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Abstract—This study uses experimentally determined plagioclase-melt D values to estimate
the trace element concentrations of Sr, Hf, Ga, W, Mo, Ru, Pd, Au, Ni, and Co in a
crystallizing lunar magma ocean at the point of plagioclase flotation. Similarly,
experimentally determined metal-silicate partition experiments combined with a composition
model for the Moon are used to constrain the concentrations of W, Mo, Ru, Pd, Au, Ni,
and Co in the lunar magma ocean at the time of core formation. The metal-silicate derived
lunar mantle estimates are generally consistent with previous estimates for the concentration
of these elements in the lunar mantle. Plagioclase-melt derived concentrations for Sr, Ga,
Ru, Pd, Au, Ni, and Co are also consistent with prior estimates. Estimates for Hf, W, and
Mo, however, are higher. These elements may be concentrated in the residual liquid during
fractional crystallization due to their incompatibility. Alternatively, the apparent enrichment
could reflect the inappropriate use of bulk anorthosite data, rather than data for plagioclase

separates.

INTRODUCTION

The Moon may have formed when a large
planetesimal impacted the Earth and the resulting
vaporized material coalesced (Hartmann and Davis
1975; Canup and Asphaug 2001; Cuk and Stewart
2012). The newly formed Moon would likely have been
partially to completely molten, resulting in the
segregation of a metallic lunar core and the formation
of a silicate lunar magma ocean (LMO) (Smith et al.
1970; Wood et al. 1970). It has been argued through
thermal modeling that the LMO persisted between 40
(Elkins-Tanton et al. 2011) and 200 Myr (Solomon and
Longhi 1977), although about 70% of it may have
rapidly crystallized within 1 Myr (Elkins-Tanton et al.
2011). Numerous studies have modeled the
crystallization sequence of the putative LMO (e.g.,
Taylor and Jakes 1974; Snyder et al. 1992; Elkins-
Tanton et al. 2011). Most models have led to the
conclusion that crystallization would have begun with
the precipitation of magnesian olivine followed by
orthopyroxene. Plagioclase crystallization would have
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been a relatively late-stage product following about
75% crystallization (Snyder et al. 1992). It is commonly
believed that the anorthositic crust of the Moon
subsequently formed via plagioclase flotation during the
latter stages of LMO crystallization, when plagioclase
was present on the liquidus (e.g., Wood et al. 1970;
Walker and Hays 1977; Warren 1990).

Siderophile elements are characterized by a
preference for partitioning into metal relative to silicate
phases. Most also behave in predictable ways in silicate
systems. Consequently, these elements are important
tracers for core formation as well as magma ocean
processes, crust formation, and subsequent planetary
accretional processes (e.g., Wade and Wood 2005;
Bottke et al. 2010). The concentrations of some highly
siderophile elements (HSE; including Re, Os, Ir, Ru, Pt,
Rh, Pd, and Au) in the lunar mantle have mainly been
estimated through extrapolations from basalt and lunar
glass compositions (Warren et al. 1999; Walker et al.
2004; Day et al. 2007). Some of these studies have
projected that the lunar mantle is depleted in HSE with
respect to the Earth’s mantle by a factor of 20 or more,
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and that the HSE are in chondritic relative abundances.
A similar depletion factor of 27 has been estimated for
Mo (Newsom 1986), which is a moderately siderophile
element (MSE; including Co, Ni, Ga, Mo, W).
Tungsten appears to be less depleted with respect to the
terrestrial mantle, with a depletion factor of
approximately 3 (Ranen and Jacobsen 2004) or less
(O’Neill 1991). Siderophile element depletion in the
lunar mantle, coupled with metal-silicate partition
experiments, has been interpreted to reflect the chemical
fingerprint of segregation of a small lunar core and a
deep magma ocean (Righter 2002).

Despite  their importance, concentrations of
siderophile elements in the lunar mantle remain poorly
constrained, stemming from the lack of mantle rocks in
the lunar sample collection. One way to obtain new
information about the siderophile element composition
of the LMO, during the period of plagioclase flotation,
is by reverse modeling of trace element abundances
present in lunar crust believed to have been produced
by flotation, such as highlands anorthosites. To do this,
mineral-melt partition coefficients (D) that are relevant
to LMO conditions are needed.

Plagioclase-melt D values for trace elements are
largely lacking for compositions, pressures, and oxygen
fugacities relevant to the precipitation of plagioclase
from the LMO. Consequently, here we report the
results of experiments to better establish mineral/melt
partition coefficients for the HSE Ru, Pd, and Au, and
the MSE Ga, Mo, and W, for the minerals plagioclase,
pyroxene, and olivine, under conditions relevant to
latter stages of LMO crystallization. We also examine
the partitioning behavior of the lithophile elements Sr
and Hf in order to compare results of our new
experiments with LMO-relevant prior studies that
focused on lithophile elements. In order to examine
possible initial siderophile element abundances in the
LMO as its crystallization began, we also report results
for a series of experiments that investigate metal-silicate
partitioning of the MSE Co, Ni, Mo, and W under
conditions relevant for lunar core segregation.

METHODS
Starting Materials

A requirement of this study was to choose one
potential composition representative of a melt that would
begin to crystallize An-rich plagioclase at P-T-x
conditions relevant to LMO crystallization at the point of
plagioclase flotation, in order to ascertain the effects of
differences in pressure and oxygen fugacity on chemical
partitioning behavior. The major element composition of
the synthetic LMO analog seclected for study was the
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Table 1. Starting silicate composition.

Longhi (2003) w/o Al,O3 LPUM-B
SiO, 46.87 54.97 60.82
TiO, 0.56 0.66 0.20
Al,O3 14.35 0.00 5.17
Cr,05 0.11 0.13 0.00
FeO 19.05 22.34 9.12
MnO 0.38 0.45 0.20
MgO 8.81 10.33 20.27
CaO 9.49 11.13 4.15
Na,O 0.19 0.00 0.06
K,0 0.04 0.00 0.00
NiO 0.00 0.00 0.00
P,0s5 0.04 0.00 0.00
Total 99.89 100.00 100.00

FP0701 composition taken from Longhi (2003). This
composition was chosen because it precipitates
plagioclase in high abundance, along with pigeonite, at
conditions appropriate for the late stages of LMO
evolution. Details of the constituent oxides are listed in
Table 1. The major and trace element compositions were
synthesized using reagent grade oxides and carbonates. In
the sample charges, individual trace elements were added
in amounts approaching 1 wt% each (Table 2), in most
experiments resulting in detectable concentrations of
most elements in the resulting silicate phases. The mixture
was ground in an agate mortar and pestle, then baked in
an oven at 800 °C for 3 h to remove the carbonate from
the mixture. The mixture was stored prior to
experimentation in a drying oven to prevent the
adsorption of water.

Mineral-Melt Experimental Methods

The experiments were conducted using either a gas
mixing furnace that allowed exploration of different fO,
conditions, or a piston cylinder press that allowed
examination of the effects of variable pressure. Both
apparatuses are housed at NASA Johnson Space
Center’s experimental petrology laboratories.

The sample capsules for all the low-pressure
experiments consisted of Al,O; alumina crucibles. They
were filled with approximately 200 mg of sample
powder compressed to form a pellet. The sample
powder for the low-pressure experiments did not
contain Al,O3 due to the composition of the crucible—
the crucible reacted with the silicate melt at the
equilibration temperatures, thus providing ample Al,O;
for the composition. Low-pressure charges were inserted
into a muffle tube furnace and held in the hotspot with
an alumina rod and Pt wire. Temperature was ramped
from approximately 1000 to 1400 °C over 30 min, then
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Table 2. Experimental conditions.
Comp.? Exp T (°C) P (GPa) delta TW log /O, Phases
1 4 1160 0.0001 3.5 —8.96 Gl, Ol, Cpx,
1 5 1160 0.0001 1 —11.4 G1,P1,01,0px
2 7 1150 1 1.8 —10.2 Gl, Ol, Pyx
2 8 1150 1.5 1.8 —10.2 Gl, Pyx, Sp
2 9 1125 1 1.8 —10.2 Gl, Pl, Pyx
2 12 1125 1 1.8 —10.2 Gl, Pl, Ol, Pyx
3 13 1160 0.0001 1 —114 Gl, P1, Ol, Opx
3 16 1160 0.0001 3.5 —8.96 Gl, P, Sp
4 19 1125 1 1.8 -10.2 Gl, Pyx, Sp
3 20 1160 0.0001 2.5 —-9.96 Gl, P1, Sp
3 21 1160 0.0001 0 —12.4 Gl, Pl, Opx
4 22 1160 0.5 1.8 —10.2 Gl, Ol, P1
3 23 1160 0.0001 4.5 —7.96 Gl, P1, Pyx
4 25 1140 0.7 1.8 —10.2 Gl, Pl, Pyx, Ol
4 26 1115 1.2 1.8 —10.2 Gl, Pyx, Ol, Sp
4 27 1125 1 1.8 —10.2 Gl, Pyx, Ol, Sp
4 35 1125 1 1.8 —10.2 Gl, Pl, Ol, Pyx, Sp
5 LPUMB 1 1800 1 -1.9 —8.40 Gl, Ol, Metal
5 LPUMB 2 1800 1.5 —1.5 —7.88 Gl, Ol, Metal
5 LPUMB 3 1800 2 —1.8 —8.06 Gl, Ol, Metal
5 LPUMB 4 1800 2.5 —-1.4 —7.48 Gl, Ol, Metal

#1: 95% silicate composition (minus Al,O3) 5% Re, Os, Ir, Ru, Pt, Pd, Au. 2: 96% silicate composition 2% Ru, Pd, Au, 2% Sr, Ga, W, Hf,
Mo. 3: 96% silicate composition (minus Al,O3) 2% Ru, Pd, Au 2% Sr, Ga, W, Hf, Mo. 4: 97% silicate composition; 2% Sr, Ga, Hf; 0.5%
Ru, Pd, Au; 0.5% Mo, W. 5: 90% LPUMB silicate composition 10% metals: 91% Fe, 6% Ni, 1% Co, 1% W, 1% Mo.

maintained for 10 min before being cooled at a rate of
5°Ch !, to 1160 °C. The cooling rate was sufficiently
slow so that large crystals could form. The final
temperature was chosen such that large plagioclase
grains were present, in addition to a volume of melt
adequate for analysis. That temperature was then
maintained for 240 h. The oxygen fugacity of individual
experiments was controlled by mixing CO and CO, in a
reference furnace at 1200 °C, where the desired
electromotive force was measured using a zirconia
sensor, and adjusted before introduction to the sample
(Table 2). Each experiment was quenched in water upon
completion of the cooling stage.

To investigate higher pressure conditions, non-end-
loaded piston cylinder apparatuses were used. For
experiments up to 1.5 GPa, a 13 mm core was used,
whereas for 2.0 and 2.5 GPa a 10 mm core was used.
The sample assembly was similar to that used by
Filiberto et al. (2008). High purity graphite capsules
(containing sample) and sintered MgO spacers were
placed within a graphite furnace surrounded by BaCOs;
and Pb foil. Temperature was slowly ramped up from
ambient temperature over 30 min to 1500 °C, then
maintained for 1 h. The temperature was then manually
ramped down at a rate of 5 °C every 5 min to the set
temperature, which varied between 1115 and 1160 °C,
and the charge was then left to equilibrate for 72 h. The
cooling rate was again chosen to maximize crystal

growth, and the final temperature was chosen to
produce the desired assemblage. Estimation of oxygen
fugacity of graphite capsules at high pressures was done
based on use of a Co-(Co, Mg)O sliding redox
equilibria sensor (Taylor et al. 1992), in experiment 27.
For this experiment, a double capsule was used in
which the lower capsule (closest to the thermocouple)
contained the sample, and the upper capsule (still within
the hot zone of the assembly) contained the sensor.
Because of the physical separation in different capsules,
there was no alloying between the MgO FeO, or
between Ru, Au, or Pd and the Co metal, for example.
The mole fraction of CoO in MgO was 0.24,
corresponding to an oxygen fugacity of —10.20 (about
QFM-2.1). These results are in good agreement with
values measured by Righter et al. (2009) for shergottite
experiments, and Martin and Righter (2013) for
pyroxene-carbonate  equilibrium  experiments. The
experiments were quenched by turning the power to the
furnace off while maintaining pressure. No mineral-melt
experiments were run at pressures >1.5 GPa, because
plagioclase reacts with olivine at high pressures to form
pyroxene and spinel (McBirney and Aoki 1973).

Metal-Silicate Experimental Methods

A second series of experiments was conducted to
determine metal-silicate partitioning of Co, Ni, Mo, and
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W at pressures of 1, 1.5, 2, and 2.5 GPa. These
experiments were accomplished using a modified lunar
primitive upper mantle (LPUM-B) composition (Longhi
2006) (Table 1). Experimental conditions are listed in
Table 2. The experimental assembly was identical to the
other experiments, except for the use of an MgO
capsule. Oxygen fugacity in the metal-silicate
experiments was estimated relative to the IW buffer
using the simple approach:

AIW = -2 % IOg(XFeo/XFe) (1)

where Xg.o is the mole fraction of FeO from the silicate
melt, and Xg. is the mole fraction of Fe from the
metallic phase. This calculation allows assessment of
changes in D (metal/silicate) values that might be due to
fO, variations, as well as comparison to literature data
of comparable relative fO,.

Analytical Methods

After the experiments were completed the
experimental charges were submerged in epoxy, then
cut, and polished for analysis. Each sample was first
analyzed using the JXA-8900 SuperProbe, located at the
University of Maryland, College Park, to determine
major element compositions of resulting glass and
minerals. The beam size was 5 pm with an accelerating
voltage of 15.0 kV, a beam current of 20 nA, and
counted for 60 s. Backscattered electron (BSE) images
were taken at the time of electron probe micro-analysis
(EPMA). Silicates were measured for major element
compositions. Metals were analyzed by EPMA for Ni,
Co, Mo, and W. All of the major element analyses are
reported in Table 3. The compositions for each
experiment are given as averages, with the number of
analyses included as n. The uncertainties provided are
lo standard deviation of the mean. Metals were
analyzed by EPMA for Fe, Ni, Co, Mo, and W
(Table 4). All of the elements were above the detection
limits (350 ppm for Fe, 350 ppm for Ni, 300 ppm for
Co, 400 ppm for Mo, 1100 ppm for W). In one glass
sample, LPUMB-2, the normal analytical method did
not show W above the limit of detection. We reanalyzed
this glass to increase the limit of detection for W such
that we increased the current to 150 nA and counted
for 180 s.

The second stage of analysis utilized laser ablation
using a frequency-quintupled Nd:YAG laser, operating
at 213 nm, connected to an Element 2 inductively
coupled plasma mass spectrometer, also at the
University of Maryland, College Park. The spot size for
the laser was between 10 and 60 pm, depending on the
size of the experimental products. Larger spot size,
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125 um, was used for analyzing the silicate portions of
the metal-silicate experiments in order to include both
glass and quenched silicates. The laser repetition rate
was 7 Hz. Helium was used to flush the sample
chamber and to enhance sensitivity (Eggins et al. 1998).
An individual analysis consisted of 20 s of background
acquisition  followed by active ablation for
approximately 50 s. Between sample analyses, a
washout time of 180 s was employed. The isotopes
monitored for the metal-silicate experiments were: >°Co,
°INi, Ni, “Mo, **Mo, 2w, W, and '**W. The
isotopes monitored in the mineral-melt experiments
were: 2 Ga, "' Ga, %%Sr, "Mo, Mo, “Ru, '“'Ru,
105pg, 106pg 108pq 18T, 182y 183y 184w o 1974y,
Multiple isotopes of non-monoisotopic elements were
monitored to check for interferences from isobars.

Raw data were processed postanalysis using
LAMTRACE software (Jackson 2008) coupled with
major element abundances. Concentrations of Ga, Sr,
Mo, Pd, Hf, W, Ni, Co, and Au were determined by
comparing intensities of known concentrations of CaO
or FeO in our samples, determined by EPMA, to an
external reference material. Pyroxene compositions for
CaO were averaged due to their irregular zoning with
respect to CaO and the large spot sizes used. The NIST
610 reference glass was used as the external reference
material for calculation of concentrations for these
elements. Ruthenium is not present in NIST 610 in
measurable quantities, so we used the IIAB iron
meteorite Filomena as the external reference material,
using Ga to correct for ablation yield. This resulted in
calculated NIST 610 concentrations within 10% of the
standard values. The Ga concentrations for our
samples, determined from the comparison to NIST 610
reference material, were then used to calculate the
concentration of Ru. The concentrations of CaO,
11.5 wt%, and Ga, 438 ppm, in NIST 610 that were
used are from Jochum and Nohl (2008). The Ga
concentration of 59 ppm for Filomena was taken from
Campbell et al. (2002), and the Fe% concentration of
93.8% comes from Walker et al. (2008).

The trace element results are reported in Table 5.
Most reported concentrations are averages of multiple
analyses of the same phase. The uncertainty is reported
as the lo standard deviation of the mean of multiple
measurements of the same phase. When only one
measurement was made, the uncertainty reported is the
lo standard deviation, based on counting statistics. For
some elements, the concentration is less than the
detection limits, which is calculated by LAMTRACE if
the signal was less than three times the background
taken for an individual analysis. Background signals
were measured for each analysis. As a result, the limit
of detection varied (between approximately 0.01 and
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Table 4. Microprobe analysis for metal (wt%).
LPUM-B 1 o LPUM-B 2 (e} LPUM-B 3 o LPUM-B 4 o

n 6 7 5 6
Na 0.01 0.01 0.01 0.01 0.01 0.01 0.13 0.11
Mn b.d. b.d. b.d. 0.01 0.01
Mg 0.02 0.01 0.01 0.01 0.03 0.02 0.04 0.04
Ca b.d. b.d. b.d. b.d.
Al b.d. b.d. 0.01 0.01 0.01 0.01
Fe 80.17 0.51 74.63 0.58 76.40 0.72 83.49 0.57
Cr b.d. b.d. b.d. b.d.
Si 0.07 0.07 0.01 0.14 0.05 0.01 0.01
w 0.22 0.09 1.69 0.21 1.52 0.17 0.58 0.13
Hf 0.02 0.01 b.d. 0.01 0.01 0.01 0.01
Ti b.d. 0.02 0.01 b.d. b.d.
Ga 0.04 0.02 0.05 0.03 0.06 0.02 0.08 0.02
P 0.02 0.01 0.03 0.01 0.11 0.03 0.02 0.01
Mo 1.97 0.50 2.71 0.18 1.90 0.26 2.35 0.34
Co 3.64 0.44 2.29 0.59 6.35 1.10 2.70 0.15
Ni 14.06 0.88 15.97 0.86 12.51 0.94 11.52 0.45
Total 100.25 97.49 99.05 100.93

b.d. = below detection.

I ppm). In order to make maximum D value
estimations where no signal was measured above the
background, we took the limit of detection for the
individual analysis and divided by the average
concentration measured in the glass for the same
experiment.

RESULTS
Run Products

The minerals present in each experiment are listed
in Table 2. Images of typical metal-silicate, high
pressure mineral-melt, and low pressure mineral-melt
run products are shown in Fig. 1. Plagioclase crystals
were present in charges generally as large laths,
sometimes containing glass inclusions. Pyroxenes were
generally massive, 0.1-1 mm across, with irregular
compositional zoning from Ca-rich (6-13 wt%) to Ca-
poor (1-4 wt%) regions which did not extend to minor
elements measured by EPMA. In some experiments,
pyroxenes bordered the plagioclase. Olivine morphology
ranged from euhedral to anhedral. Some crystals were
too small to analyze by LA-ICP-MS. Spinel was
observed in some experiments, but the crystals were too
small to analyze by LA-ICP-MS.

The anorthite (An) content of the plagioclase was
>98 for all low-pressure experiments, and ranged from
87 to 93 for high-pressure experiments (Table 3). The
low-pressure experiments produced plagioclase with An
contents comparable to ferroan anorthosites (e.g.,
Dowty et al. 1974). The An content increased with

increasing MgO wt% of the surrounding melt, similar
to the trend seen in Bédard (2006) (Fig. 2), which was
fit to a much wider range of plagioclase and melt
compositions. Although our data are offset above the
Bédard (2006) best-fit trend, they are within the large
range of compositional data used to calculate the
Bédard (2006) trend. Calculated mineral-melt partition
coefficients are listed in Table 6. Uncertainties for
partition coefficients are lo, as propagated from the
division of the trace element concentrations and their
individual uncertainties.

Nuggets

Experiments run at reducing oxygen fugacities often
result in HSE nugget formation (e.g., Borisov and
Palme 1995; Ertel et al. 1999; Holzheid et al. 2000). It is
often not clear whether the nuggets are pre-existing
metal particles that were present at run conditions, or if
they exsolved from silicate upon quenching (e.g.,
Borisov and Palme 1995; Cottrell and Walker 2006).
Heterogeneous concentrations of HSE in the glass, and
the increase in HSE concentrations correlating with
areas of increasing nugget fractions, have been cited as
reasons for favoring an interpretation that the nuggets
represent pre-existing metal particles (Borisov and
Palme 1995; Ertel et al. 2008). Other studies have
favored an interpretation that nuggets form upon
quench, based on observations that for some
experiments, nugget size appears to be a function of
quench rate, with faster cooling leading to smaller
nuggets (e.g., Cottrell and Walker 2006). Also, in the
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Table 5. Trace element concentrations in glass, plagioclase, pyroxene, and olivine in ppm.
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n Ga c Sr c Hf c Co c
LPUMB 1 Glass 4 n.a. n.a. n.a. 1.9E+02 1.5E+01
LPUMB 2 Glass 4 n.a. n.a. n.a. 4.1E+02 4. 7E+01
LPUMB 3 Glass 4 n.a. n.a. n.a. 8.6E+02 5.5E+01
LPUMB 4 Glass 4 n.a. n.a. n.a. 1.0E+03 2.1E+02
Mpl 4 Glass 3 8. 7E+00 1.5E-01 n.a. n.a. n.a.
Pyroxene 1 1.1E+00 9.2E-02 n.a. n.a. n.a.
Mpl 5 Glass 1 1.2E+01 4.6E-0] n.a. n.a. n.a.
Olivine 1 9.6E+00 3.3E-0] n.a. n.a. n.a.
Mpl 7 Glass 2 2.2E+03 4.5E+01 8.6E+02 4.9E+02 4.3E+03 3.7E+01 n.a.
Pyroxene 1 48E+03 6./IE+00 19E+01 2.0E-02 1.8E+03 1.4E+00 n.a.
Mpl 8 Glass 1 22E+03 34E+00 24E+03 2.3E+00 4.0E+03 3.8E+00 n.a.
Pyroxene 1 48E+03 48E+00 19E+01 8.8E-01 1.8E+03 4.3E+00 n.a.
Mpl 9 Glass 3 23E+03 8.6E+01 3.7E+03 3.3E+02 5.6E+03 6.4E+02 n.a.
Plagioclase 2 1.8E+03 2.7E+02 3.0E+03 1.0E+03 <0.55 n.a.
Mpl 12 Glass 3 2.1E+03 9.3E+01 3.5E+03 1.3E+02 4.5E+03 1.4E+02 n.a.
Olivine 1 72E+01 [18E+00 <3.09 6.9E+01 1.4E+00 n.a.
Mpl 13 Glass 4 1.2E+03 8.3E+01 1.5E+03 5.4E+01 6.6E+03 1.4E+02 n.a.
Plagioclase 2 1.5E+03 7.1E+01 4.7E+03 7.8E+01 44E-01 1.7E-01 n.a.
Olivine 1 48E+02 22E+00 7.6E-01 5.5E-02 5.9E+02 2.0E+00 n.a.
Mpl 16 Glass 4 1.1E+03 3.9E+01 1.8E+03 1.8E+01 3.5E+03  1.1E+02 n.a.
Plagioclase 4 [1.1E+03 3.1E+01 4.1E+03 2.1E+02 8.9E-01 1.6E-01 n.a.
Mpl 19 Glass 3 24E+03 4.1E+01 n.a. 3.5E+03 1.0E+02 n.a.
Pyroxene 1 2.0E+02 3.0E-01 2.3E+01  7.0E-02 3.0E+02 3.3E-01 n.a.
Mpl 20 Glass 5 6.7E+02 3.5E+01 1.9E+03 8.3E+01 4.8E+03 1.1E+02 n.a.
Plagioclase 5 8.2E+02 1.7E+01 4.3E+03 1.1E+02 1.8E+00 3.3E-01 n.a.
Mpl 21 Glass 3 9.7E+02 1.4E+02 1.7E+03  3.8E+01 6.2E+03  3.9E+02 n.a.
Pyroxene 4 8.2E+02 4.3E+01 4.5E+03  6.1E+01 4.2E-01 6.1E-02 n.a.
Mpl 22 Glass 4 5.0E+03 1.5E+02 n.a. n.a. n.a.
Plagioclase 3 5.8E+03 1.8E+02 9.6E+03 [1.3E+01 <4.83 n.a.
Olivine 1 1.6E+02 2.6E-01 1.5E+02 1.6E-01 4.4E+02 3.8E-01 n.a.
Mpl 23 Glass 5 1.3E+03 4.3E+01 2.1E+03 1.7E+01 5.9E+03 5.8E+01 n.a.
Plagioclase 3 1.3E+03 3.7E+01 4.5E+03 2.0E+02 4.8E-01 7.3E-02 n.a.
Pyroxene 2 1.3E+03 8.4E+01 5.8E-01 8.5E-02 1.1E+03 1.6E+02 n.a.
Mpl 25 Glass 4 6.0E+03 1.8E+02 6.3E+03 1.4E+02 8.1E+03 1.0E+03 n.a.
Plagioclase 1 7.2E+03 1.6E+0l 1.1E+04 1.2E+01 <16.70 n.a.
Pyroxene 1 44E+03 1.2E+01 34E+02 2.1E+00 6.1E+03 [.2E+01 n.a.
Olivine 1 3.6E+01 9.2E-0] <9.34 5.5E+00 3.1E-01 n.a.
Mpl 26 Glass 3 4.7E+03 1.4E+02 6.9E+03 6.2E+00 3.3E+03 1.7E+03 n.a.
Pyroxene 2 3.8E+03 1.5E+02 4.5E+02 8.7E+00 4.0E+03 2.6E+02 n.a.
Mpl 27 Glass 5 2.8E+03 2.7E+01 4.6E+03 2.5E+02 5.1E+03 2.6E+02 n.a.
Pyroxene 2 3.9E+03 2.9E+02 5.3E+02 3.3E+01 5.2E+03 6.4E+02 n.a.
Mpl 35 Glass 3 3.7E+03 7.4E+01 4.0E+03 2.7E+02 2.8E+03 1.4E+02 n.a.
Plagioclase 2 3.6E+03 1.2E+02 8.4E+03 1.6E+02 1.6E-01 5.2E-02 n.a.

Uncertainties are defined as 1o standard deviation of the mean, in cases where only one analysis was used, 1o standard deviation according

to counting statistics was used, this is signified by italics.

b.d. = below detection, when background is zero and no detection limit can be determined, n.a. = not analyzed.

experiments of Cottrell and Walker (2006), Pt
concentrations within both nugget rich zones and
nugget free zones were the same, indicating

homogenous mixing at run conditions. Interpretation of
nuggets is important because inclusion of nuggets in
silicate analysis can lead to lower D values than if
nuggets are analytically avoided. Regardless of cause,
metal alloy nuggets tend to concentrate HSE, and may

limit HSE abundances in the silicate phases, making
silicate-melt D values difficult to measure.

One means of avoiding interpretive errors resulting
from nugget formation is to devise experiments that
minimize or eliminate nugget formation (e.g., Brenan and
McDonough 2009). All of our experiments produced at
least some HSE nuggets. Texturally, the nuggets observed
in our runs consisted of spherical globules that often
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Ni c Mo c W c Ru c Pd c Au c
8.4E+01 7.0E+00 1.9E+01 7.0E+00 9.5E+02 1.0E+02
2.0E+02 4.2E+01 1.1E+01 6.0E+00 7.0E+02 1.6E+02
24E+02 2.7E+01 8.0E+00 1.0E+00 3.6E+02 2.9E+01
8.7E+02 2.1E+02 9.9E+01 4.0E+01 44E+03 7.1E+02
n.a. n.a. n.a. 8.0E-03 2.5E-03 1.9E-01 4.1E-03
n.a. n.a. n.a. <0.03 <0.18
n.a. n.a. n.a. 1.7E-02 5.5E-03 <0.31
n.a. n.a. n.a. <0.05 <0.18
n.a. 2.0E+03 2.4E+01 4.1E+03  5.4E+01 5.6E-02 1.0E-03 3.0E-02 3.0E-03 9.2E-02 7.1E-03
n.a. 1.4E+02 3.6E-01 <15.41 b.d. <0.14 <0.76
n.a. 3.0E+03 7.5E+00 4.7E+03 4.4E+00 3.7E-02 1.5E-02 2.5E-02 3.6E-03 <0.17
n.a. 1.4E+02 2.0E+00 <1541 b.d. <0.14 <0.76
n.a. 1.8E+03 8.4E+00 6.2E+03 3.9E+02 4.1E-02 1.2E-02 1.9E-02 3.7E-03 <0.12
n.a. <1.38 6.8E-02 S8.3E-03 3.5E-02 2.5E-02 <0.05 <0.16
n.a. 2.1E+03 1.4E+02 6.2E+03 3.5E+02 1.2E-02 3.9E-03 3.3E-02 3.5E-03 <0.11
n.a. 24E+01 2.1E+00 6.9E-02 4.9E-02 b.d. <0.15 <0.72
n.a. 1.8E+03 6.7E+01 6.7E+03 1.4E+02 <0.21 <0.05 <0.35
n.a. 1.9E-01 1.1E-01 1.6E-01 6.5E-02 <1.21 <0.16 <0.66
n.a. 6.4E+01 1.6E+00 5.4E+00 2.1E-01 <0.26 <0.08 <0.29
n.a. 2.6E+03 7.7E+01 3.9E+03 8.9E+01 <0.21 1.2E-01 3.5E-03 <0.20
n.a. 49E-01 6.0E-02 2.7E-01 3.4E-02 <0.42 <0.08 <0.53
n.a. 1.1E+03 1.3E+01 2.8E+03 3.8E+01 4.6E-02 1.0E-02 29E-02 1.3E-03 1.1E-01 9.7E-03
n.a. 44E+00 8.8E-02 2.0E-02 2.9E-03 9.2E-04 6.5E-04 1.1E-03 2.7E-04 <0.01
n.a. 2.6E+03 1.6E+02 4.7E+03 1.7E+02 5.6E-02 2.8E-03 7.2E-01 1.2E-01 2.5E-01 4.3E-02
n.a. 5.4E-01 5.3E-02 6.7E-01 1.1E-01 7.1E-02 1.7E-02 4.1E-01 6.1E-02 <0.28
n.a. 6.9E+02 4.8E+02 59E+03 1.0E+02 9.1E-01 7.1E-02 5.4E-02 2.2E-02 2.1E-01 5.0E-02
n.a. 6.8E-01 1.6E-01 <0.61 3.0E-01 1.4E-01 1.6E-02 4.8E-03 <0.28
n.a. 9.2E+02 2.9E+01 5.3E+03 2.6E+02 49E-02 1.4E-02 b.d. 1.6E-01 2.4E-02
n.a. <1.31 <0.83 8.7E-02 3.3E-03 b.d. <0.18
n.a. 3.0E+01 2.2E-01 2.0E+02 2.9E-01 b.d. b.d. <0.01
n.a. 4.4E+03 4.3E+01 59E+03 6.3E+01 1.3E-01 7.2E-02 1.6E-01 2.6E-02 1.4E-01 [1.5E-02
n.a. 1.8E+00 2.7E-01 8.9E-01 6.3E-01 7.3E-02 2.5E-02 1.8E-01 1.3E-01 <0.21
n.a. 2.1E+00 2.0E-02 3.4E-01 5.5E-02 7.3E-02 2.1E-02 <0.04 <0.23
n.a. 1.9E+03 3.5E+01 4.6E+03 1.3E+02 7.9E-02 5.3E-02 3.0E-02 4.4E-03 1.6E-01 [.4E-02
n.a. <2.93 <2.20 1.8E-01 &8.1E-02 <0.57 <0.86
n.a. 1.7E+02 4.6E+00 5.7E-01 1.3E-01 b.d. 1.0E-02 5.7E-03 <0.66
n.a. 33E+00 S5.4E-01 b.d. 8.1E-02 4.7E-02 b.d. <0.98
n.a. 2.2E+03 4.8E+01 3.7E+03 1.2E+01 8.6E-02 5.7E-03 2.4E-02 4.2E-03 1.2E-01 8.7E-03
n.a. 6.8E+01 6.4E+00 6.1E-01 4.7E-01 2.2E-01 1.2E-01 3.0E-03 [.IE-03 <0.59
n.a. 1.3E+03 2.7E+01 29E+03 6.2E+01 4.8E-02 8.0E-03 6.1E-02 9.6E-03 <0.17
n.a. 7.4E+01 5.2E+00 2.5E+00 1.9E+00 2.2E-02 1.8E-03 8.5E-02 1.4E-02 <0.66
n.a. 8.4E+02 2.1E+01 5.6E+03 6.6E+01 5.3E-02 1.3E-02 2.1E-02 4.2E-03 <0.19
n.a. 1.7E-01 1.2E-01 4.0E-02 2.8E-02 5.1E-02 1.3E-02 5.8E-03 2.1E-03 <0.57

contained two immiscible phases. One phase was rich in
Au and Pd, and the other was Ru rich. These two phases
were always present, under all run conditions. In the first
low-pressure experiments conducted (#4-5), HSE nuggets
were small and dispersed throughout the samples in both
glass and mineral phases. We then reduced the number of
HSE included in the rest of the experiments (#7-35) to
reduce the likelihood of forming nuggets. We focused on

Pd and Au as these do not tend to form nuggets and have
higher silicate-melt solubilities than other HSE (Borisov
and Palme 1996). We also include Ru as it has relatively
high solubility in silicate melt at oxidizing conditions
(Borisov and Nactweyh 1998). The change in
composition produced results where the nuggets were
larger and more concentrated at the tops of the sample
charges, with the majority of the sample charge nugget
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500 um

Fig. 1. This figure shows the typical textures displayed in each of the types of experiments. The top panel A is the metal-silicate
experiment (LPUMB-2). Panel B is the high-pressure mineral-melt texture (#22). Panel C is the low-pressure mineral-melt texture
(#5). Phases are labeled as Ol-olivine, Pl-plagioclase, Pyx-pyroxene, M-metal, and Gl-silicate glass.

free. The high-pressure experiments generally had a few  Equilibrium

large nuggets, with the majority of the phases nugget free.

Because of the irregular distribution of nuggets, we The major element behavior of Fe and Mg in
assume that they were present at high temperature and olivine and Ca and Na in plagioclase can be used to
avoided them in analyses. indicate whether an experiment reached equilibration.
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Fig. 2. MgO wt% of the melt versus An number of
plagioclase. In comparison with Bédard (2006), our samples
plot above the trend of that study. We do see the same
increasing An content with increasing MgO wt%.

The average exchange coefficient (Kp) for Fe-Mg for
olivine-melt was 0.27 + 0.03, which overlaps with the
value 0.30 + 0.03 from Roeder and Emslie (1970) for
olivine in basaltic melts. Another way we assessed the
equilibrium was to estimate the temperature of the
experiment using the plagioclase-liquid thermometer of
Putirka (2005) and comparing it to our experimental
temperatures. The average difference between the two
temperatures was only 4.8%. The homogeneity of major
elements within phases was determined via EPMA. Of
the experimental products, only pyroxene showed any
obvious zonation, in some charges varying from
clinopyroxene to orthopyroxene in the same crystals.

Trace eclement homogeneity was monitored by
examining ablation profiles as a function of time. Only
analyses that yielded stable signals, and that were
unaffected by spikes in signal caused by nugget ablation
are considered. The HSE were generally not present in
measurable amounts in either glass or mineral fractions;
however, a few samples had HSE above detection limits
in some phases. In these cases, the time-resolved signals
were stable. Examples of a clean glass run and one with
a metal alloy spike can be found in supporting
information. We observed no trace element abundance
zonation within any given mineral during these runs,
indicating that kinetic effects were minimal.

We can also compare our measured values to those
reported in previous solubility studies. For example,
Borisov and Palme (1996) equilibrated basaltic silicate
melts with Au-Pd alloys and reported concentrations of
0.5-1.0 ppm Pd and 0.06-0.08 ppm Au. Although these
values differ somewhat from concentrations of 0.002—
0.06 ppm Pd and 0.092-0.25 ppm Au in our melts, our
melts equilibrated with alloys containing much lower Pd

743

and Au contents (Table 5). The concentrations are
broadly consistent with the levels measured in previous
studies. The basalt compositions were somewhat
different so close agreement with the prior experiment
was unlikely. For Ru, Laurenz et al. (2013) measured
0.045-0.14 ppm Ru in basaltic melts equilibrated with
Ru metal at fO, near FMQ-2. These values are similar
to ours obtained for experiments run with comparable
fO, and pressure in which we measured 0.012-
0.086 ppm Ru in melts equilibrated with metallic alloys
containing less Ru than the study of Laurenz et al.
(2013) (Table 5). These comparisons indicate that the
melts attained levels of Ru, Pd, and Au that are
consistent with equilibrium and do not reflect
interference from micro-nuggets of HSE metals seen in
previous studies.

Metal-Silicate Partitioning

Major and trace element data for metal-silicate
experiments are included in Tables 3 and 4, respectively.
Calculated D values are reported in Table 6. The silicate
portions of all run products consisted entirely of glass
and olivine. Olivine grains were mainly large, euhedral
crystals, but some were smaller and more skeletal in
shape (Fig. 1). We focused on areas with coexisting glass
and olivine that appeared quenched. Large laser spot
sizes (60 um) were used to obtain the average trace
element composition of the silicate. Metal-silicate D
values range from 130 to 440 for Ni, from 30 to 70 for
Co, and from 230 to 1200 for Mo. The metal-silicate D
values for W range from 0.55 to 40, with only one
experiment resulting in a D value for W < 1.

The new metal-silicate D values for Co, Ni, Mo,
and W overlap with results from previous studies that
examined partitioning at pressures <5 GPa (Table 7).
We observed no pressure-dependent changes in the
metal-silicate D value for any of the elements examined.
By contrast, oxygen fugacity and metal-silicate D values
are negatively correlated for all elements examined
(Fig. 3), although trends for Ni and Co are better than
those for Mo and W. These results are generally
consistent with results from Righter (2011).

Silicate Mineral-Melt Partitioning

Partitioning of Hf and Sr

Major and trace eclement data for mineral-silicate
experiments are provided in Tables3 and 4,
respectively. Calculated D values are reported in
Table 6. Plagioclase-melt D values for Hf range from
8 x 107> to 3 x 107* Pyroxene-melt and olivine-melt
D values for Hf range from 0.08 to 1.2 and 6 x 10~* to
0.08, respectively. There is a modest positive correlation
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Table 6. D values for metal-silicate and mineral-silicate experiments.

Ga c Sr c Hf c Mo c

Metal

LPUM Bl 1.0E+03 9.4E+01

LPUM B2 2.5E+03 3.8E+02

LPUM B3 2.4E+03 2.7E+02

LPUM B4 2.4E+02 1.0E+02
Plagioclase

Mpl 9 7.7E-01 1.2E-01 8.1E-01 2.9E-01

Mpl 13 1.2E+00 9.9E-02 3.1E+00 1.2E-01 6.5E-05 2.5E-05 1.1E-04 6.1E-05

Mpl 16 9.6E-01 4.4E-02 2.3E+00 1.2E-01 2.6E-04 4.7E-05 1.8E-04 2.4E-05

Mpl 20 1.2E+00 6.9E-02 2.3E+00 1.2E-01 3.7E-04 7.0E-05 2.0E-04 2.4E-05

Mpl 21 8.5E-01 1.3E-01 2.7E+00 7.3E-02 6.8E-05 1.1E-05 7.7E-04 4.6E-04

Mpl 22 1.1E+00 5.0E-02

Mpl23 1.1E+00 4.6E-02 2.1E+00 9.9E-02 8.0E-05 1.2E-05 4.2E-04 6.1E-05

Mpl 25 1.2E+00 3.6E-02 1.7E+00 3.7E-02

Mpl 35 1.0E+00 3.8E-02 2.1E+00 1.5E-01 5.9E-05 1.9E-05 2.0E-04 1.4E-04
Pyroxene

Mpl 4 1.3E-01 1.1E-02

Mpl 7 2.2E+00 4.6E-02 2.2E-02 1.2E-02 4.1E-01 3.5E-03 0.071 0.001

Mpl 8 1.1E+00 2.7E-03 8.0E-02 3.7E-04 6.7E-01 1.3E-03 0.037 0.001

Mpl 19 8.2E-02 1.4E-03 8.6E-02 2.5E-03 3.9E-03 8.8E-05

Mpl 23 1.0E+00 7.4E-02 2.7E-04 4.1E-05 1.9E-01 2.7E-02 4.7E-04 6.4E-06

Mpl 25 7.3E-01 2.2E-02 5.3E-02 1.2E-03 7.5E-01 9.3E-02 9.3E-02 3.0E-03

Mpl 26 8.2E-01 4.0E-02 6.5E-02 1.3E-03 1.2E+00 6.3E-01 3.1E-02 2.9E-03

Mpl 27 1.4E+00 1.1E-01 1.2E-01 9.6E-03 1.0E+00 1.4E-01 5.6E-02 4.1E-03
Olivine

Mpl 5 8.3E-01 4.3E-02

Mpl 12 3.5E-02 1.8E-03 1.5E-02 5.8E-04 1.1E-02 1.3E-03

Mpl 13 3.8E-01 2.6E-02 4.9E-04 4.0E-05 8.9E-02 1.9E-03 3.6E-02 1.6E-03

Mpl 22 3.1E-02 9.4E-04 3.2E-02 1.1E-03

Mpl 25 6.0E-03 2.4E-04 6.8E-04 9.2E-05 1.8E-03 2.9E-04

Note. Italics denote upper limit.

between plagioclase-melt D values for Hf, and the SiO,
content of the melt (Fig. 4a). The slope of the trend is
similar to that reported in Bédard (2006); however, our
results are offset to lower D values (Fig. 4a). This may
be due to compositional differences, as our melt had
lower SiO, contents than most of the data used for the
Bédard (2006) best-fit trend.

Our plagioclase-melt D values for Hf are consistent
with the extreme incompatibility noted by Righter and
Shearer (2003) and Shearer and Righter (2003). Most
experimental determinations of pyroxene-melt D values
for Hf are <I, consistent with most of our results
(Klemme et al. 2006; Hart and Dunn 1993). However,
two of our experiments yielded D values >1. The higher
D values are consistent with the results of Bennett et al.
(2004) for  synthetic  basalt, which  reported
clinopyroxene-melt D values that range to 1.9. The
range of olivine-melt D values for Hf obtained here is
wider than previously reported (Tables 6 and 7) (e.g.,
Adam and Green 2006).

Individual plagioclase-melt D values for Sr range
from 0.8 to 3.0 and are generally consistent with the

absolute range reported by prior studies (Drake and
Weill 1975; Bindeman and Davis 2000). Of note, one
experiment resulted in a D value less than 1 (see
Table 7 for literature ranges for D values for all
elements examined). Consistent with previous studies,
we found no pressure dependence for Sr partitioning
into plagioclase (Blundy and Wood 1991; Taura et al.
1998). By contrast, our results do not plot within
uncertainties of the An content versus D value trends of
Blundy and Wood (1991) and Bédard (2006) (Fig. 4b).
In both of these studies, not as many data points were
used in the trend calculations at An contents >0.95 as
there were at lower An contents. The scatter of our data
about the trends of Blundy and Wood (1991) and
Bédard (2006) is of the same magnitude as displayed by
both natural and experimental data at lower An
contents (Bédard 2006).

The pyroxene-melt D values for Sr range from of
2 x 107 to 0.1, and are negatively correlated with
MgO content in the melt (Fig. 4c). Strontium was also
strongly incompatible with olivine. Although the Sr
content we obtained was sufficiently high to measure in
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W c Ru c Pd c Au Co c Ni c
2.3E+00 9.8E-01 1.9E+02 2.7E+01 1.7E+03 1.7E+02
2.4E+01 6.3E+00 5.6E+01 1.6E+01 7.9E+02 1.7E+02
42E+01 5.8E+00 7.4E+01 1.4E+01 5.2E+02 7.0E+01
1.3E+00 3.7E-01 2.7E+01 5.7E+00 1.3E+02 3.3E+01
1.1E-05 1.5E-06 8.5E-01 6.5E-01
2.3E-05 9.7E-06
7.1E-05 9.0E-06
1.4E-04 2.4E-05 1.3E+00 3.1E-01 5.6E-01 1.3E-01 1.1E+00
3.2E-01 1.6E-01 2.9E-01 1.5E-01 1.3E+00
1.8E+00 5.4E-01 1.1E+00
1.5E-04 1.1E-04 5.5E-01 3.6E-01 1.1E+00 8.3E-01 1.5E+00
2.3E+00 1.8E+00 54E-02
7.2E-06 5.1E-06 9.7E-01 3.5E-01 2.7E-01 1.1E-01
7.1E-06 1.0E-06 2.0E-02 1.5E-02 3.7E-02 2.0E-01 8.9E-02
5.6E-05 9.3E-06 5.5E-01 3.4E-01 1.6E+00
1.2E-04 2.9E-05 3.3E-01 2.0E-01 4.1E-02
1.7E-04 1.3E-04 2.6E+00 1.4E+00 1.3E-01 49E-02  5.1E+00
8.7E-04 6.7E-04 4.5E-01 8.4E-02 1.4E+00 3.2E-01
1.1E-05 7.9E-06
8.0E-04 3.5E-05
3.8E-02 1.9E-03 6.2E-02
1.0E+00 8.9E-01 6.1E+00

only one experiment, that olivine-melt D value is
consistent with previous studies (Table 7).

Partitioning of Ga

Plagioclase-melt D values for Ga range from 0.76 to
1.2, while pyroxene-melt D values range from 0.12 to
2.2 and olivine-melt D values range from 0.005 to 0.83.
Plagioclase-melt, pyroxene-melt, and olivine-melt D
values for Ga do not correlate with oxygen fugacity,
pressure, or An content of plagioclase. By contrast,
there appears to be a weak positive correlation between
plagioclase-melt D values and SiO, content of the melt
(Fig. 44d).

Plagioclase-melt D values for Ga are within the
range of results reported by prior studies (Paster et al.
1974; Blundy et al. 1998). The pyroxene-melt D values
for Ga range from incompatible to slightly compatible
in our charges. Most prior experimental determinations
of Ga pyroxene-melt D values reported incompatible
behavior (e.g., Adam and Green 2006). Gallium is also
incompatible in olivine, however, some of our olivine-
melt D values are up to seven times higher than those

previously reported by Adam and Green (2006). This
may be due to the different compositional and
experimental conditions. Adam and Green (2006) used a
basanitic composition, with high water contents
(>7.5 wt%), and at generally higher pressures than our
runs.

Partitioning of Mo and W

The MSE Mo and W are generally incompatible in
all silicate phases examined. The plagioclase-melt D
values for Mo range from 1 x 107* to 8 x 107*.
Molybdenum tends to be less incompatible in pyroxene
than plagioclase and olivine, with pyroxene-melt D
values ranging from 5 x 10~% to 0.09. Olivine-melt D
values for Mo range from 0.0001 to 0.036. The mineral-
melt D values for W range from 7 x 107® to 1 x 10~*
for plagioclase, 7 x 107 to 8 x 10~ for pyroxene, and
1 x 107> to 0.04 for olivine. Mineral-melt D values for
Mo and W display no correlations with SiO, content of
the melt, or An content of plagioclase.

The plagioclase-melt D values for Mo and W we
determined are significantly lower than previously
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Fig. 3. This figure shows the AIW value versus D for W (panel A), Mo (panel B), Co (panel C), and Ni (panel D). We see
general decreasing values for D with increasing oxygen fugacity for all elements.

measured values (Luhr et al. 1984; Dunn and Sen 1994)
(see Tables 6 and 7). The differences may be due to the
different run compositions examined. The D value for
Mo from Dunn and Sen (1994) was obtained from an
experimental series on a calc-alkaline suite of rocks. The
D value reported for W by Luhr et al. (1984) was an
upper limit determined for trachyandesite. Additionally,
phenocryst-matrix D  value determination may
overestimate D values, due to incorporation of mineral
or melt inclusions in the analyses (Bédard 2006). By
contrast, pyroxene-melt and olivine-melt D values for
Mo and W are broadly consistent with previous values
(Adam and Green 2006).

Partitioning of Ru, Pd, and Au

Although the HSE were generally below detection
limits in both minerals and glass, a few of the mineral
and glass analyses were above the detection limit. For
the experiments in which mineral and melt compositions
could be determined, Ru D values for plagioclase-melt
and pyroxene-melt varied between 0.32 and 2.3, and
0.02 and 2.6, respectively. The plagioclase-melt D values
for Ru do not appear to be correlated with SiO,
content of the melt, or plagioclase An content. Some of
our Ru pyroxene-melt D values are within the range of
Hill et al. (2000), but a few experiments yielded values
lower than that study (Tables 5 and 6). The one viable

olivine-melt D value obtained was 1.0, and is well
within the range of values reported by previous studies
(Brenan et al. 2003; Righter et al. 2004; Malavergne
et al. 2006, 2012). When plotted against oxygen
fugacity, however, our new datum does not plot within
uncertainty along the trend of decreasing olivine-melt D
value with increasing fO, defined by the prior
measurements (Fig. 5). This may be due to the higher
pressure of our experiment, performed at 0.7 GPa,
compared to the 0.0001 GPa conditions of Brenan et al.
(2003) and Righter et al. (2004), or because their
experiments do not extend to the lower fO, used in our
experiment. It may also indicate that a change in Ru
valence state occurs over this range of fO, that could
account for the stabilization of the partition coefficient
below log fO, —5.

Plagioclase-melt D values for Pd range from 0.2 to 1,
and the pyroxene-melt D values range from 0.04 to 1.3.
Only nine glasses and no minerals had measurable
concentrations of Au. For these experiments, only upper
limits of the partition coefficient could be estimated. This
was achieved by dividing the detection limit of the
mineral analysis by the concentration determined for the
glass. For plagioclase-melt, upper limits for D values
range from 0.05 to 1.5, for pyroxene-melt D value upper
limits range from 0.04 to 8.4. Upper limits ranging from
0.06 to 6.1 were obtained for olivine-melt. Our
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wt% of the melt versus RTInD for Ga in plagioclase, where there is a potential positive correlation.
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Fig. 5. This figure plots log fO, versus D of Ru in olivine. We
also plot data from Brenan et al. (2003) and Righter et al.
(2004). Our sample indicates that the increasing olivine-melt D
with decreasing oxygen fugacity does not extend to much
lower log fO, values.

experiments confirm that both Pd and Au are generally
incompatible in plagioclase, consistent with previous
studies (Capobianco et al. 1991). Pyroxene-melt D values
for Pd and Au indicate that these elements can be

compatible or incompatible depending on conditions.
The upper limit of 6.1 for the olivine-melt D value for Au
is much higher than the value of 0.7 reported by Kloeck
and Palme (1988). Given that our D value is a maximum,
it may be within the range of Kloeck and Palme (1988).
No olivine-melt D values for Pd could be determined
from our experiments.

DISCUSSION

A major objective of this study is to better
constrain abundances of certain siderophile and
lithophile elements in the lunar mantle, especially during
evolution of the putative LMO. We do this via two
independent approaches. First, we combine two
compositional models for the Moon with metal-silicate
distribution coefficients derived from a trace element
partitioning parameterization. The parameterization is
strengthened for conditions appropriate to conditions of
lunar core segregation by incorporation of our new
experimental results. From this we estimate elemental
abundances in the bulk silicate Moon immediately
following core segregation. Second, constraints on
abundances of the elements in the LMO at the time of
plagioclase flotation are made using simple crystal-
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liquid fractionation models. This approach combines
the observed abundances of various siderophile and
lithophile trace elements in the Moon’s anorthositic
crust, with  newly  determined  mineral-silicate
distribution coefficients. Through reverse modeling, we
calculate abundances of the trace elements in the LMO
at the time of plagioclase flotation.

Initial Establishment of Siderophile Elements in the LMO
via Core Segregation

The siderophile trace element compositions of the
terrestrial and lunar mantles were likely initially
established by core formation. Numerous prior studies
(e.g., Jana and Walker 1997; Righter and Drake 1999;
Holzheid et al. 2000; Mann et al. 2012) have
investigated metal-silicate partitioning of siderophile
elements as functions of pressure, temperature, and
composition. For example, at low pressures, the HSE
are defined as having metal-silicate partition coefficients
greater than 10* (e.g., O'Neill et al. 1995; Walter et al.
2000). By contrast, high pressures and temperatures
tend to lower D values for at least some siderophile
elements. Righter et al. (2008) found that at higher
pressures (approximately 10-15 GPa), metal-silicate
partition coefficients for Pd decrease enough to account
for terrestrial mantle abundances of HSE. There is some
inconsistency in the literature, however, with respect to
generalizations. For example, Holzheid et al. (2000)
conversely reported that the metal-silicate D values for
Pd do not vary with pressure. The discrepancy between
the two studies has been attributed to differences in the
experimental compositions used by each study (Righter
et al. 2008). Consequently, when considering Ilunar
differentiation, it is especially important to determine
metal-silicate partitioning for P-7-x conditions most
relevant to lunar core formation.

One approach to determining relevant D values for
LMO conditions 1is through parameterization of
partitioning data obtained over wide-ranging conditions.
Effects of fO,, T, P, and melt composition have been
previously parameterized for metal-silicate D values for
some siderophile elements by Righter et al. (2010)
and Righter (2011). Their parameterizations are as follow:

b P b
In D = aln(fO,) +?+%+d<¥> +eln(l — X)
+/In(1 — Xc) +¢ (2)

b cP
InD = aln(fOy) +—+—+ > diX;+eln(l - Xs)
+/In(1 — Xc) + ¢ 3)
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In both equations, the values for parameters a—g
were determined by regressions of literature partitioning
data for the element of interest. The fO, term represents
the absolute oxygen fugacity, which is calculated using
Equation 1 and the IW buffer expression of Righter
et al. (1997), unless reported in the original paper. In
these equations, P and 7 represent pressure and
temperature, respectively. The eclements sulfur and
carbon are known to have significant effects on metal-
silicate partitioning of siderophile elements, so their
abundances are represented in the parameterizations as
Xs and X¢, the mole fractions of sulfur and carbon,
respectively. Equation 2 is used to model D values for
Ni, Co, Ru, Pd, and Au. In Equation 2, the number of
nonbridging oxygen atoms per tetrahedral cation (nbo/t)
represents the degree of polymerization in the melt
(Mysen 1991). Equation 3 is used to model D values for
Mo and W because they are more sensitive to melt
composition than Ni and Co, which are well modeled
by the nbo/t parameter. In Equation 3, the nbo/t
parameter has been replaced by the summation of a
series of oxide mole fractions (including Si, Al, Ca, Mg,
and Fe) that more accurately reflect the melt
composition effects on the metal-silicate D values for
Mo and W (Righter et al. 2010).

The literature data used in the regressions include
all available data for Mo, W, Ni, and Co at pressures
<5 GPa, the central pressure of the Moon. Our new
experimental data are more relevant to lunar core-
segregation  conditions (P, T, fO,, and melt
composition). Consequently, incorporating them into
the larger data set strengthens the parameterization in
the P-T-X region most similar to LMO conditions.
Plots of measured D values compared to the calculated
D values are presented for both literature values and
our metal-silicate experiments (Fig. 6). Our new metal-
silicate experiments overlap with the literature data set
for all elements examined. For Au, Pd, and Ru, all
available data, even those conducted at pressures
>5 GPa, are included in the regression. This is necessary
because of the limited availability of partitioning data
for these three elements (see Righter et al. 2014). Once
the parameters «@—g are defined by the literature
regression, we can change the input for P, 7, fO, and
melt composition to explore various conditions for
lunar core formation. The revised regression parameters
for Equations 2 and 3 are listed in Table 8.

To estimate the metal-silicate D values for Mo, W,
Co, Ni, Ru, Pd, and Au at the time of core formation,
we used the following parameters: oxygen fugacity of
IW-1.25, pressure of 4.5 GPa, and temperature of
1800 °C. We applied the silicate-melt compositions and
nbo/t from Longhi (2006). In this model we used
constant X5 and X values of 0.08 and 0.02, respectively
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Fig. 6. This figure shows InD,,e,s versus InD.,.. for W (panel A), Mo (panel B), Co (panel C), and Ni (panel D). The metal-
silicate D values for W are well modeled by the regression calculation. Also plotted is the 1:1 line. Literature data come from
Newsom and Drake (1982); Seifert et al. (1988); Hillgren (1993); Peach and Mathez (1993); Thibault and Walter (1995);
Holzheid and Palme (1996); Walter and Thibault (1995); Li and Agee (1996); Hillgren et al. (1996); Gaetani and Grove (1997);
Jana and Walker (1997); Righter et al. (1997); Righter and Drake (1999); Li and Agee (2001); Bouhifd and Jephcoat (2003);
Wade and Wood (2005); Corgne et al. (2008); Holzheid and Palme (2007); Kegler et al. (2008); Cottrell et al. (2009); Righter
et al. (2010); Siebert et al. (2011); Tuff et al. (2011); Wade et al. (2012); Righter et al. (2013).

(Garcia et al. 2011). The S and C contents are
consistent with previous geochemical studies (siderophile
element partitioning and S and C contents of melt
inclusions in olivines; Righter 2002; Rai and Van
Westrenen 2014; Wetzel et al. 2013), as well as thermal
modeling (Laneuville et al. 2013; Zhang et al. 2013).

Using D values obtained from parameterization, we
estimated the concentrations of Mo, W, Ni, Co, Ru, Pd,
and Au in the silicate portion of the lunar magma
ocean during the conditions of core formation,
following the method of Hillgren (1991), by applying
the following mass balance equation:

i
i Cbulk

i [er (1 —-x) (D@)}

sil

4)

For this equation, C%; is the concentration of trace
element 7 in the silicate portion of the Moon, i.e., the
bulk silicate Moon. It is the unknown in our
calculations. Additionally, x represents the fraction of
core (by mass). Here, we use 0.984, based on the

assumption that the metallic core of the Moon
comprises a fraction of 0.016 (Garcia et al. 2011). The
Ci i term is the concentration of the same element in
the bulk Moon. As previous models for bulk lunar
compositions were generated using data from lunar
basalts and make assumptions about the size of the core
and metal-silicate D values (e.g., O’Neill 1991), here we
estimate bulk compositions for the Moon based on two
formational models that are independent of basalt
compositions (Table 9). In the first model, we assume
the siderophile element content of the bulk Moon is
equivalent to the composition of the terrestrial primitive
mantle (PM). Siderophile element concentrations used
come from Palme and O’Neill (2003), Becker et al.
(2006), and Fischer-Godde et al. (2011). This model is
valid if the Moon formed entirely from silicates derived
from the mantle of the giant impactor and terrestrial
mantle, assuming the siderophile element abundances in
these mantles had been established at PM levels by core
segregation and/or accretionary processes prior to the
impact. It also assumes the lunar core formed by
reduction in Fe during lunar coalescence. One caveat to
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Table 8. Constants derived from linear regressions.
d d d d d Std.
a (fO,) b(1)T) ¢ (P/T) d(nbo/t) XSi XAl XFe XMg XCa e (In(1-Xg)) f(In(1-X¢)) g n error
Ni  —0.454 -20,477 287 —0.38 -2.39 —1.1 9.11 249 0.54
Co —0.391 -20,668 355 —-0.27 —0.99 —0.85 8 152 0.50
W —0.61 —45,660 1950 1454 39 2196 -5.8 4.53 7.87 -9.17 11.3 167 1.14
Mo -0.22 —17,420 186 0.51 1.39 —-14.73 -9.28 —-8.71 —-0.97 —1.83 1697 114 1.09
Ru —-0.14 —20,550 2.1 =26 9.4 32.1 28 32 1.14
Pd -0.16 11,800 6.8 —147 7.1 15.1 5.57 135 0.82
Au —0.155 15,650 314 —-0.23 9 3.8 —-0.23 85 095

n is the number of analyses used to determine the regression.

this formational model is that terrestrial PM
composition may contain a late accretionary signature
that could largely postdate lunar differentiation. The
siderophile element composition of the Moon, as
defined by primary accretion and differentiation of
either the impactor or the pre-giant impact Earth are
unknown, thus, we use the terrestrial PM as a
reasonable estimate of the silicate composition.

For the second model we use 98.4% PM plus 1.6%
terrestrial core composition (McDonough 2003) as an
upper limit for the trace element concentrations. This
model assumes that a small fraction of core material of
either the Earth or the giant impactor was incorporated
into the forming Moon. This core material would make
up the entirety of the current lunar core and have
element abundances equivalent to the terrestrial core.

In Fig. 7a, we plot the CI chondrite normalized
abundances of literature estimates for the lunar mantle
(from Palme et al. 1984; O’Neill 1991; Walter et al. 2000;
Ranen and Jacobsen 2004; Day etal. 2007) in
comparison to our model results derived generated using
the new metal-silicate partition coefficients. We also plot
abundances for the terrestrial PM, the terrestrial core,
and the mixture of the two used in the second bulk
compositional model. The core-segregation model using a
PM bulk composition for the Moon yields trace element
abundances that are generally lower than the prior lunar
mantle estimates. The results of the core-segregation
model with a bulk composition of PM with a small
fraction of terrestrial core overlap with lunar mantle
estimates from the literature for all elements, except for
Ru (Palme et al. 1984; O’Neill 1991; Walter et al. 2000;
Ranen and Jacobsen 2004; Day et al. 2007) (Fig. 7a).
This is also consistent with lunar formation
hydrodynamic simulations (e.g., Cuk and Stewart 2012),
which derive the lunar core from the cores of the
impactor and the proto-Earth. Note, however, that
estimates for the abundances of these siderophile trace
elements in the lunar mantle were generally projected
from basalts by using correlations between elements of
equivalent compatibility. The lunar mantle estimates may

not be representative of the whole lunar mantle due to
potential heterogeneity in source regions.

Constraining concentrations of siderophile elements
following core-mantle differentiation does not alone
provide new insights to address evolution of the LMO
or potential incorporation of additional meteoritic
material postcore formation. After core formation,
crystallization of the various minerals precipitating from
the LMO would have led to fractionation of siderophile
and lithophile trace elements. Most estimates place the
arrival of plagioclase on the liquidus of the LMO
following about 75% crystallization (e.g., Snyder et al.
1992). Thus, abundances of highly incompatible trace
elements may have been enriched, relative to the initial
bulk silicate Moon, by factors of 4-20 due
concentration in the residual liquid during fractional
crystallization.

Estimation of Trace Element Abundances in the LMO at
the Time of Plagioclase Crystallization

As lunar ferroan anorthosites have been proposed to
be a crystallization product of the LMO, the
compositions of these rocks are used to model the LMO
composition at the time of plagioclase crystallization
utilizing the new plagioclase-melt D values (Table 9). The
concentrations of the elements in the LMO at time of
plagioclase flotation are calculated by taking average
concentrations of the elements observed in lunar
anorthosites and dividing by the respective plagioclase-
melt D value. Lunar anorthosite data from Wanke et al.
(1975) (W), Norman et al. (2003) (Sr, Hf, Mo, Ni, Co),
and Day et al. (2010) (Ru, Pd, and Au) are used in the
calculations. We use the highest and lowest D values
obtained to establish the range for possible LMO
concentrations. The model results in concentrations of 3—
21 ppt for Ru, 30-120 ppt for Pd, 2.5-4.1 ppm for Ga,
25-190 ppm for Mo, 100-2100 ppm for W, 50—190 ppm
for Sr, and 700—4400 ppm for Hf. The plagioclase-melt D
values for Au are estimated from the limit of detection of
Au in the mineral and the measured concentration in the
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Fig. 7. Panel A is a chondrite normalized (Orgueil) plot of the
calculated estimates from regressions for two bulk compositions
at conditions of core formation for trace elements Sr, Hf, Ga,
W, Mo, Ru, Pd, and Au. In addition to the core-segregation
model, we plot the starting materials of PM (Palme and O’Neill
2003; Becker et al. 2006; and Fischer-Godde et al. 2011),
terrestrial core (McDonough 2003), and PM plus terrestrial
core. Panel B shows the upper and lower estimates from
plagioclase-melt D values for the LMO at time of plagioclase
crystallization. The second bulk composition result for the core-
segregation model is also plotted. Panel C shows the upper and
lower estimates from the plagioclase-melt D values and the
core-segregation models at two different times: at 75%
crystallization and 95% crystallization. At 95% crystallization,
we test changes in oxygen fugacity. Also plotted on all panels
are lunar mantle estimates from literature (Palme et al. 1984;
O’Neill 1991; Walter et al. 2000; Ranen and Jacobsen 2004;
Day et al. 2007). The dotted lines in the plagioclase-melt
estimates indicates that the D values used in this calculation
were not determined by this study, but were taken from
Bindeman et al. (1998).

corresponding glass. This gives the maximum D value, so
the calculated range of 18-518 ppt for Au is a lower limit.
We can also use previously determined plagioclase-melt
D value ranges from Bindeman et al. (1998) to estimate
concentrations of Ni and Co in the LMO. The range of
concentrations for Ni is 40-400 ppm and the range for
Co is 10-180 ppm.

When plotted in Fig. 7b, the new LMO estimates
are compared to previous lunar mantle estimates, as
well as the core-segregation model. In comparison to
lunar mantle estimates, calculated Sr, Ga, Pd, and Au
abundances are within range; Hf, W, and Mo are
higher; and Ru is lower. In comparison to PM from
Palme and O’Neill (2003): Ga, Ru, Pd, and Au are
depleted and Sr, Hf, W, and Mo are enriched. The
depletions of Ru and Pd of more than a factor of 20
with respect to PM are consistent with the results of
Walker et al. (2004) and Day et al. (2007). When the
core-segregation model is compared to the plagioclase-
melt D value model, the concentrations of Ru, Pd, and
Au are similar to within an order of magnitude,
indicating that during the time between core segregation
and plagioclase formation, the HSE concentration of
the LMO was not significantly changed, consistent with
their mildly incompatible nature (bulk D approximately
1). The LMO abundances of Mo and W are much
higher than those determined for the bulk silicate Moon
obtained from the core-segregation model. If the core-
segregation model sets the initial siderophile element
signature of the LMO, this suggests that Mo and W
were further concentrated in the remaining melt during
the crystallization of the LMO. We explore several
possible explanations for these enrichments, including
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incompatibility during fractional crystallization, core
segregation at higher fO, than IW-1.25, high doping
levels in the experiments, and use of bulk anorthosite
data rather than plagioclase separate data.

The high concentrations of Hf, W, and Mo predicted
by the plagioclase-D value model may be the consequence
of enrichment, as compared to the original melt
concentration, due to the extreme incompatibility of these
elements in a small melt fraction at the time of plagioclase
crystallization. In Fig. 7c, we show the effect of fractional
crystallization on the PM and 1.6% terrestrial core bulk
compositional model at 25% melt fraction, the level of
enrichment produced by fractional crystallization would
only be about a factor 4, assuming complete
incompatibility, which is not enough to explain Hf, W,
and Mo concentrations. It is possible that the anorthosites
formed later in the crystallization process, but even when
the melt fraction is reduced to 5%, the corresponding
increase in the enrichment is still only about a factor of
20, which is not enough to explain the enrichments.

The core-segregation model itself is sensitive to
changes in pressure, temperature, composition, and
oxygen fugacity. Thus, in addition to melt fraction, we
show the effect of raising the oxygen fugacity on the
core-segregation model with a 5% melt fraction in
Fig. 7c. The results are still not high enough to account
for the enrichment in W and Mo. We made additional
changes in pressure and temperature, but they did not
significantly change the concentrations predicted by the
model, so are not shown. Another potential issue is that
the high concentration estimates for Hf, W, and Mo may
be due to underestimation of D values that stem from
extremely high concentrations in the glass that may be
related to the addition of trace elements at wt% levels.

Alternatively, the high concentrations predicted for
Hf, W, and Mo may be related to the anorthosite
concentrations that we are using in the calculation. In
bulk anorthosite, there could be trace amounts of minor
phases such as ilmenite, pyroxene, or spinel that could
contribute to the bulk inventory of Hf, W, and Mo
(e.g., Klemme et al. 2006; Righter and Shearer 2003).
Comparing Hf concentrations in both Norman et al.
(2003) of a bulk anorthosite clast (0.26 ppm) to
plagioclase separates (0.008 ppm) in Touboul et al.
(2009), it is apparent that this effect could account for
much of the extreme enrichment.

CONCLUSIONS

Our new D values for both metal-silicate and
mineral-melt partitioning experiments are generally
consistent with those reported in previous studies. The
metal-silicate regression derived lunar mantle estimate is
consistent with previous lunar mantle estimates,

M. Sharp et al.

consistent with the interpretation that Ilunar core
formation occurred in a deep magma ocean. Mineral-
melt derived LMO compositions for Ru, Pd, and Au are
similar to the wvalues derived from core-segregation
models, consistent with these elements being mildly
incompatible to compatible during magma ocean
crystallization. The mineral-melt derived LMO
compositions are characterized by enrichments in Hf, W,
and Mo. These enrichments of Hf, W, and Mo are much
greater than would be predicted by fractional
crystallization of the LMO; some of the latter enrichment
may be influenced by the use of bulk anorthosite data
rather than plagioclase separates.
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