Bys—1 — 2us + uy—1 With u; being generated
by a first-order autoregressive process with parameter .3. We now use a time series of length 1850,
The first two hundred observations gave again a preliminary estimate by the method of partial
likelihood. We found k = 1.1718, Dy = 0.0846, Cy = 0.4810 and Dy = 0.0041. Figure (3)
summarizes the same results as the previous ones.
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6 Concluding Remarks and Further Research

We proved a recursive estimation method (3.6) for estimation of the regression coefficients for
time series models based on generalized linear models. This work did not investigate the statis-
tical properties of the algorithm which may be of interest. Furthermore, we believe that these
recursions can be extended to the case of non-canonical link as well, under some assumptions.
The modification of this algorithm to a stochastic approximation type with the help of a logistic
regression model connected the areas of control and the area of generalized linear models. Further
research needs to be done in this topic. Finally, we would like to mention that we can, in principle,
track the probabilities along a specified trajectory (i.e. p; = .2). Here, we will illustrate this point
with Figure (4), which shows how one can control the probabilities around .2 (see figure 4(b)).
We used the model Arpy = —1.5y; + 2u; — u;—1 as before. Suppose that we want to control the
probabilities around a known number r, 0 < r < 1. Then the control law should be modified to

1 p
Uy = ,\—[T' - yt ¢ Z ut z
bo(t)” iz i=1
Note however that this law does not preserve the orthogonality property of the proposed algo-
rithm. Hence some adjustments must be made. Our idea concerning this particular example was
not to model the response probabilities but rather the log-odds ratio. In other words we can
consider the following model

pry1(l
log[ =t~ @Y + ) biug;
g[(l*]?t-u ;} iYt—i E -
and then use the proposed control law. The cost functions must modified to

1 N

RY)
-
and

N

Z pe—T)
With this discussion in mind, we have from Flgure ( 4) that k£ = 1.0239, Dy = 0.0264, Cy = 0.1971
and Dy = 0.0007. We would like to point out however that to prove self-tuning and self optimality
for p; # 1/2 is more difficult.
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Appendix
Proof of Theorem 4.1

The proof will be based on the following quadratic form
Ve=118, - BII

It is also known as stochastic Lyapounov function. We will first calculate the E[Viy1 || Fi]. Notice
that

Biyr —B=(B,-B) +’)’ (yt+1 Preife)

Since z,83; = 0, we have that

5 » 1
/8t+1 -B=(B;,-B)+ '7 (yt+1 - 5)
We now square both sides and take expectations with respect to F;. Therefore, we get

BV 1 7] = Vit 2P By, - 3 ) 7
z 2
+ Bl - 211 5]

But E[(ye+1 — 1/2) | Fi] = pr41 — 1/2 and E[(yeq1 — 1/2)* || Fi} = 1/4. Tt is also helpful to note
that z}(8; — B) = —z,3 = —At41. Thus

BlVsr || F = Vi — 2728 gy — 3y 2120
t+1 || St t r, PTG a7
Define now the function,
1 1
Ie) =l ~ 9

This is a continuous function that has the property to be positive except at the point 2 = 0. At
this point, f(0) = 0. So, we can write now, in a somewhat more compact form

2 |l l*

2
EVip || ] < Vi — —f(zi8) +v 2
Tt dr;

Now, observe that f(z.83)/r, > 0, and ||z,||?/4r? > 0 as well. Furthermore, using assumption

C.3,
E llz:]” Z 1
47't < (t+ 1)2 < o0 a.s.

It follows from Robbins & Slegmund (1971)[Theorem 1] that
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Tt

Z f(zf: ) < o0 a.s.
t

IL. )
18 = BII* < 00 as.

The second part of the above proves the second assertion of the theorem. Now, using (I) and
Kronecker’s lemma, we have that

= > f(ziB) >0 as.

TN =1

since ry > 0 and lim;_o 1 = 00. However, if we observe the fact

szl
F > tz—; N < a.s.

we get that
1N
¥ > f(ziB) = 0 as.
t=1

On the other hand, by assumption C.4

N
1
18— [ s@Bulda)
t=1
since the function f is continuous on a bounded set. Now, from the uniqueness of the limit we
conclude that [ f(z'B)u(dz) = 0. Thus, by the properties of f it follows that
ZB=0 as. u
Therefore we get that

N
Dy = %;)\? — /(z’ﬂ)zu(dz) =0 as.

Therefore, asymptotic optimality of the proposed control law with respect to D was established.
It is also clear that Dy — 0. Now, we examine the behavior of Cy. Upon noting that y; — p; is
a martingale difference, with finite second moment we have that

E it t2 ]:t—l
3 [(y: — pe)* || ]

t2

< 00 a.s.
t
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By the martingale stability theorem, we can conclude therefore that

S (v = pe)

N — 0 a.s.

It follows that

_ Zi\;(yt =) Zﬁl Dt

Cv = N TN
1

S R S—

= 1/2
as it was supposed to be. The theorem therefore follows a.

Proof of Lemma 4.1

Since Ely; || Fi-1] = pt, it follows that Ely; — p: || Fi-1] = 0 a.s. and therefore the sequence
{y+ — p+} is a martingale difference. Relation (4.15) can be written as

1

N N
1
N E ("7t—1(3/t —pt) + Me—1pe + 3t—1)2 = ﬁ E :(Ut—lwt + ”t—1)2
t=1

t=1

with wy = ¥ — py and vy_1 = 1Pt + s¢_1. The last equation implies that

~ (nt—lwt + Ut—l) = %7 MW + = v+ = Ne—1Vt—1 Wy (A~1)
N t=1 N t=1 N t=1 N t=1

Using Lai & Wei (1982)[lemma 2.iii}, we have that YN 7;_jv,_ w; converges a.s. on Q = {w :
S0 n2vE | < co}. Therefore, we have that

1

N
N Znt_lvt_lwt — 0 a.s.

t=1
on . Thus, we conclude from (A.1) and (4.15) that
1 N
N an_lw? ~ 0 a.s.
t=1

and

1 N

2
= g v;_; = 0 as.
N t=1
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a.s. on . Now, on Q° = {w: Y22, n? ;v2 | = o0} we have again from the same lemma that

Zm 10¢-1We =0 Zm 1Ut 1) th 1

The last inequality follows from the fact that {7,} is bounded. Thus, from (A.1) we have

N
_1' Z("?t—lwt +uq)" = z 7w} + Z "_’Z—LL%LL)‘]
NS TN N t=1Yi-1
a.s. on Q°. Because of (A.1) we once again have that

Em Wi =0 as.
NS

and

——th 1 —+ 0 as.
NS

a.s. on §2°, Hence, we obtajn that

N
Z (m—1pe + 50)* = 0 as.
t=1

and
Znt 1 250 as.
Now, note that

Sup Ellnt_ (v — p0)* = Enf_y(ye = p)* || Fecrl /2 || Foot] < 00 as.

since {n:} is bounded. Hence from Stout (1974)[theorem 3.3.1], it follows that

Y
2
T nt _) 0 a.s.
N =1
proving the first part of the lemma. Upon noting that

St2 < 27712—11%2. + 2(ne~1pe + 3t)2
< 2mf ) 4 2(mecape + s1)?

we conclude also that the second assertion of the lemma holds true.
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Figure 1: (a) Norm of the estimators |183,]] (b) Controlled Probabilities around 1/2 (c¢) Norm of
the difference B3, — k3 for the model A;41 = —1.5y; + 2u; — us—y with uy = 3us + €.
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Figure 2: (a) Norm of the estimators |183;]| (b) Controlled Probabilities around 1/2 (c) Norm of
the difference B, — kB3 for the model A;y1 = —1.5y; + 2u; — up—q with starting values (-2,3.1,2)
for the parameters and u; = .3u; + ¢
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